Nothing Special   »   [go: up one dir, main page]

WO2022153552A1 - 端末、通信方法及び基地局 - Google Patents

端末、通信方法及び基地局 Download PDF

Info

Publication number
WO2022153552A1
WO2022153552A1 PCT/JP2021/001543 JP2021001543W WO2022153552A1 WO 2022153552 A1 WO2022153552 A1 WO 2022153552A1 JP 2021001543 W JP2021001543 W JP 2021001543W WO 2022153552 A1 WO2022153552 A1 WO 2022153552A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq
downlink shared
ack
terminal
pdsch
Prior art date
Application number
PCT/JP2021/001543
Other languages
English (en)
French (fr)
Inventor
尚哉 芝池
浩樹 原田
聡 永田
チーピン ピ
ジン ワン
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to EP21919445.3A priority Critical patent/EP4280748A4/en
Priority to CN202180090159.5A priority patent/CN116686368A/zh
Priority to PCT/JP2021/001543 priority patent/WO2022153552A1/ja
Priority to JP2022575054A priority patent/JPWO2022153552A5/ja
Publication of WO2022153552A1 publication Critical patent/WO2022153552A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • the present invention relates to terminals and base stations in wireless communication systems.
  • 5G or NR New Radio
  • 5G various wireless technologies and network architectures are being studied in order to satisfy the requirement that the delay of the wireless section be 1 ms or less while achieving a throughput of 10 Gbps or more.
  • the 3GPP Release 15 and Release 16 New Radio (NR) specifications assume that a frequency band up to 52.6 GHz will be used for wireless communication. As shown in FIG. 3, as the frequency band used for wireless communication, the frequency band from 410 MHz to 7.125 GHz (Frequency Range 1 (FR1)) and the frequency from 24.25 GHz to 52.6 GHz. The band (Frequency Range (FR2)) is defined.
  • FR1 Frequency Range 1
  • FR2 Frequency Range
  • 3GPP is studying the use of a frequency band of 52.6 GHz to 71 GHz for wireless communication as a frequency band other than FR1 and FR2 (Non-Patent Document 1 and Non-Patent Document 2).
  • HARQ extension technology is required when multiple PDSCHs are scheduled by one DCI.
  • the scheduling information of the plurality of downlink shared channels and the offset value between the resource position of the downlink shared channel and the resource position of the uplink control channel of any one of the plurality of downlink shared channels are obtained.
  • the plurality of downlinks are received based on the receiving unit that receives a single downlink control information including the information and receives the plurality of downlink shared channels according to the scheduling information, the resource position of the one downlink shared channel, and the offset value.
  • a terminal which is provided with.
  • one DCI provides an extended technique for HARQ when a plurality of PDSCHs are scheduled.
  • the existing technique may be appropriately used in the operation of the wireless communication system according to the embodiment of the present invention.
  • the existing technique is, for example, an existing NR or LTE, but is not limited to the existing NR or LTE.
  • FIG. 1 is a diagram for explaining a wireless communication system according to an embodiment of the present invention.
  • the wireless communication system according to the embodiment of the present invention includes a base station 10 and a terminal 20 as shown in FIG. Although FIG. 1 shows one base station 10 and one terminal 20, this is an example, and there may be a plurality of each.
  • the base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20.
  • the physical resources of the radio signal are defined in the time domain and the frequency domain, the time domain may be defined by the number of OFDM symbols, and the frequency domain may be defined by the number of subcarriers or the number of resource blocks. Further, the TTI (Transmission Time Interval) in the time domain may be a slot, or the TTI may be a subframe.
  • TTI Transmission Time Interval
  • the base station 10 can perform carrier aggregation that bundles a plurality of cells (a plurality of CCs (component carriers)) and communicates with the terminal 20.
  • carrier aggregation one PCell (primary cell) and one or more SCells (secondary cells) are used.
  • the base station 10 transmits a synchronization signal, system information, and the like to the terminal 20.
  • Synchronous signals are, for example, NR-PSS and NR-SSS.
  • the system information is transmitted by, for example, NR-PBCH or PDSCH, and is also referred to as broadcast information.
  • the base station 10 transmits a control signal or data to the terminal 20 by DL (Downlink), and receives the control signal or data from the terminal 20 by UL (Uplink).
  • DL Downlink
  • UL Uplink
  • the terminal 20 is a communication device having a wireless communication function such as a smartphone, a mobile phone, a tablet, a wearable terminal, and a communication module for M2M (Machine-to-Machine). As shown in FIG. 1, the terminal 20 receives a control signal or data from the base station 10 on the DL and transmits the control signal or data to the base station 10 on the UL, thereby providing various types provided by the wireless communication system. Use communication services.
  • the terminal 20 may be referred to as a UE, and the base station 10 may be referred to as a gNB.
  • the terminal 20 can perform carrier aggregation that bundles a plurality of cells (a plurality of CCs (component carriers)) and communicates with the base station 10.
  • carrier aggregation one PCell (primary cell) and one or more SCells (secondary cells) are used.
  • PUCCH-S Cell having PUCCH may be used.
  • FIG. 2 shows a configuration example of a wireless communication system when DC (Dual connectivity) is executed.
  • a base station 10A serving as an MN (Master Node) and a base station 10B serving as an SN (Secondary Node) are provided.
  • Base station 10A and base station 10B are each connected to the core network.
  • the terminal 20 can communicate with both the base station 10A and the base station 10B.
  • the cell group provided by the MN base station 10A is called an MCG (Master Cell Group), and the cell group provided by the SN base station 10B is called an SCG (Secondary Cell Group).
  • MCG Master Cell Group
  • SCG Secondary Cell Group
  • the MCG is composed of one PCell and one or more SCells
  • the SCG is composed of one PSCell (Primary SCell) and one or more SCells.
  • the processing operation in the present embodiment may be executed in the system configuration shown in FIG. 1, may be executed in the system configuration shown in FIG. 2, or may be executed in a system configuration other than these.
  • the 3GPP Release 15 and Release 16 New Radio (NR) specifications assume that a frequency band up to 52.6 GHz will be used for wireless communication. As shown in FIG. 3, as the frequency band used for wireless communication, the frequency band from 410 MHz to 7.125 GHz (Frequency Range 1 (FR1)) and the frequency from 24.25 GHz to 52.6 GHz. The band (Frequency Range (FR2)) is defined.
  • FR1 Frequency Range 1
  • FR2 Frequency Range
  • Non-Patent Document 1 Non-Patent Document 2
  • the frequency band of 52.6 GHz to 71 GHz is a frequency band having a very high frequency as a frequency band used for wireless communication, when it is used for wireless communication, phase noise, high propagation loss, and peak-to- Problems such as an increase in Frequency Power Radio (PAPR) and non-linearity of the power amplifier may occur.
  • PAPR Frequency Power Radio
  • phase noise is a phase fluctuation generated by a frequency component other than the carrier frequency in the local transmission signal.
  • PAPR is an index showing the magnitude of the peak of the transmission waveform, and is the ratio of the maximum power to the average power. When the PAPR is large, it is necessary to increase the backoff of the power amplifier on the transmitting side in order to avoid signal distortion.
  • SCS subcarrier spacing
  • a subcarrier interval between 120 kHz and 960 kHz may be supported. It is envisioned that, for example, 120 kHz subcarrier spacing, 480 kHz subcarrier spacing, and 960 kHz subcarrier spacing are used for data communication. For example, a 240 kHz subcarrier interval may be used to transmit the synchronization signal block (SSB) used for initial access.
  • SSB synchronization signal block
  • HARQ-ACK codebook The outline of the HARQ-ACK codebook corresponding to DL transmission will be described.
  • the HARQ-ACK codebook stipulates how to organize multiple HARQ-ACKs when they are multiplexed and transmitted.
  • HARQ-ACK codebooks include time domain (eg, slot), frequency domain (eg, component carrier (CC)), spatial domain (eg, layer), transport block (Transport Block (TB)), In addition, it may be configured to include a bit for HARQ-ACK in at least one unit of a group of code blocks (code block group (Code Block Group (CBG))) constituting TB.
  • the CC is also called a cell, a serving cell, a carrier, or the like.
  • the bit is also referred to as a HARQ-ACK bit, HARQ-ACK information, HARQ-ACK information bit, or the like.
  • the HARQ-ACK codebook is also called a PDSCH-HARQ-ACK codebook (pdsch-HARQ-ACK-Codebook), a codebook, a HARQ codebook, a HARQ-ACK size, or the like.
  • the number of bits (size) and the like included in the HARQ-ACK codebook may be determined quasi-statically or dynamically.
  • the quasi-static HARQ-ACK codebook is also called a Type 1 HARQ-ACK codebook, a quasi-static codebook, or the like.
  • the dynamic HARQ-ACK codebook is also called a Type 2 HARQ-ACK codebook, a dynamic codebook, or the like.
  • Type 1 HARQ-ACK codebook or the Type 2 HARQ-ACK codebook may be set in the terminal 20 by the upper layer parameter (for example, pdsch-HARQ-ACK-Codebook).
  • the terminal 20 has a HARQ-ACK corresponding to the predetermined range (for example, a range set based on the upper layer parameter) regardless of whether PDSCH is scheduled or not. Bits may be fed back.
  • the predetermined range for example, a range set based on the upper layer parameter
  • the predetermined range is set or activated in the terminal 20 for a predetermined period (for example, a set of a predetermined number of opportunities (occasion) for receiving a candidate PDSCH, or a predetermined number of monitoring opportunities (monitoring opportunity) m of the PDCCH). It may be determined based on at least one of the number of CCs, the number of TBs (number of layers or ranks), the number of CBGs per TB, and the presence or absence of spatial bundling.
  • the predetermined range is also referred to as a HARQ-ACK bundling window, a HARQ-ACK feedback window, a bundling window, a feedback window, or the like.
  • the terminal 20 feeds back the NACK bit as long as it is within a predetermined range even if there is no PDSCH scheduling for the terminal 20. Therefore, when using the Type 1 HARQ-ACK codebook, it is expected that the number of HARQ-ACK bits to be fed back will increase.
  • the terminal 20 may feed back the HARQ-ACK bit for the scheduled PDSCH within the above predetermined range.
  • the terminal 20 determines the number of bits of the Type 2 HARQ-ACK codebook based on a predetermined field in the DCI (for example, a DL allocation index (Downlink Indicator (Index) (DAI)) field). You may.
  • the DAI field may be split into a counter DAI (counter DAI (cDAI)) and a total DAI (total DAI (tDAI)).
  • the counter DAI may indicate a counter value of downlink transmission (PDSCH, data, TB) scheduled within a predetermined period.
  • the counter DAI in the DCI that schedules data within the predetermined period may indicate the number counted first in the frequency domain (eg, CC) and then in the time domain within the predetermined period.
  • the total DAI may indicate the total value (total number) of data scheduled within a predetermined period.
  • the total DAI in the DCI that schedules data in a predetermined time unit (for example, PDCCH monitoring opportunity) within the predetermined period is up to the predetermined time unit (also referred to as point, timing, etc.) within the predetermined period. It may indicate the total number of scheduled data.
  • the terminal 20 shares one or more HARQ-ACK bits determined (generated) based on the above Type 1 or Type 1I HARQ-ACK codebook with the uplink control channel (Physical Uplink Control Channel (PUCCH)). It may be transmitted using at least one of the channels (Physical Uplink Shared Channel (PUSCH)).
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the terminal 20 does not transmit the actual PDCCH / PDSCH from the base station 10, but depends on the number of candidates for PDCCH / PDSCH transmission that may be transmitted from the base station 10. Generate a number of HARQ-ACK bits. That is, for the transmission opportunity of PDCCH / PDSCH in which the PDCCH / PDSCH may be transmitted from the base station 10, the terminal 20 may or may not actually transmit the PDCCH / PDSCH from the base station 10. , Sends the HARQ-ACK bit. For example, when the PDCCH transmission from the base station 10 is not performed in response to the PDCCH transmission opportunity from the base station 10, the terminal 20 may transmit the NACK.
  • the terminal 20 In the case of the Type 2 HARQ-ACK codebook, the terminal 20 generates a number of HARQ-ACK bits corresponding to the number of PDCCH / PDSCH signals that are expected to be actually transmitted from the base station 10. Since the terminal 20 may not be able to receive the PDCCH signal from the base station 10, the DCI should include the DAI to notify the number of PDCCH signals transmitted by the base station 10 to the terminal 20. Is possible.
  • Type 1 HARQ-ACK codebook (Generation of Type 1 HARQ-ACK codebook for release 16)
  • the number of bits (size) and the like included in the HARQ-ACK codebook are determined to be quasi-static.
  • the terminal 20 is included in the HARQ-ACK feedback (for example, a range set based on the upper layer parameter) regardless of whether PDSCH is scheduled or not.
  • the HARQ-ACK bit corresponding to the reception candidate position of all PDSCHs is fed back.
  • FIG. 5 is a diagram illustrating an example of a method for generating a Type 1 HARQ-ACK codebook.
  • the size of the HARQ-ACK codebook is the size of the HARQ-ACK window (window shown by the dotted line in the example of FIG. 5) determined by the value of K1 (the value of a plurality of K1) and the HARQ-. It is determined by the number of PDSCH reception candidate positions included in the ACK window.
  • the value of K1 for the PDSCH reception candidate position in slot n + 2 is 7
  • the value of K1 for the PDSCH reception candidate position in slot n + 3 is 6, and K1 for the PDSCH reception candidate position in slot n + 4. Since the value of is 5, HARQ-ACK for the PDSCH reception candidate position in slot n + 2, the PDSCH reception candidate position in slot n + 3, and the PDSCH reception candidate position in slot n + 4 is collectively transmitted in slot n + 9.
  • the K1 value set is set in the upper layer, and the HARQ-ACK window is set within the range that can cover the K1 value set.
  • the terminal 20 determines the number of bits of the HARQ-ACK codebook based on the number of PDSCHs actually transmitted in the HARQ-ACK window determined by the set of K1 values. ..
  • the terminal 20 determines the number of bits of the Type 2 HARQ-ACK codebook based on a predetermined field in the DCI (for example, a DL allocation index (Downlink Indicator (Index) (DAI)) field). ..
  • the DAI field is split into a counter DAI (counter DAI (cDAI)) and a total DAI (total DAI (tDAI)).
  • the counter DAI indicates the counter value of the downlink transmission (PDSCH, data, TB) scheduled in the HARQ-ACK window.
  • the counter DAI in the DCI that schedules the data in the HARQ-ACK window indicates the number counted first in the frequency domain (eg, CC) in the HARQ-ACK window and then in the time domain.
  • the total DAI may indicate the total value (total number) of the data scheduled in the HARQ-ACK window.
  • the total DAI in the DCI that schedules data at a predetermined time unit in the HARQ-ACK window (for example, PDCCH opportunity) can be reached by the predetermined time unit in the HARQ-ACK window. It may indicate the total number of scheduled data.
  • FIG. 6 is a diagram illustrating an example of a method for generating a Type 2 HARQ-ACK codebook.
  • the terminal 20 receives the DCI in the cells # 0 and # 2 in the PDCCH occasion # 1.
  • the terminal 20 receives the DCI in the cell # 1 in the PDCCH occasion # 2.
  • the DCI is received in the cell # 2 in the PDCCH occasion # 3.
  • the terminal 20 receives the DCI in the cells # 1 and # 2 in the PDCCH operation # 4.
  • the value on the left side in parentheses indicates the value of the counter DAI
  • the value on the right side in parentheses indicates the value of total DAI.
  • PDCCH occupation # 1 the DAI contained in the DCI received in the cell # 0 is (0, 2), and the DAI contained in the DCI received in the cell # 2 is (1, 2).
  • PDCCH occupation # 2 the DAI included in the DCI received in cell # 1 is (2, 3).
  • the DAI included in the DCI received in cell # 2 is (3, 4).
  • PDCCH occupation # 4 the DAI contained in the DCI received in the cell # 1 is (4, 6), and the DAI contained in the DCI received in the cell # 2 is (5, 6).
  • the terminal 20 determines that the number of bits of the HARQ-ACK is 6 bits, and is determined by, for example, the value of K1.
  • a 6-bit HARQ-ACK is transmitted using an uplink control channel (Physical Uplink Control Channel (PUCCH)).
  • the terminal 20 determines how to arrange the HARQ-ACK bits in the PUCCH resource based on the DAI.
  • PUCCH Physical Uplink Control Channel
  • DCI format1_1 indicates HARQ feedback for one PDSCH group or two groups scheduled.
  • the two groups may be two groups, group 0 for HARQ feedback in COT (Cannel Occupancy Time) # 0 and group 1 for HARQ feedback in COT # 1. good.
  • COT Cell Occupancy Time
  • group 1 for HARQ feedback in COT # 1. good.
  • the number of groups may be two, in which case the index is 0 or 1.
  • FIG. 7 is a diagram showing an example of e-Type 2 HARQ-ACK feedback.
  • HARQ-ACK1 feedback for group 0
  • HARQ ACK1 failed because Listen Before Talk (LBT) failed. 2
  • LBT Listen Before Talk
  • the terminal 20 includes HARQ-ACK1 and 2 which could not be transmitted in COT # 0 in HARQ-ACK3 and 4 for PDSCH3 and PDSCH4 of COT # 1 and transmits them.
  • the GI is a Group Indicator.
  • the NFI is a new feedback indicator, and when the NFI bit is toggled, the HARQ-ACK bit held by the terminal 20 up to that point is erased.
  • the terminal 20 since the terminal 20 transmits HARQ-ACK1, 2, 3, and 4 in COT # 1, in COT # 2, 1 is notified as the value of NFI by DCI, and therefore, the terminal 20 is notified. Erases HARQ-ACK1, 2, 3, and 4 held up to that point, and newly stores the HARQ-ACK bits for PDSCH5 and PDSCH6.
  • the Type-3 HARQ-ACK feedback is sometimes referred to as the One-shot HARQ fedback.
  • the terminal 20 feeds back all the HARQ-ACK bits currently held by the terminal 20.
  • the HARQ-ACK feedback of Type-3 is also introduced in the NR-U as a countermeasure when the terminal 20 cannot transmit the HARQ-ACK due to the failure of the LBT.
  • FIG. 8 is a diagram showing an example of HARQ-ACK feedback of Type-3.
  • the terminal 20 tries to transmit HARQ-ACK to PDSCH1 and PDSCH2, but cannot transmit HARQ-ACK because LBT fails.
  • the terminal 20 receives the PDCCH3, and it is assumed that the PDCCH3 includes a request for HARQ-ACK feedback of Type-3.
