WO2022059292A1 - 加飾フィルム、加飾フィルムの製造方法、成型物、電子デバイス及び自動車外装板 - Google Patents
加飾フィルム、加飾フィルムの製造方法、成型物、電子デバイス及び自動車外装板 Download PDFInfo
- Publication number
- WO2022059292A1 WO2022059292A1 PCT/JP2021/024823 JP2021024823W WO2022059292A1 WO 2022059292 A1 WO2022059292 A1 WO 2022059292A1 JP 2021024823 W JP2021024823 W JP 2021024823W WO 2022059292 A1 WO2022059292 A1 WO 2022059292A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin layer
- liquid crystal
- layer
- decorative film
- region
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/023—Optical properties
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/02—Liquid crystal materials characterised by optical, electrical or physical properties of the components, in general
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/38—Polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/52—Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
- C09K19/54—Additives having no specific mesophase characterised by their chemical composition
Definitions
- This disclosure relates to a decorative film, a method for manufacturing a decorative film, a molded product, an electronic device, and an automobile exterior plate.
- a decorative film having a metallic luster has been applied to, for example, the surface of molded products such as home appliances, office equipment, and automobile parts.
- a resin film containing metal particles is used as the decorative film, but it is an alternative from the viewpoint of environmental load due to the use of heavy metals and the risk of causing radio interference when applied to electronic devices and the like.
- the development of decorative films that can be used as products is desired.
- the resin layer having cholesteric regularity has a cholesteric liquid crystal phase having a spiral structure in the layer that selectively reflects circularly polarized light having a reflection center wavelength that correlates with the spiral pitch. Then, by providing a region having a spiral structure having a different spiral pitch in the plane of the resin layer, the visually recognized color can be changed, for example, a gradation tone that changes in the order of blue, green, and red. Since the color change can be displayed, a high degree of design can be imparted to the molded product. However, the color change that can be displayed by the conventional decorative film including one resin layer having the above-mentioned cholesteric regularity is the color change from the short wavelength to the long wavelength side (blue to green to red). It is difficult to display complex color changes, and there is a demand for a decorative film with a wider variety.
- Japanese Patent Application Laid-Open No. 2010-11104, Japanese Patent Application Laid-Open No. 2017-205988, International Publication No. 2020/122245 and International Publication No. 2018/79606 include a decorative film containing two or more resin layers having cholesteric regularity.
- Japanese Unexamined Patent Publication No. 2010-111104 includes a laminate containing a resin layer having a first cholesteric regularity and a resin layer having a second cholesteric regularity, and has the above-mentioned first cholesteric regularity.
- the resin layer is a layer that transmits the first circularly polarized light and reflects the second circularly polarized light that is different from the first circularly polarized light
- the second cholesteric resin layer is the first cholesteric.
- Decorative films are disclosed that are arranged to reflect at least a portion of the first circularly polarized light that has passed through a regular resin layer.
- Japanese Patent Application Laid-Open No. 2017-20598 describes a first patterned cholesteric liquid crystal reflective layer that reflects a first circularly polarized light having a characteristic reflection peak wavelength of 400 nm or more and 700 nm or less, and a characteristic reflection peak wavelength.
- a decorative film including a second patterned cholesteric liquid crystal reflective layer that reflects a second circularly polarized light having a peak wavelength of 400 nm or more and 700 nm or less and having a characteristic reflection peak wavelength different from that of the first circularly polarized light is disclosed.
- International Publication No. 2020/122245 discloses a decorative film containing one or more liquid crystal layers including regions having different maximum reflectance wavelengths.
- International Publication No. 2018/79606 discloses a decorative film containing two or more liquid crystal layers including regions having different maximum reflectance wavelengths.
- the decorative film containing two or more resin layers disclosed in JP-A-2010-111104 is intended to impart a metallic luster to a molded product, does not display a color, and is a design. The sex was not enough. Further, although the cholesteric liquid crystal reflective layer contained in the decorative film disclosed in JP-A-2017-205988 has a different color, there is no change in the color in the plane of the cholesteric liquid crystal reflective layer. , There was room for improvement in the design. Further, the decorative films disclosed in International Publication No. 2020/122245 and International Publication No. 2018/79606 are the same as the decorative films disclosed in JP-A-2010-111104 and JP-A-2017-205988.
- the problem to be solved by one embodiment of the present disclosure is that a decorative film, a molded product, or a decorative film having high visibility, being able to display a wide variety of color changes, and having excellent designability.
- the purpose is to provide manufacturing methods, automobile exterior panels and electronic devices.
- ⁇ 1> Cholesteric having two or more regions having different wavelengths having the maximum reflectance in the same plane, and having a wavelength having the maximum reflectance in the range of 380 nm or less or 800 nm or more in at least one region.
- the second resin layer has two or more regions having different wavelengths for maximum reflectance in the same plane, and the wavelength for maximum reflectance in at least one region is 380 nm or less or 800 nm.
- the decorative film according to ⁇ 1> which exists in the above range.
- ⁇ 3> A region in which the wavelength of the maximum reflectance of the first resin layer is in the range of 380 nm or less or 800 nm or more.
- ⁇ 4> A region in which the wavelength having the maximum reflectance is more than 380 nm and less than 800 nm as at least one of two or more regions having different wavelengths having the maximum reflectance.
- ⁇ 5> The decorative film according to any one of ⁇ 1> to ⁇ 4>, which has an in-plane average reflectance of 20% or more.
- ⁇ 6> The decorative film according to any one of ⁇ 1> to ⁇ 5>, wherein the first resin layer and the second resin layer are laminated adjacent to each other.
- a method for manufacturing a decorative film including.
- a first having a cholesteric regularity different from that of the second resin layer by curing the liquid crystal layer after making the state having two or more regions having different wavelengths having the maximum reflectances containing at least one of the above.
- the process of forming the resin layer and A method for manufacturing a decorative film including.
- liquid crystal composition contains at least one of a polyfunctional liquid crystal compound and a polyfunctional non-liquid crystalline polymerizable monomer.
- ⁇ 12> The ratio of the sum of the content of the monofunctional liquid crystal compound to the content of the polyfunctional liquid crystal compound and the polyfunctional non-liquid crystal polymerizable monomer in the liquid crystal composition is based on the mass.
- ⁇ 13> A molded product obtained by molding the decorative film according to any one of ⁇ 1> to ⁇ 7>.
- a decorative film, a molded product, a method for manufacturing a decorative film, an electronic device, and an automobile exterior which are highly visible, can display a wide variety of color changes, and have excellent designability.
- a board can be provided.
- FIG. 1 is a schematic cross-sectional view showing an example of the first resin layer.
- FIG. 2 is a schematic cross-sectional view showing another example of the first resin layer.
- FIG. 3 is a schematic cross-sectional view showing another example of the first resin layer.
- FIG. 4 is a schematic cross-sectional view showing another example of the first resin layer.
- FIG. 5 is a schematic cross-sectional view showing an example of a decorative film.
- FIG. 6 is a schematic cross-sectional view showing another example of the decorative film.
- FIG. 7 is a schematic cross-sectional view showing another example of the decorative film.
- FIG. 8 is a schematic cross-sectional view showing another example of the decorative film.
- FIG. 9 is a schematic plan view showing the patterning mask 1 used in the embodiment.
- FIG. 9 is a schematic plan view showing the patterning mask 1 used in the embodiment.
- FIG. 10 is a schematic plan view showing the patterning mask 2 used in the embodiment.
- FIG. 11 is a schematic plan view showing the patterning mask 3 used in the embodiment.
- FIG. 12 is a schematic plan view showing the patterning mask 4 used in the examples.
- FIG. 13 is a schematic cross-sectional view showing the decorative film produced in the examples.
- FIG. 14 is a schematic cross-sectional view showing the decorative film produced in the examples.
- FIG. 15 is a schematic cross-sectional view showing the decorative film produced in the examples.
- FIG. 16 is a schematic cross-sectional view showing the decorative film produced in the examples.
- FIG. 17 is a schematic cross-sectional view showing the decorative film produced in the examples.
- FIG. 18 is a schematic cross-sectional view showing the decorative film produced in the examples.
- FIG. 19 is a schematic cross-sectional view showing the decorative film produced in the examples.
- FIG. 20 is a schematic cross-sectional view showing the decorative film produced in the examples.
- FIG. 21 is a schematic cross-sectional view showing the decorative film produced in the examples.
- FIG. 22 is a schematic cross-sectional view showing the decorative film produced in the examples.
- the numerical range indicated by using "-" includes the numerical values before and after "-" as the minimum value and the maximum value, respectively.
- the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of the numerical range described in another stepwise description. ..
- the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
- each component may contain a plurality of applicable substances. When a plurality of substances corresponding to each component are present in the composition, the content or content of each component is the total content or content of the plurality of substances present in the composition unless otherwise specified. Means quantity.
- the notation that does not describe substitution or non-substitution includes those having no substituent as well as those having a substituent.
- the "alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
- (meth) acrylic is a term used in a concept that includes both acrylic and methacrylic
- “(meth) acryloyl” is a term that is used as a concept that includes both acryloyl and methacrylic. be.
- the term “layer” includes not only the case where the layer is formed in the entire region when observing the region where the layer is present, but also the case where the layer is formed only in a part of the region. Is done.
- the term “process” is included in this term not only as an independent process but also as long as the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes.
- “% by mass” and “% by weight” are synonymous, and “parts by mass” and “parts by weight” are synonymous.
- the “total solid content” means the total mass of the components excluding the solvent from the total composition of the composition.
- solid content is a component excluding the solvent as described above, and may be, for example, a solid or a liquid at 25 ° C.
- the components substantially the same as the components are designated by the same reference numerals, and the description thereof will be omitted.
- the present disclosure will be described in detail.
- the decorative film according to the present disclosure has two or more regions having different wavelengths having the maximum reflectance in the same plane, and the wavelength having the maximum reflectance in at least one region is 380 nm or less or 800 nm or more.
- a first resin layer having cholesteric regularity (hereinafter, also simply referred to as “first resin layer”) existing in the range and a second resin having cholesteric regularity different from the first resin layer.
- the positional relationship between the first resin layer and the second resin layer is not particularly limited, and any layer may be on top.
- the colored layer may be provided on the first resin layer or may be provided on the second resin layer. Further, it may be provided on or below the first resin layer or the second resin layer via another resin layer or the like described below.
- the reason why the decorative film according to the present disclosure has high visibility, can display a wide variety of color changes, and has excellent designability is presumed as follows, but is limited to this. It's not something.
- the first resin layer included in the decorative film according to the present disclosure has two or more regions having different wavelengths having the maximum reflectance in the same plane, and the wavelength having the maximum reflectance in at least one region is It exists in the range of 380 nm or less or 800 nm or more. That is, since the first resin layer has a region that does not cause color mixing and additive color mixing indicated by the second resin layer and the colored layer when laminated with the second resin layer and the colored layer, Japanese Patent Application Laid-Open No. 2010.
- the decorative film according to the present disclosure is also referred to as another resin layer having cholesteric regularity (hereinafter, simply referred to as “other resin layer”), which is different from the cholesteric regularity of the first resin layer and the second resin layer. ) Can be further included.
- the decorative film according to the present disclosure may contain one layer of other resin layers, or may contain two or more layers. Further, the other resin layer may be provided on the first resin layer or may be provided on the second resin layer, and may be provided between the first resin layer and the second resin layer. It may be provided in.
- the first resin layer and the second resin layer are laminated adjacent to each other.
- the thickness of the decorative film can be suppressed and the decorative film can be easily molded. It is possible to improve the sex.
- the decorative film has another resin layer, it is preferable that the other resin layer is laminated adjacent to at least one of the first resin layer and the second resin layer.
- the total thickness of the first resin layer and the second resin layer is preferably less than 25 ⁇ m, more preferably less than 20 ⁇ m, and 10 ⁇ m. It is more preferably less than. By setting the total thickness within the above numerical range, the ease of molding the decorative film can be improved. Further, from the viewpoint of improving the reflectance of each resin layer, the total thickness is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and further preferably 3 ⁇ m or more. Further, when the resin layers are bonded together using an adhesive or the like, the thickness of the layer formed by the adhesive or the like is also included in the total thickness.
- the spiral pitch tilting force and helix angle
- the refractive index of the resin layer By changing at least one condition, it is possible to adjust the color tones that change according to the viewing angle and the color tones that are visually recognized.
- the spiral pitch of the spiral structure can be easily adjusted by changing, for example, the type of chiral compound or the amount of the chiral compound added. Regarding the adjustment of the spiral pitch, see Fujifilm Research Report No. 50 (2005) p. There is a detailed description in 60-63. Further, the spiral pitch of the spiral structure can be adjusted by conditions such as temperature, illuminance or irradiation time when fixing the cholesteric orientation state.
- the selective reflectivity of the first resin layer, the second resin layer, and the other resin layer may be for either left circular polarization or right circular polarization, but circular polarization in the same direction is selectively used. It is preferable that it reflects on.
- the first resin layer, the second resin layer, and the other resin layer selectively reflect circularly polarized light in the same direction, whereby the occurrence of interference fringes in the decorative film can be prevented.
- the decorative film may have a base material. Further, the decorative film may have an alignment layer.
- the in-plane average reflectance of the decorative film is preferably 20% or more, more preferably 30% or more, further preferably 40% or more, and 45% or more. It is particularly preferable to have.
- the in-plane average reflectance of the decorative film is measured as follows. A spectrophotometer (Nippon Spectroscopy Co., Ltd., V-670) equipped with a large integrating sphere device (Nippon Spectroscopy Co., Ltd., ILV-471) was used for the outermost resin layer of the decorative film.
- Light having a wavelength of 300 nm to 1500 nm is incident from a vertical direction (an angle of 90 ° with respect to the surface of the resin layer), and the peak wavelength is read from the obtained spectral spectrum to obtain the reflectance of the peak wavelength.
- the reflectance of the peak wavelength is measured on the entire surface of the outermost resin layer, and the average of the measured values is taken as the in-plane average reflectance.
- the first resin layer has two or more regions having different wavelengths having the maximum reflectance in the same plane. Further, as a region included in the two or more regions, there is at least one region (hereinafter, also referred to as a specific region A) in which the wavelength having the maximum reflectance is in the range of 380 nm or less or 800 nm or more.
- the wavelength having the maximum reflectance in the specific region A is preferably 380 nm or less.
- the two or more regions of the first resin layer selectively reflect light in a specific wavelength range (hereinafter, also referred to as selective reflectivity).
- selective reflectivity means that a spectrophotometer equipped with a large integrating sphere device (manufactured by Nippon Spectroscopy Co., Ltd., ILV-471) (manufactured by Nippon Spectroscopy Co., Ltd., V-670) is used.
- a spectral waveform having at least one mountain shape (peak) with the wavelength as the horizontal axis can be obtained.
- the wavelengths of the two or more regions, which have the maximum reflectance are different from each other.
- the wavelength having the maximum reflectance means the wavelength having the maximum reflectance at the peak of the spectral waveform obtained as described above. When there are a plurality of peaks, the peak including the reflectance that becomes the maximum value is adopted.
- the area of the specific area A is not particularly limited, and it is preferable to appropriately adjust the area according to the color required for the decorative film according to the present disclosure.
- the first resin layer may have one specific region A or two or more specific regions A in the same plane.
- the wavelength at which the reflectance of each region is maximized may be the same or different.
- the areas of the respective regions may be the same or different.
- the position where the specific region A is provided is not particularly limited, and as shown in FIG. 1, one end of the first resin layer 10 is provided.
- the specific area A11 may be provided, and as shown in FIG. 2, the specific area A11 may be provided at a position other than the end portion such as the central portion.
- the position where the specific regions A are provided is not particularly limited.
- the first resin layer has two specific regions A in the same plane, for example, as shown in FIG. 3, it may be provided at both ends of the first resin layer 10, and as shown in FIG. It may be provided at a position other than the end portion.
- the reflectance of light having a wavelength of more than 380 nm and less than 800 nm is measured by a spectrophotometer (manufactured by JASCO Corporation, ILV-471) equipped with a large integrating sphere device (manufactured by JASCO Corporation, ILV-471) as described above. , V-670) can be used for measurement.
- the first resin layer is a region having a wavelength of more than 380 nm and less than 800 nm having a maximum reflectance as at least one of the two or more regions (hereinafter, also referred to as “other region A”). ) May have. Since the first resin layer has the other region A, the region where additive color mixing occurs with the second resin layer and the colored layer in the laminated state with the second resin layer and the colored layer, and the additive color mixing are Areas that do not occur are mixed, and it becomes possible to display more complicated color change in the decorative film, and the designability is further improved.
- the area of the other area A is not particularly limited, and it is preferable to appropriately adjust the area according to the color required for the decorative film according to the present disclosure.
- the first resin layer may have one other region A or two or more regions A.
- the wavelength at which the reflectance of each region is maximized may be the same or different.
- the areas of the respective regions may be the same or different.
- the position where the other region A is provided is not particularly limited, and as shown in FIG. 1, of the first resin layer 10.
- the other region A12 may be provided at one end, or as shown in FIG. 3, the other region A12 may be provided at a position other than the end portion such as the central portion.
- the position where the other regions A12 are provided is not particularly limited.
- the first resin layer may be provided at both ends of the first resin layer 10, and other than the end portions. It may be provided at a position (not shown).
- the wavelength having the maximum reflectance may be continuously changed in the plane.
- the wavelength having the maximum reflectance continuously changes from 381 nm to 450 nm it is possible to provide another region A in which the color tone changes in a gradation from purple to blue, and the decorative film can be formed.
- the design of the product can be further improved.
- the maximum reflectance of the other region A in the wavelength range of more than 380 nm and less than 800 nm is preferably 20% or more, more preferably 30% or more, still more preferably 40% or more. , 45% or more is particularly preferable. When the maximum reflectance is 20% or more, the visibility of the decorative film can be further improved.
- the thickness of the first resin layer is preferably 1 ⁇ m to 5 ⁇ m, preferably 1 ⁇ m to 4 ⁇ m. Is more preferable, and 1 ⁇ m to 3 ⁇ m is even more preferable.
- the thickness of the first resin layer is preferably 1 ⁇ m to 6 ⁇ m, preferably 2 ⁇ m to 6 ⁇ m. Is more preferable, and 3 ⁇ m to 6 ⁇ m is even more preferable.
- the configuration of the second resin layer is not particularly limited as long as it has a cholesteric regularity different from that of the first resin layer, but two or more regions having different wavelengths having the maximum reflectance are in the same plane. It is preferable to have it in. Further, as a region included in the two or more regions, it is possible to have at least one region (hereinafter, also referred to as a specific region B) in which the wavelength having the maximum reflectance is in the range of 380 nm or less or 800 nm or more. preferable. By having the above-mentioned region in the second resin layer, it becomes possible to display a more complicated color change in the decorative film, and the designability is further improved.
- the specific region B is provided at a position where at least a part of the specific region A overlaps with the specific region A of the first resin layer.
- the tint of the colored layer contained in the decorative film of the present disclosure can be visually recognized, and the design of the decorative film can be further improved (see FIG. 5).
- the specific area B may be provided at a position completely overlapping with the specific area A.
- the area of the specific area B is not particularly limited, and it is preferable to appropriately adjust the area according to the color required for the decorative film according to the present disclosure.
- the second resin layer may have one specific region B or two or more specific regions B in the same plane.
- the wavelength at which the reflectance of each region is maximized may be the same or different.
- the areas of the respective regions may be the same or different.
- the position where the specific region B is provided can be the same as the position where the specific region A is provided in the first resin layer, such as the end portion or the central portion.
- the wavelength having the maximum reflectance may be continuously changed in the plane as in the specific region A. Further, since the preferable numerical range of the reflectance of light having a wavelength of more than 380 nm and less than 800 nm in the specific region B is the same as that of the specific region A, the description thereof is omitted here.
- the second resin layer is a region included in the two or more regions and has a wavelength having a maximum reflectance of more than 380 nm and less than 800 nm (hereinafter, also referred to as “other region B”). ) May have. Since the second resin layer has the other region B, it is possible to display a more complicated color change in the decorative film, and the designability is further improved.
- the first resin layer 10 has the specific region A11 and the other region A12
- the second resin layer 20 has the specific region B21 and the other region B22, and is specified.
- the color of the decorative film 1 having a structure in which a part of the region A11 and the specific region B21 overlap each other will be described.
- the incident light is reflected by the colored layer 30, so that only the tint of the colored layer 30 (monochromatic region) can be visually recognized in the above region (Fig.). Dashed line of 5 (1)).
- the blue right circular polarization is reflected by the second resin layer 20, and the other light is reflected by the colored layer 30.
- the tint of the other region B22 of the second resin layer 20 and the tint of the colored layer 30 can be visually recognized (the broken line (2) in FIG. 5). ).
- the color of the colored layer 30 is black, the light transmitted through the first resin layer 10 is not reflected by the colored layer 30, and only the color of the other region B22 of the second resin layer 20 is present. Observed (not shown).
- the incident light is, for example, the red right circular polarization reflected in the first resin layer 10 and the blue right circular polarization in the second resin layer 20. Since it is reflected and other light is reflected by the colored layer 20, in the above region, the color of the other region A12 of the first resin layer 10 and the other region B22 of the second resin layer 20 are present.
- the tint of the above and the tint of the colored layer 30 can be visually recognized (broken line (3) in FIG. 5).
- the color of the colored layer 30 is black, the light transmitted through the first resin layer 10 is not reflected by the colored layer 30, and the color of the other region A12 of the first resin layer 10 and the color of the other region A12.
- the tint of the other region B22 of the second resin layer 20 and the tint of the additive color can be visually recognized (not shown).
- the area of the other area B is not particularly limited, and it is preferable to appropriately adjust the area according to the color required for the decorative film according to the present disclosure.
- the second resin layer may have one other region B, or may have two or more regions B.
- the wavelength at which the reflectance of each region is maximized may be the same or different.
- the areas of the regions may be the same or different.
- the position where the other region B is provided in the second resin layer can be the same as the position where the other region A is provided in the first resin layer, such as the end portion or the central portion.
- the wavelength that becomes the maximum reflectance may be continuously changed in the plane as in the other region A.
- the maximum reflectance of the other region B in the wavelength range of more than 380 nm and less than 800 nm is preferably 20% or more, more preferably 30% or more. When the maximum reflectance is 20% or more, the visibility of the decorative film can be further improved.
- the preferable thickness of the second resin layer is the same as that of the first resin layer, the description thereof is omitted here.
- the decorative film according to the present disclosure may include a resin layer other than the first resin layer and the second resin layer, such as a third resin layer, a fourth resin layer, and a fifth resin layer.
- a resin layer other than the first resin layer and the second resin layer such as a third resin layer, a fourth resin layer, and a fifth resin layer.
- the two or more regions having different wavelengths having the maximum reflectance are contained in the same plane and are included in the two or more regions. It is preferable to have at least one region (hereinafter, also referred to as a specific region C) in which the wavelength having the maximum reflectance is in the range of 380 nm or less or 800 nm or more.
- a specific region C is preferably provided at a position where at least a part of the specific region A overlaps with the specific region A of the first resin layer.
- the second resin layer has the specific region B
- the second resin layer is provided at a position where at least a part of the specific region A, the specific region B, and the specific region C overlap.
- the tint of the colored layer contained in the decorative film of the present disclosure can be visually recognized, and the design of the decorative film can be further improved.
- the specific area C may be provided at a position completely overlapping the specific area A or the specific area B.
- the area of the specific area C is not particularly limited, and it is preferable to appropriately adjust the area according to the color required for the decorative film according to the present disclosure.
- the other resin layer may have one specific region C or two or more specific regions C in the same plane.
- the wavelength at which the reflectance of each region is maximized may be the same or different.
- the areas of the respective regions may be the same or different.
- the position where the specific region C is provided can be the same as the position where the specific region A is provided in the first resin layer, such as the central portion or the end portion.
- the preferable numerical range of the reflectance of light having a wavelength of more than 380 nm and less than 800 nm in the specific region C is the same as that of the specific region A, the description thereof is omitted here.
- the other resin layer is a region included in the two or more regions, in which the wavelength having the maximum reflectance is more than 380 nm and less than 800 nm (hereinafter, also referred to as “other region C”). May have. Since the other resin layer has the other region C, it becomes possible to display a more complicated color change in the decorative flum, and the designability is further improved.
- the area of the other area C is not particularly limited, and it is preferable to appropriately adjust the area according to the color required for the decorative film according to the present disclosure.
- the other resin layer may have one other region C or two or more regions C.
- the wavelength at which the reflectance of each region is maximized may be the same or different.
- the areas of the respective regions may be the same or different.
- the position where the other region C is provided can be the same as the position where the other region A is provided in the first resin layer, such as the central portion or the end portion.
- the wavelength that becomes the maximum reflectance may be continuously changed in the plane as in the other region A.
- the maximum reflectance of the other region C in the wavelength range of more than 380 nm and less than 800 nm is preferably 20% or more, more preferably 30% or more. When the maximum reflectance is 20% or more, the visibility of the decorative film can be further improved.
- the preferable thickness of the other resin layers is the same as that of the first resin layer, the description thereof is omitted here.
- the decorative film 1 shown in FIG. 6 includes a first resin layer 10, a second resin layer 20, and a colored layer 30.
- the specific region A11 of the first resin layer 10 is transparent from one end (left end in FIG. 6) to the boundary with the other region A12, and the other region A12 is from the boundary to the other end (the other end).
- the hue changes in a gradation tone from purple to blue.
- the specific region B21 of the second resin layer 20 is transparent from the other end to the boundary with the other region B22, and the other region B22 is in the plane from the boundary to the one end.
- the tint changes in a gradation tone from magenta to red.
- gradation-like colors are displayed in the order of blue, magenta, and red from one end to the other end.
- the decorative film 1 shown in FIG. 7 includes a first resin layer 10, a second resin layer 20, and a colored layer 30. Further, as shown in FIG. 7, the specific region A11 of the first resin layer 10 and the specific region B21 of the second resin layer 20 are provided at overlapping positions, and the color of the colored layer 30 is provided in the region. You can see the taste.
- the decorative film 1 shown in FIG. 8 includes a first resin layer 10, a second resin layer 20, and a colored layer 30. Further, as shown in FIG. 8, the specific region A11 of the first resin layer 10 is transparent from one end (left end in FIG. 8) to the boundary with the other region A12, and is the other region A12. Displays a constant color, for example, a red color from the boundary to the other end (right end in FIG. 8). Further, the other region B22 of the second resin layer 20 extends from one end to the other end, and a certain color, for example, a blue color is displayed.
- the decorative film 1 on which the first resin layer 10 and the second resin layer 20 are laminated has a blue tint from one end to the boundary and a purple tint from the boundary to the other end.
- the decorative film according to the present disclosure includes a colored layer.
- the colored layer may be provided on the first resin layer, may be provided on the second resin layer, and may be provided between the first resin layer and the second resin layer. You may. Further, the colored layer may be provided on the entire surface of the first resin layer or the like, or may be provided on a part thereof.
- the colored layer is provided between the first resin layer, the second resin layer or another resin layer and the base material from the viewpoint of designability. Is preferable. Further, from the viewpoint of ease of molding and durability, it is preferable that the colored layer is provided on the resin layer on the side opposite to the side on which the base material is provided.
- the position where the colored layer is provided is not limited to the above example, and can be appropriately changed depending on the use of the decorative film.
- the decorative film according to the present disclosure may have only one colored layer or may have two or more layers.
- at least one of the colored layers is a layer for visually recognizing through the resin layer.
- a color change occurs according to the angle at which the colored layer is visually recognized based on the anisotropy according to the angle of the incident light in the resin layer. It is presumed that the decorative film according to the disclosure has a special design property. Further, when the specific region A and the specific region B and the like overlap in the first resin layer and the second resin layer included in the resin layer, the color of the colored layer can be confirmed, and the addition according to the present disclosure.
- the total light transmittance of the colored layer for visual recognition through at least one layer of the colored layer, preferably the resin layer, is preferably 10% or less from the viewpoint of visibility.
- the measurement of the total light transmittance is based on the Japanese Industrial Standards (JIS) K 7375 issued in 2008 using a spectrophotometer (for example, spectrophotometer UV-2100 manufactured by Shimadzu Corporation). Can be measured.
- the decorative film according to the present disclosure has two or more colored layers, at least one of the colored layers is a layer for visually recognizing via the resin layer, and at least one of the other colored layers.
- a mode in which the layer is a layer closer to the viewing direction than the resin layer (also referred to as a “color filter layer”) is preferably mentioned.
- "close to the viewing direction” means that the decorative film is provided at a position close to the viewer when the decorative film is visually recognized.
- the colored layer (color filter layer) that is closer to the viewing direction than the resin layer is a layer having high transparency to light of at least a specific wavelength, and the layer structure is not particularly limited, and is a single color color filter layer.
- the decorative film according to the present disclosure can be further designed, and a decorative film in which only a specific wavelength range can be visually recognized can be obtained.
- the color of the colored layer is not particularly limited and can be appropriately selected depending on the intended use.
- Examples of the color of the colored layer include black, gray, white, red, orange, yellow, green, blue and purple.
- the color of the colored layer may be a metallic color.
- the color of the colored layer can be complemented and displayed.
- the range of colors can be widened, and the design of the decorative film can be further improved.
- the colored layer preferably contains a resin from the viewpoint of strength and scratch resistance.
- the resin include the following binder resins.
- the colored layer may be a layer obtained by curing the following polymerizable compound, or may be a layer containing the polymerizable compound and the polymerization initiator.
- the polymerizable compound and the polymerization initiator are not particularly limited, and known polymerizable compounds and known polymerization initiators can be used.
- the colored layer may be a thin-film deposition film layer or a plating layer.
- the colored layer can contain a colorant, and examples thereof include pigments and dyes. From the viewpoint of durability, pigments are preferable.
- the type of pigment is not particularly limited, and known inorganic pigments and organic pigments can be used.
- the inorganic pigment include white pigments such as titanium dioxide, zinc oxide, lithopone, light calcium carbonate, white carbon, aluminum oxide, aluminum hydroxide and barium sulfate, carbon black, titanium black, titanium carbon, iron oxide and graphite.
- black pigments pearl pigments in which the surface of a mica or a piece of glass is coated with a metal oxide such as titanium oxide, iron oxide, barium yellow, cadmium red, and chrome yellow.
- the inorganic pigment the inorganic pigment described in JP-A-2005-7765 can also be used.
- organic pigment examples include phthalocyanine pigments such as phthalocyanine blue and phthalocyanine green, azo pigments such as azo red, azo yellow and azo orange, quinacridone pigments such as quinacridone red, cinacridone red and cinacridone magenta, perylene red and Examples thereof include perylene pigments such as perylene maroon, carbazole violet, anthrapyridine, flavanthron yellow, isoindrin yellow, induthron blue, dibrom anzasron red, anthraquinone red, and diketopyrrolopyrrole.
- phthalocyanine pigments such as phthalocyanine blue and phthalocyanine green
- azo pigments such as azo red, azo yellow and azo orange
- quinacridone pigments such as quinacridone red
- cinacridone red and cinacridone magenta examples of the organic pigment
- perylene red examples include perylene pigments such as per
- a pigment having light transmission or light reflection may be used.
- the glitter pigment include metal glitter pigments such as aluminum, copper, zinc, iron, nickel, tin, aluminum oxide, and alloys thereof, interfering mica pigments, white mica pigments, graphite pigments, and glass flake pigments. And so on.
- the bright pigment may be uncolored or colored. When the bright pigment is exposed in the molding of the decorative film, it is preferable that the bright pigment is used within a range that does not interfere with the curing due to the exposure.
- the colorant may be used alone or in combination of two or more. Further, when two or more kinds of colorants are used, an inorganic pigment and an organic pigment may be combined.
- the content of the colorant in the colored layer is preferably 1% by mass to 50% by mass, preferably 5% by mass to 50% by mass, based on the total mass of the colored layer from the viewpoint of the development of the desired color and the suitability for molding. % Is more preferable, and 10% by mass to 40% by mass is particularly preferable.
- the colored layer can contain a dispersant.
- the dispersibility of the colorant, particularly the pigment in the colored layer is improved, and the color can be made uniform in the decorative film.
- the type of dispersant is preferably appropriately selected according to the type and shape of the colorant, and is preferably a polymer dispersant.
- the polymer dispersant include silicone polymers, (meth) acrylic polymers and polyester polymers.
- silicone polymer such as a graft type silicone polymer
- a commercially available dispersant may be used.
- the weight average molecular weight of the dispersant is preferably 1,000 to 5,000,000, more preferably 2,000 to 3,000,000, from the viewpoint of dispersibility of the colorant. , 500 to 3,000,000 is particularly preferable.
- the "weight average molecular weight” is determined by a gel permeation chromatography (GPC) analyzer using a column of TSKgel GMHxL, TSKgel G4000HxL, TSKgel G2000HxL (all of which are trade names manufactured by Toso Co., Ltd.). Tetrahydrofuran), which is the molecular weight detected by a differential refractometer and converted using polystyrene as a standard substance.
- the dispersant may be used alone or in combination of two or more.
- the content of the dispersant in the colored layer is preferably 1 part by mass to 30 parts by mass with respect to 100 parts by mass of the colorant.
- the colored layer preferably contains a binder resin from the viewpoint of ease of molding.
- the type of binder resin is not particularly limited, and known resins can be used.
- the binder resin is preferably a transparent resin from the viewpoint of making the colored layer a desired color, and specifically, a resin having a total light transmittance of 80% or more is preferable.
- binder resin examples include (meth) acrylic resin, silicone resin, polyester resin, urethane resin, polyolefin resin and the like.
- the binder resin may be a homopolymer of a specific monomer or a copolymer of a specific monomer and another monomer.
- the binder resin may be used alone or in combination of two or more.
- the content of the binder resin in the colored layer is preferably 5% by mass to 70% by mass and 10% by mass to 60% by mass with respect to the total mass of the colored layer from the viewpoint of ease of molding. Is more preferable, and 20% by mass to 60% by mass is particularly preferable.
- the colored layer may contain additives in addition to the above components, if necessary.
- the type of additive is not particularly limited, and known additives can be used.
- the additive include a surfactant described in Japanese Patent No. 4502784 and Japanese Patent Application Laid-Open No. 2009-237362, and a thermal polymerization inhibitor (also referred to as a polymerization inhibitor, preferably phenothiazine) described in Japanese Patent No. 4502784. ), And the additives described in JP-A-2000-310706.
- the thickness of the colored layer is not particularly limited, but is preferably 0.5 ⁇ m or more, more preferably 3 ⁇ m or more, and 3 ⁇ m to 50 ⁇ m from the viewpoint of visibility and three-dimensional moldability. It is more preferably 3 ⁇ m to 20 ⁇ m, and particularly preferably 3 ⁇ m to 20 ⁇ m.
- each colored layer is independently in the above-mentioned thickness range.
- the decorative film according to the present disclosure may have an alignment layer.
- the position of the alignment layer is not particularly limited, but it is preferably provided adjacent to the first resin layer, the second resin layer, or other resin layer.
- the alignment layer is used to orient the molecules of the liquid crystal compound contained in the liquid crystal composition used when forming the resin layer.
- the alignment layer may be present when forming the first resin layer or the like, and the produced decorative film does not have to have the alignment layer.
- the oriented layer can be formed by using means such as rubbing treatment of a layer containing an organic compound (preferably a polymer), oblique vapor deposition of an inorganic compound such as SiO, or formation of a layer having microgrooves. Further, the alignment layer can be formed by applying an electric field, applying a magnetic field, or irradiating light to the layer to generate an alignment function (hereinafter, the alignment layer in which the alignment function is generated by light irradiation is lighted. Also called an oriented layer). Depending on the material contained in the base material or another resin layer provided as the lower layer of the formed resin layer, the lower layer is directly subjected to an alignment treatment (for example, a rubbing treatment) to function as an alignment layer.
- an alignment treatment for example, a rubbing treatment
- the alignment layer in which the alignment function is generated by performing the rubbing treatment is referred to as a rubbing treatment alignment layer.
- a rubbing treatment alignment layer As an example of the material contained in the above-mentioned lower layer, polyethylene terephthalate (PET) and the like can be mentioned.
- PET polyethylene terephthalate
- the lower first resin layer or the like functions as an orientation layer, and the other resin layer which is the upper layer.
- the liquid crystal compound contained in the liquid crystal composition used for forming the above can be oriented, and it is not necessary to provide an alignment layer or perform an orientation treatment.
- the thickness of the alignment layer is preferably 0.01 ⁇ m to 10 ⁇ m.
- the rubbing treatment alignment layer may contain a polymer.
- the polymer include, for example, the methacrylate-based copolymer, the styrene-based copolymer, the polyolefin, the polyvinyl alcohol, the modified polyvinyl alcohol, the poly (N-methylolacrylamide), and the polyethylene terephthalate described in JP-A-8-338913.
- polyester resins such as PET
- polyimide resins vinyl acetate copolymers
- carboxymethyl cellulose and polycarbonate resins can be contained in the rubbing alignment layer as a polymer.
- the polymer contained in the rubbing treatment alignment layer is preferably a water-soluble polymer, specifically, poly (N-methylolacrylamide), carboxymethyl cellulose, gelatin, polyvinyl alcohol, modified polyvinyl alcohol and the like, and gelatin, polyvinyl alcohol or modified Polyvinyl alcohol is more preferable, and polyvinyl alcohol or modified polyvinyl alcohol is further preferable.
- the liquid crystal composition is applied to the rubbing-treated surface of the alignment layer to orient the molecules of the liquid crystal compound. Then, if necessary, the polymer contained in the alignment layer is reacted with the polyfunctional monomer contained in the first resin layer, or the polymer contained in the alignment layer is crosslinked using a crosslinking agent. By allowing the resin layer to be formed, the first resin layer can be formed.
- the photo-alignment layer can contain a photo-alignment material.
- the photo-alignment material include JP-A-2006-285197, JP-A-2007-76839, JP-A-2007-138138, JP-A-2007-94071, JP-A-2007-121721, and JP-A. Azo compounds and azo compounds described in JP-A-2007-140465, JP-A-2007-156439, JP-A-2007-133184, JP-A-2009-109831, Patent No. 3883848, Patent No. 4151746, etc.
- Esters are also preferred examples. Particularly preferred are azo compounds, photocrosslinkable polyimides, polyamides or esters.
- the decorative film according to the present disclosure may contain a base material.
- the shape and material of the base material are not particularly limited and can be appropriately selected depending on the intended use. From the viewpoint of ease of insert molding and chipping resistance, the base material is preferably a resin base material, and more preferably a resin film base material.
- the base material examples include PET resin, polyethylene naphthalate (PEN) resin, polyolefin resin (preferably polypropylene), (meth) acrylic resin, urethane resin, urethane-modified (meth) acrylic resin, polycarbonate (PC) resin, and the like.
- resin films containing resins such as (meth) acrylic modified polycarbonate resin, triacetyl cellulose (TAC), cycloolefin polymer (COP), and (meth) acrylonitrile / butadiene / styrene copolymer resin (ABS resin).
- the group consists of PET resin, (meth) acrylic resin, urethane resin, urethane-modified (meth) acrylic resin, PC resin, (meth) acrylic-modified polycarbonate resin, and polypropylene resin.
- a resin film containing at least one selected resin is preferable, and a resin film containing at least one resin selected from the group consisting of (meth) acrylic resin, PC resin and (meth) acrylic-modified polycarbonate resin.
- the base material may be a laminated resin base material having two or more layers. A laminate of a (meth) acrylic resin film and a polycarbonate resin film is a preferable example.
- the base material may contain additives, if necessary.
- additives include mineral oils, hydrocarbons, fatty acids, alcohols, fatty acid esters, fatty acid amides, metal soaps, lubricants such as natural waxes and silicones, inorganic flame retardants such as magnesium hydroxide and aluminum hydroxide, and halogen-based organics.
- Organic flame retardants such as flame retardants and phosphorus-based organic flame retardants
- organic fillers such as metal powder, talc, calcium carbonate, potassium titanate, glass fiber, carbon fiber and wood powder, inorganic fillers, antioxidants, UV protection Agents, lubricants, dispersants, coupling agents, foaming agents, colorants, and engineering plastics such as polyolefin resins, polyester resins, polyacetal resins, polyamide resins or polyphenylene ether resins other than the above-mentioned resins.
- the thickness of the base material is not particularly limited and is preferably selected as appropriate depending on the intended use of the decorative film, but the thickness of the base material is preferably 1 ⁇ m or more, more preferably 10 ⁇ m or more, and further preferably 20 ⁇ m or more. It is preferable, and 50 ⁇ m or more is particularly preferable.
- the thickness of the base material is preferably 500 ⁇ m or less, more preferably 450 ⁇ m or less, still more preferably 200 ⁇ m or less.
- the base material is preferably surface-treated from the viewpoint of adhesion to adjacent layers.
- Examples of the surface treatment include corona discharge treatment, plasma treatment, ozone treatment, frame treatment and the like.
- the base material may be made of a material having high peelability, and may be used in the production of a decorative film and may be peeled off from the produced decorative film.
- the decorative film of the present disclosure may optionally include other layers in addition to the layers described above.
- a protective layer an antistatic layer, an antireflection layer, a color correction layer, an ultraviolet absorbing layer, a gas barrier layer, a peeling layer, an adhesive layer, an adhesive layer and the like can be mentioned.
- the method for manufacturing a decorative film according to the present disclosure is as follows.
- the method for producing a decorative film of the present disclosure can include a step of forming another resin layer.
- the liquid crystal material includes a base material and a liquid crystal layer.
- the liquid crystal layer can be formed by applying a liquid crystal composition on a substrate and heating the liquid crystal layer. Further, a commercially available liquid crystal material may be used.
- the base material those manufactured by a conventionally known method using the above-mentioned materials may be used, or commercially available ones may be used. Examples of commercially available products include Technoloy (registered trademark) series (acrylic resin film or laminate of acrylic resin film and polycarbonate resin film, manufactured by Sumitomo Chemical Co., Ltd.) and the like.
- the base material may be peeled off after the decorative film is manufactured.
- the method for applying the liquid crystal composition onto the substrate is not particularly limited, and is a wire bar coating method, a curtain coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, a die coating method, and a spin coating method. , Dip coating method, spray coating method, slide coating method and the like.
- a method of transferring a liquid crystal composition separately coated on a support can be mentioned.
- a method of dropping a liquid crystal composition can be mentioned.
- the dotting method an inkjet method can be used.
- the liquid crystal compound can be oriented by heating the applied liquid crystal composition. The heating temperature is preferably 200 ° C.
- the heat treatment forms a liquid crystal layer having a structure in which the liquid crystal compound is twisted and oriented so as to have a spiral axis in a direction substantially perpendicular to the formation surface.
- the liquid crystal composition contains the above solvent, it is preferably dried by a known method. For example, it may be dried by leaving it or air-drying, or it may be dried by heating.
- the amount of the liquid crystal composition to be applied may be appropriately adjusted in consideration of the thickness of the first resin layer after drying.
