Nothing Special   »   [go: up one dir, main page]

WO2022153445A1 - User terminal and wireless communication method - Google Patents

User terminal and wireless communication method Download PDF

Info

Publication number
WO2022153445A1
WO2022153445A1 PCT/JP2021/001069 JP2021001069W WO2022153445A1 WO 2022153445 A1 WO2022153445 A1 WO 2022153445A1 JP 2021001069 W JP2021001069 W JP 2021001069W WO 2022153445 A1 WO2022153445 A1 WO 2022153445A1
Authority
WO
WIPO (PCT)
Prior art keywords
user terminal
association information
preamble
message
repetitions
Prior art date
Application number
PCT/JP2021/001069
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 秋元
Original Assignee
ソフトバンク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソフトバンク株式会社 filed Critical ソフトバンク株式会社
Priority to PCT/JP2021/001069 priority Critical patent/WO2022153445A1/en
Publication of WO2022153445A1 publication Critical patent/WO2022153445A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present invention relates to a user terminal and a wireless communication method.
  • Non-Patent Document 1 NR (New Radio), which is a 5th generation (Fifth Generation: 5G) RAT.
  • NR has introduced collision-based random access (CBRA) as a random access procedure.
  • CBRA collision-based random access
  • the user terminal transmits a random access (RandomAccessResponse: RA) preamble (message 1) to the base station via a random access channel (for example, a random access channel (PhysicalRandomAccessChannel: PRACH)).
  • RA RandomAccessResponse
  • PRACH PhysicalRandomAccessChannel
  • the user terminal receives a random access response (RAR) message (message 2) for the RA preamble from the base station via a downlink shared channel (for example, Physical Downlink Shared Cannel: PDSCH).
  • RAR random access response
  • the user terminal transmits the message 3 to the base station via the uplink shared channel (for example, Physical Uplink Shared Cannel: PUSCH) in response to the random response message.
  • the user terminal receives the conflict resolution message (contention resolution message) in response to the message 3 via the downlink shared channel.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a user terminal and a wireless communication method capable of appropriately controlling repeated transmission of an uplink shared channel used for transmission of message 3 in CBRA. Make one.
  • a user terminal includes a measuring unit that measures received power or reception quality using a synchronous signal block, a transmitting unit that transmits a random access (RA) preamble, and a response message to the RA preamble.
  • a receiving unit that receives the message 3 and a control unit that determines the number of repetitions of the uplink shared channel used for transmitting the message 3 in response to the response message based on the received power or the reception quality.
  • FIG. 1 is a diagram showing an example of an outline of a wireless communication system according to the present embodiment.
  • the wireless communication system 1 may include a user terminal 10, base stations 20A to 20B, and a core network 30.
  • the base stations 20A to 20B and the cells C1 to C2 are not distinguished, they are collectively referred to as the base station 20 and the cell C, respectively.
  • the numbers of the user terminals 10 and the base stations 20 shown in FIG. 1 are merely examples, and are not limited to the numbers shown.
  • the wireless communication system 1 operates with one or more wireless access technologies (RAT).
  • RAT wireless access technologies
  • the wireless communication system 1 may operate in either LTE, LTE-Advanced or NR, or may operate in a plurality of RATs (multi-RAT) including LTE and / or LTE-Advanced and NR. May be good.
  • LTE and / or LTE-Advanced is also referred to as Evolved Universal Terrestrial Radio Access (EUTRA).
  • EUTRA Evolved Universal Terrestrial Radio Access
  • the user terminal 10 is a predetermined terminal or device such as a smartphone, a personal computer, an in-vehicle terminal, an in-vehicle device, a stationary device, or the like.
  • the user terminal 10 may be called a User Equipment (UE) or the like.
  • the user terminal 10 may be a mobile type or a fixed type.
  • the user terminal 10 is configured to be communicable with, for example, at least one RAT of EUTRA and NR.
  • Base station 20 forms one or more cells C.
  • the cell C may be paraphrased as a serving cell, a carrier, a component carrier (CC), a primary cell (Primary Cell: PCell), a secondary cell (Secondary Cell: SCell), a special cell (Special Cell), or the like.
  • the base stations 20A and 20B form cells C1 and C2, respectively, but the present invention is not limited to this, and each base station may form one or more cells C.
  • the plurality of base stations 20 may be connected to each other by a predetermined interface (for example, X2 or Xn interface).
  • the base station 20 communicates with the user terminal 10 by either EUTRA or NR communication method.
  • the base station 20 includes eNodeB (eNB), ng-eNB, gNodeB (gNB), en-gNB, Next Generation-Radio Access Network (NG-RAN) node, Donor eNodeB (DeNB), Donor eNodeB (DeNB), Donor node. , CentralUnit, low-power node, picoeNB, HomeeNB (HeNB), DistributedUnit (DU), gNB-DU, RemoteRadioHead (RRH), or Integrated Access and Backhaul / Backhauling It may be called a (IAB) node or the like.
  • eNB eNodeB
  • gNB ng-eNB
  • gNB gNodeB
  • NG-RAN Next Generation-Radio Access Network
  • NG-RAN Next Generation-Radio Access Network
  • DeNB Donor eNodeB
  • DeNB Donor eNodeB
  • the core network 30 is, for example, a core network compatible with EUTRA (Evolved Packet Core: EPC) or a core network compatible with NR (5G Core Network: 5GC).
  • EUTRA Evolved Packet Core
  • 5G Core Network 5GC
  • the device on the core network 30 (hereinafter, also referred to as “core network device”) manages mobility such as paging and location registration of the user terminal 10.
  • the core network device may be connected to the base station 20 via a predetermined interface (for example, S1 or NG interface).
  • the core network device includes, for example, a Mobility Management Entity (MME) that manages the movement of the user terminal 10, an Access and Mobility Management Function (AMF) that manages C-plane information (for example, information related to access and movement management, etc.), and U. It may include at least one User Plane Function (UPF) that controls the transmission of plane information (for example, user data).
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • U User Plane Function
  • the user terminal 10 can communicate with one or more base stations 20.
  • the user terminal 10 can perform communication by dual connectivity (DC) connected to two cell groups including one or more cells C, respectively.
  • DC dual connectivity
  • the DC may be referred to as a multi-RAT DC.
  • CA carrier aggregation
  • the downlink channel / signal transmitted from the base station 20 to the user terminal 10 includes, for example, at least one of the following.
  • -A broadcast channel used for transmitting broadcast information for example, a physical broadcast channel (PBCH)
  • -Synchronization signal for example, Primary Synchronization Signal (PSS) and / or Secondary Synchronization Signal (PSS)
  • PSS Primary Synchronization Signal
  • PSS Secondary Synchronization Signal
  • -Downlink shared channel used for downlink data transmission for example, Physical Downlink Shared Channel (PDSCH)
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • DCI downlink control information
  • -Downlink reference signal for example, demodulation reference signal (DMRS) of PDCCH, PDSCH or PBCH, channel state information reference signal (CSI-RS), etc.
  • the uplink channel / signal transmitted from the user terminal 10 to the base station 20 includes at least one of the following. Random Access Channel (eg, Physical Random Access Channel (PRACH)) used to transmit random access (RA) preambles.
  • -Uplink control channel for example, Physical Uplink Control Channel (PUCCH)
  • UCI uplink control information
  • PUSCH Physical Uplink Shared Channel
  • PUSCH Uplink reference signal
  • SRS Sounding Reference Signal
  • the broadcast channel, the downlink shared channel, and the downlink control channel included in the downlink channel / signal will be referred to as PBCH, PDSCH, and PDCCH, respectively, but the names are not limited to these, respectively.
  • the random access channel, the uplink control channel, and the uplink shared channel included in the uplink channel / signal are referred to as PRACH, PUCCH, and PUSCH, respectively, but the names are not limited to these, respectively.
  • the notification information transmitted by PBCH includes system information.
  • the downlink data transmitted by the PDSCH includes, for example, system information, downlink user data, RRC (Radio Resource Control) layer information (for example, RRC message, RRC Information Element: RRC IE), and the like.
  • RRC Radio Resource Control
  • RRC IE Radio Resource Control
  • At least one of MAC (Medium Access Control) layer information for example, MAC Control Element (MAC CE) may be included.
  • System information is transmitted via PBCH and / or PDSCH as described above. Further, the system information includes a master information block (MasterInformation Block: MIB) and one or more system information blocks (SystemInformation Block: SIB) (for example, SIB1 to SIB9, etc.).
  • MIB MasterInformation Block
  • SIB SystemInformation Block
  • the user terminal 10 receives the MIB via the PBCH.
  • the user terminal 10 may detect the DCI based on the information in the MIB and receive the SIB1 via the PDSCH based on the DCI.
  • the user terminal 10 may detect the DCI based on the information contained in the SIB1 and receive other system information (for example, at least one of the SIBs 2 to 9) via the PDSCH based on the DCI.
  • the DCI transmitted by the PDCCH is used for scheduling the PDSCH and / or PUSCH, and is also called a DCI format, scheduling information, or the like.
  • the user terminal 10 monitors the PDCCH candidate (PDCCH candidate) in the search space, detects the DCI, and receives the downlink data via the PDSCH or the uplink data via the PUSCH based on the detected DCI. To send.
  • CBRA collision-based random access
  • a synchronization signal block containing at least one of PBCH, DMRS, SSS, and PSS of PBCH and PBCH is transmitted from the base station 20 at a predetermined cycle.
  • SSB may be paraphrased as SS / PBCH block.
  • each SSB may consist of 4 symbols and 20 resource blocks.
  • the base station 20 may transmit the plurality of SSBs by applying different beam patterns to the plurality of SSBs having different SSB indexes. Specifically, the base station 20 may transmit the plurality of SSBs at predetermined cycles using different time resources (for example, different symbols) by beam sweeping (“multi-beam operation”). Also called). Alternatively, the base station 20 may transmit one SSB in a single beam pattern at a predetermined cycle without applying beam sweeping (also referred to as “single beam operation”). The user terminal 10 may detect the timing of the radio frame and / or slot based on the SSB index.
  • the user terminal 10 may transmit the RA preamble. Specifically, the user terminal 10 may transmit the RA preamble using the RACH opportunity (RACHoccasion: RO) associated with the detected SSB.
  • RACHoccasion RACH opportunity
  • the base station 20 can recognize the received beamforming applied to the reception of the RA preamble.
  • the RO is a resource in the time domain and / or frequency domain for transmission of the RA preamble, and is composed of, for example, one or more symbols and M (M ⁇ 1) resource blocks (Resource Block: RB).
  • M resource blocks
  • RO may be paraphrased as PRACH opportunity, random access opportunity, transmission opportunity, opportunity and the like.
  • the RA preamble may be paraphrased as a RACH preamble, PRACH, message 1, and the like.
  • FIG. 2 is a diagram showing an example of RO according to this embodiment.
  • one or a plurality of slots (hereinafter, referred to as “RACH slots”) used for transmitting the RA preamble are provided in a predetermined cycle (hereinafter, referred to as “RACH resource periodicity”). You may.
  • the RACH resource cycle is 10 slots, and the 2nd, 5th, and 8th slots are RACH slots, but the present invention is not limited to this.
  • each RACH slot is provided with one or more ROs.
  • One RO is composed of M (M ⁇ 1) RBs.
  • K ROs can be arranged in the frequency domain.
  • one or more ROs can be arranged in one RACH slot in the time domain.
  • a total of 4ROs, two in the frequency domain and two in the time domain, are arranged per RACH slot.
  • FIG. 2 is merely an example, and the number of ROs in the frequency domain may be 1 or more, and the number of ROs in the time domain in the 1 RACH slot may be 1 or more.
  • each RACH slot may include one or more ROs in the time domain and / or frequency domain. It should be noted that the plurality of RACH slots do not have to be continuous in the time domain.
  • one SSB may be associated with one or more ROs.
  • SSB # 0 is associated with RO # 0 to # 3
  • SSB # 1 is associated with RO # 4 to # 7.
  • each SSB may be associated with a predetermined number of RA preambles.
  • the number of SSBs N associated with one RO is not limited to 1/4 shown in FIG.
  • the SSB number N may be, for example, a value less than or equal to 1 such as 1/2 or 1/8, or a value greater than 1 such as 2, 4, 8, 17 or the like. ..
  • the number of SSBs may be configured from the base station 20 to the user terminal 10 by, for example, the information item "ssb-perRACHOccasionAndCB-PreamblesPerSSB" of the radio resource control (RadioResourceControl: RRC).
  • RRC Radio Resource Control
  • the user terminal 10 when detecting SSB # 0, the user terminal 10 selects any of RO # 0 to # 3 associated with SSB # 0. Further, the user terminal 10 selects one of the RA preambles associated with SSB # 0, and transmits the selected RA preamble using the selected RO.
  • the user terminal 10 receives the RAR message (message 2) for the RA preamble from the base station 20 via the PDSCH.
  • the user terminal 10 transmits the message 3 to the base station 20 via the PUSCH scheduled by the uplink included in the random response message.
  • the user terminal 10 receives the conflict resolution message (message 4) corresponding to the message 3 via the PDSCH.
  • the message 3 may be paraphrased as an RRC setup request (RRCSetupRequest) message or the like.
  • RRCSetupRequest RRC setup request
  • the PUSCH used for transmitting the message 3 is referred to as "Msg.3 PUSCH", but may be simply referred to as “message 3" or the like.
  • the message 4 may be paraphrased as an RRC setup message, a conflict resolution message, or the like.
  • Msg. 3 Whether or not PUSCH becomes a coverage bottleneck depends on the position of the user terminal 10 and the like. Although the user terminal 10 is not located at the coverage boundary, the user terminal 10 has the Msg. 3 Only having the ability to repeatedly transmit PUSCH, the Msg. 3 Repeated transmission of PUSCH may lead to a decrease in utilization efficiency of wireless resources.
  • the user terminal 10 uses Msg. 3 Control the repeated transmission of PUSCH.
  • the RA preamble or RO is determined based on the received power or the received quality. Therefore, the RA preamble or RO determines the RA preamble or RO. 3
  • the PUSCH repetition number R can be implicitly notified from the user terminal 10 to the base station 20. Therefore, while eliminating redundant signaling between the user terminal 10 and the base station 20, the above Msg. 3 It is possible to appropriately control the repeated transmission of PUSCH.
  • the received power is assumed to be a reference signal received power (RSRP) measured using a synchronization signal or a downlink reference signal (for example, DMRS of PBCH, CSI-RS, etc.).
  • the reception quality is assumed to be a reference signal reception quality (RSRQ) measured using a synchronization signal or a downlink reference signal (for example, DMRS or CSI-RS of PBCH).
  • RSRP reference signal received power
  • RSRQ reference signal reception quality
  • the present embodiment is not limited to RSRP or RSRQ, and can be applied to any index relating to the signal reception level of the user terminal 10.
  • FIG. 3 is a diagram showing an example of the hardware configuration of each device in the wireless communication system according to the first embodiment.
  • Each device in the wireless communication system 1 includes a processor 11, a memory 12, a storage device 13, a communication device 14 that performs wired or wireless communication, and an input device 15 that accepts input operations. It has at least an output device 16 that outputs information and one or more antennas 17.
  • the processor 11 is, for example, a CPU (Central Processing Unit) and controls each device in the wireless communication system 1.
  • the processor 11 may constitute a control unit that controls each device.
  • the memory 12 is composed of, for example, a ROM (ReadOnlyMemory), an EPROM (ErasableProgrammableROM), an EEPROM (ElectricallyErasableProgrammableROM), and / or a RAM (RandomAccessMemory).
  • ROM ReadOnlyMemory
  • EPROM ErasableProgrammableROM
  • EEPROM ElectricallyErasableProgrammableROM
  • RAM RandomAccessMemory
  • the storage device 13 is composed of storage such as HDD (Hard Disk Drive), SSD (Solid State Drive) and / or eMMC (embedded MultiMediaCard), for example.
  • HDD Hard Disk Drive
  • SSD Solid State Drive
  • eMMC embedded MultiMediaCard
  • the communication device 14 is a device that communicates via a wired and / or wireless network, and is, for example, a network card, a communication module, or the like. Further, the communication device 14 may include an RF (Radio Frequency) device that performs processing related to an amplifier and a radio signal, and a BB (BaseBand) device that performs baseband signal processing.
  • RF Radio Frequency
  • BB BaseBand
  • the RF device generates a radio signal transmitted from the antenna 17 by performing D / A conversion, modulation, frequency conversion, power amplification, etc. on the digital baseband signal received from the BB device, for example. Further, the RF device generates a digital baseband signal by performing frequency conversion, demodulation, A / D conversion, etc. on the radio signal received from the antenna 17, and transmits the digital baseband signal to the BB device.
  • the BB apparatus performs a process of converting a digital baseband signal into an IP packet and a process of converting an IP packet into a digital baseband signal.
  • the input device 15 is, for example, a keyboard, a touch panel, a mouse and / or a microphone.
  • the output device 16 is, for example, a display and / or a speaker.
  • FIG. 4 is a diagram showing an example of the functional block configuration of the user terminal according to the first embodiment.
  • the user terminal 10 includes a receiving unit 101, a transmitting unit 102, a control unit 103, and a measuring unit 104.
  • the receiving unit 101 receives the downlink channel / signal. In addition, the receiving unit 101 performs processing (for example, demapping, demodulation, decoding, etc.) on information and / or data transmitted via the downlink channel / signal.
  • processing for example, demapping, demodulation, decoding, etc.
  • the receiving unit 101 may receive a synchronization signal or a downlink reference signal (for example, DMRS or CSI-RS of PBCH) used for measuring RSRP or RSRQ by the measuring unit 104.
  • a synchronization signal or a downlink reference signal for example, DMRS or CSI-RS of PBCH
  • the receiving unit 101 may receive the system information broadcast from the base station 20.
  • the system information includes MIB and / or SIBX (where X is an arbitrary integer).
  • the receiving unit 101 may receive the MIB via the PBCH.
  • the receiving unit 101 may receive SIBX via PDSCH.
  • the receiving unit 101 receives the RAR message (message 2) via the PDSCH.
  • the receiving unit 101 receives the conflict resolution message (message 4) via the PDSCH.
  • the receiving unit 101 may receive information regarding the association between the RSRP or RSRQ measured by the measuring unit 104 and the repetition number R (hereinafter, referred to as “first association information”).
  • the first association information includes, for example, a set of one or more thresholds of RSRP or RSRQ (for example, thresholds ⁇ and ⁇ described in FIGS. 5 and 6), a condition determined based on the threshold, and Msg associated with the condition. .. 3 Information indicating at least one such as the number of repetitions R of PUSCH may be used.
  • the receiving unit 101 provides information regarding the association between the RSRP or RSRQ (and / or the number of repetitions R) measured by the measuring unit 104 and the RA preamble or RO (hereinafter, referred to as “second association information”). You may receive it.
  • the second association information includes, for example, a set of one or more thresholds of RSRP or RSRQ (eg, thresholds ⁇ and ⁇ described in FIGS. 5 and 6), conditions determined based on the thresholds, and RO associated with the conditions. Alternatively, it may be information indicating at least one such as RA preamble and the number of repetitions R associated with the condition.
  • first and second association information may be included in the system information (for example, SIBX). Further, the first and second association information does not have to be received separately, and may be received as association information regarding the association between the RSRP or RSRQ, the repetition number R, and the RA preamble or RO.
  • the transmission unit 102 transmits an upstream channel / signal.
  • the transmission unit 102 performs processing (for example, coding, modulation, mapping to resources, etc.) regarding information and / or data transmitted via the upstream channel / signal.
  • the transmission unit 102 transmits the RA preamble (message 1). Specifically, the transmission unit 102 may transmit the RA preamble selected by the control unit 103 based on RSRP or RSRQ. Further, the transmission unit 102 may transmit the RA preamble using the RO selected by the control unit 103 based on RSRP or RSRQ.
  • the control unit 103 controls the transmission of the downlink channel / signal by the reception unit 101 and / or the reception of the uplink channel / signal by the transmission unit 102.
  • control unit 103 is based on the RSRP or RSRQ measured by the measurement unit 104, and Msg. 3 Control the repeated transmission of PUSCH. Specifically, the control unit 103 uses Msg. 3 The number of repetitions R of PUSCH may be determined. For example, the control unit 103 may determine the number of repetitions R associated with the RSRP or RSRQ measured by the measurement unit 104 based on the criteria illustrated in FIGS. 5 and 6.
  • FIG. 5 is a diagram showing an example of a criterion for determining the number of repetitions R according to the first embodiment.
  • the condition relating to the measured value of RSRP hereinafter referred to as “RSRP measured value”
  • RO the condition relating to the measured value of RSRP
  • RO the condition relating to the measured value of RSRP
  • the threshold values ⁇ and ⁇ that determine the conditions in FIG. 5 and / or the association between the conditions and the number of repetitions R may be indicated by the above-mentioned first association information, or may be predetermined in the specifications. .. Further, the threshold values ⁇ and ⁇ and / or the association between the condition and RO may be indicated by the above-mentioned second association information, or may be predetermined in the specifications.
  • Msg. 3 It is shown that the number of repetitions R of PUSCH is set to 4 times.
  • the user terminal 10 that has detected SSB # 0 transmits the RA preamble using RO # 1 in FIG. , Msg. 3 Repeat PUSCH twice and send.
  • the RA preamble is transmitted using RO # 2 in FIG. 3 Repeat PUSCH 4 times to transmit.
  • the RSRP measurement values (and / or the number of repetitions R) under different conditions are associated with the plurality of ROs to perform multi.
  • the number of repetitions R of the user terminal 10 at different positions in the same beam direction for example, a position close to the base station 20 or a coverage boundary
  • the base station 20 can use the Msg. 3
  • the number of repetitions R of PUSCH can be recognized in advance.
  • FIG. 6 is a diagram showing another example of the criterion for determining the number of repetitions R according to the first embodiment.
  • the criterion shown in FIG. 6 differs from the criterion shown in FIG. 5 in that instead of RO, the RA preamble is associated with the condition for the RSRP measurement and the number of repetitions R.
  • the differences from the judgment criteria shown in FIG. 5 will be mainly described.
  • the association between the threshold values ⁇ and ⁇ and / or the condition based on the ⁇ and ⁇ and the RA preamble may be indicated by the above-mentioned second association information, or may be determined in advance in the specifications. May be done.
  • the RSRP measurement value when the RSRP measurement value is equal to or higher than the threshold value ⁇ , use any of i RA preambles a 0 to a i-1 , and Msg. 3 It is shown that the number of repetitions R of PUSCH is one.
  • the RSRP measurement value is smaller than the threshold value ⁇ and equal to or higher than the threshold value ⁇ , use any of j RA preambles b 0 to b j-1 , Msg. 3 It is shown that the repetition number R of PUSCH is set to 2 times.
  • the RSRP measurement value is smaller than the threshold value ⁇ , use any of k RA preambles c 0 to c k-1 , and use Msg. 3 It is shown that the number of repetitions R of PUSCH is set to 4 times.
  • the user terminal 10 transmits one of RA preambles b 0 to b j-1 , and Msg. 3 PUSCH is repeated twice and transmitted.
  • the user terminal 10 that detects the same SSB # 0 if the RSRP measurement value is smaller than the threshold value ⁇ , any one of RA preambles c 0 to c k-1 is transmitted, and Msg. 3 PUSCH is repeated 4 times and transmitted.
  • the user terminal 10 can use the repetition number R according to its own position to obtain Msg. 3 PUSCH can be sent. Further, the user terminal 10 uses the RA preamble associated with the RSRP measurement value (and / or the number of repetitions R), so that the base station 20 can use the Msg. 3
  • the number of repetitions R of PUSCH can be recognized in advance.
  • the judgment criteria shown in FIGS. 5 and 6 are merely examples, and are not limited to those shown.
  • two threshold values ⁇ and ⁇ are shown, but the number of threshold values may be 1 or more.
  • the RO or RA preamble associated with each condition is not limited to the one shown in the figure.
  • the judgment criteria based on the RSRP measured values are shown in FIGS. 5 and 6, it goes without saying that they may be replaced with the measured values of RSRQ.
  • the above criteria can also be applied during multi-beam operation and / or single-beam operation.
  • the measuring unit 104 measures the RSRP or RSRQ of the synchronization signal or the downlink reference signal (for example, DMRS or CSI-RS of PBCH). For example, the measuring unit 104 may measure RSRP or RSRQ using SSB.
  • the receiving unit 101, the transmitting unit 102, and the measuring unit 104 may be realized by, for example, the communication device 14, or may be realized by the processor 11 executing the program stored in the storage device 13 in addition to the communication device 14. May be done.
  • the control unit 103 may be realized by the processor 11 executing the program stored in the storage device 13.
  • the program When executing a program, the program may be stored in a storage medium.
  • the storage medium in which the program is stored may be a computer-readable non-transitory storage medium (Non-transitory computer readable medium).
  • the non-temporary storage medium is not particularly limited, but may be, for example, a storage medium such as a USB (Universal Serial Bus) memory or a CD-ROM (Compact Disc ROM).
  • FIG. 7 is a diagram showing an example of the functional block configuration of the base station according to the first embodiment.
  • the base station 20 includes a transmission unit 201, a reception unit 202, and a control unit 203.
  • the transmission unit 201 transmits a downlink channel / signal.
  • the transmission unit 201 performs processing (for example, encoding, decoding, mapping to resources, etc.) regarding information and / or data transmitted via the downlink channel / signal.
  • the transmission unit 201 may transmit a synchronization signal or a downlink reference signal (for example, DMRS or CSI-RS of PBCH) used for measuring RSRP or RSRQ. Further, the transmission unit 201 may notify the system information. For example, the transmission unit 201 may transmit the MIB via the PBCH. Further, the transmission unit 201 may transmit SIBX via PDSCH.
  • a synchronization signal or a downlink reference signal for example, DMRS or CSI-RS of PBCH
  • the transmission unit 201 transmits a RAR message (message 2) via the PDSCH. Further, the transmission unit 201 transmits a conflict resolution message (message 4) via the PDSCH.
  • the transmission unit 201 may transmit the above-mentioned first association information. Further, the transmission unit 201 may transmit the second association information.
  • the first and second association information may be included in the system information (for example, SIBX). The first and second association information does not have to be transmitted separately, and may be transmitted as association information relating to the association between the RSRP or RSRQ, the repetition number R, and the RA preamble or RO.
  • the receiving unit 202 receives the upstream channel / signal. In addition, the receiving unit 202 performs processing (for example, demapping, demodulation, decoding, etc.) on information and / or data transmitted via the upstream channel / signal.
  • processing for example, demapping, demodulation, decoding, etc.
  • the receiving unit 202 receives the RA preamble (message 1). Specifically, the receiving unit 202 may receive the RA preamble associated with the RSRP or RSRQ measured by the measuring unit 104. Alternatively, the receiving unit 202 may receive the RA preamble using the RO associated with the RSRP or RSRQ.
  • the receiving unit 202 is a Msg. 3 Receive PUSCH.
  • the receiving unit 202 has the Msg. 3 Assuming that PUSCH is repeated, the Msg. 3 PUSCH may be received.
  • the control unit 203 controls the transmission of the downlink channel / signal by the transmission unit 201 and / or the reception of the uplink channel / signal by the reception unit 202. Further, the control unit 203 may control the scheduling of PDSCH and / or PUSCH.
  • the control unit 203 uses the RA preamble received by the reception unit 202 or the RO used for transmitting the RA preamble to obtain Msg. 3
  • the number of repetitions R of PUSCH may be determined. Specifically, the control unit 203 may determine the number of repetitions R associated with the RA preamble or RO, for example, according to the determination criteria shown in FIGS. 5 and 6.
  • the transmitting unit 201 and the receiving unit 202 may be realized by, for example, the communication device 14, or may be realized by the processor 11 executing the program stored in the storage device 13 in addition to the communication device 14. ..
  • the control unit 203 may be realized by the processor 11 executing the program stored in the storage device 13.
  • FIG. 8 is a diagram showing an example of the operation of the CBRA according to the first embodiment.
  • the operation shown in FIG. 8 is merely an example, and the order of at least some steps may be changed, omitted, and / or added.
  • step S101 the user terminal 10 detects the SSB from the base station 20.
  • step S102 the user terminal 10 measures RSRP or RSRQ using SSB.
  • the user terminal 10 receives the SIB via the PDSCH.
  • the SIB may be a plurality of SIBXs having different values of X, or may be received via a plurality of PDSCHs.
  • the SIB may include first and second association information used for deriving the determination criteria (for example, FIGS. 5 and 6) based on the RSRP or RSRQ.
  • step S104 the user terminal 10 selects RA preamble or RO based on the RSRP measurement value or RSRQ measurement value in step S102 (see, for example, FIGS. 5 and 6).
  • step S105 the user terminal 10 uses a certain RO to transmit the RA preamble (message 1) selected in step S104.
  • the user terminal 10 transmits a certain RA preamble (message 1) using the RO selected in step S104.
  • step S106 the base station 20 receives the RA preamble received in step S105 or the Msg. 3 Determine the number of repetitions R of PUSCH.
  • step S107 the base station 20 transmits a RAR message (message 2) for the RA preamble received in step S105.
  • RAR message messages 2
  • the content and the number of bits of the upstream grant included in the RAR message are described in Msg. 3
  • the same number of bits (for example, 27 bits) may be used regardless of the number of repetitions R of PUSCH.
  • step S108 the user terminal 10 uses the Msg. 3 Determine the number of repetitions R of PUSCH (see, for example, FIGS. 5 and 6).
  • the user terminal 10 is based on the RO or RA preamble selected in step S104, and Msg. 3
  • the number of repetitions R of PUSCH may be determined (see, for example, FIGS. 5 and 6).
  • step S109 the user terminal 10 has Msg. 3 Repeat PUSCH to send.
  • the base station 20 has the Msg. 3 Performs PUSCH reception processing.
  • the base station 20 has Msg. 3 PUSCH may be synthesized.
  • step S110 the user terminal 10 receives the conflict resolution message (message 4).
  • the base station 20 can perform Msg. 3 The number of repetitions R of PUSCH can be recognized.
  • the user terminal 10 controls the repeated transmission of the message 3 based on the power class of the user terminal 10 in addition to the RSRP measurement value or the RSRQ measurement value. Different from. In the second embodiment, the differences from the first embodiment will be mainly described.
  • the user terminal 10 and the base station 20 according to the second embodiment have the hardware configuration shown in FIG. Further, the user terminal 10 and the base station 20 have the configurations shown in FIGS. 4 and 7 and have the following functions.
  • the receiving unit 101 of the user terminal 10 may receive the first association information for each power class (Power Class: PC), or the first association of a specific PC. Information may be received. Further, the receiving unit 101 may receive the second association information for each PC, or may receive the second association information of a specific PC.
  • Power Class: PC Power Class: PC
  • the receiving unit 101 may receive the second association information for each PC, or may receive the second association information of a specific PC.
  • the PC is a class related to the maximum transmission power of the user terminal 10, and is also called an output class.
  • the maximum transmission power of PC3 is 23 dBm
  • the maximum transmission power of PC2 is 26 dBm.
  • the first and second association information for each PC or the first and second association information for a specific PC may be included in the system information (for example, SIBX). Further, the first and second association information does not have to be received separately, and may be received for each PC or for a specific PC as the association information regarding the association between RSRP or RSRQ and the repetition number R and RA preamble or RO. good.
  • the control unit 103 is based on the RSRP or RSRQ measured by the measurement unit 104 and the PC of the user terminal 10, and Msg. 3 Control the repeated transmission of PUSCH. Specifically, the control unit 103 is based on the RSRP or RSRQ and the PC of the user terminal 10, and Msg. 3 Determine the number of repetitions R of PUSCH. For example, the control unit 103 may determine the number of repetitions R associated with the RSRP or RSRQ measured by the measurement unit 104 based on the criteria illustrated in FIGS. 9 and 10.
  • FIG. 9 is a diagram showing an example of a criterion for determining the number of repetitions R according to the second embodiment.
  • the condition regarding the RSRP measured value, RO, and the number of repetitions R are associated with each PC.
  • the association between the condition regarding the RSRP measurement value of each PC shown in FIG. 9 and the repetition number R may be indicated by the first association information for each PC received by the receiving unit 101, or the first association of the specific PC. It may be derived from the association information of.
  • the association between the RO and the condition regarding the RSRP measurement value of each PC shown in FIG. 9 may be indicated by the second association information for each PC received by the receiving unit 101, or the second association information of the specific PC. It may be derived from the association information of 2.
  • the control unit 103 determines the condition regarding the RSRP measurement value of each PC, the number of repetitions R, and RO based on the first and second association information of each PC. You may derive the association with. Specifically, "-110" is notified from the base station 20 as the threshold value ⁇ PC3 of the PC3 having the maximum transmission power of 23 dBm, and “-113” is notified from the base station 20 as the threshold value ⁇ PC2 of the PC2 having the maximum transmission power of 26 dBm. You may be notified.
  • the control unit 103 determines the other PC based on the first and second association information.
  • the condition regarding the RSRP measurement value of (for example, PC2) and the association between the number of repetitions R and RO may be derived.
  • the control unit 103 transmits the maximum transmission based on the threshold value ⁇ PC3 and the predetermined offset Y.
  • the threshold value ⁇ PC2 of PC2 having a power of 26 dBm may be derived.
  • Msg. 3 It is shown that the number of repetitions R of PUSCH is set to 4 times.
  • FIG. 10 is a diagram showing another example of the criterion for determining the number of repetitions R according to the second embodiment.
  • the criteria shown in FIG. 10 differ in that instead of RO, the RA preamble is associated with the condition for the RSRP measurement and the number of repetitions R, but the other points are the same.
  • the control unit 103 may derive the association between the condition regarding the RSRP measurement value of each PC and the repetition number R and the RA preamble based on the first and second association information of each PC.
  • the control unit 103 may derive the association between the condition regarding the RSRP measurement value of the PC of the user terminal 10 and the repetition number R and the RA preamble based on the first and second association information of the specific PC. ..
  • Msg. 3 By determining the number of repetitions R of PUSCH, the user terminal 10 of the PC having a large maximum transmission power is unnecessarily Msg. 3 Since it is possible to prevent PUSCH from repeating, it is possible to improve the utilization efficiency of wireless resources.
  • the judgment criteria shown in FIGS. 9 and 10 are merely examples, and are not limited to those shown.
  • two threshold values ⁇ and ⁇ are shown for each PC, but the number of threshold values may be 1 or more.
  • the RO or RA preamble associated with each condition is not limited to the one shown in the figure.
  • the judgment criteria based on the RSRP measured values are shown in FIGS. 9 and 10, it goes without saying that they may be replaced with the measured values of RSRQ.
  • the above criteria can also be applied during multi-beam operation and / or single-beam operation.
  • the control unit 103 when the first association information is received for each PC, the control unit 103 has the repetition number R associated with RSRP or RSRQ based on the first association information of the PC of the user terminal 10. May be determined.
  • the control unit 103 uses the user terminal based on the first association information and a predetermined rule (for example, a rule based on the predetermined offset Y).
  • the first association information of 10 PCs may be derived, and the number of repetitions R associated with RSRP or RSRQ may be determined based on the derived first association information.
  • the control unit 103 determines the RO or RA preamble associated with RSRP or RSRQ based on the second association information of the PC of the user terminal 10. You may.
  • the control unit 103 uses the user terminal based on the second association information and a predetermined rule (for example, a rule based on the predetermined offset Y).
  • the second association information of 10 PCs may be derived, and the RO or RA preamble associated with RSRP or RSRQ may be determined based on the derived second association information.
  • the transmission unit 201 of the base station 20 may transmit the first association information for each PC, or may transmit the first association information of a specific PC. good. Further, the transmission unit 201 may transmit the second association information for each PC, or may transmit the second association information of a specific PC.
  • the first and second association information does not have to be transmitted separately, and may be transmitted for each PC or for a specific PC as the association information for the association between RSRP or RSRQ, the number of repetitions R, and the RA preamble or RO. good.
  • the control unit 203 uses the RA preamble received by the reception unit 202 or the RO used for transmitting the RA preamble to obtain Msg. 3
  • the number of repetitions R of PUSCH may be determined.
  • the base station 20 is Msg. 3. If the PC of the user terminal 10 cannot be recognized at the time of receiving the PUSCH, the association between the RO or RA preamble shown in FIGS. 9 and 10 and the repetition number R may be common among the PCs. As a result, the control unit 203 determines that the PC of the user terminal 10 has Msg. 3 Even if the repetition number R of PUSCH is determined, the base station 20 is determined by RO or RA preamble to Msg. 3 The number of repetitions R of PUSCH can be recognized.
  • FIG. 11 is a diagram showing an example of the operation of the CBRA according to the second embodiment.
  • the operation shown in FIG. 11 is merely an example, and the order of at least some steps may be changed, omitted, and / or added.
  • Steps S201, S202, S209 and S210 of FIG. 11 are the same as steps S101, S102, S109 and S110 of FIG.
  • the user terminal 10 receives the SIB via the PDSCH.
  • the user terminal 10 may include the first and second association information for each PC included in the SIB, or may include the first and second association information for a specific PC.
  • step S204 the user terminal 10 selects the RA preamble or RO based on the RSRP measured value or RSRQ measured value in step S202 and the PC of the user terminal 10 (see, for example, FIGS. 9 and 10).
  • step S205 the user terminal 10 uses a certain RO to transmit the RA preamble (message 1) selected in step S204.
  • the user terminal 10 transmits a certain RA preamble (message 1) using the RO selected in step S204.
  • step S206 the base station 20 receives the RA preamble received in step S205 or the Msg. 3 Determine the number of repetitions R of PUSCH.
  • step S207 the base station 20 transmits a RAR message (message 2) for the RA preamble received in step S205.
  • RAR message messages 2
  • the content and the number of bits of the upstream grant included in the RAR message are described in Msg. 3
  • the same number of bits (for example, 27 bits) may be used regardless of the number of repetitions R of PUSCH.
  • step S208 the user terminal 10 is based on the RSRP measurement value or RSRQ measurement value in step S202 and the PC of the user terminal 10, and Msg. 3 Determine the number of repetitions R of PUSCH (see, for example, FIGS. 9 and 10).
  • the user terminal 10 is based on the RO or RA preamble selected in step S204, and Msg. 3 The number of repetitions R of PUSCH may be determined (see, for example, FIGS. 9 and 10).
  • Msg. 3 Since the repetition number R of PUSCH is determined, the user terminal 10 of the PC having a large maximum transmission power is unnecessarily Msg. 3 PUSCH can be prevented from repeating. As a result, the utilization efficiency of wireless resources can be improved.
  • Wireless communication system 10 ... User terminal, 20 ... Base station, 30 ... Core network, 101 ... Receiver unit, 102 ... Transmitter unit, 103 ... Control unit, 104 ... Measurement unit, 201 ... Transmitter unit, 202 ... Receiver unit , 203 ... Control unit, 11 ... Processor, 12 ... Memory, 13 ... Storage device, 14 ... Communication device, 15 ... Input device, 16 ... Output device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention properly controls repetitive transmission of an uplink shared channel which is used in delivery of a message 3 in CBRA. A user terminal according to the present invention comprises: a measurement unit that uses a synchronization signal block to measure reception power or reception quality; a transmission unit that transmits a random access (RA) preamble; a reception unit that receives a response message for the RA preamble; and a control unit that, on the basis of the reception power or the reception quality, decides the number of repetitions of the uplink shared channel which is used in delivery of a message 3 according to the response message.