  • the terminal 20 transmits not only the HARQ-ACK for the PDSCH 3 but also all the HARQ-ACK bits currently held by the terminal 20 to the base station 10.
  • the terminal 20 transmits HARQ-ACK1, 2, and 3.
  • the method of determining the timing of HARQ-ACK, the PUCCH resource indicator (PRI) for selecting the PUCCH resource, and the Transmission Power Control (TPC) command for PUCCH transmission will be examined.
  • the generation and reporting of type 1 HARQ-ACK CB, the generation and reporting of type 2 HARQ-ACK CB, and the generation and reporting of e-type 2 HARQ-ACK CB will be examined. do.
  • Proposal1 is a method of collectively transmitting a plurality of feedbacks for a plurality of PDSCHs to one PUCCH.
  • Proposal2 is a method of individually transmitting a plurality of feedbacks for a plurality of PDSCHs in corresponding different PUCCHs.
  • Proposal 3 is a method in which a plurality of feedbacks for a plurality of PDSCHs are divided into several groups and transmitted by the corresponding PUCCH for each group.
  • FIG. 9 is a diagram showing a table summarizing the features of Proposal1 to Proposal3.
  • the payload of DCI can be reduced and the number of PUCCH used for feedback can be reduced.
  • the latency of HARQ-ACK feedback increases.
  • the latency of HARQ-ACK feedback can be reduced, and HARQ-ACK feedback can be performed more flexibly.
  • the payload of the scheduling DCI increases and the number of PUCCHs used for feedback increases.
  • Proposal3 has properties between Proposal1 and Proposal2.
  • the terminal 20 may feed back a plurality of HARQ-ACKs for all the plurality of PDSCHs scheduled by a single DCI in one PUCCH.
  • the terminal 20 When the terminal 20 feeds back a plurality of HARQ-ACKs to all the plurality of PDSCHs scheduled by a single DCI with one PUCCH, the terminal 20 sets the timing of transmitting the HARQ-ACK to the single. It may be determined based on the slot and K1 value of the rearmost PDSCH with respect to the time of the plurality of PDSCHs scheduled in DCI.
  • the K1 value may be an offset value from the slot position of the rearmost PDSCH with respect to the time of a plurality of PDSCHs scheduled in a single DCI to the slot position of the PUCCH to which the corresponding HARQ-ACK is transmitted. ..
  • FIG. 10 is a diagram showing an example in which a plurality of HARQ-ACKs are fed back with one PUCCH for all the plurality of PDSCHs scheduled by a single DCI.
  • the terminal 20 provides HARQ-ACK feedback to PDSCH # 0, PDSCH # 1, PDSCH # 2, and PDSCH # 3 scheduled by a single DCI, PDSCH # 0, PDSCH # 1. , PDSCH # 2, and PDSCH # 3, the resource position of PDSCH # 3 received last in the time direction and the resource position of PUCCH determined by the value of K1 may be transmitted.
  • the scheduling DCI may indicate one K1 value for all of the plurality of scheduled PDSCHs.
  • the scheduling DCI may indicate the value of one PUCCH Resource Indicator (PRI) for all of the plurality of scheduled PDSCHs.
  • the PUCCH resource may be determined by the PRI of the last DCI associated with the PUCCH to transmit the HARQ-ACK.
  • the scheduling DCI may indicate one TPC command value for the PUCCH for transmitting HARQ-ACK for all scheduled PDSCHs.
  • the terminal 20 may feed back a plurality of HARQ-ACKs for all of the plurality of PDSCHs scheduled by a single DCI in one PUCCH by applying the Type1 HARQ-ACK codebook.
  • FIG. 11 is a diagram showing an example of type 1 HARQ-ACK feedback for joint feedback.
  • PDSCH # 3 corresponds to the transmission candidate position #k of HARQ-ACK
  • the terminal 20 with respect to PDSCH # 0, PDSCH # 1, PDSCH # 2, and PDSCH # 3.
  • HARQ-ACK may be mapped to one transmission candidate position (transmission candidate position # k of HARQ-ACK). In this case, the terminal 20 may or may not apply the bundling.
  • the terminal 20 sets the HARQ-ACK information for all of the plurality of PDSCHs scheduled by a single DCI to the transmission candidate position of the HARQ-ACK corresponding to the PDSCH last scheduled in terms of time among the plurality of scheduled PDSCHs. It may be mapped.
  • the (Alt1) terminal 20 does not have to apply bundling to a plurality of HARQ-ACKs corresponding to a plurality of PDSCHs. For example, in the case of FIG. 11, the terminal 20 performs HARQ-ACK for PDSCH # 0, PDSCH # 1, PDSCH # 2, and PDSCH # 3, and transmission candidate position # k, which is a HARQ-ACK transmission candidate position of PDSCH # 3. You may send it with. In this case, since the terminal 20 does not apply bundling to a plurality of HARQ-ACKs for PDSCH # 0, PDSCH # 1, PDSCH # 2, and PDSCH # 3, the number of bits required for transmission of HARQ-ACK is determined. It becomes 4 bits.
  • the (Alt2) terminal 20 may apply bundling to a plurality of HARQ-ACKs corresponding to a plurality of PDSCHs.
  • the terminal 20 may bundle a plurality of HARQ-ACKs corresponding to the plurality of PDSCHs to the M-bit HARQ-ACK bits.
  • the above-mentioned M may be specified in the specifications. For example, it may be a fixed 1 bit.
  • the above-mentioned M may be set by RRC signaling.
  • the unit of the HARQ bundle may be set to N1 by RRC signaling. That is, the HARQ-ACK for the scheduled N1 PDSCH may be combined into one HARQ-ACK bit. In this case, the number of HARQ-ACK bits fed back to the scheduled N PDSCHs may be ceil (N / N1).
  • the number of HARQ-ACK bits fed back to the scheduled N PDSCHs by (Alt2-2B) RRC signaling may be set to M. That is, HARQ-ACK for scheduled ceil (N / M) PDSCHs may be combined into one HARQ-ACK bit.
  • the terminal 20 may or may not apply bundling to a plurality of HARQ-ACKs corresponding to the plurality of PDSCHs.
  • the size of the HARQ-ACK window may be expanded.
  • the K1 set may be extended to include, for example, ⁇ K1 ⁇ , ⁇ K1 + 1 ⁇ , ⁇ K1 + 2 ⁇ , ..., ⁇ K1 + Nmax ⁇ .
  • Nmax is the maximum number of slots scheduled for scheduling multiple PDSCHs. Nmax may be specified in the specification or set by RRC signaling.
  • FIG. 12 is a diagram showing an example in which the size of the HARQ-ACK window is expanded.
  • the plurality of HARQ-ACKs for the plurality of scheduled PDSCHs are fed back in slot n + 10 (slot of the last PDSCH + K1).
  • the K1 set before expansion was ⁇ 3, 4, 5 ⁇ .
  • the HARQ-ACK window before expansion includes slots n + 5 to slot n + 7.
  • Nmax is set to 4.
  • the K1 set is extended to include ⁇ 3,4,5 ⁇ , ⁇ 4,5,6 ⁇ , ⁇ 5,6,7 ⁇ , ⁇ 6,7,8 ⁇ . That is, the K1 set is expanded to ⁇ 3,4,5,6,7,8 ⁇ . Therefore, the HARQ-ACK window is expanded to include slots n + 1 to slot n + 7.
  • the terminal 20 may feed back a plurality of HARQ-ACKs for all of the plurality of PDSCHs scheduled by a single DCI in one PUCCH by applying the Type2 HARQ-ACK codebook.
  • C-DAI and T-DAI may be included in the DCI that schedules the PDSCH.
  • C-DAI and T-DAI may be counted based on DCI.
  • C-DAI may indicate the cumulative number of ⁇ CC, PDCCH monitoring opportunities ⁇ combinations up to the current ⁇ CC, PDCCH monitoring opportunities ⁇ combinations.
  • the T-DAI may indicate the total number of ⁇ CC, PDCCH monitoring opportunities ⁇ up to the current PDCCH monitoring opportunity.
  • FIG. 13 is a diagram showing an example of Option 1-2-1.
  • DCI # 0 is received in the first slot of CC0
  • DCI # 1 is received in the first slot of CC1.
  • C-DAI counts the number of these DCIs.
  • the C-DAI is 1 corresponding to DCI # 0 of CC0
  • the C-DAI is 2 corresponding to DCI # 1 of CC1.
  • DCI # 2 is received in the slot next to CC2.
  • the C-DAI is 3 and the T-DAI is 3 corresponding to DCI # 2 of CC2.
  • Option 1-2-1 Applying HARQ-ACK bundling to multiple PDSCHs scheduled in one DCI and returning one HARQ-ACK to multiple PDSCHs is a condition for applying Option 1-2-1. ..
  • C-DAI and T-DAI may be included in the DCI that schedules the PDSCH.
  • C-DAI and T-DAI may be counted based on the number of PDSCHs scheduled.
  • FIG. 14 is a diagram showing an example of Option 1-2-2.
  • three consecutive PDSCHs are scheduled in the first slot of CC0.
  • a single PDSCH is scheduled in the first slot of CC1.
  • C-DAI becomes 1 corresponding to the leading PDSCH.
  • the T-DAI is 4 because it reflects the total number of PDSCHs scheduled at the DCI timing.
  • C-DAI is 4 because it reflects three PDSCHs scheduled at CC0 and one PDSCH scheduled at CC1.
  • T-DAI does not exist in DCI # 1 of CC1.
  • C-DAI is 5 corresponding to the leading PDSCH.
  • T-DAI is 7 because it reflects the total number of PDSCHs scheduled at the DCI timing.
  • Option 1-2-3 In the example of Option 1-2-2, the explicit DAI is notified by DCI only for the PDSCH at the beginning of each CC. On the other hand, as Option 1-2-3, an explicit DAI may be notified by DCI to each PDSCH of each CC.
  • FIG. 15 is a diagram showing an example of Option 1-2-3.
  • three consecutive PDSCHs are scheduled in the first slot of CC0.
  • a single PDSCH is scheduled in the first slot of CC1.
  • C-DAI becomes 1 corresponding to the first PDSCH, becomes 2 corresponding to the second PDSCH from the beginning, and becomes 3 corresponding to the third PDSCH from the beginning.
  • the T-DAI is 4 because it reflects the total number of PDSCHs scheduled at the DCI timing.
  • C-DAI is 4 because it reflects three PDSCHs scheduled at CC0 and one PDSCH scheduled at CC1.
  • T-DAI does not exist in DCI # 1 of CC1.
  • C-DAI is 5 corresponding to the first PDSCH, 6 corresponding to the second PDSCH from the beginning, and 7 corresponding to the third PDSCH from the beginning.
  • the T-DAI is 7 because it reflects the total number of PDSCHs scheduled at the DCI timing.
  • the terminal 20 may feed back a plurality of HARQ-ACKs for all of the plurality of PDSCHs scheduled by a single DCI in one PUCCH by applying e-type 2 HARQ-ACK feedback.
  • one PDSCH group index may be assigned to all scheduled PDSCHs.
  • the number of PDSCH groups may be increased.
  • the NFI may be similar to the release 16 NFI.
  • the C-DAI / T-DAI may be the same as in the case of type 2 HARQ-ACK feedback.
  • One C-DAI and one T-DAI may be included in the DCI that schedules the PDSCH.
  • C-DAI and T-DAI may be counted based on PDCCH.
  • the HARQ-ACK codebook for each group may be configured in the same manner as Option 1-2-1 for type 2 HARQ-ACK feedback.
  • FIG. 16 is a diagram showing an example of Option 1-3-1.
  • the transmission of HARQ-ACK may be the same as in the case of e-type 2 HARQ-ACK feedback of release 16.
  • HARQ-ACK codebook of each group may be configured in the same manner as Option 1-2-2 of type 2 HARQ-ACK feedback.
  • Option1-3-3 the explicit DAI is notified by DCI only for the PDSCH at the beginning of each CC.
  • an explicit DAI may be notified by DCI to each PDSCH of each CC.
  • the HARQ-ACK codebook of each group may be configured in the same manner as in Option 1-2-3 of type 2 HARQ-ACK feedback.
  • the terminal 20 may feed back a plurality of HARQ-ACKs for all of the plurality of PDSCHs scheduled by a single DCI in corresponding separate PUCCHs. Therefore, the base station 10 may allocate a plurality of PUCCHs with one DCI. Therefore, the notification method of K1 may be extended.
  • FIG. 17 is a diagram showing an example in which the terminal 20 feeds back a plurality of HARQ-ACKs for all the plurality of PDSCHs scheduled by a single DCI with corresponding separate PUCCHs.
  • HARQ-ACK for PDSCH # 0, HARQ-ACK for PDSCH # 1, and HARQ-ACK for PDSCH # 3 are transmitted by corresponding different resources, respectively.
  • Alt1 and Alt2 can be considered.
  • Scheduling DCI may indicate one K1 value for a plurality of scheduled PDSCHs.
  • FIG. 18 is a diagram showing an example in which the scheduling DCI shows one K1 value common to a plurality of PDSCHs.
  • Scheduling DCI may indicate a corresponding K1 value for each PDSCH among a plurality of scheduled PDSCHs (a different K1 value may be indicated for each PDSCH).
  • FIG. 19 is a diagram showing an example in which the scheduling DCI shows a different K1 value for each PDSCH.
  • Alt1 and Alt2 can be considered.
  • the (Alt1) scheduling DCI may indicate one PRI value that is commonly applied to each PDSCH of the plurality of PDSCHs.
  • the PUCCH resource may be determined by the PRI of the last DCI associated with the PUCCH to transmit the HARQ-ACK.
  • Scheduling DCI may indicate a corresponding PRI value for each PDSCH among a plurality of PDSCHs (a different PRI value may be indicated for each PDSCH).
  • the PUCCH resource may be determined by the PRI of the last DCI associated with the PUCCH to transmit the HARQ-ACK.
  • Alt1 and Alt2 can be considered.
  • Scheduling DCI may indicate one TPC command value for PUCCH for transmitting HARQ-ACK for all scheduled PDSCHs.
  • the scheduling DCI may indicate one TPC command value for the PUCCH for transmitting the HARQ-ACK for each PDSCH among the plurality of PDSCHs (for each PUCCH for transmitting the ARQ-ACK). Different TPC command values may be shown).
  • Type 1 HARQ-ACK feedback for individual HARQ-ACK feedback The type 1 HARQ-ACK feedback for individual HARQ-ACK feedback may be similar to the normal type 1 HARQ-ACK feedback.
  • Type 2 HARQ-ACK feedback for individual HARQ-ACK feedback For individual HARQ-ACK feedback, type 2 HARQ-ACK feedback may be applied.
  • the terminal 20 may feed back a plurality of HARQ-ACKs for all of the plurality of PDSCHs scheduled by a single DCI in separate PUCCHs by applying type 2 HARQ-ACK feedback.
  • DCI may include one C-DAI and one T-DAI (if present) and be counted based on PDCCH.
  • the C-DAI and T-DAI counts may be associated with the first scheduled PDSCH or the last scheduled PDSCH.
  • FIG. 20 is a diagram showing an example of Option 2-1.
  • FIG. 21 is a diagram showing an example of the order of the HARQ-ACK bits in the type 2 HARQ-ACK codebook.
  • FIG. 22 is a diagram showing details of an example of Option2-1.
  • FIG. 23 is a diagram showing an example of the configuration of the type 2 HARQ-ACK codebook.
  • the terminal 20 may feed back a plurality of HARQ-ACKs for all of the plurality of PDSCHs scheduled by a single DCI in separate PUCCHs by applying type 2 HARQ-ACK feedback.
  • C-DAI and T-DAI may be included in the scheduling DCI for each scheduled PDSCH.
  • the C-DAI may indicate the cumulative number of scheduled PDSCHs associated with the HARQ-ACK codebook up to the current PDSCH.
  • the T-DAI may indicate the total number of PDSCHs associated with the HARQ-ACK codebook up to the current PDCCH monitoring opportunity.
  • the method of ordering the HARQ-ACK bits of Release 16 based on C-DAI / T-DAI may be reused.
  • FIG. 24 is a diagram showing an example of Option 2-2. It is assumed that a different value is set for each PDSCU as the value of K1.
  • FIG. 25 is a diagram showing details of the example of Option 2-2. It is assumed that a different value is set for each PDSCU as the value of K1.
  • FIG. 26 is a diagram showing an example of how to configure the Type 2 HARQ-ACK codebook of Option 2-2. It is assumed that a different value is set for each PDSCU as the value of K1.
  • the terminal 20 may feed back a plurality of HARQ-ACKs for all of the plurality of PDSCHs scheduled by a single DCI in separate PUCCHs by applying e-type 2 HARQ-ACK feedback.
  • one PDSCH group index may be assigned to all scheduled PDSCHs.
  • HARQ-ACK for all PDSCHs scheduled by one DCI may be fed back in one group.
  • the NFI may be similar to the release 16 NFI.
  • 1 bit may be set for each scheduled group, a plurality of bits may be set for each group, or 0 bit may be set.
  • the C-DAI / T-DAI may be the same as in the case of type 2 HARQ-ACK feedback.
  • the structure of the HARQ-ACK codebook may be the same as any one of Option 1-3-1 to Option 1-3-3.
  • a separate group index may be assigned to each scheduled PDSCH.
  • the HARQ-ACK for all PDSCHs scheduled by one DCI may be fed back in the same group or in different groups. If an NFI field is present, the NFI field may be a 1-bit field for each PDSCH group.
  • DCI may include C-DAI / T-DAI for each group.
  • C-DAI may indicate the cumulative number of ⁇ CC, PDCCH monitoring opportunities ⁇ combinations up to the current ⁇ CC, PDCCH monitoring opportunities ⁇ combinations.
  • T-DAI may indicate the total number of ⁇ CC, PDCCH monitoring opportunities ⁇ up to the current PDCCH monitoring opportunity.
  • the terminal 20 may configure a HARQ-ACK codebook for each group, for example, based on the method shown in FIG.
  • (Alt2) C-DAI and T-DAI may be counted based on the number of PDSCHs scheduled.
  • the terminal 20 may configure a HARQ-ACK codebook for each group, for example, based on the method shown in FIG.
  • the DCI may include C-DAI / T-DAI for each PDSCH scheduled.
  • C-DAI may indicate the cumulative number of ⁇ CC, PDCCH monitoring opportunities ⁇ combinations up to the current ⁇ CC, PDCCH monitoring opportunities ⁇ combinations.
  • the T-DAI may indicate the total number of ⁇ CC, PDCCH monitoring opportunities ⁇ up to the current PDCCH monitoring opportunity.
  • T-DAI may be set for each PDSCH.
  • the T-DAI may be set on a group-by-group basis.
  • the terminal 20 may configure a HARQ-ACK codebook for each group, for example, based on the method shown in FIG.
  • Proposal3 Partial joint HARQ-ACK feedback
  • the PUCCHs that transmit HARQ-ACK are combined into one.
  • a PUCCH resource is allocated to each HARQ-ACK among a plurality of HARQ-ACKs.
  • Proposal3, Proposal1 and Proposal2 may be combined.
  • FIG. 27 is a diagram showing an example of Proposal3. As shown in FIG. 27, a PUCCH for transmitting HARQ-ACK for PDSCH # 0 and PDSCH # 1 is set, and another PUCCH for transmitting HARQ-ACK for PDSCH # 2 and PDSCH # 3 is set. May be done.
  • Alt1 and Alt2 can be considered.
  • Scheduling DCI may show one K1 value that is common among PDSCH sets.
  • Scheduling DCI may indicate a corresponding K1 value for each PDSCH set (a different K1 value may be indicated for each PDSCH set).
  • Alt1 and Alt2 can be considered.
  • Scheduling DCI may indicate one PRI value that is commonly applied across a set of PDSCHs.
  • the PUCCH resource may be determined by the PRI of the last DCI associated with the PUCCH to transmit the HARQ-ACK.
  • Scheduling DCI may indicate the corresponding PRI value for each set of PDSCH (the PRI value may be indicated for each set of PDSCH).
  • the PUCCH resource may be determined by the PRI of the last DCI associated with the PUCCH to transmit the HARQ-ACK.
  • Alt1 and Alt2 can be considered.
  • the (Alt1) scheduling DCI may indicate one common TP command value for the PUCCH for transmitting the HARQ-ACK of each PDSCH set.
  • the scheduling DCI may indicate one TPC command value for each PUCCH for transmitting a set of PDSCH HARQ-ACKs (for each PUCCH for transmitting a set of PDSCHs HARQ-ACK). Different TPC command values may be shown).
  • the HARQ-ACK codebook may be configured for each set of PDSCH by the method shown in the example of FIG.
  • C-DAI and T-DAI may be included in the DCI that schedules the PDSCH.
  • C-DAI and T-DAI may be counted based on DCI.
  • C-DAI may indicate the cumulative number of ⁇ CC, PDCCH monitoring opportunities ⁇ combinations up to the current ⁇ CC, PDCCH monitoring opportunities ⁇ combinations.
  • the T-DAI may indicate the total number of ⁇ CC, PDCCH monitoring opportunities ⁇ up to the current PDCCH monitoring opportunity.
  • One set of PDSCH HARQ-ACK may include one bundled HARQ-ACK bit.
  • one set of PDSCH HARQ-ACKs may include multiple unbundled HARQ-ACK bits. The order of the HARQ-ACK bits may be determined in the manner shown in FIG.
  • C-DAI / T-DAI may be set for each set of PDSCH.