- the first resin layer may be formed on the base material, and the base material may be formed. It may be formed on the colored layer or other resin layer provided above. Further, since the materials that can be contained in the liquid crystal composition have been described above, the description thereof will be omitted here.
- the liquid crystal composition can contain a liquid crystal compound.
- the liquid crystal composition can contain a non-liquid crystal polymerizable monomer.
- the liquid crystal composition can contain a chiral compound.
- the liquid crystal composition can contain a cross-linking agent.
- the liquid crystal composition can contain other additives.
- the liquid crystal composition can contain a solvent.
- the liquid crystal compound examples include a rod-shaped compound (hereinafter, also referred to as a rod-shaped liquid crystal compound) and a disk-shaped compound (hereinafter, also referred to as a disk-shaped liquid crystal compound), and from the viewpoint of easiness of forming a spiral structure, the liquid crystal compound includes. It is preferably a rod-shaped liquid crystal compound. Further, the liquid crystal composition may contain two or more kinds of rod-shaped liquid crystal compounds, two or more kinds of disc-shaped liquid crystal compounds, or a mixture of a rod-shaped liquid crystal compound and a disc-shaped liquid crystal compound. The formed resin layer does not have to contain a liquid crystal compound.
- a low molecular weight liquid crystal compound having a group that reacts with heat, light, or the like reacts with heat, light, or the like, crosslinks, and becomes high molecular weight, resulting in liquid crystallinity. It may be a layer containing a compound that has lost the above.
- the combination of the liquid crystal compounds used for forming the resin layer is not particularly limited. All of the liquid crystal compounds used for forming the resin layer may be rod-shaped liquid crystal compounds, all may be disc-shaped liquid crystal compounds, and all may be rod-shaped liquid crystal compounds and disc-shaped liquid crystal compounds. It may be a mixture. The mixing ratio of the rod-shaped liquid crystal compound and the disk-shaped liquid crystal compound in the above mixture may be different for each layer or may be the same. Further, a layer in which all are formed of a rod-shaped liquid crystal compound and a layer in which all of which are formed of a disk-shaped liquid crystal compound may be laminated.
- the liquid crystal compound may be a low molecular weight compound or a high molecular weight compound.
- polymer compound refers to a compound having a degree of polymerization of 100 or more (Polymer Physics / Phase Transition Dynamics, Masao Doi, p. 2, Iwanami Shoten, 1992). It was
- the liquid crystal compound preferably has a reactive group in one molecule, and preferably has two or more reactive groups in one molecule. More preferred.
- a liquid crystal compound having one reactive group in one molecule is also referred to as a “monofunctional liquid crystal compound”, and a liquid crystal compound having two or more reactive groups in one molecule is referred to as a “polyfunctional liquid crystal compound”.
- the liquid crystal composition preferably contains a monofunctional liquid crystal compound. By containing the monofunctional liquid crystal compound in the liquid crystal composition, the ease of molding the decorative film can be improved.
- the liquid crystal composition used for forming the first resin layer is a liquid crystal composition. It preferably contains at least one of a polyfunctional liquid crystal compound and a polyfunctional non-liquid crystal polymerizable monomer.
- the liquid crystal composition for forming the second resin layer is placed on the first resin layer. At the time of application, it is possible to prevent the liquid crystal composition for forming the second resin layer from being mixed with the components in the first resin layer.
- the content of the polyfunctional liquid crystal compound and the polyfunctional non-liquid crystal polymerized monomer in the liquid crystal composition is preferably 10% by mass or more, more preferably 15% by mass or more, and 20% by mass. % Or more is more preferable.
- the content of the polyfunctional liquid crystal compound and the polyfunctional non-liquid crystal polymerized monomer in the liquid crystal composition is preferably 50% by mass or less.
- the liquid crystal composition preferably contains a monofunctional liquid crystal compound in addition to at least one of the polyfunctional liquid crystal compound and the polyfunctional non-liquid crystal polymerized monomer.
- the liquid crystal composition contains a monofunctional liquid crystal compound, a polyfunctional liquid crystal compound and a polyfunctional non-liquid crystal polymerized monomer, the content of the monofunctional liquid crystal compound in the liquid crystal composition and the polyfunctional liquid crystal property.
- the ratio to the content of the compound and the polyfunctional non-liquid crystal polymerizable monomer is On a mass basis, it is preferably 95: 5 to 1:99, more preferably 85:15 to 10:90, even more preferably 85:15 to 20:80, and 85:15 to 40. : 60 is particularly preferable.
- the liquid crystal composition for forming the resin layer provided on the outermost surface (hereinafter, also referred to as the outermost surface resin layer) is larger than the liquid crystal composition for forming the resin layer provided below the outermost surface resin layer. It is preferable that the content of the functional liquid crystal compound and the polyfunctional non-liquid crystal polymerized monomer is small from the viewpoint of moldability of the decorative film.
- the outermost surface resin layer may be a first resin layer, a second resin layer, or another resin layer.
- the polyfunctional liquid crystal compound preferably has two or more kinds of reactive groups having different cross-linking mechanisms.
- a part of the reactive groups of the liquid crystal compound can be polymerized, and the layer contains a compound having an unreacted reactive group.
- the cross-linking mechanism include a condensation polymerization reaction, a hydrogen bond reaction, and an addition polymerization reaction.
- the phrase "having two or more reactive groups having different cross-linking mechanisms" also includes the case of having two or more reactive groups having different polymerization reactions as the cross-linking mechanism.
- the cross-linking mechanism of at least one reactive group is a polymerization reaction, and the cross-linking mechanism of two or more kinds of reactive groups is preferable. It is more preferable that the polymerization reactions are different.
- a liquid crystal compound having two or more kinds of reactive groups having different cross-linking mechanisms is a compound that can be cross-linked stepwise by using different cross-linking reaction steps, and in each step of the cross-linking reaction step, it depends on each cross-linking mechanism.
- the reactive group reacts as a functional group.
- a polymerization reaction for polymerizing a polymer such as polyvinyl alcohol having a hydroxy group in the side chain is performed and then the hydroxy group in the side chain is crosslinked with an aldehyde or the like, two or more different cross-linking mechanisms are used. I was there.
- a liquid crystal compound having two or more different reactive groups has two or more different reactive groups at the time of forming the resin layer, and the reactive groups are crosslinked stepwise after formation. It is preferably a compound that can be made to react.
- the reactive group is preferably a polymerizable group.
- the polymerizable group include a radically polymerizable group and a cationically polymerizable group.
- the liquid crystal compound is preferably a polyfunctional liquid crystal compound having two or more kinds of polymerizable groups.
- the difference in reaction conditions for stepwise cross-linking may be any of a difference in temperature, a difference in wavelength of light (irradiation line), and a difference in polymerization mechanism, but the difference in polymerization mechanism is used because the reaction can be easily separated. It is preferable, and it is more preferable to control it depending on the type of the polymerization initiator used.
- Examples of the polymerizable group include a vinyl group, a (meth) acrylic group, an epoxy group, an oxetanyl group, a vinyl ether group, a hydroxy group, a carboxy group and an amino group.
- a combination of a radically polymerizable group and a cationically polymerizable group is preferable.
- the combination in which the radically polymerizable group is a vinyl group or a (meth) acrylic group and the cationically polymerizable group is an epoxy group, an oxetanyl group or a vinyl ether group is easy to control the reactivity. preferable.
- the liquid crystal compound preferably has a radically polymerizable group from the viewpoint of reactivity and ease of fixing the spiral pitch of the helical structure.
- reactive groups are shown below, but the reactive groups are not limited thereto.
- Et represents an ethyl group
- n-Pr represents an n-propyl group.
- rod-shaped liquid liquid compound examples include azomethine-based compounds, azoxy-based compounds, cyanobiphenyl-based compounds, cyanophenyl ester-based compounds, benzoic acid ester-based compounds, cyclohexanecarboxylic acid phenyl ester-based compounds, cyanophenylcyclohexane-based compounds, and cyano-substituted phenylpyrimidine.
- Preferred examples thereof include system compounds, alkoxy-substituted phenylpyrimidine-based compounds, phenyldioxane-based compounds, trans-based compounds and alkenylcyclohexylbenzonitrile-based compounds.
- the polymer liquid crystal compound is a polymer compound obtained by polymerizing a low-molecular-weight rod-shaped liquid crystal compound having a reactive group.
- Examples of the rod-shaped liquid crystal compound include the compounds described in JP-A-2008-281989, JP-A No. 11-513019, JP-A-2006-526165, and the like.
- rod-shaped liquid crystal compound examples are shown below, but the present invention is not limited thereto.
- the compounds shown below can be synthesized by the method described in JP-A No. 11-513019.
- disc-shaped liquid crystal compound examples include a low molecular weight disc-shaped liquid crystal compound such as a monomer and a polymerizable disc-shaped liquid crystal compound.
- disc-shaped liquid crystal compounds include C.I. Research report by Destrade et al., Mol. Cryst. Benzene Derivatives, C.I., p. 71, p. 111 (1981). Research report by Destrade et al., Mol. Cryst. Volume 122, p. 141 (1985), Physicslett, A, 78, p. 82 (1990). Research report by Kohne et al., Angew. Chem. Cyclohexane derivatives described in Vol. 96, p.
- the above-mentioned various structures are used as a disk-shaped mother nucleus at the center of the molecule, and a group (L) such as a linear alkyl group, an alkoxy group, or a substituted benzoyloxy group is used as a side chain of the mother nucleus for radiation.
- a compound having a shape-like structure and exhibiting liquidity is included.
- the above compound is generally called a disc-shaped liquid crystal display.
- the aggregate of the above compounds is uniformly oriented, it exhibits negative uniaxiality, but the disk-shaped liquid crystal compound is not limited to this description.
- a disk-shaped liquid crystal compound having a reactive group is used as the liquid liquid compound, it may be fixed in any of the horizontal orientation, the vertical orientation, the tilt orientation, and the twist orientation in the cured resin layer.
- the liquid crystal composition may contain one kind of liquid crystal compound or two or more kinds of liquid crystal compounds.
- the content of the liquid crystal compound in the liquid crystal composition is preferably 30% by mass to 99% by mass, preferably 40% by mass, based on the total solid content in the liquid crystal composition from the viewpoint of the design of the decorative film. It is more preferably% to 99% by mass, further preferably 60% by mass to 99% by mass, and particularly preferably 70% by mass to 98% by mass.
- the liquid crystal composition may contain a non-liquid crystal polymerizable monomer.
- a non-liquid crystal polymerizable monomer By containing the non-liquid crystal polymerizable monomer in the liquid crystal composition, the cross-linking reaction of the liquid crystal compound at the time of forming the first resin layer is promoted.
- the non-liquidity polymerizable monomer for example, a monomer or oligomer having two or more ethylenically unsaturated bonds and addition-polymerizing by irradiation with light can be used as the non-liquidity polymerizable monomer.
- the oligomer is a polymer of a monomer and means a compound having a degree of polymerization of 2 or more and 15 or less.
- the non-liquid crystal polymerization monomer may be monofunctional or polyfunctional.
- Examples of the monomer and oligomer include compounds having at least one addition-polymerizable ethylenically unsaturated group in the molecule.
- Examples of the monomers and oligomers include monofunctional (meth) acrylates such as polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate and phenoxyethyl (meth) acrylate; polyethylene glycol di (meth) acrylate, polypropylene glycol.
- examples of the above-mentioned monomers and oligomers include urethane acrylate compounds described in JP-A-48-41708, JP-A-50-6034, JP-A-51-37193, and the like; JP-A-48.
- polyfunctional (meth) acrylic relay can be mentioned.
- trimethylolpropane tri (meth) acrylate pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate or dipentaerythritol penta (meth) acrylate are preferable.
- the "polymerizable compound B" described in JP-A-11-133600 can also be mentioned as an example of the above-mentioned non-liquid crystal polymerizable monomer.
- the above-mentioned monomer or oligomer may be used alone or in combination of two or more.
- non-liquid crystal polymerizable monomer a cationically polymerizable monomer can also be used.
- a cationically polymerizable monomer can also be used.
- JP-A-6-9714, JP-A-2001-31892, JP-A-2001-40068, JP-A-2001-55507, JP-A-2001-310938, JP-A-2001-310937 and JP-A-2001-220526 examples thereof include epoxy compounds, vinyl ether compounds, oxetane compounds and the like exemplified in each publication.
- a monofunctional or bifunctional oxetane monomer can also be used.
- a monofunctional or bifunctional oxetane monomer for example, 3-ethyl-3-hydroxymethyloxetane (manufactured by Toa Synthetic Co., Ltd., trade name OXT101, etc.), 1,4-bis [(3-ethyl-3-oxetanyl)).
- Methoxymethyl] benzene (manufactured by Toa Synthetic Co., Ltd., trade name OXT121, etc.), 3-ethyl-3- (phenoxymethyl) oxetane (manufactured by Toa Synthetic Co., Ltd., trade name OXT211 etc.), di (1-ethyl-3) -Oxetanyl) methyl ether (manufactured by Toa Synthetic Co., Ltd., trade name OXT221, etc.) or 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane (manufactured by Toa Synthetic Co., Ltd., trade name OXT212, etc.) is preferable.
- the liquid crystal composition preferably contains a chiral compound from the viewpoint of easy formation of the resin layer and easy adjustment of the spiral pitch of the spiral structure.
- the chiral compound has a function of inducing a helical structure for a cholesteric liquid crystal compound.
- the chiral compound may be selected according to the purpose because the twisting direction or the spiral pitch of the induced spiral differs depending on the liquid crystal compound.
- the chiral compound is not particularly limited, and a known compound (for example, "Liquid Crystal Device Handbook", Chapter 3, Section 4-3, TN (twisted nematic), STN (Super-twisted nematic) chiral agent, p.
- the chiral compound generally contains an asymmetric carbon atom, but an axial asymmetric compound or a planar asymmetric compound that does not contain an asymmetric carbon atom can also be used as the chiral compound.
- the axial asymmetric compound or the planar asymmetric compound preferably include binaphthyl compounds, helicene compounds, and paracyclophane compounds.
- the chiral compound include a photoisomerized chiral compound and a polymerizable chiral compound.
- chiral compound one kind may be used alone, or two or more kinds may be used in combination.
- the content of the chiral compound is 1% by mass to 20% by mass with respect to the total solid content of the liquid crystal composition from the viewpoint of more easily obtaining the target reflection wavelength. It is preferably 1% by mass to 15% by mass, more preferably 1% by mass to 10% by mass.
- the liquid crystal composition preferably contains a photoisomerized chiral compound as the chiral compound from the viewpoint of more easily adjusting the selective reflection wavelength.
- the photoisomerized chiral compound means a compound having a photoisomerized structure and chirality in one molecule.
- the photoisomerized chiral compound is preferably a compound whose three-dimensional structure changes with exposure from the viewpoint of ease of photoisomerization and maintenance of the isomerized structure, and the EZ (Zussammen, Ethgen) arrangement is isomerized by exposure. It is more preferable to have an ethylenically unsaturated bond having two or more substitutions, and it is particularly preferable to have an ethylenically unsaturated bond having three substitutions whose EZ arrangement is isomerized by exposure.
- the photoisomerized chiral compound When the photoisomerized chiral compound is isomerized by exposure, it changes the orientation structure such as the spiral pitch (twisting force, spiral twist angle) of the spiral structure in the liquid crystal phase. Further, the photoisomerization ratio of the photoisomerized chiral compound can be adjusted by the exposure amount at the time of exposure. Depending on the photoisomerization ratio of the photoisomerized chiral compound, the length of the spiral pitch of the spiral structure in the liquid crystal phase can be changed, and the selective reflection wavelength can be changed.
- the photoisomerization ratio means the ratio of the number of molecules of the photoisomerized chiral compound to the total number of molecules of the photoisomerized chiral compound.
- the isomerization of the EZ arrangement in the present disclosure also includes cis-trans isomerization.
- the compound having an ethylenically unsaturated bond having two substitutions is preferably a compound having an ethylenically unsaturated bond substituted with an aromatic group and an ester bond.
- the photoisomerized chiral compound may have only one photoisomerized structure and may have two or more photoisomerized chiral compounds.
- the photoisomerized compound preferably has two or more photoisomerized structures, and preferably has two to four. It is more preferable to have two, and it is particularly preferable to have two.
- the photoisomerized chiral compound is preferably a compound represented by the following formula (CH1).
- the compound represented by the following formula (CH1) can change the orientation structure such as the spiral pitch (twisting force, helix angle) of the cholesteric liquid crystal phase according to the exposure amount at the time of exposure.
- the compound represented by the following formula (CH1) is a compound in which the EZ arrangement in the two ethylenically unsaturated bonds can be isomerized by exposure.
- Ar CH1 and Ar CH2 independently represent an aryl group or a heteroaromatic ring group, and R CH1 and R CH2 independently represent a hydrogen atom or a cyano group, respectively.
- Ar CH1 and Ar CH2 in the formula (CH1) are independently aryl groups.
- the aryl group in Ar CH1 and Ar CH2 of the formula (CH1) may have a substituent, preferably has a total carbon number of 6 to 40, and more preferably has a total carbon number of 6 to 30.
- the substituent is a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, a hydroxy group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, an acyloxy group, a carboxy group, a cyano group, or a heterocyclic group.
- a halogen atom, an alkyl group, an alkenyl group, an alkoxy group, a hydroxy group, an acyloxy group, an alkoxycarbonyl group, or an aryloxycarbonyl group is more preferable.
- R CH1 and R CH2 in the formula (CH1) are independently cyano groups.
- Ar CH1 and Ar CH2 are preferably aryl groups represented by the following formula (CH2) or formula (CH3), and more preferably aryl groups represented by the following formula (CH2).
- R CH3 and R CH 4 are independently hydrogen atom, halogen atom, alkyl group, alkenyl group, alkynyl group, aryl group, heterocyclic group, alkoxy group, hydroxy group and acyl.
- a group, an alkoxycarbonyl group, an aryloxycarbonyl group, an acyloxy group, a carboxy group, or a cyano group, and L CH1 and L CH2 independently represent a halogen atom, an alkyl group, an alkoxy group, or a hydroxy group.
- nCH1 represents an integer of 0 to 4
- nCH2 represents an integer of 0 to 6
- * represents a bonding position with an ethylenically unsaturated bond in the formula (CH1).
- R CH3 and R CH4 in the formula (CH2) and the formula (CH3) are independently hydrogen atom, halogen atom, alkyl group, alkoxy group, aryl group, alkoxy group, hydroxy group, alkoxycarbonyl group, aryloxycarbonyl group, respectively.
- it is preferably an acyloxy group, more preferably an alkoxy group, a hydroxy group, or an acyloxy group, and particularly preferably an alkoxy group.
- L CH1 and L CH2 in the formula (CH2) and the formula (CH3) are independently alkoxy groups having 1 to 10 carbon atoms or hydroxy groups, respectively.
- NCH1 in the formula (CH2) is preferably 0 or 1, more preferably 0.
- NCH2 in the formula (CH3) is preferably 0 or 1, more preferably 0.
- the complex aromatic ring group in Ar CH1 and Ar CH2 of the formula (CH1) may have a substituent, preferably has a total carbon number of 4 to 40, and more preferably has a total carbon number of 4 to 30. preferable.
- a substituent for example, a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an alkoxy group, a hydroxy group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, an acyloxy group, or a cyano group is preferable.
- a halogen atom, an alkyl group, an alkenyl group, an aryl group, an alkoxy group, or an acyloxy group is more preferable.
- the heteroaromatic ring group is preferably a pyridyl group, a pyrimidinyl group, a frill group, or a benzofuranyl group, and more preferably a pyridyl group or a pyrimidinyl group.
- the following compounds are preferably mentioned as the compound represented by the formula (CH1).
- the following compounds are compounds in which the molecular configuration of each ethylenically unsaturated bond changes with exposure.
- photoisomerized chiral compound one type may be used alone, or two or more types may be used in combination.
- the content of the photoisomerized chiral compound is 0 with respect to the total solid content of the liquid crystal composition from the viewpoint of more easily obtaining the desired reflection wavelength. It is preferably 5.5% by mass to 15% by mass, more preferably 1% by mass to 10% by mass, and even more preferably 2% by mass to 9% by mass.
- the liquid crystal composition preferably contains a polymerizable chiral compound as the chiral compound from the viewpoint of more easily fixing the helical structure of the liquid crystal compound.
- the polymerizable chiral compound means a chiral compound having a polymerizable group.
- the polymerizable chiral compound referred to here does not have a photoisomerized structure and is distinguished from the photoisomerized chiral compound.
- Examples of the polymerizable group of the polymerizable chiral compound include a radical polymerizable group and a cationically polymerizable group.
- the polymerizable group is preferably an ethylenically unsaturated group, an epoxy group or an aziridinyl group, and more preferably an ethylenically unsaturated group.
- the polymerizable chiral compound is preferably a compound containing an asymmetric carbon atom, but may be an axial asymmetric compound or a planar asymmetric compound that does not contain an asymmetric carbon atom.
- axial or asymmetric compounds include binaphthyl, helicene, paracyclophane and derivatives thereof.
- the polymerizable chiral compound preferably contains a polymerizable group of the same type as the polymerizable group of the liquid crystal compound.
- the polymerizable chiral compound also contains a radically polymerizable group.
- the polymerizable chiral compound is preferably an isosorbide derivative, an isomannide derivative, or a binaphthyl derivative.
- isosorbide derivatives include "Pario Color LC756" manufactured by BASF.
- polymerizable chiral compound one type may be used alone, or two or more types may be used in combination.
- the content of the polymerizable chiral compound is 0.5 with respect to the total solid content of the liquid crystal composition from the viewpoint of more easily obtaining the desired reflection wavelength. It is preferably from mass% to 8% by mass, more preferably from 1% by mass to 10% by mass, and even more preferably from 1% by mass to 5% by mass.
- the liquid crystal composition may contain a polymerization initiator.
- a polymerization initiator known ones can be selected and used, but a photopolymerization initiator is preferable, and a photopolymerization initiator that initiates the polymerization reaction by irradiation with ultraviolet rays is more preferable.
- the photopolymerization initiator may be a photoradical polymerization initiator or a photocationic polymerization initiator. Examples of the photopolymerization initiator include ⁇ -carbonyl compounds (described in US Pat. No. 2,376,661 and US Pat. No. 2,376,670, etc.), acidoin ether compounds (described in US Pat. No.
- photoradical polymerization initiator a known photoradical polymerization initiator can be used.
- Preferred examples of the photoradical polymerization initiator include ⁇ -hydroxyalkylphenone compounds, ⁇ -aminoalkylphenone compounds, acylphosphine oxide compounds, thioxanthone compounds and oxime ester compounds.
- the photocationic polymerization initiator a known photocationic polymerization initiator can be used as the photocationic polymerization initiator.
- Preferred examples of the photocationic polymerization initiator include iodonium salt compounds and sulfonium salt compounds.
- the liquid crystal composition may contain one kind of polymerization initiator, or may contain two or more kinds of polymerization initiators.
- the content of the polymerization initiator in the liquid crystal composition is preferably appropriately selected according to the structure of the liquid crystal compound to be used and the desired spiral pitch of the spiral structure to be formed, but the spiral pitch of the spiral structure can be easily adjusted. From the viewpoint of properties, polymerization rate and strength of the resin layer after curing, it is preferably 0.05% by mass to 10% by mass, preferably 0.05% by mass or more, based on the total solid content in the liquid crystal composition. It is more preferably 5% by mass, further preferably 0.1% by mass to 4% by mass, and particularly preferably 0.2% by mass to 3% by mass.
- the liquid crystal composition preferably contains a cross-linking agent from the viewpoint of the strength and durability of the resin layer after curing.
- a cross-linking agent one that causes a cross-linking curing reaction by ultraviolet rays, heat or humidity can be preferably used.
- the type of the cross-linking agent is not particularly limited, and is, for example, a polyfunctional acrylate compound such as trimethylolpropane tri (meth) acrylate and pentaerythritol tri (meth) acrylate; glycidyl (meth) acrylate, ethylene glycol diglycidyl ether and 3'.
- the liquid crystal composition may contain one kind of cross-linking agent or two or more kinds.
- the content of the cross-linking agent in the liquid crystal composition is preferably 1% by mass to 20% by mass with respect to the total solid content in the liquid crystal composition. It is more preferably 3% by mass to 15% by mass.
- the liquid crystal composition preferably contains a polyfunctional polymerizable compound from the viewpoint of suppressing a change in reflectance after molding.
- the polyfunctional polymerizable compound is a cholesteric liquid crystal compound having two or more ethylenically unsaturated groups and no cyclic ether group in the above-mentioned compounds, and having two or more cyclic ether groups.
- the above-mentioned cross-linking agent is preferably a (meth) acrylic group or a (meth) acryloyl group, and more preferably a (meth) acryloyl group.
- the cyclic ether group is preferably an epoxy group or an oxetanyl group, and more preferably an oxetanyl group.
- a liquid crystal compound having no group or a chiral compound having two or more polymerizable groups is preferable, and a chiral compound having two or more polymerizable groups is more preferable.
- the content of the polyfunctional polymerizable compound in the liquid crystal composition is 0.5% by mass to 70% by mass with respect to the total solid content in the liquid crystal composition. Is more preferable, 1% by mass to 50% by mass is more preferable, and 1.5% by mass to 20% by mass is further preferable.
- the liquid crystal composition may contain other additives, if necessary.
- additives known additives can be used, such as surfactants, polymerization inhibitors, antioxidants, horizontal alignment agents, ultraviolet absorbers, light stabilizers, colorants and metal oxide particles. Can be mentioned.
- the liquid crystal composition may contain a solvent.
- the solvent is not particularly limited and may be appropriately selected depending on the intended purpose, but an organic solvent is preferably used.
- the organic solvent include ketone compounds such as methyl ethyl ketone and methyl isobutyl ketone, alkyl halide compounds, amide compounds, sulfoxide compounds, heterocyclic compounds, hydrocarbon compounds, ester compounds, ether compounds and alcohol compounds. Examples include compounds.
- a ketone compound is particularly preferable from the viewpoint of environmental load.
- the above-mentioned component may function as a solvent.
- the liquid crystal composition may contain one kind of solvent, or may contain two or more kinds of solvents.
- the content of the solvent in the cured resin layer is preferably 5% by mass or less, more preferably 3% by mass or less, and further preferably 2% by mass or less, based on the total mass of the resin layer. It is preferably 1% by mass or less, and particularly preferably 1% by mass or less.
- the liquid crystal layer on the base material is subjected to photoisomerization treatment, and the liquid crystal layer has a wavelength having a maximum reflectance in the range of 380 nm or less or 800 nm or more.
- a first resin layer is formed by curing the liquid crystal layer after making it into a state having two or more regions having different wavelengths having maximum reflectances, including at least one region (specific region A). ..
- the liquid crystal layer has a region (other region A) in which a wavelength having a maximum reflectance exists in a range of more than 380 nm and less than 800 nm in addition to the specific region A. Is preferable.
- the photoisomerization treatment step is a step of photoisomerizing the photoisomerization compound contained in the liquid crystal layer.
- photoisomerization since two or more regions having different wavelengths having the maximum reflectance are formed, photoisomerization may be performed so that a difference in the photoisomerization ratio for each region occurs in the liquid crystal layer surface. preferable. Further, a part of the liquid crystal layer may be photoisomerized.
- the photoisomerization ratio of the photoisomerization compound is not particularly limited, and is preferably changed as appropriate according to the color required for the decorative film. Further, the progress of photoisomerization can be known by measuring the wavelength which is the maximum reflectance in the photoisomerization portion.
- the photoisomerization ratio represents the ratio of the number of photoisomerized photoisomerized compound molecules to the total number of molecules of the target photoisomerized compound, and can be obtained by measuring the maximum reflectance in the photoisomerized portion. can.
- the exposure intensity to the liquid crystal layer can be changed depending on the region.
- photoisomerization may be performed by exposing the liquid crystal layer with a plurality of steps or a stepless continuous difference in exposure intensity, or by exposing only a part of the liquid crystal layer. , May be photoisomerized.
- the photoisomerization ratio can also be controlled according to the exposure intensity.
- a mask may be used to perform a photoisomerization treatment step. Further, the mask may be used alone or in combination of two or more.
- the mask is not particularly limited, and a known light-shielding means such as a mask can be used.
- a mask in which the amount of transmitted light is different between the photoisomerizable portion and the non-photoisomerizable portion of the liquid crystal layer may be used, or the amount of transmitted light is not constant and changes depending on the portion. (For example, the patterning mask shown in FIGS. 9 to 12 and the like) may be used. Further, the patterning of the mask can be performed by using a method such as gravure printing, screen printing, a laser printer or an inkjet printer.
- the wavelength of the light used for the exposure in the photoisomerization treatment step is not particularly limited, and may be appropriately selected depending on the type of the photoisomerization compound and the color required for the decorative film.
- the wavelength of the light to be exposed in the photoisomerization step is, for example, preferably 400 nm or less, more preferably 380 nm or less, and further preferably 300 nm to 380 nm.
- a known means and a known method can be used for adjusting the exposure wavelength in the photoisomerization step. For example, a method using an optical filter, a method using two or more types of optical filters, a method using a light source having a specific wavelength, and the like can be mentioned.
- the above exposure may be performed with light in a wavelength range in which the polymerization initiator does not generate a polymerization initiator.
- a mask that transmits light in the wavelength range in which photoisomerization of the photoisomer compound occurs and shields light in the wavelength range in which the polymerization initiator is generated from the photopolymerization initiator can be preferably used.
- the light source include an ultra-high pressure mercury lamp, a high pressure mercury lamp, and a metal halide lamp. Further, as the light source, a light emitting diode or the like capable of irradiating light having a narrow wavelength range can also be used.
- the exposure amount in the photoisomerization step is not particularly limited and may be appropriately set according to the color required for the decorative film. Further, the exposure amount may be changed in each part of the liquid crystal layer according to the desired photoisomerization ratio. Further, it is preferable to heat the light isomerization by the above exposure.
- the heating temperature is not particularly limited and may be selected depending on the photoisomerization compound to be used and the like, and examples thereof include 30 ° C. to 120 ° C.
- the exposure method is not particularly limited as long as photoisomerization is possible, but for example, the methods described in paragraphs 0035 to 0051 of JP-A-2006-23696 are preferably used in the present disclosure. Can be done.
- the step of forming the first resin layer includes a step of curing the liquid crystal layer subjected to the photoisomerization treatment.
- the curing By the curing, the cholesteric liquid crystal phase is fixed in a state where the orientation of the molecules of the liquid crystal compound is maintained.
- the curing of the liquid crystal layer is preferably carried out by the polymerization reaction of a compound having a polymerizable group such as an ethylenically unsaturated group or a cyclic ether group contained in the liquid crystal composition.
- the curing of the liquid crystal layer may be performed by exposure or by heating, but it is preferably performed by exposure.
- the light source for exposure is not particularly limited, and can be appropriately selected and used according to the type of photopolymerization initiator or the like to be used.
- a light source capable of irradiating light in a wavelength range of 285 nm, 365 nm or 405 nm is preferable, and specific examples thereof include an ultra-high pressure mercury lamp, a high pressure mercury lamp, a metal halide lamp and a UV-LED light source.
- the exposure amount is not particularly limited and may be appropriately set, preferably 5 mJ / cm 2 to 2,000 mJ / cm 2 , and more preferably 10 mJ / cm 2 to 1,000 mJ / cm 2 .
- the heating temperature is not particularly limited and may be selected depending on the composition of the liquid crystal layer to be cured, and examples thereof include 30 ° C. to 120 ° C. Further, not only the liquid crystal layer may be cured by the above exposure, but also other layers such as a colored layer may be cured by the exposure as needed. Further, as the exposure method, for example, the method described in paragraphs 0035 to 0051 of JP-A-2006-23696 can be suitably used in the present disclosure.
- the heating temperature and the heating time are not particularly limited and may be appropriately selected depending on the thermal polymerization initiator and the like to be used.
- the heating temperature is preferably 60 ° C. to 200 ° C.
- the heating time is preferably 1 minute to 2 hours.
- the heating means is not particularly limited, and known heating means can be used, and examples thereof include a heater, an oven, a hot plate, an infrared lamp, and an infrared laser.
- the oxygen concentration in the environment where the curing step is performed is not limited, and whether it is performed in an oxygen atmosphere or an atmosphere, it is performed in a low oxygen atmosphere (preferably, the oxygen concentration is 1,000 ppm (parts per million)). In the following, that is, an atmosphere that does not contain oxygen or contains oxygen of more than 0 ppm and 1,000 ppm or less) may be used. From the viewpoint of the curing rate, the curing step is preferably performed in a low oxygen atmosphere, more preferably under heating and in a low oxygen atmosphere.
- the step of forming the first resin layer can include a step of forming an alignment layer before the step of forming a liquid crystal layer.
- the alignment layer may be formed by subjecting a base material, a second resin layer, or another resin layer arranged under the first resin layer to a rubbing treatment or the like, and rubbing on the base material. It may be performed by forming an alignment layer, or by forming a photoalignment layer on a substrate.
- the rubbing treatment can generally be carried out by rubbing the surface of a film containing a polymer as a main component with paper or cloth in a certain direction.
- a general method of rubbing processing is described in, for example, "LCD Handbook” (published by Maruzensha, October 30, 2000).
- N is the number of rubbing
- l is the contact length of the rubbing roller
- r is the radius of the roller
- n is the rotation speed of the roller (rpm: rotations per minute)
- v is the stage moving speed (speed per second).
- the photo-alignment layer can be formed by irradiating a layer containing a material such as the above-mentioned ester formed on a substrate with linearly polarized light or non-polarized light. By irradiating with linearly polarized light, a photoreaction can be caused in the photo-aligned material.
- the wavelength of the light used varies depending on the photoalignment material used, and is not particularly limited as long as it is a wavelength required for the photoreaction.
- the light used for light irradiation is preferably light having a peak wavelength of 200 nm to 700 nm, and more preferably ultraviolet light having a peak wavelength of 400 nm or less.
- the light source used for light irradiation is a known light source, for example, a tungsten lamp, a halogen lamp, a xenon lamp, a xenon flash lamp, a mercury lamp, a mercury xenon lamp, a lamp such as a carbon arc lamp, and various lasers (for example, a semiconductor laser and a helium). Examples thereof include a neon laser, an argon ion laser, a helium cadmium laser, a YAG (itrium aluminum garnet) laser, etc.), a light emitting diode, and a cathode wire tube.
- a method using a polarizing plate for example, iodine polarizing plate, two-color dye polarizing plate, wire grid polarizing plate, etc.
- a prism-based element for example, Gran Thomson prism, etc.
- a Brewster angle is used.
- a method using a polarized reflecting type polarizing element and a method using light emitted from a laser light source having polarization.
- only light having a required wavelength may be selectively irradiated by using a filter, a wavelength conversion element, or the like.
- the incident angle of light varies depending on the photoalignment material, but is preferably 0 ° to 90 ° (perpendicular), and more preferably 40 ° to 90 ° with respect to the alignment layer.
- non-polarization irradiate non-polarization from an angle.
- the incident angle is preferably 10 ° to 80 °, more preferably 20 ° to 60 °, and particularly preferably 30 ° to 50 °.
- the irradiation time is preferably 1 minute to 60 minutes, more preferably 1 minute to 10 minutes.
- the step of forming the second resin layer includes a step of applying a liquid crystal composition on the first resin layer and heating it to form a liquid crystal layer, and a step of curing the liquid crystal layer. Can be done.
- the liquid crystal composition used for forming the second resin layer can contain the above-mentioned materials that can be contained in the liquid crystal composition used for forming the first resin layer.
- the liquid crystal layer is subjected to photoisomerization treatment before being cured, and the liquid crystal layer has a wavelength having a maximum reflectance in the range of 380 nm or less or 800 nm or more.
- the liquid crystal layer may be in a state of having a region (other region B) in which a wavelength having a maximum reflectance exists in a range of more than 380 nm and less than 800 nm in addition to the specific region B. preferable. Since the details and preferred embodiments of each step are the same as those of the step of forming the first resin layer, the description thereof is omitted here.
- the other steps of forming the resin layer include a step of applying a liquid crystal composition on a base material, a first resin layer or a second resin layer and heating to form a liquid crystal layer, and a step of forming the liquid crystal layer. It can include a step of curing.
- the liquid crystal composition used for forming the other resin layer can include the above-mentioned materials that can be contained in the liquid crystal composition used for forming the first resin layer.
- the liquid crystal layer is subjected to photoisomerization treatment before being cured, and the wavelength having the maximum reflectance is in the range of 380 nm or less or 800 nm or more (specific region).
- a step of forming two or more regions having different wavelengths having a maximum reflectance, including at least one C), can be included.
- the liquid crystal layer may be in a state of having a region (other region B) in which a wavelength having a maximum reflectance exists in a range of more than 380 nm and less than 800 nm in addition to the specific region C. preferable.
- the step of forming the other resin layer may include a step of forming the alignment layer. Since the details and preferred embodiments of each step are the same as those of the step of forming the first resin layer, the description thereof is omitted here.
- the method for producing a decorative film of the present disclosure can include a step of forming a colored layer.
- the colored layer can be formed by applying the above-mentioned material to, for example, the surface of the base material opposite to the side on which the first resin layer or the like is provided and drying.
- the method for manufacturing a decorative film according to the present disclosure is as follows.
- a first having a cholesteric regularity different from that of the second resin layer by curing the liquid crystal layer after making the state having two or more regions having different wavelengths having the maximum reflectances containing at least one of the above.
- the method for producing a decorative film of the present disclosure can include a step of forming another resin layer. Further, the method for producing a decorative film of the present disclosure can include a step of forming a colored layer.
- the decoration according to the first aspect is provided except that the step of forming the second resin layer can include a step of forming an alignment layer. Since it is the same as the film manufacturing method, the description is omitted here.
- the molded product according to the present disclosure is a molded product obtained by molding the decorative film according to the present disclosure. Further, the shape of the molded product according to the present disclosure is not particularly limited and can be appropriately selected depending on the intended use. Further, the molded product according to the present disclosure is preferably a molded product obtained by molding a decorative film produced by the method for producing a decorative film according to the present disclosure.
- the molding method is not particularly limited, and examples thereof include vacuum forming, vacuum pressure forming, plug assisted vacuum forming, in-molding, insert molding, cold molding, press molding and drawing molding.
- the use of the molded product according to the present disclosure is not particularly limited, and can be used for various articles.
- the interior / exterior of an automobile, the interior / exterior of an electronic device, a packaging container, and the like are particularly preferably mentioned.
- the electronic device according to the present disclosure includes a decorative film according to the present disclosure.
- the type of electronic device according to the present disclosure is not particularly limited, and examples thereof include smartphones, mobile phones, tablets, and the like. It is preferable that a decorative film is applied for the decoration of the electronic device described above. Further, the electronic device according to the present disclosure may have a known member used for the electronic device such as an element, in addition to the decorative film according to the present disclosure.
- the automobile exterior plate according to the present disclosure has a molded product according to the present disclosure.
- the shape of the automobile exterior plate according to the present disclosure is not particularly limited and may be any desired shape.
- the automobile exterior plate according to the present disclosure may have a known member used for the automobile exterior plate in addition to the molded product according to the present disclosure.
- liquid crystal composition 1 having the composition described below was prepared.
- -Liquid compound 1 11.98 parts by mass-Liquid compound 2 5.99 parts by mass-Liquid compound 3 5.99 parts by mass-Mix of liquid compound 1 (mass ratio 83:15: 2) 5.99 parts by mass, polymerizable chiral compound (BASF, Pariocolor LC756) 0.75 parts by mass, photoisomerized chiral compound 1 2.40 parts by mass, photoinitiator (manufactured by IGM Resins, Omnirad 127) 0.30 parts by mass, surfactant 1 0.10 parts by mass, surfactant 2 0.01 parts by mass, methyl ethyl ketone 46.55 parts by mass, cyclohexanone 19.95 parts by mass
- the structure of the liquid crystal compound 1 is shown below.
- the structure of the liquid crystal compound 2 is shown below.
- the structure of the liquid crystal compound 3 is shown below.
- each liquid crystal compound contained in the mixture 1 of the liquid crystal compounds is shown below. The numbers described are the contents (% by mass) in the mixture 1.
- the structure of the surfactant 1 is shown below.
- the structure of the surfactant 2 is shown below.
- liquid crystal composition 2 having the composition described below was prepared.
- ⁇ Liquid crystal compound 1 17.97 parts by mass
- Liquid crystal compound 2 5.99 parts by mass
- Liquid crystal compound 3 5.99 parts by mass
- Polymerizable chiral compound (BASF, Palio Color LC756) 0.75 parts by mass
- photoisomerized chiral compound 1 2.40 parts by mass
- photoinitiator manufactured by IGM Resins, Omnirad 127) 0.30 parts by mass, surfactant 1 0.10 parts by mass, surfactant 2 0.01 parts by mass, methyl ethyl ketone 46.55 parts by mass, cyclohexanone 19.95 parts by mass
- liquid crystal composition 4 having the composition described below was prepared.
- ⁇ Liquid crystal compound 1 18.64 parts by mass
- Liquid crystal compound 2 6.21 parts by mass
- Liquid crystal compound 3 6.21 parts by mass
- Polymerizable chiral compound (BASF, Palio Color LC756) 0.78 part by mass
- photoisomerized chiral compound 1 1.24 parts by mass
- photoinitiator manufactured by IGM Regins, Omnirad127
- Surfactant 1 0.10 part by mass
- Surfactant 2 0.01 part by mass ⁇ Methyl ethyl ketone 46.55 part by mass
- liquid crystal composition 5 having the composition described below was prepared.
- ⁇ Liquid crystal compound 1 18.55 parts by mass
- Liquid crystal compound 2 6.18 parts by mass
- Liquid crystal compound 3 6.18 parts by mass
- Polymerizable chiral compound (BASF, Palio Color LC756) 0.77 parts by mass
- photoisomerized chiral compound 1 1.39 parts by mass
- photoinitiator manufactured by IGM Regins, Omnirad 127) 0.31 part by mass
- Surfactant 1 0.10 part by mass ⁇ Surfactant 2 0.01 part by mass ⁇ Methyl ethyl ketone 46.55 part by mass ⁇ Cyclohexanone 19.95 part by mass
- liquid crystal composition 6 having the composition described below was prepared.
- ⁇ Liquid crystal compound 1 19.02 parts by mass
- Liquid crystal compound 2 6.34 parts by mass
- Liquid crystal compound 3 6.34 parts by mass
- Photoisomerized chiral compound 2 1.36 parts by mass
- Photopolymerization initiator (IGM resin) Manufactured by Omnirad127
- surfactant 1 0.10 parts by mass
- surfactant 2 0.01 parts by mass
- ⁇ Liquid crystal composition 8 A liquid crystal composition 8 having the composition described below was prepared.