Description

ユーザ端末及び無線通信方法User terminal and wireless communication method
 本発明は、ユーザ端末及び無線通信方法に関する。 The present invention relates to a user terminal and a wireless communication method.
 国際標準化団体である3GPP(Third Generation Partnership Project)では、第3.9世代の無線アクセス技術(Radio Access Technology:RAT)であるLTE(Long Term Evolution)、第4世代のRATであるLTE-Advancedの後継として、第5世代(Fifth Generation:5G)のRATであるNR(New Radio)のリリース15が仕様化されている(例えば、非特許文献1)。3GPPでは、NRのリリース16以降の検討も進められている。 In the 3GPP (Third Generation Partnership Project), which is an international standardization organization, LTE (Long Term Evolution), which is the 3.9th generation wireless access technology (RAT), and LTE-Advanced, which is the 4th generation RAT, As a successor, Release 15 of NR (New Radio), which is a 5th generation (Fifth Generation: 5G) RAT, is specified (for example, Non-Patent Document 1). At 3GPP, studies are underway after the release of NR 16.
 NRは、ランダムアクセス手順として、衝突ベースランダムアクセス(Contention based random access:CBRA)が導入されている。CBRAでは、ユーザ端末は、ランダムアクセスチャネル(例えば、ランダムアクセスチャネル(Physical Random Access Channel:PRACH))を介して、ランダムアクセス(Random Access Response:RA)プリアンブル(メッセージ1)を基地局に送信する。 NR has introduced collision-based random access (CBRA) as a random access procedure. In the CBRA, the user terminal transmits a random access (RandomAccessResponse: RA) preamble (message 1) to the base station via a random access channel (for example, a random access channel (PhysicalRandomAccessChannel: PRACH)).
 ユーザ端末は、当該RAプリアンブルに対するランダムアクセス応答(Random Access Response:RAR)メッセージ(メッセージ2)を下り共有チャネル(例えば、Physical Downlink Shared Cannel:PDSCH)を介して基地局から受信する。ユーザ端末は、当該ランダム応答メッセージに応じてメッセージ3を上り共有チャネル(例えば、Physical Uplink Shared Cannel:PUSCH)を介して基地局に送信する。ユーザ端末は、当該メッセージ3に応じて衝突解決メッセージ(contention resolution message)を下り共有チャネルを介して受信する。 The user terminal receives a random access response (RAR) message (message 2) for the RA preamble from the base station via a downlink shared channel (for example, Physical Downlink Shared Cannel: PDSCH). The user terminal transmits the message 3 to the base station via the uplink shared channel (for example, Physical Uplink Shared Cannel: PUSCH) in response to the random response message. The user terminal receives the conflict resolution message (contention resolution message) in response to the message 3 via the downlink shared channel.
 NRのリリース17では、カバレッジボトルネックとなるチャネルを特定し、その特性を向上させることにより、到達できるカバレッジを底上げすることが検討されている。当該カバレッジボトルネックとなるチャネルとしては、上記CBRAにおいてメッセージ3の伝送に用いられる上り共有チャネルが想定される。そこで、当該メッセージ3の伝送に用いられる上り共有チャネルを繰り返して送信することで、カバレッジを拡張することが検討されている。 In Release 17 of NR, it is considered to raise the reachable coverage by identifying the channel that becomes the coverage bottleneck and improving its characteristics. As the channel that becomes the coverage bottleneck, the uplink shared channel used for the transmission of the message 3 in the above CBRA is assumed. Therefore, it has been studied to extend the coverage by repeatedly transmitting the uplink shared channel used for the transmission of the message 3.
 本発明はこのような事情に鑑みてなされたものであり、CBRAにおけるメッセージ3の伝送に用いられる上り共有チャネルの繰り返し送信を適切に制御可能なユーザ端末及び無線通信方法を提供することを目的の一つとする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a user terminal and a wireless communication method capable of appropriately controlling repeated transmission of an uplink shared channel used for transmission of message 3 in CBRA. Make one.
 本発明の一の側面に係るユーザ端末は、同期信号ブロックを用いて、受信電力又は受信品質を測定する測定部と、ランダムアクセス(RA)プリアンブルを送信する送信部と、前記RAプリアンブルに対する応答メッセージを受信する受信部と、前記受信電力又は前記受信品質に基づいて、前記応答メッセージに応じたメッセージ3の送信に用いられる上り共有チャネルの繰り返し数を決定する制御部と、を備える。 A user terminal according to one aspect of the present invention includes a measuring unit that measures received power or reception quality using a synchronous signal block, a transmitting unit that transmits a random access (RA) preamble, and a response message to the RA preamble. A receiving unit that receives the message 3 and a control unit that determines the number of repetitions of the uplink shared channel used for transmitting the message 3 in response to the response message based on the received power or the reception quality.
 本発明によれば、CBRAにおけるメッセージ3の伝送に用いられる上り共有チャネルの繰り返し送信を適切に制御できる。 According to the present invention, it is possible to appropriately control the repeated transmission of the uplink shared channel used for the transmission of the message 3 in the CBRA.
本実施形態に係る無線通信システムの概要の一例を示す図である。It is a figure which shows an example of the outline of the wireless communication system which concerns on this embodiment. 本実施形態に係るROの一例を示す図である。It is a figure which shows an example of RO which concerns on this embodiment. 第1の実施形態に係る無線通信システム内の各装置のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware composition of each apparatus in the wireless communication system which concerns on 1st Embodiment. 第1の実施形態に係るユーザ端末の機能ブロック構成の一例を示す図である。It is a figure which shows an example of the functional block composition of the user terminal which concerns on 1st Embodiment. 第1の実施形態に係る繰り返し数Rの判断基準の一例を示す図である。It is a figure which shows an example of the determination criterion of the repetition number R which concerns on 1st Embodiment. 第1の実施形態に係る繰り返し数Rの判断基準の他の例を示す図である。It is a figure which shows another example of the determination criterion of the repetition number R which concerns on 1st Embodiment. 第1の実施形態に係る基地局の機能ブロック構成の一例を示す図である。It is a figure which shows an example of the functional block composition of the base station which concerns on 1st Embodiment. 第1の実施形態に係るCBRAの動作の一例を示す図である。It is a figure which shows an example of the operation of CBRA which concerns on 1st Embodiment. 第2の実施形態に係る繰り返し数Rの判断基準の一例を示す図である。It is a figure which shows an example of the determination criterion of the repetition number R which concerns on 2nd Embodiment. 第2の実施形態に係る繰り返し数Rの判断基準の他の例を示す図である。It is a figure which shows another example of the determination criterion of the repetition number R which concerns on 2nd Embodiment. 第2の実施形態に係るCBRAの動作の一例を示す図である。It is a figure which shows an example of the operation of CBRA which concerns on 2nd Embodiment.
 添付図面を参照して、本発明の実施形態について説明する。なお、各図において、同一の符号を付したものは、同一又は同様の構成を有してもよい。 An embodiment of the present invention will be described with reference to the accompanying drawings. In each figure, those having the same reference numerals may have the same or similar configurations.
 図1は、本実施形態に係る無線通信システムの概要の一例を示す図である。図1に示すように、無線通信システム1は、ユーザ端末10と、基地局20A~20Bと、コアネットワーク30と、を含んでもよい。なお、基地局20A~20B、セルC1~C2を区別しない場合、それぞれ、基地局20、セルCと総称する。また、図1に示すユーザ端末10、基地局20の数は例示にすぎず、図示する数に限られない。 FIG. 1 is a diagram showing an example of an outline of a wireless communication system according to the present embodiment. As shown in FIG. 1, the wireless communication system 1 may include a user terminal 10, base stations 20A to 20B, and a core network 30. When the base stations 20A to 20B and the cells C1 to C2 are not distinguished, they are collectively referred to as the base station 20 and the cell C, respectively. Further, the numbers of the user terminals 10 and the base stations 20 shown in FIG. 1 are merely examples, and are not limited to the numbers shown.
 無線通信システム1は、一つ又は複数の無線アクセス技術(RAT)で動作する。例えば、無線通信システム1は、LTE、LTE-Advanced又はNRのいずれかで動作してもよいし、LTE及び/又はLTE-AdvancedとNRとを含む複数のRAT(multi-RAT)で動作してもよい。LTE及び/又はLTE-Advancedは、Evolved Universal Terrestrial Radio Access(EUTRA)とも呼ばれる。 The wireless communication system 1 operates with one or more wireless access technologies (RAT). For example, the wireless communication system 1 may operate in either LTE, LTE-Advanced or NR, or may operate in a plurality of RATs (multi-RAT) including LTE and / or LTE-Advanced and NR. May be good. LTE and / or LTE-Advanced is also referred to as Evolved Universal Terrestrial Radio Access (EUTRA).
 図1に示すように、ユーザ端末10は、例えば、スマートフォンや、パーソナルコンピュータ、車載端末、車載装置、静止装置等、所定の端末又は装置である。ユーザ端末10は、User Equipment(UE)等と呼ばれてもよい。ユーザ端末10は、移動型であってもよいし、固定型であってもよい。ユーザ端末10は、例えば、EUTRA及びNRの少なくとも一つのRATで通信可能に構成される。 As shown in FIG. 1, the user terminal 10 is a predetermined terminal or device such as a smartphone, a personal computer, an in-vehicle terminal, an in-vehicle device, a stationary device, or the like. The user terminal 10 may be called a User Equipment (UE) or the like. The user terminal 10 may be a mobile type or a fixed type. The user terminal 10 is configured to be communicable with, for example, at least one RAT of EUTRA and NR.
 基地局20は、一以上のセルCを形成する。セルCは、サービングセル、キャリア、コンポーネントキャリア(Component Carrier:CC)、プライマリセル(Primary Cell:PCell)、セカンダリセル(Secondary Cell:SCell)、スペシャルセル(Special Cell)等と言い換えられてもよい。なお、図1では、基地局20A及び20BはそれぞれセルC1及びC2を形成するが、これに限られず、各基地局は、一以上のセルCを形成してもよい。また、複数の基地局20は、所定のインタフェース(例えば、X2又はXnインタフェース)で互いに接続されてもよい。 Base station 20 forms one or more cells C. The cell C may be paraphrased as a serving cell, a carrier, a component carrier (CC), a primary cell (Primary Cell: PCell), a secondary cell (Secondary Cell: SCell), a special cell (Special Cell), or the like. In FIG. 1, the base stations 20A and 20B form cells C1 and C2, respectively, but the present invention is not limited to this, and each base station may form one or more cells C. Further, the plurality of base stations 20 may be connected to each other by a predetermined interface (for example, X2 or Xn interface).
 基地局20は、EUTRA又はNRのいずれかの通信方式でユーザ端末10と通信する。基地局20は、eNodeB(eNB)、ng-eNB、gNodeB(gNB)、en-gNB、Next Generation‐Radio Access Network(NG-RAN)ノード、Donor eNodeB(DeNB)、Donor eNodeB(DeNB)、Donor node、又は、Central Unit、低電力ノード(low-power node)、pico eNB、Home eNB(HeNB)、Distributed Unit(DU)、gNB-DU、Remote Radio Head(RRH)、又は、Integrated Access and Backhaul/Backhauling(IAB)ノード等と呼ばれてもよい。 The base station 20 communicates with the user terminal 10 by either EUTRA or NR communication method. The base station 20 includes eNodeB (eNB), ng-eNB, gNodeB (gNB), en-gNB, Next Generation-Radio Access Network (NG-RAN) node, Donor eNodeB (DeNB), Donor eNodeB (DeNB), Donor node. , CentralUnit, low-power node, picoeNB, HomeeNB (HeNB), DistributedUnit (DU), gNB-DU, RemoteRadioHead (RRH), or Integrated Access and Backhaul / Backhauling It may be called a (IAB) node or the like.
 コアネットワーク30は、例えば、EUTRAに対応したコアネットワーク(Evolved Packet Core:EPC)、又は、NRに対応したコアネットワーク(5G Core Network:5GC)である。コアネットワーク30上の装置(以下、「コアネットワーク装置」ともいう)は、ユーザ端末10のページング、位置登録等の移動(mobility)管理を行う。コアネットワーク装置は、所定のインタフェース(例えば、S1又はNGインタフェース)を介して基地局20に接続されてもよい。 The core network 30 is, for example, a core network compatible with EUTRA (Evolved Packet Core: EPC) or a core network compatible with NR (5G Core Network: 5GC). The device on the core network 30 (hereinafter, also referred to as “core network device”) manages mobility such as paging and location registration of the user terminal 10. The core network device may be connected to the base station 20 via a predetermined interface (for example, S1 or NG interface).
 コアネットワーク装置は、例えば、ユーザ端末10の移動管理を行うMobility Management Entity(MME)、Cプレーンの情報(例えば、アクセス及び移動管理等に関する情報)を管理するAccess and Mobility Management Function(AMF)、Uプレーンの情報(例えば、ユーザデータ)の伝送制御を行うUser Plane Function(UPF)の少なくとも一つ等を含んでもよい。 The core network device includes, for example, a Mobility Management Entity (MME) that manages the movement of the user terminal 10, an Access and Mobility Management Function (AMF) that manages C-plane information (for example, information related to access and movement management, etc.), and U. It may include at least one User Plane Function (UPF) that controls the transmission of plane information (for example, user data).
 無線通信システム1において、ユーザ端末10は、一つ又は複数の基地局20と通信を行うことができる。例えば、図1において、ユーザ端末10は、一以上のセルCをそれぞれ含む2つのセルグループに接続するデュアルコネクティビティ(Dual Connectivity:DC)により、通信を行うことができる。2つのセルグループが異なるRATを用いる場合、当該DCは、マルチRAT DCと呼ばれてもよい。また、ユーザ端末10は、複数のセルCを統合するキャリアアグリゲーション(Carrier Aggregation:CA)を用いて、通信を行うこともできる。 In the wireless communication system 1, the user terminal 10 can communicate with one or more base stations 20. For example, in FIG. 1, the user terminal 10 can perform communication by dual connectivity (DC) connected to two cell groups including one or more cells C, respectively. When two cell groups use different RATs, the DC may be referred to as a multi-RAT DC. Further, the user terminal 10 can also perform communication by using carrier aggregation (CA) that integrates a plurality of cells C.
 (チャネル/信号)
 次に、無線通信システム1で用いられるチャネル及び/又は信号(以下、「チャネル/信号」ともいう)について説明する。基地局20からユーザ端末10に対して送信される下り(Downlink)のチャネル/信号は、例えば、以下の少なくとも一つを含む。
・報知情報の伝送に用いられる報知チャネル(例えば、物理報知チャネル(Physical Broadcast Channel:PBCH))
・同期信号(例えば、プライマリ同期信号(Primary Synchronization Signal:PSS)及び/又はセカンダリ同期信号(Secondary Synchronization Signal:PSS))
・下りデータの伝送に用いられる下り共有チャネル(例えば、物理下り共有チャネル(Physical Downlink Shared Channel:PDSCH))
・下り制御情報(Downlink Control Information:DCI)の伝送に用いられる下り制御チャネル(例えば、物理下り制御チャネル(Physical Downlink Control Channel:PDCCH))
・下り参照信号(例えば、PDCCH、PDSCH又はPBCHの復調参照信号(Demodulation Reference Signal:DMRS)、チャネル状態情報参照信号(Channel State Information Reference Signal:CSI-RS)等)。
(Channel / signal)
Next, the channel and / or signal (hereinafter, also referred to as “channel / signal”) used in the wireless communication system 1 will be described. The downlink channel / signal transmitted from the base station 20 to the user terminal 10 includes, for example, at least one of the following.
-A broadcast channel used for transmitting broadcast information (for example, a physical broadcast channel (PBCH)).
-Synchronization signal (for example, Primary Synchronization Signal (PSS) and / or Secondary Synchronization Signal (PSS))
-Downlink shared channel used for downlink data transmission (for example, Physical Downlink Shared Channel (PDSCH))
-Downlink control channel (for example, Physical Downlink Control Channel (PDCCH)) used for transmission of downlink control information (DCI).
-Downlink reference signal (for example, demodulation reference signal (DMRS) of PDCCH, PDSCH or PBCH, channel state information reference signal (CSI-RS), etc.).
 また、ユーザ端末10から基地局20に対して送信される上り(Uplink)のチャネル/信号は、以下の少なくとも一つを含む。
・ランダムアクセス(RA)プリアンブルの送信に用いられるランダムアクセスチャネル(例えば、物理ランダムアクセスチャネル(Physical Random Access Channel:PRACH)
・上り制御情報(Uplink Control Information:UCI)の伝送に用いられる上り制御チャネル(例えば、物理上り制御チャネル(Physical Uplink Control Channel:PUCCH))
・上りデータの伝送に用いられる上り共有チャネル(例えば、物理上り共有チャネル(Physical Uplink Shared Channel:PUSCH))
・上り参照信号(例えば、PUCCH及び/又はPUSCHのDMRS、サウンディング参照信号(Sounding Reference Signal:SRS)等)
Further, the uplink channel / signal transmitted from the user terminal 10 to the base station 20 includes at least one of the following.
Random Access Channel (eg, Physical Random Access Channel (PRACH)) used to transmit random access (RA) preambles.
-Uplink control channel (for example, Physical Uplink Control Channel (PUCCH)) used for transmission of uplink control information (UCI).
-Uplink shared channel used for uplink data transmission (for example, Physical Uplink Shared Channel (PUSCH))
-Uplink reference signal (for example, PUCCH and / or PUSCH DMRS, Sounding Reference Signal (SRS), etc.)
 以下では、下りのチャネル/信号に含まれる報知チャネル、下り共有チャネル及び下り制御チャネルを、それぞれPBCH、PDSCH及びPDCCHと呼ぶが、名称はこれらに限られないことは勿論である。また、上りのチャネル/信号に含まれるランダムアクセスチャネル、上り制御チャネル、上り共有チャネルを、それぞれ、PRACH、PUCCH、PUSCHと呼ぶが、名称がこれらに限られないことは勿論である。 In the following, the broadcast channel, the downlink shared channel, and the downlink control channel included in the downlink channel / signal will be referred to as PBCH, PDSCH, and PDCCH, respectively, but the names are not limited to these, respectively. Further, the random access channel, the uplink control channel, and the uplink shared channel included in the uplink channel / signal are referred to as PRACH, PUCCH, and PUSCH, respectively, but the names are not limited to these, respectively.
