WO2022014515A1 - 熱交換器 - Google Patents
熱交換器 Download PDFInfo
- Publication number
- WO2022014515A1 WO2022014515A1 PCT/JP2021/026070 JP2021026070W WO2022014515A1 WO 2022014515 A1 WO2022014515 A1 WO 2022014515A1 JP 2021026070 W JP2021026070 W JP 2021026070W WO 2022014515 A1 WO2022014515 A1 WO 2022014515A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat transfer
- transfer tube
- heat
- heat exchanger
- region
- Prior art date
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 209
- 239000007788 liquid Substances 0.000 claims description 115
- 230000007246 mechanism Effects 0.000 description 36
- 239000012530 fluid Substances 0.000 description 31
- 239000000463 material Substances 0.000 description 18
- 238000010438 heat treatment Methods 0.000 description 16
- 238000004378 air conditioning Methods 0.000 description 14
- 230000000694 effects Effects 0.000 description 14
- 230000004048 modification Effects 0.000 description 14
- 238000012986 modification Methods 0.000 description 14
- 125000006850 spacer group Chemical group 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000001816 cooling Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 239000012071 phase Substances 0.000 description 8
- 230000008859 change Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000005057 refrigeration Methods 0.000 description 6
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 230000014509 gene expression Effects 0.000 description 5
- 238000005219 brazing Methods 0.000 description 4
- 230000008602 contraction Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000003672 processing method Methods 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 230000008961 swelling Effects 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004093 laser heating Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/16—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/0535—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
- F28D1/05366—Assemblies of conduits connected to common headers, e.g. core type radiators
- F28D1/05383—Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/20—Deep-drawing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D53/00—Making other particular articles
- B21D53/02—Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
- B21D53/06—Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of metal tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/0246—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid heat-exchange elements having several adjacent conduits forming a whole, e.g. blocks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
- F28F1/022—Tubular elements of cross-section which is non-circular with multiple channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
- F28F1/025—Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
- F28F1/04—Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/08—Tubular elements crimped or corrugated in longitudinal section
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/24—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
- F28F1/26—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being integral with the element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/42—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
- F28F1/424—Means comprising outside portions integral with inside portions
- F28F1/426—Means comprising outside portions integral with inside portions the outside portions and the inside portions forming parts of complementary shape, e.g. concave and convex
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/06—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
- F28F13/08—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F19/00—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
- F28F19/006—Preventing deposits of ice
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/10—Induction heating apparatus, other than furnaces, for specific applications
- H05B6/101—Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/04—Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0068—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2215/00—Fins
- F28F2215/04—Assemblies of fins having different features, e.g. with different fin densities
Definitions
- This disclosure relates to heat exchangers, and particularly to heat exchangers that do not use heat transfer fins.
- a plurality of heat transfer fins in which a plurality of refrigerant flow paths extending in the first direction are arranged in a second direction intersecting the first direction and a plurality of heat transfer fins are arranged in a third direction intersecting the first direction and the second direction are provided.
- Heat exchangers that are not used are known.
- Patent Document 1 International Publication No. 2005/073655
- a flat heat transfer tube in which a plurality of refrigerant flow paths extending in the first direction are arranged in the third direction is orthogonal to the first direction and the third direction.
- a plurality of heat exchangers arranged in a second direction and which do not use heat transfer fins are disclosed.
- a plurality of refrigerant flow paths extending in the first direction are arranged along the second direction intersecting the first direction, and the third aspect intersects the first direction and the second direction.
- the heat exchanger includes a plurality of heat transfer tubes forming a refrigerant flow path. At least one of the size of the outer edge and the size of the inner edge of the heat transfer tube is different between the first position and the second position in the first direction.
- each refrigerant flow path in each refrigerant flow path, at least one of the sizes of the outer edge and the inner edge of the heat transfer tube is changed along the first direction, in other words, along the refrigerant flow path.
- the efficiency of the heat exchanger can be improved according to the change in the state of the refrigerant.
- the heat exchanger according to the second aspect is the heat exchanger according to the first aspect, and the heat transfer tube is a flat multi-hole tube forming a plurality of refrigerant flow paths arranged along the third direction.
- the heat exchanger according to the second aspect by using a flat multi-hole tube as a heat transfer tube, it is possible to efficiently exchange heat between the refrigerant and the external fluid without using heat transfer fins.
- the heat exchanger according to the third aspect is the heat exchanger of the first aspect or the second aspect, and the first direction is the vertical direction.
- the heat exchanger according to the fourth aspect is any of the heat exchangers from the first aspect to the third aspect, and the heat transfer tube has the first part and the second part alternately along the first direction. Includes the first region being formed. The second portion bulges in a direction intersecting the first direction with respect to the first portion.
- the heat exchange efficiency in the first region of the heat transfer tube is improved by alternately providing the first portion (concave portion) and the second portion (convex portion) along the first direction. can.
- the heat exchanger according to the fifth aspect is the heat exchanger of the fourth aspect, and the first heat transfer tube and the second heat transfer tube adjacent to each other in the second direction both include the first region. In the first direction, the second portion of the first heat transfer tube and the second portion of the second heat transfer tube are formed at the same position.
- the positions of the second parts of the heat transfer tubes adjacent to the second direction are the same in the first direction, the positions of the first parts of the heat transfer tubes adjacent to the second direction are also the same. They match in the first direction. Therefore, in this heat exchanger, a relatively large gap can be formed between the first portions (recesses) of the adjacent heat transfer tubes, and a relatively large flow path for the external fluid can be secured.
- the heat exchanger according to the sixth aspect is the heat exchanger of the fourth aspect, and the first heat transfer tube and the second heat transfer tube adjacent to each other in the second direction both include the first region. In the first direction, the second portion of the first heat transfer tube and the first portion of the second heat transfer tube are formed at the same position. In the first direction, the first portion of the first heat transfer tube and the second portion of the second heat transfer tube are formed at the same position.
- the position of the second portion (convex portion) of the heat transfer tube is aligned with the position of the first portion (concave portion) of the adjacent heat transfer tube in the second direction.
- a relatively large gap can be formed between the second portion and the heat transfer tube adjacent thereto in the second direction. Therefore, a relatively large flow path of an external fluid can be secured between adjacent heat transfer tubes in the second direction.
- the heat exchanger according to the seventh aspect is any of the heat exchangers from the fourth aspect to the sixth aspect, and the first region is arranged at least in the central portion of the heat transfer tube in the first direction.
- a concave-convex structure is provided along the first direction in the central portion of the heat transfer tube in the first direction in which heat exchange is mainly performed, so that high heat exchange efficiency is likely to be realized.
- the heat exchanger according to the eighth aspect is any of the heat exchangers from the first aspect to the seventh aspect, and further includes a gas header to which the heat transfer tube is connected.
- the heat exchanger according to the eighth aspect has at least one of the following configurations (A) and (B).
- the size of the inner edge of the heat transfer tube of the gas header connection portion connected to the gas header of the heat transfer tube is larger than the average size of the inner edge other than the gas header connection portion of the heat transfer tube.
- the size of the outer edge of the heat transfer tube of the gas header connection portion connected to the gas header of the heat transfer tube is larger than the average size of the outer edge other than the gas header connection portion of the heat transfer tube.
- the heat exchanger according to the eighth aspect it is easy to suppress the pressure loss at the gas header connection portion of the heat transfer tube through which the gas refrigerant mainly flows.
- the heat exchanger according to the ninth aspect is any of the heat exchangers from the first aspect to the eighth aspect, and further includes a liquid header to which the heat transfer tube is connected.
- the heat exchanger according to the ninth aspect has at least one of the following configurations (C) and (D).
- the size of the inner edge of the heat transfer tube at the liquid header connection portion connected to the liquid header of the heat transfer tube is smaller than the average size of the inner edge other than the liquid header connection portion of the heat transfer tube.
- the size of the outer edge of the heat transfer tube at the liquid header connection portion connected to the liquid header of the heat transfer tube is smaller than the average size of the outer edge other than the liquid header connection portion of the heat transfer tube.
- heat transfer between the liquid refrigerant flowing through the liquid header connection portion and the external fluid can be promoted.
- the heat exchanger according to the tenth aspect is any of the heat exchangers from the fourth aspect to the seventh aspect, and further includes a gas header to which the heat transfer tube is connected and a liquid header to which the heat transfer tube is connected. ..
- the size of the outer edge of the heat transfer tube in the portion where the first portion is formed is larger than the size of the outer edge of the heat transfer tube in the liquid header connection portion connected to the liquid header of the heat transfer tube.
- the size of the outer edge of the heat transfer tube in the portion where the second portion is formed is equal to or smaller than the size of the outer edge of the heat transfer tube in the gas header connection portion connected to the gas header of the heat transfer tube.
- the size of the outer edge of the heat transfer tube is shaped according to the change in the state of the refrigerant in the first direction in the heat transfer tube, so that the heat transfer efficiency of the heat exchanger is improved. At the same time, it is possible to reduce the pressure loss in the heat exchanger.
- the heat exchanger according to the eleventh aspect is any of the heat exchangers from the fourth aspect to the sixth aspect, and functions at least as an evaporator.
- the first region is located at least at the downstream end of the heat transfer tube in the flow direction of the refrigerant in the heat transfer tube when the heat exchanger functions as an evaporator.
- the heat exchanger according to the twelfth aspect is any of the heat exchangers from the first aspect to the eleventh aspect, and bulges on the outer surface of the heat transfer tube in a direction intersecting the first direction and is adjacent in the second direction. A bulging portion that contacts the outer surface of the heat transfer tube is formed.
- the heat exchanger according to the twelfth aspect, it is possible to secure an appropriate external fluid flow path between the heat transfer tubes adjacent to each other in the second direction, and it is local due to the fact that the external fluid flow path is not secured. It is possible to suppress a decrease in heat exchange efficiency.
- the heat exchanger according to the thirteenth aspect is the heat exchanger according to the twelfth aspect, and the bulging portion of the heat transfer tube comes into contact with the bulging portion of the adjacent heat transfer tube in the second direction.
- the bulging portions of the heat transfer tubes are brought into contact with each other, a relatively large flow path of the external fluid can be secured between the adjacent heat transfer tubes in the second direction, and the external fluid can be secured. It is possible to suppress a local decrease in heat exchange efficiency due to the lack of a flow path.
- the heat exchanger according to the 14th viewpoint is the heat exchanger according to the 12th viewpoint, and the bulging portion of the heat transfer tube comes into contact with a portion other than the bulging portion of the adjacent heat transfer tube in the second direction.
- the heat exchanger since the bulging portion of the heat transfer tube and the portion other than the bulging portion of the heat transfer tube are brought into contact with each other, the heat exchange is more compact than the case where the bulging portions of the heat transfer tubes are brought into contact with each other.
- the vessel is easy to realize.
- the heat exchanger according to the fifteenth viewpoint is any of the heat exchangers from the twelfth viewpoint to the fourteenth viewpoint, and a recess portion extending along the third direction is formed in the bulging portion.
- the drainage property at the contact portion between the heat transfer tubes can be improved.
- the heat exchanger according to the 16th viewpoint is any heat exchanger from the 12th viewpoint to the 15th viewpoint, and the bulging portion includes a first bulging portion and a second bulging portion.
- the first bulging portion is provided at the end of the heat transfer tube in the first direction.
- the second bulging portion is provided in a portion other than the end portion in the first direction of the heat transfer tube.
- the length of the first bulging portion in the first direction is longer than the length of the second bulging portion in the first direction.
- the length of the first bulging portion provided at the end in the first direction of the heat transfer tube is relatively long, it is possible to secure the brazing allowance between the heat transfer tube and the header. It's easy.
- the heat exchanger according to the 17th viewpoint is any of the heat exchangers from the 1st viewpoint to the 16th viewpoint, and the heat transfer tube is dieless pultruded.
- the heat exchanger according to the seventeenth aspect relatively easily and compares heat transfer tubes in which at least one of the outer edge size and the inner edge size is different between the first position and the second position in the first direction. Since it can be manufactured in a short time, it is excellent in manufacturability.
- FIG. 3 is a schematic cross-sectional view of a heat transfer tube viewed from the arrow III-III in FIG. It is a schematic cross-sectional view of the heat transfer tube of IV-IV arrow view of FIG. It is a schematic cross-sectional view of the heat transfer tube of VV arrow view of FIG. It is a schematic cross-sectional view of the heat transfer tube of VI-VI arrow view of FIG. It is a schematic perspective view of the heat transfer tube of the heat source heat exchanger of FIG.
- the heat exchanger of the present disclosure will be described by exemplifying the case where the heat exchanger of the present disclosure is used as the heat source heat exchanger of the air conditioner 100, but the use of the heat exchanger of the present disclosure will be described. Is not limited to the heat source heat exchanger of the air conditioner.
- the heat exchanger of the present disclosure may be used as a heat source heat exchanger for a refrigerating cycle device other than an air conditioner, such as a hot water supply device, a floor heating device, and a low temperature device such as a refrigerator or a freezer.
- the use of the heat exchanger of the present disclosure is not limited to the heat source heat exchanger, and may be used for the heat exchanger used in the refrigeration cycle device (for example, the heat exchanger 32 used in the air conditioner 100 described later). ..
- FIG. 1 is a schematic configuration diagram of an air conditioner 100 that uses the heat exchanger of the present disclosure as a heat source heat exchanger 50.
- the air conditioner 100 is an example of a steam compression type refrigeration cycle device.
- the air conditioner 100 uses the refrigeration cycle to cool and heat the air-conditioned space.
- the air conditioner 100 mainly has one heat source unit 10 and one utilization unit 30.
- the number of the heat source unit 10 and the utilization unit 30 is not limited to one, and the air conditioner 100 may have a plurality of heat source units 10 and / or utilization units 30.
- the heat source unit 10 and the utilization unit 30 are connected by the gas refrigerant connecting pipe 26 and the liquid refrigerant connecting pipe 24 at the installation site of the air conditioning device 100 to form a refrigerant circuit 20 in which the refrigerant circulates. ..
- the air conditioner 100 of the present embodiment is a separate type air conditioner in which the heat source unit 10 and the utilization unit 30 are separate, but the air conditioner in which the heat exchanger of the present disclosure is used is used together with the heat source unit.
- the unit may be an integrated air conditioner housed in one casing.
- the refrigerant enclosed in the refrigerant circuit 20 is an HFC refrigerant such as R32 or R410A.
- the type of the refrigerant is not limited to the HFC refrigerant, and may be, for example, an HFO refrigerant such as HFO1234yf, HFO1234ze (E), or a mixed refrigerant thereof.
- the type of the refrigerant may be a natural refrigerant such as CO 2 gas.
- the heat source unit 10 mainly includes a compressor 12, a flow path switching mechanism 14, a heat source heat exchanger 50, an expansion mechanism 16, and a heat source fan 18 (see FIG. 1). ..
- the heat source unit 10 has a suction pipe 22a, a discharge pipe 22b, a first gas refrigerant pipe 22c, a liquid refrigerant pipe 22d, and a second gas refrigerant pipe 22e as pipes constituting a part of the refrigerant circuit 20 (FIG. 1).
- the suction pipe 22a connects the flow path switching mechanism 14 and the suction port of the compressor 12.
- the discharge pipe 22b connects the discharge port of the compressor 12 and the flow path switching mechanism 14.
- the first gas refrigerant pipe 22c connects the flow path switching mechanism 14 and the gas header 52 described later of the heat source heat exchanger 50.
- the liquid refrigerant pipe 22d connects the liquid header 54, which will be described later, of the heat source heat exchanger 50, and the liquid refrigerant connecting pipe 24.
- the expansion mechanism 16 is provided in the liquid refrigerant pipe 22d.
- the second gas refrigerant pipe 22e connects the flow path switching mechanism 14 and the gas refrigerant connecting pipe 26.
- the compressor 12 is a device that sucks the low-pressure gas refrigerant in the refrigeration cycle from the suction pipe 22a, compresses it by a compression mechanism (not shown), and discharges it to the discharge pipe 22b.
- a compression mechanism (not shown)
- various types of compressors such as a rotary compressor and a scroll compressor can be used.
- the motor (not shown) of the compressor 12 that drives the compression mechanism is an inverter motor with a variable rotation speed.
- the rotation speed of the motor is appropriately controlled by a control unit of the air conditioner 100 (not shown) according to the operating state of the air conditioner 100.
- the motor of the compressor 12 may be a constant speed motor.
- the flow path switching mechanism 14 is a mechanism for switching the flow direction of the refrigerant in the refrigerant circuit 20.
- the flow path switching mechanism 14 is a four-way switching valve.
- the flow path switching mechanism 14 is not limited to the four-way switching valve, and may be composed of a plurality of solenoid valves and a refrigerant pipe to realize switching of the flow direction of the refrigerant as described below. ..
- the flow path switching mechanism 14 switches the flow direction of the refrigerant in the refrigerant circuit 20 so that the refrigerant discharged by the compressor 12 is sent to the heat source heat exchanger 50 during the cooling operation of the air conditioner 100. Specifically, during the cooling operation of the air conditioner 100, the flow path switching mechanism 14 communicates the suction pipe 22a and the second gas refrigerant pipe 22e, and communicates the discharge pipe 22b and the first gas refrigerant pipe 22c (). See the solid line in FIG. 1).
- the flow path switching mechanism 14 switches the flow direction of the refrigerant in the refrigerant circuit 20 so that the refrigerant discharged by the compressor 12 is sent to the utilization heat exchanger 32 during the heating operation of the air conditioner 100. Specifically, during the heating operation of the air conditioner 100, the flow path switching mechanism 14 communicates the suction pipe 22a and the first gas refrigerant pipe 22c, and communicates the discharge pipe 22b and the second gas refrigerant pipe 22e (). See the broken line in FIG. 1).
- the heat source heat exchanger 50 is an example of the heat exchanger of the present disclosure.
- heat exchange is performed between the refrigerant flowing through the heat transfer tube 60 described later of the heat source heat exchanger 50 and the external fluid (air in the present embodiment).
- the heat source heat exchanger 50 functions as a radiator (condenser) for the refrigerant, and the refrigerant flowing through the heat transfer tube 60 exchanges heat with the external fluid (dissipates heat to the external fluid). To be cooled.
- the heat source heat exchanger 50 functions as a refrigerant evaporator, and the refrigerant flowing through the heat transfer tube 60 exchanges heat with an external fluid (absorbs heat from the external fluid) and is heated. Details of the structure and the like of the heat source heat exchanger 50 will be described later.
- the expansion mechanism 16 is a mechanism for reducing the pressure of the refrigerant.
- the expansion mechanism 16 of the present embodiment is an electronic expansion valve whose opening degree can be adjusted.
- the opening degree of the electronic expansion valve is appropriately controlled by a control unit of the air conditioner 100 (not shown) according to the operating state of the air conditioner 100.
- the expansion mechanism 16 is not limited to the electronic expansion valve, and may be a temperature automatic expansion valve using a temperature sensitive cylinder.
- the expansion mechanism 16 is not limited to the expansion valve whose opening degree can be adjusted, and may be a capillary tube.
- the heat source fan 18 is a device that promotes heat exchange between the refrigerant and air (external fluid) in the heat source heat exchanger 50 by supplying the air taken in from the outside of the heat source unit 10 to the heat source heat exchanger 50. ..
- the heat source fan 18 flows in from an intake port (not shown) formed in the casing of the heat source unit 10 (not shown), passes through the heat source heat exchanger 50, and is an exhaust port (not shown) formed in the casing of the heat source unit 10. Generates a flow of air that blows out from (omitted).
- the type of fan of the heat source fan 18 may be appropriately selected.
- the motor (not shown) that drives the heat source fan 18 is an inverter motor with a variable rotation speed. The rotation speed of the motor is appropriately controlled according to the operating state by a control unit of an air conditioner 100 (not shown). However, the motor that drives the heat source fan 18 may be a constant speed motor.
- the utilization unit 30 is a unit that air-conditions the air-conditioning target space by exchanging heat between the refrigerant and the air in the air-conditioning target space.
- the utilization unit 30 mainly has a utilization heat exchanger 32 and a utilization fan 34 (see FIG. 1).
- the utilization heat exchanger 32 is a fin-and-tube type heat exchanger having, for example, a plurality of heat transfer tubes and a plurality of heat transfer fins attached to the heat transfer tubes.
- the finless heat exchanger (without heat transfer fins) of the present disclosure can also be used for the utilization heat exchanger 32.
- the utilization heat exchanger 32 functions as a refrigerant evaporator during the cooling operation of the air conditioner 100, and the refrigerant flowing through the heat transfer tube of the utilization heat exchanger 32 exchanges heat with the air in the air conditioning target space (air conditioning target). It is heated (by absorbing heat from the air in the space). In other words, during the cooling operation of the air conditioner 100, the air in the air-conditioned space is cooled by the refrigerant flowing through the heat transfer tube of the utilization heat exchanger 32.
- the utilization heat exchanger 32 functions as a radiator (condenser) of the refrigerant during the heating operation of the air conditioning device 100, and the refrigerant flowing through the heat transfer tube of the utilization heat exchanger 32 exchanges heat with the air in the air conditioning target space. (Dissipates heat to the air in the air-conditioned space) and is cooled. In other words, during the heating operation of the air conditioner 100, the air in the air-conditioned space is heated by the refrigerant flowing through the heat transfer tube of the utilization heat exchanger 32.
- the utilization fan 34 is a device that promotes heat exchange between the refrigerant in the utilization heat exchanger 32 and the air in the air conditioning target space by supplying the air taken in from the air conditioning target space to the utilization heat exchanger 32.
- the utilization fan 34 flows from the air-conditioned space through the intake port (not shown) formed in the casing (not shown) of the utilization unit 30, passes through the utilization heat exchanger 32, and is formed in the casing of the utilization unit 30. Generates an air flow that blows out from the air outlet (not shown) to the air-conditioned space.
- the type of fan of the fan 34 to be used may be appropriately selected.
- the motor (not shown) that drives the fan 34 is an inverter motor with a variable rotation speed. The rotation speed of the motor is appropriately controlled according to the operating state by a control unit of an air conditioner 100 (not shown). However, the motor that drives the utilization fan 34 may be a constant speed motor.
- the low-pressure gas refrigerant in the refrigeration cycle flowing from the suction pipe 22a is compressed by the compression mechanism of the compressor 12 to become a high-pressure gas refrigerant.
- the high-pressure gas refrigerant discharged by the compressor 12 flows into the heat source heat exchanger 50 via the discharge pipe 22b, the flow path switching mechanism 14, and the first gas refrigerant pipe 22c.
- the high-pressure gas refrigerant is cooled and condensed by exchanging heat with the air supplied by the heat source fan 18 in the heat source heat exchanger 50, undergoes a gas-liquid two-phase state, and finally becomes a high-pressure liquid refrigerant. Become.
- the high-pressure liquid refrigerant flowing out of the heat source heat exchanger 50 is sent to the expansion mechanism 16.
- the low-pressure gas-liquid two-phase refrigerant decompressed by the expansion mechanism 16 flows through the liquid refrigerant pipe 22d and the liquid refrigerant connecting pipe 24 and flows into the liquid side of the utilization heat exchanger 32.
- the refrigerant flowing into the used heat exchanger 32 exchanges heat with the air in the air-conditioned space to evaporate, becomes a low-pressure gas refrigerant, and flows out from the used heat exchanger 32.
- the low-pressure gas refrigerant flowing out of the utilization heat exchanger 32 is sucked into the compressor 12 again via the gas refrigerant connecting pipe 26, the second gas refrigerant pipe 22e, the flow path switching mechanism 14 and the suction pipe 22a.
- the low-pressure gas refrigerant in the refrigeration cycle flowing from the suction pipe 22a is compressed by the compression mechanism of the compressor 12 to become a high-pressure gas refrigerant.
- the high-pressure gas refrigerant discharged by the compressor 12 flows into the utilization heat exchanger 32 via the discharge pipe 22b, the flow path switching mechanism 14, the second gas refrigerant pipe 22e, and the gas refrigerant connecting pipe 26.
- the high-pressure gas refrigerant is cooled and condensed by exchanging heat with the air in the air-conditioned space in the utilization heat exchanger 32 to become a high-pressure liquid refrigerant.
- the high-pressure liquid refrigerant flowing out of the utilization heat exchanger 32 flows through the liquid refrigerant connecting pipe 24 and the liquid refrigerant pipe 22d and is sent to the expansion mechanism 16.
- the high-pressure liquid refrigerant sent to the expansion mechanism 16 is depressurized as it passes through the expansion mechanism 16.
- the low-pressure liquid phase or gas-liquid two-phase refrigerant decompressed by the expansion mechanism 16 flows into the heat source heat exchanger 50.
- the refrigerant flowing into the heat source heat exchanger 50 is heated and evaporated by exchanging heat with the air supplied by the heat source fan 18, becomes a low-pressure gas refrigerant, and flows out from the heat source heat exchanger 50.
- the low-pressure gas refrigerant flowing out of the heat source heat exchanger 50 is sucked into the compressor 12 again via the first gas refrigerant pipe 22c, the flow path switching mechanism 14 and the suction pipe 22a.
- FIG. 2 is a schematic front view of the heat source heat exchanger 50.
- FIG. 3 is a schematic cross-sectional view of the heat transfer tube 60 viewed from the arrow III-III in FIG.
- FIG. 4 is a schematic cross-sectional view of the heat transfer tube 60 seen by the arrow IV-IV in FIG.
- FIG. 5 is a schematic cross-sectional view of the heat transfer tube 60 viewed from the arrow VV of FIG.
- FIG. 6 is a schematic cross-sectional view of the heat transfer tube 60 viewed from the arrow VI of FIG.
- FIG. 7 is a schematic perspective view of the heat transfer tube 60 of the heat source heat exchanger 50.
- FIG. 8 is an enlarged schematic front view of a part of the heat source heat exchanger 50.
- FIG. 8 is a diagram for explaining the contact state between the heat transfer tubes 60 in the heat source heat exchanger 50 and the arrangement of the first portion 62a and the second portion 62b in the first region 62 of the heat transfer tube 60.
- FIGS. 2 to 8 are schematic views for explaining the features of the heat source heat exchanger 50. Therefore, FIGS. 2 to 8 do not limit the shape, size, quantity, etc. of the whole or part of the heat source heat exchanger 50.
- the heat source heat exchanger 50 mainly includes a gas header 52, a liquid header 54, and a heat exchange unit 56.
- the heat exchange unit 56 includes a plurality of heat transfer tubes 60. One end of each of the plurality of heat transfer tubes 60 is connected to the gas header 52. In this embodiment, the upper ends of each of the plurality of heat transfer tubes 60 are connected to the gas header 52. Further, one end of each of the plurality of heat transfer tubes 60 is connected to the liquid header 54. In this embodiment, the lower ends of each of the plurality of heat transfer tubes 60 are connected to the liquid header 54.
- the heat source heat exchanger 50 is a finless heat exchanger that does not use heat transfer fins.