- Mixture 1 of liquid crystalline compound (mass ratio 83: 15: 2) 30.92 parts by mass
- Polymerizable chiral compound (BASF, Paliocolor LC756) 2.16 parts by mass, photopolymerization initiator (manufactured by IGM Regins, Omnirad127) 0.31 part by mass
- Surfactant 1 0.10 part by mass
- Surfactant 2 0.01 part by mass ⁇ Methyl ethyl ketone 46.55 part by mass ⁇ Cyclohexanone 19.95 part by mass
- ⁇ Liquid crystal composition 9 A liquid crystal composition 9 having the composition described below was prepared.
- Mixture 1 of liquid crystal compound (mass ratio 83: 15: 2) 31.20 parts by mass
- Polymerizable chiral compound (BASF, Paliocolor LC756) 1.87 parts by mass
- photopolymerization initiator manufactured by IGM Regins, Omnirad127
- Surfactant 1 0.10 part by mass
- Surfactant 2 0.01 part by mass ⁇ Methyl ethyl ketone 46.55 part by mass
- liquid crystal composition 10 having the composition described below was prepared.
- ⁇ Liquid crystal compound 1 18.13 parts by mass
- Liquid crystal compound 2 6.04 parts by mass
- Liquid crystal compound 3 6.04 parts by mass
- Polymerizable chiral compound (BASF, Palio Color LC756) 0.76 parts by mass, photoisomerized chiral compound 2.12 parts by mass
- photoinitiator manufactured by IGM Regins, Omnirad127
- surfactant 1 0.10 parts by mass
- surfactant 2 0.01 parts by mass
- liquid crystal composition 11 having the composition described below was prepared.
- Mixture of liquid crystal compound 1 (mass ratio 83: 15: 2) 30.79 parts by mass ⁇ Polymerizable photoisomerized chiral compound 1.45 parts by mass ⁇ Photopolymerization initiator 1.23 parts by mass (diethylthioxanthone, Fujifilm) Wako Pure Chemical Industries, Ltd.) ⁇ Surfactant 1 0.02 parts by mass ⁇ Surfactant 2 0.02 parts by mass ⁇ Methyl ethyl ketone 46.55 parts by mass ⁇ Cyclohexanone 19.95 parts by mass
- liquid crystal composition 12 having the composition described below was prepared.
- ⁇ Mixture of liquid crystal compound 1 (mass ratio 83: 15: 2) 29.10 parts by mass ⁇ Photoisomerized chiral compound 3 3.20 parts by mass ⁇ Photopolymerization initiator 1.16 parts by mass (diethylthioxanthone, Fujifilm sum) Kojunyaku Co., Ltd.) -Surfactant 1 0.01 parts by mass-Surfactant 2 0.02 parts by mass-Methylethylketone 46.55 parts by mass-Cyclohexanone 19.95 parts by mass
- the patterning masks 1 to 4 shown in FIGS. 9 to 12 were prepared.
- the patterning mask 1 shown in FIG. 9 is a mask in which the light transmittance in the vicinity of the central portion is 100% and the light transmittance continuously changes to 0% toward both ends.
- the patterning mask 2 shown in FIG. 10 is a mask in which the light transmittance at both ends is 100% and the light transmittance continuously changes to 0% toward the vicinity of the central portion.
- the patterning mask 3 shown in FIG. 11 is a mask in which the light transmittance at one end is 100% and the light transmittance continuously changes to 0% toward the other end.
- the patterning mask 4 shown in FIG. 12 is a mask having a light transmittance of 0% on one side and a light transmittance of 100% on the other side with the center as a boundary.
- the "wavelength having the maximum reflectance” was measured as follows.
- a spectrophotometer V-670 manufactured by Nippon Spectral Co., Ltd.
- a large integrating sphere device manufactured by Nippon Spectral Co., Ltd., ILV-471
- the wavelength is 300 nm.
- Light of about 1500 nm is incident on the above region, the integrated reflectance is measured, and a spectral waveform is obtained.
- the wavelength at which the reflectance is maximum at the peak of the spectral waveform is defined as the “wavelength at which the reflectance is maximum”.
- the peak including the reflectance that becomes the maximum value is adopted.
- Example 1 As the base material 40, a laminate of a methacrylic resin film and a polycarbonate resin film (Technoloy (registered trademark) C000 manufactured by Sumika Acrylic Sales Co., Ltd., thickness 100 ⁇ m) was prepared to have a size of 21 cm ⁇ 30 cm. The surface of the base material on the methacrylic resin film side was subjected to a corona discharge treatment under the condition of 75 W ⁇ min / m 2 .
- a corona discharge treatment under the condition of 75 W ⁇ min / m 2 .
- the alignment layer forming composition having the following composition is applied to the corona discharge-treated surface of the base material 40 using a wire bar (count # 10), and then dried at a temperature of 100 ° C. for 2 minutes to form the alignment layer. Formed. -Composition of composition for forming an oriented layer- ⁇ Modified polyvinyl alcohol 10.00 parts by mass ⁇ Water 55.00 parts by mass ⁇ Methanol 35.00 parts by mass
- the structure of the modified polyvinyl alcohol is shown below.
- the number at the bottom right of each building block represents the molar ratio.
- the formed alignment layer was subjected to a rubbing treatment (rayon cloth, pressure 0.98 N, rotation speed 1,000 rpm, transfer speed 10 m / min, number of times) in a direction rotated 3 ° counterclockwise with respect to the short side direction. Once) was given.
- a rubbing treatment (rayon cloth, pressure 0.98 N, rotation speed 1,000 rpm, transfer speed 10 m / min, number of times) in a direction rotated 3 ° counterclockwise with respect to the short side direction. Once) was given.
- the liquid crystal composition 1 prepared above was applied onto the rubbing treatment alignment layer using a wire bar (count # 5) and heated at a temperature of 85 ° C. for 2 minutes to form a liquid crystal layer.
- the patterning mask 1 was brought into close contact with the side of the base material opposite to the side on which the liquid crystal layer was formed. Next, from the mask side, light was irradiated from the mask side using a metal halide lamp (MAL625NAL manufactured by GS Yuasa Co., Ltd., irradiation wavelength 200 nm to 500 nm) so as to have an exposure amount of 30 mJ / cm 2 , and in the non-mask region. The liquid crystal layer was photoisomerized.
- a metal halide lamp MAL625NAL manufactured by GS Yuasa Co., Ltd., irradiation wavelength 200 nm to 500 nm
- the mask was removed, and the substrate on which the liquid crystal layer was formed was placed on the hot plate at 85 ° C. so that the surface of the substrate opposite to the surface on which the liquid crystal layer was formed was in contact with the hot plate.
- the above metal halide lamp is used to irradiate light so that the exposure amount is 100 mJ / cm 2 , and the liquid crystal layer is cured to cure the first resin layer 10a having a thickness of 3 ⁇ m. Formed. As shown in FIG.
- the specific region A11a was transparent from one end of the first resin layer 10a (the left end in FIG. 13) to the boundary with the other regions A12a. From the boundary to the boundary with the other specific area A11a (hereinafter, also referred to as other boundary), the other area A12a displays a color that changes in a gradation from purple to blue, and is the first from the other boundary.
- the other specific region A11a was transparent up to the other end of the resin layer 10a (the right end in FIG. 13).
- the liquid crystal composition 4 was applied onto the formed first resin layer using a wire bar (count # 7) and heated at a temperature of 85 ° C. for 2 minutes to form a liquid crystal layer.
- the patterning mask 2 was brought into close contact with the liquid crystal layer. Next, from the mask side, using the metal halide lamp, light was irradiated so as to have an exposure amount of 60 mJ / cm 2 , and the liquid crystal layer was photoisomerized in the non-mask region.
- the mask was removed, and the substrate on which the liquid crystal layer was formed was placed on the hot plate at 85 ° C. so that the surface of the substrate opposite to the surface on which the liquid crystal layer was formed was in contact with the hot plate.
- the above metal halide lamp is used to irradiate light so that the exposure amount is 100 mJ / cm 2 , and the liquid crystal layer is cured to cure the second resin layer 20a having a thickness of 4 ⁇ m. Formed.
- the second resin layer 20a as shown in FIG.
- a region having a maximum reflectance in the range of 800 nm to 850 nm (specific region B21a) and a wavelength having a maximum reflectance in the range of 650 nm to 799 nm.
- the region existing in (the other region B22a) was confirmed. Further, when the second resin layer was visually observed, the specific region B21a was transparent from one end portion (left end portion in FIG. 13) of the second resin layer 20a to the boundary with the other region B22a. From the boundary to the boundary with the other specific area B21a (hereinafter, also referred to as other boundary), the other area B22a displays a color that changes in a gradation from red to magenta, and is the second from the other boundary.
- the other specific region B21 was transparent up to the other end of the resin layer 20a (the right end in FIG. 13).
- a black paint (REAL Mirror Black manufactured by Nippon Paint Co., Ltd.) was applied to the side opposite to the side on which the first resin layer of the base material was formed, using a wire bar (count # 24). The mixture was dried at a temperature of 80 ° C. for 2 minutes to form a colored layer 30 having a thickness of 10 ⁇ m, and a decorative film 1a was obtained. When the decorative film 1a was visually observed, black color, which is the color of the colored layer, was confirmed at both ends. In addition, the central portion of the decorative film 1a displays a tint that changes in a gradation tone in the order of blue, magenta, and red.
- the first resin layer 10a and the second resin layer 20a included in the decorative film 1a both reflect circular polarization in the right direction.
- the total light transmittance of the colored layer 30 formed as described above was measured using a spectrophotometer (Spectrophotometer UV-2100, manufactured by Shimadzu Corporation) in accordance with JIS K7375 issued in 2008. When measured, it was 0.06%.
- Example 2 The first resin layer 10b was formed in the same manner as in Example 1 except that the patterning mask 1 was changed to the patterning mask 3 and the exposure amount in the photoisomerization treatment was changed to 45 mJ / cm 2 .
- the first resin layer 10b as shown in FIG. 14, a region having a maximum reflectance in the range of 350 nm to 380 nm (specific region A11b) and a wavelength having a maximum reflectance in the range of 381 nm to 550 nm. The region existing in (the other region A12b) was confirmed. Further, when the first resin layer 10b was visually observed, the specific region A11b was transparent from one end of the first resin layer 10b (the left end in FIG. 14) to the boundary with the other regions A12b. From the boundary to the other end of the first resin layer 10b (the right end in FIG. 14), the other regions A12b displayed a color that changed in a gradation from purple to green.
- the patterning mask 3 was used instead of the patterning mask 2, and the photoisomerization treatment was performed so that the exposure amount was 90 mJ / cm 2 .
- the formation of the second resin layer 20b was formed to produce the decorative film 1b.
- the patterning mask 3 was used in the direction opposite to the direction of the change in transmittance used for forming the first resin layer 10b.
- the region existing in (the other region B22b) was confirmed. Further, when the second resin layer 20b was visually observed, the specific region B21b was transparent from one end of the second resin layer 20b (the left end in FIG. 14) to the boundary with the other regions B22b. From the boundary to the other end of the second resin layer 20b (the right end in FIG. 14), the other region B22b displayed a color that changed in a gradation from red to magenta.
- the first resin layer 10b and the second resin layer 20b included in the decorative film 1b both reflect circular polarization in the right direction.
- the decorative film 1b When the decorative film 1b was visually observed, black color, which is the color of the colored layer, was confirmed at one end thereof. Further, the decorative film 1b displayed a tint that changes in a gradation tone in the order of blue, blue-green, and yellow, following the visible region of the colored layer.
- Example 3 A decorative film 1c was produced in the same manner as in Example 1 except that the liquid crystal composition 6 was used instead of the liquid crystal composition 4 in the formation of the second resin layer.
- the second resin layer 20c As shown in FIG. 15, a region having a maximum reflectance in the range of 800 nm to 850 nm (specific region B21c) and a wavelength having a maximum reflectance in the range of 650 nm to 799 nm. The region existing in (the other region B22c) was confirmed. Further, when the second resin layer 20c was visually observed, the specific region B21c was transparent from one end portion (left end portion in FIG. 15) of the second resin layer 20c to the boundary with the other region B22c.
- the other area B22c displays a color that changes in a gradation from red to magenta, and from the other boundary to the first.
- the other specific region B21c was transparent up to the other end of the resin layer 20c of No. 2 (the right end in FIG. 15).
- black color which is the color of the colored layer, was confirmed at both ends.
- the central portion of the decorative film 1c displayed a tint that changes in a gradation tone in the order of blue, magenta, and red.
- the first resin layer 10a included in the decorative film 1c reflects the circular polarization in the right direction
- the second resin layer 20c reflects the circular polarization in the left direction.
- Example 4 The first resin layer 10d was formed on the base material 40 in the same manner as in Example 1 except that the liquid crystal composition 2 was used instead of the liquid crystal composition 1.
- the first resin layer 10d as shown in FIG. 16, a region having a maximum reflectance in the range of 350 nm to 380 nm (specific region A11d) and a wavelength having a maximum reflectance in the range of 381 nm to 450 nm.
- the region existing in (the other region A12d) was confirmed. Further, when the first resin layer 10d was visually observed, the specific region A11d was transparent from one end of the first resin layer 10d (the left end in FIG. 16) to the boundary with the other regions A12d.
- the other area A12d displays a color that changes in a gradation from purple to blue, and is the first from the other boundary.
- the other specific region A11d was transparent up to the other end of the resin layer 10d (the right end in FIG. 16).
- Example 1 The base material used in Example 1 (hereinafter referred to as another base material) was separately prepared, and a rubbing treatment alignment layer was formed on one surface as in Example 1. The base material was not subjected to corona discharge treatment.
- a second resin layer 20a was formed on the rubbing-treated alignment layer formed as described above in the same manner as in Example 1.
- One side of the OCA (Optical Clear Adaptive) film 60 (manufactured by Nikko Shinka Co., Ltd., G25) having a thickness of 25 ⁇ m is bonded onto the second resin layer 20a, and then the other side of the OCA film is bonded.
- the first resin layer 10d formed on the substrate as described above was bonded to the substrate. After the above bonding, the other base materials were peeled off.
- a colored layer 30 was formed on the side of the base material 40 opposite to the side on which the first resin layer 10d and the like were formed in the same manner as in Example 1 to obtain a decorative film 1d.
- black color which is the color of the colored layer, was confirmed at both ends.
- the central portion of the decorative film 1d displayed a tint that changes in a gradation tone in the order of blue, magenta, and red. Both the first resin layer and the second resin layer included in the decorative film 1d reflect the circular polarization in the right direction.
- Example 5 Examples except that the wire bar used for forming the first resin layer was changed to the one having a count # 3.5 and the wire bar used for forming the second resin layer was changed to the one having a count # 4.
- a decorative film was produced in the same manner as in 1.
- the thickness of the first resin layer was 2 ⁇ m, and the thickness of the second resin layer was 2.5 ⁇ m.
- Example 6 In the formation of the second resin layer, the patterning mask 3 is used in the same direction as the direction of the transmittance change used for forming the first resin layer, and the light is applied so that the exposure amount is 30 mJ / cm 2 .
- the decorative film 1e was produced in the same manner as in Example 2 except that the isomerization treatment was performed.
- a region (other region B22e) in which the wavelength having the maximum reflectance is in the range of 600 nm to 700 nm was confirmed. Further, when the second resin layer 20e was visually observed, a gradation from orange to red from one end (left end in FIG. 17) to the other end (right end in FIG.
- the color that changes to the tone is displayed.
- the first resin layer 10b and the second resin layer 20e included in the decorative film 1e both reflect circular polarization in the right direction. Further, when the decorative film 1e was visually observed, the colors changing in a gradation tone were displayed in the order of orange and magenta.
- Example 7 In the same manner as in Example 1, a rubbing treatment alignment layer was formed on the corona treated surface of the base material 40. Next, the liquid crystal composition 3 was applied onto the rubbing treatment alignment layer using a wire bar (count # 5) and heated at a temperature of 85 ° C. for 2 minutes to form a liquid crystal layer.
- the base material on which the liquid crystal layer was formed was placed on a hot plate at 85 ° C. so that the surface of the base material opposite to the surface on which the liquid crystal layer was formed was in contact with the hot plate, and a low oxygen atmosphere (oxygen concentration 1,000 ppm) was placed.
- a low oxygen atmosphere oxygen concentration 1,000 ppm
- the metal halide lamp using the metal halide lamp, light was irradiated so as to have an exposure amount of 100 mJ / cm 2 , the liquid crystal layer was cured, and the second resin layer 20f shown in FIG. 18 was formed.
- the second resin layer 20f a region (other region B22f) in which the wavelength having the maximum reflectance exists at 450 nm was confirmed.
- a blue tint was displayed.
- the liquid crystal composition 4 was applied onto the second resin layer 20f using a wire bar (count # 7) and heated at a temperature of 85 ° C. for 2 minutes to form a liquid crystal layer.
- the patterning mask 4 was brought into close contact with the liquid crystal layer. Next, from the mask side, using the metal halide lamp, light was irradiated so as to have an exposure amount of 60 mJ / cm 2 , and the liquid crystal layer was photoisomerized in the non-mask region.
- the mask was removed, and the base material on which the liquid crystal layer was formed was placed on a hot plate at 85 ° C. so that the surface of the base material opposite to the surface on which the liquid crystal layer was formed was in contact with the hot plate.
- the above metal halide lamp was used to irradiate light so as to have an exposure amount of 100 mJ / cm 2 , and the liquid crystal layer was cured to form the first resin layer 10f.
- the first resin layer 10f as shown in FIG. 18, a region having a maximum reflectance wavelength of 850 nm (specific region A11f) and a region having a maximum reflectance wavelength of 650 nm (other regions). A12f) was confirmed.
- the specific region A11f had a transparent color from one end of the first resin layer 10f (the left end in FIG. 18) to the boundary with the other regions A12f.
- the display was performed, and the red tint was displayed from the boundary to the other end of the first resin layer 10f (the right end in FIG. 18).
- Both the first resin layer 10f and the second resin layer 20f reflect the circular polarization in the right direction.
- a colored layer 30 was formed on the side of the base material 40 opposite to the side on which the second resin layer 20f and the like were formed to obtain a decorative film 1f.
- a region displaying blue and a region displaying magenta were observed with the center as a boundary.
- Example 8 In the formation of the first resin layer and the second resin layer, 1 g of the decorative film shown in FIG. 19 was produced in the same manner as in Example 1 except that the patterning mask 3 was used. In the formation of the second resin layer 20 g, the patterning mask 3 was used in the direction opposite to the direction of the change in transmittance used for forming the first resin layer 10 g. When 1 g of the decorative film was visually observed, black color, which is the color of the colored layer 30, was confirmed at one end thereof. In addition, 1 g of the decorative film displayed a tint that changed in a gradation tone in the order of purple and magenta, following the visible region of the colored layer 30.
- Example 9 The first 2.5 ⁇ m thick wire bar was placed on the rubbing-treated oriented layer in the same manner as in Example 1 except that the wire bar used for forming the first resin layer was changed to that of count # 4.5. The resin layer 10a of the above was formed.
- a second resin layer 20h having a thickness of 3.5 ⁇ m was formed on the first resin layer 10a in the same manner as in Example 1.
- a region having a maximum reflectance in the range of 800 nm to 950 nm (specific region B21h) and a wavelength having a maximum reflectance in the range of 550 nm to 799 nm.
- the region existing in (the other region B22h) was confirmed.
- the specific region B21h was transparent from one end portion (left end portion in FIG. 20) of the second resin layer 20h to the boundary with the other region B22h. From the above boundary to the boundary with the other specific area B21h (hereinafter, also referred to as another boundary), the other area B22h displays a color that changes in a gradation from green to magenta, and from the other boundary to the first.
- the other specific region B21h was transparent up to the other end of the resin layer 20h of No. 2 (the right end in FIG. 20).
- the liquid crystal composition 7 was applied onto the formed second resin layer 20h using a wire bar (count # 6) and heated at a temperature of 85 ° C. for 2 minutes to form a liquid crystal layer.
- the patterning mask 2 was brought into close contact with the liquid crystal layer. Next, from the mask side, using the metal halide lamp, light was irradiated so as to have an exposure amount of 60 mJ / cm 2 , and the liquid crystal layer was photoisomerized in the non-mask region.
- the mask was removed, and the substrate on which the liquid crystal layer was formed was placed on the hot plate at 85 ° C. so that the surface of the substrate opposite to the surface on which the liquid crystal layer was formed was in contact with the hot plate.