 PBCHで伝送される報知情報には、システム情報が含まれる。また、上記PDSCHで伝送される下りデータには、例えば、システム情報、下りユーザデータ、RRC(Radio Resource Control)レイヤの情報(例えば、RRCメッセージ、RRC情報要素(RRC Information Element:RRC IE))、MAC(Medium Access Control)レイヤの情報(例えば、MAC制御要素(MAC Control Element:MAC CE))の少なくとも一つが含まれてもよい。 The notification information transmitted by PBCH includes system information. Further, the downlink data transmitted by the PDSCH includes, for example, system information, downlink user data, RRC (Radio Resource Control) layer information (for example, RRC message, RRC Information Element: RRC IE), and the like. At least one of MAC (Medium Access Control) layer information (for example, MAC Control Element (MAC CE)) may be included.
 システム情報は、上記の通り、PBCH及び/又はPDSCHで伝送される。また、システム情報は、マスター情報ブロック(Master Information Block:MIB)と一以上のシステム情報ブロック(System Information Block:SIB)(例えば、SIB1~SIB9等)とを含む。ユーザ端末10は、PBCHを介してMIBを受信する。ユーザ端末10は、MIB内の情報に基づいてDCIを検出し、当該DCIに基づいてPDSCHを介してSIB1を受信してもよい。ユーザ端末10は、SIB1に含まれる情報に基づいてDCIを検出し、当該DCIに基づいてPDSCHを介してその他のシステム情報(例えば、SIB2~9の少なくとも一つ)を受信してもよい。 System information is transmitted via PBCH and / or PDSCH as described above. Further, the system information includes a master information block (MasterInformation Block: MIB) and one or more system information blocks (SystemInformation Block: SIB) (for example, SIB1 to SIB9, etc.). The user terminal 10 receives the MIB via the PBCH. The user terminal 10 may detect the DCI based on the information in the MIB and receive the SIB1 via the PDSCH based on the DCI. The user terminal 10 may detect the DCI based on the information contained in the SIB1 and receive other system information (for example, at least one of the SIBs 2 to 9) via the PDSCH based on the DCI.
 上記PDCCHで伝送されるDCIは、PDSCH及び/又はPUSCHのスケジューリングに用いられ、DCIフォーマット、スケジューリング情報等とも呼ばれる。ユーザ端末10は、サーチスペース内のPDCCH候補(PDCCH candidate)を監視(monitor)して、DCIを検出し、検出したDCIに基づいて、PDSCHを介した下りデータの受信又はPUSCHを介した上りデータの送信を行う。 The DCI transmitted by the PDCCH is used for scheduling the PDSCH and / or PUSCH, and is also called a DCI format, scheduling information, or the like. The user terminal 10 monitors the PDCCH candidate (PDCCH candidate) in the search space, detects the DCI, and receives the downlink data via the PDSCH or the uplink data via the PUSCH based on the detected DCI. To send.
 (CBRA)
 次に、無線通信システム1における衝突ベースランダムアクセス(Contention based random access:CBRA)について説明する。
(CBRA)
Next, collision-based random access (CBRA) in the wireless communication system 1 will be described.
 セルCでは、基地局20から、所定周期で、PBCH、PBCHのDMRS、SSS及びPSSの少なくとも一つを含む同期信号ブロック(Synchronization Signal Block:SSB)が送信される。SSBは、SS/PBCHブロックと言い換えられてもよい。例えば、各SSBは、4シンボル及び20リソースブロックで構成されてもよい。 In cell C, a synchronization signal block (SSB) containing at least one of PBCH, DMRS, SSS, and PSS of PBCH and PBCH is transmitted from the base station 20 at a predetermined cycle. SSB may be paraphrased as SS / PBCH block. For example, each SSB may consist of 4 symbols and 20 resource blocks.
 各SSBには識別子(以下、「SSBインデックス」という)が付される。基地局20は、異なるSSBインデックスの複数のSSBに対して異なるビームパターンを適用して当該複数のSSBを送信してもよい。具体的には、基地局20は、当該複数のSSBを、ビームスィーピング(beam sweeping)により異なる時間リソース(例えば、異なるシンボル)を用いて、所定周期で送信してもよい(「マルチビーム運用」とも呼ばれる)。或いは、基地局20は、ビームスィーピングを適用せずに、単一のビームパターンで一つのSSBを所定周期で送信してもよい(「シングルビーム運用」とも呼ばれる)。ユーザ端末10は、SSBインデックスに基づいて、無線フレーム及び/又はスロットのタイミングを検出してもよい。 An identifier (hereinafter referred to as "SSB index") is attached to each SSB. The base station 20 may transmit the plurality of SSBs by applying different beam patterns to the plurality of SSBs having different SSB indexes. Specifically, the base station 20 may transmit the plurality of SSBs at predetermined cycles using different time resources (for example, different symbols) by beam sweeping (“multi-beam operation”). Also called). Alternatively, the base station 20 may transmit one SSB in a single beam pattern at a predetermined cycle without applying beam sweeping (also referred to as “single beam operation”). The user terminal 10 may detect the timing of the radio frame and / or slot based on the SSB index.
 CBRAでは、第1に、ユーザ端末10は、RAプリアンブルを送信してもよい。具体的には、ユーザ端末10は、検出したSSBに関連づけられるRACH機会(RACH occasion:RO)を用いて、当該RAプリアンブルを送信してもよい。マルチビーム運用時にSSBに関連付けられたROを用いてRAプリアンブルを送信することにより、基地局20は、当該RAプリアンブルの受信に適用する受信ビームフォーミングを認識できる。 In CBRA, first, the user terminal 10 may transmit the RA preamble. Specifically, the user terminal 10 may transmit the RA preamble using the RACH opportunity (RACHoccasion: RO) associated with the detected SSB. By transmitting the RA preamble using the RO associated with the SSB during multi-beam operation, the base station 20 can recognize the received beamforming applied to the reception of the RA preamble.
 ここで、ROは、RAプリアンブルの送信用の時間領域及び/又は周波数領域のリソースであり、例えば、一以上のシンボル及びM(M≧1)個のリソースブロック(Resource Block:RB)で構成されてもよい。ROは、PRACH機会、ランダムアクセス機会、送信機会、機会等と言い換えられてもよい。また、RAプリアンブルは、RACHプリアンブル、PRACH、メッセージ1等と言い換えられてもよい。 Here, the RO is a resource in the time domain and / or frequency domain for transmission of the RA preamble, and is composed of, for example, one or more symbols and M (M ≧ 1) resource blocks (Resource Block: RB). You may. RO may be paraphrased as PRACH opportunity, random access opportunity, transmission opportunity, opportunity and the like. Further, the RA preamble may be paraphrased as a RACH preamble, PRACH, message 1, and the like.
 図2は、本実施形態に係るROの一例を示す図である。図2に示すように、RAプリアンブルの送信に用いられる一つ又は複数のスロット(以下、「RACHスロット」という)が所定周期(以下、「RACHリソース周期(RACH resource periodicity)」という)で設けられてもよい。例えば、図2では、RACHリソース周期が10スロットであり、2、5、8番目のスロットがRACHスロットであるが、これに限られない。 FIG. 2 is a diagram showing an example of RO according to this embodiment. As shown in FIG. 2, one or a plurality of slots (hereinafter, referred to as “RACH slots”) used for transmitting the RA preamble are provided in a predetermined cycle (hereinafter, referred to as “RACH resource periodicity”). You may. For example, in FIG. 2, the RACH resource cycle is 10 slots, and the 2nd, 5th, and 8th slots are RACH slots, but the present invention is not limited to this.
 図2に示すように、各RACHスロットには、一以上のROが設けられる。一つのROは、M(M≧1)個のRBで構成される。周波数領域には、K個のROを配置できる。また、時間領域には、1RACHスロットあたり1以上のROを配置できる。例えば、図2では、1RACHスロットあたり、周波数領域に2個、時間領域に2個の合計4ROが配置される。なお、図2は例示にすぎず、周波数領域におけるROの数は1以上であればよいし、1RACHスロット内の時間領域におけるRO数も1以上であればよい。このように、各RACHスロットには、時間領域及び/又は周波数領域において、一以上のROが含まれてもよい。なお、複数のRACHスロットは時間領域で連続しなくてもよい。 As shown in FIG. 2, each RACH slot is provided with one or more ROs. One RO is composed of M (M ≧ 1) RBs. K ROs can be arranged in the frequency domain. Further, one or more ROs can be arranged in one RACH slot in the time domain. For example, in FIG. 2, a total of 4ROs, two in the frequency domain and two in the time domain, are arranged per RACH slot. Note that FIG. 2 is merely an example, and the number of ROs in the frequency domain may be 1 or more, and the number of ROs in the time domain in the 1 RACH slot may be 1 or more. As such, each RACH slot may include one or more ROs in the time domain and / or frequency domain. It should be noted that the plurality of RACH slots do not have to be continuous in the time domain.
 また、図2に示すように、一つのSSBは一以上のROに関連付けられてもよい。例えば、図2では、SSB#0にはRO#0~#3が関連付けられ、SSB#1にはRO#4~#7が関連付けられる。また、各SSBには、所定数のRAプリアンブルが関連付けられてもよい。なお、一つのROに関連付けられるSSB数Nは、図2に示す1/4に限られない。当該SSB数Nは、例えば、1/2、1/8等の1以下の値であってもよいし、又は、例えば、2、4、8、17等の1より大きい値であってもよい。当該SSB数は、例えば、無線リソース制御(Radio Resource Control:RRC)の情報項目「ssb-perRACHOccasionAndCB-PreamblesPerSSB」によって、基地局20からユーザ端末10に設定(configure)されてもよい。図2に示すように、N<1の場合、一つのSSBが複数のROに関連付けられる。一方、図示しないが、N>1の場合、複数のSSBが一つのROに関連付けられる。N=1の場合、一つのSSBが一つのROに関連付けられる。 Further, as shown in FIG. 2, one SSB may be associated with one or more ROs. For example, in FIG. 2, SSB # 0 is associated with RO # 0 to # 3, and SSB # 1 is associated with RO # 4 to # 7. Further, each SSB may be associated with a predetermined number of RA preambles. The number of SSBs N associated with one RO is not limited to 1/4 shown in FIG. The SSB number N may be, for example, a value less than or equal to 1 such as 1/2 or 1/8, or a value greater than 1 such as 2, 4, 8, 17 or the like. .. The number of SSBs may be configured from the base station 20 to the user terminal 10 by, for example, the information item "ssb-perRACHOccasionAndCB-PreamblesPerSSB" of the radio resource control (RadioResourceControl: RRC). As shown in FIG. 2, when N <1, one SSB is associated with a plurality of ROs. On the other hand, although not shown, when N> 1, a plurality of SSBs are associated with one RO. When N = 1, one SSB is associated with one RO.
 例えば、図2では、ユーザ端末10は、SSB#0を検出する場合、SSB#0に関連付けられるRO#0~#3のいずれかを選択する。また、ユーザ端末10は、SSB#0に関連付けられるRAプリアンブルの一つを選択し、選択したRAプリアンブルを当該選択したROを用いて送信する。 For example, in FIG. 2, when detecting SSB # 0, the user terminal 10 selects any of RO # 0 to # 3 associated with SSB # 0. Further, the user terminal 10 selects one of the RA preambles associated with SSB # 0, and transmits the selected RA preamble using the selected RO.
 CBRAでは、第2に、ユーザ端末10は、上記RAプリアンブルに対するRARメッセージ(メッセージ2)を、PDSCHを介して基地局20から受信する。第3に、ユーザ端末10は、当該ランダム応答メッセージに含まれる上りグラントによりスケジューリングされるPUSCHを介して、メッセージ3を基地局20に送信する。第4に、ユーザ端末10は、当該メッセージ3に応じた衝突解決メッセージ(メッセージ4)を、PDSCHを介して受信する。 In CBRA, secondly, the user terminal 10 receives the RAR message (message 2) for the RA preamble from the base station 20 via the PDSCH. Third, the user terminal 10 transmits the message 3 to the base station 20 via the PUSCH scheduled by the uplink included in the random response message. Fourth, the user terminal 10 receives the conflict resolution message (message 4) corresponding to the message 3 via the PDSCH.
 なお、メッセージ3は、RRCセットアップ要求(RRC Setup Request)メッセージ等と言い換えられてもよい。以下、メッセージ3の伝送に用いるPUSCHについて、「Msg.3 PUSCH」というが、単に「メッセージ3」等とも呼ばれてもよい。また、メッセージ4は、RRCセットアップ(RRC Setup)メッセージ、衝突解決メッセージ等と言い換えられてもよい。 Note that the message 3 may be paraphrased as an RRC setup request (RRCSetupRequest) message or the like. Hereinafter, the PUSCH used for transmitting the message 3 is referred to as "Msg.3 PUSCH", but may be simply referred to as "message 3" or the like. Further, the message 4 may be paraphrased as an RRC setup message, a conflict resolution message, or the like.
 NRのリリース17では、カバレッジボトルネックとなるチャネルを特定し、その特性を向上させることにより、到達できるカバレッジを底上げすることが検討されている。当該カバレッジボトルネックとなるチャネルとしては、上記Msg.3 PUSCHが想定される。そこで、当該Msg.3 PUSCHの繰り返し送信をサポートすることにより、カバレッジを拡張することが検討されている。 In Release 17 of NR, it is considered to raise the reachable coverage by identifying the channel that becomes the coverage bottleneck and improving its characteristics. The channel that becomes the coverage bottleneck is described in Msg. 3 PUSCH is assumed. Therefore, the Msg. 3 It is being considered to extend the coverage by supporting the repeated transmission of PUSCH.
 しかしながら、Msg.3 PUSCHがカバレッジボトルネックになるか否かは、ユーザ端末10の位置等にも異存する。ユーザ端末10がカバレッジ境界に位置しないのに、当該ユーザ端末10が当該Msg.3 PUSCHの繰り返し送信を行う能力(capability)を有するだけで、当該Msg.3 PUSCHの繰り返し送信を行うことは、無線リソースの利用効率の低下等を招く恐れがある。 However, Msg. 3 Whether or not PUSCH becomes a coverage bottleneck depends on the position of the user terminal 10 and the like. Although the user terminal 10 is not located at the coverage boundary, the user terminal 10 has the Msg. 3 Only having the ability to repeatedly transmit PUSCH, the Msg. 3 Repeated transmission of PUSCH may lead to a decrease in utilization efficiency of wireless resources.
 そこで、本実施形態では、ユーザ端末10は、SSBを用いて測定される受信電力又は受信品質に基づいて、Msg.3 PUSCHの繰り返し送信を制御する。これにより、受信電力又は受信品質から推定されるユーザ端末10の位置に基づいて繰り返し数R(R≧1、ここで、R=1は初回送信)を決定できるので、無線リソースの利用効率を向上できる。 Therefore, in the present embodiment, the user terminal 10 uses Msg. 3 Control the repeated transmission of PUSCH. As a result, the number of repetitions R (R ≧ 1, where R = 1 is the first transmission) can be determined based on the position of the user terminal 10 estimated from the received power or the reception quality, so that the utilization efficiency of wireless resources is improved. can.
 また、本実施形態では、上記受信電力又は当該受信品質に基づいて、RAプリアンブル又はROが決定されるので、当該RAプリアンブル又はROにより上記Msg.3 PUSCHの繰り返し数Rをユーザ端末10から基地局20に黙示的に通知できる。したがって、ユーザ端末10と基地局20との間の冗長なシグナリングを排除しながら、上記Msg.3 PUSCHの繰り返し送信を適切に制御できる。 Further, in the present embodiment, the RA preamble or RO is determined based on the received power or the received quality. Therefore, the RA preamble or RO determines the RA preamble or RO. 3 The PUSCH repetition number R can be implicitly notified from the user terminal 10 to the base station 20. Therefore, while eliminating redundant signaling between the user terminal 10 and the base station 20, the above Msg. 3 It is possible to appropriately control the repeated transmission of PUSCH.
 以下では、上記受信電力は、同期信号又は下り参照信号(例えば、PBCHのDMRS、CSI-RS等)を用いて測定される参照信号受信電力(Reference Signal Received Power:RSRP)であるものとする。同様に、上記受信品質は、同期信号又は下り参照信号(例えば、PBCHのDMRS又はCSI-RS)を用いて測定される参照信号受信品質(Reference Signal Received Quality:RSRQ)であるものとする。なお、本実施形態は、RSRP又はRSRQに限られず、ユーザ端末10の信号の受信レベルに関するどのような指標を用いる場合にも適用可能である。 In the following, the received power is assumed to be a reference signal received power (RSRP) measured using a synchronization signal or a downlink reference signal (for example, DMRS of PBCH, CSI-RS, etc.). Similarly, the reception quality is assumed to be a reference signal reception quality (RSRQ) measured using a synchronization signal or a downlink reference signal (for example, DMRS or CSI-RS of PBCH). The present embodiment is not limited to RSRP or RSRQ, and can be applied to any index relating to the signal reception level of the user terminal 10.
 [第1の実施形態]
 (無線通信システムの構成)
 次に、第1の実施形態に係る無線通信システム1の各装置の構成について説明する。なお、以下の構成は、第1の実施形態の説明において必要な構成を示すためのものであり、各装置が図示以外の機能ブロックを備えることを排除するものではない。
[First Embodiment]
(Configuration of wireless communication system)
Next, the configuration of each device of the wireless communication system 1 according to the first embodiment will be described. It should be noted that the following configurations are for showing the configurations required in the description of the first embodiment, and do not exclude that each device includes a functional block other than those shown in the drawings.
 <ハードウェア構成>
 図3は、第1の実施形態に係る無線通信システム内の各装置のハードウェア構成の一例を示す図である。無線通信システム1内の各装置(例えば、ユーザ端末10及び基地局20の各々)は、プロセッサ11、メモリ12、記憶装置13、有線又は無線通信を行う通信装置14、入力操作を受け付ける入力装置15、情報の出力を行う出力装置16及び一以上のアンテナ17を少なくとも有する。
<Hardware configuration>
FIG. 3 is a diagram showing an example of the hardware configuration of each device in the wireless communication system according to the first embodiment. Each device in the wireless communication system 1 (for example, each of the user terminal 10 and the base station 20) includes a processor 11, a memory 12, a storage device 13, a communication device 14 that performs wired or wireless communication, and an input device 15 that accepts input operations. It has at least an output device 16 that outputs information and one or more antennas 17.
 プロセッサ11は、例えば、CPU(Central Processing Unit)であり、無線通信システム1内の各装置を制御する。プロセッサ11は、各装置を制御する制御部を構成してもよい。 The processor 11 is, for example, a CPU (Central Processing Unit) and controls each device in the wireless communication system 1. The processor 11 may constitute a control unit that controls each device.
 メモリ12は、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)及び/又はRAM(Random Access Memory)等から構成される。 The memory 12 is composed of, for example, a ROM (ReadOnlyMemory), an EPROM (ErasableProgrammableROM), an EEPROM (ElectricallyErasableProgrammableROM), and / or a RAM (RandomAccessMemory).
 記憶装置13は、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)及び/又はeMMC(embedded Multi Media Card)等のストレージから構成される。 The storage device 13 is composed of storage such as HDD (Hard Disk Drive), SSD (Solid State Drive) and / or eMMC (embedded MultiMediaCard), for example.