- heat exchange between the refrigerant and the external fluid (air in the present embodiment) supplied by the heat source fan 18 is performed mainly in the heat transfer tube 60.
- the heat source heat exchanger 50 is made of, for example, aluminum or an aluminum alloy.
- the material of the heat source heat exchanger 50 is not limited to aluminum or an aluminum alloy, and may be made of, for example, a magnesium alloy. Further, as the material of the heat source heat exchanger 50, a material other than those illustrated may be selected.
- the materials of the gas header 52, the liquid header 54, and the heat transfer tube 60 of the heat exchange unit 56 may be different from each other. However, from the viewpoint of preventing electrolytic corrosion, it is preferable that the materials of the gas header 52, the liquid header 54, and the heat transfer tube 60 of the heat exchange section 56 are the same.
- the gas header 52 is a hollow member having a space formed inside.
- the gas header 52 extends linearly with a predetermined direction as the longitudinal direction.
- the longitudinal direction of the gas header 52 is defined as the left-right direction.
- the gas header 52 has a function of dividing the refrigerant flowing from the first gas refrigerant pipe 22c into a plurality of heat transfer pipes 60, or merging the refrigerants flowing in from the plurality of heat transfer pipes 60 and flowing them into the first gas refrigerant pipe 22c. It is a member having. This will be described in detail.
- an internal space is formed in which the refrigerant flows from the first gas refrigerant pipe 22c and the plurality of heat transfer pipes 60.
- each of the plurality of heat transfer tubes 60 of the heat exchange unit 56 is connected to the gas header 52.
- the gas header 52 is connected to the upper ends of the plurality of heat transfer tubes 60 of the heat exchange section 56.
- a plurality of heat transfer tubes 60 are connected to the gas header 52 so that the heat transfer tubes 60 are lined up along the longitudinal direction of the gas header 52.
- the plurality of heat transfer tubes 60 are brazed and fixed to the gas header 52, for example.
- the gas header 52 has a connecting portion 52a to which the first gas refrigerant pipe 22c is connected.
- the internal space of the gas header 52 and the first gas refrigerant pipe 22c communicate with each other via the connecting portion 52a.
- the gas header 52 when the heat source heat exchanger 50 functions as a condenser, the gas header 52 is provided with the refrigerant flowing into the internal space from the first gas refrigerant pipe 22c in each of the plurality of heat transfer pipes 60. It is split into the refrigerant flow path P. Further, when the heat source heat exchanger 50 functions as an evaporator, the gas header 52 merges the refrigerants flowing into the internal space from the plurality of heat transfer pipes 60 and flows them into the first gas refrigerant pipe 22c.
- the liquid header 54 is a hollow member having a space formed inside.
- the liquid header 54 extends linearly with a predetermined direction as the longitudinal direction. Specifically, the liquid header 54 extends linearly with the left-right direction as the longitudinal direction, similarly to the gas header 52.
- the liquid header 54 is arranged at a position immediately below the gas header 52 and corresponding to the gas header 52.
- the heat source heat exchanger 50 is installed in a casing (not shown) of the heat source unit 10 in such a posture that the heat transfer tube 60 connected to the gas header 52 and the liquid header 54 extends in the vertical direction.
- the liquid header 54 is a member having a function of dividing the refrigerant flowing from the liquid refrigerant pipe 22d into a plurality of heat transfer pipes 60 and merging the refrigerants flowing in from the plurality of heat transfer pipes 60 into the liquid refrigerant pipe 22d. Is. This will be described in detail.
- an internal space is formed in which the liquid refrigerant flows from the liquid refrigerant pipe 22d and the plurality of heat transfer pipes 60.
- each of the plurality of heat transfer tubes 60 of the heat exchange unit 56 (the end opposite to the side connected to the gas header 52) is connected to the liquid header 54.
- the lower ends of the plurality of heat transfer tubes 60 of the heat exchange section 56 are connected to the liquid header 54.
- a plurality of heat transfer tubes 60 are connected to the liquid header 54 so that the heat transfer tubes 60 are lined up along the longitudinal direction of the liquid header 54.
- Each heat transfer tube 60 having one end connected to the liquid header 54 and the other end connected to the gas header 52 extends in the vertical direction.
- the plurality of heat transfer tubes 60 are brazed and fixed to the liquid header 54, for example.
- the liquid header 54 has a connecting portion 54a to which the liquid refrigerant pipe 22d is connected.
- the internal space of the liquid header 54 and the liquid refrigerant pipe 22d communicate with each other via the connecting portion 54a.
- the liquid header 54 merges the liquid refrigerant flowing into the internal space from the plurality of heat transfer tubes 60 and causes the liquid refrigerant to flow into the liquid refrigerant pipe 22d. ..
- the liquid header 54 is provided with a liquid refrigerant or a gas-liquid two-phase refrigerant flowing into the internal space from the liquid refrigerant pipe 22d in each of the plurality of heat transfer tubes 60. It is split into the refrigerant flow path P.
- the heat exchange unit 56 includes a plurality of heat transfer tubes 60. With the heat source heat exchanger 50 installed, each heat transfer tube 60 extends in the vertical direction (first direction) as the longitudinal direction. Each heat transfer tube 60 is formed with a flow path of a refrigerant (refrigerant flow path P) extending in the longitudinal direction.
- refrigerant flow path P refrigerant flow path
- each heat transfer tube 60 is a flat multi-hole tube in which a plurality of refrigerant flow paths P are formed.
- a plurality of refrigerant flow paths P extending in the vertical direction are formed in each heat transfer tube 60 (see FIG. 7).
- the number of refrigerant flow paths P formed in each heat transfer tube 60 is not limited to the number of refrigerant flow paths P drawn in the drawings.
- each heat transfer tube 60 When each heat transfer tube 60 is cut in a plane orthogonal to the longitudinal direction, each heat transfer tube 60 has a certain direction as the longitudinal direction (hereinafter, this direction is referred to as the longitudinal direction D1 in the cross section), and the direction orthogonal to the longitudinal direction D1 in the cross section.
- the width of is thin and has a flat cross section.
- the expression of the cross section of the heat transfer tube 60 is when the heat transfer tube 60 is cut in a plane orthogonal to the longitudinal direction (vertical direction in the state where the heat source heat exchanger 50 is installed). Means a cross section.
- the cross section of each heat transfer tube 60 has a shape in which a plurality of circular tubes are arranged in the longitudinal direction D1 of the cross section, for example, as shown in FIG.
- the cross section drawn in FIG. 3 merely schematically shows the cross section of the heat transfer tube 60, and does not specifically limit the cross-sectional shape of the heat transfer tube 60.
- the cross-sectional shape of the heat transfer tube 60 is not limited to the shape as shown in FIG. 3, and the outer shape thereof may be a flat quadrangular shape.
- the cross section of each heat transfer tube 60 has an uneven shape along the longitudinal direction D1 of the cross section, for example, as shown in FIG.
- each heat transfer tube 60 a plurality of holes 61 forming the refrigerant flow path P are arranged side by side along the longitudinal direction D1 of the cross section, for example, as shown in FIG.
- the shape of the hole 61 is circular in the drawing, the shape of the hole 61 may be other than circular (for example, a quadrangle).
- the heat transfer tube 60 is attached to the gas header 52 and the liquid header 54 in such a posture that the direction in which the longitudinal direction D1 of the heat transfer tube 60 extends coincides with the front-rear direction.
- the front-rear direction along the longitudinal direction D1 of the cross section of the heat transfer tube 60 substantially coincides with the flow direction of the air generated by the heat source fan 18.
- the heat source fan 18 is arranged in front of the heat source heat exchanger 50 and blows air rearward toward the heat source heat exchanger 50.
- the ventilation resistance of the heat source heat exchanger 50 is suppressed and along the cross-sectional longitudinal direction D1.
- High heat exchange efficiency can be realized by efficiently contacting the side surface of the heat transfer tube 60 extending by the heat source fan 18 with the air sent by the heat source fan 18.
- the plurality of heat transfer tubes 60 are arranged side by side in the direction intersecting the longitudinal direction D1 of the cross section. Specifically, the plurality of heat transfer tubes 60 are attached to the gas header 52 and the liquid header 54 so as to be arranged in a direction orthogonal to the longitudinal direction D1 of the cross section. In other words, in the present embodiment, the plurality of heat transfer tubes 60 are arranged side by side in the left-right direction.
- a plurality of refrigerant flow paths P extending in the first direction are arranged along the second direction intersecting the first direction, and are arranged in the first direction and the second direction. A plurality of them are arranged along a third direction that intersects the directions.
- a plurality of refrigerant flow paths P extending in the vertical direction are arranged along the left-right direction orthogonal to the vertical direction, and along the front-back direction orthogonal to the vertical direction and the left-right direction. And multiple are placed.
- the heat transfer tube 60 of the heat source heat exchanger 50 of the present disclosure has a portion in which at least one of the outer edge size and the inner edge size is different in the vertical direction in which the refrigerant flow path P extends.
- One is different.
- the size of the outer edge of the heat transfer tube 60 at a certain position in the vertical direction in which the refrigerant flow path P extends is the length of the outer edge of the cross section when the heat transfer tube 60 is cut in a plane orthogonal to the vertical direction at that position. Means.
- the size of the inner edge of the heat transfer tube 60 at a certain position in the vertical direction in which the refrigerant flow path P extends is the length of the outer circumference of the hole 61 when the heat transfer tube 60 is cut in a plane orthogonal to the vertical direction at that position. It means the sum of the sa.
- Each heat transfer tube 60 has a first region 62, a second region 66, and a third region 68 having different characteristics of the size of the outer edge and / or the inner edge in the vertical direction.
- the positions of the first region 62, the second region 66, and the third region 68, the shapes of the heat transfer tubes 60 in the first region 62, the second region 66, and the third region 68, and the like will be described below.
- the second region 66 is a region below the heat transfer tube 60.
- the second region 66 is the region of the end portion of the heat transfer tube 60 on the side connected to the liquid header 54.
- the heat transfer tube 60 is connected to the liquid header 54 at the portion of the second region 66 of the heat transfer tube 60.
- the second region 66 of the heat transfer tube 60 is an example of the liquid header connection portion in the claims.
- the range in which the second region 66 exists is not limited, for example, the second region 66 is arranged in a range above the lower end of the heat transfer tube 60 by a length of 10% of the vertical length of the heat transfer tube 60. Will be done.
- the third region 68 is the region above the heat transfer tube 60.
- the third region 68 is the region of the end portion of the heat transfer tube 60 on the side connected to the gas header 52.
- the heat transfer tube 60 is connected to the gas header 52 at the portion of the third region 68 of the heat transfer tube 60.
- the third region 68 of the heat transfer tube 60 is an example of the gas header connection portion in the claims.
- the third region 68 is arranged in a range below the upper end of the heat transfer tube 60 by 10% of the vertical length of the heat transfer tube 60. To.
- the first region 62 is arranged between the second region 66 and the third region 68 in the vertical direction.
- the first region 62 is preferably located at least in the center of the heat transfer tube 60 in the vertical direction.
- the central portion of the heat transfer tube 60 means a range of 25% of the vertical length of the heat transfer tube 60 from the center of the heat transfer tube 60 in the vertical direction in the upward and downward directions.
- the first region 62 and the second region 66 may be arranged so as to be adjacent to each other in the vertical direction. Further, a region that does not belong to any of the first region 62 and the second region 66 described below may exist between the first region 62 and the second region 66. Similarly, the first region 62 and the third region 68 may be arranged so as to be adjacent to each other in the vertical direction, and will be described below between the first region 62 and the third region 68. There may be a region that does not belong to any of the first region 62 and the third region 68.
- First region A first portion 62a and a second portion 62b are formed in the heat transfer tube 60 of the first region 62.
- the second portion 62b includes a non-contact portion 63 and a contact portion 64.
- the contact portion 64 is an example of a bulging portion and a second bulging portion within the scope of claims.
- the non-contact portion 63 and the contact portion 64 of the second portion 62b bulge in a direction intersecting the vertical direction with respect to the first portion 62a.
- the non-contact portion 63 and the contact portion 64 bulge with respect to the first portion 62a at least in the left-right direction, in other words, toward the adjacent heat transfer tube 60.
- the amount of swelling with respect to the first portion 62a is different between the non-contact portion 63 and the contact portion 64. Specifically, the amount of swelling of the contact portion 64 with respect to the first portion 62a is larger than the amount of swelling of the non-contact portion 63 with respect to the first portion 62a. Further, the non-contact portion 63 does not contact the outer surface 60f of the adjacent heat transfer tube 60, whereas the contact portion 64 contacts the outer surface 60f of the adjacent heat transfer tube 60 in the left-right direction.
- the non-contact portion 63 and the contact portion 64 are different in that the recessed portion 64a is formed in the contact portion 64 and the recessed portion 64a is not formed in the non-contact portion 63.
- the recessed portion 64a includes a groove portion that is recessed in a direction away from the heat transfer tube 60 with which the contact portion 64 contacts and extends in the front-rear direction.
- the heat transfer tube 60 has a first portion 62a along the vertical direction and a second portion 62b (non-contact portion 63 or contact) that bulges in a direction intersecting the vertical direction with respect to the first portion 62a. Part 64) and are alternately formed (see FIG. 2).
- the first portion 62a (concave portion) and the second portion 62b (convex portion) are alternately arranged in the first region 62 of the heat transfer tube 60 along the vertical direction to form the first heat transfer tube 60.
- the outer surface 60f of the region 62 is formed with irregularities along the vertical direction (see FIG. 2).
- the size of the outer edge of the non-contact portion 63 is larger than the size of the outer edge of the first portion 62a as shown in FIG. big.
- the cross section of the first portion 62a is shown by a two-dot chain line
- the size of the outer edge of the non-contact portion 63 is shown by a solid line.
- the size of the outer edge of the contact portion 64 is also larger than the size of the outer edge of the first portion 62a.
- the size of the outer edge of the contact portion 64 is larger than the size of the outer edge of the non-contact portion 63.
- the size of the inner edge of the non-contact portion 63 is also larger than the size of the inner edge of the first portion 62a.
- the size of the inner edge of the contact portion 64 is also larger than the size of the inner edge of the first portion 62a.
- the size of the hole 61 in the non-contact portion 63 and the contact portion 64 is larger than the size of the hole 61 in the first portion 62a.
- the flow path area of the refrigerant flow path P in the non-contact portion 63 and the contact portion 64 is larger than the flow path area of the refrigerant flow path P in the first portion 62a.
- all the heat transfer tubes 60 have the first region 62. Further, in all the heat transfer tubes 60, the first region 62 is arranged at the same position in the vertical direction. Further, in the first region 62 of each heat transfer tube 60, the first portion 62a, the non-contact portion 63, and the contact portion 64 are arranged at the same position in the vertical direction. In short, in the heat source heat exchanger 50 of the present embodiment, the first portion 62a, the non-contact portion 63, and the contact portion 64 are arranged side by side in the horizontal direction at the same position in the vertical direction.
- a certain heat transfer tube 60 (referred to as a first heat transfer tube 60) and a heat transfer tube 60 (second heat transfer tube 60) adjacent to the first heat transfer tube 60 in the left-right direction.
- the heat pipe 60) includes the first region 62. Then, in the vertical direction, the non-contact portion 63 of the first heat transfer tube 60 and the non-contact portion 63 of the second heat transfer tube 60 are formed at the same position.
- the contact portion 64 of the first heat transfer tube 60 and the contact portion 64 of the second heat transfer tube 60 are formed at the same position in the vertical direction. Then, the contact portion 64 of the first heat transfer tube 60 comes into contact with the contact portion 64 of the second heat transfer tube 60 adjacent to each other in the left-right direction.
- the first region 62 of the heat transfer tube 60 is at least in the longitudinal direction of the heat transfer tube 60 extending from the refrigerant flow path P (the present embodiment). In the vertical direction), it is formed in the central portion of the heat transfer tube 60.
- the first region 62 of the heat transfer tube 60 is formed in the central region of the heat transfer tube 60 in the longitudinal direction of the heat transfer tube 60 (the central portion of the heat transfer tube 60 and its periphery).
- the central region of the heat transfer tube 60 is a region where heat exchange between the refrigerant and the external fluid is actively performed regardless of whether the heat source heat exchanger 50 functions as a condenser or an evaporator. Further, in the central region of the heat transfer tube 60, mainly the gas-liquid two-phase refrigerant flows in the central region of the heat transfer tube 60 regardless of whether the heat source heat exchanger 50 functions as a condenser or an evaporator.
- the heat transfer tube 60 In the first region 62 of the heat transfer tube 60, irregularities are repeatedly formed on the outer surface 60f of the heat transfer tube 60 along the vertical direction. In other words, in the first region 62 of the heat transfer tube 60, the heat transfer tube 60 repeatedly expands and contracts along the vertical direction. In other words, in the first region 62 of the heat transfer tube 60, the size of the outer edge of the heat transfer tube 60 repeats expansion and contraction along the vertical direction. Further, in the first region 62 of the heat transfer tube 60, the size of the inner edge of the heat transfer tube 60 also repeats expansion and contraction along the vertical direction. In other words, in the first region 62 of the heat transfer tube 60, the area of the refrigerant flow path P of the heat transfer tube 60 also repeatedly expands and contracts along the vertical direction.
- the first region where the outer edge of the heat transfer tube 60 repeatedly expands and contracts along the vertical direction (the direction in which the refrigerant flow path P extends) in the central region of the heat transfer tube 60 in other words, the region in which the gas-liquid two-phase refrigerant mainly flows.
- the heat transfer efficiency between the refrigerant and the external fluid can be improved.
- the size of the inner edge of the heat transfer tube 60 expands and contracts along the vertical direction (the direction in which the refrigerant flow path P extends) in the central region of the heat transfer tube 60, in other words, in the region where the two-phase gas-liquid refrigerant flows.
- frost may form on the heat source heat exchanger depending on the operating conditions.
- frost formation is particularly likely to occur on the upstream side in the flow direction of the external fluid (air) that exchanges heat with the refrigerant in the heat source heat exchanger.
- the heat source heat exchanger Frost is likely to form on the front end of the heat transfer tube 60 of 50.
- the heat transfer tube 60 when the heat transfer tube 60 is not provided with the first region 62 and the upper end of the heat transfer tube 60 is not provided with a portion that expands or contracts along the longitudinal direction (vertical direction) of the heat transfer tube 60.
- the width of the wind-upper end portion of the heat transfer tube 60 in the left-right direction is uniform along the longitudinal direction of the heat transfer tube 60
- frost formation proceeds substantially uniformly on the wind-upper end portion of the heat transfer tube 60. Therefore, the frost on the windward end of the heat transfer tube 60 blocks the air flow path, and the air conditioner 100 has a problem that the air cannot be sent to the leeward side of the windward end of the heat transfer tube 60. It may occur relatively early from the start of operation.
- the heat transfer tube 60 of the present embodiment has a first region 62, and the heat transfer tube 60 has a first portion 62a having a relatively small outer edge and a relatively large outer edge along the vertical direction. Two portions 62b are provided. In this way, when the outer surface 60f of the heat transfer tube 60 is repeatedly provided with irregularities along the first direction, the frost formation at the windward end of the heat transfer tube 60 tends to concentrate on the convex portion (in other words, the second portion 62b). ..
- frost formation on the first portion 62a of the first region 62 of the windward end portion of the heat transfer tube 60 is suppressed, and frost formation on the windward end portion of the heat transfer tube 60 is suppressed. It is possible to at least delay the occurrence of defects that block the air flow path. Therefore, in the air conditioner 100 using the heat source heat exchanger 50, the heating operation can be continued for a relatively long time without stopping due to the defrosting of the heat source heat exchanger 50.
- the non-contact portion 63 and the contact portion 64 of the first region 62 of the heat transfer tubes 60 adjacent to each other are formed at the same positions in the vertical direction.
- the first portion 62a of the first region 62 of the heat transfer tubes 60 adjacent to each other is formed at the same position in the vertical direction. Therefore, in the heat source heat exchanger 50 of the present embodiment, a relatively large air flow path can be secured between the first portions 62a of the first region 62 of the heat transfer tubes 60 adjacent to each other. Therefore, the blockage of the air flow path due to the frost on the windward end of the heat transfer tube 60 is particularly likely to be suppressed.
- the second portion 62b of the first region 62 of the heat transfer tube 60 is in the vertical direction of the heat transfer tube 60. It is preferable that it is provided in almost the entire area of the above.
- the contact portion 64 of the heat transfer tube 60 comes into contact with the contact portion 64 of the adjacent heat transfer tubes 60 in the left-right direction.
- the distance between the heat transfer tubes 60 can be adjusted to a predetermined distance.
- the contact portion 64 of the heat transfer tube 60 functions as a spacer for adjusting the arrangement pitch of the heat transfer tube 60.
- the arrangement pitch adjustment between the heat transfer tubes 60 can also be realized by arranging a spacer different from the heat transfer tubes 60 between the heat transfer tubes 60.
- the contact portion 64 formed on the heat transfer tube 60 itself as a spacer, the cost of providing a spacer separate from the heat transfer tube 60 and the spacer separate from the heat transfer tube 60 are attached to the heat transfer tube 60. Wages can be reduced.
- the second region 66 of the heat transfer tube 60 is, as described above, an example of the liquid header connection portion within the scope of the claims.
- the second region 66 of the heat transfer tube 60 is inserted into the liquid header 54, and at least a part of the second region 66 of the heat transfer tube 60 is connected to the liquid header 54.
- the second region 66 of the heat transfer tube 60 is not provided with irregularities (enlarged portion and reduced portion) on the outer surface 60f.
- the size of the outer edge of the heat transfer tube 60 is uniform.
- the size of the inner edge of the heat transfer tube 60 is uniform.
- the second region 66 of the heat transfer tube 60 is a portion formed in which the size of the inner edge of the heat transfer tube 60 is smaller than the portion other than the second region 66 of the heat transfer tube 60. Specifically, the size of the inner edge of the heat transfer tube 60 of the second region 66 is smaller than the average size of the inner edges of the heat transfer tube 60 other than the second region 66. Further, as shown in FIG. 4, the size of the inner edge of the heat transfer tube 60 in the second region 66 is smaller than the size of the inner edge of the heat transfer tube 60 in the first portion 62a of the first region 62. In FIG. 4, the cross section of the second region 66 is shown by a solid line, and the cross section of the first portion 62a of the first region 62 of the heat transfer tube 60 is shown by a two-dot chain line.
- the second region 66 of the heat transfer tube 60 is a portion formed in which the size of the outer edge of the heat transfer tube 60 is smaller than the portion other than the portion other than the second region 66 of the heat transfer tube 60. Specifically, the size of the outer edge of the heat transfer tube 60 of the second region 66 is smaller than the average size of the outer edge of the heat transfer tube 60 other than the second region 66. Further, as shown in FIG. 4, the size of the outer edge of the heat transfer tube 60 in the second region 66 is smaller than the size of the outer edge of the heat transfer tube 60 in the first portion 62a of the first region 62.
- the second region 66 of the heat transfer tube 60 is formed at the end of the heat transfer tube 60 on the side connected to the liquid header 54. Therefore, at the position corresponding to the second region 66 of the refrigerant flow path P of the heat transfer tube 60, the liquid refrigerant is mainly used regardless of whether the heat source heat exchanger 50 functions as a condenser or an evaporator. It flows.
- the size of the inner edge of the heat transfer tube 60 is located in a place where a liquid refrigerant having a smaller volume than the gas refrigerant (when the mass and pressure are the same) mainly flows.
- a second region 66 is provided, which is smaller than the size of the inner edge of the other portion of the heat transfer tube 60.
- the third region 68 of the heat transfer tube 60 is, as described above, an example of the gas header connection portion within the scope of the claims.
- the third region 68 of the heat transfer tube 60 is inserted into the gas header 52, and at least a part of the third region 68 of the heat transfer tube 60 is connected to the gas header 52.
- the third region 68 of the heat transfer tube 60 is an example of a bulging portion within the scope of claims.
- the outer surface 60f of the third region 68 of the heat transfer tube 60 is the longitudinal direction of the heat transfer tube 60 with respect to the portion adjacent to the third region 68 of the heat transfer tube 60 (the portion below the third region 68 of the heat transfer tube 60). It swells in a direction intersecting the vertical direction and comes into contact with the outer surface 60f of the adjacent heat transfer tube 60.
- the third region 68 of the heat transfer tube 60 is an example of the first bulging portion within the scope of the claims provided at the end portion in the vertical direction which is the longitudinal direction of the heat transfer tube 60.
- the third region 68 of the heat transfer tube 60 is not provided with irregularities (enlarged portion and reduced portion) on the outer surface 60f.
- the size of the inner edge of the heat transfer tube 60 is uniform.
- the size of the outer edge of the heat transfer tube 60 is uniform.
- the third region 68 of the heat transfer tube 60 is a portion where the size of the inner edge of the heat transfer tube 60 is formed larger than the portion other than the third region 68 of the heat transfer tube 60. Specifically, the size of the inner edge of the heat transfer tube 60 in the third region 68 is larger than the average size of the inner edges of the heat transfer tube 60 other than the third region 68. Further, as shown in FIG. 6, the size of the inner edge of the heat transfer tube 60 in the third region 68 is larger than the size of the inner edge of the heat transfer tube 60 in the non-contact portion 63 of the first region 62. In FIG. 6, the cross section of the third region 68 is shown by a solid line, and the cross section of the non-contact portion 63 of the first region 62 of the heat transfer tube 60 is shown by a two-dot chain line.
- the third region 68 of the heat transfer tube 60 is a portion where the size of the outer edge of the heat transfer tube 60 is formed larger than the portion other than the portion other than the third region 68 of the heat transfer tube 60. Specifically, the size of the outer edge of the heat transfer tube 60 of the third region 68 is larger than the average size of the outer edge of the heat transfer tube 60 other than the third region 68. Further, as shown in FIG. 6, the size of the outer edge of the heat transfer tube 60 in the third region 68 is larger than the size of the outer edge of the heat transfer tube 60 in the non-contact portion 63 of the first region 62.
- the size of the outer edge of the heat transfer tube 60 in the third region 68 is the same as the size of the outer edge of the heat transfer tube 60 in the contact portion 64 of the first region 62. Further, the maximum width of the heat transfer tube 60 in the third region 68 in the left-right direction is the same as the maximum width in the left-right direction of the contact portion 64 of the first region 62. Then, the third region 68 of the heat transfer tube 60 contacts the third region 68 of the adjacent heat transfer tube 60 in the left-right direction. Although not shown, it is preferable that a recessed portion similar to the recessed portion 64a of the contact portion 64 is formed in the third region 68 of the heat transfer tube 60.
- the length B1 of the third region 68 of the heat transfer tube 60 is preferably longer than the length B2 of the contact portion 64 of the first region 62 of the heat transfer tube 60. (See FIG. 2).
- the vertical length B1 of the third region 68 of the heat transfer tube 60 which is an example of the first bulging portion provided at the end of the heat transfer tube 60 in the vertical direction (first direction), is the heat transfer tube 60.