- the above metal halide lamp is used to irradiate the liquid crystal layer with light so as to have an exposure amount of 100 mJ / cm 2 , and the liquid crystal layer is cured to obtain a third resin having a thickness of 3.5 ⁇ m.
- the layer 50a was formed. In the third resin layer 50a, as shown in FIG.
- a region having a maximum reflectance in the range of 800 nm to 850 nm (specific region C51a) and a wavelength having a maximum reflectance in the range of 650 nm to 799 nm.
- the region existing in (the other region C52a) was confirmed.
- the specific region C51a was transparent from one end portion (left end portion in FIG. 20) of the third resin layer 50a to the boundary with the other region C52a. From the above boundary to the boundary with the other specific area C51a (hereinafter, also referred to as another boundary), the other area C52a displays a color that changes in a gradation from red to magenta, and from the other boundary to the first.
- the other specific region C51a was transparent up to the other end of the resin layer 50a of No. 3 (the right end in FIG. 20).
- the first resin layer 10a, the second resin layer 20h, and the third resin layer 50a all reflect the circular polarization in the right direction.
- a colored layer 30 was formed on the side of the base material 40 opposite to the side on which the first resin layer 10a and the like were formed in the same manner as in Example 1 to obtain a decorative film 1h.
- black color which is the color of the colored layer, was confirmed at both ends. Further, in the central part of the decorative film 1h, magenta, white, and red were displayed in this order, and the colors changing in a gradation tone were displayed.
- Example 10 In the same manner as in Example 1, a rubbing treatment alignment layer was formed on the corona treated surface of the base material 40. Next, the liquid crystal composition 12 was applied onto the rubbing treatment alignment layer using a wire bar (count # 5) and heated at a temperature of 85 ° C. for 2 minutes to form a liquid crystal layer.
- the base material on which the liquid crystal layer was formed was placed on a hot plate at 85 ° C. so that the surface of the base material opposite to the surface on which the liquid crystal layer was formed was in contact with the hot plate, and a low oxygen atmosphere (oxygen concentration 1,000 ppm) was placed.
- a low oxygen atmosphere oxygen concentration 1,000 ppm
- the metal halide lamp using the metal halide lamp, light was irradiated so as to have an exposure amount of 800 mJ / cm 2 , the liquid crystal layer was cured, and the second resin layer 20i shown in FIG. 21 was formed.
- the second resin layer 20i a region (other region B22i) in which the wavelength having the maximum reflectance exists at 450 nm was confirmed.
- a blue tint was displayed.
- the liquid crystal composition 11 was applied onto the second resin layer 20i using a wire bar (count # 7) and heated at a temperature of 85 ° C. for 2 minutes to form a liquid crystal layer.
- the patterning mask 4 was brought into close contact with the liquid crystal layer. Next, from the mask side, using the metal halide lamp, light was irradiated so as to have an exposure amount of 25 mJ / cm 2 , and the liquid crystal layer was photoisomerized in the non-masked region.
- the mask was removed, and the base material on which the liquid crystal layer was formed was placed on a hot plate at 85 ° C. so that the surface of the base material opposite to the surface on which the liquid crystal layer was formed was in contact with the hot plate.
- the above metal halide lamp was used to irradiate light so as to have an exposure amount of 800 mJ / cm 2 , and the liquid crystal layer was cured to form the first resin layer 10i.
- the first resin layer 10i as shown in FIG. 21, a region having a maximum reflectance wavelength of 850 nm (specific region A11i) and a region having a maximum reflectance wavelength of 650 nm (other regions). A12i) was confirmed.
- the specific region A11i had a transparent color from one end of the first resin layer 10i (the left end in FIG. 21) to the boundary with the other regions A12i.
- the display was performed, and the red tint was displayed from the boundary to the other end of the first resin layer 10i (the right end in FIG. 21).
- the first resin layer 10i reflects the circular polarization in the right direction
- the second resin layer 20i reflects the circular polarization in the left direction.
- a colored layer 30 was formed on the side of the base material 40 opposite to the side on which the second resin layer 20i and the like were formed to obtain a decorative film 1i.
- a region displaying blue and a region displaying magenta were observed with the center as a boundary.
- Example 11 The first resin layer 10j was formed on the base material 40 in the same manner as in Example 10.
- a region having a maximum reflectance wavelength of 850 nm (specific region A11j) and a region having a maximum reflectance wavelength of 650 nm (other regions).
- A12j was confirmed.
- the specific region A11j had a transparent color from one end of the first resin layer 10j (the left end in FIG. 22) to the boundary with the other regions A12j.
- the display was performed, and the red tint was displayed from the boundary to the other end of the first resin layer 10j (the right end in FIG. 22).
- Example 1 The base material used in Example 1 (hereinafter referred to as another base material) was separately prepared, and a rubbing treatment alignment layer was formed on one surface as in Example 1. The base material was not subjected to corona discharge treatment.
- a second resin layer 20j was formed on the rubbing-treated alignment layer formed as described above in the same manner as in Example 10.
- One surface of an OCA (Optical Clear Adhesive) film 60 (manufactured by Nikko Shinka Co., Ltd., G25) having a thickness of 25 ⁇ m is bonded onto the second resin layer 20j, and then the other surface of the OCA film is bonded.
- the first resin layer 10j formed on the substrate as described above was bonded to the substrate. After the above bonding, the other base materials were peeled off.
- a region (other region B22j) in which the wavelength having the maximum reflectance exists at 450 nm was confirmed.
- a blue tint was displayed.
- a colored layer 30 was formed on the side of the base material 40 opposite to the side on which the first resin layer 10j and the like were formed in the same manner as in Example 1 to obtain a decorative film 1j.
- a region displaying blue and a region displaying magenta were observed with the center as a boundary.
- Comparative Example 1 In the same manner as in Example 1, a rubbing-treated alignment layer was formed on the corona-treated surface of the base material. Next, the liquid crystal composition 8 was applied onto the rubbing treatment alignment layer using a wire bar (count # 2.5) and heated at a temperature of 85 ° C. for 2 minutes to form a liquid crystal layer. Next, the base material on which the liquid crystal layer was formed was placed on a hot plate at 85 ° C. so that the surface of the base material opposite to the surface on which the liquid crystal layer was formed was in contact with the hot plate, and a low oxygen atmosphere (oxygen concentration 1,000 ppm) was placed.
- a low oxygen atmosphere oxygen concentration 1,000 ppm
- Example 1 The base material used in Example 1 (hereinafter referred to as another base material) was separately prepared, and a rubbing treatment alignment layer was formed on one surface as in Example 1. The base material was not subjected to corona discharge treatment.
- the liquid crystal composition 9 is applied onto the rubbing-treated alignment layer formed as described above using a wire bar (count # 3.5) and heated at a temperature of 85 ° C. for 2 minutes to form a liquid crystal layer. did.
- the base material on which the liquid crystal layer was formed was placed on a hot plate at 85 ° C. so that the surface of the base material opposite to the surface on which the liquid crystal layer was formed was in contact with the hot plate, and a low oxygen atmosphere (oxygen concentration 1,000 ppm) was placed.
- a low oxygen atmosphere oxygen concentration 1,000 ppm
- the second resin layer a region where the wavelength having the maximum reflectance exists at 550 nm was confirmed. Moreover, when the second resin layer was visually observed, a green tint was displayed. Both the first resin layer and the second resin layer included in the decorative film reflect the circular polarization in the right direction.
- One surface of the OCA film was bonded onto the second resin layer, and then the first resin layer formed on the substrate as described above was bonded to the other surface of the OCA film. .. After the above bonding, the other base materials were peeled off to obtain a decorative film. When the decorative film was visually observed, a single cyan color was displayed.
- Comparative Example 2 In the same manner as in Example 1, a rubbing-treated alignment layer was formed on the corona-treated surface of the base material. Next, the liquid crystal composition 10 was applied onto the rubbing treatment alignment layer using a wire bar (count # 3.5) and heated at a temperature of 85 ° C. for 2 minutes to form a liquid crystal layer.
- the patterning mask 3 was brought into close contact with the liquid crystal layer. Next, from the mask side, using the metal halide lamp, light was irradiated so as to have an exposure amount of 100 mJ / cm 2 , and the liquid crystal layer was photoisomerized in the non-mask region.
- the base material on which the liquid crystal layer was formed was placed on a hot plate at 85 ° C. so that the surface of the base material opposite to the surface on which the liquid crystal layer was formed was in contact with the hot plate, and a low oxygen atmosphere (oxygen concentration 1,000 ppm) was placed.
- a low oxygen atmosphere oxygen concentration 1,000 ppm
- light is irradiated so as to have an exposure amount of 100 mJ / cm 2
- the liquid crystal layer is cured, and a first resin layer having a thickness of 2 ⁇ m is formed and decorated. It was made into a film.
- the first resin layer a region in which the wavelength having the maximum reflectance is in the range of 400 nm to 700 nm was confirmed. Further, when the decorative film was visually observed, the colors that changed in a gradation tone were displayed in the order of blue, green, and red from one end to the other end.
- Comparative Example 3 A decorative film was produced in the same manner as in Example 1 except that the colored layer 30 was not formed. When the decorative film was visually observed, both ends were transparent from the end to the center, and the central part displayed a color that changed in a gradation tone in the order of blue, magenta, and red.
- the in-plane average reflectance of the decorative films produced in Examples and Comparative Examples was measured, and the brilliance was evaluated based on the following evaluation criteria.
- the evaluation results are summarized in Table 2.
- the in-plane average reflectance was measured as follows. A spectrophotometer equipped with a large integrating sphere device (ILV-471, manufactured by Nippon Spectroscopy Co., Ltd.) for the outermost resin layer (for example, the second resin layer in Example 1) included in the decorative film.
- ILV-471 large integrating sphere device
- the decorative film according to the present disclosure has high visibility, can display a wide variety of color change, and has excellent designability.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Laminated Bodies (AREA)
Abstract
最大反射率となる波長が異なる2つ以上の領域を同一面内に有し、且つ少なくとも1つの領域において最大反射率となる波長が、380nm以下又は800nm以上の範囲に存在する、コレステリック規則性を有する第1の樹脂層と、上記第1の樹脂層とは異なるコレステリック規則性を有する第2の樹脂層と、着色層と、を少なくとも含む、加飾フィルム及びその応用。
Description
本開示は、加飾フィルム、加飾フィルムの製造方法、成型物、電子デバイス及び自動車外装板に関する。
従来より、意匠性等の向上を目的として、金属光沢を有する加飾フィルムが、例えば、家電製品、事務機器又は自動車部品等の成型品表面などに適用されている。上記加飾フィルムとして、金属粒子を含有する樹脂フィルムが用いられているが、重金属を使用することによる環境負荷の観点、及び電子デバイス等に適用する場合における電波障害を引き起こすリスクの観点から、代替品となる加飾フィルムの開発が望まれている。
近年、高い反射輝度及び分光特性を有し、美しい外観を付与することができる、コレステリック規則性を有する樹脂層を含む加飾フィルムを用いることが検討されている。
コレステリック規則性を有する樹脂層は、螺旋ピッチと相関する反射中心波長を有する円偏光を選択的に反射する螺旋構造を層内に有する、コレステリック液晶相を有する。
そして、樹脂層の面内において、螺旋ピッチの異なる螺旋構造を有する領域を設けることにより、視認される色味を変化させることができ、例えば、青、緑及び赤の順に変化する、グラデーション調の色味変化を表示することができるため、上記成型品に対し、高い意匠性を付与することができる。
しかしながら、上記したコレステリック規則性を有する樹脂層を1層含む、従来の加飾フィルムの表示することができる色味変化は、短波長から長波長側への色味変化(青~緑~赤)に限られ、複雑な色味変化を表示することは困難であり、よりバリエーションに富んだ加飾フィルムが求められている。
そして、樹脂層の面内において、螺旋ピッチの異なる螺旋構造を有する領域を設けることにより、視認される色味を変化させることができ、例えば、青、緑及び赤の順に変化する、グラデーション調の色味変化を表示することができるため、上記成型品に対し、高い意匠性を付与することができる。
しかしながら、上記したコレステリック規則性を有する樹脂層を1層含む、従来の加飾フィルムの表示することができる色味変化は、短波長から長波長側への色味変化(青~緑~赤)に限られ、複雑な色味変化を表示することは困難であり、よりバリエーションに富んだ加飾フィルムが求められている。
また、特開2010-111104号公報、特開2017-205988号公報、国際公開2020/122245号及び国際公開2018/79606号には、コレステリック規則性を有する樹脂層を2層以上含む、加飾フィルムが開示されている。
特開2010-111104号公報には、第1のコレステリック規則性を有する樹脂層と、第2のコレステリック規則性を有する樹脂層とを含む積層体を含み、且つ上記第1のコレステリック規則性を有する樹脂層は、第1の円偏光を透過させ、第1の円偏光とは異なる偏光である第2の円偏光を反射させる層であり、上記第2のコレステリック樹脂層は、上記第1のコレステリック規則性を有する樹脂層を透過した上記第1の円偏光の少なくとも一部を反射するよう配置される、加飾フィルムが開示されている。
特開2017-205988号公報には、特性反射のピーク波長が400nm以上700nm以下である第1の円偏光を反射する、第1のパターン化されたコレステリック液晶反射層と、特性反射のピーク波長が400nm以上700nm以下であり、第1の円偏光とは特性反射のピーク波長が違う第2の円偏光を反射する、第2のパターン化されたコレステリック液晶反射層と、を含む加飾フィルムが開示されている。
国際公開2020/122245号には、反射率の極大波長が異なる領域を含む液晶層を1層又は2層以上含む、加飾フィルムが開示されている。
国際公開2018/79606号には、反射率の極大波長が異なる領域を含む液晶層を2層以上含む、加飾フィルムが開示されている。
特開2010-111104号公報には、第1のコレステリック規則性を有する樹脂層と、第2のコレステリック規則性を有する樹脂層とを含む積層体を含み、且つ上記第1のコレステリック規則性を有する樹脂層は、第1の円偏光を透過させ、第1の円偏光とは異なる偏光である第2の円偏光を反射させる層であり、上記第2のコレステリック樹脂層は、上記第1のコレステリック規則性を有する樹脂層を透過した上記第1の円偏光の少なくとも一部を反射するよう配置される、加飾フィルムが開示されている。
特開2017-205988号公報には、特性反射のピーク波長が400nm以上700nm以下である第1の円偏光を反射する、第1のパターン化されたコレステリック液晶反射層と、特性反射のピーク波長が400nm以上700nm以下であり、第1の円偏光とは特性反射のピーク波長が違う第2の円偏光を反射する、第2のパターン化されたコレステリック液晶反射層と、を含む加飾フィルムが開示されている。
国際公開2020/122245号には、反射率の極大波長が異なる領域を含む液晶層を1層又は2層以上含む、加飾フィルムが開示されている。
国際公開2018/79606号には、反射率の極大波長が異なる領域を含む液晶層を2層以上含む、加飾フィルムが開示されている。
特開2010-111104号公報において開示される、2層以上の樹脂層を含む加飾フィルムは、成型品に金属光沢を付与することを目的としたものであり、色味は表示されず、意匠性は十分ではなかった。
また、特開2017-205988号公報において開示される加飾フィルムが含む、コレステリック液晶反射層は、それぞれ、異なる色味が表示されているが、コレステリック液晶反射層の面内において色味変化はなく、意匠性には改良の余地があった。
さらに、国際公開2020/122245号及び国際公開2018/79606号において開示される加飾フィルムにも、上記特開2010-111104号公報及び特開2017-205988号公報において開示される加飾フィルムと同様に、色味変化のバリエーションには、更なる改良の余地があった。また、国際公開2020/122245号及び国際公開2018/79606号において開示される加飾フィルムが表示する色味には、視認性の観点から改良の余地があった。
上記したように、特開2010-111104号公報、特開2017-205988号公報、国際公開2020/122245号及び国際公開2018/79606号等において開示される従来の加飾フィルムには、意匠性において更なる改良の余地があるということを、今般、本発明者らは見出した。
また、特開2017-205988号公報において開示される加飾フィルムが含む、コレステリック液晶反射層は、それぞれ、異なる色味が表示されているが、コレステリック液晶反射層の面内において色味変化はなく、意匠性には改良の余地があった。
さらに、国際公開2020/122245号及び国際公開2018/79606号において開示される加飾フィルムにも、上記特開2010-111104号公報及び特開2017-205988号公報において開示される加飾フィルムと同様に、色味変化のバリエーションには、更なる改良の余地があった。また、国際公開2020/122245号及び国際公開2018/79606号において開示される加飾フィルムが表示する色味には、視認性の観点から改良の余地があった。
上記したように、特開2010-111104号公報、特開2017-205988号公報、国際公開2020/122245号及び国際公開2018/79606号等において開示される従来の加飾フィルムには、意匠性において更なる改良の余地があるということを、今般、本発明者らは見出した。
本開示の一実施態様が解決しようとする課題は、視認性が高く、バリエーションに富んだ色味変化を表示することができ、優れた意匠性を有する加飾フィルム、成型物、加飾フィルムの製造方法、自動車外装板及び電子デバイスを提供することである。
<1> 最大反射率となる波長が異なる2つ以上の領域を同一面内に有し、且つ少なくとも1つの領域において最大反射率となる波長が、380nm以下又は800nm以上の範囲に存在する、コレステリック規則性を有する第1の樹脂層と、
上記第1の樹脂層とは異なるコレステリック規則性を有する第2の樹脂層と、
着色層と、
を少なくとも含む、加飾フィルム。
上記第1の樹脂層とは異なるコレステリック規則性を有する第2の樹脂層と、
着色層と、
を少なくとも含む、加飾フィルム。
<2> 上記第2の樹脂層が、最大反射率となる波長が異なる2つ以上の領域を同一面内に有し、且つ少なくとも1つの領域において最大反射率となる波長が、380nm以下又は800nm以上の範囲に存在する、<1>に記載の加飾フィルム。
<3> 上記第1の樹脂層の最大反射率となる波長が380nm以下又は800nm以上の範囲に存在する領域と、
上記第2の樹脂層の最大反射率となる波長が380nm以下又は800nm以上の範囲に存在する領域と、が少なくとも一部重なる位置に設けられる、<2>に記載の加飾フィルム。
上記第2の樹脂層の最大反射率となる波長が380nm以下又は800nm以上の範囲に存在する領域と、が少なくとも一部重なる位置に設けられる、<2>に記載の加飾フィルム。
<4> 上記第1の樹脂層が、上記最大反射率となる波長が異なる2つ以上の領域の少なくとも1つとして、最大反射率となる波長が380nm超、且つ800nm未満の範囲に存在する領域を有する、<1>~<3>のいずれか1つに記載の加飾フィルム。
<5> 面内平均反射率が、20%以上である、<1>~<4>のいずれか1つに記載の加飾フィルム。
<6> 上記第1の樹脂層と、上記第2の樹脂層とが、隣接して積層される、<1>~<5>のいずれか1つに記載の加飾フィルム。
<7> 上記第1の樹脂層及び上記第2の樹脂層が、同一方向の円偏光を反射する、<1>~<6>のいずれか1つに記載の加飾フィルム。
<8> 基材及び液晶層を含む液晶材料を準備する工程と、
上記液晶層に対し光異性化処理を施し、上記液晶層が、380nm以下又は800nm以上の範囲に最大反射率となる波長が存在する領域を少なくとも1つ含む、最大反射率となる波長が異なる2つ以上の領域を有する状態とした後、上記液晶層を硬化させ、コレステリック規則性を有する第1の樹脂層を形成する工程と、
上記第1の樹脂層上に、上記第1の樹脂層とは異なるコレステリック規則性を有する第2の樹脂層を形成する工程と、
を含む、加飾フィルムの製造方法。
上記液晶層に対し光異性化処理を施し、上記液晶層が、380nm以下又は800nm以上の範囲に最大反射率となる波長が存在する領域を少なくとも1つ含む、最大反射率となる波長が異なる2つ以上の領域を有する状態とした後、上記液晶層を硬化させ、コレステリック規則性を有する第1の樹脂層を形成する工程と、
上記第1の樹脂層上に、上記第1の樹脂層とは異なるコレステリック規則性を有する第2の樹脂層を形成する工程と、
を含む、加飾フィルムの製造方法。
<9> 基材及びコレステリック規則性を有する第2の樹脂層を含む液晶材料を準備する工程と、
上記第2の樹脂層上に、液晶層を形成し、上記液晶層に対し光異性化処理を施し、上記液晶層が、380nm以下又は800nm以上の範囲に最大反射率となる波長が存在する領域を少なくとも1つ含む、最大反射率となる波長が異なる2つ以上の領域を有する状態としたのち、上記液晶層を硬化させ、上記第2の樹脂層とは異なるコレステリック規則性を有する第1の樹脂層を形成する工程と、
を含む、加飾フィルムの製造方法。
上記第2の樹脂層上に、液晶層を形成し、上記液晶層に対し光異性化処理を施し、上記液晶層が、380nm以下又は800nm以上の範囲に最大反射率となる波長が存在する領域を少なくとも1つ含む、最大反射率となる波長が異なる2つ以上の領域を有する状態としたのち、上記液晶層を硬化させ、上記第2の樹脂層とは異なるコレステリック規則性を有する第1の樹脂層を形成する工程と、
を含む、加飾フィルムの製造方法。
<10> 上記液晶層が、単官能液晶性化合物を含む液晶性組成物により形成される、<8>又は<9>に記載の加飾フィルムの製造方法。
<11> 上記液晶性組成物が、多官能液晶性化合物及び多官能の非液晶性重合性モノマーの少なくとも一方を含む、<10>に記載の加飾フィルムの製造方法。
<12> 上記液晶性組成物における、上記単官能液晶性化合物の含有量と、上記多官能液晶性化合物及び上記多官能の非液晶性重合性モノマーの含有量の和との比が、質量基準で、85:15~40:60である、<11>に記載の加飾フィルムの製造方法。
<13> <1>~<7>のいずれか1つに記載の加飾フィルムを成型してなる、成型物。
<14> <1>~<7>のいずれか1つに記載の加飾フィルムを含む、電子デバイス。
<15> <13>に記載の成型物を有する、自動車外装板。
本開示によれば、視認性が高く、バリエーションに富んだ色味変化を表示することができ、優れた意匠性を有する加飾フィルム、成型物、加飾フィルムの製造方法、電子デバイス及び自動車外装板を提供することができる。
以下において、本開示の内容について詳細に説明する。以下に記載する構成要件の説明は、本開示の代表的な実施形態に基づいてなされることがあるが、本開示はそのような実施形態に限定されるものではない。
本開示において、「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本開示において、各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
本開示における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば、「アルキル基」とは、置換基を有しないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
本開示において、「(メタ)アクリル」は、アクリル及びメタクリルの両方を包含する概念で用いられる語であり、「(メタ)アクリロイル」は、アクリロイル及びメタクリロイルの両方を包含する概念として用いられる語である。
本開示において「層」との語には、層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
本開示において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
本開示において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
本開示において「全固形分」とは、組成物の全組成から溶媒を除いた成分の総質量をいう。また、「固形分」とは、上述のように、溶媒を除いた成分であり、例えば、25℃において固体であっても、液体であってもよい。
なお、図面において、構成要素と実質的に同一の構成要素には同一の符号を付し、その説明を省略する。
以下、本開示を詳細に説明する。
本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本開示において、各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
本開示における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば、「アルキル基」とは、置換基を有しないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
本開示において、「(メタ)アクリル」は、アクリル及びメタクリルの両方を包含する概念で用いられる語であり、「(メタ)アクリロイル」は、アクリロイル及びメタクリロイルの両方を包含する概念として用いられる語である。
本開示において「層」との語には、層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
本開示において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
本開示において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
本開示において「全固形分」とは、組成物の全組成から溶媒を除いた成分の総質量をいう。また、「固形分」とは、上述のように、溶媒を除いた成分であり、例えば、25℃において固体であっても、液体であってもよい。
なお、図面において、構成要素と実質的に同一の構成要素には同一の符号を付し、その説明を省略する。
以下、本開示を詳細に説明する。
(加飾フィルム)
本開示に係る加飾フィルムは、最大反射率となる波長が異なる2つ以上の領域を同一面内に有し、且つ少なくとも1つの領域において最大反射率となる波長が、380nm以下又は800nm以上の範囲に存在する、コレステリック規則性を有する第1の樹脂層(以下、単に、「第1の樹脂層」ともいう。)と、第1の樹脂層とは異なるコレステリック規則性を有する第2の樹脂層(以下、単に、「第2の樹脂層」ともいう。)と、着色層と、を少なくとも含む、加飾フィルムである。
第1の樹脂層と、第2の樹脂層との位置関係は、特に限定されるものではなく、いずれの層が上であってもよい。
着色層は、第1の樹脂層上に設けられていてもよく、第2の樹脂層上に設けられていてもよい。また、第1の樹脂層又は第2の樹脂層上又は下に、下記するその他の樹脂層等を介して設けられていてもよい。
本開示に係る加飾フィルムは、最大反射率となる波長が異なる2つ以上の領域を同一面内に有し、且つ少なくとも1つの領域において最大反射率となる波長が、380nm以下又は800nm以上の範囲に存在する、コレステリック規則性を有する第1の樹脂層(以下、単に、「第1の樹脂層」ともいう。)と、第1の樹脂層とは異なるコレステリック規則性を有する第2の樹脂層(以下、単に、「第2の樹脂層」ともいう。)と、着色層と、を少なくとも含む、加飾フィルムである。
第1の樹脂層と、第2の樹脂層との位置関係は、特に限定されるものではなく、いずれの層が上であってもよい。
着色層は、第1の樹脂層上に設けられていてもよく、第2の樹脂層上に設けられていてもよい。また、第1の樹脂層又は第2の樹脂層上又は下に、下記するその他の樹脂層等を介して設けられていてもよい。
本開示の実施形態によれば、視認性が高く、バリエーションに富んだ色味変化を表示することができ、優れた意匠性を有する加飾フィルムとすることができる。
本開示に係る加飾フィルムが、視認性が高く、バリエーションに富んだ色味変化を表示することができ、優れた意匠性を有する理由は、以下のように推察されるが、これに限定されるものではない。
本開示に係る加飾フィルムが含む第1の樹脂層は、最大反射率となる波長が異なる2つ以上の領域を同一面内に有し、且つ少なくとも1つの領域において最大反射率となる波長が、380nm以下又は800nm以上の範囲に存在している。
すなわち、第1の樹脂層は、第2の樹脂層及び着色層と積層した際に、第2の樹脂層及び着色層が表示する色味と加法混色を生じない領域を有するため、特開2010-111104号公報等において開示される加飾フィルムが表示することのできない、複雑な色味変化を表示することが可能となり、意匠性が改良される。
また、加飾フィルムが着色層を含むことにより、国際公開2018/79606号等において開示される加飾フィルムが表示する色味と比べ、着色層を含む加飾フィルムが表示する色味は、視認性が改良されている。
本開示に係る加飾フィルムが含む第1の樹脂層は、最大反射率となる波長が異なる2つ以上の領域を同一面内に有し、且つ少なくとも1つの領域において最大反射率となる波長が、380nm以下又は800nm以上の範囲に存在している。
すなわち、第1の樹脂層は、第2の樹脂層及び着色層と積層した際に、第2の樹脂層及び着色層が表示する色味と加法混色を生じない領域を有するため、特開2010-111104号公報等において開示される加飾フィルムが表示することのできない、複雑な色味変化を表示することが可能となり、意匠性が改良される。
また、加飾フィルムが着色層を含むことにより、国際公開2018/79606号等において開示される加飾フィルムが表示する色味と比べ、着色層を含む加飾フィルムが表示する色味は、視認性が改良されている。
本開示に係る加飾フィルムは、第1の樹脂層及び第2の樹脂層が有するコレステリック規則性とは異なる、コレステリック規則性を有するその他の樹脂層(以下、単に、「その他の樹脂層」ともいう。)を更に含むことができる。本開示に係る加飾フィルムは、その他の樹脂層を1層含んでいてもよく、2層以上含んでいてもよい。また、その他の樹脂層は、第1の樹脂層上に設けられていてもよく、第2の樹脂層上に設けられていてもよく、第1の樹脂層と第2の樹脂層との間に設けられていてもよい。
第1の樹脂層と第2の樹脂層とは、隣接して積層されることが好ましい。第1の樹脂層と第2の樹脂層とを接着剤等を介して積層するのではなく、隣接して積層することにより、加飾フィルムの厚みを抑えることができ、加飾フィルムの成型容易性を向上することができる。加飾フィルムがその他の樹脂層を有する場合、その他の樹脂層は、第1の樹脂層及び第2の樹脂層の少なくとも一方と隣接して積層されることが好ましい。
第1の樹脂層及び第2の樹脂層の総厚み(その他の樹脂層を備える場合は、その厚みも含む。)は、25μm未満であることが好ましく、20μm未満であることがより好ましく、10μm未満であることが更に好ましい。総厚みを上記数値範囲内とすることにより、加飾フィルムの成型容易性を向上することができる。また、各樹脂層の反射率向上の観点から、上記総厚みは、1μm以上であることが好ましく、2μm以上であることがより好ましく、3μm以上であることが更に好ましい。
また、接着剤等を用いて樹脂層を貼り合わせた場合、上記接着剤等により形成される層の厚みも上記総厚みに含まれる。
また、接着剤等を用いて樹脂層を貼り合わせた場合、上記接着剤等により形成される層の厚みも上記総厚みに含まれる。
第1の樹脂層等において、下記する液晶性化合物により形成される螺旋構造の螺旋ピッチ(ねじれ力及び螺旋のねじれ角)、樹脂層の屈折率、並びに樹脂層の厚みよりなる群から選ばれた少なくとも1つの条件を変えることにより、視認される角度に応じて変化する色味及び視認される色味自体を調整することができる。
上記螺旋構造の螺旋ピッチは、例えば、キラル化合物の種類又はキラル化合物の添加量等を変更することによって容易に調整可能である。螺旋ピッチの調整については、富士フイルム研究報告No.50(2005年)p.60-63に詳細な記載がある。また、上記螺旋構造の螺旋ピッチは、コレステリック配向状態を固定するときの温度、照度又は照射時間等の条件により調整することもできる。
上記螺旋構造の螺旋ピッチは、例えば、キラル化合物の種類又はキラル化合物の添加量等を変更することによって容易に調整可能である。螺旋ピッチの調整については、富士フイルム研究報告No.50(2005年)p.60-63に詳細な記載がある。また、上記螺旋構造の螺旋ピッチは、コレステリック配向状態を固定するときの温度、照度又は照射時間等の条件により調整することもできる。
第1の樹脂層、第2の樹脂層及びその他の樹脂層が有する選択反射性は、左円偏光又は右円偏光のいずれかに対するものであってもよいが、同一方向の円偏光を選択的に反射するものであることが好ましい。第1の樹脂層、第2の樹脂層及びその他の樹脂層が、同一方向の円偏光を選択的に反射することにより、加飾フィルムにおける干渉縞の発生を防止することができる。
加飾フィルムは、基材を有していてもよい。また、加飾フィルムは、配向層を有していてもよい。
加飾フィルムの面内平均反射率は、光輝性の観点から、20%以上であることが好ましく、30%以上であることがより好ましく、40%以上であることが更に好ましく、45%以上であることが特に好ましい。
本開示において、加飾フィルムの面内平均反射率は、以下のようにして測定する。
加飾フィルムが備える最表面の樹脂層に対し、大型積分球装置(日本分光(株)製、ILV-471)を備えた分光光度計(日本分光(株)製、V-670)を用いて、波長300nm~1500nmの光を垂直方向(樹脂層の面に対し90°となる角度)から入射し、得られた分光スペクトルからピーク波長を読み取り、ピーク波長の反射率を得る。上記最表面の樹脂層の全面において、ピーク波長の反射率を測定し、測定値の平均を面内平均反射率とする。
本開示において、加飾フィルムの面内平均反射率は、以下のようにして測定する。
加飾フィルムが備える最表面の樹脂層に対し、大型積分球装置(日本分光(株)製、ILV-471)を備えた分光光度計(日本分光(株)製、V-670)を用いて、波長300nm~1500nmの光を垂直方向(樹脂層の面に対し90°となる角度)から入射し、得られた分光スペクトルからピーク波長を読み取り、ピーク波長の反射率を得る。上記最表面の樹脂層の全面において、ピーク波長の反射率を測定し、測定値の平均を面内平均反射率とする。
<第1の樹脂層>
第1の樹脂層は、最大反射率となる波長が異なる2つ以上の領域を同一面内に有する。また、上記2つ以上の領域に含まれる領域として、最大反射率となる波長が、380nm以下又は800nm以上の範囲に存在する領域(以下、特定領域Aともいう。)を少なくとも1つ有する。
第1の樹脂層は、最大反射率となる波長が異なる2つ以上の領域を同一面内に有する。また、上記2つ以上の領域に含まれる領域として、最大反射率となる波長が、380nm以下又は800nm以上の範囲に存在する領域(以下、特定領域Aともいう。)を少なくとも1つ有する。
また、反射帯域が狭く、透明性の調整が容易であることから、特定領域Aにおいて最大反射率となる波長は380nm以下であることが好ましい。
第1の樹脂層が有する、上記2つ以上の領域は、特定の波長域の光を選択的に反射する(以下、選択反射性ともいう。)。
本開示において、選択反射性を有するとは、大型積分球装置(日本分光(株)製、ILV-471)を備えた分光光度計(日本分光(株)製、V-670)を用いて、波長300nm~1500nmの光を上記領域へ入射し、積分反射率を測定すると、波長を横軸とする、少なくとも1つの山型(ピーク)を有するスペクトル波形が得られるものをいう。
また、上記2つ以上の領域は、それぞれ最大反射率となる波長が異なる。
本開示において、最大反射率となる波長とは、上記のようにして得られるスペクトル波形のピークにおいて、反射率が最大となる波長をいう。
なお、ピークが複数存在する場合には、極大値となる反射率を含むピークを採用する。