 通信装置14は、有線及び/又は無線ネットワークを介して通信を行う装置であり、例えば、ネットワークカード、通信モジュールなどである。また、通信装置14には、アンプ、無線信号に関する処理を行うRF(Radio Frequency)装置と、ベースバンド信号処理を行うBB(BaseBand)装置とを含んでいてもよい。 The communication device 14 is a device that communicates via a wired and / or wireless network, and is, for example, a network card, a communication module, or the like. Further, the communication device 14 may include an RF (Radio Frequency) device that performs processing related to an amplifier and a radio signal, and a BB (BaseBand) device that performs baseband signal processing.
 RF装置は、例えば、BB装置から受信したデジタルベースバンド信号に対して、D/A変換、変調、周波数変換、電力増幅等を行うことで、アンテナ17から送信する無線信号を生成する。また、RF装置は、アンテナ17から受信した無線信号に対して、周波数変換、復調、A/D変換等を行うことでデジタルベースバンド信号を生成してBB装置に送信する。BB装置は、デジタルベースバンド信号をIPパケットに変換する処理、及び、IPパケットをデジタルベースバンド信号に変換する処理を行う。 The RF device generates a radio signal transmitted from the antenna 17 by performing D / A conversion, modulation, frequency conversion, power amplification, etc. on the digital baseband signal received from the BB device, for example. Further, the RF device generates a digital baseband signal by performing frequency conversion, demodulation, A / D conversion, etc. on the radio signal received from the antenna 17, and transmits the digital baseband signal to the BB device. The BB apparatus performs a process of converting a digital baseband signal into an IP packet and a process of converting an IP packet into a digital baseband signal.
 入力装置15は、例えば、キーボード、タッチパネル、マウス及び/又はマイク等である。出力装置16は、例えば、ディスプレイ及び/又はスピーカ等である。 The input device 15 is, for example, a keyboard, a touch panel, a mouse and / or a microphone. The output device 16 is, for example, a display and / or a speaker.
 <機能ブロック構成>
 ≪ユーザ端末≫
 図4は、第1の実施形態に係るユーザ端末の機能ブロック構成の一例を示す図である。図4に示すように、ユーザ端末10は、受信部101と、送信部102、制御部103と、測定部104と、を備える。
<Functional block configuration>
≪User terminal≫
FIG. 4 is a diagram showing an example of the functional block configuration of the user terminal according to the first embodiment. As shown in FIG. 4, the user terminal 10 includes a receiving unit 101, a transmitting unit 102, a control unit 103, and a measuring unit 104.
 受信部101は、下りのチャネル/信号を受信する。また、受信部101は、当該下りのチャネル/信号を介して伝送された情報及び/又はデータに関する処理(例えば、デマッピング、復調、復号等)を行う。 The receiving unit 101 receives the downlink channel / signal. In addition, the receiving unit 101 performs processing (for example, demapping, demodulation, decoding, etc.) on information and / or data transmitted via the downlink channel / signal.
 具体的には、受信部101は、測定部104によるRSRP又はRSRQの測定に用いられる同期信号又は下り参照信号(例えば、PBCHのDMRS又はCSI-RS等)を受信してもよい。 Specifically, the receiving unit 101 may receive a synchronization signal or a downlink reference signal (for example, DMRS or CSI-RS of PBCH) used for measuring RSRP or RSRQ by the measuring unit 104.
 また、受信部101は、基地局20から報知(broadcast)されるシステム情報を受信してもよい。システム情報は、MIB及び/又はSIBX(ここで、Xは、任意の整数)を含む。例えば、受信部101は、PBCHを介してMIBを受信してもよい。また、受信部101は、PDSCHを介してSIBXを受信してもよい。また、受信部101は、PDSCHを介してRARメッセージ(メッセージ2)を受信する。また、受信部101は、PDSCHを介して衝突解決メッセージ(メッセージ4)を受信する。 Further, the receiving unit 101 may receive the system information broadcast from the base station 20. The system information includes MIB and / or SIBX (where X is an arbitrary integer). For example, the receiving unit 101 may receive the MIB via the PBCH. Further, the receiving unit 101 may receive SIBX via PDSCH. In addition, the receiving unit 101 receives the RAR message (message 2) via the PDSCH. Further, the receiving unit 101 receives the conflict resolution message (message 4) via the PDSCH.
 また、受信部101は、測定部104で測定されるRSRP又はRSRQと、繰り返し数Rと、の関連付け(association)に関する情報(以下、「第1の関連付け情報」という)を受信してもよい。第1の関連付け情報は、例えば、RSRP又はRSRQの一以上の閾値のセット(例えば、図5、6で説明する閾値α及びβ)、当該閾値に基づいて定められる条件、当該条件に関連付けられるMsg.3 PUSCHの繰り返し数R等の少なくとも一つを示す情報であってもよい。 Further, the receiving unit 101 may receive information regarding the association between the RSRP or RSRQ measured by the measuring unit 104 and the repetition number R (hereinafter, referred to as “first association information”). The first association information includes, for example, a set of one or more thresholds of RSRP or RSRQ (for example, thresholds α and β described in FIGS. 5 and 6), a condition determined based on the threshold, and Msg associated with the condition. .. 3 Information indicating at least one such as the number of repetitions R of PUSCH may be used.
 また、受信部101は、測定部104で測定されるRSRP又はRSRQ(及び/又は繰り返し数R)と、RAプリアンブル又はROと、の関連付けに関する情報(以下、「第2の関連付け情報」という)を受信してもよい。第2の関連付け情報は、例えば、RSRP又はRSRQの一以上の閾値のセット(例えば、図5、6で説明する閾値α及びβ)、当該閾値に基づいて定められる条件、当該条件に関連付けられるRO又はRAプリアンブル、当該条件に関連付けられる繰り返し数R等の少なくとも一つを示す情報であってもよい。 Further, the receiving unit 101 provides information regarding the association between the RSRP or RSRQ (and / or the number of repetitions R) measured by the measuring unit 104 and the RA preamble or RO (hereinafter, referred to as “second association information”). You may receive it. The second association information includes, for example, a set of one or more thresholds of RSRP or RSRQ (eg, thresholds α and β described in FIGS. 5 and 6), conditions determined based on the thresholds, and RO associated with the conditions. Alternatively, it may be information indicating at least one such as RA preamble and the number of repetitions R associated with the condition.
 なお、当該第1及び第2の関連付け情報、上記システム情報(例えば、SIBX)に含まれてもよい。また、当該第1及び第2の関連付け情報は、別々に受信されなくともよく、上記RSRP又はRSRQと繰り返し数RとRAプリアンブル又はROとの関連付けに関する関連付け情報として受信されてもよい。 Note that the first and second association information may be included in the system information (for example, SIBX). Further, the first and second association information does not have to be received separately, and may be received as association information regarding the association between the RSRP or RSRQ, the repetition number R, and the RA preamble or RO.
 送信部102は、上りのチャネル/信号を送信する。また、送信部102は、当該上りのチャネル/信号を介して伝送される情報及び/又はデータに関する処理(例えば、符号化、変調、リソースへのマッピング等)を行う。 The transmission unit 102 transmits an upstream channel / signal. In addition, the transmission unit 102 performs processing (for example, coding, modulation, mapping to resources, etc.) regarding information and / or data transmitted via the upstream channel / signal.
 また、送信部102は、RAプリアンブル(メッセージ1)を送信する。具体的には、送信部102は、制御部103によってRSRP又はRSRQに基づいて選択されたRAプリアンブルを送信してもよい。また、送信部102は、制御部103によってRSRP又はRSRQに基づいて選択されたROを用いて、RAプリアンブルを送信してもよい。 Further, the transmission unit 102 transmits the RA preamble (message 1). Specifically, the transmission unit 102 may transmit the RA preamble selected by the control unit 103 based on RSRP or RSRQ. Further, the transmission unit 102 may transmit the RA preamble using the RO selected by the control unit 103 based on RSRP or RSRQ.
 送信部102は、Msg.3 PUSCHを送信する。具体的には、送信部102は、制御部103によってRSRP又はRSRQに基づいて決定された繰り返し数Rだけ、当該Msg.3 PUSCHを繰り返して送信してもよい。なお、R=1は初回送信を示し、R=2、3、…は2回目、3回目、…の送信を示してもよい。 The transmission unit 102 is a Msg. 3 Send PUSCH. Specifically, the transmission unit 102 has the Msg. 3 PUSCH may be repeatedly transmitted. Note that R = 1 may indicate the first transmission, and R = 2, 3, ... May indicate the second, third, ... Transmission.
 制御部103は、受信部101による下りのチャネル/信号の送信、及び/又は、送信部102による上りのチャネル/信号の受信を制御する。 The control unit 103 controls the transmission of the downlink channel / signal by the reception unit 101 and / or the reception of the uplink channel / signal by the transmission unit 102.
 具体的には、制御部103は、測定部104によって測定されるRSRP又はRSRQに基づいて、Msg.3 PUSCHの繰り返し送信を制御する。具体的には、制御部103は、当該RSRP又はRSRQに基づいて、Msg.3 PUSCHの繰り返し数Rを決定してもよい。例えば、制御部103は、図5、6に例示する判断基準に基づいて、測定部104によって測定されるRSRP又はRSRQに関連付けられる繰り返し数Rを決定してもよい。 Specifically, the control unit 103 is based on the RSRP or RSRQ measured by the measurement unit 104, and Msg. 3 Control the repeated transmission of PUSCH. Specifically, the control unit 103 uses Msg. 3 The number of repetitions R of PUSCH may be determined. For example, the control unit 103 may determine the number of repetitions R associated with the RSRP or RSRQ measured by the measurement unit 104 based on the criteria illustrated in FIGS. 5 and 6.
 図5は、第1の実施形態に係る繰り返し数Rの判断基準の一例を示す図である。例えば、図5に示す判断基準では、RSRPの測定値(以下、「RSRP測定値」という)に関する条件と、ROと、繰り返し数Rが関連付けられる。 FIG. 5 is a diagram showing an example of a criterion for determining the number of repetitions R according to the first embodiment. For example, in the determination criterion shown in FIG. 5, the condition relating to the measured value of RSRP (hereinafter referred to as “RSRP measured value”), RO, and the number of repetitions R are associated with each other.
 図5において条件を定める閾値α及びβ、及び/又は、当該条件と繰り返し数Rとの関連付けは、上記第1の関連付け情報によって示されてもよいし、又は、予め仕様で定められてもよい。また、条件を定める閾値α及びβ、及び/又は、当該条件とROとの関連付けは、上記第2の関連付け情報によって示されてもよいし、又は、予め仕様で定められてもよい。 The threshold values α and β that determine the conditions in FIG. 5 and / or the association between the conditions and the number of repetitions R may be indicated by the above-mentioned first association information, or may be predetermined in the specifications. .. Further, the threshold values α and β and / or the association between the condition and RO may be indicated by the above-mentioned second association information, or may be predetermined in the specifications.
 例えば、図5では、RSRP測定値が閾値α以上である場合、RAプリアンブルの送信にRO#4k(k=0,1,2,…)(例えば、図2のRO#0、#4、#8、…)を用いること、Msg.3 PUSCHの繰り返し数Rを1回とすることが示される。また、RSRP測定値が閾値αより小さく閾値β以上である場合、RAプリアンブルの送信にRO#4k+1(k=0,1,2,…)(例えば、図2のRO#1、#5、#9、…)を用いること、Msg.3 PUSCHの繰り返し数Rを2回とすることが示される。また、RSRP測定値が閾値βより小さい場合、RAプリアンブルの送信にRO#4k+2(k=0,1,2,…)(例えば、図2のRO#2、#6、#10、…)を用いること、Msg.3 PUSCHの繰り返し数Rを4回とすることが示される。 For example, in FIG. 5, when the RSRP measurement value is equal to or higher than the threshold value α, RO # 4k (k = 0, 1, 2, ...) (For example, RO # 0, # 4, # in FIG. 2) is used to transmit the RA preamble. 8, ...), Msg. 3 It is shown that the repetition number R of PUSCH is set to 1 time. Further, when the RSRP measured value is smaller than the threshold value α and equal to or higher than the threshold value β, RO # 4k + 1 (k = 0, 1, 2, ...) (For example, RO # 1, # 5, # in FIG. 2) is used to transmit the RA preamble. 9, ...), Msg. 3 It is shown that the repetition number R of PUSCH is set to 2 times. If the RSRP measurement value is smaller than the threshold value β, RO # 4k + 2 (k = 0, 1, 2, ...) (For example, RO # 2, # 6, # 10, ... In FIG. 2) is used to transmit the RA preamble. Use, Msg. 3 It is shown that the number of repetitions R of PUSCH is set to 4 times.
 図5に示す判断基準によれば、SSB#0を検出したユーザ端末10は、RSRP測定値が閾値αより小さく閾値β以上であるなら、図2のRO#1を用いてRAプリアンブルを送信し、Msg.3 PUSCHを2回繰り返して送信する。一方、同じSSB#0を検出したユーザ端末10であっても、RSRP測定値が閾値βより小さいなら、図2のRO#2を用いてRAプリアンブルを送信し、Msg.3 PUSCHを4回繰り返して送信する。 According to the criterion shown in FIG. 5, if the RSRP measurement value is smaller than the threshold value α and equal to or higher than the threshold value β, the user terminal 10 that has detected SSB # 0 transmits the RA preamble using RO # 1 in FIG. , Msg. 3 Repeat PUSCH twice and send. On the other hand, even in the user terminal 10 that detects the same SSB # 0, if the RSRP measurement value is smaller than the threshold value β, the RA preamble is transmitted using RO # 2 in FIG. 3 Repeat PUSCH 4 times to transmit.
 このように、各SSBに複数のRO(図2では、4RO)が関連付けられる場合、当該複数のROに対して、異なる条件のRSRP測定値(及び/又は繰り返し数R)を関連付けることにより、マルチビーム運用時に同じビーム方向の異なる位置(例えば、基地局20に近い位置又はカバレッジ境界等)のユーザ端末10の繰り返し数Rを適切に制御できる。また、ユーザ端末10が、RSRP測定値(及び/又は繰り返し数R)に関連付けられたROを用いることにより、基地局20は、ユーザ端末10からのMsg.3 PUSCHの繰り返し数Rを事前に認識できる。 In this way, when a plurality of ROs (4ROs in FIG. 2) are associated with each SSB, the RSRP measurement values (and / or the number of repetitions R) under different conditions are associated with the plurality of ROs to perform multi. During beam operation, the number of repetitions R of the user terminal 10 at different positions in the same beam direction (for example, a position close to the base station 20 or a coverage boundary) can be appropriately controlled. Further, when the user terminal 10 uses the RO associated with the RSRP measurement value (and / or the number of repetitions R), the base station 20 can use the Msg. 3 The number of repetitions R of PUSCH can be recognized in advance.
 図6は、第1の実施形態に係る繰り返し数Rの判断基準の他の例を示す図である。図6に示す判断基準では、ROの代わりに、RAプリアンブルが、RSRP測定値に関する条件と繰り返し数Rとに関連付けられる点で、図5に示す判断基準と異なる。以下では、図5に示す判断基準との相違点を中心に説明する。なお、図6において、閾値α及びβ、及び/又は、当該α及びβに基づく条件とRAプリアンブルとの関連付けは、上記第2の関連付け情報によって示されてもよいし、又は、予め仕様で定められてもよい。 FIG. 6 is a diagram showing another example of the criterion for determining the number of repetitions R according to the first embodiment. The criterion shown in FIG. 6 differs from the criterion shown in FIG. 5 in that instead of RO, the RA preamble is associated with the condition for the RSRP measurement and the number of repetitions R. In the following, the differences from the judgment criteria shown in FIG. 5 will be mainly described. In FIG. 6, the association between the threshold values α and β and / or the condition based on the α and β and the RA preamble may be indicated by the above-mentioned second association information, or may be determined in advance in the specifications. May be done.
 例えば、図6では、RSRP測定値が閾値α以上である場合、i個のRAプリアンブルa0~ai-1のいずれかを用いること、Msg.3 PUSCHの繰り返し数Rを1回とすることが示される。RSRP測定値が閾値αより小さく、閾値β以上である場合、j個のRAプリアンブルb0~bj-1のいずれかを用いること、Msg.3 PUSCHの繰り返し数Rを2回とすることが示される。また、RSRP測定値が閾値βより小さい場合、k個のRAプリアンブルc0~ck-1のいずれかを用いること、Msg.3 PUSCHの繰り返し数Rを4回とすることが示される。 For example, in FIG. 6, when the RSRP measurement value is equal to or higher than the threshold value α, use any of i RA preambles a 0 to a i-1 , and Msg. 3 It is shown that the number of repetitions R of PUSCH is one. When the RSRP measurement value is smaller than the threshold value α and equal to or higher than the threshold value β, use any of j RA preambles b 0 to b j-1 , Msg. 3 It is shown that the repetition number R of PUSCH is set to 2 times. When the RSRP measurement value is smaller than the threshold value β, use any of k RA preambles c 0 to c k-1 , and use Msg. 3 It is shown that the number of repetitions R of PUSCH is set to 4 times.
 図6に示す判断基準によれば、ユーザ端末10は、RSRP測定値が閾値αより小さく閾値β以上であるなら、RAプリアンブルb0~bj-1のいずれかを送信し、Msg.3 PUSCHを2回繰り返して送信する。一方、同じSSB#0を検出したユーザ端末10であっても、RSRP測定値が閾値βより小さいなら、RAプリアンブルc0~ck-1のいずれかを送信し、Msg.3 PUSCHを4回繰り返して送信する。 According to the determination criteria shown in FIG. 6, if the RSRP measurement value is smaller than the threshold value α and equal to or higher than the threshold value β, the user terminal 10 transmits one of RA preambles b 0 to b j-1 , and Msg. 3 PUSCH is repeated twice and transmitted. On the other hand, even in the user terminal 10 that detects the same SSB # 0, if the RSRP measurement value is smaller than the threshold value β, any one of RA preambles c 0 to c k-1 is transmitted, and Msg. 3 PUSCH is repeated 4 times and transmitted.
 このように、RSRP測定値に関する条件に関連付けられた繰り返し数Rを用いることにより、ユーザ端末10は、自身の位置に応じた繰り返し数RでMsg.3 PUSCHを送信できる。また、ユーザ端末10が、RSRP測定値(及び/又は繰り返し数R)に関連付けられたRAプリアンブルを用いることにより、基地局20は、ユーザ端末10からのMsg.3 PUSCHの繰り返し数Rを事前に認識できる。 In this way, by using the repetition number R associated with the condition regarding the RSRP measurement value, the user terminal 10 can use the repetition number R according to its own position to obtain Msg. 3 PUSCH can be sent. Further, the user terminal 10 uses the RA preamble associated with the RSRP measurement value (and / or the number of repetitions R), so that the base station 20 can use the Msg. 3 The number of repetitions R of PUSCH can be recognized in advance.