- the length of the contact portion 64 of the heat transfer tube 60 which is an example of the second bulging portion provided other than the end portion in the vertical direction, is longer than the length B2 in the vertical direction.
- the size of the inner edge of the heat transfer tube 60 is located in a place where a gas refrigerant having a larger volume than the liquid refrigerant (when the mass and pressure are the same) mainly flows.
- a third region 68 of the heat transfer tube 60 is provided, which is larger than the size of the inner edge of the other portion of the heat transfer tube 60.
- (B) Arrangement pitch adjustment between heat transfer tubes The third region 68 of the heat transfer tube 60 comes into contact with the third region 68 of the adjacent heat transfer tubes 60 in the left-right direction as described above. By bringing the third regions 68 of the heat transfer tubes 60 into contact with each other in this way, the distance between the heat transfer tubes 60 can be adjusted to a predetermined distance. In other words, in this heat source heat exchanger 50, by bringing the third regions 68 of the heat transfer tubes 60 adjacent to each other in the left-right direction into contact with each other, the heat transfer tubes 60 adjacent to each other in the left-right direction may be excessively close to each other, or vice versa. It is possible to suppress the occurrence of a state of excessive separation. In short, the third region 68 of the heat transfer tube 60 functions as a spacer for adjusting the arrangement pitch of the heat transfer tube 60, similarly to the contact portion 64.
- the length B1 of the third region 68 of the heat transfer tube 60 is longer than the length B2 of the contact portion 64 of the heat transfer tube 60. In this way, by making the length B1 of the third region 68 at the end of the heat transfer tube 60 in the longitudinal direction of the heat transfer tube 60 relatively long, the brazing allowance between the third region 68 of the heat transfer tube 60 and the gas header 52. Is easy to secure.
- a flat multi-hole tube not provided with any of the first region 62, the second region 66, and the third region 68 is prepared.
- a flat multi-hole tube having a uniform outer edge and inner edge of the heat transfer tube 60 is provided along the longitudinal direction of the heat transfer tube 60.
- the material of the heat transfer tube 60 is prepared with a flat multi-hole tube having the same cross section as the first portion 62a of the first region 62.
- the size of the flat multi-hole tube to be prepared may be appropriately designed.
- the heat transfer tube 60 forms a heat transfer tube 60 having a first region 62, a second region 66, and a third region 68 by performing a dieless drawing process on such a flat multi-hole tube (material). .. Specifically, for example, a dieless drawing process is performed on a flat multi-hole pipe having the same cross section as the first portion 62a of the first region 62, so that the second portion 62b (non-contact portion) of the first region 62 is performed. 63, a contact portion 64 (including a recessed portion 64a), a second region 66, a third region 68, and the like are formed.
- the material here, the flat multi-hole tube before processing
- the heating section in other words, the heating section
- the heating point is moved relative to the material in the longitudinal direction of the material (longitudinal direction of the flat multi-hole tube), and at the same time, a force along the longitudinal direction of the material is applied to the portion heated by the heating part of the material.
- it is a processing method in which the material is bulged in a direction intersecting the longitudinal direction or the material is stretched in the longitudinal direction.
- the size of the inner edge is also increased by deforming the outer edge so as to be larger (in other words, by compressing the material in the longitudinal direction). Further, in the dieless drawing process, the size of the inner edge is also reduced by deforming the outer edge so as to be smaller (in other words, by pulling the material in the longitudinal direction).
- a plurality of dieless heat transfer tubes 60 are arranged in a direction orthogonal to the longitudinal direction D1 of the cross section with both ends of the heat transfer tubes 60 aligned.
- a plurality of heat transfer tubes 60 are stacked in a direction orthogonal to the longitudinal direction D1 of the cross section, and their ends are connected to the gas header 52 and the liquid header 54.
- the contact portion 64 and the third region 68 of the heat transfer tubes 60 are adjacent to each other in the left-right direction, and the outer surface 60f (left and right) of the heat transfer tubes 60. Since the heat transfer tubes 60 come into contact with the contact portions 64 and the third region 68) adjacent to each other in the direction, the distance between the heat transfer tubes 60 (arrangement pitch of the heat transfer tubes 60) is adjusted to a predetermined distance.
- the size of the outer edge and the size of the inner edge of the flat multi-hole tube change at the same time as described above.
- a processing method in which only one of the size of the outer edge and the size of the inner edge is changed may be used at least partially.
- heat source heat exchanger 50 In the heat source heat exchanger 50 of the present embodiment, a plurality of refrigerant flow paths P extending in the vertical direction are arranged along the left-right direction intersecting the vertical direction, and along the front-rear direction intersecting the vertical direction and the left-right direction. Multiple are placed.
- the vertical direction, the left-right direction, and the front-back direction are examples of the first direction, the second direction, and the third direction in the claims, respectively.
- the heat source heat exchanger 50 includes a plurality of heat transfer tubes 60 forming the refrigerant flow path P.
- the heat transfer tube 60 differs in at least one of the size of the outer edge and the size of the inner edge between the first position and the second position in the vertical direction.
- the heat source heat exchanger 50 of the present embodiment at least one of the sizes of the outer edge and the inner edge of the heat transfer tube 60 is changed along the refrigerant flow path P to change the state of the refrigerant in each refrigerant flow path P. Therefore, the efficiency of the heat source heat exchanger 50 can be improved.
- the size of the outer edge of the heat transfer tube 60 is changed along the longitudinal direction (vertical direction) of the heat transfer tube 60, and the heat transfer tube 60 is provided with irregularities along the longitudinal direction. ing.
- the heat source heat exchanger 50 is used as an evaporator, the air flow path that is uniformly frosted over the entire longitudinal direction of the wind upper end of the heat transfer tube 60 and is supplied to the heat source heat exchanger 50 becomes. It is easy to suppress the problem that the air is blocked and the air is not supplied to the downstream side of the heat transfer tube 60.
- the air supplied by the heat source fan 18 flows from the front to the rear.
- the size of the outer edge of the heat transfer tube 60 is changed along the longitudinal direction (vertical direction) of the heat transfer tube 60, and a part of the heat transfer tube 60 (contact portion 64 or the first).
- the three regions 68) are in contact with the heat transfer tubes 60 adjacent to each other in the left-right direction.
- the plurality of heat transfer tubes 60 forming the refrigerant flow paths P are flat multi-hole tubes forming the plurality of refrigerant flow paths P arranged along the front-rear direction.
- heat exchanger 50 of the present embodiment by using a flat multi-hole tube as the heat transfer tube 60, heat exchange between the refrigerant and the external fluid can be efficiently performed without using heat transfer fins.
- the heat transfer tube 60 includes a first region 62 in which the first portion 62a and the second portion 62b are alternately formed along the vertical direction.
- the second portion 62b bulges in a direction intersecting the vertical direction with respect to the first portion 62a.
- the first portion 62a (concave portion) and the second portion 62b (convex portion) are alternately provided along the vertical direction to heat the heat in the first region 62 of the heat transfer tube 60. Exchange efficiency can be improved.
- the heat transfer tube 60 is provided with the first region 62 that repeats expansion and contraction along the vertical direction, so that the expansion portion (second portion 62b) of the heat transfer tube 60 in the vertical direction is provided. ) Can be concentrated on frost. Therefore, frost is uniformly formed on the wind upper end of the heat transfer tube 60 over the entire vertical direction, the air flow path supplied to the heat source heat exchanger 50 is blocked, and air is supplied to the downstream side of the heat transfer tube 60. It is easy to suppress the problems that disappear.
- the first heat transfer tube 60 and the second heat transfer tube 60 adjacent to each other in the left-right direction both include the first region 62.
- the second portion 62b of the first heat transfer tube 60 and the second portion 62b of the second heat transfer tube 60 are formed at the same position.
- the first portions 62a of the heat transfer tubes 60 adjacent to each other in the left-right direction are aligned in the vertical direction. Therefore, in this heat source heat exchanger 50, a relatively large gap can be formed between the first portions 62a (recesses) of the adjacent heat transfer tubes 60, and a relatively large flow path for the external fluid can be secured.
- the first region 62 is arranged at least in the central portion of the heat transfer tube 60 in the vertical direction.
- a concave-convex structure is provided along the vertical direction in the central portion of the heat transfer tube 60 in the vertical direction where heat exchange is mainly performed, so that high heat exchange efficiency can be easily realized.
- the heat source heat exchanger 50 of the present embodiment includes a gas header 52 to which one end of the heat transfer tube 60 is connected.
- the heat source heat exchanger 50 has the following configurations (A) and (B).
- the size of the inner edge of the heat transfer tube 60 of the third region 68 as an example of the gas header connection portion connected to the gas header 52 of the heat transfer tube 60 is the average size of the inner edges other than the third region 68 of the heat transfer tube 60. It's bigger than that.
- the size of the outer edge of the heat transfer tube 60 of the third region 68 connected to the gas header 52 of the heat transfer tube 60 is larger than the average size of the outer edges of the heat transfer tube 60 other than the third region 68.
- the heat transfer tube 60 through which the gas refrigerant mainly flows by having the above configurations (A) and (B), and particularly by having the configuration (A). Pressure loss in the third region 68 is likely to be suppressed.
- the heat source heat exchanger 50 of the present embodiment includes a liquid header 54 to which one end of the heat transfer tube 60 is connected.
- the heat source heat exchanger 50 has the following configurations (C) and (D).
- the size of the inner edge of the heat transfer tube 60 of the second region 66 as an example of the liquid header connection portion connected to the liquid header of the heat transfer tube 60 is the average of the inner edges of the heat transfer tube 60 other than the second region 66. Small compared to size.
- the size of the outer edge of the heat transfer tube 60 of the second region 66 connected to the liquid header of the heat transfer tube 60 is smaller than the average size of the outer edges of the heat transfer tube 60 other than the second region 66.
- the heat source heat exchanger 50 of the present embodiment has the above configurations (C) and (D), and particularly by having the configuration of (C), the liquid refrigerant and the external fluid flowing through the third region 68. It is possible to promote heat transfer with.
- the size of the outer edge of the heat transfer tube 60 of the portion where the first portion 62a is formed is the heat transfer tube of the second region 66 connected to the liquid header 54 of the heat transfer tube 60. Larger than the size of the outer edge of 60.
- the size of the outer edge of the heat transfer tube 60 in the portion where the second portion 62b is formed is equal to or smaller than the size of the outer edge of the heat transfer tube 60 in the third region 68 connected to the gas header 52 of the heat transfer tube 60.
- the heat source heat exchanger 50 of the present embodiment since the size of the outer edge of the heat transfer tube 60 has a shape corresponding to the change in the state of the refrigerant in the extending direction of the refrigerant flow path P, the heat source heat exchanger 50 has a shape. It is possible to improve the heat transfer efficiency and reduce the pressure loss in the heat source heat exchanger 50.
- a bulging portion is formed on the outer surface 60f of the heat transfer tube 60 in a direction intersecting the vertical direction and in contact with the outer surface 60f of the adjacent heat transfer tube 60 in the left-right direction. There is.
- the bulging portion includes a contact portion 64 and a third region 68.
- the arrangement pitch of the heat transfer tubes 60 adjacent to each other in the left-right direction can be adjusted without providing a spacer of a member separate from the heat transfer tube 60. can do.
- the arrangement pitch of the heat transfer tubes 60 is maintained at an appropriate distance, so that an appropriate external fluid flow path is secured between the adjacent heat transfer tubes 60 in the left-right direction. It is possible to suppress a local decrease in heat exchange efficiency due to the lack of a flow path for the external fluid.
- the bulging portion (contact portion 64 and the third region 68) of the heat transfer tube 60 contacts the bulging portion of the adjacent heat transfer tube 60 in the left-right direction.
- the bulging portions are brought into contact with each other, a relatively large flow path of the external fluid can be secured between the adjacent heat transfer tubes 60 in the left-right direction, and the external fluid can be connected. It is possible to suppress a local decrease in heat exchange efficiency due to the lack of a flow path.
- the contact portion 64 is formed with a recessed portion 64a extending in the front-rear direction. Further, a recess portion (not shown) extending in the front-rear direction is also formed in the third region 68 of the heat transfer tube 60.
- the drainage property at the contact portion between the heat transfer tubes 60 can be improved.
- the third region 68 which is an example of the first bulging portion and the contact portion 64 which is an example of the second bulging portion are used. including.
- the third region 68 of the heat transfer tube 60 is provided at the end of the heat transfer tube 60 in the vertical direction.
- the contact portion 64 is provided at a position other than the vertical end portion of the heat transfer tube 60.
- the vertical length B1 of the third region 68 is longer than the vertical length B2 of the contact portion 64.
- the heat transfer tube 60 and the header are relatively long, the heat transfer tube 60 and the header (particularly, the gas header 52 in the present embodiment). ) And it is easy to secure the brazing allowance.
- the heat transfer tube 60 is dieless pultruded.
- the heat source heat exchanger 50 of the present embodiment it is relatively easy to use a heat transfer tube 60 in which at least one of the outer edge size and the inner edge size is different between the first position and the second position in the longitudinal direction of the heat transfer tube 60. Moreover, since it can be manufactured in a relatively short time, it is excellent in manufacturability.
- FIG. 9 shows the contact state between the heat transfer tubes 60 (60a1, 60a2) in the heat source heat exchanger 50 of the second embodiment, and the first portion 62a and the second portion 62b in the first region 62 of the heat transfer tubes 60a1, 60a2. It is an enlarged schematic front view of a part of the heat source heat exchanger 50 for demonstrating the arrangement of (non-contact portion 63, contact portion 64).
- the air conditioner 100 in which the heat source heat exchanger 50 of the second embodiment is used is the same as the air conditioner 100 described in the first embodiment, the description thereof will be omitted.
- the heat source heat exchanger 50 of the second embodiment is the heat source heat exchanger 50 of the first embodiment, except that the positions where the non-contact portions 63 are formed are different in the heat transfer tubes 60a1 and 60a2 adjacent to each other in the left-right direction. Is almost the same as. Therefore, in order to avoid duplication of description, only the main differences between the heat source heat exchanger 50 of the second embodiment and the heat source heat exchanger 50 of the first embodiment will be described here.
- heat transfer tubes 60a1 and 60a2 are used as symbols representing the heat transfer tube 60 of the heat source heat exchanger 50 of the second embodiment.
- the heat transfer tubes 60a1 and 60a2 are arranged so that the heat transfer tubes 60a1 and the heat transfer tubes 60a2 are alternately arranged in the left-right direction as shown in FIG.
- the heat transfer tube 60a1 and the heat transfer tube 60a2 are formed with a first region 62 at substantially the same position in the vertical direction.
- the non-contact portion 63 is formed at different positions in the vertical direction.
- the first portion 62a is arranged at the position of the non-contact portion 63 in the vertical direction of the heat transfer tube 60a1.
- the non-contact portion 63 is arranged at the position of the first portion 62a in the vertical direction of the heat transfer tube 60a1.
- the heat transfer tubes 60a1 and the heat transfer tubes 60a2 are similar.
- the first heat transfer tubes 60a1 and the second heat transfer tubes 60a2 which are adjacent to each other in the left-right direction, both include the first region 62.
- the non-contact portion 63 of the first heat transfer tube 60a1 and the first portion 62a of the second heat transfer tube 60a2 are formed at the same positions, and the first portion 62a and the second portion 62a of the first heat transfer tube 60a1 are formed. It is formed at the same position as the non-contact portion 63 of the heat transfer tube 60a2.
- the position of the non-contact portion 63 of the heat transfer tubes 60a1 and 60a2 is aligned with the position of the first portion 62a of the adjacent heat transfer tubes 60a2 and 60a1 in the left-right direction.
- a relatively large gap can be formed between the non-contact portions 63 of the heat tubes 60a1 and 60a2 and the heat transfer tubes 60a2 and 60a1 adjacent thereto in the left-right direction. Therefore, a relatively large flow path of the external fluid can be secured between the adjacent heat transfer tubes 60a1 and 60a2 in the left-right direction.
- the heat source heat exchanger 50 of the second embodiment is described as a feature of the heat source heat exchanger 50 of the first embodiment in addition to the features described here, (4-1) to (4-3), (4). -5) It has the same characteristics as (4-13).
- FIG. 10 shows the contact state between the heat transfer tubes 60 (60b1, 60b2) in the heat source heat exchanger 50 of the third embodiment, and the first portion 62a and the second portion 62b in the first region 62 of the heat transfer tubes 60b1, 60b2. It is an enlarged schematic front view of a part of the heat source heat exchanger 50 for demonstrating the arrangement of (non-contact portion 63, contact portion 64).
- the air conditioner 100 in which the heat source heat exchanger 50 of the third embodiment is used is the same as the air conditioner 100 described in the first embodiment, the description thereof will be omitted.
- the heat source heat exchanger 50 of the third embodiment is the heat source of the first embodiment except that the positions where the non-contact portion 63 and the contact portion 64 are formed are different in the heat transfer tubes 60b1 and 60b2 adjacent to each other in the left-right direction. It is almost the same as the heat exchanger 50. Therefore, in order to avoid duplication of description, only the main differences between the heat source heat exchanger 50 of the third embodiment and the heat source heat exchanger 50 of the first embodiment will be described here.
- 60b1 and 60b2 are used as symbols representing the heat transfer tubes of the heat source heat exchanger 50 of the second embodiment.
- the heat transfer tubes 60b1 and 60b2 are arranged so that the heat transfer tubes 60b1 and the heat transfer tubes 60b2 are alternately arranged in the left-right direction as shown in FIG.
- the heat transfer tube 60b1 and the heat transfer tube 60b2 are formed with a first region 62 at substantially the same position in the vertical direction. However, in the heat transfer tube 60b1 and the heat transfer tube 60b2, the non-contact portion 63 and the contact portion 64 are formed at different positions in the vertical direction. Specifically, in the heat transfer tube 60b2, the first portion 62a is arranged at the positions of the non-contact portion 63 and the contact portion 64 in the vertical direction of the heat transfer tube 60b1. Further, in the heat transfer tube 60b2, the non-contact portion 63 or the contact portion 64 is arranged at the position of the first portion 62a in the vertical direction of the heat transfer tube 60b1. In other respects, the heat transfer tube 60b1 and the heat transfer tube 60b2 are similar.
- the first heat transfer tube 60b1 and the second heat transfer tube 60b2 adjacent to each other in the left-right direction both include the first region 62.
- the non-contact portion 63 and the contact portion 64 of the first heat transfer tube 60b1 and the first portion 62a of the second heat transfer tube 60b2 are formed at the same position, and the first portion 62a of the first heat transfer tube 60b1 is formed.
- the non-contact portion 63 and the contact portion 64 of the second heat transfer tube 60b2 are formed at the same position.
- the position of the non-contact portion 63 of the heat transfer tubes 60b1, 60a2 is aligned with the position of the first portion 62a of the adjacent heat transfer tubes 60b2, 60a1 in the left-right direction.
- a relatively large gap can be formed between the non-contact portion 63 of the 60b1 and 60a2 and the heat transfer tubes 60b2 and 60a1 adjacent thereto in the left-right direction. Therefore, a relatively large flow path of the external fluid can be secured between the adjacent heat transfer tubes 60b1 and 60a2 in the left-right direction.
- the contact portion 64 which is an example of the bulging portion of the heat transfer tubes 60b1 and 60b2, is located on a portion other than the contact portion 64 of the adjacent heat transfer tubes 60b2 and 60b1 in the left-right direction. Contact. Specifically, in the heat source heat exchanger 50 of the third embodiment, the contact portions 64 of the heat transfer tubes 60b1 and 60b2 come into contact with the first portions 62a of the adjacent heat transfer tubes 60b2 and 60b1 in the left-right direction.
- the bulging portions of the heat transfer tubes are brought into contact with each other. Compared to the case, a compact heat source heat exchanger 50 is more likely to be realized.
- the heat source heat exchanger 50 of the third embodiment has been described as a feature of the heat source heat exchanger 50 of the first embodiment (4-1) to (4-3). It has the same characteristics as (4-5) to (4-9) and (4-11) to (4-13).
- FIG. 11 shows the contact state between the heat transfer tubes 60 (60c1, 60c2) in the heat source heat exchanger 50 of the fourth embodiment, and the first portion 62a and the second portion 62b in the first region 62 of the heat transfer tubes 60c1, 60c2. It is an enlarged schematic front view of a part of the heat source heat exchanger 50 for demonstrating the arrangement of (non-contact portion 63, contact portion 64).
- the air conditioner 100 in which the heat source heat exchanger 50 of the fourth embodiment is used is the same as the air conditioner 100 described in the first embodiment, the description thereof will be omitted.
- the heat source heat exchanger 50 of the fourth embodiment is different from the heat source heat exchanger 50 of the first embodiment except that the positions where the contact portions 64 are formed are different in the adjacent heat transfer tubes 60c1 and 60c2 in the left-right direction. It is almost the same. Therefore, in order to avoid duplication of description, only the main differences between the heat source heat exchanger 50 of the fourth embodiment and the heat source heat exchanger 50 of the first embodiment will be described here.
- 60c1 and 60c2 are used as symbols representing the heat transfer tubes of the heat source heat exchanger 50 of the second embodiment.
- the heat transfer tubes 60c1 and 60c2 are arranged so that the heat transfer tubes 60c1 and the heat transfer tubes 60c2 are alternately arranged in the left-right direction as shown in FIG.
- the heat transfer tube 60c1 and the heat transfer tube 60c2 are formed with a first region 62 at substantially the same position in the vertical direction.
- the contact portion 64 is formed at different positions in the vertical direction. Specifically, in the heat transfer tube 60c2, the first portion 62a is arranged at the position of the contact portion 64 in the vertical direction of the heat transfer tube 60c1. Further, in the heat transfer tube 60c2, the contact portion 64 is arranged at the position of the first portion 62a in the vertical direction of the heat transfer tube 60c1. In other respects, the heat transfer tube 60c1 and the heat transfer tube 60c2 are similar.
- the contact portion 64 which is an example of the bulging portion of the heat transfer tubes 60c1 and 60c2, comes into contact with the portions other than the contact portions 64 of the adjacent heat transfer tubes 60c2 and 60c1 in the left-right direction. .. Specifically, in the heat source heat exchanger 50 of the fourth embodiment, the contact portion 64 of the heat transfer tubes 60c1 and 60c2 contacts the first portion 62a of the adjacent heat transfer tubes 60c2 and 60c1 in the left-right direction.
- the bulging portions of the heat transfer tubes are brought into contact with each other. Compared to the case, a compact heat source heat exchanger 50 is more likely to be realized.
- the heat source heat exchanger 50 of the fourth embodiment has been described as a feature of the heat source heat exchanger 50 of the first embodiment (4-1) to (4-9). It has the same characteristics as (4-11) to (4-13).
- FIG. 12 is a schematic front view of the heat source heat exchanger 150 of the fifth embodiment.
- FIG. 13 is a schematic perspective view of the heat transfer tube 160 of the heat source heat exchanger 150.
- the air conditioner 100 in which the heat source heat exchanger 150 of the fifth embodiment is used is the same as the air conditioner 100 described in the first embodiment, the description thereof will be omitted.
- the shape of the heat transfer tube 160 is different from the shape of the heat transfer tube 60 of the heat source heat exchanger 50 of the first embodiment. Specifically, unlike the heat transfer tube 60, the heat transfer tube 160 does not have the first region 62 and the second region 66, but has only the third region 68. In the portion other than the third region 68, the sizes of the inner edge and the outer edge of the heat transfer tube 160 are uniform. Here, the portion other than the third region 68 is referred to as the fourth region 65.
- the size of the inner edge of the heat transfer tube 60 is formed larger than the portion other than the third region 68 of the heat transfer tube 160. Specifically, the size of the inner edge of the heat transfer tube 160 in the third region 68 is larger than the average size of the inner edge of the fourth region 65 of the heat transfer tube 160. Further, in the third region 68 of the heat transfer tube 160, the size of the outer edge of the heat transfer tube 160 is formed larger than that of the portion other than the third region 68 of the heat transfer tube 160. Specifically, the size of the outer edge of the heat transfer tube 160 of the third region 68 is larger than the average size of the outer edge of the fourth region 65 of the heat transfer tube 160.
- the third region 68 of the heat transfer tube 160 is substantially the same as the third region 68 of the heat transfer tube 60 of the heat source heat exchanger 50 of the first embodiment, and thus the description thereof will be omitted.
- the arrangement pitch between the heat transfer tubes 60 and the adjacent heat transfer tubes 60 in the left-right direction without providing a spacer of a separate member from the heat transfer tube 60. can be adjusted.
- the third region 68 of the heat transfer tube 160 preferably has a recessed portion (not shown) extending along the front-rear direction.
- the heat transfer tube 160 may be further provided with a contact portion 64 in the heat transfer tube 60 of the first embodiment and a contact portion 64 in the heat transfer tube 60 of the third embodiment. ..
- the heat transfer tubes 160 are provided with the contact portions 64 on the outer surface 60f of the adjacent heat transfer tubes 160, so that the heat transfer tubes 160 are located in the entire vertical direction. It is easy to manage the distance to an appropriate distance.
- the heat source heat exchanger 150 by bringing the bulging portions into contact with each other, a relatively large flow path of the external fluid can be secured between the adjacent heat transfer tubes 60 in the left-right direction, and the flow of the external fluid can be secured. It is possible to suppress a decrease in local heat exchange efficiency due to the lack of a path.
- the heat source heat exchanger 50 of the fourth embodiment has been described as a feature of the heat source heat exchanger 50 of the first embodiment (4-1) to (4-2). It has the same characteristics as (4-6), (4-9) to (4-11), and (4-13).
- FIG. 14 is a schematic front view of the heat source heat exchanger 250 of the sixth embodiment.
- FIG. 15 is a schematic perspective view of the heat transfer tube 260 of the heat source heat exchanger 250.
- the air conditioner 100 in which the heat source heat exchanger 250 of the sixth embodiment is used is the same as the air conditioner 100 described in the first embodiment, the description thereof will be omitted.
- the shape of the heat transfer tube 260 is different from the shape of the heat transfer tube 60 of the heat source heat exchanger 50 of the first embodiment. Specifically, unlike the heat transfer tube 60 of the first embodiment, the heat transfer tube 260 does not have the second region 66 and the third region 68, but has only the first region 62 described in the first embodiment. .. In the heat transfer tube 260, the sizes of the inner edge and the outer edge of the heat transfer tube 260 are uniform in the portion other than the first region 62. Here, the portion other than the first region 62 is referred to as the fourth region 65. Although not limited, the sizes of the inner and outer edges of the heat transfer tube 260 in the fourth region 65 are, for example, the same as the sizes of the inner and outer edges of the heat transfer tube 260 in the first portion 62a of the first region 62.
- the heat source heat exchanger 250 of the sixth embodiment has been described as a feature of the heat source heat exchanger 50 of the first embodiment (4-1) to (4-5). It has the same characteristics as (4-9) to (4-11) and (4-13).