本開示において、選択反射性を有するとは、大型積分球装置(日本分光(株)製、ILV-471)を備えた分光光度計(日本分光(株)製、V-670)を用いて、波長300nm~1500nmの光を上記領域へ入射し、積分反射率を測定すると、波長を横軸とする、少なくとも1つの山型(ピーク)を有するスペクトル波形が得られるものをいう。
また、上記2つ以上の領域は、それぞれ最大反射率となる波長が異なる。
本開示において、最大反射率となる波長とは、上記のようにして得られるスペクトル波形のピークにおいて、反射率が最大となる波長をいう。
なお、ピークが複数存在する場合には、極大値となる反射率を含むピークを採用する。
特定領域Aの面積は、特に制限はなく、本開示に係る加飾フィルムに求められる色味応じて適宜調整することが好ましい。
第1の樹脂層は、同一面内に、特定領域Aを1つ有していてもよく、2つ以上有していてもよい。第1の樹脂層が、特定領域Aを2つ以上有する場合、各領域の反射率が最大となる波長は、同一であっても、異なってもよい。第1の樹脂層が、特定領域Aを2つ以上有する場合、各領域の面積は、同一であっても、異なってもよい。
第1の樹脂層が、同一面内に特定領域Aを1つ有する場合、特定領域Aが設けられる位置は、特に制限はなく、図1に示すように、第1の樹脂層10の一端に特定領域A11が設けられていてもよく、図2に示すように、中央部等、端部以外の位置に特定領域A11が設けられていてもよい。
また、第1の樹脂層が、同一面内に特定領域Aを2つ以上有する場合、特定領域Aが設けられる位置は、特に制限はない。第1の樹脂層が、同一面内に特定領域Aを2つ有する場合、例えば、図3に示すように、第1の樹脂層10の両端に設けられていてもよく、図4に示すように、端部以外の位置に設けられていてもよい。
第1の樹脂層が、同一面内に特定領域Aを1つ有する場合、特定領域Aが設けられる位置は、特に制限はなく、図1に示すように、第1の樹脂層10の一端に特定領域A11が設けられていてもよく、図2に示すように、中央部等、端部以外の位置に特定領域A11が設けられていてもよい。
また、第1の樹脂層が、同一面内に特定領域Aを2つ以上有する場合、特定領域Aが設けられる位置は、特に制限はない。第1の樹脂層が、同一面内に特定領域Aを2つ有する場合、例えば、図3に示すように、第1の樹脂層10の両端に設けられていてもよく、図4に示すように、端部以外の位置に設けられていてもよい。
本開示において、波長380nm超、且つ800nm未満の光の反射率は、上記同様、大型積分球装置(日本分光(株)製、ILV-471)を備えた分光光度計(日本分光(株)製、V-670)を用いて測定することができる。
第1の樹脂層は、上記2つ以上の領域の少なくとも1つとして、最大反射率となる波長が380nm超、且つ800nm未満の範囲に存在する領域(以下、「その他の領域A」ともいう。)を有していてもよい。
第1の樹脂層が、その他の領域Aを有することにより、第2の樹脂層及び着色層等との積層状態において、第2の樹脂層及び着色層と加法混色が生じる領域と、加法混色が生じない領域とが混在することとなり、加飾フィルムにおいてより複雑な色味変化を表示することが可能となり、意匠性がより改善される。
第1の樹脂層が、その他の領域Aを有することにより、第2の樹脂層及び着色層等との積層状態において、第2の樹脂層及び着色層と加法混色が生じる領域と、加法混色が生じない領域とが混在することとなり、加飾フィルムにおいてより複雑な色味変化を表示することが可能となり、意匠性がより改善される。
その他の領域Aの面積は、特に制限はなく、本開示に係る加飾フィルムに求められる色味応じて適宜調整することが好ましい。
第1の樹脂層は、その他の領域Aを1つ有していてもよく、2つ以上有していてもよい。第1の樹脂層が、その他の領域Aを2つ以上有する場合、各領域の反射率が最大となる波長は、同一であっても、異なってもよい。また、第1の樹脂層が、その他の領域Aを2つ以上有する場合、各領域の面積は、同一であっても、異なってもよい。
第1の樹脂層が、同一面内にその他の領域Aを1つ有する場合、その他の領域Aが設けられる位置は、特に制限はなく、図1に示すように、第1の樹脂層10の一端に、その他の領域A12が設けられていてもよく、図3に示すように、中央部等、端部以外の位置にその他の領域A12が設けられていてもよい。
また、第1の樹脂層が、同一面内にその他の領域Aを2つ以上有する場合、その他の領域A12が設けられる位置は、特に制限はない。第1の樹脂層が、同一面内にその他の領域Aを2つ有する場合、例えば、図2に示すように、第1の樹脂層10の両端に設けられていてもよく、端部以外の位置に設けられていてもよい(図示せず。)。
第1の樹脂層が、同一面内にその他の領域Aを1つ有する場合、その他の領域Aが設けられる位置は、特に制限はなく、図1に示すように、第1の樹脂層10の一端に、その他の領域A12が設けられていてもよく、図3に示すように、中央部等、端部以外の位置にその他の領域A12が設けられていてもよい。
また、第1の樹脂層が、同一面内にその他の領域Aを2つ以上有する場合、その他の領域A12が設けられる位置は、特に制限はない。第1の樹脂層が、同一面内にその他の領域Aを2つ有する場合、例えば、図2に示すように、第1の樹脂層10の両端に設けられていてもよく、端部以外の位置に設けられていてもよい(図示せず。)。
更に、第1の樹脂層が有するその他の領域Aは、面内において、最大反射率となる波長が連続的に変化するものであってもよい。例えば、最大反射率となる波長が381nm~450nmに連続的に変化する構成とすることにより、紫から青へとグラデーション調に色味が変化するその他の領域Aとすることができ、加飾フィルムの意匠性をより向上することができる。
また、最大反射率となる波長が350nm~380nmに連続的に変化する構成を有する特定領域Aと、最大反射率となる波長が381nm~450nmに連続的に変化する構成を有するその他の領域Aとを面順次に設けることにより、透明、紫及び青の順に、グラデーション調に色味変化を表示することができる。
また、最大反射率となる波長が350nm~380nmに連続的に変化する構成を有する特定領域Aと、最大反射率となる波長が381nm~450nmに連続的に変化する構成を有するその他の領域Aとを面順次に設けることにより、透明、紫及び青の順に、グラデーション調に色味変化を表示することができる。
その他の領域Aの波長380nm超、且つ800nm未満の範囲に存在する最大反射率は、20%以上であることが好ましく、30%以上であることがより好ましく、40%以上であることが更に好ましく、45%以上であることが特に好ましい。最大反射率が20%以上であることにより、加飾フィルムの視認性をより向上することができる。
第1の樹脂層が有する特定領域Aにおいて、最大反射率となる波長が380nm以下である場合、第1の樹脂層の厚さは、1μm~5μmであることが好ましく、1μm~4μmであることがより好ましく、1μm~3μmであることが更に好ましい。
第1の樹脂層が有する特定領域Aにおいて、最大反射率となる波長が800nm以上である場合、第1の樹脂層の厚さは、1μm~6μmであることが好ましく、2μm~6μmであることがより好ましく、3μm~6μmであることが更に好ましい。
第1の樹脂層が有する特定領域Aにおいて、最大反射率となる波長が800nm以上である場合、第1の樹脂層の厚さは、1μm~6μmであることが好ましく、2μm~6μmであることがより好ましく、3μm~6μmであることが更に好ましい。
<第2の樹脂層>
第2の樹脂層の構成は、第1の樹脂層とは異なるコレステリック規則性を有していれば、特に制限はないが、最大反射率となる波長が異なる2つ以上の領域を同一面内に有することが好ましい。
また、上記2つ以上の領域に含まれる領域として、最大反射率となる波長が、380nm以下又は800nm以上の範囲に存在する領域(以下、特定領域Bともいう。)を少なくとも1つ有することが好ましい。第2の樹脂層が、上記領域を有することにより、加飾フィルムにおいて、より複雑な色味変化を表示することが可能となり、意匠性がより改善される。
特定領域Bは、第1の樹脂層が有する特定領域Aと、少なくとも一部が重なる位置に設けられることが好ましい。上記構成とすることにより、本開示の加飾フィルムが含む着色層の色味を視認することができるようになり、加飾フィルムの意匠性を更に向上することができる(図5参照)。また、特定領域Bは、特定領域Aと完全に重なる位置に設けられていてもよい。
第2の樹脂層の構成は、第1の樹脂層とは異なるコレステリック規則性を有していれば、特に制限はないが、最大反射率となる波長が異なる2つ以上の領域を同一面内に有することが好ましい。
また、上記2つ以上の領域に含まれる領域として、最大反射率となる波長が、380nm以下又は800nm以上の範囲に存在する領域(以下、特定領域Bともいう。)を少なくとも1つ有することが好ましい。第2の樹脂層が、上記領域を有することにより、加飾フィルムにおいて、より複雑な色味変化を表示することが可能となり、意匠性がより改善される。
特定領域Bは、第1の樹脂層が有する特定領域Aと、少なくとも一部が重なる位置に設けられることが好ましい。上記構成とすることにより、本開示の加飾フィルムが含む着色層の色味を視認することができるようになり、加飾フィルムの意匠性を更に向上することができる(図5参照)。また、特定領域Bは、特定領域Aと完全に重なる位置に設けられていてもよい。
特定領域Bの面積は、特に制限はなく、本開示に係る加飾フィルムに求められる色味に応じて適宜調整することが好ましい。
第2の樹脂層は、同一面内に、特定領域Bを1つ有していてもよく、2つ以上有していてもよい。第2の樹脂層が、特定領域Bを2つ以上有する場合、各領域の反射率が最大となる波長は、同一であっても、異なってもよい。また、第2の樹脂層が、特定領域Bを2つ以上有する場合、各領域の面積は、同一であっても、異なってもよい。
第2の樹脂層において、特定領域Bが設けられる位置は、端部又は中央部等、第1の樹脂層における特定領域Aが設けられる位置と同様の位置とすることができる。
第2の樹脂層において、特定領域Bが設けられる位置は、端部又は中央部等、第1の樹脂層における特定領域Aが設けられる位置と同様の位置とすることができる。
更に、第2の樹脂層が有する特定領域Bは、特定領域Aと同様に、面内において、最大反射率となる波長が連続的に変化してもよい。
また、特定領域Bの波長380nm超、且つ800nm未満の光の反射率の好ましい数値範囲は、特定領域Aと同様であるため、ここでは記載を省略する。
また、特定領域Bの波長380nm超、且つ800nm未満の光の反射率の好ましい数値範囲は、特定領域Aと同様であるため、ここでは記載を省略する。
第2の樹脂層は、上記2つ以上の領域に含まれる領域として、最大反射率となる波長が380nm超、且つ800nm未満の範囲に存在する領域(以下、「その他の領域B」ともいう。)を有していてもよい。第2の樹脂層が、その他の領域Bを有することにより、加飾フィルムにおいてより複雑な色味変化を表示することが可能となり意匠性がより改善される。
ここで、図5に示すように、第1の樹脂層10が特定領域A11及びその他の領域A12を有し、第2の樹脂層20が特定領域B21及びその他の領域B22を有し、且つ特定領域A11及び特定領域B21の一部が重なる位置に設けられる構成を有する加飾フィルム1の色味について説明する。
特定領域A11及び特定領域B21が重なる領域において、入射した光は、着色層30において反射されるため、上記領域においては、着色層30の色味のみ(単色領域)を視認することができる(図5の破線(1))。
特定領域A11及びその他の領域B22が重なる領域において、入射した光は、例えば、青色の右円偏光は第2の樹脂層20において反射され、その他の光は着色層30において反射されるため、上記領域においては、第2の樹脂層20が有するその他の領域B22の色味と、着色層30の色味と、が加法混色された色味を視認することができる(図5の破線(2))。なお、着色層30の色味が黒である場合、第1の樹脂層10を透過した光は着色層30において反射せず、第2の樹脂層20が有するその他の領域B22の色味のみが観察される(図示せず)。
その他の領域A12及びその他の領域B22が重なる領域において、入射した光は、例えば、赤色の右円偏光は第1の樹脂層10において反射され、青色の右円偏光は第2の樹脂層20において反射され、その他の光は着色層20において反射されるため、上記領域においては、第1の樹脂層10が有するその他の領域A12の色味と、第2の樹脂層20が有するその他の領域B22の色味と、着色層30の色味と、が加法混色された色味を視認することができる(図5の破線(3))。なお、着色層30の色味が黒である場合、第1の樹脂層10を透過した光は着色層30において反射せず、第1の樹脂層10が有するその他の領域A12の色味と、第2の樹脂層20が有するその他の領域B22の色味と、が加法混色された色味を視認することができる(図示せず)。
ここで、図5に示すように、第1の樹脂層10が特定領域A11及びその他の領域A12を有し、第2の樹脂層20が特定領域B21及びその他の領域B22を有し、且つ特定領域A11及び特定領域B21の一部が重なる位置に設けられる構成を有する加飾フィルム1の色味について説明する。
特定領域A11及び特定領域B21が重なる領域において、入射した光は、着色層30において反射されるため、上記領域においては、着色層30の色味のみ(単色領域)を視認することができる(図5の破線(1))。
特定領域A11及びその他の領域B22が重なる領域において、入射した光は、例えば、青色の右円偏光は第2の樹脂層20において反射され、その他の光は着色層30において反射されるため、上記領域においては、第2の樹脂層20が有するその他の領域B22の色味と、着色層30の色味と、が加法混色された色味を視認することができる(図5の破線(2))。なお、着色層30の色味が黒である場合、第1の樹脂層10を透過した光は着色層30において反射せず、第2の樹脂層20が有するその他の領域B22の色味のみが観察される(図示せず)。
その他の領域A12及びその他の領域B22が重なる領域において、入射した光は、例えば、赤色の右円偏光は第1の樹脂層10において反射され、青色の右円偏光は第2の樹脂層20において反射され、その他の光は着色層20において反射されるため、上記領域においては、第1の樹脂層10が有するその他の領域A12の色味と、第2の樹脂層20が有するその他の領域B22の色味と、着色層30の色味と、が加法混色された色味を視認することができる(図5の破線(3))。なお、着色層30の色味が黒である場合、第1の樹脂層10を透過した光は着色層30において反射せず、第1の樹脂層10が有するその他の領域A12の色味と、第2の樹脂層20が有するその他の領域B22の色味と、が加法混色された色味を視認することができる(図示せず)。
その他の領域Bの面積は、特に制限はなく、本開示に係る加飾フィルムに求められる色味応じて適宜調整することが好ましい。
第2の樹脂層は、その他の領域Bを1つ有していてもよく、2つ以上有していてもよい。第2の樹脂層が、その他領域Bを2つ以上有する場合、各領域の反射率が最大となる波長は、同一であっても、異なってもよい。また、第2の樹脂層が、その他の領域Bを2つ以上有する場合、各領域の面積は、同一であっても、異なるものであってもよい。
第2の樹脂層において、その他の領域Bが設けられる位置は、端部又は中央部等、第1の樹脂層におけるその他の領域Aが設けられる位置と同様の位置とすることができる。
更に、第2の樹脂層が有するその他の領域Bは、その他の領域Aと同様に、面内において、最大反射率となる波長が連続的に変化するものであってもよい。
その他の領域Bの波長380nm超、且つ800nm未満の範囲に存在する最大反射率は、20%以上であることが好ましく、30%以上であることがより好ましい。最大反射率が20%以上であることにより、加飾フィルムの視認性をより向上することができる。
また、第2の樹脂層の好ましい厚みは、第1の樹脂層と同様であるため、ここでは記載を省略する。
<その他の樹脂層>
本開示に係る加飾フィルムは、第3の樹脂層、第4の樹脂層及び第5の樹脂層等、第1の樹脂層及び第2の樹脂層以外の樹脂層を含んでいてもよい。本開示に係る加飾フィルムが、その他の樹脂層を含むことにより、加飾フィルムにおいてより複雑な色味変化を表示することが可能となり、意匠性がより改善される。
その他の樹脂層の構成は、第1の樹脂層及び第2の樹脂層とは異なるコレステリック規則性を有しており、且つ加飾フィルムにその他の樹脂層が複数含まれる場合には、その他の樹脂層がそれぞれ異なるコレステリック規則性を有していれば、特に制限はないが、最大反射率となる波長が異なる2つ以上の領域を同一面内に有し、上記2つ以上の領域に含まれる領域として、最大反射率となる波長が、380nm以下又は800nm以上の範囲に存在する領域(以下、特定領域Cともいう。)を少なくとも1つ有することが好ましい。その他の樹脂層が、上記領域を有することにより、加飾フィルムにおいてより複雑な色味変化を表示することが可能となり、意匠性がより改善される。
特定領域Cは、第1の樹脂層が有する特定領域Aと、少なくとも一部が重なる位置に設けられることが好ましい。また、第2の樹脂層が特定領域Bを有する場合には、特定領域A、特定領域B及び特定領域Cの少なくとも一部が重なる位置に設けられることが好ましい。これにより、本開示の加飾フィルムが含む着色層の色味を視認することができるようになり、加飾フィルムの意匠性を更に向上することができる。また、特定領域Cは、特定領域A又は特定領域Bと完全に重なる位置に設けられていてもよい。
本開示に係る加飾フィルムは、第3の樹脂層、第4の樹脂層及び第5の樹脂層等、第1の樹脂層及び第2の樹脂層以外の樹脂層を含んでいてもよい。本開示に係る加飾フィルムが、その他の樹脂層を含むことにより、加飾フィルムにおいてより複雑な色味変化を表示することが可能となり、意匠性がより改善される。
その他の樹脂層の構成は、第1の樹脂層及び第2の樹脂層とは異なるコレステリック規則性を有しており、且つ加飾フィルムにその他の樹脂層が複数含まれる場合には、その他の樹脂層がそれぞれ異なるコレステリック規則性を有していれば、特に制限はないが、最大反射率となる波長が異なる2つ以上の領域を同一面内に有し、上記2つ以上の領域に含まれる領域として、最大反射率となる波長が、380nm以下又は800nm以上の範囲に存在する領域(以下、特定領域Cともいう。)を少なくとも1つ有することが好ましい。その他の樹脂層が、上記領域を有することにより、加飾フィルムにおいてより複雑な色味変化を表示することが可能となり、意匠性がより改善される。
特定領域Cは、第1の樹脂層が有する特定領域Aと、少なくとも一部が重なる位置に設けられることが好ましい。また、第2の樹脂層が特定領域Bを有する場合には、特定領域A、特定領域B及び特定領域Cの少なくとも一部が重なる位置に設けられることが好ましい。これにより、本開示の加飾フィルムが含む着色層の色味を視認することができるようになり、加飾フィルムの意匠性を更に向上することができる。また、特定領域Cは、特定領域A又は特定領域Bと完全に重なる位置に設けられていてもよい。
特定領域Cの面積は、特に制限はなく、本開示に係る加飾フィルムに求められる色味に応じて適宜調整することが好ましい。
その他の樹脂層は、同一面内に、特定領域Cを1つ有していてもよく、2つ以上有していてもよい。その他の樹脂層が、特定領域Cを2つ以上有する場合、各領域の反射率が最大となる波長は、同一であっても、異なってもよい。また、その他の樹脂層が、特定領域Cを2つ以上有する場合、各領域の面積は、同一であっても、異なってもよい。
その他の樹脂層において、特定領域Cが設けられる位置は、中央部又は端部等、第1の樹脂層における特定領域Aが設けられる位置と同様の位置とすることができる。
その他の樹脂層において、特定領域Cが設けられる位置は、中央部又は端部等、第1の樹脂層における特定領域Aが設けられる位置と同様の位置とすることができる。
特定領域Cの波長380nm超、且つ800nm未満の光の反射率の好ましい数値範囲は、特定領域Aと同様であるため、ここでは記載を省略する。
その他の樹脂層は、上記2つ以上の領域に含まれる領域として、最大反射率となる波長が380nm超、且つ800nm未満の範囲に存在する領域(以下、「その他の領域C」ともいう。)を有していてもよい。その他の樹脂層が、その他の領域Cを有することにより、加飾フルムにおいてより複雑な色味変化を表示することが可能となり、意匠性がより改善される。
その他の領域Cの面積は、特に制限はなく、本開示に係る加飾フィルムに求められる色味応じて適宜調整することが好ましい。
その他の樹脂層は、その他の領域Cを1つ有していてもよく、2つ以上有していてもよい。その他の樹脂層が、その他領域Cを2つ以上有する場合、各領域の反射率が最大となる波長は、同一であっても、異なってもよい。また、その他の樹脂層が、その他の領域Cを2つ以上有する場合、各領域の面積は、同一であっても、異なってもよい。
その他の樹脂層において、その他の領域Cが設けられる位置は、中央部又端部等、第1の樹脂層におけるその他の領域Aが設けられる位置と同様の位置とすることができる。
その他の樹脂層において、その他の領域Cが設けられる位置は、中央部又端部等、第1の樹脂層におけるその他の領域Aが設けられる位置と同様の位置とすることができる。
更に、その他の樹脂層が有するその他の領域Cは、その他の領域Aと同様に、面内において、最大反射率となる波長が連続的に変化するものであってもよい。
その他の領域Cの波長380nm超、且つ800nm未満の範囲に存在する最大反射率は、20%以上であることが好ましく、30%以上であることがより好ましい。最大反射率が20%以上であることにより、加飾フィルムの視認性をより向上することができる。
また、その他の樹脂層の好ましい厚みは、第1の樹脂層と同様であるため、ここでは記載を省略する。
以下に、加飾フィルムの具体的な態様を例示するが、本開示は、これらに限定されるものではない。
図6に示す加飾フィルム1は、第1の樹脂層10と、第2の樹脂層20と、着色層30とを備える。
第1の樹脂層10が有する特定領域A11は、一端部(図6における左端部)からその他の領域A12との境目まで、透明であり、且つその他の領域A12は、上記境目から他端部(図6における右端部)までの面内方向において、例えば紫から青へ、色味がグラデーション調に変化する。
また、第2の樹脂層20が有する特定領域B21は、上記他端部からその他の領域B22との境目まで、透明であり、且つその他の領域B22は、上記境目から上記一端部までの面内方向において、例えば赤紫から赤へ、色味がグラデーション調に変化する。
上記した第1の樹脂層10及び第2の樹脂層20が積層された加飾フィルム1は、一端から他端に向けて青、マゼンタ及び赤の順に、グラデーション調の色味が表示される。
第1の樹脂層10が有する特定領域A11は、一端部(図6における左端部)からその他の領域A12との境目まで、透明であり、且つその他の領域A12は、上記境目から他端部(図6における右端部)までの面内方向において、例えば紫から青へ、色味がグラデーション調に変化する。
また、第2の樹脂層20が有する特定領域B21は、上記他端部からその他の領域B22との境目まで、透明であり、且つその他の領域B22は、上記境目から上記一端部までの面内方向において、例えば赤紫から赤へ、色味がグラデーション調に変化する。
上記した第1の樹脂層10及び第2の樹脂層20が積層された加飾フィルム1は、一端から他端に向けて青、マゼンタ及び赤の順に、グラデーション調の色味が表示される。
図7に示す加飾フィルム1は、第1の樹脂層10と、第2の樹脂層20と、着色層30とを備える。
また、図7に示すように、第1の樹脂層10が有する特定領域A11と、第2の樹脂層20が有する特定領域B21とは重なり合う位置に設けられ、該領域においては着色層30の色味を視認することができる。
また、図7に示すように、第1の樹脂層10が有する特定領域A11と、第2の樹脂層20が有する特定領域B21とは重なり合う位置に設けられ、該領域においては着色層30の色味を視認することができる。
図8に示す加飾フィルム1は、第1の樹脂層10と、第2の樹脂層20と、着色層30とを備える。
また、図8に示すように、第1の樹脂層10が有する特定領域A11は、一端部(図8における左端部)からその他の領域A12との境目まで、透明であり、且つその他の領域A12は、上記境目から他端部(図8における右端部)まで一定の色味、例えば赤の色味が表示される。また、第2の樹脂層20が有するその他の領域B22は、一端部から他端部まで延びており、一定の色味、例えば青の色味が表示される。
上記した第1の樹脂層10及び第2の樹脂層20が積層された加飾フィルム1は、一端部から境目までが青、境目から他端部までが紫の色味が表示される。
また、図8に示すように、第1の樹脂層10が有する特定領域A11は、一端部(図8における左端部)からその他の領域A12との境目まで、透明であり、且つその他の領域A12は、上記境目から他端部(図8における右端部)まで一定の色味、例えば赤の色味が表示される。また、第2の樹脂層20が有するその他の領域B22は、一端部から他端部まで延びており、一定の色味、例えば青の色味が表示される。
上記した第1の樹脂層10及び第2の樹脂層20が積層された加飾フィルム1は、一端部から境目までが青、境目から他端部までが紫の色味が表示される。
<着色層>
本開示に係る加飾フィルムは、着色層を含む。加飾フィルムが着色層を含むことによって、より複雑な色味変化を表示することが可能となり、且つ色味の視認性を向上することができる。
着色層は、第1の樹脂層上に設けられていてもよく、第2の樹脂層上に設けられていてもよく、第1の樹脂層と第2の樹脂層との間に設けられていてもよい。また、着色層は、第1の樹脂層等の全面に設けられていてもよく、その一部に設けられていてもよい。
本開示に係る加飾フィルムは、着色層を含む。加飾フィルムが着色層を含むことによって、より複雑な色味変化を表示することが可能となり、且つ色味の視認性を向上することができる。
着色層は、第1の樹脂層上に設けられていてもよく、第2の樹脂層上に設けられていてもよく、第1の樹脂層と第2の樹脂層との間に設けられていてもよい。また、着色層は、第1の樹脂層等の全面に設けられていてもよく、その一部に設けられていてもよい。
加飾フィルムが下記する基材を備える場合において、着色層は、意匠性の観点から、第1の樹脂層、第2の樹脂層又はその他の樹脂層と、基材との間に設けられることが好ましい。
また、成型容易性及び耐久性の観点からは、着色層は、基材が設けられた側とは反対側の樹脂層上に設けられることが好ましい。
なお、着色層を設ける位置は上記例示に限定されず、加飾フィルムの用途に応じ適宜変更することができる。
また、成型容易性及び耐久性の観点からは、着色層は、基材が設けられた側とは反対側の樹脂層上に設けられることが好ましい。
なお、着色層を設ける位置は上記例示に限定されず、加飾フィルムの用途に応じ適宜変更することができる。
本開示に係る加飾フィルムは、着色層を1層のみ有していてもよく、2層以上有していてもよい。
本開示に係る加飾フィルムにおいて、意匠性の観点から、着色層の少なくとも1層は、上記樹脂層を介して視認するための層であることが好ましい。
上記着色層を、上記樹脂層を介して視認することにより、上記樹脂層における入射光の角度に応じた異方性に基づき、上記着色層を視認する角度に応じて色の変化が生じ、本開示に係る加飾フィルムは、特殊な意匠性を有すると推察される。
また、樹脂層が含む第1の樹脂層及び第2の樹脂層等における、特定領域A及び特定領域B等が重なる場合には、着色層の色を確認することができ、本開示に係る加飾フィルムは、より複雑な色味変化を表示し、より意匠性を有すると推察される。
また、上記着色層の少なくとも1つの層、好ましくは上記樹脂層を介して視認するための着色層の全光透過率は、視認性の観点から、10%以下であることが好ましい。
本開示において、全光透過率の測定は、分光光度計(例えば、(株)島津製作所製、分光光度計UV-2100)を用いて、2008年発行の日本産業規格(JIS) K 7375に準拠して測定することができる。
本開示に係る加飾フィルムにおいて、意匠性の観点から、着色層の少なくとも1層は、上記樹脂層を介して視認するための層であることが好ましい。
上記着色層を、上記樹脂層を介して視認することにより、上記樹脂層における入射光の角度に応じた異方性に基づき、上記着色層を視認する角度に応じて色の変化が生じ、本開示に係る加飾フィルムは、特殊な意匠性を有すると推察される。
また、樹脂層が含む第1の樹脂層及び第2の樹脂層等における、特定領域A及び特定領域B等が重なる場合には、着色層の色を確認することができ、本開示に係る加飾フィルムは、より複雑な色味変化を表示し、より意匠性を有すると推察される。
また、上記着色層の少なくとも1つの層、好ましくは上記樹脂層を介して視認するための着色層の全光透過率は、視認性の観点から、10%以下であることが好ましい。
本開示において、全光透過率の測定は、分光光度計(例えば、(株)島津製作所製、分光光度計UV-2100)を用いて、2008年発行の日本産業規格(JIS) K 7375に準拠して測定することができる。
本開示に係る加飾フィルムが、2層以上の着色層を有する場合、上記着色層の少なくとも1層が上記樹脂層を介して視認するための層であり、かつ上記着色層の少なくとも他の1層が上記樹脂層よりも視認方向に近い層(「カラーフィルター層」ともいう。)である態様が好ましく挙げられる。なお、「視認方向に近い」とは、加飾フィルムが視認される際において視認者に近い位置に設けられていることを指している。
上記樹脂層よりも視認方向に近い着色層(カラーフィルター層)は、少なくとも特定の波長の光に対して透過性の高い層であり、その層構成に特に制限はなく、単色のカラーフィルター層であってもよいし、2色以上のカラーフィルター構造及び必要に応じブラックマトリックス等を有するカラーフィルター層であってもよい。
上記カラーフィルター層を有することにより、本開示に係る加飾フィルムに更なる意匠性をすることができ、また、特定の波長範囲のみを視認可能な加飾フィルムが得られる。
上記樹脂層よりも視認方向に近い着色層(カラーフィルター層)は、少なくとも特定の波長の光に対して透過性の高い層であり、その層構成に特に制限はなく、単色のカラーフィルター層であってもよいし、2色以上のカラーフィルター構造及び必要に応じブラックマトリックス等を有するカラーフィルター層であってもよい。
上記カラーフィルター層を有することにより、本開示に係る加飾フィルムに更なる意匠性をすることができ、また、特定の波長範囲のみを視認可能な加飾フィルムが得られる。
着色層の色は、特に制限はなく、用途に応じ適宜選択することができる。着色層の色としては、例えば、黒、灰、白、赤、橙、黄、緑、青及び紫等が挙げられる。また、着色層の色は、金属調の色であってもよい。
着色層の色を黒とすることにより、上記したように、第1の樹脂層のその他の領域Aの色味又は第2の樹脂層のその他の領域Bの色味のみを視認することができる領域を設けることができ、加飾フィルムの意匠性をより向上することができる。また、着色層の色を黒とすることにより、表示される色味の視認性をより向上することができる。
また、着色層の色を白とすることにより、第1の樹脂層のその他の領域Aの色味又は第2の樹脂層のその他の領域Bの色味を補色することができ、表示される色味の幅を広げることができ、加飾フィルムの意匠性をより向上することができる。
着色層の色を黒とすることにより、上記したように、第1の樹脂層のその他の領域Aの色味又は第2の樹脂層のその他の領域Bの色味のみを視認することができる領域を設けることができ、加飾フィルムの意匠性をより向上することができる。また、着色層の色を黒とすることにより、表示される色味の視認性をより向上することができる。
また、着色層の色を白とすることにより、第1の樹脂層のその他の領域Aの色味又は第2の樹脂層のその他の領域Bの色味を補色することができ、表示される色味の幅を広げることができ、加飾フィルムの意匠性をより向上することができる。
着色層は、強度及び耐傷性の観点から、樹脂を含むことが好ましい。樹脂としては、下記するバインダー樹脂が挙げられる。
また、着色層は、下記する重合性化合物を硬化してなる層であってもよく、重合性化合物及び重合開始剤を含む層であってもよい。重合性化合物及び重合開始剤としては、特に制限はなく、公知の重合性化合物及び公知の重合開始剤を用いることができる。
なお、着色層は、蒸着膜層又はメッキ層であってもよい。
また、着色層は、下記する重合性化合物を硬化してなる層であってもよく、重合性化合物及び重合開始剤を含む層であってもよい。重合性化合物及び重合開始剤としては、特に制限はなく、公知の重合性化合物及び公知の重合開始剤を用いることができる。
なお、着色層は、蒸着膜層又はメッキ層であってもよい。
着色層は、着色剤を含有することができ、例えば、顔料及び染料等が挙げられる。耐久性の観点からは、顔料が好ましい。
顔料の種類は、特に制限はなく、公知の無機顔料及び有機顔料を使用することができる。
無機顔料としては、例えば、二酸化チタン、酸化亜鉛、リトポン、軽質炭酸カルシウム、ホワイトカーボン、酸化アルミニウム、水酸化アルミニウム及び硫酸バリウム等の白色顔料、カーボンブラック、チタンブラック、チタンカーボン、酸化鉄及び黒鉛等の黒色顔料、雲母又はガラス片等の表面を酸化チタン等の金属酸化物で被覆したパール顔料酸化鉄、バリウムイエロー、カドミウムレッド、並びにクロムイエローなどが挙げられる。
無機顔料として、特開2005-7765号公報に記載の無機顔料を使用することもできる。
無機顔料としては、例えば、二酸化チタン、酸化亜鉛、リトポン、軽質炭酸カルシウム、ホワイトカーボン、酸化アルミニウム、水酸化アルミニウム及び硫酸バリウム等の白色顔料、カーボンブラック、チタンブラック、チタンカーボン、酸化鉄及び黒鉛等の黒色顔料、雲母又はガラス片等の表面を酸化チタン等の金属酸化物で被覆したパール顔料酸化鉄、バリウムイエロー、カドミウムレッド、並びにクロムイエローなどが挙げられる。
無機顔料として、特開2005-7765号公報に記載の無機顔料を使用することもできる。
有機顔料としては、例えば、フタロシアニンブルー及びフタロシアニングリーン等のフタロシアニン系顔料、アゾレッド、アゾイエロー及びアゾオレンジ等のアゾ系顔料、キナクリドンレッド、シンカシャレッド及びシンカシャマゼンタ等のキナクリドン系顔料、ペリレンレッド及びペリレンマルーン等のペリレン系顔料、カルバゾールバイオレット、アントラピリジン、フラバンスロンイエロー、イソインドリンイエロー、インダスロンブルー、ジブロムアンザスロンレッド、アントラキノンレッド、並びにジケトピロロピロールなどが挙げられる。
顔料として、光透過性又は光反射性を有する顔料(いわゆる、光輝性顔料)を使用してもよい。光輝性顔料としては、例えば、アルミニウム、銅、亜鉛、鉄、ニッケル、スズ、酸化アルミニウム、及びこれらの合金等の金属製光輝性顔料、干渉マイカ顔料、ホワイトマイカ顔料、グラファイト顔料、並びにガラスフレーク顔料などが挙げられる。光輝性顔料は、無着色のものであってよく、着色されたものであってもよい。
光輝性顔料は、加飾フィルムの成型において露光を行う場合、露光による硬化を妨げない範囲において用いられることが好ましい。
光輝性顔料は、加飾フィルムの成型において露光を行う場合、露光による硬化を妨げない範囲において用いられることが好ましい。
着色剤は、1種単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。また、2種以上の着色剤を用いる場合、無機顔料と有機顔料とを組み合わせてもよい。
着色層中の着色剤の含有量は、目的とする色の発現及び成型加工適性の観点から、着色層の全質量に対して、1質量%~50質量%が好ましく、5質量%~50質量%がより好ましく、10質量%~40質量%が特に好ましい。
着色層中の着色剤の含有量は、目的とする色の発現及び成型加工適性の観点から、着色層の全質量に対して、1質量%~50質量%が好ましく、5質量%~50質量%がより好ましく、10質量%~40質量%が特に好ましい。
着色層は、分散剤を含有することができる。着色層が、分散剤を含有することにより、着色層における着色剤、特には顔料の分散性が向上し、加飾フィルムにおける色の均一化を図ることができる。
分散剤の種類は、着色剤の種類及び形状等に応じて適宜選択することが好ましく、高分子分散剤であることが好ましい。
高分子分散剤としては、例えば、シリコーンポリマー、(メタ)アクリルポリマー及びポリエステルポリマー等が挙げられる。加飾フィルムに耐熱性を付与したい場合には、例えば、分散剤として、グラフト型シリコーンポリマー等のシリコーンポリマーを用いることが好ましい。
なお、分散剤として市販されるものを使用してもよい。
高分子分散剤としては、例えば、シリコーンポリマー、(メタ)アクリルポリマー及びポリエステルポリマー等が挙げられる。加飾フィルムに耐熱性を付与したい場合には、例えば、分散剤として、グラフト型シリコーンポリマー等のシリコーンポリマーを用いることが好ましい。
なお、分散剤として市販されるものを使用してもよい。
分散剤の重量平均分子量は、着色剤の分散性の観点からは、1,000~5,000,000であることが好ましく、2,000~3,000,000であることがより好ましく、2,500~3,000,000であることが特に好ましい。
本開示において、「重量平均分子量」は、TSKgel GMHxL、TSKgel G4000HxL、TSKgel G2000HxL(何れも東ソー(株)製の商品名)のカラムを使用したゲルパーミエーションクロマトグラフィ(GPC)分析装置により、溶媒THF(テトラヒドロフラン)、示差屈折計により検出し、標準物質としてポリスチレンを用いて換算した分子量である。
本開示において、「重量平均分子量」は、TSKgel GMHxL、TSKgel G4000HxL、TSKgel G2000HxL(何れも東ソー(株)製の商品名)のカラムを使用したゲルパーミエーションクロマトグラフィ(GPC)分析装置により、溶媒THF(テトラヒドロフラン)、示差屈折計により検出し、標準物質としてポリスチレンを用いて換算した分子量である。
分散剤は、1種単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。 着色層中の分散剤の含有量は、着色剤100質量部に対して、1質量部~30質量部であることが好ましい。
着色層は、成型容易性の観点から、バインダー樹脂を含有することが好ましい。
バインダー樹脂の種類は、特に制限されず、公知の樹脂を使用することができる。バインダー樹脂は、着色層を所望の色とする観点から、透明な樹脂であることが好ましく、具体的には、全光透過率が80%以上の樹脂であることが好ましい。
バインダー樹脂の種類は、特に制限されず、公知の樹脂を使用することができる。バインダー樹脂は、着色層を所望の色とする観点から、透明な樹脂であることが好ましく、具体的には、全光透過率が80%以上の樹脂であることが好ましい。
バインダー樹脂としては、例えば、(メタ)アクリル樹脂、シリコーン樹脂、ポリエステル樹脂、ウレタン樹脂、ポリオレフィン樹脂等が挙げられる。バインダー樹脂は、特定の単量体の単独重合体であってもよく、特定の単量体と他の単量体との共重合体であってもよい。
バインダー樹脂は、1種単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。
着色層中のバインダー樹脂の含有量は、成型容易性の観点から、着色層の全質量に対して、5質量%~70質量%であることが好ましく、10質量%~60質量%であることがより好ましく、20質量%~60質量%であることが特に好ましい。
着色層中のバインダー樹脂の含有量は、成型容易性の観点から、着色層の全質量に対して、5質量%~70質量%であることが好ましく、10質量%~60質量%であることがより好ましく、20質量%~60質量%であることが特に好ましい。
着色層は、上記の成分以外に、必要に応じて、添加剤を含有してもよい。
添加剤の種類は、特に制限されず、公知の添加剤を使用することができる。添加剤としては、例えば、特許第4502784号公報及び特開2009-237362号公報に記載の界面活性剤、特許第4502784号公報に記載の熱重合防止剤(重合禁止剤ともいう。好ましくはフェノチアジンが挙げられる。)、並びに特開2000-310706号公報に記載の添加剤等が挙げられる。
添加剤の種類は、特に制限されず、公知の添加剤を使用することができる。添加剤としては、例えば、特許第4502784号公報及び特開2009-237362号公報に記載の界面活性剤、特許第4502784号公報に記載の熱重合防止剤(重合禁止剤ともいう。好ましくはフェノチアジンが挙げられる。)、並びに特開2000-310706号公報に記載の添加剤等が挙げられる。
上記着色層の厚さは、特に制限はないが、視認性及び立体成型性の観点から、0.5μm以上であることが好ましく、3μm以上であることがより好ましく、3μm~50μmであることが更に好ましく、3μm~20μmであることが特に好ましい。
加飾フィルムが着色層を2層以上有する場合は、各着色層がそれぞれ独立に、上記厚さの範囲であることが好ましい。
加飾フィルムが着色層を2層以上有する場合は、各着色層がそれぞれ独立に、上記厚さの範囲であることが好ましい。
<配向層>
本開示に係る加飾フィルムは、配向層を有することができる。配向層の位置は、特に制限されないが、第1の樹脂層、第2の樹脂層又はその他の樹脂層と隣接して設けられることが好ましい。配向層は、上記樹脂層の形成の際に用いられる液晶性組成物に含有される液晶性化合物の分子を配向させるために用いられる。
なお、配向層は、第1の樹脂層等を形成する際に存在すればよく、製造される加飾フィルムは、配向層を有していなくてもよい。
本開示に係る加飾フィルムは、配向層を有することができる。配向層の位置は、特に制限されないが、第1の樹脂層、第2の樹脂層又はその他の樹脂層と隣接して設けられることが好ましい。配向層は、上記樹脂層の形成の際に用いられる液晶性組成物に含有される液晶性化合物の分子を配向させるために用いられる。
なお、配向層は、第1の樹脂層等を形成する際に存在すればよく、製造される加飾フィルムは、配向層を有していなくてもよい。
配向層は、有機化合物(好ましくはポリマー)を含有する層のラビング処理、SiO等の無機化合物の斜方蒸着又はマイクログルーブを有する層の形成等の手段を利用することにより形成することができる。
更には、配向層は、層に対して、電場の付与、磁場の付与又は光照射により配向機能が生じさせることにより、形成することができる(以下、光照射により配向機能が生じる配向層を光配向層ともいう。)。
形成される樹脂層の下層として設けられる、基材又は別の樹脂層等に含有される材料によっては、下層に対して直接配向処理(例えば、ラビング処理)を施すことにより、配向層として機能させることもでき、配向層を別途設ける必要はない(以下、ラビング処理を施すことにより配向機能が生じる配向層をラビング処理配向層という。)。上記した下層が含有する材料の一例としては、ポリエチレンテレフタレート(PET)等を挙げることができる。
また、第1の樹脂層又は第2の樹脂層の上に、直接その他の樹脂層等を形成する場合、下層の第1の樹脂層等が配向層として機能し、上層であるその他の樹脂層等の形成に用いられる液晶性組成物に含有される液晶性化合物を配向させることができる場合もあり、配向層を設けたり、配向処理を施したりする必要がない。液晶性化合物
更には、配向層は、層に対して、電場の付与、磁場の付与又は光照射により配向機能が生じさせることにより、形成することができる(以下、光照射により配向機能が生じる配向層を光配向層ともいう。)。
形成される樹脂層の下層として設けられる、基材又は別の樹脂層等に含有される材料によっては、下層に対して直接配向処理(例えば、ラビング処理)を施すことにより、配向層として機能させることもでき、配向層を別途設ける必要はない(以下、ラビング処理を施すことにより配向機能が生じる配向層をラビング処理配向層という。)。上記した下層が含有する材料の一例としては、ポリエチレンテレフタレート(PET)等を挙げることができる。
また、第1の樹脂層又は第2の樹脂層の上に、直接その他の樹脂層等を形成する場合、下層の第1の樹脂層等が配向層として機能し、上層であるその他の樹脂層等の形成に用いられる液晶性組成物に含有される液晶性化合物を配向させることができる場合もあり、配向層を設けたり、配向処理を施したりする必要がない。液晶性化合物
配向層の厚みは、0.01μm~10μmであることが好ましい。
以下、好ましい例として、ラビング処理配向層及び光配向層について説明する。
-ラビング処理配向層-
ラビング処理配向層は、ポリマーを含有してもよい。ポリマーの例としては、例えば、特開平8-338913号公報に記載のメタクリレート系共重合体、スチレン系共重合体、ポリオレフィン、ポリビニルアルコール、変性ポリビニルアルコール、ポリ(N-メチロールアクリルアミド)、ポリエチレンテレフタレート(PET)等のポリエステル樹脂、ポリイミド樹脂、酢酸ビニル共重合体、カルボキシメチルセルロース及びポリカーボネート樹脂などが挙げられる。
また、シランカップリング剤をポリマーとして、ラビング配向層に含有させることができる。
ラビング処理配向層が含有するポリマーは、水溶性ポリマーが好ましく、具体的には、ポリ(N-メチロールアクリルアミド)、カルボキシメチルセルロース、ゼラチン、ポリビニルアルコール又は変性ポリビニルアルコール等が好ましく、ゼラチン、ポリビニルアルコール又は変性ポリビニルアルコールがより好ましく、ポリビニルアルコール又は変性ポリビニルアルコールが更に好ましい。
ラビング処理配向層は、ポリマーを含有してもよい。ポリマーの例としては、例えば、特開平8-338913号公報に記載のメタクリレート系共重合体、スチレン系共重合体、ポリオレフィン、ポリビニルアルコール、変性ポリビニルアルコール、ポリ(N-メチロールアクリルアミド)、ポリエチレンテレフタレート(PET)等のポリエステル樹脂、ポリイミド樹脂、酢酸ビニル共重合体、カルボキシメチルセルロース及びポリカーボネート樹脂などが挙げられる。
また、シランカップリング剤をポリマーとして、ラビング配向層に含有させることができる。
ラビング処理配向層が含有するポリマーは、水溶性ポリマーが好ましく、具体的には、ポリ(N-メチロールアクリルアミド)、カルボキシメチルセルロース、ゼラチン、ポリビニルアルコール又は変性ポリビニルアルコール等が好ましく、ゼラチン、ポリビニルアルコール又は変性ポリビニルアルコールがより好ましく、ポリビニルアルコール又は変性ポリビニルアルコールが更に好ましい。
配向層のラビング処理面に上記液晶性組成物を付与して、液晶性化合物の分子を配向させる。その後、必要に応じて、配向層に含有されるポリマーと、上記第1の樹脂層に含まれる多官能モノマーとを反応させるか、あるいは、架橋剤を用いて配向層に含有されるポリマーを架橋させることで、上記第1の樹脂層を形成することができる。
-光配向層-
光配向層は光配向材料を含有することができる。光配向材料としては、例えば、特開2006-285197号公報、特開2007-76839号公報、特開2007-138138号公報、特開2007-94071号公報、特開2007-121721号公報、特開2007-140465号公報、特開2007-156439号公報、特開2007-133184号公報、特開2009-109831号公報、特許第3883848号公報及び特許第4151746号公報等に記載のアゾ化合物、特開2002-229039号公報等に記載の芳香族エステル化合物、特開2002-265541号公報及び特開2002-317013号公報等に記載の光配向性単位を有するマレイミド及び/又はアルケニル置換ナジイミド化合物、特許第4205195号及び特許第4205198号公報等に記載の光架橋性シラン誘導体、特表2003-520878号公報、特表2004-529220号公報及び特許第4162850号公報等に記載の光架橋性ポリイミド、ポリアミド、並びにエステルが好ましい例として挙げられる。特に好ましくは、アゾ化合物、光架橋性ポリイミド、ポリアミド又はエステルである。
光配向層は光配向材料を含有することができる。光配向材料としては、例えば、特開2006-285197号公報、特開2007-76839号公報、特開2007-138138号公報、特開2007-94071号公報、特開2007-121721号公報、特開2007-140465号公報、特開2007-156439号公報、特開2007-133184号公報、特開2009-109831号公報、特許第3883848号公報及び特許第4151746号公報等に記載のアゾ化合物、特開2002-229039号公報等に記載の芳香族エステル化合物、特開2002-265541号公報及び特開2002-317013号公報等に記載の光配向性単位を有するマレイミド及び/又はアルケニル置換ナジイミド化合物、特許第4205195号及び特許第4205198号公報等に記載の光架橋性シラン誘導体、特表2003-520878号公報、特表2004-529220号公報及び特許第4162850号公報等に記載の光架橋性ポリイミド、ポリアミド、並びにエステルが好ましい例として挙げられる。特に好ましくは、アゾ化合物、光架橋性ポリイミド、ポリアミド又はエステルである。
<基材>
本開示に係る加飾フィルムは、基材を含んでいてもよい。基材の形状及び材質は、特に制限されず、用途に応じて適宜選択することができる。
インサート成型容易性及びチッピング耐性の観点から、基材は、樹脂基材であることが好ましく、樹脂フィルム基材であることがより好ましい。
本開示に係る加飾フィルムは、基材を含んでいてもよい。基材の形状及び材質は、特に制限されず、用途に応じて適宜選択することができる。
インサート成型容易性及びチッピング耐性の観点から、基材は、樹脂基材であることが好ましく、樹脂フィルム基材であることがより好ましい。
基材としては、例えば、PET樹脂、ポリエチレンナフタレート(PEN)樹脂、ポリオレフィン樹脂(好ましくは、ポリプロピレン)、(メタ)アクリル樹脂、ウレタン樹脂、ウレタン変性(メタ)アクリル樹脂、ポリカーボネート(PC)樹脂、(メタ)アクリル変性ポリカーボネート樹脂、トリアセチルセルロース(TAC)、シクロオレフィンポリマー(COP)、(メタ)アクリロニトリル/ブタジエン/スチレン共重合樹脂(ABS樹脂)等の樹脂を含む樹脂フィルムが挙げられる。
上記した中でも、成型容易性及び強度の観点から、PET樹脂、(メタ)アクリル樹脂、ウレタン樹脂、ウレタン変性(メタ)アクリル樹脂、PC樹脂、(メタ)アクリル変性ポリカーボネート樹脂、ポリプロピレン樹脂よりなる群から選ばれた少なくとも1種の樹脂を含む樹脂フィルムであることが好ましく、(メタ)アクリル樹脂、PC樹脂及び(メタ)アクリル変性ポリカーボネート樹脂よりなる群から選ばれた少なくとも1種の樹脂を含む樹脂フィルムであることがより好ましい。
また、基材としては、2層以上の積層樹脂基材であってもよい。(メタ)アクリル樹脂フィルムと、ポリカーボネート樹脂フィルムとの積層体等が好ましい例として挙げられる。
上記した中でも、成型容易性及び強度の観点から、PET樹脂、(メタ)アクリル樹脂、ウレタン樹脂、ウレタン変性(メタ)アクリル樹脂、PC樹脂、(メタ)アクリル変性ポリカーボネート樹脂、ポリプロピレン樹脂よりなる群から選ばれた少なくとも1種の樹脂を含む樹脂フィルムであることが好ましく、(メタ)アクリル樹脂、PC樹脂及び(メタ)アクリル変性ポリカーボネート樹脂よりなる群から選ばれた少なくとも1種の樹脂を含む樹脂フィルムであることがより好ましい。
また、基材としては、2層以上の積層樹脂基材であってもよい。(メタ)アクリル樹脂フィルムと、ポリカーボネート樹脂フィルムとの積層体等が好ましい例として挙げられる。
基材は、必要に応じて、添加剤を含有していてもよい。
添加剤としては、例えば、鉱油、炭化水素、脂肪酸、アルコール、脂肪酸エステル、脂肪酸アミド、金属石けん、天然ワックス及びシリコーン等の潤滑剤、水酸化マグネシウム及び水酸化アルミニウム等の無機難燃剤、ハロゲン系有機難燃剤及びリン系有機難燃剤等の有機難燃剤、金属粉、タルク、炭酸カルシウム、チタン酸カリウム、ガラス繊維、カーボン繊維及び木粉等の有機充填剤及び無機充填剤、酸化防止剤、紫外線防止剤、滑剤、分散剤、カップリング剤、発泡剤、着色剤、並びにポリオレフィン樹脂、ポリエステル樹脂、ポリアセタール樹脂、ポリアミド樹脂又はポリフェニレンエーテル樹脂等であって、上述した樹脂以外のエンジニアリングプラスチックなどが挙げられる。
添加剤としては、例えば、鉱油、炭化水素、脂肪酸、アルコール、脂肪酸エステル、脂肪酸アミド、金属石けん、天然ワックス及びシリコーン等の潤滑剤、水酸化マグネシウム及び水酸化アルミニウム等の無機難燃剤、ハロゲン系有機難燃剤及びリン系有機難燃剤等の有機難燃剤、金属粉、タルク、炭酸カルシウム、チタン酸カリウム、ガラス繊維、カーボン繊維及び木粉等の有機充填剤及び無機充填剤、酸化防止剤、紫外線防止剤、滑剤、分散剤、カップリング剤、発泡剤、着色剤、並びにポリオレフィン樹脂、ポリエステル樹脂、ポリアセタール樹脂、ポリアミド樹脂又はポリフェニレンエーテル樹脂等であって、上述した樹脂以外のエンジニアリングプラスチックなどが挙げられる。