 なお、図5、6に示す判断基準は例示にすぎず、図示するものに限られない。例えば、図5、6では、2つの閾値α、βを示すが、閾値の数は1以上であればよい。また、各条件に関連付けられるRO又はRAプリアンブルも図示するものに限られないことは勿論である。また、図5、6では、RSRP測定値に基づく判断基準が示されるが、RSRQの測定値に置き換えられてもよいことは勿論である。また、上記判断基準は、マルチビーム運用時及び/又はシングルビーム運用時にも適用できることは勿論である。 The judgment criteria shown in FIGS. 5 and 6 are merely examples, and are not limited to those shown. For example, in FIGS. 5 and 6, two threshold values α and β are shown, but the number of threshold values may be 1 or more. Of course, the RO or RA preamble associated with each condition is not limited to the one shown in the figure. Further, although the judgment criteria based on the RSRP measured values are shown in FIGS. 5 and 6, it goes without saying that they may be replaced with the measured values of RSRQ. Of course, the above criteria can also be applied during multi-beam operation and / or single-beam operation.
 測定部104は、同期信号又は下り参照信号(例えば、PBCHのDMRS又はCSI-RS等)のRSRP又はRSRQを測定する。例えば、測定部104は、SSBを用いて、RSRP又はRSRQを測定してもよい。 The measuring unit 104 measures the RSRP or RSRQ of the synchronization signal or the downlink reference signal (for example, DMRS or CSI-RS of PBCH). For example, the measuring unit 104 may measure RSRP or RSRQ using SSB.
 なお、受信部101、送信部102及び測定部104は、例えば通信装置14により実現されてもよいし、通信装置14に加えてプロセッサ11が記憶装置13に記憶されたプログラムを実行することにより実現されてもよい。制御部103は、プロセッサ11が、記憶装置13に記憶されたプログラムを実行することにより実現されてもよい。プログラムを実行する場合、当該プログラムは、記憶媒体に格納されていてもよい。当該プログラムを格納した記憶媒体は、コンピュータ読み取り可能な非一時的な記憶媒体(Non-transitory computer readable medium)であってもよい。非一時的な記憶媒体は、特に限定されないが、例えば、USB(Universal Serial Bus)メモリ、又はCD-ROM(Compact Disc ROM)等の記憶媒体であってもよい。 The receiving unit 101, the transmitting unit 102, and the measuring unit 104 may be realized by, for example, the communication device 14, or may be realized by the processor 11 executing the program stored in the storage device 13 in addition to the communication device 14. May be done. The control unit 103 may be realized by the processor 11 executing the program stored in the storage device 13. When executing a program, the program may be stored in a storage medium. The storage medium in which the program is stored may be a computer-readable non-transitory storage medium (Non-transitory computer readable medium). The non-temporary storage medium is not particularly limited, but may be, for example, a storage medium such as a USB (Universal Serial Bus) memory or a CD-ROM (Compact Disc ROM).
 ≪基地局≫
 図7は、第1の実施形態に係る基地局の機能ブロック構成の一例を示す図である。図7に示すように、基地局20は、送信部201と、受信部202と、制御部203と、を備える。
≪Base station≫
FIG. 7 is a diagram showing an example of the functional block configuration of the base station according to the first embodiment. As shown in FIG. 7, the base station 20 includes a transmission unit 201, a reception unit 202, and a control unit 203.
 送信部201は、下りのチャネル/信号を送信する。また、送信部201は、当該下りのチャネル/信号を介して伝送された情報及び/又はデータに関する処理(例えば、符号化、復号、リソースへのマッピング等)を行う。 The transmission unit 201 transmits a downlink channel / signal. In addition, the transmission unit 201 performs processing (for example, encoding, decoding, mapping to resources, etc.) regarding information and / or data transmitted via the downlink channel / signal.
 具体的には、送信部201は、RSRP又はRSRQの測定に用いられる同期信号又は下り参照信号(例えば、PBCHのDMRS又はCSI-RS等)を送信してもよい。また、送信部201は、上記システム情報を報知してもよい。例えば、送信部201は、PBCHを介してMIBを送信してもよい。また、送信部201は、PDSCHを介してSIBXを送信してもよい。 Specifically, the transmission unit 201 may transmit a synchronization signal or a downlink reference signal (for example, DMRS or CSI-RS of PBCH) used for measuring RSRP or RSRQ. Further, the transmission unit 201 may notify the system information. For example, the transmission unit 201 may transmit the MIB via the PBCH. Further, the transmission unit 201 may transmit SIBX via PDSCH.
 また、送信部201は、PDSCHを介してRARメッセージ(メッセージ2)を送信する。また、送信部201は、PDSCHを介して衝突解決メッセージ(メッセージ4)を送信する。 Further, the transmission unit 201 transmits a RAR message (message 2) via the PDSCH. Further, the transmission unit 201 transmits a conflict resolution message (message 4) via the PDSCH.
 また、送信部201は、上記第1の関連付け情報を送信してもよい。また、送信部201は、上記第2の関連付け情報を送信してもよい。当該第1及び第2の関連付け情報は、上記システム情報(例えば、SIBX)に含まれてもよい。なお、当該第1及び第2の関連付け情報は、別々に送信されなくともよく、上記RSRP又はRSRQと繰り返し数RとRAプリアンブル又はROとの関連付けに関する関連付け情報として送信されてもよい。 Further, the transmission unit 201 may transmit the above-mentioned first association information. Further, the transmission unit 201 may transmit the second association information. The first and second association information may be included in the system information (for example, SIBX). The first and second association information does not have to be transmitted separately, and may be transmitted as association information relating to the association between the RSRP or RSRQ, the repetition number R, and the RA preamble or RO.
 受信部202は、上りのチャネル/信号を受信する。また、受信部202は、当該上りのチャネル/信号を介して伝送される情報及び/又はデータに関する処理(例えば、デマッピング、復調、復号等)を行う。 The receiving unit 202 receives the upstream channel / signal. In addition, the receiving unit 202 performs processing (for example, demapping, demodulation, decoding, etc.) on information and / or data transmitted via the upstream channel / signal.
 また、受信部202は、RAプリアンブル(メッセージ1)を受信する。具体的には、受信部202は、測定部104で測定されたRSRP又はRSRQに関連付けられるRAプリアンブルを受信してもよい。又は、受信部202は、当該RSRP又はRSRQに関連付けられるROを用いて、RAプリアンブルを受信してもよい。 Further, the receiving unit 202 receives the RA preamble (message 1). Specifically, the receiving unit 202 may receive the RA preamble associated with the RSRP or RSRQ measured by the measuring unit 104. Alternatively, the receiving unit 202 may receive the RA preamble using the RO associated with the RSRP or RSRQ.
 受信部202は、Msg.3 PUSCHを受信する。受信部202は、制御部203によって決定された繰り返し数Rだけ、当該Msg.3 PUSCHが繰り返されると想定して、当該Msg.3 PUSCHを受信してもよい。 The receiving unit 202 is a Msg. 3 Receive PUSCH. The receiving unit 202 has the Msg. 3 Assuming that PUSCH is repeated, the Msg. 3 PUSCH may be received.
 制御部203は、送信部201による下りのチャネル/信号の送信、及び/又は、受信部202による上りのチャネル/信号の受信を制御する。また、制御部203は、PDSCH及び/又はPUSCHのスケジューリング等を制御してもよい。 The control unit 203 controls the transmission of the downlink channel / signal by the transmission unit 201 and / or the reception of the uplink channel / signal by the reception unit 202. Further, the control unit 203 may control the scheduling of PDSCH and / or PUSCH.
 制御部203は、受信部202によって受信されたRAプリアンブル又は当該RAプリアンブルの送信に用いられたROに基づいて、Msg.3 PUSCHの繰り返し数Rを決定してもよい。具体的には、制御部203は、例えば、図5、6に示す判断基準に従って、RAプリアンブル又はROに関連付けられる繰り返し数Rを決定してもよい。 The control unit 203 uses the RA preamble received by the reception unit 202 or the RO used for transmitting the RA preamble to obtain Msg. 3 The number of repetitions R of PUSCH may be determined. Specifically, the control unit 203 may determine the number of repetitions R associated with the RA preamble or RO, for example, according to the determination criteria shown in FIGS. 5 and 6.
 なお、送信部201及び受信部202は、例えば通信装置14により実現されてもよいし、通信装置14に加えてプロセッサ11が記憶装置13に記憶されたプログラムを実行することにより実現されてもよい。制御部203は、プロセッサ11が、記憶装置13に記憶されたプログラムを実行することにより実現されてもよい。 The transmitting unit 201 and the receiving unit 202 may be realized by, for example, the communication device 14, or may be realized by the processor 11 executing the program stored in the storage device 13 in addition to the communication device 14. .. The control unit 203 may be realized by the processor 11 executing the program stored in the storage device 13.
 (無線通信システムの動作)
 次に、第1の実施形態に係る無線通信システム1の動作について説明する。図8は、第1の実施形態に係るCBRAの動作の一例を示す図である。なお、図8に示す動作は例示にすぎず、少なくとも一部のステップの順番が変更、省略及び/又は追加されてもよい。
(Operation of wireless communication system)
Next, the operation of the wireless communication system 1 according to the first embodiment will be described. FIG. 8 is a diagram showing an example of the operation of the CBRA according to the first embodiment. The operation shown in FIG. 8 is merely an example, and the order of at least some steps may be changed, omitted, and / or added.
 図8に示すように、ステップS101において、ユーザ端末10は、基地局20からのSSBを検出する。ステップS102において、ユーザ端末10は、SSBを用いて、RSRP又はRSRQを測定する。 As shown in FIG. 8, in step S101, the user terminal 10 detects the SSB from the base station 20. In step S102, the user terminal 10 measures RSRP or RSRQ using SSB.
 ステップS103において、ユーザ端末10は、PDSCHを介してSIBを受信する。当該SIBは、Xの値が異なる複数のSIBXであってもよく、複数のPDSCHを介して受信されてもよい。また、当該SIBは、上記RSRP又はRSRQに基づく判断基準(例えば、図5、6)の導出に用いられる第1及び第2の関連付け情報を含んでもよい。 In step S103, the user terminal 10 receives the SIB via the PDSCH. The SIB may be a plurality of SIBXs having different values of X, or may be received via a plurality of PDSCHs. In addition, the SIB may include first and second association information used for deriving the determination criteria (for example, FIGS. 5 and 6) based on the RSRP or RSRQ.
 ステップS104において、ユーザ端末10は、ステップS102におけるRSRP測定値又はRSRQ測定値に基づいて、RAプリアンブル又はROを選択する(例えば、図5、6参照)。 In step S104, the user terminal 10 selects RA preamble or RO based on the RSRP measurement value or RSRQ measurement value in step S102 (see, for example, FIGS. 5 and 6).
 ステップS105において、ユーザ端末10は、ある(certain)ROを用いて、ステップS104で選択されたRAプリアンブル(メッセージ1)を送信する。又は、ユーザ端末10は、ステップS104で選択されたROを用いて、あるRAプリアンブル(メッセージ1)を送信する。 In step S105, the user terminal 10 uses a certain RO to transmit the RA preamble (message 1) selected in step S104. Alternatively, the user terminal 10 transmits a certain RA preamble (message 1) using the RO selected in step S104.
 ステップS106において、基地局20は、ステップS105で受信したRAプリアンブル又は当該RAプリアンブルが送信されたROに基づいて、ステップS109で受信するMsg.3 PUSCHの繰り返し数Rを決定する。ステップS107において、基地局20は、ステップS105で受信したRAプリアンブルに対するRARメッセージ(メッセージ2)を送信する。なお、RARメッセージに含まれる上りグラントの内容及びビット数をMsg.3 PUSCHの繰り返し数Rに関わらず、同一のビット数(例えば、27ビット)としてもよい。 In step S106, the base station 20 receives the RA preamble received in step S105 or the Msg. 3 Determine the number of repetitions R of PUSCH. In step S107, the base station 20 transmits a RAR message (message 2) for the RA preamble received in step S105. In addition, the content and the number of bits of the upstream grant included in the RAR message are described in Msg. 3 The same number of bits (for example, 27 bits) may be used regardless of the number of repetitions R of PUSCH.
 ステップS108において、ユーザ端末10は、ステップS102におけるRSRP測定値又はRSRQ測定値に基づいて、Msg.3 PUSCHの繰り返し数Rを決定する(例えば、図5、6参照)。なお、ユーザ端末10は、ステップS104で選択されたRO又はRAプリアンブルに基づいて、Msg.3 PUSCHの繰り返し数Rを決定してもよい(例えば、図5、6参照)。 In step S108, the user terminal 10 uses the Msg. 3 Determine the number of repetitions R of PUSCH (see, for example, FIGS. 5 and 6). In addition, the user terminal 10 is based on the RO or RA preamble selected in step S104, and Msg. 3 The number of repetitions R of PUSCH may be determined (see, for example, FIGS. 5 and 6).
 ステップS109において、ユーザ端末10は、ステップS108で決定された繰り返し数RだけMsg.3 PUSCHを繰り返して送信する。基地局20は、ステップS106において決定された繰り返し数Rに基づいて当該Msg.3 PUSCHの受信処理を行う。例えば、基地局20は、当該繰り返し数RだけMsg.3 PUSCHを合成してもよい。ステップS110において、ユーザ端末10は、衝突解決メッセージ(メッセージ4)を受信する。 In step S109, the user terminal 10 has Msg. 3 Repeat PUSCH to send. The base station 20 has the Msg. 3 Performs PUSCH reception processing. For example, the base station 20 has Msg. 3 PUSCH may be synthesized. In step S110, the user terminal 10 receives the conflict resolution message (message 4).
 第1の実施形態に係る無線通信システム1によれば、RSRP測定値又はRSRQ測定値に繰り返し数Rが関連づけられるので、ユーザ端末10の位置に応じた適切な繰り返し数RでMsg.3 PUSCHの繰り返し送信を行うことができ、無線リソースの利用効率を向上できる。また、当該RSRP測定値又はRSRQ測定値(及び/又は繰り返し数R)がRO又はRAプリアンブルに関連付けられるので、繰り返し数Rのシグナリングなしに、基地局20がMsg.3 PUSCHの繰り返し数Rを認識できる。 According to the wireless communication system 1 according to the first embodiment, since the repetition number R is associated with the RSRP measurement value or the RSRQ measurement value, Msg. 3 PUSCH can be repeatedly transmitted, and the utilization efficiency of wireless resources can be improved. Further, since the RSRP measurement value or the RSRQ measurement value (and / or the repetition number R) is associated with the RO or RA preamble, the base station 20 can perform Msg. 3 The number of repetitions R of PUSCH can be recognized.
 [第2の実施形態]
 次に、第2の実施形態に係る無線通信システム1の各装置の構成について説明する。第2の実施形態では、ユーザ端末10は、上記RSRP測定値又はRSRQ測定値に加えて、当該ユーザ端末10のパワークラスに基づいて、メッセージ3の繰り返し送信を制御する点で、第1の実施形態と異なる。第2の実施形態では、第1の実施形態との相違点を中心に説明する。
[Second Embodiment]
Next, the configuration of each device of the wireless communication system 1 according to the second embodiment will be described. In the second embodiment, the user terminal 10 controls the repeated transmission of the message 3 based on the power class of the user terminal 10 in addition to the RSRP measurement value or the RSRQ measurement value. Different from. In the second embodiment, the differences from the first embodiment will be mainly described.
 (無線通信システムの構成)
 第2の実施形態に係るユーザ端末10及び基地局20は、図3に示すハードウェア構成を有する。また、当該ユーザ端末10及び基地局20は、図4及び7に示す構成を有し、以下の機能を有する。
(Configuration of wireless communication system)
The user terminal 10 and the base station 20 according to the second embodiment have the hardware configuration shown in FIG. Further, the user terminal 10 and the base station 20 have the configurations shown in FIGS. 4 and 7 and have the following functions.
 第2の実施形態において、ユーザ端末10の受信部101は、パワークラス(Power Class:PC)毎に上記第1の関連付け情報を受信してもよいし、又は、特定のPCの上記第1の関連付け情報を受信してもよい。また、受信部101は、PC毎に上記第2の関連付け情報を受信してもよいし、又は、特定のPCの第2の関連付け情報を受信してもよい。 In the second embodiment, the receiving unit 101 of the user terminal 10 may receive the first association information for each power class (Power Class: PC), or the first association of a specific PC. Information may be received. Further, the receiving unit 101 may receive the second association information for each PC, or may receive the second association information of a specific PC.
 ここで、PCとは、ユーザ端末10の最大送信電力に関するクラスであり、出力クラスとも呼ばれる。例えば、PC3の最大送信電力は23dBmであるのに対して、PC2の最大送信電力は26dBmである。 Here, the PC is a class related to the maximum transmission power of the user terminal 10, and is also called an output class. For example, the maximum transmission power of PC3 is 23 dBm, whereas the maximum transmission power of PC2 is 26 dBm.
 なお、上記PC毎の第1及び第2の関連付け情報、又は、特定のPCの第1及び第2の関連付け情報は、上記システム情報(例えば、SIBX)に含まれてもよい。また、第1及び第2の関連付け情報は、別々に受信されなくともよく、RSRP又はRSRQと繰り返し数RとRAプリアンブル又はROとの関連付けに関する関連付け情報としてPC毎又は特定のPCについて受信されてもよい。 The first and second association information for each PC or the first and second association information for a specific PC may be included in the system information (for example, SIBX). Further, the first and second association information does not have to be received separately, and may be received for each PC or for a specific PC as the association information regarding the association between RSRP or RSRQ and the repetition number R and RA preamble or RO. good.
 制御部103は、測定部104によって測定されるRSRP又はRSRQと、ユーザ端末10のPCと、に基づいて、Msg.3 PUSCHの繰り返し送信を制御する。具体的には、制御部103は、当該RSRP又はRSRQと、ユーザ端末10のPCと、に基づいて、Msg.3 PUSCHの繰り返し数Rを決定する。例えば、制御部103は、図9、10に例示する判断基準に基づいて、測定部104によって測定されるRSRP又はRSRQに関連付けられる繰り返し数Rを決定してもよい。 The control unit 103 is based on the RSRP or RSRQ measured by the measurement unit 104 and the PC of the user terminal 10, and Msg. 3 Control the repeated transmission of PUSCH. Specifically, the control unit 103 is based on the RSRP or RSRQ and the PC of the user terminal 10, and Msg. 3 Determine the number of repetitions R of PUSCH. For example, the control unit 103 may determine the number of repetitions R associated with the RSRP or RSRQ measured by the measurement unit 104 based on the criteria illustrated in FIGS. 9 and 10.
 図9は、第2の実施形態に係る繰り返し数Rの判断基準の一例を示す図である。例えば、図9に示す判断基準では、RSRP測定値に関する条件と、ROと、繰り返し数RがPC毎に関連付けられる。図9に示す各PCのRSRP測定値に関する条件と繰り返し数Rとの関連付けは、受信部101で受信されるPC毎の第1の関連付け情報によって示されてもよいし、特定のPCの第1の関連付け情報から導出されてもよい。同様に、図9に示す各PCのRSRP測定値に関する条件とROとの関連付けは、受信部101で受信されるPC毎の第2の関連付け情報によって示されてもよいし、特定のPCの第2の関連付け情報から導出されてもよい。 FIG. 9 is a diagram showing an example of a criterion for determining the number of repetitions R according to the second embodiment. For example, in the determination criteria shown in FIG. 9, the condition regarding the RSRP measured value, RO, and the number of repetitions R are associated with each PC. The association between the condition regarding the RSRP measurement value of each PC shown in FIG. 9 and the repetition number R may be indicated by the first association information for each PC received by the receiving unit 101, or the first association of the specific PC. It may be derived from the association information of. Similarly, the association between the RO and the condition regarding the RSRP measurement value of each PC shown in FIG. 9 may be indicated by the second association information for each PC received by the receiving unit 101, or the second association information of the specific PC. It may be derived from the association information of 2.