- the heat source heat exchanger 250 of the sixth embodiment has been described as having a structure in which the second region 66 and the third region 68 are omitted from the heat source heat exchanger 50 described in the first embodiment, but the present invention is limited to this. It is not something that is done.
- the heat source heat exchanger 250 of the sixth embodiment may have a structure in which the second region 66 and the third region 68 are omitted from the heat source heat exchanger 50 described in the second embodiment to the fourth embodiment. ..
- the first region 62 may be provided over substantially the entire area in the vertical direction.
- the first region 62 of the heat transfer tube 260 is located near the connection point with the gas header 52 below the gas header 52 and near the connection point with the liquid header 54 above the liquid header 54. It may be provided in the range up to.
- FIG. 16 is a schematic front view of the heat source heat exchanger 350 of the seventh embodiment.
- FIG. 17 is a schematic perspective view of the heat transfer tube 360 of the heat source heat exchanger 350. In FIG. 17, the contact portion 64 is not shown.
- the air conditioner 100 in which the heat source heat exchanger 350 of the seventh embodiment is used is the same as the air conditioner 100 described in the first embodiment, the description thereof will be omitted.
- the shape of the heat transfer tube 360 is different from the shape of the heat transfer tube 60 of the heat source heat exchanger 50 of the first embodiment. Specifically, unlike the heat transfer tube 60, the heat transfer tube 360 does not have the first region 62 and the third region 68, but has only the second region 66. In the portion other than the second region 66, the sizes of the inner edge and the outer edge of the heat transfer tube 360 are uniform except for the portion where the contact portion 64 is provided.
- the portion other than the third region 68 is referred to as the fourth region 65.
- the size of the inner edge of the heat transfer tube 60 is formed smaller than the portion other than the second region 66 of the heat transfer tube 360. Specifically, the size of the inner edge of the heat transfer tube 360 of the second region 66 is smaller than the average size of the inner edge of the fourth region 65 of the heat transfer tube 360. In the second region 66 of the heat transfer tube 360, the size of the outer edge of the heat transfer tube 360 is formed to be smaller than the portion other than the second region 66 of the heat transfer tube 360. Specifically, the size of the outer edge of the heat transfer tube 360 of the second region 66 is smaller than the average size of the outer edge of the fourth region 65 of the heat transfer tube 360.
- the second region 66 of the heat transfer tube 360 is substantially the same as the second region 66 of the heat transfer tube 60 of the heat source heat exchanger 50 of the first embodiment, and thus the description thereof will be omitted.
- the heat source heat exchanger 350 of the seventh embodiment has been described as a feature of the heat source heat exchanger 50 of the first embodiment (4-1) to (4-2). It has the same characteristics as (4-7), (4-9) to (4-11), and (4-13).
- FIG. 18 is a schematic front view of the heat source heat exchanger 450 of the eighth embodiment.
- the air conditioner 100 in which the heat source heat exchanger 450 of the eighth embodiment is used is the same as the air conditioner 100 described in the first embodiment, the description thereof will be omitted.
- the shape of the heat transfer tube 460 is different from the shape of the heat transfer tube 60 of the heat source heat exchanger 50 of the first embodiment. Specifically, unlike the heat transfer tube 60, the heat transfer tube 460 does not have the second region 66 and the third region 68.
- the heat transfer tube 460 has a first region 62. However, in the heat source heat exchanger 450 of the eighth embodiment, the first region 62 is near the end side of the gas header 52 (heat source heat) which becomes the outlet of the heat transfer tube 460 when the heat source heat exchanger 450 functions as an evaporator.
- the heat transfer tube 460 It is provided only at the downstream end of the heat transfer tube 460 in the flow direction of the refrigerant when the exchanger 450 functions as an evaporator).
- the sizes of the inner edge and the outer edge of the heat transfer tube 460 are uniform.
- the portion other than the first region 62 is referred to as the fourth region 65.
- the sizes of the inner and outer edges of the heat transfer tube 460 of the fourth region 65 are, for example, the same as the sizes of the inner and outer edges of the heat transfer tube 460 of the first portion 62a of the first region 62.
- the first region 62 of the heat transfer tube 460 of the heat source heat exchanger 450 according to the eighth embodiment is described as the effect of the first region 62 in the first embodiment (a) improvement of heat transfer coefficient and refrigerant flow path. It also has the effect of suppressing the increase in pressure loss, but (b) the effect of suppressing the blockage of the air flow path due to frost formation is particularly large.
- frost is particularly likely to form on the heat transfer tube 460 at its outlet (near the end on the gas header 52 side).
- One of the causes is that the temperature of the gas-liquid two-phase refrigerant flowing through the heat transfer tube 460 tends to gradually decrease while flowing through the refrigerant flow path P.
- the first region 62 is provided near the outlet of the heat transfer tube 460 that easily frosts (near the end on the gas header 52 side)
- the effect of the first region 62 as described in the first embodiment is obtained. This suppresses the blockage of the air flow path due to the frost on the windward end of the heat transfer tube 60, and delays the occurrence of the problem that the frost on the windward end of the heat transfer tube 60 blocks the air flow path. Can be made to.
- the heat source heat exchanger 450 of the eighth embodiment has been described as a feature of the heat source heat exchanger 50 of the first embodiment (4-1) to (4-4). It has the same characteristics as (4-9) to (4-11) and (4-13).
- the first region 62 of the heat transfer tube 460 of the heat source heat exchanger 450 of the eighth embodiment is provided near the outlet of the heat transfer tube 460. May be done.
- the heat transfer tube 60 is a flat multi-hole tube, but the heat transfer tube of the heat exchanger of the present disclosure may be a circular tube, each of which forms a single refrigerant flow path P.
- a plurality of circular tubes having a vertical direction as a longitudinal direction (direction in which the refrigerant flow path P extends) are arranged along the left-right direction, and in the vertical direction and the left-right direction.
- a plurality of heat exchangers may be arranged along the orthogonal front-rear direction.
- the effects of improving the heat transfer coefficient and reducing the pressure loss as described above can be obtained.
- the circular tube with a shape such as the first region 62, when the heat source heat exchanger 50 is used as an evaporator, as described above, it is uniform over the entire longitudinal direction of the wind upper end of the heat transfer tube. It is easy to suppress the problem that the air flow path is blocked due to frost formation and the air is not supplied to the downstream side of the heat transfer tube (at least the blockage of the air flow path is likely to be delayed).
- the first region 62 may be provided only on the heat transfer tube on the upstream side of the air flow from the viewpoint of delaying the blockage of the air flow path due to frost formation. ..
- the heat transfer tubes are separated from each other without providing a spacer separate from the heat transfer tubes.
- the arrangement pitch can be adjusted.
- the circular tube with the contact portion 64 and the third region 68 that bulge in the front-rear direction it is possible to adjust the arrangement pitch between the heat transfer tubes in the front-rear direction.
- the gas header 52 and the liquid header 54 extend linearly, but the shapes of the gas header 52 and the liquid header 54 are not limited to the linear shape.
- the gas header 52 and the liquid header 54 may have a shape other than a straight line such as a curved line, an L shape, a U shape, and a square shape.
- the heat source heat exchanger 50 may have a plurality of sets of a gas header 52, a liquid header 54, and a heat exchange unit 56.
- the heat transfer tubes included in the heat exchangers of the present disclosure do not have to have the same shape or structure.
- a part of the heat transfer tube of the heat exchanger is a heat transfer tube having the shape described in the first embodiment
- the other heat transfer tube of the heat exchanger is a heat transfer tube having a shape other than that described in the first embodiment. You may.
- the arrangement pitch of the heat transfer tubes in the heat exchanger may not be uniform, and the arrangement pitch of the heat transfer tubes may differ depending on the location.
- each heat transfer tube and the arrangement pitch of the heat transfer tubes are appropriately designed according to the wind speed distribution.
- the extending direction of the refrigerant flow path P that is, the longitudinal direction of the heat transfer tube is the vertical direction, but the present invention is not limited to this.
- the extending direction of the refrigerant flow path P may be inclined with respect to the vertical direction and the horizontal direction. Further, the extending direction of the refrigerant flow path P may be the horizontal direction.
- the gas header 52 is arranged above and the liquid header 54 is arranged below.
- the gas header 52 is arranged above and the liquid header 54 is arranged below.
- the present invention is not limited to this, and the gas header 52 may be arranged below the liquid header 54.
- the arrangement pitch between the heat transfer tubes 560 adjacent to each other in the left-right direction may be adjusted by a spacer 70 separate from the heat transfer tube 560.
- the contact portion 64 is provided in the first region 62 of the heat transfer tube 60, but the contact portion 64 is formed outside the first region 62, and the first region 62 is formed in the first region 62. Only the non-contact portion 63 may be formed.
- the heat transfer tube 60 has a contact portion 64 arranged in the central region of the heat transfer tube 60 and a third region 68 arranged at the end of the heat transfer tube 60 on the gas header 52 side. It is used to adjust the arrangement pitch of.
- the present invention is not limited to this, and the bulging portion for adjusting the arrangement pitch is added to the central region of the heat transfer tube 60 and the end portion on the gas header 52 side, or the central region of the heat transfer tube 60 and the gas header 52.
- the end portion on the side it may be arranged at the end portion (connection portion with the liquid header 54) of the heat transfer tube 60 on the liquid header 54 side.
- the length of the bulging portion provided at the end portion (connection portion with the headers 52 and 54) of the heat transfer tube 60 in the longitudinal direction is the length of the heat transfer tube 60 in the longitudinal direction. It is preferable that the length of the bulging portion provided other than the end portion in the longitudinal direction of the heat tube 60 is longer than the length in the longitudinal direction of the heat transfer tube 60.
- This disclosure is widely applicable to heat exchangers that do not use heat transfer fins.
- Heat source heat exchanger heat exchanger
- Gas header Liquid header 60, 160, 260, 360, 460, 560 Heat transfer tube 62 First region 62a First part 62b Second part 64 Contact part (bulging part, second bulging part) 64a Recessed part 66 Second area (liquid header connection part) 68 Third region (gas header connection part, bulging part, first bulging part) B1 Length of the third region in the vertical direction (length of the first bulging portion in the first direction) Length of B2 contact portion in the vertical direction (length of the second bulging portion in the first direction) P Refrigerant flow path
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Electromagnetism (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
効率のより熱交換器を提供する。熱源熱交換器(50)では、鉛直方向に延びる冷媒流路(P)が、鉛直方向に交差す左右方向に沿って複数配置されるとともに、鉛直方向及び左右方向に交差する前後方向に沿って複数配置される。熱源熱交換器は、冷媒流路(P)を形成する複数の伝熱管(60)を備える。伝熱管は、鉛直方向における第1の位置と第2の位置とで、外縁の大きさ及び内縁の大きさの少なくとも一方が異なる。
Description
本開示は、熱交換器に関し、特には伝熱フィンを使用しない熱交換器に関する。
従来、第1方向に延びる冷媒流路を、第1方向に交差する第2方向に複数配置するとともに、第1方向及び第2方向に交差する第3方向にも複数並べた、伝熱フィンを使用しない熱交換器が知られている。例えば、特許文献1(国際公開第2005/073655号)には、第1方向に延びる冷媒流路を第3方向に複数配置した扁平形状の伝熱管を、第1方向及び第3方向に直交する第2方向に複数並べた、伝熱フィンを使用しない熱交換器が開示されている。
特許文献1(国際公開第2005/073655号)に開示されている熱交換器では、複数の伝熱管のそれぞれを第1方向に沿って見た時に、伝熱管が第3方向に沿って凹凸形状を有するように構成することで伝熱効率を向上させることが記載されている。
ところで、熱交換器では、冷媒が各冷媒流路を流れる際、冷媒が外部流体と熱交換をすることでその状態が変化していく。言い換えれば、冷媒の状態は、各冷媒流路の延びる第1方向に沿って変化している。特許文献1(国際公開第2005/073655号)に開示されている熱交換器では、第1方向に沿う冷媒の状態の変化を考慮した設計にはなっておらず、熱交換器の効率の観点から更なる改善の余地がある。
第1観点に係る熱交換器は、第1方向に延びる冷媒流路が、第1方向に交差する第2方向に沿って複数配置されるとともに、第1方向及び第2方向に交差する第3方向に沿って複数配置される熱交換器である。熱交換器は、冷媒流路を形成する複数の伝熱管を備える。伝熱管は、第1方向における第1の位置と第2の位置とで、外縁の大きさ及び内縁の大きさの少なくとも一方が異なる。
第1観点に係る熱交換器では、第1方向に沿って、言い換えれば冷媒流路に沿って、伝熱管の外縁及び内縁の大きさの少なくとも一方を変化させることで、各冷媒流路内での冷媒の状態変化に応じて熱交換器の効率化を図ることができる。
第2観点に係る熱交換器は、第1観点の熱交換器であって、伝熱管は、第3方向に沿って配置されている複数の冷媒流路を形成する扁平多穴管である。