  • the HARQ-ACK feedback method in which the group is replaced with a set may be applied.
  • C-DAI may be set for each PDSCH.
  • One PDSCH group index may be applied to all scheduled PDSCHs.
  • C-DAI / T-DAI may be the same as Option 1-3-1.
  • a group index may be assigned to each PDSCH set.
  • C-DAI / T-DAI may be set for each PDSCH group.
  • C-DAI may be set for each PDSCH.
  • C-DAI / T-DAI may be set for each PDSCH set.
  • Which of the plurality of Proposal / Options described above is used may be set by a parameter of the upper layer, or may be notified by the terminal 20 as a terminal capability (UE Capacity), and is specified by the specifications. Alternatively, the terminal 20 may be notified as a terminal capability (UE Capability), which is set by a parameter of the upper layer.
  • UE Capacity terminal capability
  • UE Capability terminal capability
  • the terminal capability As the terminal capability (UE Capacity), information indicating whether or not the terminal 20 supports scheduling of a plurality of PDSCHs based on a single DCI may be defined.
  • the terminal 20 supports joint HARQ-ACK feedback (a function of collectively notifying a plurality of HARQ-ACKs for a plurality of PDSCHs) scheduled by a single DCI for a plurality of PDSCHs. Information indicating whether or not to do so may be defined.
  • the terminal capability (UE Capability) information indicating whether or not to support an individual HARQ-ACK feedback function for a plurality of PDSCHs scheduled by a single DCI may be defined.
  • the terminal 20 partially collectively notifies a partial joint HARQ-ACK feedback (a plurality of HARQ-ACKs for a plurality of PDSCHs) for a plurality of PDSCHs scheduled by a single DCI.
  • a partial joint HARQ-ACK feedback (a plurality of HARQ-ACKs for a plurality of PDSCHs) for a plurality of PDSCHs scheduled by a single DCI.
  • Information indicating whether or not to support the function) may be defined.
  • the base station 10 and the terminal 20 include a function of carrying out Proposal 1 to 3 described above. However, the base station 10 and the terminal 20 may each have only the proposed function of any one of Proposal 1 to 3.
  • FIG. 28 is a diagram showing an example of the functional configuration of the base station 10.
  • the base station 10 includes a transmission unit 110, a reception unit 120, a setting unit 130, and a control unit 140.
  • the functional configuration shown in FIG. 28 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the embodiment of the present invention can be executed.
  • the transmitting unit 110 and the receiving unit 120 may be referred to as a communication unit.
  • the transmission unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and transmitting the signal wirelessly.
  • the receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring information of, for example, a higher layer from the received signals. Further, the transmission unit 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL / UL control signal, DL data, etc. to the terminal 20. Further, the transmission unit 110 transmits the setting information and the like described in the proposals 1 and 2.
  • the setting unit 130 stores preset setting information and various setting information to be transmitted to the terminal 20 in the storage device, and reads the setting information from the storage device as needed.
  • the control unit 140 for example, allocates resources, controls the entire base station 10, and the like.
  • the signal transmission function unit of the control unit 140 may be included in the transmission unit 110, and the signal reception function unit of the control unit 140 may be included in the reception unit 120.
  • the transmitter 110 and the receiver 120 may be referred to as a transmitter and a receiver, respectively.
  • FIG. 29 is a diagram showing an example of the functional configuration of the terminal 20.
  • the terminal 20 has a transmitting unit 210, a receiving unit 220, a setting unit 230, and a control unit 240.
  • the functional configuration shown in FIG. 29 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the embodiment of the present invention can be executed.
  • the transmitting unit 210 and the receiving unit 220 may be referred to as a communication unit.
  • the transmission unit 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
  • the receiving unit 220 wirelessly receives various signals and acquires a signal of a higher layer from the received signal of the physical layer.
  • the setting unit 230 stores various setting information received from the base station 10 by the receiving unit 220 in the storage device, and reads it out from the storage device as needed.
  • the setting unit 230 also stores preset setting information.
  • the control unit 240 controls the entire terminal 20 and the like.
  • the signal transmission function unit of the control unit 240 may be included in the transmission unit 210, and the signal reception function unit of the control unit 240 may be included in the reception unit 220.
  • the transmitter 210 and the receiver 220 may be referred to as a transmitter and a receiver, respectively.
  • a single downlink control information including scheduling information of a plurality of downlink shared channels and an offset value between the resource position of any one of the plurality of downlink shared channels and the resource position of the uplink control channel.
  • a receiver that receives the plurality of downlink shared channels according to the scheduling information.
  • a control unit that determines the resource position of the uplink control channel that transmits feedback information for reception of the plurality of downlink shared channels based on the resource position of the one downlink shared channel and the offset value.
  • a transmitter that transmits feedback information for reception of the plurality of downlink shared channels at the resource position of the determined uplink control channel, and a transmitter.
  • the resource position of the one downlink shared channel is located at the rearmost position in the time direction among the plurality of resource positions of the plurality of downlink shared channels.
  • the terminal described in paragraph 1. (Section 3) The feedback information for the reception of the plurality of downlink shared channels includes a bit indicating the feedback information of each downlink shared channel among the plurality of downlink shared channels.
  • the terminal described in paragraph 2. (Section 4) The feedback information for the reception of the plurality of downlink shared channels includes one bit that bundles the feedback information of the plurality of downlink shared channels.
  • a single downlink control information including scheduling information of a plurality of downlink shared channels and an offset value between the resource position of any one of the plurality of downlink shared channels and the resource position of the uplink control channel. And receive the plurality of downlink shared channels according to the scheduling information.
  • a single downlink control information including scheduling information of a plurality of downlink shared channels and an offset value between the resource position of any one of the plurality of downlink shared channels and the resource position of the uplink control channel.
  • a transmitter that transmits the plurality of downlink shared channels according to the scheduling information.
  • a control unit that determines the resource position of the uplink control channel that receives feedback information for reception by the terminals of the plurality of downlink shared channels based on the resource position of the one downlink shared channel and the offset value.
  • a receiving unit that receives feedback information for reception of the plurality of downlink shared channels at the resource position of the determined uplink control channel. Base station with.
  • the configuration described in any of the above sections provides an extended technique for HARQ when multiple PDSCHs are scheduled by a single DCI.
  • each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption.
  • a functional block (constituent unit) that functions transmission is called a transmitting unit (transmitting unit) or a transmitter (transmitter).
  • transmitting unit transmitting unit
  • transmitter transmitter
  • the base station 10, the terminal 20, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 30 is a diagram showing an example of the hardware configuration of the base station 10 and the terminal 20 according to the embodiment of the present disclosure.
  • the above-mentioned base station 10 and terminal 20 are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. May be good.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • the processor 1001 For each function of the base station 10 and the terminal 20, the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the storage device 1002, and controls the communication by the communication device 1004. It is realized by controlling at least one of reading and writing of data in the storage device 1002 and the auxiliary storage device 1003.
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be composed of a central processing unit (CPU: Central Processing Unit) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU Central Processing Unit
  • the control unit 140, the control unit 240, and the like described above may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, or the like from at least one of the auxiliary storage device 1003 and the communication device 1004 into the storage device 1002, and executes various processes according to these.
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the control unit 140 of the base station 10 shown in FIG. 28 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001.
  • the control unit 240 of the terminal 20 shown in FIG. 29 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the storage device 1002 is a computer-readable recording medium, and is, for example, a ROM (Read Only Memory), an EPROM (Erasable Program ROM), an EEPROM (Electrically Erasable Program ROM), a RAM (Random Memory), a RAM (Random Memory), or the like. It may be configured.
  • the storage device 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the storage device 1002 can store a program (program code), a software module, or the like that can be executed to implement the communication method according to the embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, Blu).
  • -It may be composed of at least one of a ray (registered trademark) disk), a smart card, a flash memory (for example, a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, and the like.
  • the auxiliary storage device 1003 may be referred to as an auxiliary storage device.
  • the storage medium described above may be, for example, a database, server or other suitable medium containing at least one of the storage device 1002 and the auxiliary storage device 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). It may be composed of.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception unit may be physically or logically separated from each other in the transmission unit and the reception unit.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the terminal 20 are a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logical Device) hardware, an FPGA (Proge), and an FPGA (FPGA). It may be configured to include, and a part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • the operation of the plurality of functional units may be physically performed by one component, or the operation of one functional unit may be physically performed by a plurality of components.
  • the processing order may be changed as long as there is no contradiction.
  • the base station 10 and the terminal 20 have been described with reference to functional block diagrams, but such devices may be implemented in hardware, software, or a combination thereof.
  • the software operated by the processor of the base station 10 according to the embodiment of the present invention and the software operated by the processor of the terminal 20 according to the embodiment of the present invention are random access memory (RAM), flash memory, and read-only memory, respectively. It may be stored in (ROM), EPROM, EPROM, registers, hard disk (HDD), removable disk, CD-ROM, database, server or any other suitable storage medium.
  • information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access) Signaling). It may be carried out by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals or a combination thereof.
  • RRC signaling may be referred to as an RRC message, for example, RRC. It may be a connection setup (RRC Signaling Setup) message, an RRC connection reconfiguration (RRC Signaling Configuration) message, or the like.
  • Each aspect / embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5G). System), FRA (Future Radio Access), NR (new Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)) )), LTE 802.16 (WiMAX®), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth®, and other systems that utilize suitable systems and extensions based on these. It may be applied to at least one of the next generation systems. Further, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station 10 in the present specification may be performed by its upper node (upper node).
  • various operations performed for communication with the terminal 20 are performed by a network node other than the base station 10 and the base station 10 (a network node other than the base station 10 and the base station 10).
  • a network node other than the base station 10 and the base station 10 For example, it is clear that it can be done by at least one of (but not limited to, MME, S-GW, etc.).
  • the other network node may be a combination of a plurality of other network nodes (for example, MME and S-GW). ..
  • the information, signals, etc. described in the present disclosure can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
  • the input / output information and the like may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information and the like can be overwritten, updated, or added. The output information and the like may be deleted. The input information or the like may be transmitted to another device.
  • the determination in the present disclosure may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example,). , Comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website that uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier CC: Component Carrier
  • CC Component Carrier
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • base station Base Station
  • radio base station base station
  • base station fixed station
  • NodeB nodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • access point “ transmission point ”,“ reception point ”,“ transmission / reception point (transmission / reception point) ”,“ cell ”,“ sector ”,“ Terms such as “cell group”, “carrier”, and “component carrier” can be used interchangeably.
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH:)).
  • Communication services can also be provided by Remote Radio Head).
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage. Point to.
  • terminal user terminal
  • terminal User Equipment
  • Mobile stations are subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, terminals, depending on the trader. , Wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving body (for example, a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned type). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the terminal.
  • a configuration in which communication between a base station and a terminal is replaced with communication between a plurality of terminals 20 for example, it may be referred to as D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • the terminal 20 may have the function of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the terminal in the present disclosure may be read as a base station.
  • the base station may have the functions of the terminal described above.
  • determining and “determining” used in the present disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (closing up, search, inquiry). (For example, searching in a table, database or another data structure), ascertaining may be regarded as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access.
  • judgment for example, accessing data in memory
  • judgment may be regarded as “judgment” or “decision”.
  • judgment and “decision” are considered to be “judgment” and “decision” when the things such as solving, selecting, selecting, establishing, and comparing are regarded as “judgment” and “decision”.
  • connection means any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connections or connections between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot depending on the applicable standard.
  • RS Reference Signal
  • references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted, or that the first element must somehow precede the second element.
  • each of the above devices may be replaced with a "part”, a “circuit”, a “device”, or the like.
  • the wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further consist of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier interval (SCS: SubCarrier Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Frequency Domain), number of symbols per TTI, wireless frame configuration, transmitter / receiver.
  • SCS SubCarrier Spacing
  • TTI Transmission Time interval
  • At least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiple Access) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time region. Slots may be time units based on new melody.
  • OFDM Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain.
  • the mini-slot may also be referred to as a sub-slot.
  • a minislot may consist of a smaller number of symbols than the slot.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than the minislot may be referred to as a PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • a plurality of consecutive subframes may be referred to as TTI
  • TTI slot or one minislot
  • You may. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each terminal 20 to allocate radio resources (frequency bandwidth that can be used in each terminal 20, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs include a physical resource block (PRB: Physical RB), a subcarrier group (SCG: Sub-Carrier Group), a resource element group (REG: Resource Element Group), a PRB pair, an RB pair, and the like. May be called.
  • PRB Physical resource block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • PRB pair an RB pair, and the like. May be called.
  • the resource block may be composed of one or a plurality of resource elements (RE: Resource Elements).
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • the bandwidth portion (BWP: Bandwidth Part) (which may also be referred to as partial bandwidth or the like) may represent a subset of consecutive common RBs (common resources blocks) for a certain neurology in a carrier.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be changed in various ways.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • the SS block or CSI-RS is an example of a synchronization signal or a reference signal.
  • Base station 110 Transmission unit 120 Reception unit 130 Setting unit 140 Control unit 20 Terminal 210 Transmission unit 220 Reception unit 230 Setting unit 240 Control unit 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

複数の下り共有チャネルのスケジューリング情報、及び前記複数の下り共有チャネルのうちのいずれか1つの下り共有チャネルのリソース位置と上り制御チャネルのリソース位置との間のオフセット値を含む単一の下り制御情報を受信し、前記スケジューリング情報に従って、前記複数の下り共有チャネルの受信を行う受信部と、前記1つの下り共有チャネルのリソース位置及び前記オフセット値に基づき、前記複数の下り共有チャネルの受信に対するフィードバック情報を送信する上り制御チャネルのリソース位置を決定する制御部と、前記決定した上り制御チャネルのリソース位置で、前記複数の下り共有チャネルの受信に対するフィードバック情報を送信する送信部と、を備える端末。

Description

端末、通信方法及び基地局
 本発明は、無線通信システムにおける端末及び基地局に関連するものである。
 3GPP(3rd Generation Partnership Project)では、システム容量の更なる大容量化、データ伝送速度の更なる高速化、無線区間における更なる低遅延化等を実現するために、5GあるいはNR(New Radio)と呼ばれる無線通信方式(以下、当該無線通信方式を「NR」という。)の検討が進んでいる。5Gでは、10Gbps以上のスループットを実現しつつ無線区間の遅延を1ms以下にするという要求条件を満たすために、様々な無線技術及びネットワークアーキテクチャの検討が行われている。
 3GPPのリリース15及びリリース16のNew Radio(NR)の仕様書では、52.6 GHzを上限とする周波数帯を無線通信に使用することが想定されている。図3に示されるように、無線通信に使用する周波数帯として、410 MHzから7.125 GHzまでの周波数帯(Frequency Range 1 (FR1))、及び24.25 GHzから52.6 GHzまでの周波数帯(Frequency Range (FR2))が規定されている。現在、3GPPでは、FR1及びFR2以外の周波数帯として、52.6GHz~71GHzの周波数帯を無線通信に利用することが検討されている(非特許文献1、非特許文献2)。
3GPP TSG RAN Meeting #82、RP-182861、Sorrento、Italy、December 10-13、2018 3GPP TR 38.807 V16.0.0 (2019-12) 3GPP TR 38.808 V1.0.0 (2020-12)
 複数のスロットを単位とするサイズの大きいモニタリングユニット(監視の単位)等によって、端末のPDCCHのモニタリング能力を低減することが検討されている。サイズの大きいPDCCHのモニタリングユニットがサポートされる場合、複数のPDSCH又は複数のPUSCHを一つのPDCCHでスケジューリングすることによって、データのスケジューリングの柔軟性を確保することが考えられる。
 1つのDCIによって、複数のPDSCHがスケジューリングされる場合のHARQの拡張技術が必要とされている。
 開示の技術によれば、複数の下り共有チャネルのスケジューリング情報、及び前記複数の下り共有チャネルのうちのいずれか1つの下り共有チャネルのリソース位置と上り制御チャネルのリソース位置との間のオフセット値を含む単一の下り制御情報を受信し、前記スケジューリング情報に従って、前記複数の下り共有チャネルの受信を行う受信部と、前記1つの下り共有チャネルのリソース位置及び前記オフセット値に基づき、前記複数の下り共有チャネルの受信に対するフィードバック情報を送信する上り制御チャネルのリソース位置を決定する制御部と、前記決定した上り制御チャネルのリソース位置で、前記複数の下り共有チャネルの受信に対するフィードバック情報を送信する送信部と、を備える端末、が提供される。
 開示の技術によれば、1つのDCIによって、複数のPDSCHがスケジューリングされる場合のHARQの拡張技術が提供される。
本発明の実施の形態における無線通信システムを説明するための図である。 本発明の実施の形態における無線通信システムを説明するための図である。 無線通信に使用する周波数帯の例を示す図である。 サブキャリア間隔の例を示す図である。 Type 1 HARQ-ACKコードブックの生成方法の例を説明する図である。 Type 2 HARQ-ACKコードブックの生成方法の例を説明する図である。 e-Type 2 HARQ-ACKフィードバックの例を示す図である。 Type-3のHARQ-ACKフィードバックの例を示す図である。 Proposal1~Proposal3の特徴をまとめた表を示す図である。 単一のDCIによってスケジュールされる複数のPDSCH全てに対する、複数のHARQ-ACKを、1つのPUCCHでフィードバックする場合の例を示す図である。 ジョイントフィードバックのためのtype 1 HARQ-ACKフィードバックの例を示す図である。 HARQ-ACK windowのサイズが拡張される例を示す図である。 Option1-2-1の例を示す図である。 Option1-2-2の例を示す図である。 Option1-2-3の例を示す図である。 Option1-3-1の例を示す図である。 複数のHARQ-ACKを、対応する別個のPUCCHでフィードバックする例を示す図である。 スケジューリングDCIが複数のPDSCHに対して共通の1つのK1値を示す場合の例を示す図である。 スケジューリングDCIがPDSCH毎に異なるK1値を示す場合の例を示す図である。 Option2-1の例を示す図である。 type 2 HARQ-ACKコードブックのHARQ-ACKビットの順番の例を示す図である。 Option2-1の例の詳細を示す図である。 type 2 HARQ-ACKコードブックの構成の例を示す図である。 Option2-2の例を示す図である。 Option2-2の例の詳細を示す図である。 Option2-2のtype 2 HARQ-ACKコードブックの構成方法の例を示す図である。 Proposal3の例を示す図である。 本発明の実施の形態における基地局10の機能構成の一例を示す図である。 本発明の実施の形態における端末20の機能構成の一例を示す図である。 本発明の実施の形態における基地局10又は端末20のハードウェア構成の一例を示す図である。
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。
 本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用されてよい。当該既存技術は、例えば既存のNRあるいはLTEであるが、既存のNRあるいはLTEに限られない。
 (システム構成)
 図1は、本発明の実施の形態における無線通信システムを説明するための図である。本発明の実施の形態における無線通信システムは、図1に示されるように、基地局10及び端末20を含む。図1には、基地局10及び端末20が1つずつ示されているが、これは例であり、それぞれ複数であってもよい。
 基地局10は、1つ以上のセルを提供し、端末20と無線通信を行う通信装置である。無線信号の物理リソースは、時間領域及び周波数領域で定義され、時間領域はOFDMシンボル数で定義されてもよいし、周波数領域はサブキャリア数又はリソースブロック数で定義されてもよい。また、時間領域におけるTTI(Transmission Time Interval)がスロットであってもよいし、TTIがサブフレームであってもよい。
 基地局10は、複数のセル(複数のCC(コンポーネントキャリア))を束ねて端末20と通信を行うキャリアアグリゲーションを行うことが可能である。キャリアアグリゲーションでは、1つのPCell(プライマリセル)と1以上のSCell(セカンダリセル)が使用される。
 基地局10は、同期信号及びシステム情報等を端末20に送信する。同期信号は、例えば、NR-PSS及びNR-SSSである。システム情報は、例えば、NR-PBCHあるいはPDSCHにて送信され、ブロードキャスト情報ともいう。図1に示されるように、基地局10は、DL(Downlink)で制御信号又はデータを端末20に送信し、UL(Uplink)で制御信号又はデータを端末20から受信する。なお、ここでは、PUCCH、PDCCH等の制御チャネルで送信されるものを制御信号と呼び、PUSCH、PDSCH等の共有チャネルで送信されるものをデータと呼んでいるが、このような呼び方は一例である。
 端末20は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置である。図1に示されるように、端末20は、DLで制御信号又はデータを基地局10から受信し、ULで制御信号又はデータを基地局10に送信することで、無線通信システムにより提供される各種通信サービスを利用する。なお、端末20をUEと呼び、基地局10をgNBと呼んでもよい。
 端末20は、複数のセル(複数のCC(コンポーネントキャリア))を束ねて基地局10と通信を行うキャリアアグリゲーションを行うことが可能である。キャリアアグリゲーションでは、1つのPCell(プライマリセル)と1以上のSCell(セカンダリセル)が使用される。また、PUCCHを有するPUCCH-SCellが使用されてもよい。
 図2は、DC(Dual connectivity)が実行される場合における無線通信システムの構成例を示す。図2に示すとおり、MN(Master Node)となる基地局10Aと、SN(Secondary Node)となる基地局10Bが備えられる。基地局10Aと基地局10Bはそれぞれコアネットワークに接続される。端末20は基地局10Aと基地局10Bの両方と通信を行うことができる。
 MNである基地局10Aにより提供されるセルグループをMCG(Master Cell Group)と呼び、SNである基地局10Bにより提供されるセルグループをSCG(Secondary Cell Group)と呼ぶ。また、DCにおいて、MCGは1つのPCellと1以上のSCellから構成され、SCGは1つのPSCell(Primary SCell)と1以上のSCellから構成される。
 本実施の形態における処理動作は、図1に示すシステム構成で実行されてもよいし、図2に示すシステム構成で実行されてもよいし、これら以外のシステム構成で実行されてもよい。
 3GPPのリリース15及びリリース16のNew Radio(NR)の仕様書では、52.6 GHzを上限とする周波数帯を無線通信に使用することが想定されている。図3に示されるように、無線通信に使用する周波数帯として、410 MHzから7.125 GHzまでの周波数帯(Frequency Range 1 (FR1))、及び24.25 GHzから52.6 GHzまでの周波数帯(Frequency Range (FR2))が規定されている。
 現在、3GPPでは、FR1及びFR2以外の周波数帯として、52.6GHz~71GHzの周波数帯を無線通信に利用することが検討されている(非特許文献1、非特許文献2)。
 52.6GHz~71GHzの周波数帯は、無線通信に使用する周波数帯として、周波数が非常に高い周波数帯であるため、無線通信に使用する場合には、位相雑音、高い伝搬損失、Peak-to-Average Power Ratio(PAPR)の増大、パワーアンプの非線形性等の問題が生じる場合がある。
 ここで、位相雑音とは、局部発信信号における搬送波周波数以外の周波数成分によって発生する位相変動である。PAPRとは、送信波形のピークの大きさを表す指標であり、最大電力と平均電力の比のことである。PAPRが大きいと、信号歪みを避けるために送信側のパワーアンプのバックオフを大きくする必要がある。
 位相雑音の問題に対処するために、通常のサブキャリア間隔(SCS:Subcarrier Spacing)よりも広いサブキャリア間隔を使用すること、又はsingle carrier waveformを使用することが必要となる可能性がある。
 高い伝搬損失の問題に対処するために、幅の狭いビームを多数使用することが必要となる可能性がある。
 従って、52.6GHz~71GHzで使用するデジタル信号変調方式として、サブキャリア間隔の大きいCyclic Prefix(CP)-OFDM、又はサブキャリア間隔の大きいDiscrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing (DFT-S-OFDM)を使用する可能性がある。
 3GPPの仕様では、1スロットは、14シンボルから成ると規定されている。従って、図4に示されるように、サブキャリア間隔(SCS)が大きくなるにつれて、シンボル長/CP長は短くなり、スロット長は短くなる。
 52.6GHz~71GHzの無線通信に使用するサブキャリア間隔として、120kHzから960kHzまでの間のサブキャリア間隔がサポートされる可能性がある。データの通信用に、例えば、120kHzのサブキャリア間隔、480kHzのサブキャリア間隔、及び960kHzのサブキャリア間隔を使用することが想定されている。例えば、イニシャルアクセスに使用されるsynchronization signal block(SSB)の送信に、240kHzのサブキャリア間隔が使用されてもよい。
 (HARQ-ACKコードブック)
 DL送信に対応するHARQ-ACKコードブックの概要について説明する。
 HARQ-ACKコードブック(codebook)は、複数のHARQ-ACKがまとめて多重されて送信される場合に、そのまとめ方を規定している。HARQ-ACKコードブックは、時間領域(例えば、スロット)、周波数領域(例えば、コンポーネントキャリア(Component Carrier(CC)))、空間領域(例えば、レイヤ)、トランスポートブロック(Transport Block(TB))、及び、TBを構成するコードブロックのグループ(コードブロックグループ(Code Block Group(CBG)))の少なくとも一つの単位でのHARQ-ACK用のビットを含んで構成されてもよい。なお、CCは、セル、サービングセル(serving cell)、キャリア等とも呼ばれる。また、当該ビットは、HARQ-ACKビット、HARQ-ACK情報又はHARQ-ACK情報ビット等とも呼ばれる。HARQ-ACKコードブックは、PDSCH-HARQ-ACKコードブック(pdsch-HARQ-ACK-Codebook)、コードブック、HARQコードブック、HARQ-ACKサイズ等とも呼ばれる。
 HARQ-ACKコードブックに含まれるビット数(サイズ)等は、準静的(semi-static)又は動的に(dynamic)決定されてもよい。準静的なHARQ-ACKコードブックは、Type 1 HARQ-ACKコードブック、準静的コードブック等とも呼ばれる。動的なHARQ-ACKコードブックは、Type 2 HARQ-ACKコードブック、動的コードブック等とも呼ばれる。
 Type 1 HARQ-ACKコードブック又はType 2 HARQ-ACKコードブックのいずれを用いるかは、上位レイヤパラメータ(例えば、pdsch-HARQ-ACK-Codebook)により端末20に設定されてもよい。
 Type 1 HARQ-ACKコードブックの場合、端末20は、所定範囲(例えば、上位レイヤパラメータに基づいて設定される範囲)において、PDSCHのスケジューリングの有無に関係なく、当該所定範囲に対応するHARQ-ACKビットをフィードバックしてもよい。
 当該所定範囲は、所定期間(例えば、候補となるPDSCH受信用の所定数の機会(occasion)のセット、又は、PDCCHの所定数のモニタリング機会(monitoring occasion)m)、端末20に設定又はアクティブ化されるCCの数、TBの数(レイヤ数又はランク)、1TBあたりのCBG数、空間バンドリングの適用の有無、の少なくとも一つに基づいて定められてもよい。当該所定範囲は、HARQ-ACKバンドリングウィンドウ、HARQ-ACKフィードバックウィンドウ、バンドリングウィンドウ、フィードバックウィンドウなどとも呼ばれる。
 Type 1 HARQ-ACKコードブックでは、所定範囲内であれば、端末20に対するPDSCHのスケジューリングが無い場合でも、端末20は、NACKビットをフィードバックする。このため、Type 1 HARQ-ACKコードブックを用いる場合、フィードバックするHARQ-ACKビット数が増加することも想定される。
 Type 2 HARQ-ACKコードブックの場合、端末20は、上記所定範囲において、スケジューリングされたPDSCHに対するHARQ-ACKビットをフィードバックしてもよい。
 具体的には、端末20は、Type 2 HARQ-ACKコードブックのビット数を、DCI内の所定フィールド(例えば、DL割り当てインデックス(Downlink Assignment Indicator(Index)(DAI))フィールド)に基づいて決定してもよい。DAIフィールドは、カウンタDAI(counter DAI(cDAI))及びトータルDAI(total DAI(tDAI))に分割(split)されてもよい。
 カウンタDAIは、所定期間内でスケジューリングされる下り送信(PDSCH、データ、TB)のカウンタ値を示してもよい。例えば、当該所定期間内にデータをスケジューリングするDCI内のカウンタDAIは、当該所定期間内で最初に周波数領域(例えば、CC)で、その後に時間領域でカウントされた数を示してもよい。
 トータルDAIは、所定期間内でスケジューリングされるデータの合計値(総数)を示してもよい。例えば、当該所定期間内の所定の時間ユニット(例えば、PDCCHモニタリング機会)でデータをスケジューリングするDCI内のトータルDAIは、当該所定期間内で当該所定の時間ユニット(ポイント、タイミング等ともいう)までにスケジューリングされたデータの総数を示してもよい。
 端末20は、以上のType 1又はType 1IのHARQ-ACKコードブックに基づいて決定(生成)される一以上のHARQ-ACKビットを、上り制御チャネル(Physical Uplink Control Channel(PUCCH))及び上り共有チャネル(Physical Uplink Shared Channel(PUSCH))の少なくとも一方を用いて送信してもよい。
 Type 1のHARQ-ACKコードブックの場合、端末20は、基地局10からの実際のPDCCH/PDSCHの送信ではなく、基地局10から送信される可能性のあるPDCCH/PDSCH送信の候補数に応じた数のHARQ-ACKビットを生成する。つまり、基地局10からPDCCH/PDSCHが送信される可能性があるPDCCH/PDSCHの送信機会に対して、基地局10から実際にPDCCH/PDSCHが送信される/送信されないにかかわらず、端末20は、HARQ-ACKビットを送信する。例えば、基地局10からのPDCCHの送信機会に対して、基地局10からのPDCCH送信が行われなかった場合には、端末20は、NACKを送信してもよい。
 Type 2のHARQ-ACKコードブックの場合、端末20は、基地局10から実際に送信されることが想定されるPDCCH/PDSCHの信号の数に対応する数のHARQ-ACKビットを生成する。なお、端末20において、基地局10からのPDCCHの信号を受信できない可能性もあるため、DCIにDAIを含めて、基地局10が端末20に対して送信するPDCCHの信号の数を通知することが可能である。
(リリース16のType 1 HARQ-ACKコードブックの生成)
 上述の通り、Type 1 HARQ-ACKコードブックの場合、HARQ-ACKコードブックに含まれるビット数(サイズ)等は、準静的(semi-static)に決定する。Type 1 HARQ-ACKコードブックの場合、端末20は、HARQ-ACK window(例えば、上位レイヤパラメータに基づいて設定される範囲)において、PDSCHのスケジューリングの有無に関係なく、当該HARQ-ACK windowに含まれる全てのPDSCHの受信候補位置対応するHARQ-ACKビットをフィードバックする。
 図5は、Type 1 HARQ-ACKコードブックの生成方法の例を説明する図である。図5に示されるように、HARQ-ACKコードブックのサイズは、K1の値(複数のK1の値)で定まるHARQ-ACK window(図5の例において点線で示されるwindow)のサイズ及びHARQ-ACK windowに含まれるPDSCHの受信候補位置の数で定まる。図5の例では、スロットn+2のPDSCHの受信候補位置に対するK1の値は7であり、スロットn+3のPDSCHの受信候補位置に対するK1の値は6であり、スロットn+4のPDSCHの受信候補位置に対するK1の値は5であるため、スロットn+2のPDSCHの受信候補位置、スロットn+3のPDSCHの受信候補位置、及びスロットn+4のPDSCHの受信候補位置に対するHARQ-ACKは、スロットn+9でまとめて送信される。
 つまり、Type 1 HARQ-ACKコードブックの場合、K1値のセットが上位レイヤで設定され、K1の値のセットをカバーできる範囲でHARQ-ACK windowが設定される。
(リリース16のType 2 HARQ-ACKコードブックの生成)
 Type 2 HARQ-ACKコードブックの場合、端末20は、K1の値のセットで定まるHARQ-ACK windowにおいて、実際に送信されるPDSCHの数に基づいて、HARQ-ACKコードブックのビット数を決定する。
 具体的には、端末20は、Type 2 HARQ-ACKコードブックのビット数を、DCI内の所定フィールド(例えば、DL割り当てインデックス(Downlink Assignment Indicator(Index)(DAI))フィールド)に基づいて決定する。DAIフィールドは、カウンタDAI(counter DAI(cDAI))及びトータルDAI(total DAI(tDAI))に分割(split)される。
 カウンタDAIは、HARQ-ACK window内においてスケジューリングされる下り送信(PDSCH、データ、TB)のカウンタ値を示す。例えば、当該HARQ-ACK window内においてデータをスケジューリングするDCI内のカウンタDAIは、当該HARQ-ACK window内で最初に周波数領域(例えば、CC)で、その後に時間領域でカウントされた数を示す。
 トータルDAIは、HARQ-ACK window内においてスケジューリングされるデータの合計値(総数)を示してもよい。例えば、当該HARQ-ACK window内の所定の時間ユニット(例えば、PDCCHモニタリング機会(PDCCH occasion))でデータをスケジューリングするDCI内のトータルDAIは、当該HARQ-ACK window内で当該所定の時間ユニットまでにスケジューリングされたデータの総数を示してもよい。
 図6は、Type 2 HARQ-ACKコードブックの生成方法の例を説明する図である。図6の例では、端末20は、PDCCH occasion #1において、セル#0及びセル#2でDCIを受信する。端末20は、PDCCH occasion #2において、セル#1でDCIを受信する。端末20は、PDCCH occasion #3において、セル#2でDCIが受信される。端末20は、PDCCH occasion #4において、セル#1及びセル#2でDCIを受信する。
 図6の例で、括弧内の左側の値は、カウンタDAIの値を示し、括弧内の右側の値は、トータルDAIの値を示している。PDCCH occasion #1において、セル#0で受信したDCIに含まれるDAIは(0、2)であり、セル#2で受信したDCIに含まれるDAIは(1、2)である。PDCCH occasion #2において、セル#1で受信したDCIに含まれるDAIは(2、3)である。PDCCH occasion #3において、セル#2で受信したDCIに含まれるDAIは(3、4)である。PDCCH occasion #4において、セル#1で受信したDCIに含まれるDAIは(4、6)であり、セル#2で受信したDCIに含まれるDAIは(5、6)である。図6の場合、HARQ-ACK window内においてスケジューリングされるデータの合計値(総数)は、6なので、端末20は、HARQ-ACKのビット数を6ビットと決定し、例えば、K1の値で定まる上り制御チャネル(Physical Uplink Control Channel(PUCCH))を用いて6ビットのHARQ-ACKを送信する。端末20は、DAIに基づいて、PUCCHのリソース内でのHARQ-ACKビットの並べ方を決定する。
(リリース16のe-Type 2 HARQ-ACKフィードバック)
 リリース16のNRでは、e-Type 2 HARQ-ACKフィードバックが導入されている。これは、NR-Uのために導入されたメカニズムである。DCI format1_1はスケジューリングされた1つのPDSCHのグループ又は2つのグループのためのHARQフィードバックを示す。例えば、グループ数が2つの場合、2つのグループは、COT(Channel Occupancy Time)#0におけるHARQフィードバックのためのグループ0とCOT#1におけるHARQフィードバックのためのグループ1の2つのグループであってもよい。このように、PDSCHをスケジューリングする際に、グループ番号を示すインデックスを予め付与することが可能である。グループ数は2個であってもよく、この場合、インデックスは0又は1である。
 図7は、e-Type 2 HARQ-ACKフィードバックの例を示す図である。図7に示されるように、例えば、COT#0において、group 0に対するフィードバック(HARQ-ACK1、2)をスケジューリングしていたが、Listen Before Talk(LBT)に失敗したため、group 0に対するフィードバック(HARQ ACK1、2)を送信することができなかったとする。このような場合において、PDSCHグループ0に対するフィードバックを、もう一度、別のタイミングで行うことが可能である。図7の例では、端末20は、COT#0において送信できなかったHARQ-ACK1、2を、COT#1のPDSCH3及びPDSCH4に対するHARQ-ACK3、4に含めて送信する。図7において、GIはGroup Indicatorである。また、NFIは、new feedback indicatorであり、NFIのビットがトグルされると、端末20がそれまで保持していたHARQ-ACKのビットは消去される。図7の例では、端末20は、COT#1でHARQ-ACK1、2、3、4を送信しているので、COT#2では、DCIでNFIの値として1が通知され、従って、端末20はそれまで保持していたHARQ-ACK1、2、3、4を消去して、PDSCH5及びPDSCH6に対するHARQ-ACKビットを新たに記憶する。
 (リリース16のType 3 HARQ-ACKフィードバック)
 Type-3のHARQ-ACKフィードバックは、One-shot HARQ feedbackと呼ばれることもある。Type-3のHARQ-ACKフィードバックでは、端末20は、端末20が現在保持しているHARQ-ACKビットを全てフィードバックする。Type-3のHARQ-ACKフィードバックも、NR-Uにおいて、端末20がLBTの失敗のためにHARQ-ACKを送信できなかった場合の対策として導入されている。
 図8は、Type-3のHARQ-ACKフィードバックの例を示す図である。例えば、端末20は、PDSCH1及びPDSCH2に対するHARQ-ACKの送信を試みるが、LBTに失敗したため、HARQ-ACKを送信することができなかったとする。その後、端末20は、PDCCH3を受信し、PDCCH3には、Type-3 のHARQ-ACKフィードバックのリクエストが含まれていたとする。この場合、端末20は、PDSCH3に対するHARQ-ACKだけではなく、端末20が現時点で保持している全てのHARQ-ACKビットを基地局10に送信する。図8の例では、端末20は、HARQ-ACK1、2、3を送信する。
 (課題について)
 複数のスロットを単位とするサイズの大きいモニタリングユニット(監視の単位)等によって、端末20のPDCCHのモニタリング能力を低減することが検討されている。サイズの大きいPDCCHのモニタリングユニットがサポートされる場合、複数のPDSCH又は複数のPUSCHを一つのPDCCHでスケジューリングすることによって、データのスケジューリングの柔軟性を確保することが考えられる。
 以下において、1つのPDCCHによって、複数のPDSCHがスケジューリングされる場合のHARQの拡張について検討する。
 端末20によるHARQ-ACKの報告に関して、HARQ-ACKのタイミングの決定方法、PUCCHリソースの選択のためのPUCCHリソースインジケータ(PRI)、PUCCH送信のためのTransmission Power Control(TPC)コマンドを検討する。
 また、端末20によるHARQ-ACKコードブックの生成に関して、type 1 HARQ-ACK CBの生成及び報告、type 2 HARQ-ACK CBの生成及び報告、e-type 2 HARQ-ACK CBの生成及び報告について検討する。
 以下において、HARQ-ACKフィードバックに関するProposal1、Proposal2、及びProposal3を説明する。
 Proposal1は、複数のPDSCHに対する複数のフィードバックを、1つのPUCCHにまとめて送信する方法である。
 Proposal2は、複数のPDSCHに対する複数のフィードバックを、対応する異なるPUCCHで個別に送信する方法である。
 Proposal3は、複数のPDSCHに対する複数のフィードバックを、いくつかのグループに分けて、グループ毎に対応するPUCCHで送信する方法である。
 図9は、Proposal1~Proposal3の特徴をまとめた表を示す図である。図9に示される通り、Proposal1によれば、DCIのペイロードを削減し、フィードバックに使用するPUCCHの数を削減することができる。しかしながら、HARQ-ACKフィードバックのレイテンシが増加する。Proposal2によれば、HARQ-ACKフィードバックのレイテンシを削減することができ、より柔軟にHARQ-ACKフィードバックを行うことができる。しかしながら、スケジューリングDCIのペイロードが増加し、フィードバックに使用するPUCCHの数が増加する。Proposal3は、Proposal1とProposal2との間の特性を有する。
 (Proposal1:ジョイントHARQ-ACKフィードバック)
 端末20は、単一のDCIによってスケジュールされる複数のPDSCH全てに対する複数のHARQ-ACKを、1つのPUCCHでフィードバックしてもよい。
 端末20が、単一のDCIによってスケジュールされる複数のPDSCH全てに対する、複数のHARQ-ACKを、1つのPUCCHでフィードバックする場合、端末20は、HARQ-ACKを送信するタイミングを、当該単一のDCIでスケジュールされる複数のPDSCHのうちの時間に関して最も後ろのPDSCHのスロット及びK1値に基づいて決定してもよい。K1値は、単一のDCIでスケジュールされる複数のPDSCHのうちの時間に関して最も後ろのPDSCHのスロット位置から対応するHARQ-ACKが送信されるPUCCHのスロット位置までのオフセット値であってもよい。
 図10は、単一のDCIによってスケジュールされる複数のPDSCH全てに対する、複数のHARQ-ACKを、1つのPUCCHでフィードバックする場合の例を示す図である。
 図10に示されるように、端末20は、単一のDCIによってスケジュールされるPDSCH#0、PDSCH#1、PDSCH#2、及びPDSCH#3に対するHARQ-ACKフィードバックを、PDSCH#0、PDSCH#1、PDSCH#2、及びPDSCH#3のうち、時間方向に関して最後に受信したPDSCH#3のリソース位置と、K1の値で定まるPUCCHのリソース位置において送信してもよい。
 PDSCH対HARQフィードバックタイミングインジケータフィールドとして、スケジューリングDCIは、複数のスケジュールされるPDSCH全てに対する1つのK1値を示してもよい。PUCCHリソースインジケータフィールドとして、スケジューリングDCIは、複数のスケジュールされるPDSCH全てに対する1つのPUCCH Resource Indicator(PRI)の値を示してもよい。PUCCHリソースは、HARQ-ACKを送信するためのPUCCHと関連付けられた最後のDCIのPRIによって決定されてもよい。PUCCH power control fieldとして、スケジューリングDCIは、スケジューリングされる全てのPDSCHに対するHARQ-ACKを送信するためのPUCCHついて、1つのTPCコマンド値を示してもよい。
 (ジョイントフィードバックのためのtype 1 HARQ-ACKフィードバック)
 端末20は、単一のDCIによってスケジュールされる複数のPDSCH全てに対する複数のHARQ-ACKを、Type1 HARQ-ACKコードブックを適用して、1つのPUCCHでフィードバックしてもよい。
 図11は、ジョイントフィードバックのためのtype 1 HARQ-ACKフィードバックの例を示す図である。図11に示されるように、PDSCH#3がHARQ-ACKの送信候補位置#kに対応している場合において、端末20は、PDSCH#0、PDSCH#1、PDSCH#2、及びPDSCH#3に対するHARQ-ACKを、1つの送信候補位置(HARQ-ACKの送信候補位置#k)にマッピングしてもよい。この場合において、端末20は、バンドリングを適用してもよく、バンドリングを適用しなくてもよい。
 (Option1-1-1)
 端末20は、単一のDCIによってスケジュールされる複数のPDSCH全てに対するHARQ-ACK情報を、スケジュールされる複数のPDSCHのうち時間に関して最後にスケジュールされるPDSCHに対応するHARQ-ACKの送信候補位置にマッピングしてもよい。
 (Alt1)端末20は、複数のPDSCHに対応する複数のHARQ-ACKにバンドリングを適用しなくてもよい。例えば、図11の場合、端末20は、PDSCH#0、PDSCH#1、PDSCH#2、及びPDSCH#3に対するHARQ-ACKを、PDSCH#3のHARQ-ACK送信候補位置である送信候補位置#kで送信してもよい。この場合に、端末20は、PDSCH#0、PDSCH#1、PDSCH#2、及びPDSCH#3に対する複数のHARQ-ACKにバンドリングを適用しないので、HARQ-ACKの送信に必要なビット数は、4ビットとなる。
 (Alt2)端末20は、複数のPDSCHに対応する複数のHARQ-ACKにバンドリングを適用してもよい。端末20は、複数のPDSCHに対応する複数のHARQ-ACKをMビットのHARQ-ACKビットにバンドリングしてもよい。
 (Alt2-1)上述のMは、仕様書において規定されてもよい。例えば、固定された1ビットであってもよい。
 (Alt2-2)上述のMは、RRCシグナリングによって設定されてもよい。
 (Alt2-2A)RRCシグナリングによって、HARQのバンドルの単位は、N1に設定されてもよい。つまり、スケジュールされるN1個のPDSCHに対するHARQ-ACKが、1つのHARQ-ACKビットにまとめられてもよい。この場合、スケジュールされるN個のPDSCHに対して、フィードバックされるHARQ-ACKビットの数は、ceil(N/N1)であってもよい。
 (Alt2-2B)RRCシグナリングによって、スケジュールされるN個のPDSCHに対してフィードバックされるHARQ-ACKのビット数は、Mに設定されてもよい。つまり、スケジュールされるceil(N/M)個のPDSCHに対するHARQ-ACKが、1つのHARQ-ACKビットにまとめられてもよい。
 (Case1)上位レイヤのパラメータharq-ACK-SpatialBundlingPUCCHが設定されず、かつ端末20に対してMIMO送信で2レイヤ送信(同じスロットで2つのトランスポートブロックを送信する)が設定される場合、Alt1が適用されてもよい。端末20は、複数のPDSCHに対応する複数のHARQ-ACKにバンドリングを適用しなくてもよい。
 (Case2)上位レイヤのパラメータharq-ACK-SpatialBundlingPUCCHが設定される場合、又は端末20に対して2レイヤ送信(同じスロットで2つのトランスポートブロックを送信する)が設定されない場合、Alt1及び/又はAlt2が適用されてもよい。端末20は、複数のPDSCHに対応する複数のHARQ-ACKにバンドリングを適用してもよく、しなくてもよい。
 (Option1-1-2)
 HARQ-ACK windowのサイズが拡張されてもよい。
 拡張されたHARQ-ACK windowを決定するために、K1セットは、例えば、{K1}、{K1+1}、{K1+2}、...、{K1+Nmax}を含むように拡張されてもよい。ここで、Nmaxは、複数のPDSCHのスケジューリングに対するスケジュールされるスロットの最大数である。Nmaxは、仕様で規定されてもよく、RRCシグナリングで設定されてもよい。
 図12は、HARQ-ACK windowのサイズが拡張される例を示す図である。図12の例では、単一のDCIにより、スロットn+3、スロットn+5、及びスロットn+6における複数のPDSCHがスケジューリングされ、K1=4である。スケジュールされた複数のPDSCHに対する複数のHARQ-ACKは、スロットn+10(最後のPDSCHのスロット+K1)でフィードバックされる。
 図12に示されるように、拡張される前のK1セットは、{3、4、5}であったとする。拡張される前のHARQ-ACK windowには、スロットn+5~スロットn+7が含まれる。この場合において、Nmaxが4に設定されたとする。K1セットは、{3,4,5}、{4,5,6}、{5,6,7}、{6,7,8}を含むように拡張される。つまりK1セットは、{3,4,5,6,7,8}に拡張される。従って、HARQ-ACK windowは、スロットn+1~スロットn+7を含むように拡張される。
 (ジョイントフィードバックのためのtype 2 HARQ-ACKフィードバック)
 端末20は、単一のDCIによってスケジュールされる複数のPDSCH全てに対する複数のHARQ-ACKを、Type2 HARQ-ACKコードブックを適用して、1つのPUCCHでフィードバックしてもよい。
 (Option1-2-1)
 PDSCHをスケジュールするDCIの中に1つのC-DAI及び1つのT-DAI(存在する場合)のみが含まれてもよい。この場合において、C-DAI及びT-DAI(存在する場合)は、DCIに基づいてカウントされてもよい。C-DAIは、現在の{CC、PDCCHモニタリング機会}の組み合わせまでの、累積の{CC、PDCCHモニタリング機会}の組み合わせの数を示してもよい。T-DAIは、現在のPDCCHモニタリング機会までの、{CC、PDCCHモニタリング機会}の総数を示してもよい。
 図13は、Option1-2-1の例を示す図である。
 例えば、図13の左側の図に示されるように、DCI#0がCC0の先頭スロットにおいて受信され、DCI#1がCC1の先頭スロットにおいて受信される。C-DAIは、これらのDCIの数をカウントする。CC0のDCI#0に対応して、C-DAIは1となり、CC1のDCI#1に対応してC-DAIは2となる。さらに、DCI#2がCC2の次のスロットにおいて受信される。CC2のDCI#2に対応してC-DAIは3となり、T-DAIは3となる。
 なお、Option1-2-1については、適用可能な条件がある。1つのDCIでスケジュールされる複数のPDSCHに対して、HARQ-ACKバンドリングを適用し、複数のPDSCHに対して1つのHARQ-ACKを返すことがOption1-2-1を適用可能な条件となる。
 (Option1-2-2)
 PDSCHをスケジュールするDCIの中に1つのC-DAI及び1つのT-DAI(存在する場合)のみが含まれてもよい。この場合において、C-DAI及びT-DAI(存在する場合)は、スケジューリングされるPDSCHの数に基づいてカウントされてもよい。
 図14は、Option1-2-2の例を示す図である。図14の左側において、CC0の先頭のスロットでは、3つの連続するPDSCHがスケジューリングされている。CC1の先頭のスロットでは、単一のPDSCHがスケジューリングされている。CC0のDCI#0において、C-DAIは、先頭のPDSCHに対応して1となる。T-DAIは、DCIのタイミングにおいて、スケジューリングされているPDSCHの合計数を反映するので、4となる。CC1のDCI#1において、C-DAIは、CC0でスケジューリングされている3つのPDSCH及びCC1でスケジューリングされる1つのPDSCHを反映するので、4となる。この例では、CC1のDCI#1には、T-DAIが存在しない。
 図14の先頭から2番目のスロットで、CC2において、3つの連続するPDSCHがスケジューリングされている。CC2のDCI#2において、C-DAIは、先頭のPDSCHに対応して5となる。T-DAIは、DCIのタイミングにおいて、スケジューリングされているPDSCHの合計数を反映するので、7となる。
 (Option1-2-3)
 Option1-2-2の例では、各CCの先頭のPDSCHに対してのみ、明示的なDAIがDCIで通知されている。これに対して、Option1-2-3として、各CCの各PDSCHに対して、明示的なDAIがDCIで通知されてもよい。
 図15は、Option1-2-3の例を示す図である。図15の左側において、CC0の先頭のスロットでは、3つの連続するPDSCHがスケジューリングされている。CC1の先頭のスロットでは、単一のPDSCHがスケジューリングされている。CC0のDCI#0において、C-DAIは、先頭のPDSCHに対応して1となり、先頭から2番目のPDSCHに対応して2となり、先頭から3番目のPDSCHに対応して3となる。T-DAIは、DCIのタイミングにおいて、スケジューリングされているPDSCHの合計数を反映するので、4となる。CC1のDCI#1において、C-DAIは、CC0でスケジューリングされている3つのPDSCH及びCC1でスケジューリングされる1つのPDSCHを反映するので、4となる。この例では、CC1のDCI#1には、T-DAIが存在しない。
 図15の先頭から2番目のスロットで、CC2において、3つの連続するPDSCHがスケジューリングされている。CC2のDCI#2において、C-DAIは、先頭のPDSCHに対応して5となり、先頭から2番目のPDSCHに対応して6となり、先頭から3番目のPDSCHに対応して7となる。T-DAIは、DCIのタイミングにおいて、スケジューリングされているPDSCHの合計数を反映するので、7となる。
 上述のOption1-2-2及びOption1-2-3では、DCIに含まれるDAIは、スケジューリングされるPDSCHの数を反映するので、HARQ-ACKバンドリンクを適用しなくてもよい。
 (ジョイントフィードバックのためのe-type 2 HARQ-ACKフィードバック)
 端末20は、単一のDCIによってスケジュールされる複数のPDSCH全てに対する複数のHARQ-ACKを、e-type 2 HARQ-ACKフィードバックを適用して、1つのPUCCHでフィードバックしてもよい。この場合において、スケジュールされる全てのPDSCHに対して1つのPDSCHグループインデックスが割り当てられてもよい。PDSCHグループの数を増やしてもよい。NFIは、リリース16のNFIと同様であってもよい。C-DAI/T-DAIは、type 2 HARQ-ACKフィードバックの場合と同様であってもよい。
 (Option1-3-1)
 PDSCHをスケジュールするDCIの中に1つのC-DAI及び1つのT-DAIが含まれてもよい。この場合において、C-DAI及びT-DAIは、PDCCHに基づいてカウントされてもよい。各グループのHARQ-ACKコードブックは、type 2 HARQ-ACKフィードバックのOption1-2-1と同様に構成されてもよい。
 図16は、Option1-3-1の例を示す図である。HARQ-ACKの送信は、リリース16のe-type 2 HARQ-ACKフィードバックの場合と同様であってもよい。
 (Option1-3-2)
 PDSCHをスケジュールするDCIの中に1つのC-DAI及び1つのT-DAIのみが含まれてもよい。この場合において、C-DAI及びT-DAIは、スケジューリングされるPDSCHの数に基づいてカウントされてもよい。各グループのHARQ-ACKコードブックは、type 2 HARQ-ACKフィードバックのOption1-2-2と同様に構成されてもよい。
 (Option1-3-3)
 Option1-3-2では、各CCの先頭のPDSCHに対してのみ、明示的なDAIがDCIで通知されている。これに対して、Option1-3-3として、各CCの各PDSCHに対して、明示的なDAIがDCIで通知されてもよい。各グループのHARQ-ACKコードブックは、type 2 HARQ-ACKフィードバックのOption1-2-3と同様に構成されてもよい。
 (Proposal2:個別HARQ-ACKフィードバック)
 端末20は、単一のDCIによってスケジュールされる複数のPDSCH全てに対する複数のHARQ-ACKを、対応する別個のPUCCHでフィードバックしてもよい。従って、基地局10は、一つのDCIで複数のPUCCHの割当てを行ってもよい。従って、K1の通知方法が拡張されてもよい。
 図17は、端末20が、単一のDCIによってスケジュールされる複数のPDSCH全てに対する複数のHARQ-ACKを、対応する別個のPUCCHでフィードバックする例を示す図である。図17に示される通り、PDSCH#0に対するHARQ-ACK、PDSCH#1に対するHARQ-ACK、及びPDSCH#3に対するHARQ-ACKは、それぞれ、対応する異なるリソースで送信される。
 PDSCH対HARQフィードバックタイミングインジケータフィールドについて、以下のAlt1及びAlt2が考えられる。
 (Alt1)スケジューリングDCIは、スケジュールされる複数のPDSCHに対する1つのK1値を示してもよい。
 図18は、スケジューリングDCIが複数のPDSCHに対して共通の1つのK1値を示す場合の例を示す図である。
 (Alt2)スケジューリングDCIは、スケジュールされる複数のPDSCHのうちの各PDSCHに対して、対応するK1値を示してもよい(PDSCH毎に異なるK1値が示されてもよい)。
 図19は、スケジューリングDCIがPDSCH毎に異なるK1値を示す場合の例を示す図である。
 PUCCHリソースインジケータフィールドについて、以下のAlt1及びAlt2が考えられる。
 (Alt1)スケジューリングDCIは、複数のPDSCHのうちの各PDSCHに対して共通に適用される1つのPRI値を示してもよい。PUCCHリソースは、HARQ-ACKを送信するためのPUCCHと関連付けられた最後のDCIのPRIによって決定されてもよい。
 (Alt2)スケジューリングDCIは、複数のPDSCHのうちの各PDSCHに対して、対応するPRI値を示してもよい(PDSCH毎に異なるPRI値が示されてもよい)。PUCCHリソースは、HARQ-ACKを送信するためのPUCCHと関連付けられた最後のDCIのPRIによって決定されてもよい。
 PUCCH power control fieldについて、以下のAlt1及びAlt2が考えられる。
 (Alt1)スケジューリングDCIは、スケジューリングされる全てのPDSCHに対するHARQ-ACKを送信するためのPUCCHついて、1つのTPCコマンド値を示してもよい。
 (Alt2)スケジューリングDCIは、複数のPDSCHのうちの各PDSCHに対するHARQ-ACKを送信するためのPUCCHついて、1つのTPCコマンド値を示してもよい(ARQ-ACKを送信するためのPUCCH毎に、異なるTPCコマンド値が示されてもよい)。
 (個別HARQ-ACKフィードバックのためのtype 1 HARQ-ACKフィードバック)
 個別HARQ-ACKフィードバックのためのtype 1 HARQ-ACKフィードバックは、通常のtype 1 HARQ-ACKフィードバックと同様であってもよい。
 (個別HARQ-ACKフィードバックのためのtype 2 HARQ-ACKフィードバック)
 個別HARQ-ACKフィードバックのために、type 2 HARQ-ACKフィードバックを適用してもよい。
 (Option2-1)
 端末20は、単一のDCIによってスケジュールされる複数のPDSCH全てに対する複数のHARQ-ACKを、type 2 HARQ-ACKフィードバックを適用して、別々のPUCCHでフィードバックしてもよい。この場合において、DCIに1つのC-DAI及び1つのT-DAI(存在する場合)が含まれ、PDCCHに基づいてカウントされてもよい。
 C-DAI及びT-DAIのカウントは、最初にスケジュールされるPDSCH又は最後にスケジュールされるPDSCHと関連付けられてもよい。
 図20は、Option2-1の例を示す図である。
 図21は、type 2 HARQ-ACKコードブックのHARQ-ACKビットの順番の例を示す図である。
 図22は、Option2-1の例の詳細を示す図である。
 図23は、type 2 HARQ-ACKコードブックの構成の例を示す図である。
 (Option2-2)
 端末20は、単一のDCIによってスケジュールされる複数のPDSCH全てに対する複数のHARQ-ACKを、type 2 HARQ-ACKフィードバックを適用して、別々のPUCCHでフィードバックしてもよい。この場合において、スケジュールされるPDSCH毎に、C-DAI及びT-DAI(存在する場合)がスケジューリングDCIに含まれてもよい。C-DAIは、現在のPDSCHまでの、HARQ-ACKコードブックと対応付けられたスケジュールされるPDSCHの累積の数を示してもよい。T-DAIは、現在のPDCCHモニタリング機会までの、HARQ-ACKコードブックと関連づけられたPDSCHの総数を示してもよい。
 Option2-2のtype 2 HARQ-ACKコードブックの構成方法として、C-DAI/T-DAIに基づく、リリース16のHARQ-ACKビットの順序付けの方法を再利用してもよい。
 図24は、Option2-2の例を示す図である。K1の値として、PDSCU毎に、異なる値が設定されることを想定している。
 図25は、Option2-2の例の詳細を示す図である。K1の値として、PDSCU毎に、異なる値が設定されることを想定している。
 図26は、Option2-2のtype 2 HARQ-ACKコードブックの構成方法の例を示す図である。K1の値として、PDSCU毎に、異なる値が設定されることを想定している。
 (Option2-3)
 端末20は、単一のDCIによってスケジュールされる複数のPDSCH全てに対する複数のHARQ-ACKを、e-type 2 HARQ-ACKフィードバックを適用して、別々のPUCCHでフィードバックしてもよい。
 (Option2-3-1)
 Option2-3場合において、スケジュールされる全てのPDSCHに対して1つのPDSCHグループインデックスが割り当てられてもよい。1つのDCIによってスケジュールされる全てのPDSCHに対するHARQ-ACKが1つのグループでフィードバックされてもよい。NFIは、リリース16のNFIと同様であってもよい。上位レイヤのパラメータによって、スケジューリングされるグループ毎に1ビット設定されてもよく、各グループに対して複数のビットが設定されてもよく、0ビットであってもよい。C-DAI/T-DAIは、type 2 HARQ-ACKフィードバックの場合と同様であってもよい。HARQ-ACKコードブックの構成は、Option1-3-1~Option1-3-3のうちのいずれかと同様であってもよい。
 (Option2-3-2)
 Option2-3場合において、スケジュールされるPDSCH毎に、個別のグループインデックスが割り当てられてもよい。1つのDCIによりスケジュールされるPDSCH全てに対するHARQ-ACKは、同じグループにおいてフィードバックされてもよく、異なるグループにおいてフィードバックされてもよい。NFIフィールドが存在する場合には、NFIフィールドは、各PDSCHグループに対して1ビットのフィールドであってもよい。
 (Option2-3-2-1)
 Option2-3場合において、DCIに、グループ毎のC-DAI/T-DAIが含まれてもよい。
 (Alt1)
 C-DAIは、現在の{CC、PDCCHモニタリング機会}の組み合わせまでの、累積の{CC、PDCCHモニタリング機会}の組み合わせの数を示してもよい。T-DAIは、現在のPDCCHモニタリング機会までの、{CC、PDCCHモニタリング機会}の総数を示してもよい。この場合、端末20は、例えば、図13に示される方法に基づいて、各グループに対するHARQ-ACKコードブックを構成してもよい。
 (Alt2)
 C-DAI及びT-DAIは、スケジューリングされるPDSCHの数に基づいてカウントされてもよい。この場合、端末20は、例えば、図14に示される方法に基づいて、各グループに対するHARQ-ACKコードブックを構成してもよい。
 (Option2-3-2-2)
 Option2-3場合において、DCIに、スケジュールされるPDSCH毎のC-DAI/T-DAIが含まれてもよい。 C-DAIは、現在の{CC、PDCCHモニタリング機会}の組み合わせまでの、累積の{CC、PDCCHモニタリング機会}の組み合わせの数を示してもよい。T-DAIは、現在のPDCCHモニタリング機会までの、{CC、PDCCHモニタリング機会}の総数を示してもよい。T-DAIは、PDSCH毎に設定されてもよい。代替的に、T-DAIは、グループ毎に設定されてもよい。この場合、端末20は、例えば、図15に示される方法に基づいて、各グループに対するHARQ-ACKコードブックを構成してもよい。
 (Proposal3:Partial joint HARQ-ACKフィードバック)
 上述のProposal1ではHARQ-ACKを送信するPUCCHを1つにまとめていた。また、上述のProposal2では、複数のHARQ-ACKのうちの各HARQ-ACKに対して、PUCCHリソースを割り当てている。Proposal3として、Proposal1とProposal2とを組み合わせてもよい。
 図27は、Proposal3の例を示す図である。図27に示されるように、PDSCH#0及びPDSCH#1に対するHARQ-ACKを送信するためのPUCCHが設定され、PDSCH#2及びPDSCH#3に対するHARQ-ACKを送信するための別のPUCCHが設定されてもよい。
 PDSCH対HARQフィードバックタイミングインジケータフィールドについて、以下のAlt1及びAlt2が考えられる。
 (Alt1)スケジューリングDCIは、PDSCHのセットの間で共通の、1つのK1値を示してもよい。
 (Alt2)スケジューリングDCIは、PDSCHのセット毎に、対応するK1値を示してもよい(PDSCHセット毎に、異なるK1値が示されてもよい)。
 PUCCHリソースインジケータフィールドについて、以下のAlt1及びAlt2が考えられる。
 (Alt1)スケジューリングDCIは、PDSCHのセットの間で共通に適用される1つのPRI値を示してもよい。PUCCHリソースは、HARQ-ACKを送信するためのPUCCHと関連付けられた最後のDCIのPRIによって決定されてもよい。
 (Alt2)スケジューリングDCIは、PDSCHのセット毎に、対応するPRI値を示してもよい(PDSCHセット毎に、PRI値が示されてもよい)。PUCCHリソースは、HARQ-ACKを送信するためのPUCCHと関連付けられた最後のDCIのPRIによって決定されてもよい。
 PUCCH power control fieldについて、以下のAlt1及びAlt2が考えられる。
 (Alt1)スケジューリングDCIは、各PDSCHのセットのHARQ-ACKを送信するためのPUCCHについて、共通の1つのTPコマンド値を示してもよい。
 (Alt2)スケジューリングDCIは、PDSCHのセットのHARQ-ACKを送信するためのPUCCH毎に、1つのTPCコマンド値を示してもよい(PDSCHのセットのHARQ-ACKを送信するためのPUCCH毎に、異なるTPCコマンド値が示されてもよい)。
 Proposal3の場合において、type1のHARQ-ACKフィードバックを適用する場合には、PDSCHのセット毎に、図10の例に示される方法で、HARQ-ACKコードブックを構成してもよい。
 Proposal3の場合において、type2のHARQ-ACKフィードバックを適用する場合には、以下のオプションが考えられる。
 (Option3-1-1)
 PDSCHをスケジュールするDCIの中に1つのC-DAI及び1つのT-DAI(存在する場合)のみが含まれてもよい。この場合において、C-DAI及びT-DAI(存在する場合)は、DCIに基づいてカウントされてもよい。C-DAIは、現在の{CC、PDCCHモニタリング機会}の組み合わせまでの、累積の{CC、PDCCHモニタリング機会}の組み合わせの数を示してもよい。T-DAIは、現在のPDCCHモニタリング機会までの、{CC、PDCCHモニタリング機会}の総数を示してもよい。
 PDSCHの1つのセットのHARQ-ACKは、バンドル化された1つのHARQ-ACKビットを含んでもよい。代替的に、PDSCHの1つのセットのHARQ-ACKは、バンドル化されない複数のHARQ-ACKビットを含んでもよい。HARQ-ACKビットの順序は、図24に示されるような方法で定められてもよい。
 (Option3-1-2)
 PDSCHのセット毎に、C-DAI/T-DAIが設定されてもよい。この場合、Option2-3-2-1の方法において、グループをセットに置き換えたHARQ-ACKフィードバック方法が適用されてもよい。
 (Option3-2-3)
 PDSCH毎に、C-DAIが設定されてもよい。
 Proposal3の場合において、e-type2のHARQ-ACKフィードバックを適用する場合には、以下のオプションが考えられる。
 (Option3-2-1)
 1つのPDSCHグループインデックスがスケジュールされる全てのPDSCHに適用されてもよい。この場合、C-DAI/T-DAIについては、Option1-3-1と同様であってもよい。
 (Option3-2-2)
 PDSCHセット毎に、グループインデックスが割り当てられてもよい。
 (Option3-2-2-1)
 PDSCHセット毎に、グループインデックスが割り当てられる場合において、PDSCHグループ毎に、C-DAI/T-DAIが設定されてもよい。
 (Option3-2-2-2)
 PDSCHセット毎に、グループインデックスが割り当てられる場合において、PDSCH毎に、C-DAIが設定されてもよい。
 (Option3-2-2-3)
 PDSCHセット毎に、グループインデックスが割り当てられる場合において、PDSCHセット毎に、C-DAI/T-DAIが設定されてもよい。
 上述の複数のProposal/Optionのうち、いずれが使用されるかについては、上位レイヤのパラメータで設定されてもよく、端末20が端末能力(UE Capability)として通知してもよく、仕様により規定されてもよく、上位レイヤのパラメータで設定され且つ端末20が端末能力(UE Capability)として通知してもよい。
 端末能力(UE Capability)として、端末20が単一のDCIに基づく複数のPDSCHのスケジューリングをサポートするか否かを示す情報が定められてもよい。また、端末能力(UE Capability)として、端末20が、単一のDCIでスケジュールされた複数のPDSCHに対するjoint HARQ-ACKフィードバック(複数のPDSCHに対する複数のHARQ-ACKをまとめて通知する機能)をサポートするか否かを示す情報が定められてもよい。また、端末能力(UE Capability)として、単一のDCIでスケジュールされた複数のPDSCHに対する、個別のHARQ-ACKフィードバック機能をサポートするか否かを示す情報が定められてもよい。また、端末能力(UE Capability)として、端末20が、単一のDCIでスケジュールされた複数のPDSCHに対するpartial joint HARQ-ACKフィードバック(複数のPDSCHに対する複数のHARQ-ACKを部分的にまとめて通知する機能)をサポートするか否かを示す情報が定められてもよい。
 (装置構成)
 次に、これまでに説明した処理及び動作を実行する基地局10及び端末20の機能構成例を説明する。基地局10及び端末20は上述したProposal 1~3を実施する機能を含む。ただし、基地局10及び端末20はそれぞれ、Proposal 1~3のうちのいずれかの提案の機能のみを備えることとしてもよい。
 <基地局10>
 図28は、基地局10の機能構成の一例を示す図である。図28に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図28に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部110と受信部120とを通信部と呼んでもよい。
 送信部110は、端末20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。受信部120は、端末20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、端末20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号、DLデータ等を送信する機能を有する。また、送信部110は、提案1~2で説明した設定情報等を送信する。
 設定部130は、予め設定される設定情報、及び、端末20に送信する各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。制御部140は、例えば、リソース割り当て、基地局10全体の制御等を行う。なお、制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。また、送信部110、受信部120をそれぞれ送信機、受信機と呼んでもよい。
 <端末20>
 図29は、端末20の機能構成の一例を示す図である。図29に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図29に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部210と受信部220とを通信部と呼んでもよい。
 送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。
 設定部230は、受信部220により基地局10から受信した各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。また、設定部230は、予め設定される設定情報も格納する。制御部240は、端末20全体の制御等を行う。なお、制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。また、送信部210、受信部220をそれぞれ送信機、受信機と呼んでもよい。
 実施例には、少なくとも以下の端末、通信方法及び基地局が記載されている。
(第1項)
 複数の下り共有チャネルのスケジューリング情報、及び前記複数の下り共有チャネルのうちのいずれか1つの下り共有チャネルのリソース位置と上り制御チャネルのリソース位置との間のオフセット値を含む単一の下り制御情報を受信し、前記スケジューリング情報に従って、前記複数の下り共有チャネルの受信を行う受信部と、
 前記1つの下り共有チャネルのリソース位置及び前記オフセット値に基づき、前記複数の下り共有チャネルの受信に対するフィードバック情報を送信する上り制御チャネルのリソース位置を決定する制御部と、
 前記決定した上り制御チャネルのリソース位置で、前記複数の下り共有チャネルの受信に対するフィードバック情報を送信する送信部と、
 を備える端末。
(第2項)
 前記1つの下り共有チャネルのリソース位置は、前記複数の下り共有チャネルの複数のリソース位置のうち、時間方向に関して最も後ろに位置する、
 第1項に記載の端末。
(第3項)
 前記複数の下り共有チャネルの受信に対するフィードバック情報には、前記複数の下り共有チャネルのうちの各下り共有チャネルのフィードバック情報を示すビットが含まれる、
 第2項に記載の端末。
(第4項)
 前記複数の下り共有チャネルの受信に対するフィードバック情報には、前記複数の下り共有チャネルのフィードバック情報をバンドルした1つのビットが含まれる、
 第2項に記載の端末。
(第5項)
 複数の下り共有チャネルのスケジューリング情報、及び前記複数の下り共有チャネルのうちのいずれか1つの下り共有チャネルのリソース位置と上り制御チャネルのリソース位置との間のオフセット値を含む単一の下り制御情報を受信し、前記スケジューリング情報に従って、前記複数の下り共有チャネルの受信を行うステップと、
 前記1つの下り共有チャネルのリソース位置及び前記オフセット値に基づき、前記複数の下り共有チャネルの受信に対するフィードバック情報を送信する上り制御チャネルのリソース位置を決定するステップと、
 前記決定した上り制御チャネルのリソース位置で、前記複数の下り共有チャネルの受信に対するフィードバック情報を送信するステップと、
 を備える端末による通信方法。
(第6項)
 複数の下り共有チャネルのスケジューリング情報、及び前記複数の下り共有チャネルのうちのいずれか1つの下り共有チャネルのリソース位置と上り制御チャネルのリソース位置との間のオフセット値を含む単一の下り制御情報を送信し、前記スケジューリング情報に従って、前記複数の下り共有チャネルの送信を行う送信部と、
 前記1つの下り共有チャネルのリソース位置及び前記オフセット値に基づき、前記複数の下り共有チャネルの端末による受信に対するフィードバック情報を受信する上り制御チャネルのリソース位置を決定する制御部と、
 前記決定した上り制御チャネルのリソース位置で、前記複数の下り共有チャネルの受信に対するフィードバック情報を受信する受信部と、
 を備える基地局。
 上記のいずれの項に記載された構成によっても、1つのDCIによって、複数のPDSCHがスケジューリングされる場合のHARQの拡張技術が提供される。
 (ハードウェア構成)
 上記実施形態の説明に用いたブロック図(図28及び図29)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)あるいは送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施の形態における基地局10、端末20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図30は、本開示の一実施の形態に係る基地局10及び端末20のハードウェア構成の一例を示す図である。上述の基地局10及び端末20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局10及び端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 基地局10及び端末20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図28に示した基地局10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図29に示した端末20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。補助記憶装置1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インターフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及び端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
 また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(new Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末20との通信のために行われる様々な動作は、基地局10及び基地局10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUSCH、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(MS:Mobile Station)」、「端末(user terminal)」、「端末(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
 また、本開示における基地局は、端末で読み替えてもよい。例えば、基地局及び端末間の通信を、複数の端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示における端末は、基地局で読み替えてもよい。この場合、上述の端末が有する機能を基地局が有する構成としてもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各端末20に対して、無線リソース(各端末20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 本開示において、例えば、英語でのa,an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 なお、本開示において、SSブロック又はCSI-RSは、同期信号又は参照信号の一例である。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
10    基地局
110   送信部
120   受信部
130   設定部
140   制御部
20    端末
210   送信部
220   受信部
230   設定部
240   制御部
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置

Claims (6)

  1.  複数の下り共有チャネルのスケジューリング情報、及び前記複数の下り共有チャネルのうちのいずれか1つの下り共有チャネルのリソース位置と上り制御チャネルのリソース位置との間のオフセット値を含む単一の下り制御情報を受信し、前記スケジューリング情報に従って、前記複数の下り共有チャネルの受信を行う受信部と、
     前記1つの下り共有チャネルのリソース位置及び前記オフセット値に基づき、前記複数の下り共有チャネルの受信に対するフィードバック情報を送信する上り制御チャネルのリソース位置を決定する制御部と、
     前記決定した上り制御チャネルのリソース位置で、前記複数の下り共有チャネルの受信に対するフィードバック情報を送信する送信部と、
     を備える端末。
  2.  前記1つの下り共有チャネルのリソース位置は、前記複数の下り共有チャネルの複数のリソース位置のうち、時間方向に関して最も後ろに位置する、
     請求項1に記載の端末。
  3.  前記複数の下り共有チャネルの受信に対するフィードバック情報には、前記複数の下り共有チャネルのうちの各下り共有チャネルのフィードバック情報を示すビットが含まれる、
     請求項2に記載の端末。
  4.  前記複数の下り共有チャネルの受信に対するフィードバック情報には、前記複数の下り共有チャネルのフィードバック情報をバンドルした1つのビットが含まれる、
     請求項2に記載の端末。
  5.  複数の下り共有チャネルのスケジューリング情報、及び前記複数の下り共有チャネルのうちのいずれか1つの下り共有チャネルのリソース位置と上り制御チャネルのリソース位置との間のオフセット値を含む単一の下り制御情報を受信し、前記スケジューリング情報に従って、前記複数の下り共有チャネルの受信を行うステップと、
     前記1つの下り共有チャネルのリソース位置及び前記オフセット値に基づき、前記複数の下り共有チャネルの受信に対するフィードバック情報を送信する上り制御チャネルのリソース位置を決定するステップと、
     前記決定した上り制御チャネルのリソース位置で、前記複数の下り共有チャネルの受信に対するフィードバック情報を送信するステップと、
     を備える端末による通信方法。
  6.  複数の下り共有チャネルのスケジューリング情報、及び前記複数の下り共有チャネルのうちのいずれか1つの下り共有チャネルのリソース位置と上り制御チャネルのリソース位置との間のオフセット値を含む単一の下り制御情報を送信し、前記スケジューリング情報に従って、前記複数の下り共有チャネルの送信を行う送信部と、
     前記1つの下り共有チャネルのリソース位置及び前記オフセット値に基づき、前記複数の下り共有チャネルの端末による受信に対するフィードバック情報を受信する上り制御チャネルのリソース位置を決定する制御部と、
     前記決定した上り制御チャネルのリソース位置で、前記複数の下り共有チャネルの受信に対するフィードバック情報を受信する受信部と、
     を備える基地局。
PCT/JP2021/001543 2021-01-18 2021-01-18 端末、通信方法及び基地局 WO2022153552A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21919445.3A EP4280748A4 (en) 2021-01-18 2021-01-18 TERMINAL, COMMUNICATION METHOD AND BASE STATION
CN202180090159.5A CN116686368A (zh) 2021-01-18 2021-01-18 终端、通信方法以及基站
PCT/JP2021/001543 WO2022153552A1 (ja) 2021-01-18 2021-01-18 端末、通信方法及び基地局
JP2022575054A JPWO2022153552A5 (ja) 2021-01-18 端末、基地局、通信システム、及び通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/001543 WO2022153552A1 (ja) 2021-01-18 2021-01-18 端末、通信方法及び基地局

Publications (1)

Publication Number Publication Date
WO2022153552A1 true WO2022153552A1 (ja) 2022-07-21

Family

ID=82447053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001543 WO2022153552A1 (ja) 2021-01-18 2021-01-18 端末、通信方法及び基地局

Country Status (3)

Country Link
EP (1) EP4280748A4 (ja)
CN (1) CN116686368A (ja)
WO (1) WO2022153552A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013509073A (ja) * 2009-10-19 2013-03-07 サムスン エレクトロニクス カンパニー リミテッド 通信システムにおけるharq−ack信号のための伝送ダイバーシティ及び多重化
US20180019843A1 (en) * 2016-07-18 2018-01-18 Samsung Electronics Co., Ltd. Carrier aggregation with variable transmission durations
JP2020137127A (ja) * 2019-02-20 2020-08-31 華碩電腦股▲ふん▼有限公司 無線通信システムにおいてサイドリンクおよび上りリンクharq−ackフィードバックを処理するための方法および装置
WO2020188822A1 (ja) * 2019-03-20 2020-09-24 株式会社Nttドコモ ユーザ端末及び無線通信方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020032695A1 (en) * 2018-08-09 2020-02-13 Samsung Electronics Co., Ltd. Method and apparatus for scheduling multiple transmission in a wireless communication system
EP3949243A4 (en) * 2019-05-17 2022-08-17 Samsung Electronics Co., Ltd. METHOD AND DEVICE FOR TRANSMITTING AND RECEIVING DATA IN A WIRELESS COMMUNICATION SYSTEM
CA3186640A1 (en) * 2020-06-08 2021-12-16 Nec Corporation Methods for communication, terminal device, and computer readable media
US20220116184A1 (en) * 2020-10-12 2022-04-14 Qualcomm Incorporated Acknowledgement (ack) and negative acknowledgement (nack) reporting for a physical downlink shared channel (pdsch) grant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013509073A (ja) * 2009-10-19 2013-03-07 サムスン エレクトロニクス カンパニー リミテッド 通信システムにおけるharq−ack信号のための伝送ダイバーシティ及び多重化
US20180019843A1 (en) * 2016-07-18 2018-01-18 Samsung Electronics Co., Ltd. Carrier aggregation with variable transmission durations
JP2020137127A (ja) * 2019-02-20 2020-08-31 華碩電腦股▲ふん▼有限公司 無線通信システムにおいてサイドリンクおよび上りリンクharq−ackフィードバックを処理するための方法および装置
WO2020188822A1 (ja) * 2019-03-20 2020-09-24 株式会社Nttドコモ ユーザ端末及び無線通信方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP4280748A4
TSG RAN MEETING #82, RP-182861, 10 December 2018 (2018-12-10)
ZTE: "Summary on Multiple TB scheduling enhancement for NB-IoT", 3GPP DRAFT; R1-1905573 SUMMARY FOR MULTIPLE TBS SCHEDULING ENHANCEMENT FOR NB-IOT, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 10 April 2019 (2019-04-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051707635 *

Also Published As

Publication number Publication date
CN116686368A (zh) 2023-09-01
EP4280748A4 (en) 2024-09-18
EP4280748A1 (en) 2023-11-22
JPWO2022153552A1 (ja) 2022-07-21

Similar Documents

Publication Publication Date Title
WO2021024440A1 (ja) 端末
WO2021149231A1 (ja) 端末及び通信方法
WO2020222283A1 (ja) 基地局装置、及びユーザ装置
WO2021172337A1 (ja) 端末及び通信方法
WO2022130645A1 (ja) 端末、基地局及び通信方法
WO2021149159A1 (ja) 端末、基地局及び通信方法
WO2021140677A1 (ja) 端末及び通信方法
WO2020246185A1 (ja) 端末及び基地局
WO2021149110A1 (ja) 端末及び通信方法
WO2022220028A1 (ja) 端末、及び無線通信システム
US20240250782A1 (en) Terminal and communication method
WO2021171995A1 (ja) 端末、通信方法及び基地局
JP7482907B2 (ja) 端末、基地局、通信システム、及び通信方法
WO2022153552A1 (ja) 端末、通信方法及び基地局
WO2022085202A1 (ja) 端末、及び基地局
WO2022029947A1 (ja) 端末、基地局装置、及びフィードバック方法
WO2021065011A1 (ja) 端末及び通信方法
WO2020217366A1 (ja) ユーザ装置
WO2021064973A1 (ja) 端末及び基地局
WO2021090438A1 (ja) 端末及び通信方法
WO2022219976A1 (ja) 端末、通信方法及び基地局
WO2022091556A1 (ja) 端末、基地局、及び通信方法
WO2022097640A1 (ja) 端末、通信方法及び基地局
WO2022102632A1 (ja) 端末及び通信方法
WO2022091561A1 (ja) 端末、及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919445

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022575054

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180090159.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021919445

Country of ref document: EP

Effective date: 20230818