基材の厚さは、特に制限はなく、加飾フィルムの用途に応じて適宜選択することが好ましいが、基材の厚さは、1μm以上が好ましく、10μm以上がより好ましく、20μm以上が更に好ましく、50μm以上が特に好ましい。基材の厚さは、500μm以下が好ましく、450μm以下がより好ましく、200μm以下が更に好ましい。
基材は、隣接する層との密着性の観点から、表面処理が施されていることが好ましい。表面処理としては、例えば、コロナ放電処理、プラズマ処理、オゾン処理及びフレーム処理等が挙げられる。
また、基材は、剥離性の高い材料により構成されるものであってもよく、加飾フィルムの製造において使用し、製造される加飾フィルムからは剥離除去されていてもよい。
また、基材は、剥離性の高い材料により構成されるものであってもよく、加飾フィルムの製造において使用し、製造される加飾フィルムからは剥離除去されていてもよい。
(その他の層)
本開示の加飾フィルムには、上に述べた各層に加えて、必要に応じて任意にその他の層を含むことができる。例えば、保護層、帯電防止層、反射防止層、色補正層、紫外線吸収層、ガスバリア層、剥離層、粘着層及び接着層等が挙げられる。
本開示の加飾フィルムには、上に述べた各層に加えて、必要に応じて任意にその他の層を含むことができる。例えば、保護層、帯電防止層、反射防止層、色補正層、紫外線吸収層、ガスバリア層、剥離層、粘着層及び接着層等が挙げられる。
(第1の態様に係る加飾フィルムの製造方法)
本開示に係る加飾フィルムの製造方法は、
基材及び液晶層を含む液晶材料を準備する工程と、
上記液晶層に対し光異性化処理を施し、上記液晶層が、380nm以下又は800nm以上の範囲に最大反射率となる波長が存在する領域を少なくとも1つ含む、最大反射率となる波長が異なる2つ以上の領域を有する状態とした後、上記液晶層を硬化させ、コレステリック規則性を有する第1の樹脂層を形成する工程と、
上記第1の樹脂層上に、上記第1の樹脂層とは異なるコレステリック規則性を有する第2の樹脂層を形成する工程と、
を含む。
本開示に係る加飾フィルムの製造方法は、
基材及び液晶層を含む液晶材料を準備する工程と、
上記液晶層に対し光異性化処理を施し、上記液晶層が、380nm以下又は800nm以上の範囲に最大反射率となる波長が存在する領域を少なくとも1つ含む、最大反射率となる波長が異なる2つ以上の領域を有する状態とした後、上記液晶層を硬化させ、コレステリック規則性を有する第1の樹脂層を形成する工程と、
上記第1の樹脂層上に、上記第1の樹脂層とは異なるコレステリック規則性を有する第2の樹脂層を形成する工程と、
を含む。
また、本開示の加飾フィルムの製造方法は、その他の樹脂層を形成する工程を含むことができる。
<液晶材料を準備する工程>
液晶材料は、基材及び液晶層を含む。上記液晶層は、基材上に、液晶組成物を付与し、加熱することにより形成することができる。また、市販される液晶材料を使用してもよい。
液晶材料は、基材及び液晶層を含む。上記液晶層は、基材上に、液晶組成物を付与し、加熱することにより形成することができる。また、市販される液晶材料を使用してもよい。
基材は、上記した材料を用いて、従来公知の方法により製造したものを使用してもよく、市販されるものを使用してもよい。市販品としては、例えば、テクノロイ(登録商標)シリーズ(アクリル樹脂フィルム又はアクリル樹脂フィルム及びポリカーボネート樹脂フィルムの積層体、住友化学(株)製)等を挙げることができる。
なお、加飾フィルムの製造後、基材は剥離してもよい。
なお、加飾フィルムの製造後、基材は剥離してもよい。
基材上への液晶性組成物の付与方法としては、特に制限はなく、ワイヤーバーコーティング法、カーテンコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法、スピンコーティング法、ディップコーティング法、スプレーコーティング法及びスライドコーティング法等が挙げられる。また、上記付与方法として、別途支持体上に塗設した液晶性組成物を転写する方法が挙げられる。更に、上記付与方法として、液晶性組成物を打滴する方法が挙げられる。打点方法としては、インクジェット法を用いることができる。
付与した液晶性組成物を加熱することにより、液晶性化合物を配向させることができる。加熱温度は、200℃以下が好ましく、130℃以下がより好ましい。上記加熱処理により、液晶性化合物が、形成面に対して実質的に垂直な方向に螺旋軸を有するようにねじれ配向している構造を有する液晶層が形成される。
液晶性組成物が上記溶媒を含有する場合、公知の方法により乾燥することが好ましい。例えば、放置又は風乾によって乾燥してもよく、加熱によって乾燥してもよい。
液晶性組成物の付与量は、乾燥後の第1の樹脂層の厚みを考慮し、適宜調整すればよい
なお、第1の樹脂層は、基材上に形成されていればよく、基材上に設けられた着色層又はその他の樹脂層の上に形成してもよい。また、液晶性組成物に含有されうる材料については上記したため、ここでは記載を省略する。
付与した液晶性組成物を加熱することにより、液晶性化合物を配向させることができる。加熱温度は、200℃以下が好ましく、130℃以下がより好ましい。上記加熱処理により、液晶性化合物が、形成面に対して実質的に垂直な方向に螺旋軸を有するようにねじれ配向している構造を有する液晶層が形成される。
液晶性組成物が上記溶媒を含有する場合、公知の方法により乾燥することが好ましい。例えば、放置又は風乾によって乾燥してもよく、加熱によって乾燥してもよい。
液晶性組成物の付与量は、乾燥後の第1の樹脂層の厚みを考慮し、適宜調整すればよい
なお、第1の樹脂層は、基材上に形成されていればよく、基材上に設けられた着色層又はその他の樹脂層の上に形成してもよい。また、液晶性組成物に含有されうる材料については上記したため、ここでは記載を省略する。
-液晶性組成物及び液晶性化合物-
液晶性組成物は、液晶性化合物を含有することができる。液晶性組成物は、非液晶性重合性モノマーを含有することができる。液晶性組成物は、キラル化合物を含有することができる。液晶性組成物は、架橋剤を含有することができる。液晶性組成物は、その他の添加剤を含有することができる。液晶性組成物は、溶媒を含有することができる。
液晶性組成物は、液晶性化合物を含有することができる。液晶性組成物は、非液晶性重合性モノマーを含有することができる。液晶性組成物は、キラル化合物を含有することができる。液晶性組成物は、架橋剤を含有することができる。液晶性組成物は、その他の添加剤を含有することができる。液晶性組成物は、溶媒を含有することができる。
液晶性化合物としては、棒状化合物(以下、棒状液晶性化合物ともいう。)及び円盤状化合物(以下、円盤状液晶性化合物ともいう。)が挙げられ、螺旋構造の形成容易性という観点からは、棒状液晶性化合物であることが好ましい。
また、液晶性組成物は、2種以上の棒状液晶性化合物、2種以上の円盤状液晶性化合物、又は棒状液晶性化合物と円盤状液晶性との混合物を含有してもよい。
なお、形成された樹脂層には、液晶性化合物は含有されていなくともよい。例えば、第1の樹脂層は、熱又は光等により反応する基を有している低分子液晶性化合物が、熱、光等により反応し、架橋し、高分子量化して、結果的に液晶性を失った化合物が含有される層であってもよい。
また、液晶性組成物は、2種以上の棒状液晶性化合物、2種以上の円盤状液晶性化合物、又は棒状液晶性化合物と円盤状液晶性との混合物を含有してもよい。
なお、形成された樹脂層には、液晶性化合物は含有されていなくともよい。例えば、第1の樹脂層は、熱又は光等により反応する基を有している低分子液晶性化合物が、熱、光等により反応し、架橋し、高分子量化して、結果的に液晶性を失った化合物が含有される層であってもよい。
また、樹脂層の形成に用いられる、液晶性化合物の組み合わせは、特に限定されるものではない。
樹脂層の形成に用いられる液晶性化合物の全てが棒状液晶性化合物であってもよく、全てが円盤状液晶性化合物であってもよく、全てが棒状液晶性化合物と円盤状液晶性化合物との混合物であってもよい。なお、上記混合物における棒状液晶性化合物と円盤状液晶性化合物の混合比は、各層異なるものであってもよく、同一のものであってもよい。 また、全てが棒状液晶性化合物により形成される層と、全てが円盤状液晶性化合物により形成される層とが積層されたものであってもよい。
樹脂層の形成に用いられる液晶性化合物の全てが棒状液晶性化合物であってもよく、全てが円盤状液晶性化合物であってもよく、全てが棒状液晶性化合物と円盤状液晶性化合物との混合物であってもよい。なお、上記混合物における棒状液晶性化合物と円盤状液晶性化合物の混合比は、各層異なるものであってもよく、同一のものであってもよい。 また、全てが棒状液晶性化合物により形成される層と、全てが円盤状液晶性化合物により形成される層とが積層されたものであってもよい。
また、液晶性化合物は、低分子化合物であってもよく、高分子化合物であってもよい。なお、本開示において、「高分子化合物」とは、重合度が100以上の化合物を指すものとする(高分子物理・相転移ダイナミクス,土井正男著,2頁,岩波書店,1992)。
温度及び湿度の螺旋構造形成への影響を小さくすることができるため、液晶性化合物は、1分子中に反応性基を有することが好ましく、1分子中に反応性基を2つ以上有することがより好ましい。以下、1分子中に反応性基を1つ有する液晶性化合物を「単官能液晶性化合物」ともいい、1分子中に反応性基を2つ以上有する液晶性化合物を「多官能液晶性化合物」ともいう。
液晶性組成物は、単官能液晶性化合物を含むことが好ましい。液晶性組成物は、単官能液晶性化合物を含むことにより、加飾フィルムの成型容易性を向上することができる。
液晶性組成物は、単官能液晶性化合物を含むことが好ましい。液晶性組成物は、単官能液晶性化合物を含むことにより、加飾フィルムの成型容易性を向上することができる。
形成された樹脂層上に更に樹脂層を形成する場合、例えば、第1の樹脂層上に第2の樹脂層を形成する場合、第1の樹脂層の形成に用いられる液晶性組成物は、多官能液晶性化合物及び多官能の非液晶性重合性モノマーの少なくとも一方を含むことが好ましい。液晶性組成物が多官能液晶性化合物及び多官能の非液晶性重合性モノマーの少なくとも一方を含むことにより、第2の樹脂層を形成するための液晶性組成物を第1の樹脂層上へ付与する際において、第2の樹脂層を形成するための液晶性組成物が第1の樹脂層中の成分と混ざってしまうことを防止することができる。
上記液晶性組成物における多官能性液晶性化合物及び多官能の非液晶性重合モノマーの含有量は、10質量%以上であることが好しく、15質量%以上であることがより好ましく、20質量%以上であることが更に好ましい。また、上記液晶性組成物における多官能性液晶性化合物及び多官能の非液晶性重合モノマーの含有量は、50質量%以下であることが好ましい。
また、加飾フィルムの成型性の観点から、上記液晶性組成物は、多官能液晶性化合物及び多官能の非液晶性重合モノマーの少なくとも一方に加え、単官能液晶性化合物を含むことが好ましい。
液晶性組成物が、単官能液晶性化合物、多官能液晶性化合物及び多官能の非液晶性重合モノマーを含む場合、液晶性組成物における、単官能液晶性化合物の含有量と、多官能液晶性化合物及び多官能の非液晶性重合性モノマーの含有量との比(単官能液晶性化合物の含有量:多官能液晶性化合物及び多官能の非液晶性重合性モノマーの含有量の和)は、質量基準で、95:5~1:99であることが好ましく、85:15~10:90であることがより好ましく、85:15~20:80であることが更に好ましく、85:15~40:60であることが特に好ましい。
上記液晶性組成物における多官能性液晶性化合物及び多官能の非液晶性重合モノマーの含有量は、10質量%以上であることが好しく、15質量%以上であることがより好ましく、20質量%以上であることが更に好ましい。また、上記液晶性組成物における多官能性液晶性化合物及び多官能の非液晶性重合モノマーの含有量は、50質量%以下であることが好ましい。
また、加飾フィルムの成型性の観点から、上記液晶性組成物は、多官能液晶性化合物及び多官能の非液晶性重合モノマーの少なくとも一方に加え、単官能液晶性化合物を含むことが好ましい。
液晶性組成物が、単官能液晶性化合物、多官能液晶性化合物及び多官能の非液晶性重合モノマーを含む場合、液晶性組成物における、単官能液晶性化合物の含有量と、多官能液晶性化合物及び多官能の非液晶性重合性モノマーの含有量との比(単官能液晶性化合物の含有量:多官能液晶性化合物及び多官能の非液晶性重合性モノマーの含有量の和)は、質量基準で、95:5~1:99であることが好ましく、85:15~10:90であることがより好ましく、85:15~20:80であることが更に好ましく、85:15~40:60であることが特に好ましい。
最表面に設けられる樹脂層(以下、最表面樹脂層ともいう。)を形成する液晶性組成物は、最表面樹脂層よりも下に設けられた樹脂層を形成する液晶性組成物よりも多官能液晶性化合物及び多官能の非液晶性重合モノマーの含有量が少ないことが、加飾フィルムの成型性の観点から好ましい。なお、本開示において、最表面樹脂層は、第1の樹脂層であっても、第2の樹脂層であっても、その他の樹脂層であってもよい。
また、多官能液晶性化合物は、架橋機構の異なる2種以上の反応性基を有することが好ましい。上記液晶性化合物を使用し、反応条件を選択することにより、液晶性化合物が有する反応性基の一部を重合させることができ、未反応の反応性基を有する化合物を含有する層とすることができる。
架橋機構としては、縮合重合反応、水素結合反応及び付加重合反応等が挙げられる。なお、「架橋機構の異なる2種以上の反応性基を有する」とは、異なる重合反応を架橋機構とする2種以上の反応性基を有する場合をも包含する。
多官能液晶性化合物が架橋機構の異なる2種以上の反応性基を有する場合、少なくとも1つの反応性基の架橋機構が重合反応であることが好ましく、2種以上の反応性基の架橋機構が異なる重合反応であることがより好ましい。
架橋機構としては、縮合重合反応、水素結合反応及び付加重合反応等が挙げられる。なお、「架橋機構の異なる2種以上の反応性基を有する」とは、異なる重合反応を架橋機構とする2種以上の反応性基を有する場合をも包含する。
多官能液晶性化合物が架橋機構の異なる2種以上の反応性基を有する場合、少なくとも1つの反応性基の架橋機構が重合反応であることが好ましく、2種以上の反応性基の架橋機構が異なる重合反応であることがより好ましい。
架橋機構の異なる2種類以上の反応性基を有する液晶性化合物とは、異なる架橋反応工程を用いて段階的に架橋可能な化合物であり、各段階の架橋反応工程では、それぞれの架橋機構に応じた反応性基が官能基として反応する。
また、例えば、側鎖にヒドロキシ基を有するポリビニルアルコールのようなポリマーを重合する重合反応を行った後、側鎖のヒドロキシ基をアルデヒドなどで架橋させた場合は2種類以上の異なる架橋機構を用いたことになる。
本開示において、2種類以上の異なる反応性基を有する液晶性化合物は、樹脂層を形成した時点においては、2種類以上の異なる反応性基を有し、形成後に反応性基を段階的に架橋させることができる化合物であることが好ましい。
また、例えば、側鎖にヒドロキシ基を有するポリビニルアルコールのようなポリマーを重合する重合反応を行った後、側鎖のヒドロキシ基をアルデヒドなどで架橋させた場合は2種類以上の異なる架橋機構を用いたことになる。
本開示において、2種類以上の異なる反応性基を有する液晶性化合物は、樹脂層を形成した時点においては、2種類以上の異なる反応性基を有し、形成後に反応性基を段階的に架橋させることができる化合物であることが好ましい。
上記反応性基は、重合性基であることが好ましい。重合性基としては、ラジカル重合性基及びカチオン重合性基が挙げられる。液晶性化合物は、2種以上の重合性基を有する多官能液晶性化合物であることが好ましい。
段階的に架橋させるための反応条件の違いは、温度の違い、光(照射線)の波長の違い及び重合機構の違いのいずれでもよいが、反応を分離しやすい点から重合機構の違いを用いることが好ましく、用いる重合開始剤の種類によって制御することがより好ましい。
段階的に架橋させるための反応条件の違いは、温度の違い、光(照射線)の波長の違い及び重合機構の違いのいずれでもよいが、反応を分離しやすい点から重合機構の違いを用いることが好ましく、用いる重合開始剤の種類によって制御することがより好ましい。
重合性基としては、例えば、ビニル基、(メタ)アクリル基、エポキシ基、オキセタニル基、ビニルエーテル基、ヒドロキシ基、カルボキシ基及びアミノ基等が挙げられる。
重合性基の組み合わせとしては、ラジカル重合性基とカチオン重合性基との組み合わせが好ましい。中でも、上記ラジカル重合性基がビニル基又は(メタ)アクリル基であり、且つ上記カチオン重合性基がエポキシ基、オキセタニル基又はビニルエーテル基である組み合わせは、反応性を制御することが容易であるため好ましい。
中でも、液晶性化合物は、反応性及び螺旋構造の螺旋ピッチの固定容易性の観点から、ラジカル重合性基を有することが好ましい。
以下に反応性基の例を示すが、反応性基はこれらに限定されるものではない。なお、Etはエチル基を表し、n-Prはn-プロピル基を表す。
重合性基の組み合わせとしては、ラジカル重合性基とカチオン重合性基との組み合わせが好ましい。中でも、上記ラジカル重合性基がビニル基又は(メタ)アクリル基であり、且つ上記カチオン重合性基がエポキシ基、オキセタニル基又はビニルエーテル基である組み合わせは、反応性を制御することが容易であるため好ましい。
中でも、液晶性化合物は、反応性及び螺旋構造の螺旋ピッチの固定容易性の観点から、ラジカル重合性基を有することが好ましい。
以下に反応性基の例を示すが、反応性基はこれらに限定されるものではない。なお、Etはエチル基を表し、n-Prはn-プロピル基を表す。
棒状液晶性化合物としては、アゾメチン系化合物、アゾキシ系化合物、シアノビフェニル系化合物、シアノフェニルエステル系化合物、安息香酸エステル系化合物、シクロヘキサンカルボン酸フェニルエステル系化合物、シアノフェニルシクロヘキサン系化合物、シアノ置換フェニルピリミジン系化合物、アルコキシ置換フェニルピリミジン系化合物、フェニルジオキサン系化合物、トラン系化合物及びアルケニルシクロヘキシルベンゾニトリル系化合物が好ましく挙げられる。
上記低分子液晶性化合物だけではなく、高分子液晶性化合物も用いることができる。上記高分子液晶性化合物は、反応性基を有する、低分子の棒状液晶性化合物が重合した高分子化合物である。
棒状液晶性化合物の例としては、特開2008-281989号公報、特表平11-513019号公報及び特表2006-526165号公報等に記載の化合物などが挙げられる。
上記低分子液晶性化合物だけではなく、高分子液晶性化合物も用いることができる。上記高分子液晶性化合物は、反応性基を有する、低分子の棒状液晶性化合物が重合した高分子化合物である。
棒状液晶性化合物の例としては、特開2008-281989号公報、特表平11-513019号公報及び特表2006-526165号公報等に記載の化合物などが挙げられる。
以下に、棒状液晶性化合物の具体例を示すが、これらに限定されるものではない。なお、下記に示す化合物は、特表平11-513019号公報に記載の方法により合成することができる。
円盤状液晶性化合物としては、モノマー等の低分子量の円盤状液晶性化合物、及び重合性を有する円盤状液晶性化合物が挙げられる。
円盤状液晶性化合物の例としては、C.Destradeらの研究報告、Mol.Cryst.71巻、111頁(1981年)に記載されているベンゼン誘導体、C.Destradeらの研究報告、Mol.Cryst.122巻、141頁(1985年)、Physicslett,A,78巻、82頁(1990)に記載されているトルキセン誘導体、B.Kohneらの研究報告、Angew.Chem.96巻、70頁(1984年)に記載されたシクロヘキサン誘導体、並びに、J.M.Lehnらの研究報告、J.Chem.Commun.,1794頁(1985年)及びJ.Zhangらの研究報告、J.Am.Chem.Soc.116巻、2655頁(1994年)に記載されているアザクラウン系マクロサイクル及びフェニルアセチレン系マクロサイクル等を挙げることができる。
上記円盤状液晶性化合物には、上記各種構造を分子中心の円盤状の母核とし、直鎖のアルキル基、アルコキシ基、置換ベンゾイルオキシ基等の基(L)を母核の側鎖として放射線状に有する構造を有し、且つ液晶性を示す化合物が含まれる。上記化合物は、一般的に、円盤状液晶とよばれる。
上記化合物の集合体が一様に配向した場合は負の一軸性を示すが、円盤状液晶性化合物は、この記載に限定されるものではない。液晶性化合物として、反応性基を有する円盤状液晶性化合物を用いる場合、硬化された樹脂層において、水平配向、垂直配向、傾斜配向及びねじれ配向のいずれの配向状態において固定されていてもよい。
円盤状液晶性化合物の例としては、C.Destradeらの研究報告、Mol.Cryst.71巻、111頁(1981年)に記載されているベンゼン誘導体、C.Destradeらの研究報告、Mol.Cryst.122巻、141頁(1985年)、Physicslett,A,78巻、82頁(1990)に記載されているトルキセン誘導体、B.Kohneらの研究報告、Angew.Chem.96巻、70頁(1984年)に記載されたシクロヘキサン誘導体、並びに、J.M.Lehnらの研究報告、J.Chem.Commun.,1794頁(1985年)及びJ.Zhangらの研究報告、J.Am.Chem.Soc.116巻、2655頁(1994年)に記載されているアザクラウン系マクロサイクル及びフェニルアセチレン系マクロサイクル等を挙げることができる。
上記円盤状液晶性化合物には、上記各種構造を分子中心の円盤状の母核とし、直鎖のアルキル基、アルコキシ基、置換ベンゾイルオキシ基等の基(L)を母核の側鎖として放射線状に有する構造を有し、且つ液晶性を示す化合物が含まれる。上記化合物は、一般的に、円盤状液晶とよばれる。
上記化合物の集合体が一様に配向した場合は負の一軸性を示すが、円盤状液晶性化合物は、この記載に限定されるものではない。液晶性化合物として、反応性基を有する円盤状液晶性化合物を用いる場合、硬化された樹脂層において、水平配向、垂直配向、傾斜配向及びねじれ配向のいずれの配向状態において固定されていてもよい。
液晶性組成物は、液晶性化合物を、1種含有するものであっても、2種以上含有するものであってもよい。
液晶性組成物における液晶性化合物の含有量は、加飾フィルムの意匠性の観点から、液晶性組成物中における全固形分に対し、30質量%~99質量%であることが好ましく、40質量%~99質量%であることがより好ましく、60質量%~99質量%であることが更に好ましく、70質量%~98質量%であることが特に好ましい。
液晶性組成物における液晶性化合物の含有量は、加飾フィルムの意匠性の観点から、液晶性組成物中における全固形分に対し、30質量%~99質量%であることが好ましく、40質量%~99質量%であることがより好ましく、60質量%~99質量%であることが更に好ましく、70質量%~98質量%であることが特に好ましい。
-非液晶性重合性モノマー-
液晶性組成物は、非液晶性重合性モノマーを含有してもよい。液晶性組成物が、非液晶性重合性モノマーを含有することにより、第1の樹脂層形成時における液晶性化合物の架橋反応が促進される。
非液晶性重合性モノマーとしては、例えば、エチレン性不飽和結合を2個以上有し、光の照射によって付加重合するモノマー又はオリゴマーを非液晶性重合性モノマーとして用いることができる。
なお、本開示において、オリゴマーとは、モノマーの重合体であり、重合度が2以上15以下の化合物を意味する。
また、非液晶性重合モノマーは、単官能のものであっても、多官能のものであってもよい。
液晶性組成物は、非液晶性重合性モノマーを含有してもよい。液晶性組成物が、非液晶性重合性モノマーを含有することにより、第1の樹脂層形成時における液晶性化合物の架橋反応が促進される。
非液晶性重合性モノマーとしては、例えば、エチレン性不飽和結合を2個以上有し、光の照射によって付加重合するモノマー又はオリゴマーを非液晶性重合性モノマーとして用いることができる。
なお、本開示において、オリゴマーとは、モノマーの重合体であり、重合度が2以上15以下の化合物を意味する。
また、非液晶性重合モノマーは、単官能のものであっても、多官能のものであってもよい。
上記モノマー及びオリゴマーとしては、分子中に少なくとも1個の付加重合可能なエチレン性不飽和基を有する化合物を挙げることができる。
上記モノマー及びオリゴマーの例としては、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート及びフェノキシエチル(メタ)アクリレート等の単官能(メタ)アクリレート;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールエタントリアクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンジアクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(アクリロイルオキシプロピル)エーテル、トリ(アクリロイルオキシエチル)イソシアヌレート、トリ(アクリロイルオキシエチル)シアヌレート及びグリセリントリ(メタ)アクリレート;トリメチロールプロパン及びグリセリン等の多官能アルコールにエチレンオキシド又はプロピレンオキシドを付加した後(メタ)アクリレート化した化合物等の多官能(メタ)アクリレートなどを挙げることができる。
上記モノマー及びオリゴマーの例としては、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート及びフェノキシエチル(メタ)アクリレート等の単官能(メタ)アクリレート;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールエタントリアクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンジアクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(アクリロイルオキシプロピル)エーテル、トリ(アクリロイルオキシエチル)イソシアヌレート、トリ(アクリロイルオキシエチル)シアヌレート及びグリセリントリ(メタ)アクリレート;トリメチロールプロパン及びグリセリン等の多官能アルコールにエチレンオキシド又はプロピレンオキシドを付加した後(メタ)アクリレート化した化合物等の多官能(メタ)アクリレートなどを挙げることができる。
更に、上記モノマー及びオリゴマーの例としては、特公昭48-41708号公報、特公昭50-6034号公報及び特開昭51-37193号公報等に記載されているウレタンアクリレート系化合物;特開昭48-64183号公報、特公昭49-43191号公報及び特公昭52-30490号公報等に記載されているポリエステルアクリレート系化合物;並びにエポキシ樹脂と(メタ)アクリル酸の反応生成物であるエポキシアクリレート系化合物などの多官能(メタ)アクリレー卜を挙げることができる。
上記した化合物の中でも、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジぺンタエリスリトールヘキサ(メタ)アクリレート又はジぺンタエリスリトールペンタ(メタ)アクリレートが好ましい。
また、この他、特開平11-133600号公報に記載の「重合性化合物B」も好適な上記非液晶性重合性モノマーの例として挙げることができる。
上記モノマー又はオリゴマーは、単独でも、二種類以上を混合して使用してもよい。
上記した化合物の中でも、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジぺンタエリスリトールヘキサ(メタ)アクリレート又はジぺンタエリスリトールペンタ(メタ)アクリレートが好ましい。
また、この他、特開平11-133600号公報に記載の「重合性化合物B」も好適な上記非液晶性重合性モノマーの例として挙げることができる。
上記モノマー又はオリゴマーは、単独でも、二種類以上を混合して使用してもよい。
また、非液晶性重合性モノマーとして、カチオン重合性モノマーを用いることもできる。例えば、特開平6-9714号、特開2001-31892号、特開2001-40068号、特開2001-55507号、特開2001-310938号、特開2001-310937号及び特開2001-220526号等の各公報に例示されているエポキシ化合物、ビニルエーテル化合物及びオキセタン化合物等が挙げられる。
また、カチオン重合性モノマーとして、単官能又は2官能のオキセタンモノマーを用いることもできる。
単官能又は2官能のオキセタンモノマーとして、例えば、3-エチル-3-ヒドロキシメチルオキセタン(東亞合成(株)製、商品名OXT101等)、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ベンゼン(東亞合成(株)製、商品名OXT121等)、3-エチル-3-(フェノキシメチル)オキセタン(東亞合成(株)製、商品名OXT211等)、ジ(1-エチル-3-オキセタニル)メチルエーテル(東亞合成(株)製、商品名OXT221等)又は3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン(東亞合成(株)製、商品名OXT212等)等を好ましく用いることができ、特に、3-エチル-3-ヒドロキシメチルオキセタン、3-エチル-3-(フェノキシメチル)オキセタン若しくはジ(1-エチル-3-オキセタニル)メチルエーテル等の化合物又は、特開2001-220526号公報若しくは特開2001-310937号公報等に記載されている化合物など、公知のあらゆる単官能又は多官能オキセタン化合物を使用できる。
単官能又は2官能のオキセタンモノマーとして、例えば、3-エチル-3-ヒドロキシメチルオキセタン(東亞合成(株)製、商品名OXT101等)、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ベンゼン(東亞合成(株)製、商品名OXT121等)、3-エチル-3-(フェノキシメチル)オキセタン(東亞合成(株)製、商品名OXT211等)、ジ(1-エチル-3-オキセタニル)メチルエーテル(東亞合成(株)製、商品名OXT221等)又は3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン(東亞合成(株)製、商品名OXT212等)等を好ましく用いることができ、特に、3-エチル-3-ヒドロキシメチルオキセタン、3-エチル-3-(フェノキシメチル)オキセタン若しくはジ(1-エチル-3-オキセタニル)メチルエーテル等の化合物又は、特開2001-220526号公報若しくは特開2001-310937号公報等に記載されている化合物など、公知のあらゆる単官能又は多官能オキセタン化合物を使用できる。
-キラル化合物-
液晶性組成物は、樹脂層の形成容易性及び螺旋構造の螺旋ピッチ調整容易性の観点からキラル化合物を含有することが好ましい。キラル化合物は、コレステリック液晶化合物について螺旋構造を誘起する機能を有する。
キラル化合物は、誘起する螺旋のよじれ方向又は螺旋ピッチが液晶化合物によって異なるため、目的に応じて選択すればよい。キラル化合物は特に限定されず、公知の化合物(例えば、「液晶デバイスハンドブック」、第3章4-3項、TN(twisted nematic)、STN(Super-twisted nematic)用カイラル剤、199頁、日本学術振興会第142委員会編、1989に記載された化合物)、イソソルビド、及びイソマンニド誘導体を用いることができる。キラル化合物は、一般に不斉炭素原子を含むが、不斉炭素原子を含まない軸性不斉化合物又は面性不斉化合物もキラル化合物として用いることができる。軸性不斉化合物又は面性不斉化合物の例には、ビナフチル化合物、ヘリセン化合物、及びパラシクロファン化合物が好ましく挙げられる。
キラル化合物としては、例えば、光異性化キラル化合物及び重合性キラル化合物が挙げられる。
液晶性組成物は、樹脂層の形成容易性及び螺旋構造の螺旋ピッチ調整容易性の観点からキラル化合物を含有することが好ましい。キラル化合物は、コレステリック液晶化合物について螺旋構造を誘起する機能を有する。
キラル化合物は、誘起する螺旋のよじれ方向又は螺旋ピッチが液晶化合物によって異なるため、目的に応じて選択すればよい。キラル化合物は特に限定されず、公知の化合物(例えば、「液晶デバイスハンドブック」、第3章4-3項、TN(twisted nematic)、STN(Super-twisted nematic)用カイラル剤、199頁、日本学術振興会第142委員会編、1989に記載された化合物)、イソソルビド、及びイソマンニド誘導体を用いることができる。キラル化合物は、一般に不斉炭素原子を含むが、不斉炭素原子を含まない軸性不斉化合物又は面性不斉化合物もキラル化合物として用いることができる。軸性不斉化合物又は面性不斉化合物の例には、ビナフチル化合物、ヘリセン化合物、及びパラシクロファン化合物が好ましく挙げられる。
キラル化合物としては、例えば、光異性化キラル化合物及び重合性キラル化合物が挙げられる。
キラル化合物は、1種を単独で用いてよく、2種以上を併用してもよい。
液晶性組成物がキラル化合物を含む場合、キラル化合物の含有量は、目的とする反射波長をより容易に得る観点から、液晶性組成物の全固形分に対して、1質量%~20質量%であることが好ましく、1質量%~15質量%であることがより好ましく、1質量%~10質量%であることが更に好ましい。
--光異性化キラル化合物--
液晶性組成物は、選択反射波長をより容易に調節する観点から、キラル化合物として、光異性化キラル化合物を含むことが好ましい。光異性化キラル化合物とは、1分子中に、光異性化構造を有し、かつ、キラリティーを有する化合物を意味する。
液晶性組成物は、選択反射波長をより容易に調節する観点から、キラル化合物として、光異性化キラル化合物を含むことが好ましい。光異性化キラル化合物とは、1分子中に、光異性化構造を有し、かつ、キラリティーを有する化合物を意味する。
光異性化キラル化合物は、光異性化容易性、及び異性化構造の維持性の観点から、露光により立体構造が変化する化合物であることが好ましく、露光によりEZ(Zussammammen、Entgegen)配置が異性化する2置換以上のエチレン性不飽和結合を有することがより好ましく、露光によりEZ配置が異性化する3置換のエチレン性不飽和結合を有することが特に好ましい。
光異性化キラル化合物は、露光により異性化すると、液晶相における螺旋構造の螺旋ピッチ(ねじれ力、螺旋のねじれ角)等の配向構造を変化させる。
また、露光時の露光量によって、光異性化キラル化合物の光異性化割合を調整することができる。光異性化キラル化合物の光異性化割合によって、液晶相における螺旋構造の螺旋ピッチの長さを変化させ、選択反射波長を変化させることができる。なお、光異性化割合とは、光異性化キラル化合物の総分子数に対する、光異性化した光異性化キラル化合物の分子数の割合を意味する。
また、露光時の露光量によって、光異性化キラル化合物の光異性化割合を調整することができる。光異性化キラル化合物の光異性化割合によって、液晶相における螺旋構造の螺旋ピッチの長さを変化させ、選択反射波長を変化させることができる。なお、光異性化割合とは、光異性化キラル化合物の総分子数に対する、光異性化した光異性化キラル化合物の分子数の割合を意味する。
本開示におけるEZ配置の異性化には、cis-trans異性化も含まれる。また、上記2置換のエチレン性不飽和結合を有する化合物は、芳香族基及びエステル結合により置換された、エチレン性不飽和結合を有する化合物であることが好ましい。
また、光異性化キラル化合物は、光異性化構造を1つのみ有してよく、2つ以上有してもよい。光異性化容易性、及び異性化構造の維持性の観点から、光異性化化合物は、光異性化構造を2つ以上有していることが好ましく、2つ~4つ有していることがより好ましく、2つ有していることが特に好ましい。
具体的には、光異性化キラル化合物は、下記式(CH1)で表される化合物であることが好ましい。
下記式(CH1)で表される化合物は、露光時の露光量に応じてコレステリック液晶相の螺旋ピッチ(ねじれ力、螺旋のねじれ角)等の配向構造を変化させることができる。
また、下記式(CH1)で表される化合物は、2つのエチレン性不飽和結合におけるEZ配置が露光により異性化可能な化合物である。
式(CH1)中、ArCH1及びArCH2はそれぞれ独立に、アリール基又は複素芳香環基を表し、RCH1及びRCH2はそれぞれ独立に、水素原子又はシアノ基を表す。
式(CH1)におけるArCH1及びArCH2はそれぞれ独立に、アリール基であることが好ましい。
式(CH1)のArCH1及びArCH2におけるアリール基は、置換基を有していてもよく、総炭素数6~40であることが好ましく、総炭素数6~30であることがより好ましい。置換基は、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アルコキシ基、ヒドロキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、カルボキシ基、シアノ基、又は、複素環基であることが好ましく、ハロゲン原子、アルキル基、アルケニル基、アルコキシ基、ヒドロキシ基、アシルオキシ基、アルコキシカルボニル基、又は、アリールオキシカルボニル基であることがより好ましい。
式(CH1)におけるRCH1及びRCH2はそれぞれ独立に、シアノ基であることが好ましい。
中でも、ArCH1及びArCH2は、下記式(CH2)又は式(CH3)で表されるアリール基であることが好ましく、下記式(CH2)で表されるアリール基であることがより好ましい。
式(CH2)及び式(CH3)中、RCH3及びRCH4はそれぞれ独立に、水素原子、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基、アルコキシ基、ヒドロキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、カルボキシ基、又は、シアノ基を表し、LCH1及びLCH2はそれぞれ独立に、ハロゲン原子、アルキル基、アルコキシ基、又は、ヒドロキシ基を表し、nCH1は0~4の整数を表し、nCH2は0~6の整数を表し、*は式(CH1)におけるエチレン性不飽和結合との結合位置を表す。
式(CH2)及び式(CH3)におけるRCH3及びRCH4はそれぞれ独立に、水素原子、ハロゲン原子、アルキル基、アルケニル基、アリール基、アルコキシ基、ヒドロキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、又は、アシルオキシ基であることが好ましく、アルコキシ基、ヒドロキシ基、又は、アシルオキシ基であることがより好ましく、アルコキシ基であることが特に好ましい。
式(CH2)及び式(CH3)におけるLCH1及びLCH2はそれぞれ独立に、炭素数1~10のアルコキシ基、又は、ヒドロキシ基であることが好ましい。
式(CH2)におけるnCH1は、0又は1であることが好ましく、0であることがより好ましい。
式(CH3)におけるnCH2は、0又は1であることが好ましく、0であることがより好ましい。
式(CH1)のArCH1及びArCH2における複素芳香環基は、置換基を有していてもよく、総炭素数4~40であることが好ましく、総炭素数4~30であることがより好ましい。置換基としては、例えば、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、アルコキシ基、ヒドロキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、又は、シアノ基が好ましく、ハロゲン原子、アルキル基、アルケニル基、アリール基、アルコキシ基、又は、アシルオキシ基がさらに好ましい。
複素芳香環基は、ピリジル基、ピリミジニル基、フリル基、又は、ベンゾフラニル基であることが好ましく、ピリジル基、又はピリミジニル基であることがより好ましい。
式(CH1)で表される化合物としては、以下の化合物が好ましく挙げられる。なお、以下の化合物は、各エチレン性不飽和結合の立体配置が、露光により変化する化合物である。
光異性化キラル化合物は、1種を単独で用いてよく、2種以上を併用してもよい。
液晶性組成物が光異性化キラル化合物を含む場合、光異性化キラル化合物の含有量は、目的とする反射波長をより容易に得る観点から、液晶性組成物の全固形分量に対して、0.5質量%~15質量%であることが好ましく、1質量%~10質量%であることがより好ましく、2質量%~9質量%であることが更に好ましい。
--重合性キラル化合物--
液晶性組成物は、液晶性化合物の螺旋構造をより容易に固定する観点から、キラル化合物として、重合性キラル化合物を含むことが好ましい。重合性キラル化合物は、重合性基を有するキラル化合物を意味する。ここでいう重合性キラル化合物は、光異性化構造を有しないものとし、光異性化キラル化合物とは区別される。
液晶性組成物は、液晶性化合物の螺旋構造をより容易に固定する観点から、キラル化合物として、重合性キラル化合物を含むことが好ましい。重合性キラル化合物は、重合性基を有するキラル化合物を意味する。ここでいう重合性キラル化合物は、光異性化構造を有しないものとし、光異性化キラル化合物とは区別される。
重合性キラル化合物が有する重合性基としては、例えば、ラジカル重合性基及びカチオン重合性基が挙げられる。重合性基は、エチレン性不飽和基、エポキシ基又はアジリジニル基であることが好ましく、エチレン性不飽和基であることがより好ましい。
重合性キラル化合物は、不斉炭素原子を含む化合物であることが好ましいが、不斉炭素原子を含まない軸性不斉化合物又は面性不斉化合物であってもよい。軸性不斉化合物又は面性不斉化合物の例には、ビナフチル、ヘリセン、パラシクロファン及びこれらの誘導体が含まれる。
液晶性組成物が重合性基を有する液晶性化合物を含む場合、重合性キラル化合物は、液晶性化合物が有する重合性基と同種の重合性基を含むことが好ましい。例えば、液晶性化合物がラジカル重合性基を有する場合、重合性キラル化合物もラジカル重合性基を含むことが好ましい。これにより、重合性基を有する液晶性化合物と重合性キラル化合物とが重合したポリマーが形成され、液晶性化合物の螺旋構造をより容易に固定することができる。
重合性キラル化合物は、イソソルビド誘導体、イソマンニド誘導体、又はビナフチル誘導体であることが好ましい。イソソルビド誘導体の市販品としては、例えば、BASF社製の「パリオカラー LC756」が挙げられる。
重合性キラル化合物は、1種を単独で用いてよく、2種以上を併用してもよい。
液晶性組成物が重合性キラル化合物を含む場合、重合性キラル化合物の含有量は、目的とする反射波長をより容易に得る観点から、液晶性組成物の全固形分に対して、0.5質量%~8質量%であることが好ましく、1質量%~10質量%であることがより好ましく、1質量%~5質量%であることがさらに好ましい。
-重合開始剤-
液晶性組成物は、重合開始剤を含有していてもよい。重合開始剤としては、公知のものを選択して使用することができるが、光重合開始剤であることが好ましく、紫外線照射によって、重合反応を開始する光重合開始剤であることがより好ましい。また、光重合開始剤としては、光ラジカル重合開始剤であってもよく、光カチオン重合開始剤であってもよい。
光重合開始剤の例としては、α-カルボニル化合物(米国特許第2367661号及び米国特許第2367670号の各明細書等記載)、アシロインエーテル化合物(米国特許第2448828号明細書等記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書等記載)、多核キノン化合物(米国特許第3046127号及び米国特許第2951758号の各明細書等記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書等記載)、アクリジン化合物及びフェナジン化合物(特開昭60-105667号公報及び米国特許第4239850号明細書等記載)、及びオキサジアゾール化合物(米国特許第4212970号明細書等記載)等が挙げられる。
液晶性組成物は、重合開始剤を含有していてもよい。重合開始剤としては、公知のものを選択して使用することができるが、光重合開始剤であることが好ましく、紫外線照射によって、重合反応を開始する光重合開始剤であることがより好ましい。また、光重合開始剤としては、光ラジカル重合開始剤であってもよく、光カチオン重合開始剤であってもよい。
光重合開始剤の例としては、α-カルボニル化合物(米国特許第2367661号及び米国特許第2367670号の各明細書等記載)、アシロインエーテル化合物(米国特許第2448828号明細書等記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書等記載)、多核キノン化合物(米国特許第3046127号及び米国特許第2951758号の各明細書等記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書等記載)、アクリジン化合物及びフェナジン化合物(特開昭60-105667号公報及び米国特許第4239850号明細書等記載)、及びオキサジアゾール化合物(米国特許第4212970号明細書等記載)等が挙げられる。
また、光ラジカル重合開始剤としては、公知の光ラジカル重合開始剤を用いることができる。光ラジカル重合開始剤としては、α-ヒドロキシアルキルフェノン化合物、α-アミノアルキルフェノン化合物、アシルホスフィンオキサイド化合物、チオキサントン化合物及びオキシムエステル化合物等が好ましく挙げられる。
更に、光カチオン重合開始剤としては、公知の光カチオン重合開始剤を用いることができる。光カチオン重合開始剤としては、ヨードニウム塩化合物及びスルホニウム塩化合物等が好ましく挙げられる。
更に、光カチオン重合開始剤としては、公知の光カチオン重合開始剤を用いることができる。光カチオン重合開始剤としては、ヨードニウム塩化合物及びスルホニウム塩化合物等が好ましく挙げられる。
液晶性組成物は、重合開始剤を1種含有するものであってもよく、2種以上含有するものであってもよい。
液晶性組成物における重合開始剤の含有量は、使用する液晶性化合物の構造及び形成される螺旋構造の所望の螺旋ピッチに応じて適宜選択することが好ましいが、螺旋構造の螺旋ピッチの調整容易性、重合速度及び硬化後の樹脂層の強度の観点からは、液晶性組成物中の全固形分に対し、0.05質量%~10質量%であることが好ましく、0.05質量%~5質量%であることがより好ましく、0.1質量%~4質量%であることが更に好ましく、0.2質量%~3質量%であることが特に好ましい。
液晶性組成物における重合開始剤の含有量は、使用する液晶性化合物の構造及び形成される螺旋構造の所望の螺旋ピッチに応じて適宜選択することが好ましいが、螺旋構造の螺旋ピッチの調整容易性、重合速度及び硬化後の樹脂層の強度の観点からは、液晶性組成物中の全固形分に対し、0.05質量%~10質量%であることが好ましく、0.05質量%~5質量%であることがより好ましく、0.1質量%~4質量%であることが更に好ましく、0.2質量%~3質量%であることが特に好ましい。
-架橋剤-
液晶性組成物は、硬化後の樹脂層の強度及び耐久性の観点から、架橋剤を含有することが好ましい。架橋剤としては、紫外線、熱又は湿度により架橋硬化反応を起こすものを好適に使用することができる。
架橋剤の種類は、特に制限はなく、例えば、トリメチロールプロパントリ(メタ)アクリレート及びペンタエリスリトールトリ(メタ)アクリレート等の多官能アクリレート化合物;グリシジル(メタ)アクリレート、エチレングリコールジグリシジルエーテル及び3’,4’-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート等のエポキシ化合物;2-エチルヘキシルオキセタン及びキシリレンビスオキセタン等のオキセタン化合物;2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート]及び4,4-ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン等のアジリジン化合物;ヘキサメチレンジイソシアネート及びビウレット型イソシアネート等のイソシアネート化合物;オキサゾリン基を側鎖に有するポリオキサゾリン化合物;ビニルトリメトキシシラン及びN-(2-アミノエチル)3-アミノプロピルトリメトキシシラン等のアルコキシシラン化合物などが挙げられる。
また、架橋剤の反応性に応じて公知の触媒を液晶性組成物に含有させることができ、樹脂層の強度及び耐久性の向上に加えて、生産性を向上させることができる。
液晶性組成物は、硬化後の樹脂層の強度及び耐久性の観点から、架橋剤を含有することが好ましい。架橋剤としては、紫外線、熱又は湿度により架橋硬化反応を起こすものを好適に使用することができる。
架橋剤の種類は、特に制限はなく、例えば、トリメチロールプロパントリ(メタ)アクリレート及びペンタエリスリトールトリ(メタ)アクリレート等の多官能アクリレート化合物;グリシジル(メタ)アクリレート、エチレングリコールジグリシジルエーテル及び3’,4’-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート等のエポキシ化合物;2-エチルヘキシルオキセタン及びキシリレンビスオキセタン等のオキセタン化合物;2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート]及び4,4-ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン等のアジリジン化合物;ヘキサメチレンジイソシアネート及びビウレット型イソシアネート等のイソシアネート化合物;オキサゾリン基を側鎖に有するポリオキサゾリン化合物;ビニルトリメトキシシラン及びN-(2-アミノエチル)3-アミノプロピルトリメトキシシラン等のアルコキシシラン化合物などが挙げられる。
また、架橋剤の反応性に応じて公知の触媒を液晶性組成物に含有させることができ、樹脂層の強度及び耐久性の向上に加えて、生産性を向上させることができる。
液晶性組成物は、架橋剤を1種含有するものであってもよく、2種以上を含有するものであってもよい。
第1の樹脂層の強度及び耐久性の観点から、液晶性組成物における架橋剤の含有量は、液晶性組成物中における全固形分に対し、1質量%~20質量%であることが好ましく、3質量%~15質量%であることがより好ましい。
第1の樹脂層の強度及び耐久性の観点から、液晶性組成物における架橋剤の含有量は、液晶性組成物中における全固形分に対し、1質量%~20質量%であることが好ましく、3質量%~15質量%であることがより好ましい。
-多官能重合性化合物-
液晶性組成物は、成型後における反射率変化抑制の観点から、多官能重合性化合物を含むことが好ましい。多官能重合性化合物としては、上述した化合物における、2つ以上のエチレン性不飽和基を有し、かつ環状エーテル基を有しないコレステリック液晶性化合物、2つ以上の環状エーテル基を有し、かつエチレン性不飽和基を有しないコレステリック液晶性化合物、及び、2つ以上のエチレン性不飽和基及び2つ以上の環状エーテル基を有するコレステリック液晶性化合物、2つ以上の重合性基を有するキラル化合物、上記架橋剤が挙げられる。上記エチレン性不飽和基は、(メタ)アクリル基又は(メタ)アクリロキシ基が好ましく、(メタ)アクリロキシ基がより好ましい。
上記環状エーテル基は、エポキシ基又はオキセタニル基が好ましく、オキセタニル基がより好ましい。上記した多官能重合性化合物の中でも、2つ以上のエチレン性不飽和基を有し、かつ環状エーテル基を有しない液晶性化合物、2つ以上の環状エーテル基を有し、かつエチレン性不飽和基を有しない液晶性化合物又は2つ以上の重合性基を有するキラル化合物が好ましく、2つ以上の重合性基を有するキラル化合物がより好ましい。
液晶性組成物は、成型後における反射率変化抑制の観点から、多官能重合性化合物を含むことが好ましい。多官能重合性化合物としては、上述した化合物における、2つ以上のエチレン性不飽和基を有し、かつ環状エーテル基を有しないコレステリック液晶性化合物、2つ以上の環状エーテル基を有し、かつエチレン性不飽和基を有しないコレステリック液晶性化合物、及び、2つ以上のエチレン性不飽和基及び2つ以上の環状エーテル基を有するコレステリック液晶性化合物、2つ以上の重合性基を有するキラル化合物、上記架橋剤が挙げられる。上記エチレン性不飽和基は、(メタ)アクリル基又は(メタ)アクリロキシ基が好ましく、(メタ)アクリロキシ基がより好ましい。
上記環状エーテル基は、エポキシ基又はオキセタニル基が好ましく、オキセタニル基がより好ましい。上記した多官能重合性化合物の中でも、2つ以上のエチレン性不飽和基を有し、かつ環状エーテル基を有しない液晶性化合物、2つ以上の環状エーテル基を有し、かつエチレン性不飽和基を有しない液晶性化合物又は2つ以上の重合性基を有するキラル化合物が好ましく、2つ以上の重合性基を有するキラル化合物がより好ましい。
成型後における反射率変化抑制の観点から、液晶性組成物における多官能重合性化合物の含有量は、液晶性組成物中における全固形分に対し、0.5質量%~70質量%であることが好ましく、1質量%~50質量%であることがより好ましく、1.5質量%~20質量%であることが更に好ましい。
-その他の添加剤-
液晶性組成物は、必要に応じて、その他の添加剤を含有してもよい。
その他の添加剤としては、公知の添加剤を用いることができ、界面活性剤、重合禁止剤、酸化防止剤、水平配向剤、紫外線吸収剤、光安定化剤、着色剤及び金属酸化物粒子等を挙げることができる。
液晶性組成物は、必要に応じて、その他の添加剤を含有してもよい。
その他の添加剤としては、公知の添加剤を用いることができ、界面活性剤、重合禁止剤、酸化防止剤、水平配向剤、紫外線吸収剤、光安定化剤、着色剤及び金属酸化物粒子等を挙げることができる。
-溶媒-
液晶性組成物は、溶媒を含有してもよい。溶媒としては、特に制限はなく、目的に応じて適宜選択することができるが、有機溶媒が好ましく用いられる。
有機溶媒としては、例えば、メチルエチルケトン及びメチルイソブチルケトン等のケトン系化合物、アルキルハライド系化合物、アミド系化合物、スルホキシド系化合物、ヘテロ環化合物、炭化水素系化合物、エステル系化合物、エーテル系化合物並びにアルコール系化合物などが挙げられる。上記した有機溶媒の中でも、環境負荷の観点から、ケトン系化合物が特に好ましい。また、上述の成分が溶媒として機能していてもよい。
液晶性組成物は、溶媒を含有してもよい。溶媒としては、特に制限はなく、目的に応じて適宜選択することができるが、有機溶媒が好ましく用いられる。
有機溶媒としては、例えば、メチルエチルケトン及びメチルイソブチルケトン等のケトン系化合物、アルキルハライド系化合物、アミド系化合物、スルホキシド系化合物、ヘテロ環化合物、炭化水素系化合物、エステル系化合物、エーテル系化合物並びにアルコール系化合物などが挙げられる。上記した有機溶媒の中でも、環境負荷の観点から、ケトン系化合物が特に好ましい。また、上述の成分が溶媒として機能していてもよい。
液晶性組成物は、溶媒を1種含有するものであってもよく、2種以上含有するものであってもよい。
硬化後の樹脂層における溶媒の含有量は、樹脂層の全質量に対し、5質量%以下であることが好ましく、3質量%以下であることがより好ましく、2質量%以下であることが更に好ましく、1質量%以下であることが特に好ましい。
硬化後の樹脂層における溶媒の含有量は、樹脂層の全質量に対し、5質量%以下であることが好ましく、3質量%以下であることがより好ましく、2質量%以下であることが更に好ましく、1質量%以下であることが特に好ましい。
<第1の樹脂層を形成する工程>
第1の樹脂層を形成する工程においては、上記基材上の液晶層に対し、光異性化処理を施し、上記液晶層が、380nm以下又は800nm以上の範囲に最大反射率となる波長が存在する領域(特定領域A)を少なくとも1つ含む、最大反射率となる波長が異なる2つ以上の領域を有する状態とした後、上記液晶層を硬化させることにより、第1の樹脂層を形成する。
また、上記光異性化処理において、液晶層は、上記特定領域Aに加えて、380nm超、且つ800nm未満の範囲に最大反射率となる波長が存在する領域(その他の領域A)を有する状態となることが好ましい。
第1の樹脂層を形成する工程においては、上記基材上の液晶層に対し、光異性化処理を施し、上記液晶層が、380nm以下又は800nm以上の範囲に最大反射率となる波長が存在する領域(特定領域A)を少なくとも1つ含む、最大反射率となる波長が異なる2つ以上の領域を有する状態とした後、上記液晶層を硬化させることにより、第1の樹脂層を形成する。
また、上記光異性化処理において、液晶層は、上記特定領域Aに加えて、380nm超、且つ800nm未満の範囲に最大反射率となる波長が存在する領域(その他の領域A)を有する状態となることが好ましい。
光異性化処理工程は、上記液晶層に含まれる光異性化化合物を光異性化する工程である。光異性化処理工程においては、最大反射率となる波長が異なる2つ以上の領域を形成するため、上記液晶層面内において領域毎の光異性化割合の差が生じるように光異性化することが好ましい。また、上記液晶層の一部領域を光異性化してもよい。
光異性化化合物の光異性化割合は、特に制限はなく、加飾フィルムに求められる色味に応じ適宜変更することが好ましい。また、光異性化の進行は、光異性化部における最大反射率となる波長を測定することでわかる。
光異性化割合は、対象とする光異性化化合物の総分子数に対する、光異性化した光異性化化合物分子数の割合を表し、光異性化部における最大反射率を測定することで求めることができる。
光異性化化合物の光異性化割合は、特に制限はなく、加飾フィルムに求められる色味に応じ適宜変更することが好ましい。また、光異性化の進行は、光異性化部における最大反射率となる波長を測定することでわかる。
光異性化割合は、対象とする光異性化化合物の総分子数に対する、光異性化した光異性化化合物分子数の割合を表し、光異性化部における最大反射率を測定することで求めることができる。
光異性化処理工程においては、上記液晶層に対する露光強度を領域によって変化させることができる。例えば、上記液晶層に対する露光強度に複数段階の差、又は無段階の連続差を設けて露光することにより、光異性化させてもよく、また、上記液晶層の一部のみを露光することにより、光異性化させてもよい。露光強度に応じて、光異性化割合を制御することもできる。
領域毎の光異性化割合を調整するため、マスクを使用して、光異性化処理工程を行ってもよい。また、マスクは、1種単独で使用しても、2種以上を使用してもよい。
マスクとしては、特に制限はなく、公知のマスク等の遮光手段を用いることができる。例えば、上記液晶層の光異性化する部分と光異性化しない部分とで、透過光の量が異なるマスクを用いてもよいし、透過光の量が一定でなく、部分によって変化するパターニング用マスク(例えば、図9~図12等に示されるパターニング用マスク)を用いてもよい。
また、マスクのパターニングは、グラビア印刷、スクリーン印刷、レーザープリンター又はインクジェットプリンター等の方法を使用して行うことができる。
マスクとしては、特に制限はなく、公知のマスク等の遮光手段を用いることができる。例えば、上記液晶層の光異性化する部分と光異性化しない部分とで、透過光の量が異なるマスクを用いてもよいし、透過光の量が一定でなく、部分によって変化するパターニング用マスク(例えば、図9~図12等に示されるパターニング用マスク)を用いてもよい。
また、マスクのパターニングは、グラビア印刷、スクリーン印刷、レーザープリンター又はインクジェットプリンター等の方法を使用して行うことができる。
光異性化処理工程における露光に用いられる光の波長としては、特に制限はなく、光異性化化合物の種類及び加飾フィルムに求められる色味に応じ適宜選択すればよい。
光異性化工程における露光する光の波長は、例えば、400nm以下であることが好ましく、380nm以下であることがより好ましく、300nm~380nmであることが更に好ましい。
光異性化工程における露光波長の調整は、公知の手段及び公知の方法を用いることができる。例えば、光学フィルターを用いる方法、2種以上の光学フィルターを用いる方法及び特定波長の光源を用いる方法等が挙げられる。
樹脂層の形成に、光重合開始剤を含む液晶性組成物を使用する場合、光異性化工程においては、光重合開始剤から重合開始種が発生しない波長域の光により上記露光を行うことが好ましい。
例えば、上記光異性化合物の光異性化が生じる波長域の光を透過し、光重合開始剤から重合開始種が発生する波長域の光を遮光する、マスクを好適に用いることができる。
光異性化工程における露光する光の波長は、例えば、400nm以下であることが好ましく、380nm以下であることがより好ましく、300nm~380nmであることが更に好ましい。
光異性化工程における露光波長の調整は、公知の手段及び公知の方法を用いることができる。例えば、光学フィルターを用いる方法、2種以上の光学フィルターを用いる方法及び特定波長の光源を用いる方法等が挙げられる。
樹脂層の形成に、光重合開始剤を含む液晶性組成物を使用する場合、光異性化工程においては、光重合開始剤から重合開始種が発生しない波長域の光により上記露光を行うことが好ましい。
例えば、上記光異性化合物の光異性化が生じる波長域の光を透過し、光重合開始剤から重合開始種が発生する波長域の光を遮光する、マスクを好適に用いることができる。
光源として具体的には、超高圧水銀灯、高圧水銀灯、メタルハライドランプ等が挙げられる。また、光源としては、波長域の狭い光を照射可能な発光ダイオード等も用いることができる。
光異性化工程における露光量は、特に制限はなく、加飾フィルムに求められる色味に応じ適宜設定すればよい。また、所望の光異性化割合に応じ、上記液晶層の各部において、露光量を変化させてもよい。
また、上記露光による光異性化の際に、加熱することが好ましい。加熱温度としては、特に制限はなく、使用する光異性化化合物等に応じて選択すればよく、例えば、30℃~120℃が挙げられる。
また、露光方法としては、光異性化が可能であれば、特に制限はないが、例えば、特開2006-23696号公報の段落0035~段落0051に記載の方法を本開示においても好適に用いることができる。
光異性化工程における露光量は、特に制限はなく、加飾フィルムに求められる色味に応じ適宜設定すればよい。また、所望の光異性化割合に応じ、上記液晶層の各部において、露光量を変化させてもよい。
また、上記露光による光異性化の際に、加熱することが好ましい。加熱温度としては、特に制限はなく、使用する光異性化化合物等に応じて選択すればよく、例えば、30℃~120℃が挙げられる。
また、露光方法としては、光異性化が可能であれば、特に制限はないが、例えば、特開2006-23696号公報の段落0035~段落0051に記載の方法を本開示においても好適に用いることができる。
第1の樹脂層を形成する工程は、光異性化処理を施した上記液晶層を硬化させる工程を含む。
上記硬化により、上記液晶性化合物の分子の配向が維持された状態において、コレステリック液晶相が固定される。
液晶層の硬化は、液晶性組成物に含有される、エチレン性不飽和基又は環状エーテル基等の重合性基を有する化合物の重合反応により、進行することが好ましい。
上記液晶層の硬化は、露光により行ってもよく、加熱により行ってもよいが、露光により行うことが好ましい。
上記硬化により、上記液晶性化合物の分子の配向が維持された状態において、コレステリック液晶相が固定される。
液晶層の硬化は、液晶性組成物に含有される、エチレン性不飽和基又は環状エーテル基等の重合性基を有する化合物の重合反応により、進行することが好ましい。
上記液晶層の硬化は、露光により行ってもよく、加熱により行ってもよいが、露光により行うことが好ましい。
露光の光源は、特に制限はなく、使用する光重合開始剤等の種類に応じ、適宜選択して用いることができる。例えば、285nm、365nm又は405nmの波長域の光を照射できる光源が好ましく挙げられ、具体的には、超高圧水銀灯、高圧水銀灯、メタルハライドランプ及びUV-LED光源等が挙げられる。
露光量は、特に制限はなく、適宜設定すればよく、5mJ/cm2~2,000mJ/cm2であることが好ましく、10mJ/cm2~1,000mJ/cm2であることがより好ましい。
また、上記露光による硬化の際に、形成される配向状態をより良好なものとするため、及び形成された配向状態を維持するために、加熱することが好ましい。加熱温度としては、特に制限はなく、硬化させる液晶層の組成に応じて選択すればよく、例えば、30℃~120℃が挙げられる。
また、上記露光により、液晶層の硬化を行うだけではなく、必要に応じて、着色層等の他の層も合わせて露光による硬化を行ってもよい。
また、露光方法としては、例えば、特開2006-23696号公報の段落0035~0051に記載の方法を本開示においても好適に用いることができる。
露光量は、特に制限はなく、適宜設定すればよく、5mJ/cm2~2,000mJ/cm2であることが好ましく、10mJ/cm2~1,000mJ/cm2であることがより好ましい。
また、上記露光による硬化の際に、形成される配向状態をより良好なものとするため、及び形成された配向状態を維持するために、加熱することが好ましい。加熱温度としては、特に制限はなく、硬化させる液晶層の組成に応じて選択すればよく、例えば、30℃~120℃が挙げられる。
また、上記露光により、液晶層の硬化を行うだけではなく、必要に応じて、着色層等の他の層も合わせて露光による硬化を行ってもよい。
また、露光方法としては、例えば、特開2006-23696号公報の段落0035~0051に記載の方法を本開示においても好適に用いることができる。
また、上記液晶層の硬化を加熱により行う場合、加熱温度及び加熱時間は、特に制限はなく、使用する熱重合開始剤等に応じて、適宜選択すればよい。例えば、加熱温度は、60℃~200℃であることが好ましく、また、加熱時間は、1分間~2時間であることが好ましい。加熱手段としては、特に制限はなく、公知の加熱手段を用いることができるが、例えば、ヒーター、オーブン、ホットプレート、赤外線ランプ及び赤外線レーザー等が挙げられる。
また、硬化工程を行う環境の酸素濃度には、制限はなく、酸素雰囲気下で行っても、大気下で行っても、低酸素雰囲気下(好ましくは、酸素濃度1,000ppm(parts per million)以下、つまり酸素を含まないか、0ppm超、且つ1,000ppm以下の酸素を含む雰囲気)で行ってもよい。硬化速度の観点から、硬化工程は、低酸素雰囲気下で行うことが好ましく、加熱下、かつ低酸素雰囲気下で行うことがより好ましい。
<配向層を形成する工程>
第1の樹脂層を形成する工程は、液晶層を形成する工程の前に、配向層を形成する工程を含むことができる。
配向層の形成は、第1の樹脂層の下に配置される、基材、第2の樹脂層又はその他の樹脂層に対しラビング処理等を施すことにより行ってもよく、基材上にラビング配向層を形成することにより行ってもよく、基材上に光配向層を形成することにより行ってもよい。
第1の樹脂層を形成する工程は、液晶層を形成する工程の前に、配向層を形成する工程を含むことができる。
配向層の形成は、第1の樹脂層の下に配置される、基材、第2の樹脂層又はその他の樹脂層に対しラビング処理等を施すことにより行ってもよく、基材上にラビング配向層を形成することにより行ってもよく、基材上に光配向層を形成することにより行ってもよい。
ラビング処理は、一般的にはポリマーを主成分とする膜の表面を、紙又は布で一定方向に擦ることにより実施することができる。ラビング処理の一般的な方法については、例えば、「液晶便覧」(丸善社発行、平成12年10月30日)に記載されている。
ラビング密度を変える方法としては、「液晶便覧」(丸善社発行)に記載されている方法を用いることができる。ラビング密度(L)は、下記式(A)で定量化されている。
式(A) L=Nl(1+2πrn/60v)
式(A)中、Nはラビング回数、lはラビングローラーの接触長、rはローラーの半径、nはローラーの回転数(rpm:rotations per minute)、vはステージ移動速度(秒速)である。
式(A) L=Nl(1+2πrn/60v)
式(A)中、Nはラビング回数、lはラビングローラーの接触長、rはローラーの半径、nはローラーの回転数(rpm:rotations per minute)、vはステージ移動速度(秒速)である。
ラビング密度を高くするためには、ラビング回数を増やす、ラビングローラーの接触長を長く、ローラーの半径を大きく、ローラーの回転数を大きく、ステージ移動速度を遅くすればよく、一方、ラビング密度を低くするためには、この逆にすればよい。また、ラビング処理の際の条件としては、特許第4052558号公報の記載を参照することもできる。
光配向層は、基材上に形成した、上記したエステル等の材料を含有する層に、直線偏光又は非偏光を照射することにより形成することができる。
直線偏光を照射することにより、光配向材料に光反応を生じせしめることができる。用いる光の波長は、用いる光配向材料により異なり、その光反応に必要な波長であれば特に限定されるものではない。光照射に用いる光は、好ましくはピーク波長が200nm~700nmの光であり、より好ましくはピーク波長が400nm以下の紫外光である。
直線偏光を照射することにより、光配向材料に光反応を生じせしめることができる。用いる光の波長は、用いる光配向材料により異なり、その光反応に必要な波長であれば特に限定されるものではない。光照射に用いる光は、好ましくはピーク波長が200nm~700nmの光であり、より好ましくはピーク波長が400nm以下の紫外光である。
光照射に用いる光源は、公知の光源、例えば、タングステンランプ、ハロゲンランプ、キセノンランプ、キセノンフラッシュランプ、水銀ランプ、水銀キセノンランプ、カーボンアークランプ等のランプ、各種のレーザー(例えば、半導体レーザー、ヘリウムネオンレーザー、アルゴンイオンレーザー、ヘリウムカドミウムレーザー及びYAG(イットリウム・アルミニウム・ガーネット)レーザー等)、発光ダイオード、並びに陰極線管などを挙げることができる。
直線偏光を得る手段としては、偏光板(例えば、ヨウ素偏光板、二色色素偏光板及びワイヤーグリッド偏光板等)を用いる方法、プリズム系素子(例えば、グラントムソンプリズム等)又はブリュースター角を利用した反射型偏光子を用いる方法、並びに偏光を有するレーザー光源から出射される光を用いる方法などが挙げられる。また、フィルター又は波長変換素子等を用いて必要とする波長の光のみを選択的に照射してもよい。
照射する光が直線偏光の場合、配向層に対して上面若しくは裏面から配向層表面に対して垂直又は斜めから光を照射する方法が例示される。光の入射角度は、光配向材料によって異なるが、配向層に対して、好ましくは0°~90°(垂直)、より好ましくは40°~90°である。非偏光を利用する場合には、斜めから非偏光を照射する。その入射角度は、好ましくは10°~80°、より好ましくは20°~60°、特に好ましくは30°~50°である。照射時間は、好ましくは1分~60分、より好ましくは1分~10分である。
<第2の樹脂層を形成する工程>
第2の樹脂層を形成する工程は、第1の樹脂層上に、液晶性組成物を付与し、加熱し、液晶層を形成する工程と、上記液晶層を硬化させる工程と、を含むことができる。
第2の樹脂層の形成に使用する液晶組成物は、第1の樹脂層の形成に使用する液晶組成物が含みうる上記材料を含むことができる。
また、第2の樹脂層を形成する工程は、硬化させる前上記の液晶層に対し光異性化処理を施し、上記液晶層が、380nm以下又は800nm以上の範囲に最大反射率となる波長が存在する領域(特定領域B)を少なくとも1つ含む、最大反射率となる波長が異なる2つ以上の領域を有する状態とする工程を含むことができる。また、上記工程において、液晶層は、上記特定領域Bに加えて、380nm超、且つ800nm未満の範囲に最大反射率となる波長が存在する領域(その他の領域B)を有する状態となることが好ましい。
各工程の詳細及び好ましい態様等については、第1の樹脂層を形成する工程と同様であるため、ここでは記載を省略する。
第2の樹脂層を形成する工程は、第1の樹脂層上に、液晶性組成物を付与し、加熱し、液晶層を形成する工程と、上記液晶層を硬化させる工程と、を含むことができる。
第2の樹脂層の形成に使用する液晶組成物は、第1の樹脂層の形成に使用する液晶組成物が含みうる上記材料を含むことができる。
また、第2の樹脂層を形成する工程は、硬化させる前上記の液晶層に対し光異性化処理を施し、上記液晶層が、380nm以下又は800nm以上の範囲に最大反射率となる波長が存在する領域(特定領域B)を少なくとも1つ含む、最大反射率となる波長が異なる2つ以上の領域を有する状態とする工程を含むことができる。また、上記工程において、液晶層は、上記特定領域Bに加えて、380nm超、且つ800nm未満の範囲に最大反射率となる波長が存在する領域(その他の領域B)を有する状態となることが好ましい。
各工程の詳細及び好ましい態様等については、第1の樹脂層を形成する工程と同様であるため、ここでは記載を省略する。
<その他の樹脂層を形成する工程>
その他の樹脂層を形成する工程は、基材、第1の樹脂層又は第2の樹脂層上に、液晶性組成物を付与し、加熱し、液晶層を形成する工程と、上記液晶層を硬化させる工程と、を含むことができる。
その他の樹脂層の形成に使用する液晶組成物は、第1の樹脂層の形成に使用する液晶組成物が含みうる上記材料を含むことができる。
また、その他の樹脂層を形成する工程は、硬化させる前上記の液晶層に対し光異性化処理を施し、最大反射率となる波長が、380nm以下又は800nm以上の範囲に存在する領域(特定領域C)を少なくとも1つ含む、最大反射率となる波長が異なる2つ以上の領域を形成する工程を含むことができる。また、上記工程において、液晶層は、上記特定領域Cに加えて、380nm超、且つ800nm未満の範囲に最大反射率となる波長が存在する領域(その他の領域B)を有する状態となることが好ましい。
また、その他の樹脂層が第1の樹脂層の下に設けられる場合、その他の樹脂層を形成する工程は、配向層を形成する工程を含んでいてもよい。
各工程の詳細及び好ましい態様等については、第1の樹脂層を形成する工程と同様であるため、ここでは記載を省略する。
その他の樹脂層を形成する工程は、基材、第1の樹脂層又は第2の樹脂層上に、液晶性組成物を付与し、加熱し、液晶層を形成する工程と、上記液晶層を硬化させる工程と、を含むことができる。
その他の樹脂層の形成に使用する液晶組成物は、第1の樹脂層の形成に使用する液晶組成物が含みうる上記材料を含むことができる。
また、その他の樹脂層を形成する工程は、硬化させる前上記の液晶層に対し光異性化処理を施し、最大反射率となる波長が、380nm以下又は800nm以上の範囲に存在する領域(特定領域C)を少なくとも1つ含む、最大反射率となる波長が異なる2つ以上の領域を形成する工程を含むことができる。また、上記工程において、液晶層は、上記特定領域Cに加えて、380nm超、且つ800nm未満の範囲に最大反射率となる波長が存在する領域(その他の領域B)を有する状態となることが好ましい。
また、その他の樹脂層が第1の樹脂層の下に設けられる場合、その他の樹脂層を形成する工程は、配向層を形成する工程を含んでいてもよい。
各工程の詳細及び好ましい態様等については、第1の樹脂層を形成する工程と同様であるため、ここでは記載を省略する。
<着色層を形成する工程>
本開示の加飾フィルムの製造方法は、着色層を形成する工程を含むことができる。着色層は、上記した材料を、例えば、基材の第1の樹脂層等が設けられた側とは反対の側の面に付与し、乾燥することにより形成することができる。
本開示の加飾フィルムの製造方法は、着色層を形成する工程を含むことができる。着色層は、上記した材料を、例えば、基材の第1の樹脂層等が設けられた側とは反対の側の面に付与し、乾燥することにより形成することができる。
(第2の態様に係る加飾フィルムの製造方法)
本開示に係る加飾フィルムの製造方法は、
基材及びコレステリック規則性を有する第2の樹脂層を含む液晶材料を準備する工程と、
上記第2の樹脂層上に、液晶層を形成し、上記液晶層に対し光異性化処理を施し、上記液晶層が、380nm以下又は800nm以上の範囲に最大反射率となる波長が存在する領域を少なくとも1つ含む、最大反射率となる波長が異なる2つ以上の領域を有する状態としたのち、上記液晶層を硬化させ、上記第2の樹脂層とは異なるコレステリック規則性を有する第1の樹脂層を形成する工程と、
を含む。
本開示に係る加飾フィルムの製造方法は、
基材及びコレステリック規則性を有する第2の樹脂層を含む液晶材料を準備する工程と、
上記第2の樹脂層上に、液晶層を形成し、上記液晶層に対し光異性化処理を施し、上記液晶層が、380nm以下又は800nm以上の範囲に最大反射率となる波長が存在する領域を少なくとも1つ含む、最大反射率となる波長が異なる2つ以上の領域を有する状態としたのち、上記液晶層を硬化させ、上記第2の樹脂層とは異なるコレステリック規則性を有する第1の樹脂層を形成する工程と、
を含む。
また、本開示の加飾フィルムの製造方法は、その他の樹脂層を形成する工程を含むことができる。
また、本開示の加飾フィルムの製造方法は、着色層を形成する工程を含むことができる。
なお、第2の態様に係る加飾フィルムの製造方法は、第2の樹脂層を形成する工程が、配向層を形成する工程を含むことができる点を除いて第1の態様に係る加飾フィルムの製造方法と同様であるため、ここでは記載を省略する。
また、本開示の加飾フィルムの製造方法は、着色層を形成する工程を含むことができる。
なお、第2の態様に係る加飾フィルムの製造方法は、第2の樹脂層を形成する工程が、配向層を形成する工程を含むことができる点を除いて第1の態様に係る加飾フィルムの製造方法と同様であるため、ここでは記載を省略する。
(成型物)
本開示に係る成型物は、本開示に係る加飾フィルムを成型してなる成型物である。また、本開示に係る成型物の形状は、特に制限はなく、用途に応じ適宜選択することができる。
また、本開示に係る成型物は、本開示に係る加飾フィルムの製造方法により製造される加飾フィルムを成型してなる成型物であることが好ましい。
成型方法は、特に制限はなく、例えば、真空成型、真空圧空成型、プラグアシスト真空圧空成型、インモールド成型、インサート成型、冷間成型、プレス成型及び絞り成型等が挙げられる。
本開示に係る成型物は、本開示に係る加飾フィルムを成型してなる成型物である。また、本開示に係る成型物の形状は、特に制限はなく、用途に応じ適宜選択することができる。
また、本開示に係る成型物は、本開示に係る加飾フィルムの製造方法により製造される加飾フィルムを成型してなる成型物であることが好ましい。
成型方法は、特に制限はなく、例えば、真空成型、真空圧空成型、プラグアシスト真空圧空成型、インモールド成型、インサート成型、冷間成型、プレス成型及び絞り成型等が挙げられる。
本開示に係る成型物の用途は、特に制限はなく、種々の物品に用いることができる。例えば、自動車の内外装、電子デバイスの内外装及び包装容器等が特に好適に挙げられる。上記した中でも、自動車の内外装の加飾のために適用することが好ましく、自動車の外装に適用することがより好ましい。
(電子デバイス)
本開示に係る電子デバイスは、本開示に係る加飾フィルムを含む。
本開示に係る電子デバイスの種類は、特に制限はなく、スマートフォン、携帯電話及びタブレット等が挙げられる。上記した電子デバイスの加飾のために、加飾フィルムは適用されることが好ましい。
また、本開示に係る電子デバイスは、本開示に係る加飾フィルム以外に、素子等の電子デバイスに用いられる公知の部材を有していてもよい。
本開示に係る電子デバイスは、本開示に係る加飾フィルムを含む。
本開示に係る電子デバイスの種類は、特に制限はなく、スマートフォン、携帯電話及びタブレット等が挙げられる。上記した電子デバイスの加飾のために、加飾フィルムは適用されることが好ましい。
また、本開示に係る電子デバイスは、本開示に係る加飾フィルム以外に、素子等の電子デバイスに用いられる公知の部材を有していてもよい。
(自動車外装板)
本開示に係る自動車外装板は、本開示に係る成型物を有する。本開示に係る自動車外装板の形状は、特に制限はなく、所望の形状であればよい。
本開示に係る自動車外装板は、本開示に係る成型物以外に、自動車外装板に用いられる公知の部材を有していてもよい。
本開示に係る自動車外装板は、本開示に係る成型物を有する。本開示に係る自動車外装板の形状は、特に制限はなく、所望の形状であればよい。
本開示に係る自動車外装板は、本開示に係る成型物以外に、自動車外装板に用いられる公知の部材を有していてもよい。
以下、本開示を実施例により更に具体的に説明するが、本開示はその主旨を越えない限
り、以下の実施例に限定されるものではない。なお、特に断りのない限り、「%」は質量基準である。
り、以下の実施例に限定されるものではない。なお、特に断りのない限り、「%」は質量基準である。
<液晶性組成物1の調製>
下記に記載の組成を有する液晶性組成物1を調製した。
・液晶性化合物1 11.98質量部
・液晶性化合物2 5.99質量部
・液晶性化合物3 5.99質量部
・液晶性化合物の混合物1 (質量比83:15:2)
5.99質量部
・重合性キラル化合物(BASF社製、パリオカラー LC756)
0.75質量部
・光異性化キラル化合物1 2.40質量部
・光重合開始剤(IGMレジンズ社製、Omnirad127)
0.30質量部
・界面活性剤1 0.10質量部
・界面活性剤2 0.01質量部
・メチルエチルケトン 46.55質量部
・シクロヘキサノン 19.95質量部
下記に記載の組成を有する液晶性組成物1を調製した。
・液晶性化合物1 11.98質量部
・液晶性化合物2 5.99質量部
・液晶性化合物3 5.99質量部
・液晶性化合物の混合物1 (質量比83:15:2)
5.99質量部
・重合性キラル化合物(BASF社製、パリオカラー LC756)
0.75質量部
・光異性化キラル化合物1 2.40質量部
・光重合開始剤(IGMレジンズ社製、Omnirad127)
0.30質量部
・界面活性剤1 0.10質量部
・界面活性剤2 0.01質量部
・メチルエチルケトン 46.55質量部
・シクロヘキサノン 19.95質量部
<液晶性組成物2の調製>
下記に記載の組成を有する液晶性組成物2を調製した。
・液晶性化合物1 17.97質量部
・液晶性化合物2 5.99質量部
・液晶性化合物3 5.99質量部
・重合性キラル化合物(BASF社製、パリオカラー LC756)
0.75質量部
・光異性化キラル化合物1 2.40質量部
・光重合開始剤(IGMレジンズ社製、Omnirad127)
0.30質量部
・界面活性剤1 0.10質量部
・界面活性剤2 0.01質量部
・メチルエチルケトン 46.55質量部
・シクロヘキサノン 19.95質量部
下記に記載の組成を有する液晶性組成物2を調製した。
・液晶性化合物1 17.97質量部
・液晶性化合物2 5.99質量部
・液晶性化合物3 5.99質量部
・重合性キラル化合物(BASF社製、パリオカラー LC756)
0.75質量部
・光異性化キラル化合物1 2.40質量部
・光重合開始剤(IGMレジンズ社製、Omnirad127)
0.30質量部
・界面活性剤1 0.10質量部
・界面活性剤2 0.01質量部
・メチルエチルケトン 46.55質量部
・シクロヘキサノン 19.95質量部
<液晶性組成物3の調製>
下記に記載の組成を有する液晶性組成物3を調製した。
・液晶性化合物1 12.37質量部
・液晶性化合物2 6.18質量部
・液晶性化合物3 6.18質量部
・液晶性化合物の混合物1(質量比83:15:2) 6.18質量部
・重合性キラル化合物(BASF社製、パリオカラー LC756)
2.16質量部
・光重合開始剤(IGMレジンズ社製、Omnirad127)
0.31質量部
・界面活性剤1 0.10質量部
・界面活性剤2 0.01質量部
・メチルエチルケトン 46.55質量部
・シクロヘキサノン 19.95質量部
下記に記載の組成を有する液晶性組成物3を調製した。
・液晶性化合物1 12.37質量部
・液晶性化合物2 6.18質量部
・液晶性化合物3 6.18質量部
・液晶性化合物の混合物1(質量比83:15:2) 6.18質量部
・重合性キラル化合物(BASF社製、パリオカラー LC756)
2.16質量部
・光重合開始剤(IGMレジンズ社製、Omnirad127)
0.31質量部
・界面活性剤1 0.10質量部
・界面活性剤2 0.01質量部
・メチルエチルケトン 46.55質量部
・シクロヘキサノン 19.95質量部
<液晶性組成物4の調製>
下記に記載の組成を有する液晶性組成物4を調製した。
・液晶性化合物1 18.64質量部
・液晶性化合物2 6.21質量部
・液晶性化合物3 6.21質量部
・重合性キラル化合物(BASF社製、パリオカラー LC756)
0.78質量部
・光異性化キラル化合物1 1.24質量部
・光重合開始剤(IGMレジンズ社製、Omnirad127)
0.31質量部
・界面活性剤1 0.10質量部
・界面活性剤2 0.01質量部
・メチルエチルケトン 46.55質量部
・シクロヘキサノン 19.95質量部
下記に記載の組成を有する液晶性組成物4を調製した。
・液晶性化合物1 18.64質量部
・液晶性化合物2 6.21質量部
・液晶性化合物3 6.21質量部
・重合性キラル化合物(BASF社製、パリオカラー LC756)
0.78質量部
・光異性化キラル化合物1 1.24質量部
・光重合開始剤(IGMレジンズ社製、Omnirad127)
0.31質量部
・界面活性剤1 0.10質量部
・界面活性剤2 0.01質量部
・メチルエチルケトン 46.55質量部
・シクロヘキサノン 19.95質量部
<液晶性組成物5の調製>
下記に記載の組成を有する液晶性組成物5を調製した。
・液晶性化合物1 18.55質量部
・液晶性化合物2 6.18質量部
・液晶性化合物3 6.18質量部
・重合性キラル化合物(BASF社製、パリオカラー LC756)
0.77質量部
・光異性化キラル化合物1 1.39質量部
・光重合開始剤(IGMレジンズ社製、Omnirad127)
0.31質量部
・界面活性剤1 0.10質量部
・界面活性剤2 0.01質量部
・メチルエチルケトン 46.55質量部
・シクロヘキサノン 19.95質量部
下記に記載の組成を有する液晶性組成物5を調製した。
・液晶性化合物1 18.55質量部
・液晶性化合物2 6.18質量部
・液晶性化合物3 6.18質量部
・重合性キラル化合物(BASF社製、パリオカラー LC756)
0.77質量部
・光異性化キラル化合物1 1.39質量部
・光重合開始剤(IGMレジンズ社製、Omnirad127)
0.31質量部
・界面活性剤1 0.10質量部
・界面活性剤2 0.01質量部
・メチルエチルケトン 46.55質量部
・シクロヘキサノン 19.95質量部
<液晶性組成物6の調製>
下記に記載の組成を有する液晶性組成物6を調製した。
・液晶性化合物1 19.02質量部
・液晶性化合物2 6.34質量部
・液晶性化合物3 6.34質量部
・光異性化キラル化合物2 1.36質量部
・光重合開始剤(IGMレジンズ社製、Omnirad127)
0.32質量部
・界面活性剤1 0.10質量部
・界面活性剤2 0.01質量部
・メチルエチルケトン 46.55質量部
・シクロヘキサノン 19.95質量部
下記に記載の組成を有する液晶性組成物6を調製した。
・液晶性化合物1 19.02質量部
・液晶性化合物2 6.34質量部
・液晶性化合物3 6.34質量部
・光異性化キラル化合物2 1.36質量部
・光重合開始剤(IGMレジンズ社製、Omnirad127)
0.32質量部
・界面活性剤1 0.10質量部
・界面活性剤2 0.01質量部
・メチルエチルケトン 46.55質量部
・シクロヘキサノン 19.95質量部
<液晶性組成物7の調製>
下記に記載の組成を有する液晶性組成物7を調製した。
・液晶性化合物1 12.31質量部
・液晶性化合物2 6.15質量部
・液晶性化合物3 6.15質量部
・液晶性化合物の混合物1(質量比83:15:2) 6.15質量部
・重合性キラル化合物(BASF社製、パリオカラー LC756)
0.77質量部
・光異性化キラル化合物1 1.54質量部
・光重合開始剤(IGMレジンズ社製、Omnirad127)
0.31質量部
・界面活性剤1 0.10質量部
・界面活性剤2 0.01質量部
・メチルエチルケトン 46.55質量部
・シクロヘキサノン 19.95質量部
下記に記載の組成を有する液晶性組成物7を調製した。
・液晶性化合物1 12.31質量部
・液晶性化合物2 6.15質量部
・液晶性化合物3 6.15質量部
・液晶性化合物の混合物1(質量比83:15:2) 6.15質量部
・重合性キラル化合物(BASF社製、パリオカラー LC756)
0.77質量部
・光異性化キラル化合物1 1.54質量部
・光重合開始剤(IGMレジンズ社製、Omnirad127)
0.31質量部
・界面活性剤1 0.10質量部
・界面活性剤2 0.01質量部
・メチルエチルケトン 46.55質量部
・シクロヘキサノン 19.95質量部
<液晶性組成物8>
下記に記載の組成を有する液晶性組成物8を調製した。
・液晶性化合物の混合物1(質量比83:15:2) 30.92質量部
・重合性キラル化合物(BASF社製、パリオカラー LC756)
2.16質量部
・光重合開始剤(IGMレジンズ社製、Omnirad127)
0.31質量部
・界面活性剤1 0.10質量部
・界面活性剤2 0.01質量部
・メチルエチルケトン 46.55質量部
・シクロヘキサノン 19.95質量部
下記に記載の組成を有する液晶性組成物8を調製した。
・液晶性化合物の混合物1(質量比83:15:2) 30.92質量部
・重合性キラル化合物(BASF社製、パリオカラー LC756)
2.16質量部
・光重合開始剤(IGMレジンズ社製、Omnirad127)
0.31質量部
・界面活性剤1 0.10質量部
・界面活性剤2 0.01質量部
・メチルエチルケトン 46.55質量部
・シクロヘキサノン 19.95質量部
<液晶性組成物9>
下記に記載の組成を有する液晶性組成物9を調製した。
・液晶性化合物の混合物1(質量比83:15:2) 31.20質量部
・重合性キラル化合物(BASF社製、パリオカラー LC756)
1.87質量部
・光重合開始剤(IGMレジンズ社製、Omnirad127)
0.31質量部
・界面活性剤1 0.10質量部
・界面活性剤2 0.01質量部
・メチルエチルケトン 46.55質量部
・シクロヘキサノン 19.95質量部
下記に記載の組成を有する液晶性組成物9を調製した。
・液晶性化合物の混合物1(質量比83:15:2) 31.20質量部
・重合性キラル化合物(BASF社製、パリオカラー LC756)
1.87質量部
・光重合開始剤(IGMレジンズ社製、Omnirad127)
0.31質量部
・界面活性剤1 0.10質量部
・界面活性剤2 0.01質量部
・メチルエチルケトン 46.55質量部
・シクロヘキサノン 19.95質量部
<液晶性組成物10の調製>
下記に記載の組成を有する液晶性組成物10を調製した。
・液晶性化合物1 18.13質量部
・液晶性化合物2 6.04質量部
・液晶性化合物3 6.04質量部
・重合性キラル化合物(BASF社製、パリオカラー LC756)
0.76質量部
・光異性化キラル化合物 2.12質量部
・光重合開始剤(IGMレジンズ社製、Omnirad127)
0.30質量部
・界面活性剤1 0.10質量部
・界面活性剤2 0.01質量部
・メチルエチルケトン 46.55質量部
・シクロヘキサノン 19.95質量部
下記に記載の組成を有する液晶性組成物10を調製した。
・液晶性化合物1 18.13質量部
・液晶性化合物2 6.04質量部
・液晶性化合物3 6.04質量部
・重合性キラル化合物(BASF社製、パリオカラー LC756)
0.76質量部
・光異性化キラル化合物 2.12質量部
・光重合開始剤(IGMレジンズ社製、Omnirad127)
0.30質量部
・界面活性剤1 0.10質量部
・界面活性剤2 0.01質量部
・メチルエチルケトン 46.55質量部
・シクロヘキサノン 19.95質量部
<液晶性組成物11の調製>
下記に記載の組成を有する液晶性組成物11を調製した。
・液晶性化合物の混合物1(質量比83:15:2) 30.79質量部
・重合性光異性化キラル化合物 1.45質量部
・光重合開始剤 1.23質量部
(ジエチルチオキサントン、富士フイルム和光純薬株式会社製)
・界面活性剤1 0.02質量部
・界面活性剤2 0.02質量部
・メチルエチルケトン 46.55質量部
・シクロヘキサノン 19.95質量部
下記に記載の組成を有する液晶性組成物11を調製した。
・液晶性化合物の混合物1(質量比83:15:2) 30.79質量部
・重合性光異性化キラル化合物 1.45質量部
・光重合開始剤 1.23質量部
(ジエチルチオキサントン、富士フイルム和光純薬株式会社製)
・界面活性剤1 0.02質量部
・界面活性剤2 0.02質量部
・メチルエチルケトン 46.55質量部
・シクロヘキサノン 19.95質量部
<液晶性組成物12の調製>
下記に記載の組成を有する液晶性組成物12を調製した。
・液晶性化合物の混合物1(質量比83:15:2) 29.10質量部
・光異性化キラル化合物3 3.20質量部
・光重合開始剤 1.16質量部
(ジエチルチオキサントン、富士フイルム和光純薬株式会社製)
・界面活性剤1 0.01質量部
・界面活性剤2 0.02質量部
・メチルエチルケトン 46.55質量部
・シクロヘキサノン 19.95質量部
下記に記載の組成を有する液晶性組成物12を調製した。
・液晶性化合物の混合物1(質量比83:15:2) 29.10質量部
・光異性化キラル化合物3 3.20質量部
・光重合開始剤 1.16質量部
(ジエチルチオキサントン、富士フイルム和光純薬株式会社製)
・界面活性剤1 0.01質量部
・界面活性剤2 0.02質量部
・メチルエチルケトン 46.55質量部
・シクロヘキサノン 19.95質量部
<パターニング用マスクの準備>
図9~図12に示すパターニング用マスク1~パターニング用マスク4を準備した。
図9に示すパターニング用マスク1は、中央部近傍における光の透過率が100%であり、両端部に向けて光の透過率が連続的に0%へと変化するマスクである。
図10に示すパターニング用マスク2は、両端における光の透過率が100%であり、中央部近傍に向けて光の透過率が連続的に0%へと変化するマスクである。
図11に示すパターニング用マスク3は、一方の端部における光の透過率が100%であり、他方の端部に向けて光の透過率が連続的に0%へと変化するマスクである。
図12に示すパターニング用マスク4は、中央を境に、片側における光の透過率が0%、もう片側における光の透過率が100%となるマスクである。
図9~図12に示すパターニング用マスク1~パターニング用マスク4を準備した。
図9に示すパターニング用マスク1は、中央部近傍における光の透過率が100%であり、両端部に向けて光の透過率が連続的に0%へと変化するマスクである。
図10に示すパターニング用マスク2は、両端における光の透過率が100%であり、中央部近傍に向けて光の透過率が連続的に0%へと変化するマスクである。
図11に示すパターニング用マスク3は、一方の端部における光の透過率が100%であり、他方の端部に向けて光の透過率が連続的に0%へと変化するマスクである。
図12に示すパターニング用マスク4は、中央を境に、片側における光の透過率が0%、もう片側における光の透過率が100%となるマスクである。
以下の実施例及び比較例において、「最大反射率となる波長」は以下のようにして測定した。
第1の樹脂層等に対して、大型積分球装置(日本分光(株)製、ILV-471)を備えた分光光度計(日本分光(株)製、V-670)を用いて、波長300nm~1500nmの光を上記領域へ入射し、積分反射率を測定し、スペクトル波形を得る。
上記スペクトル波形のピークにおいて、反射率が最大となる波長を「最大反射率となる波長」とした。なお、ピークが複数存在する場合には、極大値となる反射率を含むピークを採用した。
第1の樹脂層等に対して、大型積分球装置(日本分光(株)製、ILV-471)を備えた分光光度計(日本分光(株)製、V-670)を用いて、波長300nm~1500nmの光を上記領域へ入射し、積分反射率を測定し、スペクトル波形を得る。
上記スペクトル波形のピークにおいて、反射率が最大となる波長を「最大反射率となる波長」とした。なお、ピークが複数存在する場合には、極大値となる反射率を含むピークを採用した。
<<実施例1>>
基材40として、メタクリル樹脂フィルムと、ポリカーボネート樹脂フィルムとの積層体(住化アクリル販売(株)製、テクノロイ(登録商標)C000、厚さ100μm)を21cm×30cmとなるよう準備した。基材のメタクリル樹脂フィルム側の面に対して、75W・min/m2の条件でコロナ放電処理を施した。
基材40として、メタクリル樹脂フィルムと、ポリカーボネート樹脂フィルムとの積層体(住化アクリル販売(株)製、テクノロイ(登録商標)C000、厚さ100μm)を21cm×30cmとなるよう準備した。基材のメタクリル樹脂フィルム側の面に対して、75W・min/m2の条件でコロナ放電処理を施した。
基材40のコロナ放電処理面に、下記組成の配向層形成用組成物を、ワイヤーバー(番手#10)を用いて付与した後、100℃の温度で2分間乾燥させることにより、配向層を形成した。
-配向層形成用組成物の組成-
・変性ポリビニルアルコール 10.00質量部
・水 55.00質量部
・メタノール 35.00質量部
-配向層形成用組成物の組成-
・変性ポリビニルアルコール 10.00質量部
・水 55.00質量部
・メタノール 35.00質量部
次いで、形成した配向層に対し、短辺方向を基準に反時計回りに3°回転させた方向にラビング処理(レーヨン布、圧力0.98N、回転数1,000rpm、搬送速度10m/min、回数1回)を施した。
ラビング処理配向層上に、上記調製した液晶性組成物1を、ワイヤーバー(番手#5)を用いて付与し、85℃の温度で2分間加熱し、液晶層を形成した。
基材の液晶層が形成された側とは反対の側に、パターニング用マスク1を密着させた。次いで、上記マスク側から、メタルハライドランプ((株)GSユアサ製、MAL625NAL、照射波長200nm~500nm)を用いて、30mJ/cm2の露光量となるように、光を照射し、非マスク領域における液晶層の光異性化処理を行った。
次いで、マスクを除去し、85℃のホットプレート上に、液晶層が形成された面とは反対の基材面が接するように、液晶層が形成された基材を配置し、低酸素雰囲気(酸素濃度1,000ppm以下)下において、上記メタルハライドランプを用いて、100mJ/cm2の露光量となるように、光を照射し、液晶層を硬化させ、厚さ3μmの第1の樹脂層10aを形成した。
図13に示すように、第1の樹脂層10aにおいて、最大反射率となる波長が350nm~380nmの範囲に存在する領域(特定領域A11a)と、最大反射率となる波長が381nm~450nmの範囲に存在する領域(その他の領域A12a)と、が確認された。
また、第1の樹脂層を目視により観察したところ、第1の樹脂層10aの一端部(図13における左端部)からその他の領域A12aとの境目まで、特定領域A11aは、透明であり、上記境目から他方の特定領域A11aとの境目(以下、その他の境目ともいう)まで、その他の領域A12aは、紫から青へとグラデーション調に変化する色味を表示し、その他の境目から第1の樹脂層10aの他端部(図13における右端部)まで、他方の特定領域A11aは、透明であった。
図13に示すように、第1の樹脂層10aにおいて、最大反射率となる波長が350nm~380nmの範囲に存在する領域(特定領域A11a)と、最大反射率となる波長が381nm~450nmの範囲に存在する領域(その他の領域A12a)と、が確認された。
また、第1の樹脂層を目視により観察したところ、第1の樹脂層10aの一端部(図13における左端部)からその他の領域A12aとの境目まで、特定領域A11aは、透明であり、上記境目から他方の特定領域A11aとの境目(以下、その他の境目ともいう)まで、その他の領域A12aは、紫から青へとグラデーション調に変化する色味を表示し、その他の境目から第1の樹脂層10aの他端部(図13における右端部)まで、他方の特定領域A11aは、透明であった。
形成した第1の樹脂層上に、上記液晶性組成物4を、ワイヤーバー(番手#7)を用いて付与し、85℃の温度で2分間加熱し、液晶層を形成した。
上記液晶層に、パターニング用マスク2を密着させた。次いで、上記マスク側から、上記メタルハライドランプを用いて、60mJ/cm2の露光量となるように、光を照射し、非マスク領域における液晶層の光異性化処理を行った。
次いで、マスクを除去し、85℃のホットプレート上に、液晶層が形成された面とは反対の基材面が接するように、液晶層が形成された基材を配置し、低酸素雰囲気(酸素濃度1,000ppm以下)下において、上記メタルハライドランプを用いて、100mJ/cm2の露光量となるように、光を照射し、液晶層を硬化させ、厚さ4μmの第2の樹脂層20aを形成した。
第2の樹脂層20aにおいて、図13に示すように、最大反射率となる波長が800nm~850nmの範囲に存在する領域(特定領域B21a)と、最大反射率となる波長が650nm~799nmの範囲に存在する領域(その他の領域B22a)と、が確認された。
また、第2の樹脂層を目視により観察したところ、第2の樹脂層20aの一端部(図13における左端部)からその他の領域B22aとの境目まで、特定領域B21aは、透明であり、上記境目から他方の特定領域B21aとの境目(以下、その他の境目ともいう)まで、その他の領域B22aは、赤から赤紫へとグラデーション調に変化する色味を表示し、その他の境目から第2の樹脂層20aの他端部(図13における右端部)まで、他方の特定領域B21は、透明であった。
第2の樹脂層20aにおいて、図13に示すように、最大反射率となる波長が800nm~850nmの範囲に存在する領域(特定領域B21a)と、最大反射率となる波長が650nm~799nmの範囲に存在する領域(その他の領域B22a)と、が確認された。
また、第2の樹脂層を目視により観察したところ、第2の樹脂層20aの一端部(図13における左端部)からその他の領域B22aとの境目まで、特定領域B21aは、透明であり、上記境目から他方の特定領域B21aとの境目(以下、その他の境目ともいう)まで、その他の領域B22aは、赤から赤紫へとグラデーション調に変化する色味を表示し、その他の境目から第2の樹脂層20aの他端部(図13における右端部)まで、他方の特定領域B21は、透明であった。
基材の第1の樹脂層等が形成された側とは反対の側に、黒色塗料(日本ペイント(株)製、REALミラーブラック)を、ワイヤーバー(番手#24)を用いて付与し、80℃の温度で2分間乾燥させ、厚さ10μmの着色層30を形成し、加飾フィルム1aを得た。
加飾フィルム1aを目視により観察したところ、両端において着色層の色味である黒色が確認された。また、加飾フィルム1aの中央部は青、マゼンタ及び赤の順に、グラデーション調に変化する色味を表示した。
なお、加飾フィルム1aが含む第1の樹脂層10a及び第2の樹脂層20aは、共に、右方向の円偏光を反射するものであった。
加飾フィルム1aを目視により観察したところ、両端において着色層の色味である黒色が確認された。また、加飾フィルム1aの中央部は青、マゼンタ及び赤の順に、グラデーション調に変化する色味を表示した。
なお、加飾フィルム1aが含む第1の樹脂層10a及び第2の樹脂層20aは、共に、右方向の円偏光を反射するものであった。
上記のようにして形成した着色層30の全光線透過率を、分光光度計((株)島津製作所製、分光光度計UV-2100)を用いて、2008年発行のJIS K 7375に準拠して測定したところ、0.06%であった。
<<実施例2>>
パターニング用マスク1を、パターニング用マスク3に変更し、光異性化処理における露光量を45mJ/cm2に変更した以外は実施例1と同様にして、第1の樹脂層10bを形成した。
第1の樹脂層10bにおいて、図14に示すように、最大反射率となる波長が350nm~380nmの範囲に存在する領域(特定領域A11b)と、最大反射率となる波長が381nm~550nmの範囲に存在する領域(その他の領域A12b)と、が確認された。
また、第1の樹脂層10bを目視により観察したところ、第1の樹脂層10bの一端部(図14における左端部)からその他の領域A12bとの境目まで、特定領域A11bは、透明であり、上記境目から第1の樹脂層10bの他端部(図14における右端部)まで、その他の領域A12bは、紫から緑へとグラデーション調に変化する色味を表示した。
パターニング用マスク1を、パターニング用マスク3に変更し、光異性化処理における露光量を45mJ/cm2に変更した以外は実施例1と同様にして、第1の樹脂層10bを形成した。