第2観点に係る熱交換器では、伝熱管として扁平多穴管を用いることで、伝熱フィンを用いなくても、効率よく冷媒と外部流体との熱交換を行うことができる。
第3観点に係る熱交換器は、第1観点又は第2観点の熱交換器であって、第1方向は鉛直方向である。
第4観点に係る熱交換器は、第1観点から第3観点のいずれかの熱交換器であって、伝熱管は、第1方向に沿って、第1部分と第2部分とが交互に形成されている第1領域を含む。第2部分は、第1部分に対し第1方向と交差する方向に膨出する。
第4観点に係る熱交換器では、第1方向に沿って第1部分(凹部)と第2部分(凸部)とを交互に設けることで、伝熱管の第1領域における熱交換効率を向上できる。
第5観点に係る熱交換器は、第4観点の熱交換器であって、第2方向において互いに隣接する第1の伝熱管及び第2の伝熱管は、共に第1領域を含む。第1方向において、第1の伝熱管の第2部分と第2の伝熱管の第2部分とは、同じ位置に形成されている。
第5観点に係る熱交換器では、第2方向に隣接する伝熱管の第2部分の位置が第1方向において一致しているため、第2方向に隣接する伝熱管の第1部分の位置も第1方向において一致している。そのため、この熱交換器では、隣接する伝熱管の第1部分(凹部)の間に比較的大きな隙間を形成でき、外部流体の流路を比較的大きく確保できる。
第6観点に係る熱交換器は、第4観点の熱交換器であって、第2方向において互いに隣接する第1の伝熱管及び第2の伝熱管は、共に第1領域を含む。第1方向において、第1の伝熱管の第2部分と第2の伝熱管の第1部分とは、同じ位置に形成されている。第1方向において、第1の伝熱管の第1部分と第2の伝熱管の第2部分とは、同じ位置に形成されている。
第6観点に係る熱交換器では、伝熱管の第2部分(凸部)の位置を、第2方向において隣接する伝熱管の第1部分(凹部)の位置に一致させることで、伝熱管の第2部分と、第2方向においてこれに隣接する伝熱管との間に比較的大きな隙間を形成できる。そのため、第2方向において隣接する伝熱管の間に比較的大きな外部流体の流路を確保できる。
第7観点に係る熱交換器は、第4観点から第6観点のいずれかの熱交換器であって、第1領域は、第1方向における伝熱管の中央部に少なくとも配置されている。
第7観点に係る熱交換器では、主に熱交換が行われる第1方向における伝熱管の中央部に、第1方向に沿って凹凸構造が設けられるため、高い熱交換効率が実現されやすい。
第8観点に係る熱交換器は、第1観点から第7観点のいずれかの熱交換器であって、伝熱管が接続されるガスヘッダを更に備える。第8観点に係る熱交換器は、以下の(A)及び(B)の少なくとも一方の構成を有する。
(A)伝熱管のガスヘッダと接続されるガスヘッダ接続部分の伝熱管の内縁の大きさは、伝熱管のガスヘッダ接続部分以外の内縁の平均の大きさに比べて大きい。
(B)伝熱管のガスヘッダと接続されるガスヘッダ接続部分の伝熱管の外縁の大きさは、伝熱管のガスヘッダ接続部分以外の外縁の平均の大きさに比べて大きい。
第8観点に係る熱交換器では、ガス冷媒が主に流れる、伝熱管のガスヘッダ接続部分での圧損が抑制されやすい。
第9観点に係る熱交換器は、第1観点から第8観点のいずれかの熱交換器であって、伝熱管が接続される液ヘッダを更に備える。第9観点に係る熱交換器は、以下の(C)及び(D)の少なくとも一方の構成を有する。
(C)伝熱管の液ヘッダと接続される液ヘッダ接続部分の伝熱管の内縁の大きさは、伝熱管の液ヘッダ接続部分以外の内縁の平均の大きさに比べて小さい。
(D)伝熱管の液ヘッダと接続される液ヘッダ接続部分の伝熱管の外縁の大きさは、伝熱管の液ヘッダ接続部分以外の外縁の平均の大きさに比べて小さい。
第9観点に係る熱交換器では、液ヘッダ接続部分を流れる液冷媒と外部流体との伝熱を促進することができる。
第10観点に係る熱交換器は、第4観点から第7観点のいずれかの熱交換器であって、伝熱管が接続されるガスヘッダと、伝熱管が接続される液ヘッダと、を更に備える。第1部分が形成されている部分の伝熱管の外縁の大きさは、伝熱管の液ヘッダと接続される液ヘッダ接続部分の伝熱管の外縁の大きさより大きい。第2部分が形成されている部分の伝熱管の外縁の大きさは、伝熱管のガスヘッダと接続されるガスヘッダ接続部分の伝熱管の外縁の大きさ以下である。
第10観点に係る熱交換器では、伝熱管の外縁の大きさが、伝熱管内の第1方向における冷媒の状態の変化に応じた形状となっているため、熱交換器の伝熱効率を向上させるとともに、熱交換器における圧損を低減することができる。
第11観点に係る熱交換器は、第4観点から第6観点のいずれかの熱交換器であって、少なくとも蒸発器として機能する。第1領域は、伝熱管の、熱交換器が蒸発器として機能する際の伝熱管内の冷媒の流れ方向の下流側端部に、少なくとも配置されている。
第12観点に係る熱交換器は、第1観点から第11観点のいずれかの熱交換器であって、伝熱管の外面に、第1方向と交差する方向に膨出し、第2方向において隣接する伝熱管の外面に接触する膨出部分が形成されている。
第12観点に係る熱交換器では、第2方向において互いに隣接する伝熱管の間に適切な外部流体の流路を確保することができ、外部流体の流路が確保されないことに伴う局所的な熱交換効率の低下を抑制できる。
第13観点に係る熱交換器は、第12観点の熱交換器であって、伝熱管の膨出部分は、第2方向において隣接する伝熱管の膨出部分に接触する。
第13観点に係る熱交換器では、伝熱管の膨出部分同士を接触させるため、第2方向において隣接する伝熱管の間に比較的大きな外部流体の流路を確保することができ、外部流体の流路が確保されないことに伴う局所的な熱交換効率の低下を抑制できる。
第14観点に係る熱交換器は、第12観点の熱交換器であって、伝熱管の膨出部分は、第2方向において隣接する伝熱管の膨出部分以外の部分に接触する。
第14観点に係る熱交換器では、伝熱管の膨出部分と伝熱管の膨出部分以外の部分とを接触させるため、伝熱管の膨出部分同士を接触させる場合に比べ、コンパクトな熱交換器が実現されやすい。
第15観点に係る熱交換器は、第12観点から第14観点のいずれかの熱交換器であって、膨出部分には、第3方向に沿って延びる凹み部が形成されている。
第15観点に係る熱交換器では、伝熱管同士の接触部における排水性を高めることができる。
第16観点に係る熱交換器は、第12観点から第15観点のいずれかの熱交換器であって、膨出部分は、第1膨出部分と、第2膨出部分と、を含む。第1膨出部分は、伝熱管の第1方向における端部に設けられる。第2膨出部分は、伝熱管の第1方向における端部以外に設けられる。第1膨出部分の第1方向における長さは、第2膨出部分の第1方向における長さより長い。
第16観点に係る熱交換器では、伝熱管の第1方向における端部に設けられる第1膨出部分の長さが比較的長いため、伝熱管とヘッダとのロウ付け代を確保することが容易である。
第17観点に係る熱交換器は、第1観点から第16観点のいずれかの熱交換器であって、伝熱管は、ダイレス引抜成形されている。
第17観点に係る熱交換器は、第1方向における第1の位置と第2の位置とで外縁の大きさ及び内縁の大きさの少なくとも一方が異なる伝熱管を比較的容易に、かつ、比較的短時間で製造することができるため、製造性に優れる。
図面を参照しながら、本開示の熱交換器の実施形態について説明する。なお、図面では、同一の又は同様の部材には、複数の図面にわたって同一の参照符号を付している。
<第1実施形態>
本開示の熱交換器の第1実施形態に係る熱源熱交換器50と、熱源熱交換器50を備えた空調装置100について説明する。
本開示の熱交換器の第1実施形態に係る熱源熱交換器50と、熱源熱交換器50を備えた空調装置100について説明する。
なお、本明細書では、本開示の熱交換器が空調装置100の熱源熱交換器として利用される場合を例に、本開示の熱交換器を説明するが、本開示の熱交換器の用途は、空調装置の熱源熱交換器に限定されるものではない。例えば、本開示の熱交換器は、給湯装置、床暖房装置、及び冷蔵庫や冷凍庫等の低温機器等の、空調装置以外の冷凍サイクル装置の熱源熱交換器として用いられてもよい。また、本開示の熱交換器の用途は、熱源熱交換器に限定されず、冷凍サイクル装置の利用熱交換器(例えば、後述する空調装置100の利用熱交換器32)に利用されてもよい。
(1)空調装置
初めに、熱源熱交換器50を備えた空調装置100に関して、図1を参照しながら説明する。図1は、本開示の熱交換器を熱源熱交換器50として利用する空調装置100の概略構成図である。
初めに、熱源熱交換器50を備えた空調装置100に関して、図1を参照しながら説明する。図1は、本開示の熱交換器を熱源熱交換器50として利用する空調装置100の概略構成図である。
空調装置100は、蒸気圧縮式の冷凍サイクル装置の一例である。空調装置100は、冷凍サイクルを利用して、空調対象空間の冷房や暖房を行う。
空調装置100は、図1のように、主として、1台の熱源ユニット10と、1台の利用ユニット30と、を有する。なお、熱源ユニット10及び利用ユニット30の台数は、1台に限定されるものではなく、空調装置100は、熱源ユニット10及び/又は利用ユニット30を複数台有していてもよい。
空調装置100では、空調装置100の設置現場において熱源ユニット10と利用ユニット30とがガス冷媒連絡管26及び液冷媒連絡管24によって接続されることで、冷媒が循環する冷媒回路20が構成される。なお、本実施形態の空調装置100は、熱源ユニット10と利用ユニット30とが別体のセパレート型の空調装置であるが、本開示の熱交換器が使用される空調装置は、熱源ユニットと利用ユニットとが1つのケーシングに収容された一体型の空調装置であってもよい。
本実施形態では、冷媒回路20に封入されている冷媒は、R32やR410AのようなHFC冷媒である。ただし、冷媒の種類は、HFC冷媒に限定されるものではなく、例えば、HFO1234yf、HFO1234ze(E)やこれらの混合冷媒等のHFO冷媒であってもよい。また、冷媒の種類は、CO2ガスのような自然冷媒であってもよい。
以下に、熱源ユニット10及び利用ユニット30の詳細と、空調装置100の運転時の冷媒回路20における冷媒の流れについて説明する。
(1-1)熱源ユニット
熱源ユニット10は、主として、圧縮機12と、流路切換機構14と、熱源熱交換器50と、膨張機構16と、熱源ファン18と、を有する(図1参照)。
熱源ユニット10は、主として、圧縮機12と、流路切換機構14と、熱源熱交換器50と、膨張機構16と、熱源ファン18と、を有する(図1参照)。
また、熱源ユニット10は、冷媒回路20の一部を構成する配管として、吸入管22a、吐出管22b、第1ガス冷媒管22c、液冷媒管22d、及び第2ガス冷媒管22eを有する(図1参照)。吸入管22aは、流路切換機構14と圧縮機12の吸入口とを接続している。吐出管22bは、圧縮機12の吐出口と流路切換機構14とを接続している。第1ガス冷媒管22cは、流路切換機構14と熱源熱交換器50の後述するガスヘッダ52とを接続している。液冷媒管22dは、熱源熱交換器50の後述する液ヘッダ54と液冷媒連絡管24とを接続している。膨張機構16は、液冷媒管22dに設けられている。第2ガス冷媒管22eは、流路切換機構14とガス冷媒連絡管26とを接続している。
圧縮機12は、冷凍サイクルにおける低圧のガス冷媒を、吸入管22aから吸入し、圧縮機構(図示省略)で圧縮して、吐出管22bに吐出する機器である。圧縮機12には、ロータリ圧縮機、スクロール圧縮機等の、様々なタイプの圧縮機を利用可能である。圧縮機構を駆動する圧縮機12のモータ(図示省略)は、回転速度可変のインバータモータである。モータの回転数は、図示しない空調装置100の制御部により、空調装置100の運転状態に応じて適宜制御される。ただし、圧縮機12のモータは、定速のモータであってもよい。
流路切換機構14は、冷媒回路20における冷媒の流れ方向を切り換える機構である。本実施形態では、流路切換機構14は四路切換弁である。なお、流路切換機構14は、四路切換弁に限られるものではなく、複数の電磁弁及び冷媒管により構成されて、以下に説明するような冷媒の流れ方向の切り換えを実現してもよい。
流路切換機構14は、空調装置100の冷房運転時には、圧縮機12が吐出する冷媒が熱源熱交換器50に送られるように、冷媒回路20における冷媒の流向を切り換える。具体的には、空調装置100の冷房運転時には、流路切換機構14は、吸入管22aと第2ガス冷媒管22eとを連通させ、吐出管22bと第1ガス冷媒管22cとを連通させる(図1中の実線参照)。
一方、流路切換機構14は、空調装置100の暖房運転時には、圧縮機12が吐出する冷媒が利用熱交換器32に送られるように、冷媒回路20における冷媒の流向を切り換える。具体的には、空調装置100の暖房運転時には、流路切換機構14は、吸入管22aと第1ガス冷媒管22cとを連通させ、吐出管22bと第2ガス冷媒管22eとを連通させる(図1中の破線参照)。
熱源熱交換器50は、本開示の熱交換器の一例である。熱源熱交換器50では、熱源熱交換器50の後述する伝熱管60を流れる冷媒と、外部流体(本実施形態では空気)との間で熱交換が行われる。空調装置100の冷房運転時には、熱源熱交換器50は冷媒の放熱器(凝縮器)として機能し、伝熱管60を流れる冷媒は、外部流体と熱交換を行って(外部流体に対して放熱して)冷却される。空調装置100の暖房運転時には、熱源熱交換器50は冷媒の蒸発器として機能し、伝熱管60を流れる冷媒は、外部流体と熱交換を行って(外部流体から吸熱して)加熱される。熱源熱交換器50の構造等の詳細については後述する。
膨張機構16は、冷媒を減圧する機構である。本実施形態の膨張機構16は、開度調節可能な電子膨張弁である。電子膨張弁の開度は、図示しない空調装置100の制御部により、空調装置100の運転状態に応じて適宜制御される。ただし、膨張機構16は、電子膨張弁に限定されるものではなく、感温筒を用いる温度自動膨張弁であってもよい。また、膨張機構16は、開度調節可能な膨張弁に限定されず、キャピラリチューブであってもよい。
熱源ファン18は、熱源ユニット10の外部から取り込んだ空気を熱源熱交換器50へと供給することで、熱源熱交換器50における冷媒と空気(外部流体)との熱交換を促進する機器である。熱源ファン18は、熱源ユニット10のケーシング(図示省略)に形成された吸気口(図示省略)から流入し、熱源熱交換器50を通過し、熱源ユニット10のケーシングに形成された排気口(図示省略)から吹き出す、空気の流れを生成する。熱源ファン18のファンの種類は、適宜選択されればよい。熱源ファン18を駆動するモータ(図示省略)は、回転速度可変のインバータモータである。モータの回転数は、図示しない空調装置100の制御部により運転状態に応じて適宜制御される。ただし、熱源ファン18を駆動するモータは、定速のモータであってもよい。
(1-2)利用ユニット
利用ユニット30は、冷媒と空調対象空間の空気との間で熱交換をさせることで、空調対象空間の空調を行うユニットである。利用ユニット30は、主として、利用熱交換器32と、利用ファン34と、を有している(図1参照)。
利用ユニット30は、冷媒と空調対象空間の空気との間で熱交換をさせることで、空調対象空間の空調を行うユニットである。利用ユニット30は、主として、利用熱交換器32と、利用ファン34と、を有している(図1参照)。
利用熱交換器32では、利用熱交換器32の伝熱管(図示省略)を流れる冷媒と、空調対象空間の空気との間で熱交換が行われる。利用熱交換器32は、例えば、複数の伝熱管と、伝熱管に取り付けられる複数の伝熱フィンと、を有するフィンアンドチューブ式の熱交換器である。ただし、前述のように、本開示のフィンレスの(伝熱フィンを有さない)熱交換器を、利用熱交換器32に用いることもできる。
利用熱交換器32は、空調装置100の冷房運転時には、冷媒の蒸発器として機能し、利用熱交換器32の伝熱管を流れる冷媒は、空調対象空間の空気と熱交換を行って(空調対象空間の空気から吸熱して)加熱される。言い換えれば、空調装置100の冷房運転時には、空調対象空間の空気は、利用熱交換器32の伝熱管を流れる冷媒によって冷却される。一方、利用熱交換器32は、空調装置100の暖房運転時には、冷媒の放熱器(凝縮器)として機能し、利用熱交換器32の伝熱管を流れる冷媒は、空調対象空間の空気と熱交換を行って(空調対象空間の空気に対して放熱して)冷却される。言い換えれば、空調装置100の暖房運転時には、空調対象空間の空気は、利用熱交換器32の伝熱管を流れる冷媒によって加熱される。
利用ファン34は、空調対象空間から取り込んだ空気を利用熱交換器32へと供給することで、利用熱交換器32における冷媒と空調対象空間の空気との熱交換を促進する機器である。利用ファン34は、空調対象空間から利用ユニット30のケーシング(図示省略)に形成された吸気口(図示省略)を通って流入し、利用熱交換器32を通過し、利用ユニット30のケーシングに形成された吹出口(図示省略)から空調対象空間へと吹き出す、空気の流れを生成する。利用ファン34のファンの種類は、適宜選択されればよい。利用ファン34を駆動するモータ(図示省略)は、回転速度可変のインバータモータである。モータの回転数は、図示しない空調装置100の制御部により運転状態に応じて適宜制御される。ただし、利用ファン34を駆動するモータは、定速のモータであってもよい。
(1-3)空調装置における冷媒の流れ
空調装置100では、冷房運転時及び暖房運転時に、冷媒回路20において、それぞれ以下に示すように冷媒が循環する。
空調装置100では、冷房運転時及び暖房運転時に、冷媒回路20において、それぞれ以下に示すように冷媒が循環する。
(1-3-1)冷房運転時
冷房運転時には、流路切換機構14が図1の実線で示される状態となり、圧縮機12の吐出側が熱源熱交換器50のガス側と連通し、かつ、圧縮機12の吸入側が利用熱交換器32のガス側と連通する。
冷房運転時には、流路切換機構14が図1の実線で示される状態となり、圧縮機12の吐出側が熱源熱交換器50のガス側と連通し、かつ、圧縮機12の吸入側が利用熱交換器32のガス側と連通する。
この状態で圧縮機12が駆動されると、吸入管22aから流入する冷凍サイクルにおける低圧のガス冷媒は、圧縮機12の圧縮機構で圧縮されて高圧のガス冷媒となる。圧縮機12が吐出する高圧のガス冷媒は、吐出管22b、流路切換機構14及び第1ガス冷媒管22cを経て熱源熱交換器50に流入する。高圧のガス冷媒は、熱源熱交換器50において、熱源ファン18が供給する空気と熱交換を行うことで冷却されて凝縮し、気液二相の状態を経て、最終的に高圧の液冷媒となる。熱源熱交換器50から流出した高圧の液冷媒は、膨張機構16へと送られる。膨張機構16において減圧された低圧の気液二相の冷媒は、液冷媒管22d及び液冷媒連絡管24を流れて利用熱交換器32の液側に流入する。利用熱交換器32に流入した冷媒は、空調対象空間の空気と熱交換を行って蒸発し、低圧のガス冷媒となって利用熱交換器32から流出する。利用熱交換器32から流出した低圧のガス冷媒は、ガス冷媒連絡管26、第2ガス冷媒管22e、流路切換機構14及び吸入管22aを経て圧縮機12に再び吸入される。
(1-3-2)暖房運転時
暖房運転時には、流路切換機構14が図1の破線で示される状態となり、圧縮機12の吐出側が利用熱交換器32のガス側と連通し、かつ、圧縮機12の吸入側が熱源熱交換器50のガス側と連通する。
暖房運転時には、流路切換機構14が図1の破線で示される状態となり、圧縮機12の吐出側が利用熱交換器32のガス側と連通し、かつ、圧縮機12の吸入側が熱源熱交換器50のガス側と連通する。
この状態で圧縮機12が駆動されると、吸入管22aから流入する冷凍サイクルにおける低圧のガス冷媒は、圧縮機12の圧縮機構で圧縮されて高圧のガス冷媒となる。圧縮機12が吐出する高圧のガス冷媒は、吐出管22b、流路切換機構14、第2ガス冷媒管22e、及びガス冷媒連絡管26を経て利用熱交換器32に流入する。高圧のガス冷媒は、利用熱交換器32において、空調対象空間の空気と熱交換を行うことで冷却されて凝縮し、高圧の液冷媒となる。利用熱交換器32から流出した高圧の液冷媒は、液冷媒連絡管24及び液冷媒管22dを流れて膨張機構16に送られる。膨張機構16に送られた高圧の液冷媒は、膨張機構16を通過する際に減圧される。膨張機構16において減圧された低圧の液相又は気液二相の冷媒は、熱源熱交換器50に流入する。熱源熱交換器50に流入した冷媒は、熱源ファン18が供給する空気と熱交換を行うことで加熱されて蒸発し、低圧のガス冷媒となって熱源熱交換器50から流出する。熱源熱交換器50から流出した低圧のガス冷媒は、第1ガス冷媒管22c、流路切換機構14及び吸入管22aを経て圧縮機12に再び吸入される。
(2)熱源熱交換器
熱源熱交換器50について、図2~図8を参照しながら説明する。
熱源熱交換器50について、図2~図8を参照しながら説明する。
図2は、熱源熱交換器50の概略正面図である。図3は、図2のIII-III矢視の伝熱管60の概略断面図である。図4は、図2のIV-IV矢視の伝熱管60の概略断面図である。図5は、図2のV-V矢視の伝熱管60の概略断面図である。図6は、図2のVI-VI矢視の伝熱管60の概略断面図である。図7は、熱源熱交換器50の伝熱管60の概略斜視図である。図8は、熱源熱交換器50の一部の拡大概略正面図である。図8は、熱源熱交換器50における、伝熱管60同士の接触状態や、伝熱管60の第1領域62における第1部分62a及び第2部分62bの配置を説明するための図である。
図2~図8は、熱源熱交換器50の特徴を説明のための概略図である。したがって、図2~図8は、熱源熱交換器50の全体及び部分の、形状、サイズ、数量等を限定するものではない。
以下の説明では、方向や位置等を説明するために、上、下、左、右、前(正面)、後(背面)といった表現を用いる場合がある。特記なき場合、これらの表現で示される方向や位置は図中の矢印に従う。なお、本実施形態の上下方向、左右方向及び前後方向は、それぞれ、特許請求の範囲における第1方向、第2方向及び第3方向に対応する。
以下の説明では、水平、鉛直、平行、垂直、同一等の表現を用いる場合があるが、これらの表現は、厳密な意味で水平、鉛直、平行、垂直、同一等の状態を表すだけではなく、実質的に水平、鉛直、平行、垂直、同一等の状態も表す。
熱源熱交換器50は、主に、ガスヘッダ52と、液ヘッダ54と、熱交換部56と、を備える。熱交換部56は、複数の伝熱管60を含む。複数の伝熱管60のそれぞれの一端は、ガスヘッダ52に接続される。本実施形態では、複数の伝熱管60のそれぞれの上端が、ガスヘッダ52に接続される。また、複数の伝熱管60のそれぞれの一端は、液ヘッダ54に接続される。本実施形態では、複数の伝熱管60のそれぞれの下端が、液ヘッダ54に接続される。
熱源熱交換器50は、伝熱フィンを用いないフィンレスの熱交換器である。熱源熱交換器50では、主に伝熱管60において、冷媒と、熱源ファン18の供給する外部流体(本実施形態では空気)との熱交換が行われる。
熱源熱交換器50は、例えば、アルミニウム製又はアルミニウム合金製である。ただし、熱源熱交換器50の材質は、アルミニウム製又はアルミニウム合金製に限定されるものではなく、例えばマグネシウム合金製であってもよい。また、熱源熱交換器50の材料には、例示した以外の材料が選択されてもよい。
なお、ガスヘッダ52、液ヘッダ54、及び熱交換部56の伝熱管60の材質は、互いに異なる材質であってもよい。ただし、電食防止の観点からは、ガスヘッダ52、液ヘッダ54、及び熱交換部56の伝熱管60の材質は同じであることが好ましい。
(2-1)ガスヘッダ
ガスヘッダ52は、内部に空間が形成された中空の部材である。ガスヘッダ52は、所定方向を長手方向として直線状に延びる。本実施形態では、説明の便宜上、ガスヘッダ52の長手方向を左右方向と定義する。
ガスヘッダ52は、内部に空間が形成された中空の部材である。ガスヘッダ52は、所定方向を長手方向として直線状に延びる。本実施形態では、説明の便宜上、ガスヘッダ52の長手方向を左右方向と定義する。
ガスヘッダ52は、第1ガス冷媒管22cから流入する冷媒を複数の伝熱管60に分流させたり、複数の伝熱管60から流入する冷媒を合流させて第1ガス冷媒管22cに流入させたりする機能を有する部材である。具体的に説明する。
ガスヘッダ52の内部には、第1ガス冷媒管22cや複数の伝熱管60から冷媒が流入する内部空間が形成されている。
ガスヘッダ52には、熱交換部56の複数の伝熱管60のそれぞれの一端が接続される。特に、本実施形態では、ガスヘッダ52には、熱交換部56の複数の伝熱管60のそれぞれの上端が接続される。ガスヘッダ52には、ガスヘッダ52の長手方向に沿って伝熱管60が並ぶように、複数の伝熱管60が連結されている。複数の伝熱管60は、ガスヘッダ52に、例えばロウ付け固定されている。複数の伝熱管60がガスヘッダ52に連結されることで、複数の伝熱管60の後述する冷媒流路Pは、ガスヘッダ52の内部空間と連通する。
ガスヘッダ52は、第1ガス冷媒管22cが接続される接続部52aを有する。ガスヘッダ52の内部空間と第1ガス冷媒管22cとは、接続部52aを介して連通する。
このように構成される結果、熱源熱交換器50が凝縮器として機能するときには、ガスヘッダ52は、第1ガス冷媒管22cから内部空間に流入する冷媒を、複数の伝熱管60のそれぞれに設けられている冷媒流路Pに分流させる。また、熱源熱交換器50が蒸発器として機能するときには、ガスヘッダ52は、複数の伝熱管60から内部空間に流入する冷媒を合流させ、第1ガス冷媒管22cに流入させる。
(2-2)液ヘッダ
液ヘッダ54は、内部に空間が形成された中空の部材である。液ヘッダ54は、所定方向を長手方向として直線状に延びる。具体的には、液ヘッダ54は、ガスヘッダ52と同様に、左右方向を長手方向として直線状に延びる。液ヘッダ54は、ガスヘッダ52の直下の、ガスヘッダ52と対応する位置に配置されている。要するに、熱源熱交換器50は、ガスヘッダ52及び液ヘッダ54に接続される伝熱管60が、鉛直方向に延びる状態となるような姿勢で、熱源ユニット10の図示しないケーシング内に設置されている。
液ヘッダ54は、内部に空間が形成された中空の部材である。液ヘッダ54は、所定方向を長手方向として直線状に延びる。具体的には、液ヘッダ54は、ガスヘッダ52と同様に、左右方向を長手方向として直線状に延びる。液ヘッダ54は、ガスヘッダ52の直下の、ガスヘッダ52と対応する位置に配置されている。要するに、熱源熱交換器50は、ガスヘッダ52及び液ヘッダ54に接続される伝熱管60が、鉛直方向に延びる状態となるような姿勢で、熱源ユニット10の図示しないケーシング内に設置されている。
液ヘッダ54は、液冷媒管22dから流入する冷媒を複数の伝熱管60に分流させたり、複数の伝熱管60から流入する冷媒を合流させて液冷媒管22dに流入させたりする機能を有する部材である。具体的に説明する。
液ヘッダ54の内部には、液冷媒管22dや複数の伝熱管60から液冷媒が流入する内部空間が形成されている。
液ヘッダ54には、熱交換部56の複数の伝熱管60のそれぞれの一端(ガスヘッダ52と接続される側とは反対側の端)が接続される。特に、本実施形態では、液ヘッダ54には、熱交換部56の複数の伝熱管60のそれぞれの下端が接続される。液ヘッダ54には、液ヘッダ54の長手方向に沿って伝熱管60が並ぶように、複数の伝熱管60が連結されている。液ヘッダ54に一端がガスヘッダ52に他端が接続されている各伝熱管60は、鉛直方向に延びる。複数の伝熱管60は、液ヘッダ54に、例えばロウ付け固定されている。複数の伝熱管60が液ヘッダ54に連結されることで、複数の伝熱管60の後述する冷媒流路Pは、液ヘッダ54の内部空間と連通する。
液ヘッダ54は、液冷媒管22dが接続される接続部54aを有する。液ヘッダ54の内部空間と液冷媒管22dとは、接続部54aを介して連通する。
このように構成される結果、熱源熱交換器50が凝縮器として機能するときには、液ヘッダ54は、複数の伝熱管60から内部空間に流入する液冷媒を合流させ、液冷媒管22dに流入させる。また、熱源熱交換器50が蒸発器として機能するときには、液ヘッダ54は、液冷媒管22dから内部空間に流入する液冷媒又は気液二相の冷媒を、複数の伝熱管60のそれぞれに設けられている冷媒流路Pに分流させる。
(2-3)熱交換部
熱交換部56は、複数の伝熱管60を含む。熱源熱交換器50が設置された状態において、各伝熱管60は、上下方向(第1方向)を長手方向として延びる。各伝熱管60には、長手方向に延びる冷媒の流路(冷媒流路P)が形成されている。
熱交換部56は、複数の伝熱管60を含む。熱源熱交換器50が設置された状態において、各伝熱管60は、上下方向(第1方向)を長手方向として延びる。各伝熱管60には、長手方向に延びる冷媒の流路(冷媒流路P)が形成されている。
本実施形態では、各伝熱管60は、冷媒流路Pが複数形成されている扁平多穴管である。熱源熱交換器50が設置された状態において、各伝熱管60には、鉛直方向に沿って延びる冷媒流路Pが複数形成されている(図7参照)。なお、各伝熱管60に形成されている冷媒流路Pの数は、図面に描画された冷媒流路Pの数に限定されるものではない。
各伝熱管60は、各伝熱管60を長手方向に直交する平面で切断した時に、ある方向を長手方向(この方向を以下では断面長手方向D1と呼ぶ)とし、断面長手方向D1に直交する方向の幅は薄い、扁平形状の断面を有する。なお、以下の説明では、特記しない場合、伝熱管60の断面という表現は、伝熱管60を長手方向(熱源熱交換器50が設置された状態では上下方向)に直交する平面で切断した際の断面を意味する。
なお、本実施形態では、各伝熱管60の断面は、例えば図3に示すように、断面長手方向D1に複数の円管を並べたような形状を有する。なお、図3に描画されている断面は、伝熱管60の断面を模式的に示したにすぎず、伝熱管60の断面形状を具体的に限定するものではない。また、伝熱管60の断面形状は、図3のような形状に限定されるものではなく、その外形は扁平な四角形形状であってもよい。ただし、熱交換効率の観点からは、各伝熱管60の断面は、例えば図3のように、断面長手方向D1に沿って凹凸を有する形状であることが好ましい。
各伝熱管60の断面では、冷媒流路Pを形成する穴61が、例えば図3に示すように、断面長手方向D1に沿って複数並べて配置されている。なお、図面では穴61の形状は円形であるが、穴61の形状は円形以外(例えば四角形等)であってもよい。
本実施形態では、伝熱管60は、伝熱管60の断面長手方向D1が延びる方向が前後方向と一致するような姿勢でガスヘッダ52及び液ヘッダ54に取り付けられている。なお、ここで伝熱管60の断面長手方向D1に沿う前後方向は、熱源ファン18が生成する空気の流れ方向に概ね一致する。例えば、熱源ユニット10では、熱源ファン18は、熱源熱交換器50の前方に配置され、熱源熱交換器50に向かって後方に空気を吹き出す。扁平多穴管である伝熱管60の断面長手方向D1を熱源ファン18が発生する空気の流れ方向と一致させることで、熱源熱交換器50の通風抵抗を抑制しつつ、断面長手方向D1に沿って延びる伝熱管60の側面に熱源ファン18が送る空気を効率よく接触させて、高い熱交換効率を実現することができる。