 例えば、各PCの第1の関連付け情報が受信される場合、制御部103は、各PCの第1及び第2の関連付け情報に基づいて、各PCのRSRP測定値に関する条件と繰り返し数RとROとの関連付けを導出してもよい。具体的には、最大送信電力23dBmのPC3の閾値αPC3として「-110」が基地局20から通知されるとともに、最大送信電力26dBmのPC2の閾値αPC2として「-113」が基地局20から通知されてもよい。 For example, when the first association information of each PC is received, the control unit 103 determines the condition regarding the RSRP measurement value of each PC, the number of repetitions R, and RO based on the first and second association information of each PC. You may derive the association with. Specifically, "-110" is notified from the base station 20 as the threshold value α PC3 of the PC3 having the maximum transmission power of 23 dBm, and “-113” is notified from the base station 20 as the threshold value α PC2 of the PC2 having the maximum transmission power of 26 dBm. You may be notified.
 或いは、受信部101によって特定のPC(例えば、PC3)の第1及び第2の関連付け情報が受信される場合、制御部103は、当該第1及び第2の関連付け情報に基づいて、他のPC(例えば、PC2)のRSRP測定値に関する条件と繰り返し数RとROとの関連付けを導出してもよい。具体的には、最大送信電力23dBmのPC3の閾値αPC3として「-110」が基地局20から通知される場合、制御部103は、閾値αPC3と所定のオフセットYとに基づいて、最大送信電力26dBmのPC2の閾値αPC2を導出してもよい。当該オフセットYは、例えば、PC間の最大送信電力の差(ここでは、PC3の最大送信電力23dBm-PC2の最大送信電力26dBm=-3dBm)であってもよいし、予め仕様で定められた値であってもよい。βPC3及びβPC2についても同様である。 Alternatively, when the receiving unit 101 receives the first and second association information of a specific PC (for example, PC3), the control unit 103 determines the other PC based on the first and second association information. The condition regarding the RSRP measurement value of (for example, PC2) and the association between the number of repetitions R and RO may be derived. Specifically, when "-110" is notified from the base station 20 as the threshold value α PC3 of the PC3 having the maximum transmission power of 23 dBm, the control unit 103 transmits the maximum transmission based on the threshold value α PC3 and the predetermined offset Y. The threshold value α PC2 of PC2 having a power of 26 dBm may be derived. The offset Y may be, for example, the difference in the maximum transmission power between the PCs (here, the maximum transmission power of the PC3 is 23 dBm-the maximum transmission power of the PC2 is 26 dBm = -3 dBm), or a value determined in advance in the specifications. It may be. The same applies to β PC3 and β PC2 .
 例えば、図9において、ユーザ端末10のPCがPC2である場合、RSRP測定値が閾値αPC2以上である場合、RAプリアンブルの送信にRO#4k(k=0,1,2,…)(例えば、図2のRO#0、#4、#8、…)を用いること、Msg.3 PUSCHの繰り返し数Rを1回とすることが示される。また、RSRP測定値が閾値αPC2より小さく閾値βPC2以上である場合、RAプリアンブルの送信にRO#4k+1(k=0,1,2,…)(例えば、図2のRO#1、#5、#9、…)を用いること、Msg.3 PUSCHの繰り返し数Rを2回とすることが示される。また、RSRP測定値が閾値βPC2より小さい場合、RAプリアンブルの送信にRO#4k+2(k=0,1,2,…)(例えば、図2のRO#2、#6、#10、…)を用いること、Msg.3 PUSCHの繰り返し数Rを4回とすることが示される。 For example, in FIG. 9, when the PC of the user terminal 10 is PC2, and the RSRP measurement value is the threshold value α PC2 or more, RO # 4k (k = 0, 1, 2, ...) (For example, , RO # 0, # 4, # 8, ...) In FIG. 2, Msg. 3 It is shown that the number of repetitions R of PUSCH is one. Further, when the RSRP measured value is smaller than the threshold value α PC2 and equal to or higher than the threshold value β PC2 , RO # 4k + 1 (k = 0, 1, 2, ...) (For example, RO # 1, # 5 in FIG. 2) is used to transmit the RA preamble. , # 9, ...), Msg. 3 It is shown that the repetition number R of PUSCH is set to 2 times. When the RSRP measurement value is smaller than the threshold value β PC2 , RO # 4k + 2 (k = 0, 1, 2, ...) (For example, RO # 2, # 6, # 10, ... In FIG. 2) is used to transmit the RA preamble. , Msg. 3 It is shown that the number of repetitions R of PUSCH is set to 4 times.
 図10は、第2の実施形態に係る繰り返し数Rの判断基準の他の例を示す図である。図10に示す判断基準では、ROの代わりに、RAプリアンブルが、RSRP測定値に関する条件と繰り返し数Rとに関連付けられる点で異なるが、その他の点は同様である。制御部103は、各PCの第1及び第2の関連付け情報に基づいて、各PCのRSRP測定値に関する条件と繰り返し数RとRAプリアンブルとの関連付けを導出してもよい。或いは、制御部103は、特定のPCの第1及び第2の関連付け情報に基づいて、ユーザ端末10のPCのRSRP測定値に関する条件と繰り返し数RとRAプリアンブルとの関連付けを導出してもよい。 FIG. 10 is a diagram showing another example of the criterion for determining the number of repetitions R according to the second embodiment. The criteria shown in FIG. 10 differ in that instead of RO, the RA preamble is associated with the condition for the RSRP measurement and the number of repetitions R, but the other points are the same. The control unit 103 may derive the association between the condition regarding the RSRP measurement value of each PC and the repetition number R and the RA preamble based on the first and second association information of each PC. Alternatively, the control unit 103 may derive the association between the condition regarding the RSRP measurement value of the PC of the user terminal 10 and the repetition number R and the RA preamble based on the first and second association information of the specific PC. ..
 図9、10に示すように、ユーザ端末10のPCに基づいてMsg.3 PUSCHの繰り返し数Rを決定することにより、最大送信電力が大きいPCのユーザ端末10が不必要にMsg.3 PUSCHの繰り返すのを防止できるので、無線リソースの利用効率を向上できる。 As shown in FIGS. 9 and 10, Msg. 3 By determining the number of repetitions R of PUSCH, the user terminal 10 of the PC having a large maximum transmission power is unnecessarily Msg. 3 Since it is possible to prevent PUSCH from repeating, it is possible to improve the utilization efficiency of wireless resources.
 なお、図9、10に示す判断基準は例示にすぎず、図示するものに限られない。例えば、図9、10では、各PCに2つの閾値α、βを示すが、閾値の数は1以上であればよい。また、各条件に関連付けられるRO又はRAプリアンブルも図示するものに限られないことは勿論である。また、図9、10では、RSRP測定値に基づく判断基準が示されるが、RSRQの測定値に置き換えられてもよいことは勿論である。また、上記判断基準は、マルチビーム運用時及び/又はシングルビーム運用時にも適用できることは勿論である。 The judgment criteria shown in FIGS. 9 and 10 are merely examples, and are not limited to those shown. For example, in FIGS. 9 and 10, two threshold values α and β are shown for each PC, but the number of threshold values may be 1 or more. Of course, the RO or RA preamble associated with each condition is not limited to the one shown in the figure. Further, although the judgment criteria based on the RSRP measured values are shown in FIGS. 9 and 10, it goes without saying that they may be replaced with the measured values of RSRQ. Of course, the above criteria can also be applied during multi-beam operation and / or single-beam operation.
 以上のように、制御部103は、PC毎に第1の関連付け情報が受信される場合、ユーザ端末10のPCの上記第1の関連付け情報に基づいて、RSRP又はRSRQに関連付けられた繰り返し数Rを決定してもよい。一方、制御部103は、特定のPCの第1の関連付け情報が受信される場合、当該第1の関連付け情報と所定のルール(例えば、上記所定のオフセットYに基づくルール)とに基づいてユーザ端末10のPCの第1の関連付け情報を導出し、導出された第1の関連付け情報に基づいて、RSRP又はRSRQに関連付けられた繰り返し数Rを決定してもよい。 As described above, when the first association information is received for each PC, the control unit 103 has the repetition number R associated with RSRP or RSRQ based on the first association information of the PC of the user terminal 10. May be determined. On the other hand, when the first association information of the specific PC is received, the control unit 103 uses the user terminal based on the first association information and a predetermined rule (for example, a rule based on the predetermined offset Y). The first association information of 10 PCs may be derived, and the number of repetitions R associated with RSRP or RSRQ may be determined based on the derived first association information.
 また、制御部103は、PC毎に第2の関連付け情報が受信される場合、ユーザ端末10のPCの上記第2の関連付け情報に基づいて、RSRP又はRSRQに関連付けられたRO又はRAプリアンブルを決定してもよい。一方、制御部103は、特定のPCの第2の関連付け情報が受信される場合、当該第2の関連付け情報と所定のルール(例えば、上記所定のオフセットYに基づくルール)とに基づいてユーザ端末10のPCの第2の関連付け情報を導出し、導出された第2の関連付け情報に基づいて、RSRP又はRSRQに関連付けられたRO又はRAプリアンブルを決定してもよい。 Further, when the second association information is received for each PC, the control unit 103 determines the RO or RA preamble associated with RSRP or RSRQ based on the second association information of the PC of the user terminal 10. You may. On the other hand, when the second association information of the specific PC is received, the control unit 103 uses the user terminal based on the second association information and a predetermined rule (for example, a rule based on the predetermined offset Y). The second association information of 10 PCs may be derived, and the RO or RA preamble associated with RSRP or RSRQ may be determined based on the derived second association information.
 第2の実施形態において、基地局20の送信部201は、PC毎に上記第1の関連付け情報を送信してもよいし、又は、特定のPCの上記第1の関連付け情報を送信してもよい。また、送信部201は、PC毎に上記第2の関連付け情報を送信してもよいし、又は、特定のPCの第2の関連付け情報を送信してもよい。なお、第1及び第2の関連付け情報は、別々に送信されなくともよく、RSRP又はRSRQと繰り返し数RとRAプリアンブル又はROとの関連付けに関する関連付け情報としてPC毎又は特定のPCについて送信されてもよい。 In the second embodiment, the transmission unit 201 of the base station 20 may transmit the first association information for each PC, or may transmit the first association information of a specific PC. good. Further, the transmission unit 201 may transmit the second association information for each PC, or may transmit the second association information of a specific PC. The first and second association information does not have to be transmitted separately, and may be transmitted for each PC or for a specific PC as the association information for the association between RSRP or RSRQ, the number of repetitions R, and the RA preamble or RO. good.
 制御部203は、受信部202によって受信されたRAプリアンブル又は当該RAプリアンブルの送信に用いられたROに基づいて、Msg.3 PUSCHの繰り返し数Rを決定してもよい。基地局20が、Msg.3 PUSCHの受信時点でユーザ端末10のPCを認識できない場合、図9、10に示されるRO又はRAプリアンブルと繰り返し数Rとの関連付けは、PC間で共通であってもよい。これにより、制御部203は、ユーザ端末10のPCの判断基準によってMsg.3 PUSCHの繰り返し数Rが決定されても、基地局20は、RO又はRAプリアンブルによってMsg.3 PUSCHの繰り返し数Rを認識できる。 The control unit 203 uses the RA preamble received by the reception unit 202 or the RO used for transmitting the RA preamble to obtain Msg. 3 The number of repetitions R of PUSCH may be determined. The base station 20 is Msg. 3. If the PC of the user terminal 10 cannot be recognized at the time of receiving the PUSCH, the association between the RO or RA preamble shown in FIGS. 9 and 10 and the repetition number R may be common among the PCs. As a result, the control unit 203 determines that the PC of the user terminal 10 has Msg. 3 Even if the repetition number R of PUSCH is determined, the base station 20 is determined by RO or RA preamble to Msg. 3 The number of repetitions R of PUSCH can be recognized.
 (無線通信システムの動作)
 次に、第2の実施形態に係る無線通信システム1の動作について説明する。図11は、第2の実施形態に係るCBRAの動作の一例を示す図である。なお、図11に示す動作は例示にすぎず、少なくとも一部のステップの順番が変更、省略及び/又は追加されてもよい。図11では、図8との相違点を説明し、同様の点についての説明は繰り返さない。図11のステップS201、S202、ステップS209及びS210は、図8のステップS101、S102、ステップS109及びS110と同様である。
(Operation of wireless communication system)
Next, the operation of the wireless communication system 1 according to the second embodiment will be described. FIG. 11 is a diagram showing an example of the operation of the CBRA according to the second embodiment. The operation shown in FIG. 11 is merely an example, and the order of at least some steps may be changed, omitted, and / or added. In FIG. 11, the differences from FIG. 8 will be described, and the description of the same points will not be repeated. Steps S201, S202, S209 and S210 of FIG. 11 are the same as steps S101, S102, S109 and S110 of FIG.
 図11のステップS203において、ユーザ端末10は、PDSCHを介してSIBを受信する。ユーザ端末10は、当該SIBに含まれるPC毎の上記第1及び第2の関連付け情報を含んでもよいし、又は、特定のPCについての上記第1及び第2の関連付け情報を含んでもよい。 In step S203 of FIG. 11, the user terminal 10 receives the SIB via the PDSCH. The user terminal 10 may include the first and second association information for each PC included in the SIB, or may include the first and second association information for a specific PC.
 ステップS204において、ユーザ端末10は、ステップS202におけるRSRP測定値又はRSRQ測定値と、ユーザ端末10のPCに基づいて、RAプリアンブル又はROを選択する(例えば、図9、10参照)。 In step S204, the user terminal 10 selects the RA preamble or RO based on the RSRP measured value or RSRQ measured value in step S202 and the PC of the user terminal 10 (see, for example, FIGS. 9 and 10).
 ステップS205において、ユーザ端末10は、ある(certain)ROを用いて、ステップS204で選択されたRAプリアンブル(メッセージ1)を送信する。又は、ユーザ端末10は、ステップS204で選択されたROを用いて、あるRAプリアンブル(メッセージ1)を送信する。 In step S205, the user terminal 10 uses a certain RO to transmit the RA preamble (message 1) selected in step S204. Alternatively, the user terminal 10 transmits a certain RA preamble (message 1) using the RO selected in step S204.
 ステップS206において、基地局20は、ステップS205で受信したRAプリアンブル又は当該RAプリアンブルが送信されたROに基づいて、ステップS209で受信するMsg.3 PUSCHの繰り返し数Rを決定する。ステップS207において、基地局20は、ステップS205で受信したRAプリアンブルに対するRARメッセージ(メッセージ2)を送信する。なお、RARメッセージに含まれる上りグラントの内容及びビット数をMsg.3 PUSCHの繰り返し数Rに関わらず、同一のビット数(例えば、27ビット)としてもよい。 In step S206, the base station 20 receives the RA preamble received in step S205 or the Msg. 3 Determine the number of repetitions R of PUSCH. In step S207, the base station 20 transmits a RAR message (message 2) for the RA preamble received in step S205. In addition, the content and the number of bits of the upstream grant included in the RAR message are described in Msg. 3 The same number of bits (for example, 27 bits) may be used regardless of the number of repetitions R of PUSCH.
 ステップS208において、ユーザ端末10は、ステップS202におけるRSRP測定値又はRSRQ測定値と、ユーザ端末10のPCと、に基づいて、Msg.3 PUSCHの繰り返し数Rを決定する(例えば、図9、10参照)。なお、ユーザ端末10は、ステップS204で選択されたRO又はRAプリアンブルに基づいて、Msg.3 PUSCHの繰り返し数Rを決定してもよい(例えば、図9、10参照)。 In step S208, the user terminal 10 is based on the RSRP measurement value or RSRQ measurement value in step S202 and the PC of the user terminal 10, and Msg. 3 Determine the number of repetitions R of PUSCH (see, for example, FIGS. 9 and 10). In addition, the user terminal 10 is based on the RO or RA preamble selected in step S204, and Msg. 3 The number of repetitions R of PUSCH may be determined (see, for example, FIGS. 9 and 10).
 第2の実施形態に係る無線通信システム1によれば、ユーザ端末10のPCに基づいてMsg.3 PUSCHの繰り返し数Rが決定されるので、最大送信電力が大きいPCのユーザ端末10が不必要にMsg.3 PUSCHの繰り返すのを防止できる。この結果、無線リソースの利用効率を向上できる。 According to the wireless communication system 1 according to the second embodiment, Msg. 3 Since the repetition number R of PUSCH is determined, the user terminal 10 of the PC having a large maximum transmission power is unnecessarily Msg. 3 PUSCH can be prevented from repeating. As a result, the utilization efficiency of wireless resources can be improved.
 (その他の実施形態)
 以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態で説明したフローチャート、シーケンス、実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。
(Other embodiments)
The embodiments described above are for facilitating the understanding of the present invention, and are not for limiting and interpreting the present invention. The flowchart, sequence, each element included in the embodiment, its arrangement, material, condition, shape, size, and the like described in the embodiment are not limited to those exemplified, and can be changed as appropriate. In addition, the configurations shown in different embodiments can be partially replaced or combined.
1…無線通信システム、10…ユーザ端末、20…基地局、30…コアネットワーク、101…受信部、102…送信部、103…制御部、104…測定部、201…送信部、202…受信部、203…制御部、11…プロセッサ、12…メモリ、13…記憶装置、14…通信装置、15…入力装置、16…出力装置 1 ... Wireless communication system, 10 ... User terminal, 20 ... Base station, 30 ... Core network, 101 ... Receiver unit, 102 ... Transmitter unit, 103 ... Control unit, 104 ... Measurement unit, 201 ... Transmitter unit, 202 ... Receiver unit , 203 ... Control unit, 11 ... Processor, 12 ... Memory, 13 ... Storage device, 14 ... Communication device, 15 ... Input device, 16 ... Output device