第1の樹脂層10bにおいて、図14に示すように、最大反射率となる波長が350nm~380nmの範囲に存在する領域(特定領域A11b)と、最大反射率となる波長が381nm~550nmの範囲に存在する領域(その他の領域A12b)と、が確認された。
また、第1の樹脂層10bを目視により観察したところ、第1の樹脂層10bの一端部(図14における左端部)からその他の領域A12bとの境目まで、特定領域A11bは、透明であり、上記境目から第1の樹脂層10bの他端部(図14における右端部)まで、その他の領域A12bは、紫から緑へとグラデーション調に変化する色味を表示した。
第2の樹脂層20bの形成において、パターニング用マスク2に代えて、上記パターニング用マスク3を使用し、露光量が90mJ/cm2となるように光異性化処理を行った以外は、実施例1と同様にして、第2の樹脂層20bの形成を形成し、加飾フィルム1bを製造した。なお、上記パターニング用マスク3は、第1の樹脂層10bの形成に使用した透過率変化の向きとは反対の向きに、使用した。
第2の樹脂層20bにおいて、図14に示すように、最大反射率となる波長が800nm~950nmの範囲に存在する領域(特定領域B21b)と、最大反射率となる波長が650nm~799nmの範囲に存在する領域(その他の領域B22b)と、が確認された。
また、第2の樹脂層20bを目視により観察したところ、第2の樹脂層20bの一端部(図14における左端部)からその他の領域B22bとの境目まで、特定領域B21bは、透明であり、上記境目から第2の樹脂層20bの他端部(図14における右端部)まで、その他の領域B22bは、赤から赤紫へとグラデーション調に変化する色味を表示した。
なお、加飾フィルム1bが含む第1の樹脂層10b及び第2の樹脂層20bは、共に、右方向の円偏光を反射するものであった。
第2の樹脂層20bにおいて、図14に示すように、最大反射率となる波長が800nm~950nmの範囲に存在する領域(特定領域B21b)と、最大反射率となる波長が650nm~799nmの範囲に存在する領域(その他の領域B22b)と、が確認された。
また、第2の樹脂層20bを目視により観察したところ、第2の樹脂層20bの一端部(図14における左端部)からその他の領域B22bとの境目まで、特定領域B21bは、透明であり、上記境目から第2の樹脂層20bの他端部(図14における右端部)まで、その他の領域B22bは、赤から赤紫へとグラデーション調に変化する色味を表示した。
なお、加飾フィルム1bが含む第1の樹脂層10b及び第2の樹脂層20bは、共に、右方向の円偏光を反射するものであった。
加飾フィルム1bを目視により観察したところ、上記一端部において着色層の色味である黒色が確認された。また、加飾フィルム1bは、上記着色層視認可能領域に続いて、青、青緑及び黄の順に、グラデーション調に変化する色味を表示した。
<<実施例3>>
第2の樹脂層の形成において、液晶性組成物4に代え、液晶性組成物6を使用した以外は、実施例1と同様にして、加飾フィルム1cを製造した。
第2の樹脂層20cにおいて、図15に示すように、最大反射率となる波長が800nm~850nmの範囲に存在する領域(特定領域B21c)と、最大反射率となる波長が650nm~799nmの範囲に存在する領域(その他の領域B22c)と、が確認された。
また、第2の樹脂層20cを目視により観察したところ、第2の樹脂層20cの一端部(図15における左端部)からその他の領域B22cとの境目まで、特定領域B21cは、透明であり、上記境目から他方の特定領域B21cとの境目(以下、その他の境目ともいう)まで、その他の領域B22cは、赤から赤紫へとグラデーション調に変化する色味を表示し、その他の境目から第2の樹脂層20cの他端部(図15における右端部)まで、他方の特定領域B21cは、透明であった。
加飾フィルム1cを目視により観察したところ、両端において着色層の色味である黒色が確認された。また、加飾フィルム1cの中央部は青、マゼンタ及び赤の順に、グラデーション調に変化する色味を表示した。
なお、加飾フィルム1cが含む第1の樹脂層10aは、右方向の円偏光を、第2の樹脂層20cは、左方向の円偏光を反射するものであった。
第2の樹脂層の形成において、液晶性組成物4に代え、液晶性組成物6を使用した以外は、実施例1と同様にして、加飾フィルム1cを製造した。
第2の樹脂層20cにおいて、図15に示すように、最大反射率となる波長が800nm~850nmの範囲に存在する領域(特定領域B21c)と、最大反射率となる波長が650nm~799nmの範囲に存在する領域(その他の領域B22c)と、が確認された。
また、第2の樹脂層20cを目視により観察したところ、第2の樹脂層20cの一端部(図15における左端部)からその他の領域B22cとの境目まで、特定領域B21cは、透明であり、上記境目から他方の特定領域B21cとの境目(以下、その他の境目ともいう)まで、その他の領域B22cは、赤から赤紫へとグラデーション調に変化する色味を表示し、その他の境目から第2の樹脂層20cの他端部(図15における右端部)まで、他方の特定領域B21cは、透明であった。
加飾フィルム1cを目視により観察したところ、両端において着色層の色味である黒色が確認された。また、加飾フィルム1cの中央部は青、マゼンタ及び赤の順に、グラデーション調に変化する色味を表示した。
なお、加飾フィルム1cが含む第1の樹脂層10aは、右方向の円偏光を、第2の樹脂層20cは、左方向の円偏光を反射するものであった。
<<実施例4>>
液晶性組成物1に代え、液晶性組成物2を使用した以外は、実施例1と同様にして、基材40上に第1の樹脂層10dを形成した。
第1の樹脂層10dにおいて、図16に示すように、最大反射率となる波長が350nm~380nmの範囲に存在する領域(特定領域A11d)と、最大反射率となる波長が381nm~450nmの範囲に存在する領域(その他の領域A12d)と、が確認された。
また、第1の樹脂層10dを目視により観察したところ、第1の樹脂層10dの一端部(図16における左端部)からその他の領域A12dとの境目まで、特定領域A11dは、透明であり、上記境目から他方の特定領域A11dとの境目(以下、その他の境目ともいう)まで、その他の領域A12dは、紫から青へとグラデーション調に変化する色味を表示し、その他の境目から第1の樹脂層10dの他端部(図16における右端部)まで、他方の特定領域A11dは、透明であった。
液晶性組成物1に代え、液晶性組成物2を使用した以外は、実施例1と同様にして、基材40上に第1の樹脂層10dを形成した。
第1の樹脂層10dにおいて、図16に示すように、最大反射率となる波長が350nm~380nmの範囲に存在する領域(特定領域A11d)と、最大反射率となる波長が381nm~450nmの範囲に存在する領域(その他の領域A12d)と、が確認された。
また、第1の樹脂層10dを目視により観察したところ、第1の樹脂層10dの一端部(図16における左端部)からその他の領域A12dとの境目まで、特定領域A11dは、透明であり、上記境目から他方の特定領域A11dとの境目(以下、その他の境目ともいう)まで、その他の領域A12dは、紫から青へとグラデーション調に変化する色味を表示し、その他の境目から第1の樹脂層10dの他端部(図16における右端部)まで、他方の特定領域A11dは、透明であった。
実施例1で使用した基材(以下、その他の基材という)を別途準備し、一方の面に、実施例1同様、ラビング処理配向層を形成した。なお、基材に対し、コロナ放電処理は施さなかった。
上記のようにして形成したラビング処理配向層上に、実施例1と同様にして、第2の樹脂層20aを形成した。第2の樹脂層20a上に、厚さ25μmのOCA(Optical Clear Adhesive)フィルム60(日榮新化(株)製、G25)の一方の面を貼り合わせ、次いで、上記OCAフィルムの他方の面に、上記のようにして基材上に形成した第1の樹脂層10dを貼り合わせた。上記貼り合わせ後、その他の基材を剥離した。
基材40の第1の樹脂層10d等が形成された側とは反対の側に、実施例1と同様にして、着色層30を形成し、加飾フィルム1dを得た。
加飾フィルム1dを目視により観察したところ、両端において着色層の色味である黒色が確認された。また、加飾フィルム1dの中央部は青、マゼンタ及び赤の順に、グラデーション調に変化する色味を表示した。
なお、加飾フィルム1dが含む第1の樹脂層及び第2の樹脂層は、共に、右方向の円偏光を反射するものであった。
加飾フィルム1dを目視により観察したところ、両端において着色層の色味である黒色が確認された。また、加飾フィルム1dの中央部は青、マゼンタ及び赤の順に、グラデーション調に変化する色味を表示した。
なお、加飾フィルム1dが含む第1の樹脂層及び第2の樹脂層は、共に、右方向の円偏光を反射するものであった。
<<実施例5>>
第1の樹脂層の形成に使用されたワイヤーバーを番手#3.5のものに、第2の樹脂層の形成に使用されたワイヤーバーを番手#4のものに変更した以外は、実施例1と同様にして、加飾フィルムを製造した。なお、第1の樹脂層の厚さは2μmであり、第2の樹脂層の厚さは2.5μmであった。
第1の樹脂層の形成に使用されたワイヤーバーを番手#3.5のものに、第2の樹脂層の形成に使用されたワイヤーバーを番手#4のものに変更した以外は、実施例1と同様にして、加飾フィルムを製造した。なお、第1の樹脂層の厚さは2μmであり、第2の樹脂層の厚さは2.5μmであった。
<<実施例6>>
第2の樹脂層の形成において、第1の樹脂層の形成に使用した透過率変化の向きと同じ向きに、上記パターニング用マスク3を使用し、露光量が30mJ/cm2となるように光異性化処理を行った以外は、実施例2と同様にして、加飾フィルム1eを製造した。
第2の樹脂層20eにおいて、図17に示すように、最大反射率となる波長が600nm~700nmの範囲に存在する領域(その他の領域B22e)と、が確認された。
また、第2の樹脂層20eを目視により観察したところ、第2の樹脂層20eの一端部(図17における左端部)から他端部(図17における右端部)まで、オレンジから赤へとグラデーション調に変化する色味を表示した。
なお、加飾フィルム1eが含む第1の樹脂層10b及び第2の樹脂層20eは、共に、右方向の円偏光を反射するものであった。
また、加飾フィルム1eを目視により観察したところ、オレンジ及びマゼンタの順に、グラデーション調に変化する色味を表示した。
第2の樹脂層の形成において、第1の樹脂層の形成に使用した透過率変化の向きと同じ向きに、上記パターニング用マスク3を使用し、露光量が30mJ/cm2となるように光異性化処理を行った以外は、実施例2と同様にして、加飾フィルム1eを製造した。
第2の樹脂層20eにおいて、図17に示すように、最大反射率となる波長が600nm~700nmの範囲に存在する領域(その他の領域B22e)と、が確認された。
また、第2の樹脂層20eを目視により観察したところ、第2の樹脂層20eの一端部(図17における左端部)から他端部(図17における右端部)まで、オレンジから赤へとグラデーション調に変化する色味を表示した。
なお、加飾フィルム1eが含む第1の樹脂層10b及び第2の樹脂層20eは、共に、右方向の円偏光を反射するものであった。
また、加飾フィルム1eを目視により観察したところ、オレンジ及びマゼンタの順に、グラデーション調に変化する色味を表示した。
<<実施例7>>
実施例1と同様にして、基材40のコロナ処理面に、ラビング処理配向層を形成した。
次いで、ラビング処理配向層上に、液晶性組成物3を、ワイヤーバー(番手#5)を用いて付与し、85℃の温度で2分間加熱し、液晶層を形成した。
実施例1と同様にして、基材40のコロナ処理面に、ラビング処理配向層を形成した。
次いで、ラビング処理配向層上に、液晶性組成物3を、ワイヤーバー(番手#5)を用いて付与し、85℃の温度で2分間加熱し、液晶層を形成した。
次いで、85℃のホットプレート上に、液晶層が形成された面とは反対の基材面が接するように、液晶層が形成された基材を配置し、低酸素雰囲気(酸素濃度1,000ppm以下)下において、上記メタルハライドランプを用いて、100mJ/cm2の露光量となるように、光を照射し、液晶層を硬化させ、図18に示す、第2の樹脂層20fを形成した。
第2の樹脂層20fにおいて、最大反射率となる波長が450nmに存在する領域(その他の領域B22f)が確認された。
また、第2の樹脂層20fを目視により観察したところ、青の色味を表示した。
第2の樹脂層20fにおいて、最大反射率となる波長が450nmに存在する領域(その他の領域B22f)が確認された。
また、第2の樹脂層20fを目視により観察したところ、青の色味を表示した。
第2の樹脂層20f上に、上記液晶性組成物4を、ワイヤーバー(番手#7)を用いて付与し、85℃の温度で2分間加熱し、液晶層を形成した。
上記液晶層に、パターニング用マスク4を密着させた。次いで、上記マスク側から、上記メタルハライドランプを用いて、60mJ/cm2の露光量となるように、光を照射し、非マスク領域における液晶層の光異性化処理を行った。
次いで、マスクを除去し、85℃のホットプレート上に、液晶層が形成された面とは反対の基材面が接するように、液晶層が形成された基材を配置し、低酸素雰囲気(酸素濃度1,000ppm以下)下において、上記メタルハライドランプを用いて、100mJ/cm2の露光量となるように、光を照射し、液晶層を硬化させ、第1の樹脂層10fを形成した。
第1の樹脂層10fにおいて、図18に示すように、最大反射率となる波長が850nmに存在する領域(特定領域A11f)と、最大反射率となる波長が650nmに存在する領域(その他の領域A12f)と、が確認された。
また、第1の樹脂層を目視により観察したところ、第1の樹脂層10fの一端部(図18における左端部)からその他の領域A12fとの境目まで、特定領域A11fは、透明の色味を表示し、上記境目から第1の樹脂層10fの他端部(図18における右端部)まで、赤の色味を表示した。
なお、第1の樹脂層10f及び第2の樹脂層20fは、共に、右方向の円偏光を反射するものであった。
第1の樹脂層10fにおいて、図18に示すように、最大反射率となる波長が850nmに存在する領域(特定領域A11f)と、最大反射率となる波長が650nmに存在する領域(その他の領域A12f)と、が確認された。
また、第1の樹脂層を目視により観察したところ、第1の樹脂層10fの一端部(図18における左端部)からその他の領域A12fとの境目まで、特定領域A11fは、透明の色味を表示し、上記境目から第1の樹脂層10fの他端部(図18における右端部)まで、赤の色味を表示した。
なお、第1の樹脂層10f及び第2の樹脂層20fは、共に、右方向の円偏光を反射するものであった。
基材40の第2の樹脂層20f等が形成された側とは反対の側に、実施例1同様、着色層30を形成し、加飾フィルム1fを得た。
加飾フィルム1fを目視により観察したところ、中央を境に、青を表示する領域と、マゼンタを表示する領域が観察された。
加飾フィルム1fを目視により観察したところ、中央を境に、青を表示する領域と、マゼンタを表示する領域が観察された。
<<実施例8>>
第1の樹脂層及び第2の樹脂層形成において、パターニング用マスク3を使用した以外は、実施例1と同様にして、図19に示す加飾フィルム1gを製造した。なお、第2の樹脂層20gの形成において、第1の樹脂層10gの形成に使用した透過率変化の向きとは反対の向きに、上記パターニング用マスク3を使用した。
加飾フィルム1gを目視により観察したところ、上記一端部において着色層30の色味である黒色が確認された。また、加飾フィルム1gは、上記着色層30視認可能領域に続いて、紫及びマゼンタの順に、グラデーション調に変化する色味を表示した。
第1の樹脂層及び第2の樹脂層形成において、パターニング用マスク3を使用した以外は、実施例1と同様にして、図19に示す加飾フィルム1gを製造した。なお、第2の樹脂層20gの形成において、第1の樹脂層10gの形成に使用した透過率変化の向きとは反対の向きに、上記パターニング用マスク3を使用した。
加飾フィルム1gを目視により観察したところ、上記一端部において着色層30の色味である黒色が確認された。また、加飾フィルム1gは、上記着色層30視認可能領域に続いて、紫及びマゼンタの順に、グラデーション調に変化する色味を表示した。
<<実施例9>>
第1の樹脂層の形成に使用されたワイヤーバーを番手#4.5のものに変更した以外は、実施例1と同様にして、ラビング処理配向層上に、厚さ2.5μmの第1の樹脂層10aを形成した。
第1の樹脂層の形成に使用されたワイヤーバーを番手#4.5のものに変更した以外は、実施例1と同様にして、ラビング処理配向層上に、厚さ2.5μmの第1の樹脂層10aを形成した。
第2の樹脂層の形成に使用されたワイヤーバーを番手#6のものに変更し、液晶性組成物4を液晶性組成物7に変更し、光異性化処理における露光量を120mJ/cm2に変更した以外は、実施例1と同様にして、第1の樹脂層10a上に、厚さ3.5μmの第2の樹脂層20hを形成した。
第2の樹脂層20hにおいて、図20に示すように、最大反射率となる波長が800nm~950nmの範囲に存在する領域(特定領域B21h)と、最大反射率となる波長が550nm~799nmの範囲に存在する領域(その他の領域B22h)と、が確認された。
また、第2の樹脂層20hを目視により観察したところ、第2の樹脂層20hの一端部(図20における左端部)からその他の領域B22hとの境目まで、特定領域B21hは、透明であり、上記境目から他方の特定領域B21hとの境目(以下、その他の境目ともいう)まで、その他の領域B22hは、緑から赤紫へとグラデーション調に変化する色味を表示し、その他の境目から第2の樹脂層20hの他端部(図20における右端部)まで、他方の特定領域B21hは、透明であった。
第2の樹脂層20hにおいて、図20に示すように、最大反射率となる波長が800nm~950nmの範囲に存在する領域(特定領域B21h)と、最大反射率となる波長が550nm~799nmの範囲に存在する領域(その他の領域B22h)と、が確認された。
また、第2の樹脂層20hを目視により観察したところ、第2の樹脂層20hの一端部(図20における左端部)からその他の領域B22hとの境目まで、特定領域B21hは、透明であり、上記境目から他方の特定領域B21hとの境目(以下、その他の境目ともいう)まで、その他の領域B22hは、緑から赤紫へとグラデーション調に変化する色味を表示し、その他の境目から第2の樹脂層20hの他端部(図20における右端部)まで、他方の特定領域B21hは、透明であった。
形成した第2の樹脂層20h上に、上記液晶性組成物7を、ワイヤーバー(番手#6)を用いて付与し、85℃の温度で2分間加熱し、液晶層を形成した。
上記液晶層に、パターニング用マスク2を密着させた。次いで、上記マスク側から、上記メタルハライドランプを用いて、60mJ/cm2の露光量となるように、光を照射し、非マスク領域における液晶層の光異性化処理を行った。
次いで、マスクを除去し、85℃のホットプレート上に、液晶層が形成された面とは反対の基材面が接するように、液晶層が形成された基材を配置し、低酸素雰囲気(酸素濃度1,000ppm以下)下において、上記メタルハライドランプを用いて、100mJ/cm2の露光量となるように、光を照射し、液晶層を硬化させ、厚さ3.5μmの第3の樹脂層50aを形成した。
第3の樹脂層50aにおいて、図20に示すように、最大反射率となる波長が800nm~850nmの範囲に存在する領域(特定領域C51a)と、最大反射率となる波長が650nm~799nmの範囲に存在する領域(その他の領域C52a)と、が確認された。
また、第3の樹脂層50aを目視により観察したところ、第3の樹脂層50aの一端部(図20における左端部)からその他の領域C52aとの境目まで、特定領域C51aは、透明であり、上記境目から他方の特定領域C51aとの境目(以下、その他の境目ともいう)まで、その他の領域C52aは、赤から赤紫へとグラデーション調に変化する色味を表示し、その他の境目から第3の樹脂層50aの他端部(図20における右端部)まで、他方の特定領域C51aは、透明であった。
なお、第1の樹脂層10a、第2の樹脂層20h及び第3の樹脂層50aは、いずれも、右方向の円偏光を反射するものであった。
第3の樹脂層50aにおいて、図20に示すように、最大反射率となる波長が800nm~850nmの範囲に存在する領域(特定領域C51a)と、最大反射率となる波長が650nm~799nmの範囲に存在する領域(その他の領域C52a)と、が確認された。
また、第3の樹脂層50aを目視により観察したところ、第3の樹脂層50aの一端部(図20における左端部)からその他の領域C52aとの境目まで、特定領域C51aは、透明であり、上記境目から他方の特定領域C51aとの境目(以下、その他の境目ともいう)まで、その他の領域C52aは、赤から赤紫へとグラデーション調に変化する色味を表示し、その他の境目から第3の樹脂層50aの他端部(図20における右端部)まで、他方の特定領域C51aは、透明であった。
なお、第1の樹脂層10a、第2の樹脂層20h及び第3の樹脂層50aは、いずれも、右方向の円偏光を反射するものであった。
基材40の第1の樹脂層10a等が形成された側とは反対の側に、実施例1と同様にして、着色層30を形成し、加飾フィルム1hを得た。
加飾フィルム1hを目視により観察したところ、両端において着色層の色味である黒色が確認された。また、加飾フィルム1h中央部はマゼンタ、白及び赤の順に、グラデーション調に変化する色味を表示した。
加飾フィルム1hを目視により観察したところ、両端において着色層の色味である黒色が確認された。また、加飾フィルム1h中央部はマゼンタ、白及び赤の順に、グラデーション調に変化する色味を表示した。
<<実施例10>>
実施例1と同様にして、基材40のコロナ処理面に、ラビング処理配向層を形成した。
次いで、ラビング処理配向層上に、液晶性組成物12を、ワイヤーバー(番手#5)を用いて付与し、85℃の温度で2分間加熱し、液晶層を形成した。
実施例1と同様にして、基材40のコロナ処理面に、ラビング処理配向層を形成した。
次いで、ラビング処理配向層上に、液晶性組成物12を、ワイヤーバー(番手#5)を用いて付与し、85℃の温度で2分間加熱し、液晶層を形成した。
次いで、85℃のホットプレート上に、液晶層が形成された面とは反対の基材面が接するように、液晶層が形成された基材を配置し、低酸素雰囲気(酸素濃度1,000ppm以下)下において、上記メタルハライドランプを用いて、800mJ/cm2の露光量となるように、光を照射し、液晶層を硬化させ、図21に示す、第2の樹脂層20iを形成した。
第2の樹脂層20iにおいて、最大反射率となる波長が450nmに存在する領域(その他の領域B22i)が確認された。また、第2の樹脂層20iを目視により観察したところ、青の色味を表示した。
第2の樹脂層20iにおいて、最大反射率となる波長が450nmに存在する領域(その他の領域B22i)が確認された。また、第2の樹脂層20iを目視により観察したところ、青の色味を表示した。
第2の樹脂層20i上に、上記液晶性組成物11を、ワイヤーバー(番手#7)を用いて付与し、85℃の温度で2分間加熱し、液晶層を形成した。
上記液晶層に、パターニング用マスク4を密着させた。次いで、上記マスク側から、上記メタルハライドランプを用いて、25mJ/cm2の露光量となるように、光を照射し、非マスク領域における液晶層の光異性化処理を行った。
次いで、マスクを除去し、85℃のホットプレート上に、液晶層が形成された面とは反対の基材面が接するように、液晶層が形成された基材を配置し、低酸素雰囲気(酸素濃度1,000ppm以下)下において、上記メタルハライドランプを用いて、800mJ/cm2の露光量となるように、光を照射し、液晶層を硬化させ、第1の樹脂層10iを形成した。
第1の樹脂層10iにおいて、図21に示すように、最大反射率となる波長が850nmに存在する領域(特定領域A11i)と、最大反射率となる波長が650nmに存在する領域(その他の領域A12i)と、が確認された。
また、第1の樹脂層を目視により観察したところ、第1の樹脂層10iの一端部(図21における左端部)からその他の領域A12iとの境目まで、特定領域A11iは、透明の色味を表示し、上記境目から第1の樹脂層10iの他端部(図21における右端部)まで、赤の色味を表示した。
なお、第1の樹脂層10iは、右方向の円偏光を、第2の樹脂層20iは、左方向の円偏光を反射するものであった。
第1の樹脂層10iにおいて、図21に示すように、最大反射率となる波長が850nmに存在する領域(特定領域A11i)と、最大反射率となる波長が650nmに存在する領域(その他の領域A12i)と、が確認された。
また、第1の樹脂層を目視により観察したところ、第1の樹脂層10iの一端部(図21における左端部)からその他の領域A12iとの境目まで、特定領域A11iは、透明の色味を表示し、上記境目から第1の樹脂層10iの他端部(図21における右端部)まで、赤の色味を表示した。
なお、第1の樹脂層10iは、右方向の円偏光を、第2の樹脂層20iは、左方向の円偏光を反射するものであった。
基材40の第2の樹脂層20i等が形成された側とは反対の側に、実施例1同様、着色層30を形成し、加飾フィルム1iを得た。
加飾フィルム1iを目視により観察したところ、中央を境に、青を表示する領域と、マゼンタを表示する領域が観察された。
加飾フィルム1iを目視により観察したところ、中央を境に、青を表示する領域と、マゼンタを表示する領域が観察された。
<<実施例11>>
実施例10と同様にして、基材40上に第1の樹脂層10jを形成した。
第1の樹脂層10ijにおいて、図22に示すように、最大反射率となる波長が850nmに存在する領域(特定領域A11j)と、最大反射率となる波長が650nmに存在する領域(その他の領域A12j)と、が確認された。
また、第1の樹脂層を目視により観察したところ、第1の樹脂層10jの一端部(図22における左端部)からその他の領域A12jとの境目まで、特定領域A11jは、透明の色味を表示し、上記境目から第1の樹脂層10jの他端部(図22における右端部)まで、赤の色味を表示した。
実施例10と同様にして、基材40上に第1の樹脂層10jを形成した。
第1の樹脂層10ijにおいて、図22に示すように、最大反射率となる波長が850nmに存在する領域(特定領域A11j)と、最大反射率となる波長が650nmに存在する領域(その他の領域A12j)と、が確認された。
また、第1の樹脂層を目視により観察したところ、第1の樹脂層10jの一端部(図22における左端部)からその他の領域A12jとの境目まで、特定領域A11jは、透明の色味を表示し、上記境目から第1の樹脂層10jの他端部(図22における右端部)まで、赤の色味を表示した。
実施例1で使用した基材(以下、その他の基材という)を別途準備し、一方の面に、実施例1同様、ラビング処理配向層を形成した。なお、基材に対し、コロナ放電処理は施さなかった。
上記のようにして形成したラビング処理配向層上に、実施例10と同様にして、第2の樹脂層20jを形成した。第2の樹脂層20j上に、厚さ25μmのOCA(Optical Clear Adhesive)フィルム60(日榮新化(株)製、G25)の一方の面を貼り合わせ、次いで、上記OCAフィルムの他方の面に、上記のようにして基材上に形成した第1の樹脂層10jを貼り合わせた。上記貼り合わせ後、その他の基材を剥離した。
なお、第2の樹脂層20jにおいて、最大反射率となる波長が450nmに存在する領域(その他の領域B22j)が確認された。また、第2の樹脂層20jを目視により観察したところ、青の色味を表示した。
なお、第2の樹脂層20jにおいて、最大反射率となる波長が450nmに存在する領域(その他の領域B22j)が確認された。また、第2の樹脂層20jを目視により観察したところ、青の色味を表示した。
基材40の第1の樹脂層10j等が形成された側とは反対の側に、実施例1と同様にして、着色層30を形成し、加飾フィルム1jを得た。
加飾フィルム1jを目視により観察したところ、中央を境に、青を表示する領域と、マゼンタを表示する領域が観察された。
加飾フィルム1jを目視により観察したところ、中央を境に、青を表示する領域と、マゼンタを表示する領域が観察された。
<<比較例1>>
実施例1と同様にして、基材のコロナ処理面に、ラビング処理配向層を形成した。
次いで、ラビング処理配向層上に、液晶性組成物8を、ワイヤーバー(番手#2.5)を用いて付与し、85℃の温度で2分間加熱し、液晶層を形成した。
次いで、85℃のホットプレート上に、液晶層が形成された面とは反対の基材面が接するように、液晶層が形成された基材を配置し、低酸素雰囲気(酸素濃度1,000ppm以下)下において、上記メタルハライドランプを用いて、100mJ/cm2の露光量となるように、光を照射し、液晶層を硬化させ、厚さ1.5μmの第1の樹脂層を形成した。
第1の樹脂層において、最大反射率となる波長が450nmに存在する領域(その他の領域B22)が確認された。
また、第1の樹脂層を目視により観察したところ、青の色味を表示した。
実施例1と同様にして、基材のコロナ処理面に、ラビング処理配向層を形成した。
次いで、ラビング処理配向層上に、液晶性組成物8を、ワイヤーバー(番手#2.5)を用いて付与し、85℃の温度で2分間加熱し、液晶層を形成した。
次いで、85℃のホットプレート上に、液晶層が形成された面とは反対の基材面が接するように、液晶層が形成された基材を配置し、低酸素雰囲気(酸素濃度1,000ppm以下)下において、上記メタルハライドランプを用いて、100mJ/cm2の露光量となるように、光を照射し、液晶層を硬化させ、厚さ1.5μmの第1の樹脂層を形成した。
第1の樹脂層において、最大反射率となる波長が450nmに存在する領域(その他の領域B22)が確認された。
また、第1の樹脂層を目視により観察したところ、青の色味を表示した。
実施例1で使用した基材(以下、その他の基材という)を別途準備し、一方の面に、実施例1同様、ラビング処理配向層を形成した。なお、基材に対し、コロナ放電処理は施さなかった。
上記のようにして形成したラビング処理配向層上に、液晶性組成物9を、ワイヤーバー(番手#3.5)を用いて付与し、85℃の温度で2分間加熱し、液晶層を形成した。
次いで、85℃のホットプレート上に、液晶層が形成された面とは反対の基材面が接するように、液晶層が形成された基材を配置し、低酸素雰囲気(酸素濃度1,000ppm以下)下において、上記メタルハライドランプを用いて、100mJ/cm2の露光量となるように、光を照射し、液晶層を硬化させ、厚さ2μmの第2の樹脂層を形成した。
第2の樹脂層において、最大反射率となる波長が550nmに存在する領域が確認された。
また、第2の樹脂層を目視により観察したところ、緑の色味を表示した。
なお、加飾フィルムが含む第1の樹脂層及び第2の樹脂層は、共に、右方向の円偏光を反射するものであった。
次いで、85℃のホットプレート上に、液晶層が形成された面とは反対の基材面が接するように、液晶層が形成された基材を配置し、低酸素雰囲気(酸素濃度1,000ppm以下)下において、上記メタルハライドランプを用いて、100mJ/cm2の露光量となるように、光を照射し、液晶層を硬化させ、厚さ2μmの第2の樹脂層を形成した。
第2の樹脂層において、最大反射率となる波長が550nmに存在する領域が確認された。
また、第2の樹脂層を目視により観察したところ、緑の色味を表示した。
なお、加飾フィルムが含む第1の樹脂層及び第2の樹脂層は、共に、右方向の円偏光を反射するものであった。
第2の樹脂層上に、上記OCAフィルムの一方の面を貼り合わせ、次いで、上記OCAフィルムの他方の面に、上記のようにして基材上に形成した第1の樹脂層を貼り合わせた。上記貼り合わせ後、その他の基材を剥離し、加飾フィルムとした。
加飾フィルムを目視により観察したところ、シアン単色を表示した。
加飾フィルムを目視により観察したところ、シアン単色を表示した。
<<比較例2>>
実施例1と同様にして、基材のコロナ処理面に、ラビング処理配向層を形成した。
次いで、ラビング処理配向層上に、液晶性組成物10を、ワイヤーバー(番手#3.5)を用いて付与し、85℃の温度で2分間加熱し、液晶層を形成した。
実施例1と同様にして、基材のコロナ処理面に、ラビング処理配向層を形成した。
次いで、ラビング処理配向層上に、液晶性組成物10を、ワイヤーバー(番手#3.5)を用いて付与し、85℃の温度で2分間加熱し、液晶層を形成した。
上記液晶層に、パターニング用マスク3を密着させた。次いで、上記マスク側から、上記メタルハライドランプを用いて、100mJ/cm2の露光量となるように、光を照射し、非マスク領域における液晶層の光異性化処理を行った。
次いで、85℃のホットプレート上に、液晶層が形成された面とは反対の基材面が接するように、液晶層が形成された基材を配置し、低酸素雰囲気(酸素濃度1,000ppm以下)下において、上記メタルハライドランプを用いて、100mJ/cm2の露光量となるように、光を照射し、液晶層を硬化させ、厚さ2μmの第1の樹脂層を形成し、加飾フィルムとした。
第1の樹脂層において、最大反射率となる波長が400nm~700nmの範囲に存在する領域が確認された。
また、加飾フィルムを目視により観察したところ、一端部から他端部まで、青、緑及び赤の順に、グラデーション調に変化する色味を表示した。
第1の樹脂層において、最大反射率となる波長が400nm~700nmの範囲に存在する領域が確認された。
また、加飾フィルムを目視により観察したところ、一端部から他端部まで、青、緑及び赤の順に、グラデーション調に変化する色味を表示した。
<<比較例3>>
着色層30を形成しなかった以外は、実施例1と同様にして、加飾フィルムを製造した。
加飾フィルムを目視により観察したところ、端部から中央に向けて、両端が透明であり、中央部は青、マゼンタ及び赤の順に、グラデーション調に変化する色味を表示した。
着色層30を形成しなかった以外は、実施例1と同様にして、加飾フィルムを製造した。
加飾フィルムを目視により観察したところ、端部から中央に向けて、両端が透明であり、中央部は青、マゼンタ及び赤の順に、グラデーション調に変化する色味を表示した。
[意匠性評価]
実施例及び比較例において製造した加飾フィルムを目視観察し、下記評価基準に基づいて、意匠性を評価した。評価結果を表2にまとめた。
(評価基準)
A:2以上の色味が確認され、且つ着色層視認可能領域の存在が確認され、優れた意匠性が確認された。
B:着色層視認可能領域の存在は確認されなかったが、2以上の色味が確認され、高い意匠性が確認された。
C:1色の色味のみが確認された。
実施例及び比較例において製造した加飾フィルムを目視観察し、下記評価基準に基づいて、意匠性を評価した。評価結果を表2にまとめた。
(評価基準)
A:2以上の色味が確認され、且つ着色層視認可能領域の存在が確認され、優れた意匠性が確認された。
B:着色層視認可能領域の存在は確認されなかったが、2以上の色味が確認され、高い意匠性が確認された。
C:1色の色味のみが確認された。
[視認性評価]
実施例及び比較例において製造した加飾フィルムを目視観察し、下記評価基準に基づいて、視認性を評価した。評価結果を表2にまとめた。
(評価基準)
A:表示される色味の発色が良好であり、優れた視認性が確認された。
B:視認性には改良の余地があった。
C:表示される色味の発色が良好ではなく、視認性が悪かった。
実施例及び比較例において製造した加飾フィルムを目視観察し、下記評価基準に基づいて、視認性を評価した。評価結果を表2にまとめた。
(評価基準)
A:表示される色味の発色が良好であり、優れた視認性が確認された。
B:視認性には改良の余地があった。
C:表示される色味の発色が良好ではなく、視認性が悪かった。
[光輝性評価]
実施例及び比較例において製造した加飾フィルムの面内平均反射率を測定し、下記評価基準に基づいて、光輝性を評価した。評価結果を表2にまとめた。
なお、面内平均反射率は以下のようにして測定した。
加飾フィルムが備える最表面の樹脂層(例えば、実施例1においては、第2の樹脂層)に対し、大型積分球装置(日本分光(株)製、ILV-471)を備えた分光光度計(日本分光(株)製、V-670)を用いて、波長300nm~1500nmの光を垂直方向(樹脂層の面に対し90°となる角度)から入射し、得られた分光スペクトルからピーク波長を読み取り、ピーク波長における反射率を得た。
上記最表面の樹脂層の全面においてピーク波長における反射率を測定し、この平均を面内平均反射率とした。
(評価基準)
A:面内平均反射率が30%以上であった。
B:面内平均反射率が20%以上、且つ30%未満であった。
C:面内平均反射率が20%未満であった。
実施例及び比較例において製造した加飾フィルムの面内平均反射率を測定し、下記評価基準に基づいて、光輝性を評価した。評価結果を表2にまとめた。
なお、面内平均反射率は以下のようにして測定した。
加飾フィルムが備える最表面の樹脂層(例えば、実施例1においては、第2の樹脂層)に対し、大型積分球装置(日本分光(株)製、ILV-471)を備えた分光光度計(日本分光(株)製、V-670)を用いて、波長300nm~1500nmの光を垂直方向(樹脂層の面に対し90°となる角度)から入射し、得られた分光スペクトルからピーク波長を読み取り、ピーク波長における反射率を得た。
上記最表面の樹脂層の全面においてピーク波長における反射率を測定し、この平均を面内平均反射率とした。
(評価基準)
A:面内平均反射率が30%以上であった。
B:面内平均反射率が20%以上、且つ30%未満であった。
C:面内平均反射率が20%未満であった。
[樹脂層の総厚み評価]
実施例及び比較例において製造した加飾フィルムに含まれる樹脂層の総厚みを求め、下記評価基準に基づいて、評価した。評価結果を表2にまとめた。なお、樹脂層間にOCAフィルムが存在する場合は、この厚みも総厚みに加えるものとした。
(評価基準)
A:総厚みが10μm未満であった。
B:総厚みが10μm以上、かつ、25μm未満であった。
C:総厚みが25μm以上であった。
実施例及び比較例において製造した加飾フィルムに含まれる樹脂層の総厚みを求め、下記評価基準に基づいて、評価した。評価結果を表2にまとめた。なお、樹脂層間にOCAフィルムが存在する場合は、この厚みも総厚みに加えるものとした。
(評価基準)
A:総厚みが10μm未満であった。
B:総厚みが10μm以上、かつ、25μm未満であった。
C:総厚みが25μm以上であった。
[干渉縞発生抑制性評価]
実施例及び比較例において製造した加飾フィルムを目視観察し、下記評価基準に基づいて、干渉縞発生抑制性を評価した。評価結果を表2にまとめた。
(評価基準)
A:干渉縞の発生が確認されなかった。
B:干渉縞の発生が確認された。
実施例及び比較例において製造した加飾フィルムを目視観察し、下記評価基準に基づいて、干渉縞発生抑制性を評価した。評価結果を表2にまとめた。
(評価基準)
A:干渉縞の発生が確認されなかった。
B:干渉縞の発生が確認された。
上記実施例の結果から、本開示に係る加飾フィルムによれば、視認性が高く、バリエーションに富んだ色味変化を表示することができ、優れた意匠性を有することが分かった。
2020年9月18日に出願された日本国特許出願2020-157926号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書に参照により取り込まれる。
Claims (15)
- 最大反射率となる波長が異なる2つ以上の領域を同一面内に有し、且つ少なくとも1つの領域において最大反射率となる波長が、380nm以下又は800nm以上の範囲に存在する、コレステリック規則性を有する第1の樹脂層と、
前記第1の樹脂層とは異なるコレステリック規則性を有する第2の樹脂層と、
着色層と、
を少なくとも含む、加飾フィルム。 - 前記第2の樹脂層が、最大反射率となる波長が異なる2つ以上の領域を同一面内に有し、且つ少なくとも1つの領域において最大反射率となる波長が、380nm以下又は800nm以上の範囲に存在する、請求項1に記載の加飾フィルム。
- 前記第1の樹脂層の最大反射率となる波長が380nm以下又は800nm以上の範囲に存在する領域と、
前記第2の樹脂層の最大反射率となる波長が380nm以下又は800nm以上の範囲に存在する領域と、が少なくとも一部重なる位置に設けられる、請求項2に記載の加飾フィルム。 - 前記第1の樹脂層が、前記最大反射率となる波長が異なる2つ以上の領域の少なくとも1つとして、最大反射率となる波長が380nm超、且つ800nm未満の範囲に存在する領域を有する、請求項1~請求項3のいずれか一項に記載の加飾フィルム。
- 面内平均反射率が、20%以上である、請求項1~請求項4のいずれか一項に記載の加飾フィルム。
- 前記第1の樹脂層と、前記第2の樹脂層とが、隣接して積層される、請求項1~請求項5のいずれか一項に記載の加飾フィルム。
- 前記第1の樹脂層及び前記第2の樹脂層が、同一方向の円偏光を反射する、請求項1~請求項6のいずれか一項に記載の加飾フィルム。
- 基材及び液晶層を含む液晶材料を準備する工程と、
前記液晶層に対し光異性化処理を施し、前記液晶層が、380nm以下又は800nm以上の範囲に最大反射率となる波長が存在する領域を少なくとも1つ含む、最大反射率となる波長が異なる2つ以上の領域を有する状態とした後、前記液晶層を硬化させ、コレステリック規則性を有する第1の樹脂層を形成する工程と、
前記第1の樹脂層上に、前記第1の樹脂層とは異なるコレステリック規則性を有する第2の樹脂層を形成する工程と、
を含む、加飾フィルムの製造方法。 - 基材及びコレステリック規則性を有する第2の樹脂層を含む液晶材料を準備する工程と、
前記第2の樹脂層上に、液晶層を形成し、前記液晶層に対し光異性化処理を施し、前記液晶層が、380nm以下又は800nm以上の範囲に最大反射率となる波長が存在する領域を少なくとも1つ含む、最大反射率となる波長が異なる2つ以上の領域を有する状態としたのち、前記液晶層を硬化させ、前記第2の樹脂層とは異なるコレステリック規則性を有する第1の樹脂層を形成する工程と、
を含む、加飾フィルムの製造方法。 - 前記液晶層が、単官能液晶性化合物を含む液晶性組成物により形成される、請求項8又は請求項9に記載の加飾フィルムの製造方法。
- 前記液晶性組成物が、多官能液晶性化合物及び多官能の非液晶性重合性モノマーの少なくとも一方を含む、請求項10に記載の加飾フィルムの製造方法。
- 前記液晶性組成物における、前記単官能液晶性化合物の含有量と、前記多官能液晶性化合物及び前記多官能の非液晶性重合性モノマーの含有量の和との比が、質量基準で、85:15~40:60である、請求項11に記載の加飾フィルムの製造方法。
- 請求項1~請求項7のいずれか一項に記載の加飾フィルムを成型してなる、成型物。
- 請求項1~請求項7のいずれか一項に記載の加飾フィルムを有する、電子デバイス。
- 請求項13に記載の成型物を有する、自動車外装板。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022550360A JP7513732B2 (ja) | 2020-09-18 | 2021-06-30 | 加飾フィルム、加飾フィルムの製造方法、成型物、電子デバイス及び自動車外装板 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020157926 | 2020-09-18 | ||
JP2020-157926 | 2020-09-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022059292A1 true WO2022059292A1 (ja) | 2022-03-24 |
Family
ID=80776804
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/024823 WO2022059292A1 (ja) | 2020-09-18 | 2021-06-30 | 加飾フィルム、加飾フィルムの製造方法、成型物、電子デバイス及び自動車外装板 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7513732B2 (ja) |
WO (1) | WO2022059292A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023190789A1 (ja) * | 2022-03-29 | 2023-10-05 | 富士フイルム株式会社 | 加飾フィルム及びその製造方法、積層体及びその製造方法、加飾フィルム製造用光学マスク付き基材、成型体、物品、並びに、表示装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10296897A (ja) * | 1997-04-17 | 1998-11-10 | Clariant Gmbh | 向上した隠蔽力を持つポリマーラミネート |
JP2002537149A (ja) * | 1999-02-17 | 2002-11-05 | ビーエーエスエフ アクチェンゲゼルシャフト | コレステリック積層材料およびその製造方法 |
JP2012013963A (ja) * | 2010-06-30 | 2012-01-19 | Dainippon Printing Co Ltd | 選択波長反射フィルム及びその製造方法 |
JP2018005119A (ja) * | 2016-07-07 | 2018-01-11 | Jxtgエネルギー株式会社 | 光学フィルム及び光学フィルムの製造方法 |
WO2018186184A1 (ja) * | 2017-04-06 | 2018-10-11 | 富士フイルム株式会社 | 積層体、加飾シートおよび成型体 |
WO2018230395A1 (ja) * | 2017-06-13 | 2018-12-20 | 富士フイルム株式会社 | 液晶フィルムの製造方法および機能性フィルムの製造方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3819119A4 (en) | 2018-07-02 | 2021-08-11 | FUJIFILM Corporation | DECORATIVE FILM, DECORATIVE PROCESS, DECORATIVE MOLDED BODY PRODUCTION PROCESS, AND DECORATIVE MOLDED FILM |
-
2021
- 2021-06-30 WO PCT/JP2021/024823 patent/WO2022059292A1/ja active Application Filing
- 2021-06-30 JP JP2022550360A patent/JP7513732B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10296897A (ja) * | 1997-04-17 | 1998-11-10 | Clariant Gmbh | 向上した隠蔽力を持つポリマーラミネート |
JP2002537149A (ja) * | 1999-02-17 | 2002-11-05 | ビーエーエスエフ アクチェンゲゼルシャフト | コレステリック積層材料およびその製造方法 |
JP2012013963A (ja) * | 2010-06-30 | 2012-01-19 | Dainippon Printing Co Ltd | 選択波長反射フィルム及びその製造方法 |
JP2018005119A (ja) * | 2016-07-07 | 2018-01-11 | Jxtgエネルギー株式会社 | 光学フィルム及び光学フィルムの製造方法 |
WO2018186184A1 (ja) * | 2017-04-06 | 2018-10-11 | 富士フイルム株式会社 | 積層体、加飾シートおよび成型体 |
WO2018230395A1 (ja) * | 2017-06-13 | 2018-12-20 | 富士フイルム株式会社 | 液晶フィルムの製造方法および機能性フィルムの製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023190789A1 (ja) * | 2022-03-29 | 2023-10-05 | 富士フイルム株式会社 | 加飾フィルム及びその製造方法、積層体及びその製造方法、加飾フィルム製造用光学マスク付き基材、成型体、物品、並びに、表示装置 |
Also Published As
Publication number | Publication date |
---|---|
JP7513732B2 (ja) | 2024-07-09 |
JPWO2022059292A1 (ja) | 2022-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107615119B (zh) | 用于图像显示装置的图像显示部表面的半反射镜的制造方法、半反射镜及带图像显示功能的反射镜 | |
JP7177273B2 (ja) | 加飾成型体、加飾成型体の製造方法、加飾パネル、及び、電子デバイス | |
JP7191120B2 (ja) | 成型用加飾フィルムの製造方法、成型方法、成型用加飾フィルム、成型物、自動車外装板、及び電子デバイス | |
JP2017227879A (ja) | ハーフミラーおよび画像表示機能付きミラー | |
WO2022059292A1 (ja) | 加飾フィルム、加飾フィルムの製造方法、成型物、電子デバイス及び自動車外装板 | |
US11650470B2 (en) | Decorative film, molded product, and electronic device | |
JP7058204B2 (ja) | 光学フィルム、液晶表示装置、自動車社内用内装および光学フィルムの製造方法 | |
WO2020262474A1 (ja) | 成型用加飾フィルム、成型物、及びディスプレイ | |
WO2022009508A1 (ja) | 液晶膜、液晶膜の製造方法、加飾フィルム、及び電子デバイスの筐体パネル | |
US20230203377A1 (en) | Decorative film, decorative molded article, decorative panel, and electronic device | |
WO2017221760A1 (ja) | ハーフミラーおよび画像表示機能付きミラー | |
JP2017198961A (ja) | 画像表示機能付きミラーおよびハーフミラー | |
WO2022024608A1 (ja) | 加飾フィルム、加飾成型体、加飾パネル、及び、電子デバイス | |
JP7483026B2 (ja) | 加飾フィルム及びその製造方法、成型体並びに物品 | |
WO2023176857A1 (ja) | 積層体、加飾フィルム、物品、加飾パネル、及び、表示装置 | |
WO2023190789A1 (ja) | 加飾フィルム及びその製造方法、積層体及びその製造方法、加飾フィルム製造用光学マスク付き基材、成型体、物品、並びに、表示装置 | |
WO2024053437A1 (ja) | 表示装置 | |
WO2021132666A1 (ja) | 積層体及びその製造方法、成型物及びその製造方法、電子デバイスの筐体パネル、並びに電子デバイス | |
WO2022196327A1 (ja) | 加飾用材料、加飾用パネル、電子デバイス及び加飾用材料の製造方法 | |
WO2023032644A1 (ja) | 加飾フィルム、成型体、及び、物品 | |
JP2023129105A (ja) | 加飾フィルム及びその製造方法、成型体、物品、並びに、表示装置 | |
JP2023034129A (ja) | 加飾フィルム及びその製造方法、成型体、及び、物品 | |
JP2022054887A (ja) | 成型体の製造方法、加飾用フィルム、装飾体、電子機器及び自動車用部品 | |
WO2023163072A1 (ja) | 積層体及びその製造方法、加飾フィルム、物品、加飾パネル、並びに、表示装置 | |
WO2023026671A1 (ja) | 加飾用材料、加飾用材料の製造方法、成型物、加飾用パネル及び電子デバイス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21868979 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022550360 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21868979 Country of ref document: EP Kind code of ref document: A1 |