また、熱源熱交換器50では、複数の伝熱管60は、断面長手方向D1と交差する方向に並べて配置される。具体的には、複数の伝熱管60は、断面長手方向D1と直交する方向に並ぶようにガスヘッダ52及び液ヘッダ54に取り付けられている。言い換えれば、本実施形態では、複数の伝熱管60は、左右方向に並べて配置される。
このように構成される結果、熱源熱交換器50では、第1方向に延びる冷媒流路Pが、第1方向に交差する第2方向に沿って複数配置されるとともに、第1方向及び第2方向に交差する第3方向に沿って複数配置される。具体的には、熱源熱交換器50では、鉛直方向に延びる冷媒流路Pが、鉛直方向に直交する左右方向に沿って複数配置されるとともに、鉛直方向及び左右方向に直交する前後方向に沿って複数配置される。
本開示の熱源熱交換器50の伝熱管60は、冷媒流路Pが延びる上下方向において、外縁の大きさ及び内縁の大きさの少なくとも一方が異なる部分を有する。言い換えれば、各伝熱管60では、冷媒流路Pが延びる上下方向における第1の位置と(第1の位置とは異なる)第2の位置とで、外縁の大きさ及び内縁の大きさの少なくとも一方が異なる。
なお、冷媒流路Pが延びる上下方向のある位置における伝熱管60の外縁の大きさとは、その位置において、伝熱管60を上下方向に直交する平面で切断した際の、断面の外縁の長さを意味する。一方、冷媒流路Pが延びる上下方向におけるある位置における伝熱管60の内縁の大きさとは、その位置において、伝熱管60を上下方向に直交する平面で切断した際の、穴61の外周の長さの総和を意味する。
以下に、上下方向(特許請求の範囲における第1方向)における、伝熱管60の外縁の大きさ、及び/又は、伝熱管60の内縁の大きさの変化について具体的に説明する。
各伝熱管60は、上下方向において、外縁及び/又は内縁の大きさの特徴の異なる第1領域62、第2領域66、及び第3領域68を有する。第1領域62、第2領域66、及び第3領域68の位置や、第1領域62、第2領域66、及び第3領域68における伝熱管60の形状等について以下に説明する。
(2-3-1)第1~第3領域の配置
伝熱管60に第1領域62、第2領域66、及び第3領域68が設けられる位置について説明する。
伝熱管60に第1領域62、第2領域66、及び第3領域68が設けられる位置について説明する。
第2領域66は、伝熱管60の下部の領域である。言い換えれば、第2領域66は、伝熱管60の液ヘッダ54に接続される側の端部の領域である。伝熱管60は、伝熱管60の第2領域66の部分において液ヘッダ54と接続される。伝熱管60の第2領域66は、特許請求の範囲における液ヘッダ接続部分の一例である。第2領域66の存在する範囲を限定するものではないが、例えば、第2領域66は、伝熱管60の下端から伝熱管60の上下方向長さの10%の長さだけ上方の範囲に配置される。
第3領域68は、伝熱管60の上部の領域である。言い換えれば、第3領域68は、伝熱管60のガスヘッダ52に接続される側の端部の領域である。伝熱管60は、伝熱管60の第3領域68の部分においてガスヘッダ52と接続される。伝熱管60の第3領域68は、特許請求の範囲におけるガスヘッダ接続部分の一例である。第3領域68の存在する範囲を限定するものではないが、例えば、第3領域68は、伝熱管60の上端から伝熱管60の上下方向長さの10%長さだけ下方の範囲に配置される。
第1領域62は、上下方向における第2領域66と第3領域68との間に配置される。第1領域62は、好ましくは、上下方向における伝熱管60の中央部に少なくとも配置される。ここで、伝熱管60の中央部とは、上下方向における伝熱管60の中心から、上方向及び下方向に、伝熱管60の上下方向長さの25%の長さの範囲を意味する。
第1領域62と第2領域66とは、上下方向において互いに隣接するように配置されてもよい。また、第1領域62と第2領域66との間には、以下で説明する第1領域62及び第2領域66のいずれにも属さない領域が存在していてもよい。また、同様に、第1領域62と第3領域68とは、上下方向において互いに隣接するように配置されてもよいし、第1領域62と第3領域68との間には、以下で説明する第1領域62及び第3領域68のいずれにも属さない領域が存在していてもよい。
(2-3-2)第1~第3領域における伝熱管の形状
第1領域62、第2領域66、及び第3領域68における伝熱管60の形状について説明する。
第1領域62、第2領域66、及び第3領域68における伝熱管60の形状について説明する。
(2-3-2-1)第1領域
第1領域62の伝熱管60には、第1部分62aと、第2部分62bと、が形成されている。第2部分62bには、非接触部分63と、接触部分64と、を含む。接触部分64は、特許請求の範囲における膨出部分及び第2膨出部分の一例である。
第1領域62の伝熱管60には、第1部分62aと、第2部分62bと、が形成されている。第2部分62bには、非接触部分63と、接触部分64と、を含む。接触部分64は、特許請求の範囲における膨出部分及び第2膨出部分の一例である。
第2部分62bの非接触部分63及び接触部分64は、第1部分62aに対し、上下方向と交差する方向に膨出する。非接触部分63及び接触部分64は、第1部分62aに対し、少なくとも、左右方向に、言い換えれば隣接する伝熱管60に向かって膨出する。
非接触部分63と接触部分64とでは、第1部分62aに対する膨出量が異なる。具体的には、接触部分64の第1部分62aに対する膨出量は、非接触部分63の第1部分62aに対する膨出量に比べて大きい。また、非接触部分63は、隣接する伝熱管60の外面60fに接触しないのに対し、接触部分64は、左右方向において隣接する伝熱管60の外面60fに接触する。
また、非接触部分63と接触部分64とは、接触部分64には凹み部64aが形成され、非接触部分63には凹み部64aが形成されない点で異なる。凹み部64aは、接触部分64が接触する伝熱管60から離れる方向に凹み、前後方向に沿って延びる溝部分を含む。
第1領域62では、伝熱管60に、上下方向に沿って、第1部分62aと、第1部分62aに対し上下方向と交差する方向に膨出する第2部分62b(非接触部分63又は接触部分64)と、が交互に形成されている(図2参照)。伝熱管60の第1領域62に、上下方向に沿って、第1部分62a(凹部)と、第2部分62b(凸部)と、が交互に配置されることで、伝熱管60の第1領域62の外面60fには、上下方向に沿って凹凸が形成される(図2参照)。
非接触部分63が第1部分62aに対し上下方向と交差する方向に膨出する結果、図5のように、非接触部分63の外縁の大きさは、第1部分62aの外縁の大きさよりも大きい。なお、図5では、第1部分62aの断面を二点鎖線で、非接触部分63の外縁の大きさを実線でそれぞれ示している。図示は省略するが、接触部分64の外縁の大きさも、第1部分62aの外縁の大きさよりも大きい。さらに、接触部分64の外縁の大きさは、非接触部分63の外縁の大きさよりも大きい。
また、図5のように、非接触部分63の内縁の大きさも、第1部分62aの内縁の大きさよりも大きい。同様に、接触部分64の内縁の大きさも、第1部分62aの内縁の大きさよりも大きい。言い換えれば、非接触部分63及び接触部分64における穴61の大きさは、第1部分62aの穴61の大きさよりも大きい。要するに、非接触部分63及び接触部分64における冷媒流路Pの流路面積は、第1部分62aにおける冷媒流路Pの流路面積よりも大きい。
次に、本実施形態の熱源熱交換器50における隣接する伝熱管60における、第1部分62a、非接触部分63、及び接触部分64の位置関係を説明する。
本実施形態の熱源熱交換器50では、全ての伝熱管60が、第1領域62を有する。また、全ての伝熱管60には、上下方向における同一位置に第1領域62が配置されている。また、各伝熱管60の第1領域62には、上下方向における同一位置に第1部分62a、非接触部分63、及び接触部分64が配置されている。要するに、本実施形態の熱源熱交換器50では、第1部分62a、非接触部分63、及び接触部分64が上下方向における同一位置に、左右方向に並べて配置されている。
言い換えれば、本実施形態の熱源熱交換器50では、ある伝熱管60(第1の伝熱管60と呼ぶ)と、左右方向において第1の伝熱管60に隣接する伝熱管60(第2の伝熱管60と呼ぶ)とは、共に第1領域62を含む。そして、上下方向において、第1の伝熱管60の非接触部分63と、第2の伝熱管60の非接触部分63とは、同じ位置に形成されている。
また、本実施形態の熱源熱交換器50では、上下方向において、第1の伝熱管60の接触部分64と、第2の伝熱管60の接触部分64とは、同じ位置に形成されている。そして、第1の伝熱管60の接触部分64は、左右方向において隣接する第2の伝熱管60の接触部分64に接触する。
<第1領域を設けた効果>
伝熱管60に第1領域62を設けた効果について説明する。
伝熱管60に第1領域62を設けた効果について説明する。
(a)熱伝達率の向上及び冷媒流路の圧損の増加抑制
本実施形態では、伝熱管60の第1領域62は、少なくとも、冷媒流路Pの延びる伝熱管60の長手方向(本実施形態では上下方向)における、伝熱管60の中央部に形成される。好ましくは、伝熱管60の第1領域62は、伝熱管60の長手方向における伝熱管60の中央域(伝熱管60の中央部及びその周辺)に形成される。伝熱管60の中央域は、熱源熱交換器50が凝縮器として機能する場合にも、蒸発器として機能する場合にも、冷媒と外部流体との熱交換が活発に行われる領域である。また、伝熱管60の中央域は、熱源熱交換器50が凝縮器として機能する場合にも、蒸発器として機能する場合にも、主に気液二相の冷媒が流れる。
本実施形態では、伝熱管60の第1領域62は、少なくとも、冷媒流路Pの延びる伝熱管60の長手方向(本実施形態では上下方向)における、伝熱管60の中央部に形成される。好ましくは、伝熱管60の第1領域62は、伝熱管60の長手方向における伝熱管60の中央域(伝熱管60の中央部及びその周辺)に形成される。伝熱管60の中央域は、熱源熱交換器50が凝縮器として機能する場合にも、蒸発器として機能する場合にも、冷媒と外部流体との熱交換が活発に行われる領域である。また、伝熱管60の中央域は、熱源熱交換器50が凝縮器として機能する場合にも、蒸発器として機能する場合にも、主に気液二相の冷媒が流れる。
伝熱管60の第1領域62では、上下方向に沿って伝熱管60の外面60fに繰り返し凹凸が形成されている。言い換えれば、伝熱管60の第1領域62では、伝熱管60は、上下方向に沿って拡大と縮小を繰り返す。さらに言い換えれば、伝熱管60の第1領域62では、伝熱管60の外縁の大きさが、上下方向に沿って拡大と縮小を繰り返す。また、伝熱管60の第1領域62では、伝熱管60の内縁の大きさも、上下方向に沿って拡大と縮小を繰り返す。言い換えれば、伝熱管60の第1領域62では、伝熱管60の冷媒流路Pの面積も、上下方向に沿って拡大と縮小を繰り返す。
伝熱管60の中央域、言い換えれば主に気液二相の冷媒が流れる領域に、上下方向(冷媒流路Pの延びる方向)に沿って伝熱管60の外縁が拡大と縮小を繰り返す第1領域62を設けることで、冷媒と外部流体との熱伝達効率を向上させることができる。また、伝熱管60の中央域、言い換えれば主に気液二相の冷媒が流れる領域に、上下方向(冷媒流路Pの延びる方向)に沿って伝熱管60の内縁の大きさが拡大と縮小を繰り返す第1領域62を設けることで、冷媒流路Pを流れる冷媒の圧損を抑制することができる。
(b)着霜による空気の流路の閉塞抑制
熱源熱交換器が蒸発器として使用される際、運転条件によっては熱源熱交換器に着霜することがある。このような着霜は、熱源熱交換器の中でも、冷媒と熱交換する外部流体(空気)の流れ方向の上流側において特に生じやすい。例えば、本実施形態のように、熱源熱交換器50の前方に配置された熱源ファン18が、後方に配置されている熱源熱交換器50に向かって空気を送る場合には、熱源熱交換器50の伝熱管60の前方側の端部に着霜しやすい。
熱源熱交換器が蒸発器として使用される際、運転条件によっては熱源熱交換器に着霜することがある。このような着霜は、熱源熱交換器の中でも、冷媒と熱交換する外部流体(空気)の流れ方向の上流側において特に生じやすい。例えば、本実施形態のように、熱源熱交換器50の前方に配置された熱源ファン18が、後方に配置されている熱源熱交換器50に向かって空気を送る場合には、熱源熱交換器50の伝熱管60の前方側の端部に着霜しやすい。
伝熱管60に仮に第1領域62が設けられず、伝熱管60の風上側端部において、伝熱管60の長手方向(上下方向)に沿って拡大・縮小する部分が設けられていない場合、言い換えれば、伝熱管60の風上側端部の左右方向の幅が伝熱管60の長手方向に沿って一様である場合、伝熱管60の風上側端部には概ね一様に着霜が進む。そのため、伝熱管60の風上側端部に着いた霜が空気の流路を閉塞してしまい、伝熱管60の風上側端部よりも風下側に空気が送られない不具合が、空調装置100の運転開始から比較的早い時間に発生する可能性がある。
これに対し、本実施形態の伝熱管60には、第1領域62が存在し、伝熱管60に、上下方向に沿って、外縁の比較的小さな第1部分62aと、外縁の比較的大きな第2部分62bが設けられている。このように、伝熱管60の外面60fに第1方向に沿って凹凸を繰り返し設ける場合、伝熱管60の風上側端部における着霜は、凸部(言い換えれば第2部分62b)に集中しやすい。そのため、本実施形態の伝熱管60では、伝熱管60の風上側端部の第1領域62の第1部分62aへの着霜を抑制し、伝熱管60の風上側端部への着霜が空気の流路を閉塞する不具合の発生を少なくとも遅延させることができる。したがって、本熱源熱交換器50を用いる空調装置100では、暖房運転を、熱源熱交換器50の除霜のために停止させずに、比較的長時間継続できる。
特に、本実施形態では、互いに隣接する伝熱管60の第1領域62の非接触部分63及び接触部分64は、上下方向において同じ位置に形成されている。言い換えれば、本実施形態では、互いに隣接する伝熱管60の第1領域62の第1部分62aは、上下方向において同じ位置に形成されている。そのため、本実施形態の熱源熱交換器50では、互いに隣接する伝熱管60の第1領域62の第1部分62aの間に比較的大きな空気の流路を確保できる。そのため、伝熱管60の風上側端部に着いた霜による空気の流路の閉塞が特に抑制されやすい。なお、霜による空気の流路の閉塞の抑制(霜による空気の流路の閉塞の遅延)という観点からは、伝熱管60の第1領域62の第2部分62bは、伝熱管60の鉛直方向における概ね全域に設けられることが好ましい。
<接触部分を設けた効果>
伝熱管60に接触部分64を設けた効果について説明する。
伝熱管60に接触部分64を設けた効果について説明する。
伝熱管60の接触部分64は、前述のように、左右方向において隣接する伝熱管60の接触部分64と接触する。このように伝熱管60の接触部分64同士を接触させることで、伝熱管60の間の距離を所定距離に調節することができる。言い換えれば、本熱源熱交換器50では、左右方向において隣接する伝熱管60の接触部分64同士を接触させることで、左右方向において隣接する伝熱管60同士が、過度に接近したり、逆に過度に離れたりする状態の発生を抑制できる。要するに、伝熱管60の接触部分64は、伝熱管60の配列ピッチを調節するスペーサとして機能する。
なお、伝熱管60間の配列ピッチ調節は、伝熱管60の間に、伝熱管60とは別のスペーサを配置することでも実現できる。ただし、伝熱管60自体に形成された接触部分64をスペーサとして用いることで、伝熱管60とは別体のスペーサを設ける費用や、伝熱管60とは別体のスペーサを伝熱管60に取り付けるための工賃等を削減できる。
(2-3-2-2)第2領域
伝熱管60の第2領域66は、上述のように、特許請求の範囲における液ヘッダ接続部分の一例である。伝熱管60の第2領域66は、液ヘッダ54に挿入され、伝熱管60の第2領域66の少なくとも一部は、液ヘッダ54と接続される。
伝熱管60の第2領域66は、上述のように、特許請求の範囲における液ヘッダ接続部分の一例である。伝熱管60の第2領域66は、液ヘッダ54に挿入され、伝熱管60の第2領域66の少なくとも一部は、液ヘッダ54と接続される。
伝熱管60の第2領域66は、伝熱管60の第1領域62とは異なり、外面60fに凹凸(拡大部分及び縮小部分)は設けられていない。言い換えれば、伝熱管60の第2領域66では、伝熱管60の外縁の大きさは一様である。また、伝熱管60の第2領域66では、伝熱管60の内縁の大きさは一様である。
伝熱管60の第2領域66は、伝熱管60の第2領域66以外の部分よりも伝熱管60の内縁の大きさが小さく形成されている部分である。具体的には、第2領域66の伝熱管60の内縁の大きさは、伝熱管60の第2領域66以外の内縁の平均の大きさに比べて小さい。また、第2領域66における伝熱管60の内縁の大きさは、図4に示すように、第1領域62の第1部分62aにおける伝熱管60の内縁の大きさよりも小さい。なお、図4では、第2領域66の断面を実線で示し、伝熱管60の第1領域62の第1部分62aの断面を二点鎖線で示している。
また、伝熱管60の第2領域66は、伝熱管60の第2領域66以外の部分よりも伝熱管60の外縁の大きさが小さく形成されている部分である。具体的には、第2領域66の伝熱管60の外縁の大きさは、伝熱管60の第2領域66以外の外縁の平均の大きさに比べて小さい。また、第2領域66における伝熱管60の外縁の大きさは、図4に示すように、第1領域62の第1部分62aにおける伝熱管60の外縁の大きさよりも小さい。
<第2領域を設けた効果>
伝熱管60に第2領域66を設けた効果について説明する。
伝熱管60に第2領域66を設けた効果について説明する。
前述のように、伝熱管60の第2領域66は、伝熱管60の液ヘッダ54と接続される側の端部に形成される。そのため、伝熱管60の冷媒流路Pの第2領域66に対応する位置では、熱源熱交換器50が凝縮器として機能する場合にも、蒸発器として機能する場合にも、主に液冷媒が流れる。
本実施形態の熱源熱交換器50では、このように(同一質量、同一圧力である場合に)ガス冷媒に比べて体積の小さな液冷媒が主に流れる場所に、伝熱管60の内縁の大きさを伝熱管60の他の部分の内縁の大きさに比べて小さくした第2領域66を設けている。その結果、第2領域66における外部流体と冷媒(主に液冷媒)との伝熱管60を介した熱伝達率を向上できる。
(2-3-2-3)第3領域
伝熱管60の第3領域68は、上述のように、特許請求の範囲におけるガスヘッダ接続部分の一例である。伝熱管60の第3領域68は、ガスヘッダ52に挿入され、伝熱管60の第3領域68の少なくとも一部は、ガスヘッダ52と接続される。
伝熱管60の第3領域68は、上述のように、特許請求の範囲におけるガスヘッダ接続部分の一例である。伝熱管60の第3領域68は、ガスヘッダ52に挿入され、伝熱管60の第3領域68の少なくとも一部は、ガスヘッダ52と接続される。
また、伝熱管60の第3領域68は、特許請求の範囲における膨出部分の一例である。伝熱管60の第3領域68の外面60fは、伝熱管60の第3領域68に隣接する部分(伝熱管60の第3領域68の下方の部分)に対し、伝熱管60の長手方向である上下方向と交差する方向に膨出し、隣接する伝熱管60の外面60fに接触する。また、伝熱管60の第3領域68は、伝熱管60の長手方向である上下方向における端部に設けられる、特許請求の範囲における第1膨出部分の一例である。
伝熱管60の第3領域68は、伝熱管60の第1領域62とは異なり、外面60fに凹凸(拡大部分及び縮小部分)は設けられていない。伝熱管60の第3領域68では、伝熱管60の内縁の大きさは一様である。また、伝熱管60の第3領域68では、伝熱管60の外縁の大きさは一様である。
伝熱管60の第3領域68は、伝熱管60の第3領域68以外の部分よりも伝熱管60の内縁の大きさが大きく形成されている部分である。具体的には、第3領域68の伝熱管60の内縁の大きさは、伝熱管60の第3領域68以外の内縁の平均の大きさに比べて大きい。また、第3領域68における伝熱管60の内縁の大きさは、図6に示すように、第1領域62の非接触部分63における伝熱管60の内縁の大きさよりも大きい。なお、図6では、第3領域68の断面を実線で示し、伝熱管60の第1領域62の非接触部分63の断面を二点鎖線で示している。
また、伝熱管60の第3領域68は、伝熱管60の第3領域68以外の部分よりも伝熱管60の外縁の大きさが大きく形成されている部分である。具体的には、第3領域68の伝熱管60の外縁の大きさは、伝熱管60の第3領域68以外の外縁の平均の大きさに比べて大きい。また、第3領域68における伝熱管60の外縁の大きさは、図6に示すように、第1領域62の非接触部分63における伝熱管60の外縁の大きさよりも大きい。
なお、第3領域68における伝熱管60の外縁の大きさは、第1領域62の接触部分64における伝熱管60の外縁の大きさと同一である。また、第3領域68における伝熱管60の左右方向の最大幅は、第1領域62の接触部分64の左右方向の最大幅と同一である。そして、伝熱管60の第3領域68は、左右方向において隣接する伝熱管60の第3領域68に接触する。なお、図示は省略するが、伝熱管60の第3領域68には、接触部分64の凹み部64aと同様の凹み部が形成されることが好ましい。
なお、伝熱管60の長手方向(上下方向)において、伝熱管60の第3領域68の長さB1は、伝熱管60の第1領域62の接触部分64の長さB2よりも長いことが好ましい(図2参照)。言い換えれば、伝熱管60の上下方向(第1方向)における端部に設けられる第1膨出部分の一例である伝熱管60の第3領域68の上下方向の長さB1は、伝熱管60の上下方向における端部以外に設けられる第2膨出部分の一例である伝熱管60の接触部分64の上下方向の長さB2よりも長いことが好ましい。
<第3領域を設けた効果>
伝熱管60に第3領域68を設けた効果について説明する。
伝熱管60に第3領域68を設けた効果について説明する。
(a)冷媒流路の圧損の増加抑制
前述のように、伝熱管60の第3領域68は、伝熱管60のガスヘッダ52と接続される側の端部に形成される。そのため、伝熱管60の冷媒流路Pの第3領域68に対応する位置では、熱源熱交換器50が凝縮器として機能する場合にも、蒸発器として機能する場合にも、主にガス冷媒が流れる。
前述のように、伝熱管60の第3領域68は、伝熱管60のガスヘッダ52と接続される側の端部に形成される。そのため、伝熱管60の冷媒流路Pの第3領域68に対応する位置では、熱源熱交換器50が凝縮器として機能する場合にも、蒸発器として機能する場合にも、主にガス冷媒が流れる。
本実施形態の熱源熱交換器50では、このように(同一質量、同一圧力である場合に)液冷媒に比べて体積の大きなガス冷媒が主に流れる場所に、伝熱管60の内縁の大きさを伝熱管60の他の部分の内縁の大きさに比べて大きくした伝熱管60の第3領域68を設けている。その結果、第3領域68に冷媒が流れる際の圧損が抑制されやすい。
(b)伝熱管間の配列ピッチ調節
伝熱管60の第3領域68は、前述のように、左右方向において隣接する伝熱管60の第3領域68と接触する。このように伝熱管60の第3領域68同士を接触させることで、伝熱管60の間の距離を所定距離に調節することができる。言い換えれば、本熱源熱交換器50では、左右方向において隣接する伝熱管60の第3領域68同士を接触させることで、左右方向において隣接する伝熱管60同士が、過度に接近したり、逆に過度に離れたりする状態の発生を抑制できる。要するに、伝熱管60の第3領域68は、接触部分64と同様に、伝熱管60の配列ピッチを調節するスペーサとして機能する。
伝熱管60の第3領域68は、前述のように、左右方向において隣接する伝熱管60の第3領域68と接触する。このように伝熱管60の第3領域68同士を接触させることで、伝熱管60の間の距離を所定距離に調節することができる。言い換えれば、本熱源熱交換器50では、左右方向において隣接する伝熱管60の第3領域68同士を接触させることで、左右方向において隣接する伝熱管60同士が、過度に接近したり、逆に過度に離れたりする状態の発生を抑制できる。要するに、伝熱管60の第3領域68は、接触部分64と同様に、伝熱管60の配列ピッチを調節するスペーサとして機能する。
また、ここでは、伝熱管60の長手方向(上下方向)において、伝熱管60の第3領域68の長さB1が、伝熱管60の接触部分64の長さB2よりも長い。このように、伝熱管60の長手方向における伝熱管60の端部の第3領域68の長さB1を比較的長くとることで、伝熱管60の第3領域68とガスヘッダ52とのロウ付け代が確保されやすい。
(3)伝熱管の製造方法
伝熱管60の製造方法の例について説明する。
伝熱管60の製造方法の例について説明する。
伝熱管60の製造にあたっては、伝熱管60の素材として、第1領域62、第2領域66、第3領域68のいずれも設けられていない扁平多穴管が準備される。言い換えれば、伝熱管60の製造にあたっては、伝熱管60の素材として、伝熱管60の長手方向に沿って、伝熱管60の外縁及び内縁の大きさが一様な扁平多穴管が設けられる。例えば、限定するものではないが、伝熱管60の素材には、第1領域62の第1部分62aと同じ断面を有する扁平多穴管が準備される。なお、どのようなサイズの断面を有する扁平多穴管を準備するかは、適宜設計されればよい。
伝熱管60は、このような扁平多穴管(素材)に対してダイレス引抜き加工を行うことにより、第1領域62、第2領域66及び第3領域68を有する伝熱管60を形成していく。具体的には、例えば、第1領域62の第1部分62aと同じ断面を有する扁平多穴管に対してダイレス引抜き加工が行われることで、第1領域62の第2部分62b(非接触部分63及び接触部分64(凹み部64aを含む))、第2領域66、第3領域68等が形成されていく。
なお、ダイレス引抜き加工とは、素材(ここでは加工前の扁平多穴管)を、高周波誘導加熱装置やレーザ加熱装置等を利用した加熱部により局所的に加熱し、加熱部(言い換えれば加熱部による加熱箇所)を、素材に対して、素材の長手方向(扁平多穴管の長手方向)に相対移動させ、同時に素材の加熱部により加熱されている部分に素材の長手方向に沿った力を加えて、素材を長手方向に交差する方向に膨出させたり、素材を長手方向に引き伸ばしたりする加工方法である。なおダイレス引抜き加工では、外縁の大きさが大きくなるように変形させることで(言い換えれば、素材を長手方向に圧縮することで)、内縁の大きさも大きくなる。また、ダイレス引抜き加工では、外縁の大きさが小さくなるように変形させることで(言い換えれば、素材を長手方向に引っ張ることで)、内縁の大きさも小さくなる。
伝熱管60の加工方法としてダイレス引抜き加工を用いることで、複数の工程を経ることなく比較的容易に、かつ、比較的短時間で、以上で説明したような形状の伝熱管60を製造することができる。
なお、熱源熱交換器50を製造する際には、ダイレス引抜成形された複数の伝熱管60が、伝熱管60の両端部が揃えられた状態で、断面長手方向D1に直交する方向に並べられ、複数の伝熱管60が断面長手方向D1に直交する方向に積層された状態で、その端部が、ガスヘッダ52や液ヘッダ54に接続される。なお、複数の伝熱管60を断面長手方向D1に直交する方向に積層する際には、伝熱管60の接触部分64や第3領域68が、左右方向において隣接する伝熱管60の外面60f(左右方向において隣接する伝熱管60の接触部分64や第3領域68)に接触するため、伝熱管60同士の距離(伝熱管60の配列ピッチ)が所定距離に調節される。
なお、ダイレス引抜き加工では、上述のように、扁平多穴管の外縁の大きさと内縁の大きさとが同時に変化する。ただし、伝熱管60の加工には、ダイレス引抜き加工とは異なり、外縁の大きさ及び内縁の大きさのいずれか一方だけを変化させる加工法が少なくとも部分的に利用されてもよい。
(4)熱源熱交換器の特徴
(4-1)
本実施形態の熱源熱交換器50では、鉛直方向に延びる冷媒流路Pが、鉛直方向に交差する左右方向に沿って複数配置されるとともに、鉛直方向及び左右方向に交差する前後方向に沿って複数配置される。鉛直方向、左右方向及び前後方向は、それぞれ、特許請求の範囲における第1方向、第2方向及び第3方向の一例である。熱源熱交換器50は、冷媒流路Pを形成する複数の伝熱管60を備える。伝熱管60は、鉛直方向における第1の位置と第2の位置とで、外縁の大きさ及び内縁の大きさの少なくとも一方が異なる。
(4-1)
本実施形態の熱源熱交換器50では、鉛直方向に延びる冷媒流路Pが、鉛直方向に交差する左右方向に沿って複数配置されるとともに、鉛直方向及び左右方向に交差する前後方向に沿って複数配置される。鉛直方向、左右方向及び前後方向は、それぞれ、特許請求の範囲における第1方向、第2方向及び第3方向の一例である。熱源熱交換器50は、冷媒流路Pを形成する複数の伝熱管60を備える。伝熱管60は、鉛直方向における第1の位置と第2の位置とで、外縁の大きさ及び内縁の大きさの少なくとも一方が異なる。
本実施形態の熱源熱交換器50では、冷媒流路Pに沿って伝熱管60の外縁及び内縁の大きさの少なくとも一方を変化させることで、各冷媒流路P内での冷媒の状態変化に応じて熱源熱交換器50の効率化を図ることができる。
特に、本実施形態の熱源熱交換器50では、伝熱管60の長手方向(鉛直方向)に沿って伝熱管60の外縁の大きさを変化させ、長手方向に沿って伝熱管60に凹凸を設けている。この結果、熱源熱交換器50を蒸発器として用いる場合に、伝熱管60の風上側端部の長手方向全体にわたって一様に着霜し、熱源熱交換器50に供給される空気の流路が閉塞され、伝熱管60の下流側に空気が供給されなくなる不具合が抑制されやすい。なお、本実施形態では、熱源熱交換器50において、熱源ファン18が供給する空気が、前方から後方に向かって流れる。
また、本実施形態の熱源熱交換器50では、伝熱管60の長手方向(鉛直方向)に沿って伝熱管60の外縁の大きさを変化させ、伝熱管60の一部(接触部分64や第3領域68)を左右方向に隣接する伝熱管60に接触させている。この結果、伝熱管60とは別部材のスペーサを利用せずに、複数の伝熱管60の配列ピッチを調節することができる。
(4-2)
本実施形態の熱源熱交換器50では、冷媒流路Pを形成する複数の伝熱管60は、前後方向に沿って配置されている複数の冷媒流路Pを形成する扁平多穴管である。
本実施形態の熱源熱交換器50では、冷媒流路Pを形成する複数の伝熱管60は、前後方向に沿って配置されている複数の冷媒流路Pを形成する扁平多穴管である。
本実施形態の熱源熱交換器50では、伝熱管60として扁平多穴管を用いることで、伝熱フィンを用いなくても、効率よく冷媒と外部流体との熱交換を行うことができる。
(4-3)
本実施形態の熱源熱交換器50では、伝熱管60は、鉛直方向に沿って、第1部分62aと第2部分62bとが交互に形成されている第1領域62を含む。第2部分62bは、第1部分62aに対し鉛直方向と交差する方向に膨出する。
本実施形態の熱源熱交換器50では、伝熱管60は、鉛直方向に沿って、第1部分62aと第2部分62bとが交互に形成されている第1領域62を含む。第2部分62bは、第1部分62aに対し鉛直方向と交差する方向に膨出する。
本実施形態の熱源熱交換器50では、鉛直方向に沿って第1部分62a(凹部)と第2部分62b(凸部)とを交互に設けることで、伝熱管60の第1領域62における熱交換効率を向上できる。
また、本実施形態の熱源熱交換器50では、伝熱管60に鉛直方向に沿って拡大及び縮小を繰り返す第1領域62を設けることで、伝熱管60の鉛直方向における拡大部(第2部分62b)に集中的に着霜させることができる。そのため、伝熱管60の風上側端部に鉛直方向全体にわたって一様に着霜し、熱源熱交換器50に供給される空気の流路が閉塞され、伝熱管60の下流側に空気が供給されなくなる不具合が抑制されやすい。
(4-4)
本実施形態の熱源熱交換器50では、左右方向において互いに隣接する第1の伝熱管60及び第2の伝熱管60は、共に第1領域62を含む。鉛直方向において、第1の伝熱管60の第2部分62bと第2の伝熱管60の第2部分62bとは、同じ位置に形成されている。
本実施形態の熱源熱交換器50では、左右方向において互いに隣接する第1の伝熱管60及び第2の伝熱管60は、共に第1領域62を含む。鉛直方向において、第1の伝熱管60の第2部分62bと第2の伝熱管60の第2部分62bとは、同じ位置に形成されている。
本実施形態の熱源熱交換器50では、左右方向に隣接する伝熱管60の第2部分62bの位置が鉛直方向において一致しているため、左右方向に隣接する伝熱管60の第1部分62aの位置も鉛直方向において一致している。そのため、この熱源熱交換器50では、隣接する伝熱管60の第1部分62a(凹部)の間に比較的大きな隙間を形成でき、外部流体の流路を比較的大きく確保できる。
(4-5)
本実施形態の熱源熱交換器50では、第1領域62は、鉛直方向における伝熱管60の中央部に少なくとも配置されている。
本実施形態の熱源熱交換器50では、第1領域62は、鉛直方向における伝熱管60の中央部に少なくとも配置されている。
本実施形態の熱源熱交換器50では、主に熱交換が行われる鉛直方向における伝熱管60の中央部に、鉛直方向に沿って凹凸構造が設けられるため、高い熱交換効率が実現されやすい。
(4-6)
本実施形態の熱源熱交換器50は、伝熱管60の一端が接続されるガスヘッダ52を備える。熱源熱交換器50は、以下の(A)及び(B)の構成を有する。
本実施形態の熱源熱交換器50は、伝熱管60の一端が接続されるガスヘッダ52を備える。熱源熱交換器50は、以下の(A)及び(B)の構成を有する。
(A)伝熱管60のガスヘッダ52と接続されるガスヘッダ接続部分の一例としての第3領域68の伝熱管60の内縁の大きさは、伝熱管60の第3領域68以外の内縁の平均の大きさに比べて大きい。
(B)伝熱管60のガスヘッダ52と接続される第3領域68の伝熱管60の外縁の大きさは、伝熱管60の第3領域68以外の外縁の平均の大きさに比べて大きい。
本実施形態の熱源熱交換器50では、以上の(A),(B)の構成を有することで、特には(A)の構成を有することで、ガス冷媒が主に流れる、伝熱管60の第3領域68での圧損が抑制されやすい。
(4-7)
本実施形態の熱源熱交換器50は、伝熱管60の一端が接続される液ヘッダ54を備える。熱源熱交換器50は、以下の(C)及び(D)の構成を有する。
本実施形態の熱源熱交換器50は、伝熱管60の一端が接続される液ヘッダ54を備える。熱源熱交換器50は、以下の(C)及び(D)の構成を有する。
(C)伝熱管60の液ヘッダと接続される液ヘッダ接続部分の一例としての第2領域66の伝熱管60の内縁の大きさは、伝熱管60の第2領域66以外の内縁の平均の大きさに比べて小さい。
(D)伝熱管60の液ヘッダと接続される第2領域66の伝熱管60の外縁の大きさは、伝熱管60の第2領域66以外の外縁の平均の大きさに比べて小さい。
本実施形態の熱源熱交換器50は、以上の(C),(D)の構成を有することで、特には(C)の構成を有することで、第3領域68を流れる液冷媒と外部流体との伝熱を促進することができる。
(4-8)
本実施形態の熱源熱交換器50は、第1部分62aが形成されている部分の伝熱管60の外縁の大きさは、伝熱管60の液ヘッダ54と接続される第2領域66の伝熱管60の外縁の大きさより大きい。第2部分62bが形成されている部分の伝熱管60の外縁の大きさは、伝熱管60のガスヘッダ52と接続される第3領域68の伝熱管60の外縁の大きさ以下である。
本実施形態の熱源熱交換器50は、第1部分62aが形成されている部分の伝熱管60の外縁の大きさは、伝熱管60の液ヘッダ54と接続される第2領域66の伝熱管60の外縁の大きさより大きい。第2部分62bが形成されている部分の伝熱管60の外縁の大きさは、伝熱管60のガスヘッダ52と接続される第3領域68の伝熱管60の外縁の大きさ以下である。
本実施形態の熱源熱交換器50では、伝熱管60の外縁の大きさが、冷媒流路Pの延びる方向における冷媒の状態の変化に応じた形状となっているため、熱源熱交換器50の伝熱効率を向上させるとともに、熱源熱交換器50における圧損を低減することができる。
(4-9)
本実施形態の熱源熱交換器50では、伝熱管60の外面60fに、鉛直方向と交差する方向に膨出し、左右方向において隣接する伝熱管60の外面60fに接触する膨出部分が形成されている。膨出部分には、接触部分64及び第3領域68を含む。
本実施形態の熱源熱交換器50では、伝熱管60の外面60fに、鉛直方向と交差する方向に膨出し、左右方向において隣接する伝熱管60の外面60fに接触する膨出部分が形成されている。膨出部分には、接触部分64及び第3領域68を含む。
本実施形態の熱源熱交換器50では、伝熱管60に膨出部分を設けることで、伝熱管60とは別部材のスペーサを設けることなく、左右方向において隣接する伝熱管60の配列ピッチを調節することができる。
また、本実施形態の熱源熱交換器50では、伝熱管60の配列ピッチが適切な距離に保たれることで、左右方向において隣接する伝熱管60の間に適切な外部流体の流路を確保することができ、外部流体の流路が確保されないことに伴う局所的な熱交換効率の低下を抑制できる。
(4-10)
本実施形態の熱源熱交換器50では、伝熱管60の膨出部分(接触部分64及び第3領域68)は、左右方向において隣接する伝熱管60の膨出部分に接触する。
本実施形態の熱源熱交換器50では、伝熱管60の膨出部分(接触部分64及び第3領域68)は、左右方向において隣接する伝熱管60の膨出部分に接触する。
本実施形態の熱源熱交換器50では、互いに膨出する部分を接触させるため、左右方向において隣接する伝熱管60の間に比較的大きな外部流体の流路を確保することができ、外部流体の流路が確保されないことに伴う局所的な熱交換効率の低下を抑制できる。
(4-11)
本実施形態の熱源熱交換器50では、接触部分64には、前後方向に沿って延びる凹み部64aが形成されている。また、伝熱管60の第3領域68にも、前後方向に沿って延びる凹み部(図示省略)が形成されている。
本実施形態の熱源熱交換器50では、接触部分64には、前後方向に沿って延びる凹み部64aが形成されている。また、伝熱管60の第3領域68にも、前後方向に沿って延びる凹み部(図示省略)が形成されている。
本実施形態の熱源熱交換器50では、伝熱管60同士の接触部における排水性を高めることができる。
(4-12)
本実施形態の熱源熱交換器50では、特許請求の範囲における膨出部分として、第1膨出部分の一例である第3領域68と、第2膨出部分の一例である接触部分64と、を含む。伝熱管60の第3領域68は、伝熱管60の鉛直方向における端部に設けられる。接触部分64は、伝熱管60の鉛直方向における端部以外に設けられる。第3領域68の鉛直方向における長さB1は、接触部分64の鉛直方向における長さB2より長い。
本実施形態の熱源熱交換器50では、特許請求の範囲における膨出部分として、第1膨出部分の一例である第3領域68と、第2膨出部分の一例である接触部分64と、を含む。伝熱管60の第3領域68は、伝熱管60の鉛直方向における端部に設けられる。接触部分64は、伝熱管60の鉛直方向における端部以外に設けられる。第3領域68の鉛直方向における長さB1は、接触部分64の鉛直方向における長さB2より長い。
本実施形態の熱源熱交換器50では、伝熱管60の鉛直方向における端部に設けられる第3領域68の長さB1が比較的長いため、伝熱管60とヘッダ(特に本実施形態ではガスヘッダ52)とのロウ付け代を確保することが容易である。
(4-13)
本実施形態の熱源熱交換器50では、伝熱管60は、ダイレス引抜成形されている。
本実施形態の熱源熱交換器50では、伝熱管60は、ダイレス引抜成形されている。
本実施形態の熱源熱交換器50では、伝熱管60の長手方向における第1の位置と第2の位置とで外縁の大きさ及び内縁の大きさの少なくとも一方が異なる伝熱管60を比較的容易に、かつ、比較的短時間で製造することができるため、製造性に優れる。
<第2実施形態>
本開示の熱交換器の第1実施形態に係る熱源熱交換器50について、図9を参照しながら説明する。図9は、第2実施形態の熱源熱交換器50における、伝熱管60(60a1,60a2)同士の接触状態や、伝熱管60a1,60a2の第1領域62における第1部分62a及び第2部分62b(非接触部分63,接触部分64)の配置を説明するための、熱源熱交換器50の一部の拡大概略正面図である。
本開示の熱交換器の第1実施形態に係る熱源熱交換器50について、図9を参照しながら説明する。図9は、第2実施形態の熱源熱交換器50における、伝熱管60(60a1,60a2)同士の接触状態や、伝熱管60a1,60a2の第1領域62における第1部分62a及び第2部分62b(非接触部分63,接触部分64)の配置を説明するための、熱源熱交換器50の一部の拡大概略正面図である。
なお、第2実施形態の熱源熱交換器50が利用される空調装置100は、第1実施形態で説明した空調装置100と同様であるため説明は省略する。また、第2実施形態の熱源熱交換器50は、左右方向において隣接する伝熱管60a1,60a2において非接触部分63の形成される位置が異なることを除き、第1実施形態の熱源熱交換器50と概ね同様である。そこで、説明の重複を避けるため、ここでは、第2実施形態の熱源熱交換器50の、第1実施形態の熱源熱交換器50との主な相違点だけを説明する。
なお、第2実施形態の熱源熱交換器50の伝熱管60を表す符号として、“60a1”と“60a2”を用いる。熱源熱交換器50では、伝熱管60a1,60a2は、図9のように、左右方向に、伝熱管60a1と伝熱管60a2とが交互に配置されるように並べられる。
なお、伝熱管60a1と伝熱管60a2とには、鉛直方向において、概ね同じ位置に第1領域62が形成される。しかし、伝熱管60a1と伝熱管60a2とでは、鉛直方向において異なる位置に非接触部分63が形成される。具体的には、伝熱管60a2では、伝熱管60a1の鉛直方向における非接触部分63の位置に、第1部分62aが配置される。また、伝熱管60a2では、伝熱管60a1の鉛直方向における第1部分62aの位置に、非接触部分63が配置される。その他の点では、伝熱管60a1と伝熱管60a2とは同様である。
要するに、第2実施形態の熱源熱交換器50では、左右方向において互いに隣接する第1の伝熱管60a1及び第2の伝熱管60a2は、共に第1領域62を含む。鉛直方向において、第1の伝熱管60a1の非接触部分63と第2の伝熱管60a2の第1部分62aとは同じ位置に形成され、第1の伝熱管60a1の第1部分62aと第2の伝熱管60a2の非接触部分63とは同じ位置に形成されている。
第2実施形態の熱源熱交換器50では、伝熱管60a1,60a2の非接触部分63の位置を、左右方向において隣接する伝熱管60a2,60a1の第1部分62aの位置に一致させることで、伝熱管60a1,60a2の非接触部分63と、左右方向においてこれに隣接する伝熱管60a2,60a1との間に比較的大きな隙間を形成できる。そのため、左右方向において隣接する伝熱管60a1,60a2の間に比較的大きな外部流体の流路を確保できる。
第2実施形態の熱源熱交換器50は、ここで説明した特徴以外に、第1実施形態の熱源熱交換器50の特徴として説明した、(4-1)~(4-3)、(4-5)~(4-13)と同様の特徴を有する。
<第3実施形態>
本開示の熱交換器の第3実施形態に係る熱源熱交換器50について、図10を参照しながら説明する。図10は、第3実施形態の熱源熱交換器50における、伝熱管60(60b1,60b2)同士の接触状態や、伝熱管60b1,60b2の第1領域62における第1部分62a及び第2部分62b(非接触部分63,接触部分64)の配置を説明するための、熱源熱交換器50の一部の拡大概略正面図である。
本開示の熱交換器の第3実施形態に係る熱源熱交換器50について、図10を参照しながら説明する。図10は、第3実施形態の熱源熱交換器50における、伝熱管60(60b1,60b2)同士の接触状態や、伝熱管60b1,60b2の第1領域62における第1部分62a及び第2部分62b(非接触部分63,接触部分64)の配置を説明するための、熱源熱交換器50の一部の拡大概略正面図である。
なお、第3実施形態の熱源熱交換器50が利用される空調装置100は、第1実施形態で説明した空調装置100と同様であるため説明は省略する。また、第3実施形態の熱源熱交換器50は、左右方向において隣接する伝熱管60b1,60b2において非接触部分63及び接触部分64の形成される位置が異なることを除き、第1実施形態の熱源熱交換器50と概ね同様である。そこで、説明の重複を避けるため、ここでは、第3実施形態の熱源熱交換器50の、第1実施形態の熱源熱交換器50との主な相違点だけを説明する。
なお、第2実施形態の熱源熱交換器50の伝熱管を表す符号として、“60b1”と“60b2”を用いる。熱源熱交換器50では、伝熱管60b1,60b2は、図10のように、左右方向に、伝熱管60b1と伝熱管60b2とが交互に配置されるように並べられる。
なお、伝熱管60b1と伝熱管60b2とには、鉛直方向において、概ね同じ位置に第1領域62が形成される。しかし、伝熱管60b1と伝熱管60b2とでは、鉛直方向において異なる位置に非接触部分63及び接触部分64が形成される。具体的には、伝熱管60b2では、伝熱管60b1の鉛直方向における非接触部分63及び接触部分64の位置に、第1部分62aが配置される。また、伝熱管60b2では、伝熱管60b1の鉛直方向における第1部分62aの位置に、非接触部分63又は接触部分64が配置される。その他の点では、伝熱管60b1と伝熱管60b2とは同様である。
要するに、第3実施形態の熱源熱交換器50では、左右方向において互いに隣接する第1の伝熱管60b1及び第2の伝熱管60b2は、共に第1領域62を含む。鉛直方向において、第1の伝熱管60b1の非接触部分63及び接触部分64と第2の伝熱管60b2の第1部分62aとは同じ位置に形成され、第1の伝熱管60b1の第1部分62aと第2の伝熱管60b2の非接触部分63及び接触部分64とは同じ位置に形成されている。
第3実施形態の熱源熱交換器50では、伝熱管60b1,60a2の非接触部分63の位置を、左右方向において隣接する伝熱管60b2,60a1の第1部分62aの位置と合わせることで、伝熱管60b1,60a2の非接触部分63と、左右方向においてこれに隣接する伝熱管60b2,60a1との間に比較的大きな隙間を形成できる。そのため、左右方向において隣接する伝熱管60b1,60a2の間に比較的大きな外部流体の流路を確保できる。
また、第3実施形態の熱源熱交換器50では、伝熱管60b1,60b2の膨出部分の一例である接触部分64は、左右方向において隣接する伝熱管60b2,60b1の接触部分64以外の部分に接触する。具体的には、第3実施形態の熱源熱交換器50では、伝熱管60b1,60b2の接触部分64は、左右方向において隣接する伝熱管60b2,60b1の第1部分62aに接触する。
第3実施形態の熱源熱交換器50では、伝熱管60b1,60b2の接触部分64と伝熱管60b2,60b1の接触部分64以外の部分とを接触させるため、伝熱管の膨出部分同士を接触させる場合に比べ、コンパクトな熱源熱交換器50が実現されやすい。
なお、第3実施形態の熱源熱交換器50は、ここで説明した特徴以外に、第1実施形態の熱源熱交換器50の特徴として説明した、(4-1)~(4-3)、(4-5)~(4-9)、(4-11)~(4-13)と同様の特徴を有する。
<第4実施形態>
本開示の熱交換器の第4実施形態に係る熱源熱交換器50について、図11を参照しながら説明する。図11は、第4実施形態の熱源熱交換器50における、伝熱管60(60c1,60c2)同士の接触状態や、伝熱管60c1,60c2の第1領域62における第1部分62a及び第2部分62b(非接触部分63,接触部分64)の配置を説明するための、熱源熱交換器50の一部の拡大概略正面図である。
本開示の熱交換器の第4実施形態に係る熱源熱交換器50について、図11を参照しながら説明する。図11は、第4実施形態の熱源熱交換器50における、伝熱管60(60c1,60c2)同士の接触状態や、伝熱管60c1,60c2の第1領域62における第1部分62a及び第2部分62b(非接触部分63,接触部分64)の配置を説明するための、熱源熱交換器50の一部の拡大概略正面図である。
なお、第4実施形態の熱源熱交換器50が利用される空調装置100は、第1実施形態で説明した空調装置100と同様であるため説明は省略する。また、第4実施形態の熱源熱交換器50は、左右方向において隣接する伝熱管60c1,60c2において接触部分64の形成される位置が異なることを除き、第1実施形態の熱源熱交換器50と概ね同様である。そこで、説明の重複を避けるため、ここでは、第4実施形態の熱源熱交換器50の、第1実施形態の熱源熱交換器50との主な相違点だけを説明する。
なお、第2実施形態の熱源熱交換器50の伝熱管を表す符号として、“60c1”と“60c2”を用いる。熱源熱交換器50では、伝熱管60c1,60c2は、図11のように、左右方向に、伝熱管60c1と伝熱管60c2とが交互に配置されるように並べられる。
なお、伝熱管60c1と伝熱管60c2とには、鉛直方向において、概ね同じ位置に第1領域62が形成される。しかし、伝熱管60c1と伝熱管60c2とでは、鉛直方向において異なる位置に接触部分64が形成される。具体的には、伝熱管60c2では、伝熱管60c1の鉛直方向における接触部分64の位置に、第1部分62aが配置される。また、伝熱管60c2では、伝熱管60c1の鉛直方向における第1部分62aの位置に、接触部分64が配置される。その他の点では、伝熱管60c1と伝熱管60c2とは同様である。
第4実施形態の熱源熱交換器50では、伝熱管60c1,60c2の膨出部分の一例である接触部分64は、左右方向において隣接する伝熱管60c2,60c1の接触部分64以外の部分に接触する。具体的には、第4実施形態の熱源熱交換器50では、伝熱管60c1,60c2の接触部分64は、左右方向において隣接する伝熱管60c2,60c1の第1部分62aに接触する。
第4実施形態の熱源熱交換器50では、伝熱管60c1,60c2の接触部分64と伝熱管60c2,60c1の接触部分64以外の部分とを接触させるため、伝熱管の膨出部分同士を接触させる場合に比べ、コンパクトな熱源熱交換器50が実現されやすい。
なお、第4実施形態の熱源熱交換器50は、ここで説明した特徴以外に、第1実施形態の熱源熱交換器50の特徴として説明した、(4-1)~(4-9)、(4-11)~(4-13)と同様の特徴を有する。
<第5実施形態>
本開示の熱交換器の第5実施形態に係る熱源熱交換器150について、図12及び図13を参照しながら説明する。図12は、第5実施形態の熱源熱交換器150の概略正面図である。図13は、熱源熱交換器150の伝熱管160の概略斜視図である。
本開示の熱交換器の第5実施形態に係る熱源熱交換器150について、図12及び図13を参照しながら説明する。図12は、第5実施形態の熱源熱交換器150の概略正面図である。図13は、熱源熱交換器150の伝熱管160の概略斜視図である。
なお、第5実施形態の熱源熱交換器150が利用される空調装置100は、第1実施形態で説明した空調装置100と同様であるため説明は省略する。
第5実施形態の熱源熱交換器150では、伝熱管160の形状が、第1実施形態の熱源熱交換器50の伝熱管60の形状と異なる。具体的には、伝熱管160は、伝熱管60とは異なり、第1領域62及び第2領域66は有さず、第3領域68だけを有する。第3領域68以外の部分では、伝熱管160の内縁及び外縁の大きさは一様である。ここでは、第3領域68以外の部分を第4領域65と呼ぶ。
熱源熱交換器150では、伝熱管160の第3領域68では、伝熱管160の第3領域68以外の部分よりも伝熱管60の内縁の大きさが大きく形成されている。具体的には、第3領域68の伝熱管160の内縁の大きさは、伝熱管160の第4領域65の内縁の平均の大きさに比べて大きい。また、伝熱管160の第3領域68では、伝熱管160の第3領域68以外の部分よりも伝熱管160の外縁の大きさが大きく形成されている。具体的には、第3領域68の伝熱管160の外縁の大きさは、伝熱管160の第4領域65の外縁の平均の大きさに比べて大きい。
その他の点については、伝熱管160の第3領域68も、第1実施形態の熱源熱交換器50の伝熱管60の第3領域68と概ね同様であるため、説明は省略する。
本実施形態の熱源熱交換器150では、伝熱管160に第3領域68を設けることで、伝熱管60と別部材のスペーサを設けることなく、左右方向において隣接する伝熱管60の間の配列ピッチを調節することができる。なお、伝熱管160の第3領域68には、好ましくは、前後方向に沿って延びる凹み部(図示省略)が形成されている。
なお、ここでは図示等を省略するが、伝熱管160には、第1実施形態の伝熱管60における接触部分64や、第3実施形態の伝熱管60における接触部分64が更に設けられてもよい。伝熱管160の第3領域68同士を接触させるだけではなく、伝熱管160に、隣接する伝熱管160の外面60fに接触部分64を設けることで、鉛直方向の全域において、伝熱管160の間の距離を適切な距離に管理することが容易である。また、熱源熱交換器150において、互いに膨出する部分を接触させることで、左右方向において隣接する伝熱管60の間に比較的大きな外部流体の流路を確保することができ、外部流体の流路が確保されないことに伴う局所的な熱交換効率の低下を抑制できる。
なお、第4実施形態の熱源熱交換器50は、ここで説明した特徴以外に、第1実施形態の熱源熱交換器50の特徴として説明した、(4-1)~(4-2)、(4-6)、(4-9)~(4-11)、(4-13)と同様の特徴を有する。
<第6実施形態>
本開示の熱交換器の第6実施形態に係る熱源熱交換器250について、図14及び図15を参照しながら説明する。図14は、第6実施形態の熱源熱交換器250の概略正面図である。図15は、熱源熱交換器250の伝熱管260の概略斜視図である。
本開示の熱交換器の第6実施形態に係る熱源熱交換器250について、図14及び図15を参照しながら説明する。図14は、第6実施形態の熱源熱交換器250の概略正面図である。図15は、熱源熱交換器250の伝熱管260の概略斜視図である。
なお、第6実施形態の熱源熱交換器250が利用される空調装置100は、第1実施形態で説明した空調装置100と同様であるため説明は省略する。
第6実施形態の熱源熱交換器250では、伝熱管260の形状が、第1実施形態の熱源熱交換器50の伝熱管60の形状と異なる。具体的には、伝熱管260は、第1実施形態の伝熱管60とは異なり、第2領域66及び第3領域68は有さず、第1実施形態で説明した第1領域62だけを有する。伝熱管260では、第1領域62以外の部分では、伝熱管260の内縁及び外縁の大きさは一様である。ここでは、第1領域62以外の部分を第4領域65と呼ぶ。限定するものではないが、第4領域65の伝熱管260の内縁及び外縁の大きさは、例えば、第1領域62の第1部分62aの伝熱管260の内縁及び外縁の大きさと同一である。
第1領域62については、既に第1実施形態で説明したので、ここでは説明を省略する。
なお、第6実施形態の熱源熱交換器250は、ここで説明した特徴以外に、第1実施形態の熱源熱交換器50の特徴として説明した、(4-1)~(4-5)、(4-9)~(4-11)、(4-13)と同様の特徴を有する。
なお、第6実施形態の熱源熱交換器250は、第1実施形態で説明した熱源熱交換器50から第2領域66及び第3領域68を省略した構造であるとして説明したが、これに限定されるものではない。例えば、第6実施形態の熱源熱交換器250は、第2実施形態~第4実施形態で説明した熱源熱交換器50から第2領域66及び第3領域68を省略した構造であってもよい。
また、第6実施形態の熱源熱交換器250では、第1領域62は、鉛直方向における概ね全域にわたって設けられてもよい。言い換えれば、熱源熱交換器250では、伝熱管260の第1領域62は、ガスヘッダ52の下方のガスヘッダ52との接続箇所の近傍から、液ヘッダ54の上方の液ヘッダ54との接続箇所の近傍までの範囲に設けられてもよい。
<第7実施形態>
本開示の熱交換器の第7実施形態に係る熱源熱交換器350について、図16及び図17を参照しながら説明する。図16は、第7実施形態の熱源熱交換器350の概略正面図である。図17は、熱源熱交換器350の伝熱管360の概略斜視図である。なお、図17では、接触部分64の図示を省略している。
本開示の熱交換器の第7実施形態に係る熱源熱交換器350について、図16及び図17を参照しながら説明する。図16は、第7実施形態の熱源熱交換器350の概略正面図である。図17は、熱源熱交換器350の伝熱管360の概略斜視図である。なお、図17では、接触部分64の図示を省略している。
なお、第7実施形態の熱源熱交換器350が利用される空調装置100は、第1実施形態で説明した空調装置100と同様であるため説明は省略する。
第7実施形態の熱源熱交換器350では、伝熱管360の形状が、第1実施形態の熱源熱交換器50の伝熱管60の形状と異なる。具体的には、伝熱管360は、伝熱管60とは異なり第1領域62及び第3領域68は有さず、第2領域66だけを有する。第2領域66以外の部分では、伝熱管360の内縁及び外縁の大きさは、接触部分64が設けられている箇所以外では一様である。ここでは、第3領域68以外の部分を第4領域65と呼ぶ。
熱源熱交換器350では、伝熱管360の第2領域66では、伝熱管360の第2領域66以外の部分よりも伝熱管60の内縁の大きさが小さく形成されている。具体的には、第2領域66の伝熱管360の内縁の大きさは、伝熱管360の第4領域65の内縁の平均の大きさに比べて小さい。伝熱管360の第2領域66では、伝熱管360の第2領域66以外の部分よりも伝熱管360の外縁の大きさが小さく形成されている。具体的には、第2領域66の伝熱管360の外縁の大きさは、伝熱管360の第4領域65の外縁の平均の大きさに比べて小さい。
その他の点については、伝熱管360の第2領域66も、第1実施形態の熱源熱交換器50の伝熱管60の第2領域66と概ね同様であるため、説明は省略する。
なお、第7実施形態の熱源熱交換器350は、ここで説明した特徴以外に、第1実施形態の熱源熱交換器50の特徴として説明した、(4-1)~(4-2)、(4-7)、(4-9)~(4-11)、(4-13)と同様の特徴を有する。
<第8実施形態>
本開示の熱交換器の第8実施形態に係る熱源熱交換器450について、図18を参照しながら説明する。図18は、第8実施形態の熱源熱交換器450の概略正面図である。
本開示の熱交換器の第8実施形態に係る熱源熱交換器450について、図18を参照しながら説明する。図18は、第8実施形態の熱源熱交換器450の概略正面図である。
なお、第8実施形態の熱源熱交換器450が利用される空調装置100は、第1実施形態で説明した空調装置100と同様であるため説明は省略する。
第8実施形態の熱源熱交換器450では、伝熱管460の形状が、第1実施形態の熱源熱交換器50の伝熱管60の形状と異なる。具体的には、伝熱管460は、伝熱管60とは異なり第2領域66及び第3領域68は有さない。伝熱管460は、第1領域62は有する。ただし、第8実施形態の熱源熱交換器450では、第1領域62は、熱源熱交換器450が蒸発器として機能するときに伝熱管460の出口になるガスヘッダ52の端部側近傍(熱源熱交換器450が蒸発器として機能する際の伝熱管460内の冷媒の流れ方向の下流側端部)にだけ設けられている。第1領域62以外の部分では、伝熱管460の内縁及び外縁の大きさは一様である。ここでは、第1領域62以外の部分を第4領域65と呼ぶ。限定するものではないが、第4領域65の伝熱管460の内縁及び外縁の大きさは、例えば、第1領域62の第1部分62aの伝熱管460の内縁及び外縁の大きさと同一である。
なお、第8実施形態に係る熱源熱交換器450の伝熱管460の第1領域62は、第1実施形態において第1領域62の効果として説明した(a)熱伝達率の向上及び冷媒流路の圧損の増加抑制という効果も有するが、(b)着霜による空気の流路の閉塞抑制の効果が特に大きい。
具体的に説明すると、熱源熱交換器450が蒸発器として機能する際、伝熱管460には、その出口(ガスヘッダ52側の端部付近)で特に着霜しやすい。その一つの原因として、伝熱管460を流れる気液二相の冷媒の温度が、冷媒流路Pを流れながら次第に低下しやすいことが挙げられる。しかし、ここでは、着霜しやすい伝熱管460の出口近傍(ガスヘッダ52側の端部付近)に第1領域62を設けているため、第1実施形態で説明したような第1領域62の効果により、伝熱管60の風上側端部に着いた霜による空気の流路の閉塞を抑制し、伝熱管60の風上側端部への着霜が空気の流路を閉塞する不具合の発生を遅延させることができる。
なお、第8実施形態の熱源熱交換器450は、ここで説明した特徴以外に、第1実施形態の熱源熱交換器50の特徴として説明した、(4-1)~(4-4)、(4-9)~(4-11)、(4-13)と同様の特徴を有する。
なお、第8実施形態の熱源熱交換器450の伝熱管460の第1領域62として、第2実施形態~第4実施形態で説明した特徴の第1領域62が伝熱管460の出口近傍に設けられてもよい。
<変形例>
以上に、本開示の熱交換器の複数の実施形態を説明したが、複数の実施形態のそれぞれの全部又は一部の構成は、矛盾の無い範囲で、他の実施形態の構成と組み合わされてもよい。
以上に、本開示の熱交換器の複数の実施形態を説明したが、複数の実施形態のそれぞれの全部又は一部の構成は、矛盾の無い範囲で、他の実施形態の構成と組み合わされてもよい。
以下に、上記実施形態の変形例を説明する。なお、各変形例は、矛盾の無い範囲で他の変形例の構成と組み合わされてもよい。
(1)変形例A
上記実施形態では、伝熱管60は扁平多穴管であるが、本開示の熱交換器の伝熱管は、各々が単一の冷媒流路Pを形成する円管であってもよい。具体的には、本開示の熱交換器は、鉛直方向を長手方向(冷媒流路Pの延びる方向)とする円管が、左右方向に沿って複数配置されるとともに、鉛直方向及び左右方向に直交する前後方向に沿って複数配置される熱交換器であってもよい。
上記実施形態では、伝熱管60は扁平多穴管であるが、本開示の熱交換器の伝熱管は、各々が単一の冷媒流路Pを形成する円管であってもよい。具体的には、本開示の熱交換器は、鉛直方向を長手方向(冷媒流路Pの延びる方向)とする円管が、左右方向に沿って複数配置されるとともに、鉛直方向及び左右方向に直交する前後方向に沿って複数配置される熱交換器であってもよい。
このような熱交換器であっても、伝熱管の鉛直方向における第1の位置と第2の位置とで、外縁の大きさ及び内縁の大きさの少なくとも一方を異ならせることで、以上で説明したような効果が得られる。
例えば、円管に第1領域62、第2領域66、及び第3領域68のいずれかを設けることで、上述したような、熱伝達率の向上や、圧損の低減といった効果が得られる。
また、円管に第1領域62のような形状を設けることで、熱源熱交換器50を蒸発器として用いる場合に、上述したように、伝熱管の風上側端部の長手方向全体にわたって一様に着霜し、熱交換器に供給される空気の流路が閉塞され、伝熱管の下流側に空気が供給されなくなる不具合が抑制されやすい(空気の流路の閉塞が少なくとも遅延されやすい)。なお、伝熱管として円管が用いられる場合、着霜による空気の流路の閉塞を遅延させるという観点からは、空気の流れの上流側の伝熱管にだけ第1領域62が設けられてもよい。
また、円管に接触部分64や第3領域68のような、左右方向に隣接する伝熱管に接触する膨出部分を設けることで、伝熱管とは別体のスペーサを設けずに伝熱管間の配列ピッチ調節を行うことができる。また、円管に、前後方向にも膨出する接触部分64や第3領域68を設けることで、前後方向の伝熱管間の配列ピッチ調節も行うこともできる。
(2)変形例B
上記実施形態では、ガスヘッダ52及び液ヘッダ54は直線状に延びるが、ガスヘッダ52及び液ヘッダ54の形状は直線状に限定されない。ガスヘッダ52及び液ヘッダ54は、曲線状、L字状、U字状、四角形状等、直線状以外の形状であってもよい。
上記実施形態では、ガスヘッダ52及び液ヘッダ54は直線状に延びるが、ガスヘッダ52及び液ヘッダ54の形状は直線状に限定されない。ガスヘッダ52及び液ヘッダ54は、曲線状、L字状、U字状、四角形状等、直線状以外の形状であってもよい。
また、熱源熱交換器50は、ガスヘッダ52、液ヘッダ54、及び熱交換部56を複数組有するものであってもよい。
(3)変形例C
本開示の熱交換器の有する伝熱管は、全てが同一形状や同一構造でなくてもよい。例えば、熱交換器の一部の伝熱管は第1実施形態で説明した形状の伝熱管であり、熱交換器の他の伝熱管は第1実施形態で説明した以外の形状の伝熱管であってもよい。
本開示の熱交換器の有する伝熱管は、全てが同一形状や同一構造でなくてもよい。例えば、熱交換器の一部の伝熱管は第1実施形態で説明した形状の伝熱管であり、熱交換器の他の伝熱管は第1実施形態で説明した以外の形状の伝熱管であってもよい。
また、例えば、熱交換器における伝熱管の配列ピッチは一様ではなくてもよく、伝熱管の配列ピッチは場所により異なってもよい。
例えば、各伝熱管の仕様や、伝熱管の配列ピッチは、風速分布に応じて適宜設計される。
(4)変形例D
上記実施形態では、冷媒流路Pの延びる方向、言い換えれば伝熱管の長手方向は鉛直方向であるが、これに限定されるものではない。例えば、冷媒流路Pの延びる方向は、鉛直方向及び水平方向に対して傾いていてもよい。また、冷媒流路Pの延びる方向は、水平方向であってもよい。
上記実施形態では、冷媒流路Pの延びる方向、言い換えれば伝熱管の長手方向は鉛直方向であるが、これに限定されるものではない。例えば、冷媒流路Pの延びる方向は、鉛直方向及び水平方向に対して傾いていてもよい。また、冷媒流路Pの延びる方向は、水平方向であってもよい。
(5)変形例E
上記実施形態では、ガスヘッダ52が上方に、液ヘッダ54が下方に配置される。一般的には、このように、ガスヘッダ52が上方に液ヘッダ54が下方に配置されることが好ましい。ただし、これに限定されるものではなく、ガスヘッダ52が液ヘッダ54の下方に配置されてもよい。
上記実施形態では、ガスヘッダ52が上方に、液ヘッダ54が下方に配置される。一般的には、このように、ガスヘッダ52が上方に液ヘッダ54が下方に配置されることが好ましい。ただし、これに限定されるものではなく、ガスヘッダ52が液ヘッダ54の下方に配置されてもよい。
(6)変形例F
上記実施形態では、接触部分64や、第3領域68により左右方向に隣接する伝熱管の配列ピッチが調節されるがこれに限定されるものではない。
上記実施形態では、接触部分64や、第3領域68により左右方向に隣接する伝熱管の配列ピッチが調節されるがこれに限定されるものではない。
例えば、図19に示した熱源熱交換器550のように、伝熱管560とは別体のスペーサ70により左右方向に隣接する伝熱管560の間の配列ピッチが調整されてもよい。
(7)変形例G
第1実施形態の熱源熱交換器50では、伝熱管60の第1領域62に接触部分64が設けられるが、接触部分64は、第1領域62外に形成され、第1領域62には、非接触部分63だけが形成されてもよい。
第1実施形態の熱源熱交換器50では、伝熱管60の第1領域62に接触部分64が設けられるが、接触部分64は、第1領域62外に形成され、第1領域62には、非接触部分63だけが形成されてもよい。
(8)変形例H
第1実施形態の熱源熱交換器50では、伝熱管60の非接触部分63の形状やサイズを全て同一に描画しているが、伝熱管60の複数の非接触部分63の形状やサイズは、それぞれ異なっていてもよい。
第1実施形態の熱源熱交換器50では、伝熱管60の非接触部分63の形状やサイズを全て同一に描画しているが、伝熱管60の複数の非接触部分63の形状やサイズは、それぞれ異なっていてもよい。
(9)変形例I
第1実施形態の熱源熱交換器50では、伝熱管60の中央域に配置される接触部分64と、伝熱管60のガスヘッダ52側の端部に配置される第3領域68とが伝熱管60の配列ピッチの調節に用いられる。ただし、これに限定されるものではなく、配列ピッチの調節用の膨出部分は、伝熱管60の中央域及びガスヘッダ52側の端部に加えて、又は、伝熱管60の中央域及びガスヘッダ52側の端部に代えて、液ヘッダ54側の伝熱管60の端部(液ヘッダ54との接続部)に配置されてもよい。
第1実施形態の熱源熱交換器50では、伝熱管60の中央域に配置される接触部分64と、伝熱管60のガスヘッダ52側の端部に配置される第3領域68とが伝熱管60の配列ピッチの調節に用いられる。ただし、これに限定されるものではなく、配列ピッチの調節用の膨出部分は、伝熱管60の中央域及びガスヘッダ52側の端部に加えて、又は、伝熱管60の中央域及びガスヘッダ52側の端部に代えて、液ヘッダ54側の伝熱管60の端部(液ヘッダ54との接続部)に配置されてもよい。
なお、ロウ付け代の確保の観点からは、伝熱管60の長手方向における端部(ヘッダ52,54との接続部)に設けられる膨出部分の伝熱管60の長手方向における長さは、伝熱管60の長手方向における端部以外に設けられる膨出部分の伝熱管60の長手方向における長さよりも長いことが好ましい。
<付記>
以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
本開示は、伝熱フィンを使用しない熱交換器に広く利用可能である。
50,150,250,350,450,550 熱源熱交換器(熱交換器)
52 ガスヘッダ
54 液ヘッダ
60,160,260,360,460,560 伝熱管
62 第1領域
62a 第1部分
62b 第2部分
64 接触部分(膨出部分、第2膨出部分)
64a 凹み部
66 第2領域(液ヘッダ接続部分)
68 第3領域(ガスヘッダ接続部分、膨出部分、第1膨出部分)
B1 第3領域の鉛直方向における長さ(第1膨出部分の第1方向における長さ)
B2 接触部分の鉛直方向における長さ(第2膨出部分の第1方向における長さ)
P 冷媒流路
52 ガスヘッダ
54 液ヘッダ
60,160,260,360,460,560 伝熱管
62 第1領域
62a 第1部分
62b 第2部分
64 接触部分(膨出部分、第2膨出部分)
64a 凹み部
66 第2領域(液ヘッダ接続部分)
68 第3領域(ガスヘッダ接続部分、膨出部分、第1膨出部分)
B1 第3領域の鉛直方向における長さ(第1膨出部分の第1方向における長さ)
B2 接触部分の鉛直方向における長さ(第2膨出部分の第1方向における長さ)
P 冷媒流路
Claims (17)
- 第1方向に延びる冷媒流路(P)が、前記第1方向に交差する第2方向に沿って複数配置されるとともに、前記第1方向及び前記第2方向に交差する第3方向に沿って複数配置される熱交換器であって、
前記冷媒流路を形成する複数の伝熱管(60,160,260,360,460,560)を備え、
前記伝熱管は、前記第1方向における第1の位置と第2の位置とで、外縁の大きさ及び内縁の大きさの少なくとも一方が異なる、
熱交換器(50,150,250,350,450,550)。 - 前記伝熱管は、前記第3方向に沿って配置されている複数の前記冷媒流路を形成する扁平多穴管である、
請求項1に記載の熱交換器。 - 前記第1方向は鉛直方向である、
請求項1又は2に記載の熱交換器。 - 前記伝熱管は、前記第1方向に沿って、第1部分(62a)と、前記第1部分に対し前記第1方向と交差する方向に膨出する第2部分(62b)と、が交互に形成されている第1領域(62)を含む、
請求項1から3のいずれか1項に記載の熱交換器(50,250,450,550)。 - 前記第2方向において互いに隣接する第1の前記伝熱管及び第2の前記伝熱管は、共に前記第1領域を含み、
前記第1方向において、前記第1の前記伝熱管の前記第2部分と前記第2の前記伝熱管の前記第2部分とは、同じ位置に形成されている、
請求項4に記載の熱交換器。 - 前記第2方向において互いに隣接する第1の前記伝熱管及び第2の前記伝熱管は、共に前記第1領域を含み、
前記第1方向において、前記第1の前記伝熱管の前記第2部分と前記第2の前記伝熱管の前記第1部分とは同じ位置に形成され、前記第1の前記伝熱管の前記第1部分と前記第2の前記伝熱管の前記第2部分とは同じ位置に形成されている、
請求項4に記載の熱交換器。 - 前記第1領域は、前記第1方向における前記伝熱管の中央部に少なくとも配置されている、
請求項4から6のいずれか1項に記載の熱交換器。 - 前記伝熱管が接続されるガスヘッダ(52)を更に備え、
前記伝熱管の前記ガスヘッダと接続されるガスヘッダ接続部分(68)の前記伝熱管の前記内縁の大きさは、前記伝熱管の前記ガスヘッダ接続部分以外の前記内縁の平均の大きさに比べて大きい、
及び/又は、
前記伝熱管の前記ガスヘッダと接続されるガスヘッダ接続部分(68)の前記伝熱管の前記外縁の大きさは、前記伝熱管の前記ガスヘッダ接続部分以外の前記外縁の平均の大きさに比べて大きい、
請求項1から7のいずれか1項に記載の熱交換器。 - 前記伝熱管が接続される液ヘッダ(54)を更に備え、
前記伝熱管の前記液ヘッダと接続される液ヘッダ接続部分(66)の前記伝熱管の前記内縁の大きさは、前記伝熱管の前記液ヘッダ接続部分以外の前記内縁の平均の大きさに比べて小さい、
及び/又は、
前記伝熱管の前記液ヘッダと接続される液ヘッダ接続部分(66)の前記伝熱管の前記外縁の大きさは、前記伝熱管の前記液ヘッダ接続部分以外の前記外縁の平均の大きさに比べて小さい、
請求項1から8のいずれか1項に記載の熱交換器。 - 前記伝熱管が接続されるガスヘッダ(52)と、
前記伝熱管が接続される液ヘッダ(54)と、
を更に備え、
前記第1部分が形成されている部分の前記伝熱管の前記外縁の大きさは、前記伝熱管の前記液ヘッダと接続される液ヘッダ接続部分の前記伝熱管の前記外縁の大きさより大きく、
前記第2部分が形成されている部分の前記伝熱管の前記外縁の大きさは、前記伝熱管の前記ガスヘッダと接続されるガスヘッダ接続部分の前記伝熱管の前記外縁の大きさ以下である、
請求項4から7のいずれか1項に記載の熱交換器。 - 前記熱交換器は、少なくとも蒸発器として機能し、
前記第1領域は、前記伝熱管の、前記熱交換器が蒸発器として機能する際の前記伝熱管内の冷媒の流れ方向の下流側端部に、少なくとも配置されている、
請求項4から6のいずれか1項に記載の熱交換器。 - 前記伝熱管の外面に、前記第1方向と交差する方向に膨出し、前記第2方向において隣接する前記伝熱管の外面に接触する膨出部分(64,68)が形成されている、
請求項1から11のいずれか1項に記載の熱交換器(50,150,250,350,450)。 - 前記伝熱管の前記膨出部分は、前記第2方向において隣接する前記伝熱管の前記膨出部分に接触する、
請求項12に記載の熱交換器。 - 前記伝熱管の前記膨出部分は、前記第2方向において隣接する前記伝熱管の前記膨出部分以外の部分に接触する、
請求項12に記載の熱交換器。 - 前記膨出部分には、前記第3方向に沿って延びる凹み部(64a)が形成されている、
請求項12から14のいずれか1項に記載の熱交換器。 - 前記膨出部分は、前記伝熱管の前記第1方向における端部に設けられる第1膨出部分(68)と、前記伝熱管の前記第1方向における前記端部以外に設けられる第2膨出部分(64)と、を含み、
前記第1膨出部分の前記第1方向における長さ(B1)は、前記第2膨出部分の前記第1方向における長さ(B2)より長い、
請求項12から15のいずれか1項に記載の熱交換器(50)。 - 前記伝熱管は、ダイレス引抜成形されている、
請求項1から16のいずれか1項に記載の熱交換器。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180061321.0A CN116134282B (zh) | 2020-07-17 | 2021-07-12 | 热交换器 |
EP21841525.5A EP4184105A4 (en) | 2020-07-17 | 2021-07-12 | HEAT EXCHANGER |
US18/154,202 US11913729B2 (en) | 2020-07-17 | 2023-01-13 | Heat exchanger |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-123313 | 2020-07-17 | ||
JP2020123313A JP7140988B2 (ja) | 2020-07-17 | 2020-07-17 | 熱交換器 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/154,202 Continuation US11913729B2 (en) | 2020-07-17 | 2023-01-13 | Heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022014515A1 true WO2022014515A1 (ja) | 2022-01-20 |
Family
ID=79554814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/026070 WO2022014515A1 (ja) | 2020-07-17 | 2021-07-12 | 熱交換器 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11913729B2 (ja) |
EP (1) | EP4184105A4 (ja) |
JP (1) | JP7140988B2 (ja) |
CN (1) | CN116134282B (ja) |
WO (1) | WO2022014515A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024114973A1 (de) * | 2022-11-30 | 2024-06-06 | Arvos Gmbh | Wärmeübertrager mit mehreren rohren |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115707217A (zh) * | 2021-08-12 | 2023-02-17 | 富联精密电子(天津)有限公司 | 一种强化冷凝传热的两相浸没式冷却装置 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58165468U (ja) * | 1982-04-23 | 1983-11-04 | カルソニックカンセイ株式会社 | 熱交換器 |
JPS61175774U (ja) * | 1985-04-19 | 1986-11-01 | ||
JPH0346757U (ja) * | 1989-08-29 | 1991-04-30 | ||
JPH03112657U (ja) * | 1990-02-22 | 1991-11-18 | ||
JP2005090806A (ja) * | 2003-09-16 | 2005-04-07 | Matsushita Electric Ind Co Ltd | 熱交換器 |
WO2005073655A1 (ja) | 2004-01-29 | 2005-08-11 | Calsonic Kansei Corporation | 熱交換器及びこれを含む空調装置 |
JP2008188602A (ja) * | 2007-02-01 | 2008-08-21 | Tama Tlo Kk | 管状部材の加工方法及び管状部材加工装置 |
JP2016151392A (ja) * | 2015-02-18 | 2016-08-22 | 有限会社和氣製作所 | 熱交換器 |
JP2019116907A (ja) * | 2017-12-26 | 2019-07-18 | フクビ化学工業株式会社 | 多孔型送液管 |
JP2019132518A (ja) * | 2018-01-31 | 2019-08-08 | ダイキン工業株式会社 | 冷媒分流器及び空気調和機 |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US857060A (en) * | 1904-12-29 | 1907-06-18 | Jules Heizmann | Heating apparatus. |
US3757855A (en) * | 1971-10-15 | 1973-09-11 | Union Carbide Corp | Primary surface heat exchanger |
US4014962A (en) * | 1972-03-23 | 1977-03-29 | Del Notario Pedro Perez | Heat and/or mass exchanger operating by direct contact between a liquid and a gas |
GB1522955A (en) * | 1974-12-03 | 1978-08-31 | Rolls Royce | Induction heating apparatus |
US4206806A (en) * | 1976-03-15 | 1980-06-10 | Akira Togashi | Heat-conducting oval pipes in heat exchangers |
US4217887A (en) * | 1977-07-08 | 1980-08-19 | Hoffman Louie E | Solar heat collector with interlocking expandable construction |
US4183402A (en) * | 1978-05-05 | 1980-01-15 | Union Carbide Corporation | Heat exchanger headering arrangement |
US4353350A (en) * | 1981-03-11 | 1982-10-12 | Helmut Albrecht | Fireplace heat exchanger |
WO1984000207A1 (en) * | 1982-06-29 | 1984-01-19 | Zander & Ingestroem | Tube heat exchanger |
US4541891A (en) * | 1982-09-30 | 1985-09-17 | William C. Heller, Jr. | Method and apparatus for heat sealing plastic members |
US5099576A (en) | 1989-08-29 | 1992-03-31 | Sanden Corporation | Heat exchanger and method for manufacturing the heat exchanger |
FR2693546B1 (fr) * | 1992-07-09 | 1994-09-30 | Valeo Thermique Moteur Sa | Echangeur de chaleur à faisceau de tubes parallèles, en particulier pour véhicule automobile. |
US5251693A (en) * | 1992-10-19 | 1993-10-12 | Zifferer Lothar R | Tube-in-shell heat exchanger with linearly corrugated tubing |
US5375654A (en) * | 1993-11-16 | 1994-12-27 | Fr Mfg. Corporation | Turbulating heat exchange tube and system |
JPH09170863A (ja) * | 1995-10-19 | 1997-06-30 | Saamobonitsuku:Kk | 冷水器 |
JPH11193998A (ja) * | 1997-12-26 | 1999-07-21 | Toyo Radiator Co Ltd | 多板型熱交換器 |
US8459342B2 (en) * | 2003-11-25 | 2013-06-11 | Beckett Gas, Inc. | Heat exchanger tube with integral restricting and turbulating structure |
CA2289428C (en) * | 1998-12-04 | 2008-12-09 | Beckett Gas, Inc. | Heat exchanger tube with integral restricting and turbulating structure |
US7017651B1 (en) * | 2000-09-13 | 2006-03-28 | Raytheon Company | Method and apparatus for temperature gradient control in an electronic system |
JP4605925B2 (ja) * | 2001-03-08 | 2011-01-05 | サンデン株式会社 | 積層型熱交換器 |
JP4111070B2 (ja) * | 2003-06-10 | 2008-07-02 | 株式会社デンソー | 暖房用熱交換器および車両用空調装置 |
CN101020197B (zh) * | 2006-10-09 | 2010-09-01 | 北京科技大学 | 智能化无模拉拔成形设备及其工艺 |
CN101910775B (zh) * | 2007-11-09 | 2012-10-17 | 汉拏空调株式会社 | 热交换器 |
CN101537435B (zh) * | 2009-05-06 | 2011-04-20 | 北京科技大学 | 一种金属锥形管无模拉拔成形工艺 |
JP5556644B2 (ja) * | 2010-12-17 | 2014-07-23 | 株式会社デンソー | 多重管熱交換器 |
JP2012154492A (ja) * | 2011-01-21 | 2012-08-16 | Daikin Industries Ltd | 熱交換器及び空気調和機 |
KR20130065173A (ko) * | 2011-12-09 | 2013-06-19 | 현대자동차주식회사 | 차량용 열교환기 |
CN107806777B (zh) * | 2016-09-09 | 2020-12-04 | 丹佛斯微通道换热器(嘉兴)有限公司 | 无翅片换热器 |
US10753687B2 (en) * | 2017-07-17 | 2020-08-25 | Beckett Gas, Inc. | Heat exchanger tube |
US11073344B2 (en) * | 2019-04-24 | 2021-07-27 | Rheem Manufacturing Company | Heat exchanger tubes |
-
2020
- 2020-07-17 JP JP2020123313A patent/JP7140988B2/ja active Active
-
2021
- 2021-07-12 CN CN202180061321.0A patent/CN116134282B/zh active Active
- 2021-07-12 WO PCT/JP2021/026070 patent/WO2022014515A1/ja active Application Filing
- 2021-07-12 EP EP21841525.5A patent/EP4184105A4/en active Pending
-
2023
- 2023-01-13 US US18/154,202 patent/US11913729B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58165468U (ja) * | 1982-04-23 | 1983-11-04 | カルソニックカンセイ株式会社 | 熱交換器 |
JPS61175774U (ja) * | 1985-04-19 | 1986-11-01 | ||
JPH0346757U (ja) * | 1989-08-29 | 1991-04-30 | ||
JPH03112657U (ja) * | 1990-02-22 | 1991-11-18 | ||
JP2005090806A (ja) * | 2003-09-16 | 2005-04-07 | Matsushita Electric Ind Co Ltd | 熱交換器 |
WO2005073655A1 (ja) | 2004-01-29 | 2005-08-11 | Calsonic Kansei Corporation | 熱交換器及びこれを含む空調装置 |
JP2008188602A (ja) * | 2007-02-01 | 2008-08-21 | Tama Tlo Kk | 管状部材の加工方法及び管状部材加工装置 |
JP2016151392A (ja) * | 2015-02-18 | 2016-08-22 | 有限会社和氣製作所 | 熱交換器 |
JP2019116907A (ja) * | 2017-12-26 | 2019-07-18 | フクビ化学工業株式会社 | 多孔型送液管 |
JP2019132518A (ja) * | 2018-01-31 | 2019-08-08 | ダイキン工業株式会社 | 冷媒分流器及び空気調和機 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4184105A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024114973A1 (de) * | 2022-11-30 | 2024-06-06 | Arvos Gmbh | Wärmeübertrager mit mehreren rohren |
Also Published As
Publication number | Publication date |
---|---|
JP7140988B2 (ja) | 2022-09-22 |
EP4184105A1 (en) | 2023-05-24 |
EP4184105A4 (en) | 2023-12-06 |
JP2022019458A (ja) | 2022-01-27 |
CN116134282B (zh) | 2024-02-13 |
CN116134282A (zh) | 2023-05-16 |
US20230168043A1 (en) | 2023-06-01 |
US11913729B2 (en) | 2024-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5195733B2 (ja) | 熱交換器及びこれを備えた冷凍サイクル装置 | |
WO2007017969A1 (ja) | 空気調和機及び空気調和機の製造方法 | |
WO2022014515A1 (ja) | 熱交換器 | |
JP4196974B2 (ja) | 空気調和機 | |
JP7292510B2 (ja) | 熱交換器及び空気調和機 | |
WO2018138770A1 (ja) | 熱源側ユニット、及び、冷凍サイクル装置 | |
CN114641663A (zh) | 热交换器及制冷循环装置 | |
JP7425282B2 (ja) | 蒸発器、およびそれを備えた冷凍サイクル装置 | |
JP2011112315A (ja) | フィンチューブ型熱交換器及びこれを用いた空気調和機 | |
WO2018207321A1 (ja) | 熱交換器及び冷凍サイクル装置 | |
JP7118247B2 (ja) | 空気調和機 | |
JP6678413B2 (ja) | 空気調和機 | |
JP4983878B2 (ja) | 熱交換器及びこの熱交換器を備えた冷蔵庫、空気調和機 | |
JP7123238B2 (ja) | 冷凍サイクル装置 | |
WO2022014516A1 (ja) | 熱交換器 | |
CN110411052B (zh) | 空调装置 | |
WO2020178966A1 (ja) | ガスヘッダ、熱交換器及び冷凍サイクル装置 | |
JP7050538B2 (ja) | 熱交換器および空気調和機 | |
WO2019155571A1 (ja) | 熱交換器および冷凍サイクル装置 | |
CN218864347U (zh) | 一种空调室外换热器及空调器室外机 | |
JP7305085B1 (ja) | 熱交換器および冷凍サイクル装置 | |
WO2024203166A1 (ja) | 熱交換器及び冷凍サイクル装置 | |
JP7399286B2 (ja) | 熱交換器および冷凍サイクル装置 | |
JP2012154495A (ja) | 熱交換器及び空気調和機 | |
JP2023072100A (ja) | 熱交換器、熱交換器を搭載した空気調和機、及び熱交換器の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21841525 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202317005481 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021841525 Country of ref document: EP Effective date: 20230217 |