Claims (9)

  1.  同期信号ブロックを用いて、受信電力又は受信品質を測定する測定部と、
     ランダムアクセス(RA)プリアンブルを送信する送信部と、
     前記RAプリアンブルに対する応答メッセージを受信する受信部と、
     前記受信電力又は前記受信品質に基づいて、前記応答メッセージに応じたメッセージ3の送信に用いられる上り共有チャネルの繰り返し数を決定する制御部と、
     を備えるユーザ端末。
    A measuring unit that measures received power or reception quality using a synchronous signal block,
    A transmitter that sends a random access (RA) preamble,
    A receiver that receives a response message to the RA preamble, and
    A control unit that determines the number of repetitions of the uplink shared channel used for transmitting the message 3 in response to the response message based on the received power or the reception quality.
    User terminal with.
  2.  前記受信部は、前記受信電力又は前記受信品質と、前記繰り返し数と、の関連付けに関する第1の関連付け情報を受信し、
     前記制御部は、前記第1の関連付け情報に基づいて、前記受信電力又は前記受信品質に関連付けられた前記繰り返し数を決定する、
     請求項1に記載のユーザ端末。
    The receiving unit receives the first association information regarding the association between the received power or the reception quality and the number of repetitions.
    The control unit determines the received power or the number of repetitions associated with the received quality based on the first association information.
    The user terminal according to claim 1.
  3.  前記受信部は、パワークラス毎に前記第1の関連付け情報を受信し、
     前記制御部は、前記ユーザ端末のパワークラスの前記第1の関連付け情報に基づいて、前記受信電力又は前記受信品質に関連付けられた前記繰り返し数を決定する、
     請求項2に記載のユーザ端末。
    The receiving unit receives the first association information for each power class, and receives the first association information.
    The control unit determines the received power or the number of repetitions associated with the received quality based on the first association information of the power class of the user terminal.
    The user terminal according to claim 2.
  4.  前記受信部は、特定のパワークラスの前記第1の関連付け情報を受信し、
     前記制御部は、前記第1の関連付け情報に基づいて導出される前記ユーザ端末のパワークラスの第1の関連付け情報に基づいて、前記受信電力又は前記受信品質に関連付けられた前記繰り返し数を決定する、
     請求項2に記載のユーザ端末。
    The receiver receives the first association information of a specific power class and receives the first association information.
    The control unit determines the received power or the number of repetitions associated with the reception quality based on the first association information of the power class of the user terminal derived based on the first association information.
    The user terminal according to claim 2.
  5.  前記制御部は、前記受信電力又は前記受信品質に基づいて、前記RAプリアンブル又は前記RAプリアンブルの送信に用いるランダムアクセス機会を選択する、
     請求項1から請求項4のいずれかに記載のユーザ端末。
    The control unit selects a random access opportunity to use for transmitting the RA preamble or the RA preamble based on the received power or the reception quality.
    The user terminal according to any one of claims 1 to 4.
  6.  前記受信部は、前記受信電力又は前記受信品質と、前記RAプリアンブル又は前記ランダムアクセス機会と、の関連付けに関する第2の関連付け情報を受信し、
     前記制御部は、前記第2の関連付け情報に基づいて、前記受信電力又は前記受信品質に関連付けられた、前記RAプリアンブル又は前記ランダムアクセス機会を選択する、
     請求項5に記載のユーザ端末。
    The receiving unit receives the second association information regarding the association between the received power or the reception quality and the RA preamble or the random access opportunity.
    The control unit selects the RA preamble or the random access opportunity associated with the received power or the received quality based on the second association information.
    The user terminal according to claim 5.
  7.  前記受信部は、パワークラス毎に前記第2の関連付け情報を受信し、
     前記制御部は、前記ユーザ端末のパワークラスの前記第2の関連付け情報に基づいて、前記受信電力又は前記受信品質に関連付けられた前記RAプリアンブル又は前記ランダムアクセス機会を決定する、
     請求項6に記載のユーザ端末。
    The receiving unit receives the second association information for each power class, and receives the second association information.
    The control unit determines the RA preamble or the random access opportunity associated with the received power or the received quality based on the second association information of the power class of the user terminal.
    The user terminal according to claim 6.
  8.  前記受信部は、特定のパワークラスの前記第2の関連付け情報を受信し、
     前記制御部は、前記第2の関連付け情報に基づいて導出される前記ユーザ端末のパワークラスの第2の関連付け情報に基づいて、前記受信電力又は前記受信品質に関連付けられた前記RAプリアンブル又は前記ランダムアクセス機会を決定する、
     請求項6に記載のユーザ端末。
    The receiver receives the second association information of a specific power class and receives the second association information.
    The control unit has the RA preamble or the random access associated with the received power or the reception quality based on the second association information of the power class of the user terminal derived based on the second association information. Determine the opportunity,
    The user terminal according to claim 6.
  9.  同期信号ブロックを用いて、受信電力又は受信品質を測定するステップと、
     ランダムアクセス(RA)プリアンブルを送信するステップと、
     前記RAプリアンブルに対する応答メッセージを受信するステップと、
     前記受信電力又は前記受信品質に基づいて、前記応答メッセージに応じたメッセージ3の送信に用いられる上り共有チャネルの繰り返し数を決定するステップと、
     を有するユーザ端末の無線通信方法。
    Steps to measure received power or received quality using a synchronous signal block,
    Steps to send a random access (RA) preamble,
    The step of receiving the response message to the RA preamble, and
    A step of determining the number of iterations of the uplink shared channel used to transmit the message 3 in response to the response message, based on the received power or the received quality.
    A wireless communication method for a user terminal having.
PCT/JP2021/001069 2021-01-14 2021-01-14 User terminal and wireless communication method WO2022153445A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/001069 WO2022153445A1 (en) 2021-01-14 2021-01-14 User terminal and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/001069 WO2022153445A1 (en) 2021-01-14 2021-01-14 User terminal and wireless communication method

Publications (1)

Publication Number Publication Date
WO2022153445A1 true WO2022153445A1 (en) 2022-07-21

Family

ID=82448085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001069 WO2022153445A1 (en) 2021-01-14 2021-01-14 User terminal and wireless communication method

Country Status (1)

Country Link
WO (1) WO2022153445A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220232639A1 (en) * 2021-01-15 2022-07-21 FG Innovation Company Limited Method related to pusch repetitions, user equipment, and network device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022864A1 (en) * 2015-08-06 2017-02-09 シャープ株式会社 Wireless communication system, terminal device, base station device, wireless communication method, and integrated circuit
JP2019527979A (en) * 2016-08-05 2019-10-03 ノキア テクノロジーズ オーユー Select coverage extension level based on power class
WO2020230839A1 (en) * 2019-05-14 2020-11-19 株式会社Nttドコモ User equipment and wireless communication method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022864A1 (en) * 2015-08-06 2017-02-09 シャープ株式会社 Wireless communication system, terminal device, base station device, wireless communication method, and integrated circuit
JP2019527979A (en) * 2016-08-05 2019-10-03 ノキア テクノロジーズ オーユー Select coverage extension level based on power class
WO2020230839A1 (en) * 2019-05-14 2020-11-19 株式会社Nttドコモ User equipment and wireless communication method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220232639A1 (en) * 2021-01-15 2022-07-21 FG Innovation Company Limited Method related to pusch repetitions, user equipment, and network device
US12096487B2 (en) * 2021-01-15 2024-09-17 FG Innovation Company Limited Method related to PUSCH repetitions, user equipment, and network device

Similar Documents

Publication Publication Date Title
CN110730489B (en) Method and apparatus for system information acquisition in a wireless communication system
US10972924B2 (en) Beam-based multi-connection communication method, terminal device, and network device
US20230041767A1 (en) Interaction of the wake-up signal (wus) with downlink positioning reference signal (prs) reception in a wireless network
KR102408284B1 (en) Measurement configuration for active mode mobility measurements
RU2734615C1 (en) Wireless communication device, radio communication network node and communication methods realized therein in wireless communication network
CN109845130B (en) Methods and apparatus related to providing beam coverage for a communication device operating in a wireless communication network
US11005639B2 (en) Methods and apparatus for associating carriers in a wireless communication network
CN109792305B (en) Method and apparatus for radio link measurement configuration
WO2019169359A1 (en) System and method for hierarchical paging, cell selection and cell reselection
CN111918304B (en) Communication method and device
JP6636038B2 (en) User equipment and method for link quality determination
US10993130B2 (en) Measurement method and apparatus
US20230292281A1 (en) Positioning method
US12096342B2 (en) Limited cell search mode for wireless devices
JP2021503217A (en) Handover to a target cell, which is an NR cell that includes a first UL carrier that is an NR uplink (UL) carrier and a second UL carrier that is an auxiliary uplink (SUL) carrier.
WO2022153445A1 (en) User terminal and wireless communication method
US20140064229A1 (en) Method and apparatus for transmitting discovery signal in wireless communication system
JPWO2017170774A1 (en) User device, base station, and broadcast information receiving method
CN115053628B (en) Interaction of wake-up signal (WUS) with downlink Positioning Reference Signal (PRS) reception in a wireless network
TWI841960B (en) Radio network node, user equipment, and methods performed in a wireless communication network
JP7418589B2 (en) User terminal and wireless communication method
WO2022215151A1 (en) Terminal device, base station device, and wireless communication method
WO2021156994A1 (en) Terminal device, base station device, and wireless communication method
JP5893205B2 (en) Inter-cell interference detection related to interference between portable, long, term, evolution, local area and network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21919339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP