WO2021111933A1 - Aqueous binder for secondary battery electrodes, composition for secondary battery electrode mixture layers, secondary battery electrode, and secondary battery - Google Patents
Aqueous binder for secondary battery electrodes, composition for secondary battery electrode mixture layers, secondary battery electrode, and secondary battery Download PDFInfo
- Publication number
- WO2021111933A1 WO2021111933A1 PCT/JP2020/043719 JP2020043719W WO2021111933A1 WO 2021111933 A1 WO2021111933 A1 WO 2021111933A1 JP 2020043719 W JP2020043719 W JP 2020043719W WO 2021111933 A1 WO2021111933 A1 WO 2021111933A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- secondary battery
- mass
- battery electrode
- less
- polymer
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 141
- 239000011230 binding agent Substances 0.000 title claims abstract description 85
- 239000000178 monomer Substances 0.000 claims abstract description 98
- -1 alkali metal salt Chemical class 0.000 claims abstract description 79
- 229920000642 polymer Polymers 0.000 claims abstract description 67
- 150000003839 salts Chemical class 0.000 claims abstract description 52
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 37
- 150000001875 compounds Chemical class 0.000 claims abstract description 23
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims abstract description 20
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims abstract description 18
- 229920006037 cross link polymer Polymers 0.000 claims description 110
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 45
- 239000011149 active material Substances 0.000 claims description 34
- 238000006386 neutralization reaction Methods 0.000 claims description 29
- 239000007864 aqueous solution Substances 0.000 claims description 19
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 11
- 239000004816 latex Substances 0.000 claims description 10
- 229920000126 latex Polymers 0.000 claims description 10
- 229910003002 lithium salt Inorganic materials 0.000 claims description 10
- 159000000002 lithium salts Chemical class 0.000 claims description 10
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical group [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 claims description 9
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 9
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 claims description 4
- 159000000000 sodium salts Chemical class 0.000 claims description 4
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 claims description 3
- 239000011267 electrode slurry Substances 0.000 abstract description 30
- 239000007787 solid Substances 0.000 abstract description 13
- 235000002639 sodium chloride Nutrition 0.000 description 90
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 42
- 238000006116 polymerization reaction Methods 0.000 description 38
- 238000000034 method Methods 0.000 description 28
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 24
- 239000002245 particle Substances 0.000 description 22
- 238000004519 manufacturing process Methods 0.000 description 19
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 16
- 239000000243 solution Substances 0.000 description 16
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 15
- 239000002904 solvent Substances 0.000 description 15
- 239000002002 slurry Substances 0.000 description 13
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- 239000006185 dispersion Substances 0.000 description 12
- 238000001035 drying Methods 0.000 description 12
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 11
- 238000004132 cross linking Methods 0.000 description 11
- 229910001416 lithium ion Inorganic materials 0.000 description 11
- 239000002409 silicon-based active material Substances 0.000 description 11
- FCBUKWWQSZQDDI-SESCQDRSSA-N 2-O-alpha-L-rhamnosyl-alpha-L-rhamnosyl-3-hydroxydecanoyl-3-hydroxydecanoic acid Chemical compound CCCCCCCC(CC(O)=O)OC(=O)CC(CCCCCCC)O[C@@H]1O[C@@H](C)[C@H](O)[C@@H](O)[C@H]1O[C@H]1[C@H](O)[C@H](O)[C@@H](O)[C@H](C)O1 FCBUKWWQSZQDDI-SESCQDRSSA-N 0.000 description 10
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 229920001577 copolymer Polymers 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 239000008151 electrolyte solution Substances 0.000 description 9
- 239000003505 polymerization initiator Substances 0.000 description 9
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 8
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 8
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 8
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 8
- 239000007774 positive electrode material Substances 0.000 description 8
- 238000012673 precipitation polymerization Methods 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 229920002554 vinyl polymer Polymers 0.000 description 8
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 7
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 7
- 229910002804 graphite Inorganic materials 0.000 description 7
- 239000002609 medium Substances 0.000 description 7
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000007599 discharging Methods 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 239000002174 Styrene-butadiene Substances 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 5
- 239000001768 carboxy methyl cellulose Substances 0.000 description 5
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 5
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 125000000524 functional group Chemical group 0.000 description 5
- 230000000977 initiatory effect Effects 0.000 description 5
- 229910052744 lithium Inorganic materials 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 125000002560 nitrile group Chemical group 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- 238000007127 saponification reaction Methods 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 5
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 4
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- 229920000049 Carbon (fiber) Polymers 0.000 description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 150000003926 acrylamides Chemical class 0.000 description 4
- 125000002723 alicyclic group Chemical group 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000004917 carbon fiber Substances 0.000 description 4
- 239000002388 carbon-based active material Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 239000002482 conductive additive Substances 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 239000012046 mixed solvent Substances 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 150000003254 radicals Chemical class 0.000 description 4
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 4
- 238000010557 suspension polymerization reaction Methods 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 3
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 125000003342 alkenyl group Chemical group 0.000 description 3
- 239000012752 auxiliary agent Substances 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- JQRRFDWXQOQICD-UHFFFAOYSA-N biphenylen-1-ylboronic acid Chemical compound C12=CC=CC=C2C2=C1C=CC=C2B(O)O JQRRFDWXQOQICD-UHFFFAOYSA-N 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 150000001993 dienes Chemical class 0.000 description 3
- 238000007720 emulsion polymerization reaction Methods 0.000 description 3
- PQVSTLUFSYVLTO-UHFFFAOYSA-N ethyl n-ethoxycarbonylcarbamate Chemical compound CCOC(=O)NC(=O)OCC PQVSTLUFSYVLTO-UHFFFAOYSA-N 0.000 description 3
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- GLXDVVHUTZTUQK-UHFFFAOYSA-M lithium hydroxide monohydrate Substances [Li+].O.[OH-] GLXDVVHUTZTUQK-UHFFFAOYSA-M 0.000 description 3
- 229940040692 lithium hydroxide monohydrate Drugs 0.000 description 3
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000007773 negative electrode material Substances 0.000 description 3
- 230000003472 neutralizing effect Effects 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 230000000379 polymerizing effect Effects 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 230000002522 swelling effect Effects 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- 229920001567 vinyl ester resin Polymers 0.000 description 3
- BDKDHWOPFRTWPP-UHFFFAOYSA-N 2,2-bis(prop-2-enoxymethyl)butan-1-ol Chemical compound C=CCOCC(CO)(CC)COCC=C BDKDHWOPFRTWPP-UHFFFAOYSA-N 0.000 description 2
- SDJHPPZKZZWAKF-UHFFFAOYSA-N 2,3-dimethylbuta-1,3-diene Chemical compound CC(=C)C(C)=C SDJHPPZKZZWAKF-UHFFFAOYSA-N 0.000 description 2
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 2
- WYGWHHGCAGTUCH-UHFFFAOYSA-N 2-[(2-cyano-4-methylpentan-2-yl)diazenyl]-2,4-dimethylpentanenitrile Chemical compound CC(C)CC(C)(C#N)N=NC(C)(C#N)CC(C)C WYGWHHGCAGTUCH-UHFFFAOYSA-N 0.000 description 2
- 125000004200 2-methoxyethyl group Chemical group [H]C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 2
- ATVJXMYDOSMEPO-UHFFFAOYSA-N 3-prop-2-enoxyprop-1-ene Chemical group C=CCOCC=C ATVJXMYDOSMEPO-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- 239000007877 V-601 Substances 0.000 description 2
- WYGWHHGCAGTUCH-ISLYRVAYSA-N V-65 Substances CC(C)CC(C)(C#N)\N=N\C(C)(C#N)CC(C)C WYGWHHGCAGTUCH-ISLYRVAYSA-N 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910001513 alkali metal bromide Inorganic materials 0.000 description 2
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 2
- 229910001514 alkali metal chloride Inorganic materials 0.000 description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 229910021383 artificial graphite Inorganic materials 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 159000000009 barium salts Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 2
- 159000000007 calcium salts Chemical class 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 150000007942 carboxylates Chemical class 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 229910021385 hard carbon Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 2
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 2
- 239000003273 ketjen black Substances 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 2
- 229910052808 lithium carbonate Inorganic materials 0.000 description 2
- IDNHOWMYUQKKTI-UHFFFAOYSA-M lithium nitrite Chemical compound [Li+].[O-]N=O IDNHOWMYUQKKTI-UHFFFAOYSA-M 0.000 description 2
- 159000000003 magnesium salts Chemical class 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 2
- 150000004682 monohydrates Chemical class 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 239000011255 nonaqueous electrolyte Substances 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 150000001451 organic peroxides Chemical class 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 2
- 235000015497 potassium bicarbonate Nutrition 0.000 description 2
- 239000011736 potassium bicarbonate Substances 0.000 description 2
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 235000011181 potassium carbonates Nutrition 0.000 description 2
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 2
- 229940086066 potassium hydrogencarbonate Drugs 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000012966 redox initiator Substances 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- 125000000542 sulfonic acid group Chemical group 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 229920001059 synthetic polymer Polymers 0.000 description 2
- 239000003021 water soluble solvent Substances 0.000 description 2
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 1
- KPMKEVXVVHNIEY-NTSWFWBYSA-N (1s,4r)-bicyclo[2.2.1]heptan-3-one Chemical compound C1C[C@H]2C(=O)C[C@@H]1C2 KPMKEVXVVHNIEY-NTSWFWBYSA-N 0.000 description 1
- HEDNEPCNZZUHQQ-UHFFFAOYSA-N (3-methoxysilyl-3-methylbutyl) 2-methylprop-2-enoate Chemical compound C(C(=C)C)(=O)OCCC([SiH2]OC)(C)C HEDNEPCNZZUHQQ-UHFFFAOYSA-N 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- CZKPBCHPLNOUSJ-UHFFFAOYSA-N 1-octadecoxyperoxyoctadecane Chemical compound CCCCCCCCCCCCCCCCCCOOOCCCCCCCCCCCCCCCCCC CZKPBCHPLNOUSJ-UHFFFAOYSA-N 0.000 description 1
- JHSWSKVODYPNDV-UHFFFAOYSA-N 2,2-bis(prop-2-enoxymethyl)propane-1,3-diol Chemical compound C=CCOCC(CO)(CO)COCC=C JHSWSKVODYPNDV-UHFFFAOYSA-N 0.000 description 1
- RPZANUYHRMRTTE-UHFFFAOYSA-N 2,3,4-trimethoxy-6-(methoxymethyl)-5-[3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxyoxane;1-[[3,4,5-tris(2-hydroxybutoxy)-6-[4,5,6-tris(2-hydroxybutoxy)-2-(2-hydroxybutoxymethyl)oxan-3-yl]oxyoxan-2-yl]methoxy]butan-2-ol Chemical compound COC1C(OC)C(OC)C(COC)OC1OC1C(OC)C(OC)C(OC)OC1COC.CCC(O)COC1C(OCC(O)CC)C(OCC(O)CC)C(COCC(O)CC)OC1OC1C(OCC(O)CC)C(OCC(O)CC)C(OCC(O)CC)OC1COCC(O)CC RPZANUYHRMRTTE-UHFFFAOYSA-N 0.000 description 1
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 1
- AEPWOCLBLLCOGZ-UHFFFAOYSA-N 2-cyanoethyl prop-2-enoate Chemical compound C=CC(=O)OCCC#N AEPWOCLBLLCOGZ-UHFFFAOYSA-N 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- FCYVWWWTHPPJII-UHFFFAOYSA-N 2-methylidenepropanedinitrile Chemical compound N#CC(=C)C#N FCYVWWWTHPPJII-UHFFFAOYSA-N 0.000 description 1
- HPSGLFKWHYAKSF-UHFFFAOYSA-N 2-phenylethyl prop-2-enoate Chemical compound C=CC(=O)OCCC1=CC=CC=C1 HPSGLFKWHYAKSF-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- BXAAQNFGSQKPDZ-UHFFFAOYSA-N 3-[1,2,2-tris(prop-2-enoxy)ethoxy]prop-1-ene Chemical compound C=CCOC(OCC=C)C(OCC=C)OCC=C BXAAQNFGSQKPDZ-UHFFFAOYSA-N 0.000 description 1
- FOPRTYVWUFOIFE-UHFFFAOYSA-N 3-dimethoxysilylbutyl 2-methylprop-2-enoate Chemical compound C(C(=C)C)(=O)OCCC([SiH](OC)OC)C FOPRTYVWUFOIFE-UHFFFAOYSA-N 0.000 description 1
- JMICBDHJGYAFMU-UHFFFAOYSA-N 3-ethenoxypropyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)CCCOC=C JMICBDHJGYAFMU-UHFFFAOYSA-N 0.000 description 1
- FYRWKWGEFZTOQI-UHFFFAOYSA-N 3-prop-2-enoxy-2,2-bis(prop-2-enoxymethyl)propan-1-ol Chemical compound C=CCOCC(CO)(COCC=C)COCC=C FYRWKWGEFZTOQI-UHFFFAOYSA-N 0.000 description 1
- URDOJQUSEUXVRP-UHFFFAOYSA-N 3-triethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CCO[Si](OCC)(OCC)CCCOC(=O)C(C)=C URDOJQUSEUXVRP-UHFFFAOYSA-N 0.000 description 1
- XDQWJFXZTAWJST-UHFFFAOYSA-N 3-triethoxysilylpropyl prop-2-enoate Chemical compound CCO[Si](OCC)(OCC)CCCOC(=O)C=C XDQWJFXZTAWJST-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- KBQVDAIIQCXKPI-UHFFFAOYSA-N 3-trimethoxysilylpropyl prop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C=C KBQVDAIIQCXKPI-UHFFFAOYSA-N 0.000 description 1
- DPIASIXITIGMOO-UHFFFAOYSA-N 4-(2-hydroxyethoxy)-4-oxobutanoic acid Chemical group OCCOC(=O)CCC(O)=O DPIASIXITIGMOO-UHFFFAOYSA-N 0.000 description 1
- SNTUCKQYWGHZPK-UHFFFAOYSA-N 4-ethenylbenzonitrile Chemical compound C=CC1=CC=C(C#N)C=C1 SNTUCKQYWGHZPK-UHFFFAOYSA-N 0.000 description 1
- OYNOBUFGHAZWKN-UHFFFAOYSA-N 4-prop-1-en-2-ylbenzonitrile Chemical compound CC(=C)C1=CC=C(C#N)C=C1 OYNOBUFGHAZWKN-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- CZKFYUFNMHWWIS-UHFFFAOYSA-N C(C=C)(=O)OCCC([SiH](OC)OC)C Chemical compound C(C=C)(=O)OCCC([SiH](OC)OC)C CZKFYUFNMHWWIS-UHFFFAOYSA-N 0.000 description 1
- OGCAPMDDVSWZHN-UHFFFAOYSA-N CCCCCC.C(C=C)(=O)N Chemical compound CCCCCC.C(C=C)(=O)N OGCAPMDDVSWZHN-UHFFFAOYSA-N 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 229920001479 Hydroxyethyl methyl cellulose Polymers 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910010090 LiAlO 4 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- AZFNGPAYDKGCRB-XCPIVNJJSA-M [(1s,2s)-2-amino-1,2-diphenylethyl]-(4-methylphenyl)sulfonylazanide;chlororuthenium(1+);1-methyl-4-propan-2-ylbenzene Chemical compound [Ru+]Cl.CC(C)C1=CC=C(C)C=C1.C1=CC(C)=CC=C1S(=O)(=O)[N-][C@@H](C=1C=CC=CC=1)[C@@H](N)C1=CC=CC=C1 AZFNGPAYDKGCRB-XCPIVNJJSA-M 0.000 description 1
- HDGHQTHNBAOKFO-UHFFFAOYSA-N [1-(hydroxymethyl)cyclodecyl]methanol Chemical compound OCC1(CO)CCCCCCCCC1 HDGHQTHNBAOKFO-UHFFFAOYSA-N 0.000 description 1
- ORLQHILJRHBSAY-UHFFFAOYSA-N [1-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1(CO)CCCCC1 ORLQHILJRHBSAY-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 150000001339 alkali metal compounds Chemical class 0.000 description 1
- 229920013820 alkyl cellulose Polymers 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- GCTPMLUUWLLESL-UHFFFAOYSA-N benzyl prop-2-enoate Chemical compound C=CC(=O)OCC1=CC=CC=C1 GCTPMLUUWLLESL-UHFFFAOYSA-N 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 229920003090 carboxymethyl hydroxyethyl cellulose Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000012986 chain transfer agent Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 239000011853 conductive carbon based material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- WJMQFZCWOFLFCI-UHFFFAOYSA-N cyanomethyl prop-2-enoate Chemical compound C=CC(=O)OCC#N WJMQFZCWOFLFCI-UHFFFAOYSA-N 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- XFZPHNSTUATEEQ-UHFFFAOYSA-N cyclodecyl prop-2-enoate Chemical compound C=CC(=O)OC1CCCCCCCCC1 XFZPHNSTUATEEQ-UHFFFAOYSA-N 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000004807 desolvation Methods 0.000 description 1
- 235000013681 dietary sucrose Nutrition 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000012674 dispersion polymerization Methods 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- GHXJYXSUMCNQPB-UHFFFAOYSA-N dodecanoic acid prop-2-enamide Chemical compound NC(=O)C=C.CCCCCCCCCCCC(O)=O GHXJYXSUMCNQPB-UHFFFAOYSA-N 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- ZLNAFSPCNATQPQ-UHFFFAOYSA-N ethenyl-dimethoxy-methylsilane Chemical compound CO[Si](C)(OC)C=C ZLNAFSPCNATQPQ-UHFFFAOYSA-N 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 235000010944 ethyl methyl cellulose Nutrition 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 239000002391 graphite-based active material Substances 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 229920013821 hydroxy alkyl cellulose Polymers 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000010220 ion permeability Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000000555 isopropenyl group Chemical group [H]\C([H])=C(\*)C([H])([H])[H] 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- 229910000032 lithium hydrogen carbonate Inorganic materials 0.000 description 1
- IPLONMMJNGTUAI-UHFFFAOYSA-M lithium;bromide;hydrate Chemical compound [Li+].O.[Br-] IPLONMMJNGTUAI-UHFFFAOYSA-M 0.000 description 1
- HQRPHMAXFVUBJX-UHFFFAOYSA-M lithium;hydrogen carbonate Chemical compound [Li+].OC([O-])=O HQRPHMAXFVUBJX-UHFFFAOYSA-M 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- URIIGZKXFBNRAU-UHFFFAOYSA-N lithium;oxonickel Chemical compound [Li].[Ni]=O URIIGZKXFBNRAU-UHFFFAOYSA-N 0.000 description 1
- AXMOZGKEVIBBCF-UHFFFAOYSA-M lithium;propanoate Chemical compound [Li+].CCC([O-])=O AXMOZGKEVIBBCF-UHFFFAOYSA-M 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- LUCXVPAZUDVVBT-UHFFFAOYSA-N methyl-[3-(2-methylphenoxy)-3-phenylpropyl]azanium;chloride Chemical compound Cl.C=1C=CC=CC=1C(CCNC)OC1=CC=CC=C1C LUCXVPAZUDVVBT-UHFFFAOYSA-N 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 229920003087 methylethyl cellulose Polymers 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000001139 pH measurement Methods 0.000 description 1
- 125000002255 pentenyl group Chemical group C(=CCCC)* 0.000 description 1
- WRAQQYDMVSCOTE-UHFFFAOYSA-N phenyl prop-2-enoate Chemical compound C=CC(=O)OC1=CC=CC=C1 WRAQQYDMVSCOTE-UHFFFAOYSA-N 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229960003975 potassium Drugs 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000004304 potassium nitrite Substances 0.000 description 1
- 235000010289 potassium nitrite Nutrition 0.000 description 1
- BWILYWWHXDGKQA-UHFFFAOYSA-M potassium propanoate Chemical compound [K+].CCC([O-])=O BWILYWWHXDGKQA-UHFFFAOYSA-M 0.000 description 1
- 239000004331 potassium propionate Substances 0.000 description 1
- 235000010332 potassium propionate Nutrition 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- JXKPEJDQGNYQSM-UHFFFAOYSA-M sodium propionate Chemical compound [Na+].CCC([O-])=O JXKPEJDQGNYQSM-UHFFFAOYSA-M 0.000 description 1
- 239000004324 sodium propionate Substances 0.000 description 1
- 235000010334 sodium propionate Nutrition 0.000 description 1
- 229960003212 sodium propionate Drugs 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229960004793 sucrose Drugs 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- 238000006276 transfer reaction Methods 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- UKRDPEFKFJNXQM-UHFFFAOYSA-N vinylsilane Chemical class [SiH3]C=C UKRDPEFKFJNXQM-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/38—Carbon pastes or blends; Binders or additives therein
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to an aqueous binder for a secondary battery electrode, a composition for a mixture layer of a secondary battery electrode, a secondary battery electrode, and a secondary battery.
- a secondary battery various power storage devices such as a nickel hydrogen secondary battery, a lithium ion secondary battery, and an electric double layer capacitor have been put into practical use.
- the electrodes used in these secondary batteries are produced by applying, drying, or the like on a current collector a composition for forming an electrode mixture layer containing an active material, a binder, and the like.
- a composition for forming an electrode mixture layer containing an active material, a binder, and the like for example, in a lithium ion secondary battery, an aqueous binder containing styrene-butadiene rubber (SBR) latex and carboxymethyl cellulose (CMC) is used as the binder used in the composition for the negative electrode mixture layer.
- SBR styrene-butadiene rubber
- CMC carboxymethyl cellulose
- a binder used for the positive electrode mixture layer a solution of polyvinylidene fluoride (PVDF) in N-methyl-2-pyrrolidone (NMP) is
- Patent Document 1 discloses a crosslinked acrylic acid polymer having a specific particle size in a 1% NaCl aqueous solution, and discloses that it exhibits high binding properties.
- the secondary battery electrode is generally obtained by applying a composition for an electrode mixture layer containing an active material and a binder (hereinafter, also referred to as “electrode slurry”) to the surface of an electrode current collector and drying it. At this time, from the viewpoint of increasing the drying efficiency of the electrode slurry and improving the productivity of the electrode, it is advantageous to increase the solid content concentration of the composition for the electrode mixture layer, but to ensure good coatability. It becomes difficult.
- composition for the electrode mixture layer described in Patent Documents 1 and 2 enhances the binding property by increasing the spread in water by microcrosslinking the acrylic acid-based polymer used as a binder.
- even a small amount of addition greatly increases the viscosity. Therefore, it has been difficult to reduce the viscosity of the electrode slurry in a state where the solid content concentration of the composition for the electrode mixture layer is increased.
- the present invention has been made in view of the above circumstances, and an object of the present invention is to secure coatability by reducing the viscosity of the electrode slurry when the solid content concentration of the composition for the electrode mixture layer is higher than before. At the same time, it is an object of the present invention to provide an aqueous binder for a secondary battery electrode capable of obtaining a secondary battery exhibiting excellent cycle characteristics. In addition, the present invention also provides a composition for a secondary battery electrode mixture layer containing the above-mentioned water-based binder, a secondary battery electrode obtained by using the composition, and a secondary battery.
- the present inventors have made a structure derived from an ethylenically unsaturated carboxylic acid monomer when the solid content concentration of the composition for the electrode mixture layer is higher than before.
- a polymer containing a specific amount of units or a salt thereof, and an aqueous binder for a secondary battery electrode containing a specific alkali metal compound By using a polymer containing a specific amount of units or a salt thereof, and an aqueous binder for a secondary battery electrode containing a specific alkali metal compound, an excellent cycle is achieved while ensuring coatability by reducing the viscosity of the electrode slurry.
- the present invention is as follows. [1] A polymer containing 50% by mass or more and 100% by mass or less of a structural unit derived from an ethylenically unsaturated carboxylic acid monomer or a salt thereof, and an alkali metal hydroxide or an ethylene having a formula of 200 or less and ethylene. An aqueous binder for a secondary battery electrode containing an alkali metal salt of a compound having no sex unsaturated group. [2] The aqueous binder for a secondary battery electrode according to [1], wherein the polymer is a crosslinked polymer or a non-crosslinked polymer.
- the crosslinked polymer was obtained by using a crosslinkable monomer, and the amount of the crosslinked monomer used was 0 with respect to 100 parts by mass of the total amount of the non-crosslinkable monomer.
- the aqueous binder for a secondary battery electrode according to [2] which is 0.05 parts by mass or more and 5.0 parts by mass or less.
- [5] The aqueous binder for a secondary battery electrode according to any one of [[1] to [4], wherein the viscosity of the 2% by mass aqueous solution of the polymer is 10,000 mPa ⁇ s or less.
- [6] The aqueous binder for a secondary battery electrode according to any one of [1] to [5], wherein the degree of neutralization of the polymer is 70 mol% or more.
- [7] The amount according to any one of [1] to [6], wherein the amount of the alkali metal salt used is 5.0 parts by mass or more and 175 parts by mass or less with respect to 100 parts by mass of the total amount of the polymer. Water-based binder for secondary battery electrodes.
- SBR styrene-butadiene rubber
- CMC carboxymethyl cellulose
- composition for a secondary battery electrode mixture layer containing the aqueous binder for the secondary battery electrode, the active material, and water according to any one of [1] to [10].
- composition for a secondary battery electrode mixture layer according to [11] wherein the pH of the composition for the secondary battery electrode mixture layer is less than 12.5.
- a secondary battery electrode comprising a mixture layer formed from the composition for the secondary battery electrode mixture layer according to [11] or [12] on the surface of a current collector.
- a secondary battery comprising the secondary battery electrode according to [13].
- the water-based binder for a secondary battery electrode of the present invention when the solid content concentration of the composition for the electrode mixture layer is higher than before, an excellent cycle is achieved while ensuring coatability by reducing the viscosity of the electrode slurry. It is possible to obtain a secondary battery that exhibits its characteristics.
- the aqueous binder for a secondary battery electrode of the present invention (hereinafter, also referred to as “the present binder”) is a polymer containing 50% by mass or more and 100% by mass or less of a structural unit derived from an ethylenically unsaturated carboxylic acid monomer (hereinafter, also referred to as “the present binder”).
- the present binder it is also referred to as "the present polymer” or a salt thereof, and an alkali metal hydroxide or an alkali metal salt of a compound having a formula amount of 200 or less and having no ethylenically unsaturated group (hereinafter, "the present alkali").
- composition for a secondary battery electrode mixture layer (hereinafter, also referred to as "this composition").
- this composition is in a slurry state that can be applied to a current collector.
- the secondary battery electrode of the present invention can be obtained by forming a mixture layer formed from the above composition on the surface of a current collector such as a copper foil or an aluminum foil.
- a current collector such as a copper foil or an aluminum foil.
- this binder is used in a composition for a secondary battery electrode mixture layer containing a silicon-based active material described later as an active material, the effect of the present invention is particularly large, which is preferable.
- (meth) acrylic means acrylic and / or methacrylic
- (meth) acrylate means acrylate and / or methacrylate
- (meth) acryloyl group means an acryloyl group and / or a methacryloyl group.
- the binder contains the polymer or a salt thereof, and an alkali metal hydroxide or an alkali metal salt.
- the present polymer may be a crosslinked polymer (hereinafter, also referred to as “the present crosslinked polymer”) or a non-crosslinked polymer (hereinafter, also referred to as “the present non-crosslinked polymer”). Good.
- the crosslinked polymer and the non-crosslinked polymer may be used alone or in combination. Further, the present crosslinked polymer or the present non-crosslinked polymer may be used alone or in combination of two or more.
- This crosslinked polymer ⁇ Structural unit derived from ethylenically unsaturated carboxylic acid monomer>
- the crosslinked polymer contained in the binder contains 50% by mass or more and 100% by mass or less of a structural unit derived from an ethylenically unsaturated carboxylic acid monomer (hereinafter, also referred to as “component (a1)”).
- component (a1) a structural unit derived from an ethylenically unsaturated carboxylic acid monomer
- the above component (a1) can be introduced into a polymer, for example, by polymerizing a monomer containing an ethylenically unsaturated carboxylic acid monomer. Alternatively, it can also be obtained by (co) polymerizing a (meth) acrylic acid ester monomer and then hydrolyzing it. Further, after polymerizing (meth) acrylamide, (meth) acrylonitrile or the like, it may be treated with a strong alkali, or it may be a method of reacting an acid anhydride with a polymer having a hydroxyl group.
- Examples of the ethylenically unsaturated carboxylic acid monomer include (meth) acrylic acid, itaconic acid, crotonic acid, maleic acid, and fumaric acid; and (meth) acrylamide alkyl such as (meth) acrylamide hexane acid and (meth) acrylamide dodecanoic acid.
- Carboxylic acid; ethylenically unsaturated monomers having carboxyl groups such as monohydroxyethyl succinate (meth) acrylate, ⁇ -carboxy-caprolactone mono (meth) acrylate, ⁇ -carboxyethyl (meth) acrylate, or (partial) thereof.
- Alkaline neutralized products may be mentioned, and one of these may be used alone, or two or more thereof may be used in combination.
- a compound having an acryloyl group as a polymerizable functional group is preferable, and acrylic acid is particularly preferable, in that a polymer having a long primary chain length can be obtained due to a high polymerization rate and the binding force of the binder is good.
- acrylic acid is used as the ethylenically unsaturated carboxylic acid monomer, a polymer having a high carboxyl group content can be obtained.
- the content of the component (a1) in the crosslinked polymer can be 50% by mass or more and 100% by mass or less with respect to all the structural units of the crosslinked polymer.
- the component (a1) in such a range excellent adhesiveness to the current collector can be easily ensured.
- the lower limit is 50% by mass or more, the dispersion stability of the present composition becomes good and a higher binding force can be obtained, which is preferable, and it may be 60% by mass or more, or 70% by mass or more. It may be 80% by mass or more.
- the upper limit is, for example, 99.9% by mass or less, for example, 99.5% by mass or less, for example, 99% by mass or less, for example, 98% by mass or less, and for example, 95% by mass.
- the range may be a range in which such a lower limit and an upper limit are appropriately combined, and is, for example, 50% by mass or more and 100% by mass or less, and for example, 50% by mass or more and 99.9% by mass or less.
- it can be 50% by mass or more and 99% by mass or less, and can be, for example, 50% by mass or more and 98% by mass or less.
- the crosslinked polymer may contain, in addition to the component (a1), a structural unit derived from another ethylenically unsaturated monomer copolymerizable with the component (hereinafter, also referred to as “component (b1)”). it can.
- component (b1) include an ethylenically unsaturated monomer compound having an anionic group other than a carboxyl group such as a sulfonic acid group and a phosphoric acid group, a nonionic ethylenically unsaturated monomer, and the like.
- the structural unit from which it is derived can be mentioned.
- These structural units are ethylenically unsaturated monomer compounds having an anionic group other than a carboxyl group such as a sulfonic acid group and a phosphoric acid group, or a monomer containing a nonionic ethylenically unsaturated monomer. Can be introduced by copolymerizing.
- the ratio of the component (b1) can be 0% by mass or more and 50% by mass or less with respect to all the structural units of the present crosslinked polymer.
- the ratio of the component (b1) may be 1% by mass or more and 50% by mass or less, 2% by mass or more and 50% by mass or less, and 5% by mass or more and 50% by mass or less. It may be 10% by mass or more and 50% by mass or less.
- the affinity for the electrolytic solution is improved, so that the effect of improving the lithium ion conductivity can be expected.
- a structural unit derived from a nonionic ethylenically unsaturated monomer is preferable from the viewpoint of obtaining an electrode having good bending resistance, and a nonionic ethylenically unsaturated monomer is preferable.
- the monomer include (meth) acrylamide and its derivatives, a nitrile group-containing ethylenically unsaturated monomer, an alicyclic structure-containing ethylenically unsaturated monomer, a hydroxyl group-containing ethylenically unsaturated monomer, and the like. ..
- Examples of the (meth) acrylamide derivative include N-alkyl (meth) acrylamide compounds such as isopropyl (meth) acrylamide and t-butyl (meth) acrylamide; Nn-butoxymethyl (meth) acrylamide and N-isobutoxymethyl.
- N-alkoxyalkyl (meth) acrylamide compounds such as (meth) acrylamide; N, N-dialkyl (meth) acrylamide compounds such as dimethyl (meth) acrylamide and diethyl (meth) acrylamide include one of them. It may be used alone or in combination of two or more.
- nitrile group-containing ethylenically unsaturated monomer examples include (meth) achlorinitrile; (meth) cyanomethyl acrylate, (meth) cyanoethyl acrylate and other (meth) acrylate cyanoalkyl ester compounds; 4-cyanostyrene. , 4-Cyano- ⁇ -methylstyrene and other unsaturated aromatic compounds containing cyano groups; vinylidene cyanide and the like, and one of these may be used alone or in combination of two or more. You may use it.
- acrylonitrile is preferable because it has a high nitrile group content.
- Examples of the alicyclic structure-containing ethylenically unsaturated monomer include cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, methylcyclohexyl (meth) acrylate, t-butylcyclohexyl (meth) acrylate, and (meth).
- Cyclodecyl acrylate and cyclododecyl (meth) acrylate and other aliphatic substituents may have (meth) cycloalkyl acrylate; isobornyl (meth) acrylate, adamantyl (meth) acrylate, (meth).
- Cycloalkyl polyalcohol mono (meth) acrylate and the like can be mentioned, and one of these may be used alone, or two or more thereof may be used in combination.
- hydroxyl group-containing ethylenically unsaturated monomer examples include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and hydroxybutyl (meth) acrylate, and one of these is used alone. It may be used in combination, or two or more kinds may be used in combination.
- the crosslinked polymer or a salt thereof has excellent binding properties of the binder, and thus contains (meth) acrylamide and its derivatives, a nitrile group-containing ethylenically unsaturated monomer, and an alicyclic structure-containing ethylenically unsaturated monomer. It is preferable to include a structural unit derived from a polymer or the like. Further, when a structural unit derived from a hydrophobic ethylenically unsaturated monomer having a solubility in water of 1 g / 100 ml or less is introduced as the component (c), a strong interaction with the electrode material can be achieved. , Can exhibit good binding properties to active materials.
- the above-mentioned "hydrophobic ethylenically unsaturated monomer having a solubility in water of 1 g / 100 ml or less" is particularly selected.
- An alicyclic structure-containing ethylenically unsaturated monomer is preferable.
- the crosslinked polymer or a salt thereof preferably contains a structural unit derived from a hydroxyl group-containing ethylenically unsaturated monomer from the viewpoint of improving the cycle characteristics of the obtained secondary battery, and the structural unit is 0.5. It is preferably contained in an amount of mass% or more and 50% by mass or less, more preferably 2.0% by mass or more and 50% by mass or less, and further preferably 10.0% by mass or more and 50% by mass or less.
- (meth) acrylic acid ester examples include (meth) methyl acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and the like.
- Aromatic (meth) acrylic acid ester compounds such as (meth) phenyl acrylate, (meth) phenylmethyl acrylate, and (meth) phenylethyl acrylate; Examples thereof include (meth) acrylic acid alkoxyalkyl ester compounds such as 2-methoxyethyl (meth) acrylic acid and 2-ethoxyethyl (meth) acrylic acid, and one of these may be used alone. Two or more types may be used in combination.
- an aromatic (meth) acrylic acid ester compound can be preferably used.
- compounds having an ether bond such as (meth) acrylic acid alkoxyalkyl ester such as 2-methoxyethyl (meth) acrylate and 2-ethoxyethyl (meth) acrylate. Is preferable, and 2-methoxyethyl (meth) acrylate is more preferable.
- nonionic ethylenically unsaturated monomers a compound having an acryloyl group is preferable in that a polymer having a long primary chain length can be obtained due to its high polymerization rate and the binding force of this binder is improved. Further, as the nonionic ethylenically unsaturated monomer, a compound having a homopolymer glass transition temperature (Tg) of 0 ° C. or lower is preferable in terms of improving the bending resistance of the obtained electrode.
- Tg homopolymer glass transition temperature
- the crosslinked polymer may be in the form of a salt in which some or all of the carboxyl groups contained in the polymer are neutralized.
- the type of salt is not particularly limited, but alkali metal salts such as lithium salt, sodium salt and potassium salt; alkaline earth metal salts such as magnesium salt, calcium salt and barium salt; other metal salts such as aluminum salt; ammonium. Examples thereof include salts and organic amine salts. Among these, alkali metal salts and alkaline earth metal salts are preferable, and alkali metal salts are more preferable, from the viewpoint that adverse effects on battery characteristics are unlikely to occur.
- the present polymer is preferably a polymer having a crosslinked structure (the present crosslinked polymer).
- the cross-linking method in the present cross-linked polymer is not particularly limited, and examples thereof include the following methods. 1) Copolymerization of crosslinkable monomers 2) Utilizing chain transfer to polymer chains during radical polymerization 3) After synthesizing a polymer having a reactive functional group, post-crosslinking is performed by adding a crosslinking agent as necessary. Since the present polymer has a crosslinked structure, the binder containing the polymer or a salt thereof can have an excellent binding force.
- the method by copolymerizing the crosslinkable monomer is preferable from the viewpoint that the operation is simple and the degree of crosslinking can be easily controlled.
- crosslinkable monomer examples include a polyfunctional polymerizable monomer having two or more polymerizable unsaturated groups, a monomer having a self-crosslinkable crosslinkable functional group such as a hydrolyzable silyl group, and the like. Can be mentioned.
- the polyfunctional polymerizable monomer is a compound having two or more polymerizable functional groups such as a (meth) acryloyl group and an alkenyl group in the molecule, and is a polyfunctional (meth) acrylate compound, a polyfunctional alkenyl compound, ( Meta) Examples thereof include compounds having both an acryloyl group and an alkenyl group. These compounds may be used alone or in combination of two or more. Among these, a polyfunctional alkenyl compound is preferable because a uniform crosslinked structure can be easily obtained, and a polyfunctional allyl ether compound having two or more allyl ether groups in the molecule is particularly preferable.
- polyfunctional (meth) acrylate compound examples include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and polypropylene glycol di (meth) acrylate.
- Di (meth) acrylates of dihydric alcohols such as meta) acrylate; trimethylol propantri (meth) acrylate, tri (meth) acrylate of trimethyl propanethylene oxide modified product, glycerin tri (meth) acrylate, pentaerythritol tri (meth) Tri (meth) acrylates of trivalent or higher polyhydric alcohols such as meta) acrylates and pentaerythritol tetra (meth) acrylates, poly (meth) acrylates such as tetra (meth) acrylates; Bisamides and the like can be mentioned.
- polyfunctional alkenyl compound examples include polyfunctional allyl ether compounds such as trimethylolpropanediallyl ether, trimethylolpropanetriallyl ether, pentaerythritol diallyl ether, pentaerythritol triallyl ether, tetraallyloxyethane, and polyallyl saccharose; diallyl phthalate and the like.
- Polyfunctional allyl compound; Polyfunctional vinyl compounds such as divinylbenzene and the like can be mentioned.
- Compounds having both (meth) acryloyl group and alkenyl group include allyl (meth) acrylate, isopropenyl (meth) acrylate, butenyl (meth) acrylate, pentenyl (meth) acrylate, and (meth) acrylate. 2- (2-Vinyloxyethoxy) ethyl and the like can be mentioned.
- the monomer having a crosslinkable functional group examples include hydrolyzable silyl group-containing vinyl monomer, N-methylol (meth) acrylamide, N-methoxyalkylacrylamide and the like. .. These compounds can be used alone or in combination of two or more.
- the hydrolyzable silyl group-containing vinyl monomer is not particularly limited as long as it is a vinyl monomer having at least one hydrolyzable silyl group.
- vinyl silanes such as vinyl trimethoxysilane, vinyl triethoxysilane, vinyl methyl dimethoxysilane, vinyl dimethyl methoxysilanen; silyl such as trimethoxysilylpropyl acrylate, triethoxysilylpropyl acrylate, methyldimethoxysilylpropyl acrylate and the like.
- Group-containing acrylic acid esters silyl group-containing methacrylate esters such as trimethoxysilylpropyl methacrylate, triethoxysilylpropyl methacrylate, methyldimethoxysilylpropyl methacrylate, dimethylmethoxysilylpropyl methacrylate; trimethoxysilylpropyl vinyl ether and the like.
- Cyril group-containing vinyl ethers; silyl group-containing vinyl esters such as trimethoxysilyl undecanoate vinyl and the like can be mentioned.
- the amount of the crosslinkable monomer used is the total amount of monomers other than the crosslinkable monomer (non-crosslinkable monomer). It is preferably 0.05 parts by mass or more and 5.0 parts by mass or less, more preferably 0.1 parts by mass or more and 5.0 parts by mass or less, and further preferably 0.2 parts by mass or more with respect to 100 parts by mass. It is 4.0 parts by mass or less, more preferably 0.3 parts by mass or more and 3.0 parts by mass or less.
- the amount of the crosslinkable monomer used is 0.05 parts by mass or more, the binding property and the stability of the electrode slurry are more preferable.
- the amount of the crosslinkable monomer used may be 0.02 to 1.7 mol% with respect to the total amount of the monomers other than the crosslinkable monomer (non-crosslinkable monomer). It is preferably 0.10 to 1.0 mol%, more preferably 0.10 to 1.0 mol%.
- the crosslinked polymer preferably has a viscosity of a 2% by mass aqueous solution of 10,000 mPa ⁇ s or less.
- the viscosity of the 2% by mass aqueous solution may be 5,000 mPa ⁇ s or less, 3,000 mPa ⁇ s or less, or 2,000 mPa ⁇ s or less.
- the viscosity of the aqueous solution can be obtained by uniformly dissolving or dispersing the present crosslinked polymer in an amount having a predetermined concentration in water, and then measuring the B-type viscosity (25 ° C.) at 12 rpm according to the method described in Examples. ..
- the crosslinked polymer or a salt thereof absorbs water and becomes swollen in water.
- the crosslinked polymer has an appropriate degree of crosslinkage, the larger the amount of hydrophilic groups contained in the crosslinked polymer, the easier it is for the crosslinked polymer to absorb water and swell.
- the degree of cross-linking the lower the degree of cross-linking, the easier it is for the cross-linked polymer to swell.
- the number of cross-linking points is the same, the larger the molecular weight (primary chain length), the more cross-linking points that contribute to the formation of the three-dimensional network, so that the cross-linked polymer is less likely to swell.
- the viscosity of the crosslinked polymer aqueous solution can be adjusted by adjusting the amount of hydrophilic groups of the crosslinked polymer, the number of crosslinked points, the primary chain length, and the like.
- the number of the cross-linking points can be adjusted by, for example, the amount of the cross-linking monomer used, the chain transfer reaction to the polymer chain, the post-crosslinking reaction, and the like.
- the primary chain length of the polymer can be adjusted by setting conditions related to the amount of radicals generated such as the initiator and the polymerization temperature, and selecting the polymerization solvent in consideration of chain transfer and the like.
- the crosslinked polymer does not exist as a mass (secondary agglomerate) having a large particle size, but is well dispersed as water-swelled particles having an appropriate particle size.
- a binder containing the above is preferable because it can exhibit good binding performance.
- the particle size (water-swelling particle size) when a crosslinked polymer having a degree of neutralization based on a carboxyl group of 70 to 100 mol% is dispersed in water is a volume-based median diameter. It is preferably in the range of 0.1 ⁇ m or more and 10.0 ⁇ m or less.
- the more preferable range of the particle size is 0.1 ⁇ m or more and 8.0 ⁇ m or less, the more preferable range is 0.1 ⁇ m or more and 7.0 ⁇ m or less, and the more preferable range is 0.2 ⁇ m or more and 5.0 ⁇ m or less.
- Yes, and even more preferable ranges are 0.5 ⁇ m or more and 3.0 ⁇ m or less.
- the composition When the particle size is in the range of 0.1 ⁇ m or more and 10.0 ⁇ m or less, the composition is uniformly present in a suitable size in the present composition, so that the present composition is highly stable and exhibits excellent binding properties. It becomes possible to do. If the particle size exceeds 10.0 ⁇ m, the binding property may be insufficient as described above. In addition, there is a risk that the coatability will be insufficient because it is difficult to obtain a smooth coated surface. On the other hand, when the particle size is less than 0.1 ⁇ m, there is concern from the viewpoint of stable manufacturability.
- the particle size (dry particle size) of the crosslinked polymer at the time of drying is preferably in the range of 0.03 ⁇ m or more and 3 ⁇ m or less in terms of volume-based median diameter.
- a more preferable range of the particle size is 0.1 ⁇ m or more and 1 ⁇ m or less, and a more preferable range is 0.3 ⁇ m or more and 0.8 ⁇ m or less.
- acid groups such as a carboxyl group derived from an ethylenically unsaturated carboxylic acid monomer are neutralized so that the degree of neutralization is 20 mol% or more in the present composition, and the mode of the salt is It is preferable to use as.
- the degree of neutralization is more preferably 50 mol% or more, further preferably 70 mol% or more, still more preferably 75 mol% or more, still more preferably 80 mol% or more, and particularly preferably. It is 85 mol% or more.
- the upper limit of the degree of neutralization is 100 mol%, and may be 98 mol% or 95 mol%.
- the range of the degree of neutralization may be appropriately combined with the above lower limit value and upper limit value, and may be, for example, 50 mol% or more and 100 mol% or less, or 75 mol% or more and 100 mol% or less. , 80 mol% or more and 100 mol% or less.
- the degree of neutralization is 20 mol% or more, the water swelling property is good and the dispersion stabilizing effect is easily obtained, which is preferable.
- the degree of neutralization can be calculated by calculation from the charged values of a monomer having an acid group such as a carboxyl group and a neutralizing agent used for neutralization.
- ⁇ Manufacturing method of this crosslinked polymer> Known polymerization methods such as solution polymerization, precipitation polymerization, suspension polymerization, and emulsion polymerization can be used for this crosslinked polymer, but precipitation polymerization and suspension polymerization (reverse phase suspension) can be used in terms of productivity. Polymerization) is preferable. Non-homogeneous polymerization methods such as precipitation polymerization, suspension polymerization, and emulsion polymerization are preferable, and the precipitation polymerization method is more preferable, because better performance can be obtained in terms of binding property and the like.
- Precipitation polymerization is a method for producing a polymer by carrying out a polymerization reaction in a solvent that dissolves an unsaturated monomer as a raw material but does not substantially dissolve the polymer to be produced.
- the polymer particles become larger due to aggregation and growth, and a dispersion of polymer particles in which primary particles of several tens of nm to several hundreds nm are secondarily aggregated to several ⁇ m to several tens of ⁇ m can be obtained.
- Dispersion stabilizers can also be used to control the particle size of the polymer.
- the secondary aggregation can also be suppressed by selecting a dispersion stabilizer, a polymerization solvent, or the like. In general, precipitation polymerization in which secondary aggregation is suppressed is also called dispersion polymerization.
- a solvent selected from water, various organic solvents, etc. can be used as the polymerization solvent in consideration of the type of monomer used. In order to obtain a polymer having a longer primary chain length, it is preferable to use a solvent having a small chain transfer constant.
- the polymerization solvent examples include water-soluble solvents such as methanol, t-butyl alcohol, acetone, methyl ethyl ketone, acetonitrile and tetrahydrofuran, as well as benzene, ethyl acetate, dichloroethane, n-hexane, cyclohexane and n-heptane. , One of these can be used alone or in combination of two or more. Alternatively, it may be used as a mixed solvent of these and water.
- the water-soluble solvent refers to a solvent having a solubility in water at 20 ° C. of more than 10 g / 100 ml.
- the formation of coarse particles and adhesion to the reactor are small and the polymerization stability is good, and the precipitated polymer fine particles are difficult to secondary agglomerate (or even if secondary agglomeration occurs, they dissolve in the aqueous medium.
- Methyl ethyl ketone and acetonitrile are preferable because they are easy to use), a polymer having a small chain transfer constant and a large degree of polymerization (primary chain length) can be obtained, and the operation is easy during the step neutralization described later. ..
- polymerization initiator known polymerization initiators such as azo compounds, organic peroxides, and inorganic peroxides can be used, but the polymerization initiator is not particularly limited.
- the conditions of use can be adjusted by known methods such as heat initiation, redox initiation with a reducing agent, and UV initiation so that the amount of radicals generated is appropriate.
- heat initiation heat initiation
- redox initiation with a reducing agent
- UV initiation UV initiation
- the preferable amount of the polymerization initiator used is, for example, 0.001 to 2 parts by mass and, for example, 0.005 to 1 part by mass, when the total amount of the monomer components used is 100 parts by mass. Further, for example, it is 0.01 to 0.1 parts by mass.
- the amount of the polymerization initiator used is 0.001 part by mass or more, the polymerization reaction can be stably carried out, and when it is 2 parts by mass or less, a polymer having a long primary chain length can be easily obtained.
- the polymerization temperature is preferably 0 to 100 ° C, more preferably 20 to 80 ° C, although it depends on conditions such as the type and concentration of the monomer used.
- the polymerization temperature may be constant or may change during the polymerization reaction.
- the polymerization time is preferably 1 minute to 20 hours, more preferably 1 hour to 10 hours.
- the non-crosslinked polymer contains 50% by mass or more and 100% by mass or less of a structural unit (component (a1)) derived from an ethylenically unsaturated carboxylic acid monomer.
- the method for introducing the component (a1) of the non-crosslinked polymer may be the same as the method described for the component (a1) of the present crosslinked polymer. Further, the method may be a method by saponification of a polymer containing a structural unit derived from a (meth) acrylic acid alkyl ester compound (the above-mentioned component (b1) of the crosslinked polymer), and the (meth) acrylic acid.
- the alkyl ester compound methyl acrylate and methyl methacrylate are preferable from the viewpoint that the saponification reaction easily proceeds, and one kind may be used alone or two or more kinds may be used in combination.
- the non-crosslinked polymer has a higher viscosity than the present crosslinked polymer. It is presumed that this is because the non-crosslinked polymer has a wide molecular chain, while the crosslinked polymer is in the form of particles, so that the apparent molecular weight is small. Even if the non-crosslinked polymer has a higher viscosity than the present crosslinked polymer salt, if an aqueous binder containing the present non-crosslinked polymer or a salt thereof and an alkali metal hydroxide or the present alkali metal salt is used. By reducing the viscosity of the present composition, the coatability is improved, and the cycle characteristics of the secondary battery are also improved.
- the content of the component (a1) in the non-crosslinked polymer is preferably 50% by mass or more and 100% by mass or less with respect to all the structural units of the non-crosslinked polymer in terms of solubility in water. Is 60% by mass or more and 100% by mass or less, more preferably 70% by mass or more and 100% by mass or less, and further preferably 80% by mass or more and 100% by mass or less.
- the non-crosslinked polymer can contain a structural unit (the component (b1)) derived from another ethylenically unsaturated monomer copolymerizable with the component (a1).
- the method for introducing the component (b1) may be the same as the method described for the component (b1) of the present crosslinked polymer.
- a method of saponifying a polymer containing a structural unit derived from a vinyl ester compound such as vinyl acetate or vinyl propionate may be used, and the vinyl ester compound may be used from the viewpoint of easy availability of raw materials.
- Vinyl acetate is preferable, and one type may be used alone, or two or more types may be used in combination.
- the ratio of the component (b1) can be 0% by mass or more and 50% by mass or less with respect to all the structural units of the non-crosslinked polymer.
- the ratio of the component (b1) may be 1% by mass or more and 50% by mass or less, 2% by mass or more and 50% by mass or less, and 5% by mass or more and 50% by mass or less. It may be 10% by mass or more and 50% by mass or less.
- the non-crosslinked polymer may be in the form of a salt in which some or all of the carboxyl groups contained in the polymer are neutralized.
- the type of salt is not particularly limited, but alkali metal salts such as lithium, sodium and potassium; magnesium salts.
- Alkaline earth metal salts such as calcium salts and barium salts; other metal salts such as aluminum salts; ammonium salts, organic amine salts and the like.
- alkali metal salts and alkaline earth metal salts are preferable, and alkali metal salts are more preferable, from the viewpoint that adverse effects on battery characteristics are unlikely to occur.
- acid groups such as a carboxyl group derived from an ethylenically unsaturated carboxylic acid monomer are neutralized so that the degree of neutralization is 20 mol% or more in the present composition
- the salt is a salt. It is preferable to use it as an embodiment.
- the degree of neutralization is more preferably 50 mol% or more, further preferably 70 mol% or more, still more preferably 75 mol% or more, still more preferably 80 mol% or more, and particularly preferably. It is 85 mol% or more.
- the upper limit of the degree of neutralization is 100 mol%, and may be 98 mol% or 95 mol%.
- the range of the degree of neutralization may be appropriately combined with the above lower limit value and upper limit value, and may be, for example, 50 mol% or more and 100 mol% or less, or 75 mol% or more and 100 mol% or less. , 80 mol% or more and 100 mol% or less.
- the degree of neutralization is 20 mol% or more, it is preferable because the solubility in water can be easily ensured.
- the degree of neutralization can be calculated by calculation from the charged values of a monomer having an acid group such as a carboxyl group and a neutralizing agent used for neutralization.
- the weight average molecular weight (Mw) of the non-crosslinked polymer is not particularly limited, but is preferably 5,000 or more, more preferably 10 in terms of obtaining an electrode mixture layer having excellent binding properties. It is over 000. Mw may be 100,000 or more, 500,000 or more, or 1,000,000 or more. The upper limit of Mw is not particularly limited, but from the viewpoint of manufacturing handling, it may be, for example, 1,000,000 or less, and may be 5,000,000 or less.
- the amount of the present non-crosslinked polymer used is 7.5 parts by mass or more and 200 parts by mass with respect to 100 parts by mass of the total amount of the present crosslinked polymer. It is preferably less than or equal to a portion.
- the amount of the non-crosslinked polymer used may be 15 parts by mass or more, 25 parts by mass or more, 35 parts by mass or more, or 45 parts by mass or more. Good.
- the upper limit may be 190 parts by mass or less, 180 parts by mass or less, 170 parts by mass or less, or 160 parts by mass or less.
- the range may be a range in which such a lower limit and an upper limit are appropriately combined, and is, for example, 15 parts by mass or more and 190 parts by mass or less, for example, 25 parts by mass or more and 180 parts by mass or less, and for example. It may be 35 parts by mass or more and 170 parts by mass or less, and may be, for example, 35 parts by mass or more and 160 parts by mass or less.
- a specific amount of the present non-crosslinked polymer can be used in combination with the present crosslinked polymer, and when the solid content concentration of the composition for the electrode mixture layer is higher than before, the electrode slurry can be used. It is possible to obtain a secondary battery that exhibits excellent cycle characteristics while ensuring coatability by reducing the viscosity.
- the amount of the non-crosslinkable polymer used is 7.5 parts by mass or more, such an effect can be exhibited. Further, if the amount of the non-crosslinkable polymer used exceeds 200 parts by mass, sufficient coatability may not be obtained.
- Non-crosslinked polymer known polymerization methods such as solution polymerization, precipitation polymerization, suspension polymerization, and emulsion polymerization can be used, and may be appropriately selected depending on the molecular weight, composition, and the like.
- polymerization initiator known polymerization initiators such as azo compounds, organic peroxides, and inorganic peroxides can be used, but the polymerization initiator is not particularly limited.
- the conditions of use can be adjusted by known methods such as heat initiation, redox initiation with a reducing agent, and UV initiation so that the amount of radicals generated is appropriate.
- a known chain transfer agent may be used if necessary for the purpose of adjusting the molecular weight or the like.
- the viscosity of the 2% by mass aqueous solution of the non-crosslinked polymer is preferably 10,000 mPa ⁇ s or less.
- the viscosity of the 2% by mass aqueous solution may be 5,000 mPa ⁇ s or less, 3,000 mPa ⁇ s or less, or 2,000 mPa ⁇ s or less.
- the viscosity of the aqueous solution can be obtained by uniformly dissolving or dispersing the non-crosslinked polymer in an amount having a predetermined concentration in water, and then measuring the B-type viscosity (25 ° C.) at 12 rpm according to the method described in Examples. Be done.
- the binder contains an alkali metal hydroxide or an alkali metal salt in addition to the polymer or a salt thereof.
- the crosslinked polymer is a 100 mol% neutralized salt.
- the present binder may be obtained by mixing the present crosslinked polymer salt having a neutralization degree of 100 mol% and an alkali metal hydroxide, or the present polymer salt having a neutralization degree of less than 100 mol% and the polymer.
- the present binder may be obtained by mixing an amount of alkali metal hydroxide having a salt neutralization degree of more than 100 mol%.
- alkali metal hydroxide examples include lithium hydroxide, sodium hydroxide, potassium hydroxide and the like.
- the alkali metal hydroxide one of the above may be used alone, or two or more thereof may be used in combination.
- the amount of the alkali metal hydroxide used is not particularly limited, but the total amount of the present polymer having a neutralization degree of 100 mol% is 100 in that the pH of the present composition can be less than 12.5. It is preferably 5 parts by mass or more and 50 parts by mass or less, more preferably 10 parts by mass or more and 45 parts by mass or less, and further preferably 10 parts by mass or more and 40 parts by mass or less.
- the present alkali metal salt in that the increase in pH of the electrode slurry is suppressed, and for example, when carboxymethyl cellulose (CMC) is blended, there is little concern about hydrolysis thereof.
- this alkali metal salt does not have an ethylenically unsaturated group, polymerization does not proceed during the production of the electrode slurry or the storage of the obtained electrode slurry, so that there is a concern that the electrode slurry may thicken. small.
- the formula amount of this alkali metal salt exhibits excellent cycle characteristics while ensuring coatability by reducing the viscosity of the electrode slurry when the solid content concentration of the composition for the electrode mixture layer is higher than before. In terms of obtaining a next battery, it is 200 or less, preferably 180 or less, more preferably 160 or less, and further preferably 140 or less.
- alkali metal salt examples include organic acid alkali metal salts, alkali metal carbonate compounds, alkali metal hydrogen carbonates, alkali metal nitrite compounds, alkali metal chlorides, alkali metal bromide and the like, and these anhydrous products or It may be a hydrate.
- organic acid alkali metal salt examples include lithium acetate, sodium acetate, potassium acetate, lithium propionate, sodium propionate, potassium propionate and the like
- alkali metal carbonates include lithium carbonate, sodium carbonate, potassium carbonate and the like
- alkali metal bicarbonates include lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, etc .
- Specific examples of the alkali metal nitrite compound include lithium nitrite, sodium nitrite, potassium nitrite, and the like
- alkali metal chlorides include lithium chloride, sodium chloride, potassium chloride and the like
- Specific examples of the alkali metal bromide include lithium bromide, sodium bromide, potassium bromide and the like.
- an organic acid alkali metal salt is preferable, and at least one selected from the group consisting of a lithium salt, a sodium salt and a potassium salt is preferably contained, in particular, because the effect of the present invention is particularly large. , Lithium acetate is preferred.
- the organic acid of the organic acid alkali metal salt an organic acid having one carboxyl group in one molecule is preferable from the viewpoint of preventing gelation due to bridging between the present polymers having a carboxyl group.
- the present alkali metal salt one of the above may be used alone, or two or more thereof may be used in combination.
- the amount of this alkali metal salt used is not particularly limited, but when the solid content concentration of the composition for the electrode mixture layer is higher than before, the coatability is ensured by reducing the viscosity of the electrode slurry.
- the amount is preferably 5.0 parts by mass or more and 175 parts by mass or less, more preferably 10 parts by mass, based on 100 parts by mass of the total amount of the present polymer. It is 150 parts by mass or less, more preferably 15 parts by mass or more and 125 parts by mass or less, and further preferably 20 parts by mass or more and 100 parts by mass or less.
- composition for secondary battery electrode mixture layer of the present invention contains the present binder, active material and water.
- the amount of the binder used in the composition is, for example, 0.1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the total amount of the active material.
- the amount used is, for example, 0.2 parts by mass or more and 10 parts by mass or less, for example, 0.3 parts by mass or more and 8 parts by mass or less, and for example, 0.4 parts by mass or more and 5 parts by mass or less. ..
- the amount of the binder used is 0.1 parts by mass or more, sufficient binding property can be obtained.
- the dispersion stability of the active material or the like can be ensured, and a uniform mixture layer can be formed.
- the amount of the binder used is 20 parts by mass or less, the composition does not have a high viscosity, and the coatability to the current collector can be ensured. As a result, a mixture layer having a uniform and smooth surface can be formed.
- a lithium salt of a transition metal oxide can be used as the positive electrode active material, and for example, layered rock salt type and spinel type lithium-containing metal oxides can be used.
- ⁇ Li (Ni 1-ab Co a Al b ) ⁇ and the like can be mentioned.
- a spinel type positive electrode active material lithium manganate and the like can be mentioned.
- phosphates include olivine-type lithium iron phosphate and the like.
- the positive electrode active material one of the above may be used alone, or two or more thereof may be combined and used as a mixture or a composite.
- the dispersion liquid becomes alkaline by exchanging lithium ions on the surface of the active material and hydrogen ions in water. Therefore, there is a risk that aluminum foil (Al), which is a general current collector material for positive electrodes, will be corroded.
- Al aluminum foil
- the amount of the unneutralized or partially neutralized present polymer used should be equal to or greater than the amount of alkali eluted from the active material in the amount of unneutralized carboxyl groups in the present polymer. Is preferable.
- the conductive auxiliary agent include carbon-based materials such as carbon black, carbon nanotubes, carbon fibers, graphite fine powder, and carbon fibers. Among these, carbon black, carbon nanotubes, and carbon fibers are easy to obtain excellent conductivity. Is preferable. Further, as the carbon black, Ketjen black and acetylene black are preferable. As the conductive auxiliary agent, one of the above types may be used alone, or two or more types may be used in combination.
- the amount of the conductive auxiliary agent used can be, for example, 0.2 to 20 parts by mass with respect to 100 parts by mass of the total amount of the active material from the viewpoint of achieving both conductivity and energy density, and for example, 0. It can be 2 to 10 parts by mass.
- the positive electrode active material a material whose surface is coated with a conductive carbon-based material may be used.
- examples of the negative electrode active material include carbon-based materials, lithium metals, lithium alloys, metal oxides, and the like, and one or a combination of two or more of these can be used.
- active materials made of carbon-based materials such as natural graphite, artificial graphite, hard carbon and soft carbon (hereinafter, also referred to as "carbon-based active material") are preferable, and graphite such as natural graphite and artificial graphite, Also, hard carbon is more preferred.
- graphite spherical graphite is preferably used from the viewpoint of battery performance, and the preferable range of the particle size thereof is, for example, 1 to 20 ⁇ m, and for example, 5 to 15 ⁇ m.
- a metal or a metal oxide capable of occluding lithium such as silicon or tin can be used as the negative electrode active material.
- silicon has a higher capacity than graphite, and is an active material made of a silicon-based material such as silicon, a silicon alloy, and a silicon oxide such as silicon monoxide (SiO) (hereinafter, also referred to as "silicon-based active material").
- silicon-based active material has a high capacity, the volume change due to charging and discharging is large. Therefore, it is preferable to use it in combination with the above carbon-based active material.
- the amount of the silicon-based active material is large, the electrode material may be disintegrated and the cycle characteristics (durability) may be significantly deteriorated.
- the amount used is, for example, 60% by mass or less, and for example, 30% by mass or less, based on the carbon-based active material.
- the carbon-based active material itself has good electrical conductivity, it is not always necessary to add a conductive additive.
- a conductive additive is added for the purpose of further reducing resistance, the amount used is, for example, 10 parts by mass or less with respect to 100 parts by mass of the total amount of the active material, and for example, 5 from the viewpoint of energy density. It is less than a part by mass.
- the amount of the active material used is, for example, in the range of 10 to 75% by mass, and for example, in the range of 30 to 65% by mass, based on the total amount of the composition.
- the amount of the active material used is 10% by mass or more, migration of the binder or the like can be suppressed, and the drying cost of the medium is also advantageous.
- it is 75% by mass or less, the fluidity and coatability of the present composition can be ensured, and a uniform mixture layer can be formed.
- This composition uses water as a medium. Further, for the purpose of adjusting the properties and dryness of the composition, lower alcohols such as methanol and ethanol, carbonates such as ethylene carbonate, ketones such as acetone, and water-soluble organic substances such as tetrahydrofuran and N-methylpyrrolidone. It may be a mixed solvent with a solvent.
- the proportion of water in the mixing medium is, for example, 50% by mass or more, and for example, 70% by mass or more.
- the content of the medium containing water in the entire composition is, for example, from the viewpoint of the coatability of the slurry, the energy cost required for drying, and the productivity. , 25-60% by mass, and can be, for example, 35-60% by mass.
- the present composition may further contain other binder components such as styrene-butadiene rubber (SBR) -based latex, carboxymethyl cellulose (CMC), acrylic-based latex, and polyvinylidene fluoride-based latex.
- SBR styrene-butadiene rubber
- CMC carboxymethyl cellulose
- acrylic-based latex acrylic-based latex
- polyvinylidene fluoride-based latex polyvinylidene fluoride-based latex.
- the amount used may be, for example, 0.1 to 5 parts by mass or less, and for example, 0.1 to 2 parts by mass, based on 100 parts by mass of the total amount of the active material. It can be less than or equal to parts, and can be, for example, 0.1 to 1 part by mass or less. If the amount of the other binder component used exceeds 5 parts by mass, the resistance increases and the high rate characteristics may become insufficient.
- SBR-based latex and CMC are preferable, and SBR
- the SBR latex is an aqueous dispersion of a copolymer having a structural unit derived from an aromatic vinyl monomer such as styrene and a structural unit derived from an aliphatic conjugated diene monomer such as 1,3-butadiene. Show the body.
- aromatic vinyl monomer include ⁇ -methylstyrene, vinyltoluene, divinylbenzene and the like in addition to styrene, and one or more of these can be used.
- the structural unit derived from the aromatic vinyl monomer in the copolymer can be, for example, in the range of 20 to 70% by mass, and for example, 30 to 60, mainly from the viewpoint of binding property. It can be in the range of% by mass.
- aliphatic conjugated diene-based monomer in addition to 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3- Butadiene and the like can be mentioned, and one or more of these can be used.
- the structural unit derived from the aliphatic conjugated diene-based monomer in the copolymer is, for example, 30 to 70% by mass in that the binding property of the binder and the flexibility of the obtained electrode are good. It can be in the range of 40 to 60% by mass, for example.
- styrene / butadiene-based monomers include nitrile group-containing monomers such as (meth) acrylonitrile and (meth) as other monomers in order to further improve performance such as binding properties.
- a carboxyl group-containing monomer such as acrylic acid, itaconic acid, and maleic acid, and an ester group-containing monomer such as methyl (meth) acrylate may be used as the copolymerization monomer.
- the structural unit derived from the other monomer in the copolymer can be, for example, in the range of 0 to 30% by mass, or can be, for example, in the range of 0 to 20% by mass.
- the CMC refers to a substitute obtained by substituting a nonionic cellulosic semi-synthetic polymer compound with a carboxymethyl group and a salt thereof.
- the nonionic cellulose-based semi-synthetic polymer compound include alkyl celluloses such as methyl cellulose, methyl ethyl cellulose, ethyl cellulose, and microcrystallin cellulose; Examples thereof include hydroxyethyl cellulose, hydroxybutyl methyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose stearoxy ether, carboxymethyl hydroxyethyl cellulose, alkyl hydroxyethyl cellulose, hydroxyalkyl cellulose such as nonoxynyl hydroxyethyl cellulose and the like.
- the composition for the secondary battery electrode mixture layer of the present invention contains the above-mentioned active material, water and the present binder as essential constituents, and can be obtained by mixing the respective components using known means. ..
- the mixing method of each component is not particularly limited, and a known method can be adopted.
- powder components such as an active material, a conductive additive and a binder are dry-blended and then mixed with a dispersion medium such as water.
- a dispersion medium such as water.
- the method of dispersion kneading is preferable.
- the present composition is obtained in a slurry state, it is preferable to finish the composition into a slurry without poor dispersion or agglomeration.
- a known mixer such as a planetary mixer, a thin film swirl mixer, or a self-revolving mixer can be used, but a thin film swirl mixer is used because a good dispersion state can be obtained in a short time. It is preferable to do this.
- a thin film swirl mixer it is preferable to pre-disperse in advance with a stirrer such as a disper.
- the pH of the slurry is not particularly limited as long as the effect of the present invention is exhibited, but it is preferably less than 12.5. For example, when CMC is blended, there is little concern about hydrolysis thereof, and 11.5. It is more preferably less than 10.5 and even more preferably less than 10.5.
- the viscosity of the slurry is not particularly limited as long as the effect of the present invention is exhibited, but the B-type viscosity (25 ° C.) at 20 rpm can be, for example, in the range of 100 to 5,000 mPa ⁇ s, and for example. , 500 to 4,500 mPa ⁇ s, or, for example, the range of 1,000 to 3,000 mPa ⁇ s.
- the viscosity of the slurry is within the above range, good coatability can be ensured.
- the secondary battery electrode of the present invention is provided with a mixture layer formed from the composition for the mixture layer of the secondary battery electrode of the present invention on the surface of a current collector such as copper or aluminum. ..
- the mixture layer is formed by applying the present composition to the surface of the current collector and then drying and removing a medium such as water.
- the method for applying the present composition is not particularly limited, and known methods such as a doctor blade method, a dip method, a roll coating method, a comma coating method, a curtain coating method, a gravure coating method and an extrusion method can be adopted. it can.
- the drying can be performed by a known method such as blowing warm air, reducing the pressure, (far) infrared rays, and irradiating microwaves.
- the mixture layer obtained after drying is subjected to a compression treatment by a mold press, a roll press or the like. By compressing, the active material and the binder can be brought into close contact with each other, and the strength of the mixture layer and the adhesion to the current collector can be improved.
- the thickness of the mixture layer can be adjusted to, for example, about 30 to 80% before compression by compression, and the thickness of the mixture layer after compression is generally about 4 to 200 ⁇ m.
- Secondary battery A secondary battery can be manufactured by providing a separator and an electrolytic solution on the secondary battery electrode of the present invention.
- the electrolytic solution may be in the form of a liquid or a gel.
- the separator is arranged between the positive electrode and the negative electrode of the battery, and plays a role of preventing a short circuit due to contact between the two electrodes and holding an electrolytic solution to ensure ionic conductivity.
- the separator is preferably a film-like insulating microporous membrane having good ion permeability and mechanical strength.
- polyolefins such as polyethylene and polypropylene, polytetrafluoroethylene and the like can be used.
- the electrolytic solution a known one that is generally used depending on the type of active material can be used.
- specific solvents include cyclic carbonates having a high dielectric constant and high solubility of electrolytes such as propylene carbonate and ethylene carbonate, and low-viscosity chains such as ethylmethyl carbonate, dimethyl carbonate and diethyl carbonate. Examples thereof include form carbonates, which can be used alone or as a mixed solvent.
- the electrolytic solution is used by dissolving lithium salts such as LiPF 6 , LiSbF 6 , LiBF 4 , LiClO 4 , and LiAlO 4 in these solvents.
- an aqueous potassium hydroxide solution can be used as the electrolytic solution.
- the secondary battery is obtained by forming a positive electrode plate and a negative electrode plate partitioned by a separator into a spiral or laminated structure and storing them in a case or the like.
- the secondary battery provided with the electrode having the mixture layer formed from the composition for the secondary battery electrode mixture layer disclosed in the present specification is good even if charging and discharging are repeated. Since it exhibits durability (cycle characteristics), it is suitable for in-vehicle secondary batteries and the like.
- the polymerization reaction is continued while adjusting the outside temperature (water bath temperature) to maintain the internal temperature at 55 ° C., and when 24 hours have passed from the polymerization start point, the polymerization reaction solution is started to cool, and the internal temperature is 25 ° C. after lowered to, lithium hydroxide monohydrate (hereinafter, referred to as "LiOH ⁇ H 2 O") were added 52.4 parts of powder. After the addition, stirring was continued at room temperature for 12 hours to obtain a slurry-like polymerization reaction solution in which particles of the present crosslinked polymer salt R-1 (Li salt, neutralization degree 90 mol%) were dispersed in a medium.
- LiOH ⁇ H 2 O lithium hydroxide monohydrate
- the obtained polymerization reaction solution was centrifuged to settle the polymer particles, and then the supernatant was removed. Then, after redispersing the precipitate in acetonitrile having the same mass as the polymerization reaction solution, the washing operation of precipitating the polymer particles by centrifugation to remove the supernatant was repeated twice.
- the precipitate was recovered and dried under reduced pressure at 80 ° C. for 3 hours to remove volatile components to obtain a powder of the present crosslinked polymer salt R-1. Since the crosslinked polymer salt R-1 has hygroscopicity, it was sealed and stored in a container having a water vapor barrier property.
- Table 1 shows the viscosities of the 2% by mass aqueous solution of R-1.
- Production of the present crosslinked polymer salts R-2 to R-6 The same operation as in Production Example 1 was carried out except that the amounts of the monomer, the crosslinkable monomer, the ion-exchanged water and the neutralizing agent were as shown in Table 1, and the present crosslinked polymer salts R-2 to A polymerization reaction solution containing R-6 was obtained. Next, the same operations as in Production Example 1 were carried out for each polymerization reaction solution to obtain powdered crosslinked polymer salts R-2 to R-6. Each of the crosslinked polymer salts was sealed and stored in a container having a water vapor barrier property. Table 1 shows the viscosities of the 2% by mass aqueous solutions of R-2 to R-6.
- the reaction was terminated to obtain a polymerization reaction solution containing a copolymer of MA and VAc.
- the polymerization rates of each monomer were MA98% and VAc82%.
- the following conditions are applied to the copolymer of MA and VAc.
- the polymerization reaction solution containing the copolymer of MA and VAc was heated to an outside temperature of 50 ° C., and then the solvent was removed under reduced pressure conditions to remove the residual monomer. Then, 500 parts of methanol and 38.8 parts of LiOH ⁇ H 2 O were charged to 100 parts of the total amount of the copolymerized monomers (MA and VAc), and a saponification reaction was carried out at an outside temperature of 50 ° C. for 3 hours to carry out a saponification reaction with MA and VAc. A reaction solution containing a saponified product of the above copolymer was obtained. The reaction solution containing the saponified product was reprecipitated in acetone, filtered, and dried at 80 ° C.
- the saponified product is non-crosslinked having "57% by mass of structural units derived from acrylic acid” and "43% by mass of structural units derived from vinyl alcohol”. It is a lithium salt of a polymer. Since the lithium salt R-7 of the non-crosslinked polymer has hygroscopicity, it was stored in a container having a water vapor barrier property.
- the viscosity of the 2% by mass aqueous solution of R-7 was 9,000 mPa ⁇ s.
- AA Acrylic acid
- HEA 2-Hydroxyethyl acrylate
- T-20 Trimethylolpropane diallyl ether (manufactured by Daiso, trade name "Neoallyl T-20")
- TEA Triethylamine AcN: Acetonitrile
- V-65 2,2'-azobis (2,4-dimethylvaleronitrile) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
- MA Methyl acrylate
- VAc Vinyl acetate
- PVA Polyvinyl alcohol (manufactured by Kuraray, trade name "PVA-217")
- V-601 2,2'-azobis (isobutyric acid) dimethyl (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
- LiOH ⁇ H 2 O Lithium hydroxide ⁇ Monohydrate
- Example 1 ⁇ Preparation of composition for electrode mixture layer> Prepare a SiOx (0.8 ⁇ x ⁇ 1.2) surface coated with 10% carbon by the CVD method (hereinafter referred to as "Si-based active material"), and mix graphite and Si-based active material. was used as an active material.
- Si-based active material a mixture of crosslinked polymer salt R-1, lithium acetate, styrene / butadiene latex (SBR) and carboxymethyl cellulose (CMC) was used.
- Graphite: Si-based active material: R-1: Lithium acetate: SBR: CMC 90: 10: 1 using water as a diluting solvent so that the solid content concentration of the composition for the electrode mixture layer is 50% by mass.
- NMP N-methylpyrrolidone
- 100 parts of lithium iron phosphate (LFP) as the positive electrode active material 100 parts of lithium iron phosphate (LFP) as the positive electrode active material, 0.2 parts of carbon nanotubes as the conductive agent, 2 parts of Ketjen black, and vapor layer carbon fiber (VGCF).
- VGCF vapor layer carbon fiber
- PVDF polyvinylidene fluoride
- a mixture layer was formed by applying the positive electrode composition to an aluminum current collector (thickness: 15 ⁇ m) and drying it. Then, the mixture layer was rolled to a thickness of 88 ⁇ m and a packing density of 3.1 g / cm 3 , and then punched 3 cm square to obtain a positive electrode plate.
- a lithium ion secondary battery of a laminated cell was produced.
- the electrolytic solution one in which LiPF 6 was dissolved at a concentration of 1.0 mol / liter in a mixed solvent containing ethylene carbonate (EC) and ethyl methyl carbonate (DEC) at a volume ratio of 25:75 was used.
- ⁇ C C 50 / C 0 ⁇ 100 (%) (Evaluation criteria) ⁇ : Charge / discharge capacity retention rate is 95.0% or more ⁇ : Charge / discharge capacity retention rate is 90.0% or more and less than 95.0% ⁇ : Charge / discharge capacity retention rate is 85.0% or more and less than 90.0% ⁇ : Charge / discharge capacity retention rate is less than 85.0%
- Example 2 An electrode slurry was prepared by performing the same operation as in Example 1 except that the polymer salt and the alkali metal hydroxide or the alkali metal salt were as shown in Table 2, and the viscosity of the electrode slurry was measured. did. In addition, the coatability of the electrode slurry and the cycle characteristics of the secondary battery obtained by using the electrode slurry were evaluated. The results are shown in Table 2.
- Example 7 the crosslinked polymer salt R-1 (1.0 part by mass) having a neutralization degree of 90 mol% and lithium hydroxide monohydrate (0.27 mass by mass) as the alkali metal hydroxide.
- Part) and other components are mixed to obtain an electrode slurry, so that the slurry contains the main crosslinked polymer having a neutralization degree of 100 mol% and lithium hydroxide, and the content of the lithium hydroxide is medium.
- the value obtained by converting lithium hydroxide into "lithium hydroxide monohydrate" is 21.3 parts by mass.
- Lithium acetate formula 65.99, manufactured by Tokyo Kasei Kogyo Co., Ltd.
- Lithium carbonate formula 73.89, manufactured by Kishida Chemical Co., Ltd.
- Lithium hydroxide / monohydrate formula quantity 41.96, manufactured by Showa Chemical Co., Ltd.
- Lithium chloride formula Amount 42.39, Lithium bromide monohydrate manufactured by Honjo Chemical Co., Ltd .: Formula amount 104.86, Lithium nitrite manufactured by Fujifilm Wako Pure Chemical Co., Ltd .: Formula amount 52.94, Sodium acetate manufactured by Honjo Chemical Co., Ltd .: Formulated amount 82.03, Genuine Chemical Co., Ltd. Potassium carbonate: Formula amount 138.20, Fujifilm Wako Junyaku Co., Ltd. Potassium hydrogen carbonate: Formula amount 100.12., Fujifilm Wako Junyaku Co., Ltd.
- the composition for the secondary battery electrode mixture layer (electrode slurry) containing the aqueous binder for the secondary battery electrode of the present invention has good coatability.
- the cycle characteristics of the secondary battery provided with the electrodes obtained by using the composition were also excellent.
- an aqueous binder containing the present crosslinked polymer having a viscosity of a 2% by mass aqueous solution of 10,000 mPa ⁇ s or less is used, the coatability is further excellent and the cycle characteristics are also excellent. There were (Examples 1 to 17, 19).
- the amount of lithium acetate used as the alkali metal salt is 100 parts by mass or less with respect to 100 parts by mass of the total amount of the crosslinked polymer, the larger the amount used, the higher the compatibility between coatability and cycle characteristics. It was something that could be achieved in dimensions (Examples 1, 3, and 4).
- the non-crosslinked polymer R-7 has a higher viscosity than the crosslinked polymer salts R-1 to R-5, but when used as an aqueous binder containing lithium acetate, which is the alkali metal salt. Is excellent in coatability due to the reduced viscosity of the present composition, and is also excellent in the cycle characteristics of the secondary battery (Example 19). It is presumed that the reason why the cycle characteristics when the present crosslinked polymer is used is higher than that when the present non-crosslinked polymer is used is that the present crosslinked polymer is a tougher binder.
- a secondary battery provided with an electrode obtained by using the composition for a secondary battery electrode mixture layer containing the aqueous binder for a secondary battery electrode of the present invention exhibits good durability (cycle characteristics). It is expected to be applied to in-vehicle secondary batteries. It is also useful for the use of active materials containing silicon, and is expected to contribute to increasing the capacity of batteries.
- the water-based binder for a secondary battery electrode of the present invention can be particularly preferably used for a non-aqueous electrolyte secondary battery electrode, and is particularly useful for a non-aqueous electrolyte lithium ion secondary battery having a high energy density.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
The present invention provides an aqueous binder for secondary battery electrodes, said aqueous binder enabling the achievement of a secondary battery that exhibits excellent cycle characteristics, while ensuring good coatability by reducing the electrode slurry viscosity in cases where the solid content concentration of a composition for electrode mixture layers is higher than that in the prior art. The present invention also provides: a composition for secondary battery electrode mixture layers, said composition containing the above-described aqueous binder; a secondary battery electrode which is obtained using this composition; and a secondary battery. The present invention relates to an aqueous binder for secondary battery electrodes, said aqueous binder containing: a polymer which contains from 50% by mass to 100% by mass of a structural unit that is derived from an ethylenically unsaturated carboxylic acid monomer, or a salt of the polymer; and an alkali metal hydroxide or an alkali metal salt of a compound that does not have an ethylenically unsaturated group, while having a formula weight of 200 or less.
Description
本発明は、二次電池電極用水系バインダー、二次電池電極合剤層用組成物、二次電池電極及び二次電池に関する。
The present invention relates to an aqueous binder for a secondary battery electrode, a composition for a mixture layer of a secondary battery electrode, a secondary battery electrode, and a secondary battery.
二次電池として、ニッケル水素二次電池、リチウムイオン二次電池、電気二重層キャパシタ等の様々な蓄電デバイスが実用化されている。これらの二次電池に使用される電極は、活物質及びバインダー等を含む電極合剤層を形成するための組成物を集電体上に塗布・乾燥等することにより作製される。例えばリチウムイオン二次電池では、負極合剤層用組成物に用いられるバインダーとして、スチレンブタジエン系ゴム(SBR)ラテックス及びカルボキシメチルセルロース(CMC)を含む水系のバインダーが使用されている。一方、正極合剤層に用いられるバインダーとしては、ポリフッ化ビニリデン(PVDF)のN-メチル-2-ピロリドン(NMP)溶液が広く使用されている。
As a secondary battery, various power storage devices such as a nickel hydrogen secondary battery, a lithium ion secondary battery, and an electric double layer capacitor have been put into practical use. The electrodes used in these secondary batteries are produced by applying, drying, or the like on a current collector a composition for forming an electrode mixture layer containing an active material, a binder, and the like. For example, in a lithium ion secondary battery, an aqueous binder containing styrene-butadiene rubber (SBR) latex and carboxymethyl cellulose (CMC) is used as the binder used in the composition for the negative electrode mixture layer. On the other hand, as a binder used for the positive electrode mixture layer, a solution of polyvinylidene fluoride (PVDF) in N-methyl-2-pyrrolidone (NMP) is widely used.
各種二次電池の用途が拡大するにつれて、エネルギー密度、信頼性及び耐久性向上への要求が強まる傾向にある。例えば、リチウムイオン二次電池の電気容量を高める目的で、負極用活物質としてシリコン系の活物質を用いる仕様が増えてきている。しかしながら、シリコン系活物質は充放電時の体積変化が大きいことが知られており、繰り返し使用するにつれて電極合剤層の剥離又は脱落等が生じ、その結果、電池の容量が低下し、サイクル特性(耐久性)が悪化するという問題があった。このような不具合を抑制するためには、バインダーによって活物質間を強固に結着させること(結着性)や活物質のサイズを小さくして膨潤収縮に伴う応力を緩和することや電解液の添加剤を工夫することで耐久性を改善する検討が行われている。
As the applications of various secondary batteries have expanded, the demand for improved energy density, reliability and durability tends to increase. For example, for the purpose of increasing the electric capacity of a lithium ion secondary battery, specifications for using a silicon-based active material as a negative electrode active material are increasing. However, it is known that the volume of a silicon-based active material changes significantly during charging and discharging, and the electrode mixture layer peels off or falls off as it is used repeatedly, resulting in a decrease in battery capacity and cycle characteristics. There was a problem that (durability) deteriorated. In order to suppress such defects, a binder is used to firmly bond the active materials (bonding property), the size of the active material is reduced to alleviate the stress associated with swelling and contraction, and the electrolytic solution is used. Studies are being conducted to improve durability by devising additives.
そのような中、シリコン系活物質を用いた負極合剤層に用いるバインダーとしてアクリル酸系重合体が有効であることが最近報告されている。例えば、特許文献1では、特定の架橋剤によりポリアクリル酸を架橋したポリマーを結着剤として用いることにより、シリコンを含む活物質を用いた場合であっても、電極構造が破壊されることなく良好なサイクル特性を示すことが開示されている。特許文献2は、1%NaCl水溶液中で特定の粒径を有する架橋したアクリル酸重合体が開示されており、高い結着性を示すことが開示されている。
Under such circumstances, it has recently been reported that an acrylic acid-based polymer is effective as a binder used in a negative electrode mixture layer using a silicon-based active material. For example, in Patent Document 1, by using a polymer obtained by cross-linking polyacrylic acid with a specific cross-linking agent as a binder, the electrode structure is not destroyed even when an active material containing silicon is used. It is disclosed to show good cycle characteristics. Patent Document 2 discloses a crosslinked acrylic acid polymer having a specific particle size in a 1% NaCl aqueous solution, and discloses that it exhibits high binding properties.
特許文献1及び2に開示されるバインダーは、いずれも良好なサイクル特性又は結着性を付与し得るものであるが、二次電池の性能向上に伴い、さらなるサイクル特性の改善が求められるようになっている。
また、一般に、二次電池電極は、活物質及びバインダーを含む電極合剤層用組成物(以下、「電極スラリー」ともいう。)を電極集電体表面に塗布乾燥することにより得られる。この際、電極スラリーの乾燥効率を高め、電極の生産性を向上する観点から、電極合剤層用組成物の固形分濃度を高くすることが有利であるが、良好な塗工性を確保することが難しくなる。
そのような中、特許文献1及び2に記載の電極合剤層用組成物は、バインダーとして用いるアクリル酸系重合体の微架橋化によって水中での拡がりを大きくする事で結着性を高めているが、少量の添加でも粘度が大きく上昇する。このため、電極合剤層用組成物の固形分濃度を高めた状態で、電極スラリーの粘度を低下させることが困難であった。 The binders disclosed in Patent Documents 1 and 2 can all impart good cycle characteristics or binding properties, but as the performance of the secondary battery is improved, further improvement in cycle characteristics is required. It has become.
Further, the secondary battery electrode is generally obtained by applying a composition for an electrode mixture layer containing an active material and a binder (hereinafter, also referred to as “electrode slurry”) to the surface of an electrode current collector and drying it. At this time, from the viewpoint of increasing the drying efficiency of the electrode slurry and improving the productivity of the electrode, it is advantageous to increase the solid content concentration of the composition for the electrode mixture layer, but to ensure good coatability. It becomes difficult.
Under such circumstances, the composition for the electrode mixture layer described in Patent Documents 1 and 2 enhances the binding property by increasing the spread in water by microcrosslinking the acrylic acid-based polymer used as a binder. However, even a small amount of addition greatly increases the viscosity. Therefore, it has been difficult to reduce the viscosity of the electrode slurry in a state where the solid content concentration of the composition for the electrode mixture layer is increased.
また、一般に、二次電池電極は、活物質及びバインダーを含む電極合剤層用組成物(以下、「電極スラリー」ともいう。)を電極集電体表面に塗布乾燥することにより得られる。この際、電極スラリーの乾燥効率を高め、電極の生産性を向上する観点から、電極合剤層用組成物の固形分濃度を高くすることが有利であるが、良好な塗工性を確保することが難しくなる。
そのような中、特許文献1及び2に記載の電極合剤層用組成物は、バインダーとして用いるアクリル酸系重合体の微架橋化によって水中での拡がりを大きくする事で結着性を高めているが、少量の添加でも粘度が大きく上昇する。このため、電極合剤層用組成物の固形分濃度を高めた状態で、電極スラリーの粘度を低下させることが困難であった。 The binders disclosed in Patent Documents 1 and 2 can all impart good cycle characteristics or binding properties, but as the performance of the secondary battery is improved, further improvement in cycle characteristics is required. It has become.
Further, the secondary battery electrode is generally obtained by applying a composition for an electrode mixture layer containing an active material and a binder (hereinafter, also referred to as “electrode slurry”) to the surface of an electrode current collector and drying it. At this time, from the viewpoint of increasing the drying efficiency of the electrode slurry and improving the productivity of the electrode, it is advantageous to increase the solid content concentration of the composition for the electrode mixture layer, but to ensure good coatability. It becomes difficult.
Under such circumstances, the composition for the electrode mixture layer described in Patent Documents 1 and 2 enhances the binding property by increasing the spread in water by microcrosslinking the acrylic acid-based polymer used as a binder. However, even a small amount of addition greatly increases the viscosity. Therefore, it has been difficult to reduce the viscosity of the electrode slurry in a state where the solid content concentration of the composition for the electrode mixture layer is increased.
本発明は、上記事情に鑑みてなされたものであり、その目的は、従来よりも電極合剤層用組成物の固形分濃度が高い場合において、電極スラリーの粘度低減により塗工性を確保しつつ、優れたサイクル特性を発揮する二次電池を得ることができる、二次電池電極用水系バインダーを提供することである。また、併せて、上記水系バインダーを含む二次電池電極合剤層用組成物、当該組成物を用いて得られる二次電池電極及び二次電池を提供することである。
The present invention has been made in view of the above circumstances, and an object of the present invention is to secure coatability by reducing the viscosity of the electrode slurry when the solid content concentration of the composition for the electrode mixture layer is higher than before. At the same time, it is an object of the present invention to provide an aqueous binder for a secondary battery electrode capable of obtaining a secondary battery exhibiting excellent cycle characteristics. In addition, the present invention also provides a composition for a secondary battery electrode mixture layer containing the above-mentioned water-based binder, a secondary battery electrode obtained by using the composition, and a secondary battery.
本発明者らは、上記課題を解決するために鋭意検討した結果、従来よりも電極合剤層用組成物の固形分濃度が高い場合において、エチレン性不飽和カルボン酸単量体に由来する構造単位を特定量含む重合体又はその塩、及び、特定のアルカリ金属化合物を含有する二次電池電極用水系バインダーを用いることによって、電極スラリーの粘度低減により塗工性を確保しつつ、優れたサイクル特性を発揮する二次電池を得ることができる事を見出し、本発明を完成した。
As a result of diligent studies to solve the above problems, the present inventors have made a structure derived from an ethylenically unsaturated carboxylic acid monomer when the solid content concentration of the composition for the electrode mixture layer is higher than before. By using a polymer containing a specific amount of units or a salt thereof, and an aqueous binder for a secondary battery electrode containing a specific alkali metal compound, an excellent cycle is achieved while ensuring coatability by reducing the viscosity of the electrode slurry. We have found that it is possible to obtain a secondary battery that exhibits its characteristics, and completed the present invention.
本発明は以下の通りである。
〔1〕エチレン性不飽和カルボン酸単量体に由来する構造単位を50質量%以上100質量%以下含む重合体又はその塩、及び、アルカリ金属水酸化物又は式量200以下であって、エチレン性不飽和基を有しない化合物のアルカリ金属塩を含有する二次電池電極用水系バインダー。
〔2〕前記重合体は、架橋重合体又は非架橋重合体である、〔1〕に記載の二次電池電極用水系バインダー。
〔3〕前記架橋重合体は、架橋性単量体を用いて得られたものであり、当該架橋性単量体の使用量は、非架橋性単量体の総量100質量部に対し、0.05質量部以上5.0質量部以下である、〔2〕に記載の二次電池電極用水系バインダー。
〔4〕前記非架重合体は、ビニルアルコールに由来する構造単位を50質量%以下含む、〔2〕に記載の二次電池電極用水系バインダー。
〔5〕前記重合体の2質量%濃度水溶液の粘度が10,000mPa・s以下である、〔〔1〕~〔4〕のいずれか一に記載の二次電池電極用水系バインダー。
〔6〕前記重合体の中和度が70モル%以上である、〔1〕~〔5〕のいずれか一に記載の二次電池電極用水系バインダー。
〔7〕前記アルカリ金属塩の使用量が、前記重合体の総量100質量部に対し、5.0質量部以上175質量部以下である、〔1〕~〔6〕のいずれか一に記載の二次電池電極用水系バインダー。
〔8〕前記アルカリ金属塩が、リチウム塩、ナトリウム塩及びカリウム塩からなる群より選択される少なくとも1種を含む、〔1〕~〔7〕のいずれか一に記載の二次電池電極用水系バインダー。
〔9〕前記リチウム塩が、酢酸リチウムである、〔8〕に記載の二次電池電極用水系バインダー。
〔10〕さらに、スチレンブタジエンゴム (SBR)系ラテックス及び/又はカルボキシメチルセルロース(CMC)を含有する、〔1〕~〔9〕のいずれか一に記載の二次電池電極用水系バインダー。
〔11〕〔1〕~〔10〕のいずれか一に記載の二次電池電極用水系バインダー、活物質及び水を含む二次電池電極合剤層用組成物。
〔12〕前記二次電池電極合材層用組成物のpHが12.5未満である、〔11〕に記載の二次電池電極合材層用組成物。
〔13〕集電体表面に、〔11〕又は〔12〕に記載の二次電池電極合剤層用組成物から形成される合剤層を備える、二次電池電極。
〔14〕〔13〕に記載の二次電池電極を備える、二次電池。 The present invention is as follows.
[1] A polymer containing 50% by mass or more and 100% by mass or less of a structural unit derived from an ethylenically unsaturated carboxylic acid monomer or a salt thereof, and an alkali metal hydroxide or an ethylene having a formula of 200 or less and ethylene. An aqueous binder for a secondary battery electrode containing an alkali metal salt of a compound having no sex unsaturated group.
[2] The aqueous binder for a secondary battery electrode according to [1], wherein the polymer is a crosslinked polymer or a non-crosslinked polymer.
[3] The crosslinked polymer was obtained by using a crosslinkable monomer, and the amount of the crosslinked monomer used was 0 with respect to 100 parts by mass of the total amount of the non-crosslinkable monomer. The aqueous binder for a secondary battery electrode according to [2], which is 0.05 parts by mass or more and 5.0 parts by mass or less.
[4] The aqueous binder for a secondary battery electrode according to [2], wherein the non-frame polymer contains 50% by mass or less of a structural unit derived from vinyl alcohol.
[5] The aqueous binder for a secondary battery electrode according to any one of [[1] to [4], wherein the viscosity of the 2% by mass aqueous solution of the polymer is 10,000 mPa · s or less.
[6] The aqueous binder for a secondary battery electrode according to any one of [1] to [5], wherein the degree of neutralization of the polymer is 70 mol% or more.
[7] The amount according to any one of [1] to [6], wherein the amount of the alkali metal salt used is 5.0 parts by mass or more and 175 parts by mass or less with respect to 100 parts by mass of the total amount of the polymer. Water-based binder for secondary battery electrodes.
[8] The water system for a secondary battery electrode according to any one of [1] to [7], wherein the alkali metal salt contains at least one selected from the group consisting of a lithium salt, a sodium salt and a potassium salt. binder.
[9] The aqueous binder for a secondary battery electrode according to [8], wherein the lithium salt is lithium acetate.
[10] The water-based binder for a secondary battery electrode according to any one of [1] to [9], which further contains a styrene-butadiene rubber (SBR) -based latex and / or carboxymethyl cellulose (CMC).
[11] The composition for a secondary battery electrode mixture layer containing the aqueous binder for the secondary battery electrode, the active material, and water according to any one of [1] to [10].
[12] The composition for a secondary battery electrode mixture layer according to [11], wherein the pH of the composition for the secondary battery electrode mixture layer is less than 12.5.
[13] A secondary battery electrode comprising a mixture layer formed from the composition for the secondary battery electrode mixture layer according to [11] or [12] on the surface of a current collector.
[14] A secondary battery comprising the secondary battery electrode according to [13].
〔1〕エチレン性不飽和カルボン酸単量体に由来する構造単位を50質量%以上100質量%以下含む重合体又はその塩、及び、アルカリ金属水酸化物又は式量200以下であって、エチレン性不飽和基を有しない化合物のアルカリ金属塩を含有する二次電池電極用水系バインダー。
〔2〕前記重合体は、架橋重合体又は非架橋重合体である、〔1〕に記載の二次電池電極用水系バインダー。
〔3〕前記架橋重合体は、架橋性単量体を用いて得られたものであり、当該架橋性単量体の使用量は、非架橋性単量体の総量100質量部に対し、0.05質量部以上5.0質量部以下である、〔2〕に記載の二次電池電極用水系バインダー。
〔4〕前記非架重合体は、ビニルアルコールに由来する構造単位を50質量%以下含む、〔2〕に記載の二次電池電極用水系バインダー。
〔5〕前記重合体の2質量%濃度水溶液の粘度が10,000mPa・s以下である、〔〔1〕~〔4〕のいずれか一に記載の二次電池電極用水系バインダー。
〔6〕前記重合体の中和度が70モル%以上である、〔1〕~〔5〕のいずれか一に記載の二次電池電極用水系バインダー。
〔7〕前記アルカリ金属塩の使用量が、前記重合体の総量100質量部に対し、5.0質量部以上175質量部以下である、〔1〕~〔6〕のいずれか一に記載の二次電池電極用水系バインダー。
〔8〕前記アルカリ金属塩が、リチウム塩、ナトリウム塩及びカリウム塩からなる群より選択される少なくとも1種を含む、〔1〕~〔7〕のいずれか一に記載の二次電池電極用水系バインダー。
〔9〕前記リチウム塩が、酢酸リチウムである、〔8〕に記載の二次電池電極用水系バインダー。
〔10〕さらに、スチレンブタジエンゴム (SBR)系ラテックス及び/又はカルボキシメチルセルロース(CMC)を含有する、〔1〕~〔9〕のいずれか一に記載の二次電池電極用水系バインダー。
〔11〕〔1〕~〔10〕のいずれか一に記載の二次電池電極用水系バインダー、活物質及び水を含む二次電池電極合剤層用組成物。
〔12〕前記二次電池電極合材層用組成物のpHが12.5未満である、〔11〕に記載の二次電池電極合材層用組成物。
〔13〕集電体表面に、〔11〕又は〔12〕に記載の二次電池電極合剤層用組成物から形成される合剤層を備える、二次電池電極。
〔14〕〔13〕に記載の二次電池電極を備える、二次電池。 The present invention is as follows.
[1] A polymer containing 50% by mass or more and 100% by mass or less of a structural unit derived from an ethylenically unsaturated carboxylic acid monomer or a salt thereof, and an alkali metal hydroxide or an ethylene having a formula of 200 or less and ethylene. An aqueous binder for a secondary battery electrode containing an alkali metal salt of a compound having no sex unsaturated group.
[2] The aqueous binder for a secondary battery electrode according to [1], wherein the polymer is a crosslinked polymer or a non-crosslinked polymer.
[3] The crosslinked polymer was obtained by using a crosslinkable monomer, and the amount of the crosslinked monomer used was 0 with respect to 100 parts by mass of the total amount of the non-crosslinkable monomer. The aqueous binder for a secondary battery electrode according to [2], which is 0.05 parts by mass or more and 5.0 parts by mass or less.
[4] The aqueous binder for a secondary battery electrode according to [2], wherein the non-frame polymer contains 50% by mass or less of a structural unit derived from vinyl alcohol.
[5] The aqueous binder for a secondary battery electrode according to any one of [[1] to [4], wherein the viscosity of the 2% by mass aqueous solution of the polymer is 10,000 mPa · s or less.
[6] The aqueous binder for a secondary battery electrode according to any one of [1] to [5], wherein the degree of neutralization of the polymer is 70 mol% or more.
[7] The amount according to any one of [1] to [6], wherein the amount of the alkali metal salt used is 5.0 parts by mass or more and 175 parts by mass or less with respect to 100 parts by mass of the total amount of the polymer. Water-based binder for secondary battery electrodes.
[8] The water system for a secondary battery electrode according to any one of [1] to [7], wherein the alkali metal salt contains at least one selected from the group consisting of a lithium salt, a sodium salt and a potassium salt. binder.
[9] The aqueous binder for a secondary battery electrode according to [8], wherein the lithium salt is lithium acetate.
[10] The water-based binder for a secondary battery electrode according to any one of [1] to [9], which further contains a styrene-butadiene rubber (SBR) -based latex and / or carboxymethyl cellulose (CMC).
[11] The composition for a secondary battery electrode mixture layer containing the aqueous binder for the secondary battery electrode, the active material, and water according to any one of [1] to [10].
[12] The composition for a secondary battery electrode mixture layer according to [11], wherein the pH of the composition for the secondary battery electrode mixture layer is less than 12.5.
[13] A secondary battery electrode comprising a mixture layer formed from the composition for the secondary battery electrode mixture layer according to [11] or [12] on the surface of a current collector.
[14] A secondary battery comprising the secondary battery electrode according to [13].
本発明の二次電池電極用水系バインダーによれば、従来よりも電極合剤層用組成物の固形分濃度が高い場合において、電極スラリーの粘度低減により塗工性を確保しつつ、優れたサイクル特性を発揮する二次電池を得ることができる。
According to the water-based binder for a secondary battery electrode of the present invention, when the solid content concentration of the composition for the electrode mixture layer is higher than before, an excellent cycle is achieved while ensuring coatability by reducing the viscosity of the electrode slurry. It is possible to obtain a secondary battery that exhibits its characteristics.
本発明の二次電池電極用水系バインダー(以下、「本バインダー」ともいう。)は、エチレン性不飽和カルボン酸単量体に由来する構造単位を50質量%以上100質量%以下含む重合体(以下、「本重合体」ともいう。)又はその塩、及び、アルカリ金属水酸化物又は式量200以下であって、エチレン性不飽和基を有しない化合物のアルカリ金属塩(以下、「本アルカリ金属塩」ともいう。)を含有するものであり、活物質及び水と混合することにより二次電池電極合剤層用組成物(以下、「本組成物」ともいう。)とすることができる。上記の組成物は、集電体への塗工が可能なスラリー状態である。銅箔又はアルミニウム箔等の集電体表面に上記組成物から形成される合剤層を形成することにより、本発明の二次電池電極が得られる。ここで、本バインダーは、活物質として後述のケイ素系活物質を含む二次電池電極合剤層用組成物に用いる場合、本発明の奏する効果が特に大きい点で好ましい。
The aqueous binder for a secondary battery electrode of the present invention (hereinafter, also referred to as “the present binder”) is a polymer containing 50% by mass or more and 100% by mass or less of a structural unit derived from an ethylenically unsaturated carboxylic acid monomer (hereinafter, also referred to as “the present binder”). Hereinafter, it is also referred to as "the present polymer") or a salt thereof, and an alkali metal hydroxide or an alkali metal salt of a compound having a formula amount of 200 or less and having no ethylenically unsaturated group (hereinafter, "the present alkali"). It also contains "metal salt"), and can be mixed with an active material and water to form a composition for a secondary battery electrode mixture layer (hereinafter, also referred to as "this composition"). .. The above composition is in a slurry state that can be applied to a current collector. The secondary battery electrode of the present invention can be obtained by forming a mixture layer formed from the above composition on the surface of a current collector such as a copper foil or an aluminum foil. Here, when this binder is used in a composition for a secondary battery electrode mixture layer containing a silicon-based active material described later as an active material, the effect of the present invention is particularly large, which is preferable.
以下に、本発明の二次電池電極用水系バインダー、当該バインダーを用いて得られる二次電池電極合剤層用組成物、二次電池電極及び二次電池の各々について詳細に説明する。
尚、本明細書において、「(メタ)アクリル」とは、アクリル及び/又はメタクリルを意味し、「(メタ)アクリレート」とは、アクリレート及び/又はメタクリレートを意味する。また、「(メタ)アクリロイル基」とは、アクリロイル基及び/又はメタクリロイル基を意味する。 Hereinafter, each of the aqueous binder for the secondary battery electrode of the present invention, the composition for the mixture layer of the secondary battery electrode obtained by using the binder, the secondary battery electrode, and the secondary battery will be described in detail.
In the present specification, "(meth) acrylic" means acrylic and / or methacrylic, and "(meth) acrylate" means acrylate and / or methacrylate. Further, the “(meth) acryloyl group” means an acryloyl group and / or a methacryloyl group.
尚、本明細書において、「(メタ)アクリル」とは、アクリル及び/又はメタクリルを意味し、「(メタ)アクリレート」とは、アクリレート及び/又はメタクリレートを意味する。また、「(メタ)アクリロイル基」とは、アクリロイル基及び/又はメタクリロイル基を意味する。 Hereinafter, each of the aqueous binder for the secondary battery electrode of the present invention, the composition for the mixture layer of the secondary battery electrode obtained by using the binder, the secondary battery electrode, and the secondary battery will be described in detail.
In the present specification, "(meth) acrylic" means acrylic and / or methacrylic, and "(meth) acrylate" means acrylate and / or methacrylate. Further, the “(meth) acryloyl group” means an acryloyl group and / or a methacryloyl group.
本バインダーは、本重合体又はその塩、及び、アルカリ金属水酸化物又は本アルカリ金属塩を含む。
本重合体は、架橋重合体(以下、「本架橋重合体」ともいう。)でもあってもよいし、非架橋重合体(以下、「本非架橋重合体」ともいう。)であってもよい。本架橋重合体と本非架橋重合体は、それぞれ単独で使用してもよいし、併用してもよい。また、本架橋重合体又は本非架橋重合体は、1種を単独で使用してもよいし、2種以上を併用してもよい。 The binder contains the polymer or a salt thereof, and an alkali metal hydroxide or an alkali metal salt.
The present polymer may be a crosslinked polymer (hereinafter, also referred to as “the present crosslinked polymer”) or a non-crosslinked polymer (hereinafter, also referred to as “the present non-crosslinked polymer”). Good. The crosslinked polymer and the non-crosslinked polymer may be used alone or in combination. Further, the present crosslinked polymer or the present non-crosslinked polymer may be used alone or in combination of two or more.
本重合体は、架橋重合体(以下、「本架橋重合体」ともいう。)でもあってもよいし、非架橋重合体(以下、「本非架橋重合体」ともいう。)であってもよい。本架橋重合体と本非架橋重合体は、それぞれ単独で使用してもよいし、併用してもよい。また、本架橋重合体又は本非架橋重合体は、1種を単独で使用してもよいし、2種以上を併用してもよい。 The binder contains the polymer or a salt thereof, and an alkali metal hydroxide or an alkali metal salt.
The present polymer may be a crosslinked polymer (hereinafter, also referred to as “the present crosslinked polymer”) or a non-crosslinked polymer (hereinafter, also referred to as “the present non-crosslinked polymer”). Good. The crosslinked polymer and the non-crosslinked polymer may be used alone or in combination. Further, the present crosslinked polymer or the present non-crosslinked polymer may be used alone or in combination of two or more.
1.本架橋重合体
<エチレン性不飽和カルボン酸単量体に由来する構造単位>
本バインダーに含まれる本架橋重合体は、エチレン性不飽和カルボン酸単量体に由来する構造単位(以下、「(a1)成分」ともいう。)を50質量%以上100質量%以下含む。本架橋重合体が、係る構造単位を有することによりカルボキシル基を有する場合、集電体への接着性が向上するとともに、リチウムイオンの脱溶媒和効果及びイオン伝導性に優れるため、抵抗が小さく、ハイレート特性に優れた電極が得られる。また、水膨潤性が付与されるため、本組成物中における活物質等の分散安定性を高めることができる。
上記(a1)成分は、例えば、エチレン性不飽和カルボン酸単量体を含む単量体を重合することにより重合体に導入することができる。その他にも、(メタ)アクリル酸エステル単量体を(共)重合した後、加水分解することによっても得られる。また、(メタ)アクリルアミド及び(メタ)アクリロニトリル等を重合した後、強アルカリで処理してもよいし、水酸基を有する重合体に酸無水物を反応させる方法であってもよい。 1. 1. This crosslinked polymer <Structural unit derived from ethylenically unsaturated carboxylic acid monomer>
The crosslinked polymer contained in the binder contains 50% by mass or more and 100% by mass or less of a structural unit derived from an ethylenically unsaturated carboxylic acid monomer (hereinafter, also referred to as “component (a1)”). When the crosslinked polymer has a carboxyl group by having such a structural unit, the adhesiveness to the current collector is improved, and the lithium ion desolvation effect and the ionic conductivity are excellent, so that the resistance is small. An electrode having excellent high-rate characteristics can be obtained. Further, since water swelling property is imparted, the dispersion stability of the active material or the like in the present composition can be enhanced.
The above component (a1) can be introduced into a polymer, for example, by polymerizing a monomer containing an ethylenically unsaturated carboxylic acid monomer. Alternatively, it can also be obtained by (co) polymerizing a (meth) acrylic acid ester monomer and then hydrolyzing it. Further, after polymerizing (meth) acrylamide, (meth) acrylonitrile or the like, it may be treated with a strong alkali, or it may be a method of reacting an acid anhydride with a polymer having a hydroxyl group.
<エチレン性不飽和カルボン酸単量体に由来する構造単位>
本バインダーに含まれる本架橋重合体は、エチレン性不飽和カルボン酸単量体に由来する構造単位(以下、「(a1)成分」ともいう。)を50質量%以上100質量%以下含む。本架橋重合体が、係る構造単位を有することによりカルボキシル基を有する場合、集電体への接着性が向上するとともに、リチウムイオンの脱溶媒和効果及びイオン伝導性に優れるため、抵抗が小さく、ハイレート特性に優れた電極が得られる。また、水膨潤性が付与されるため、本組成物中における活物質等の分散安定性を高めることができる。
上記(a1)成分は、例えば、エチレン性不飽和カルボン酸単量体を含む単量体を重合することにより重合体に導入することができる。その他にも、(メタ)アクリル酸エステル単量体を(共)重合した後、加水分解することによっても得られる。また、(メタ)アクリルアミド及び(メタ)アクリロニトリル等を重合した後、強アルカリで処理してもよいし、水酸基を有する重合体に酸無水物を反応させる方法であってもよい。 1. 1. This crosslinked polymer <Structural unit derived from ethylenically unsaturated carboxylic acid monomer>
The crosslinked polymer contained in the binder contains 50% by mass or more and 100% by mass or less of a structural unit derived from an ethylenically unsaturated carboxylic acid monomer (hereinafter, also referred to as “component (a1)”). When the crosslinked polymer has a carboxyl group by having such a structural unit, the adhesiveness to the current collector is improved, and the lithium ion desolvation effect and the ionic conductivity are excellent, so that the resistance is small. An electrode having excellent high-rate characteristics can be obtained. Further, since water swelling property is imparted, the dispersion stability of the active material or the like in the present composition can be enhanced.
The above component (a1) can be introduced into a polymer, for example, by polymerizing a monomer containing an ethylenically unsaturated carboxylic acid monomer. Alternatively, it can also be obtained by (co) polymerizing a (meth) acrylic acid ester monomer and then hydrolyzing it. Further, after polymerizing (meth) acrylamide, (meth) acrylonitrile or the like, it may be treated with a strong alkali, or it may be a method of reacting an acid anhydride with a polymer having a hydroxyl group.
エチレン性不飽和カルボン酸単量体としては、(メタ)アクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸;(メタ)アクリルアミドヘキサン酸及び(メタ)アクリルアミドドデカン酸等の(メタ)アクリルアミドアルキルカルボン酸;コハク酸モノヒドロキシエチル(メタ)アクリレート、ω-カルボキシ-カプロラクトンモノ(メタ)アクリレート、β-カルボキシエチル(メタ)アクリレート等のカルボキシル基を有するエチレン性不飽和単量体又はそれらの(部分)アルカリ中和物が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。上記の中でも、重合速度が大きいために一次鎖長の長い重合体が得られ、本バインダーの結着力が良好となる点で重合性官能基としてアクリロイル基を有する化合物が好ましく、特に好ましくはアクリル酸である。エチレン性不飽和カルボン酸単量体としてアクリル酸を用いた場合、カルボキシル基含有量の高い重合体を得ることができる。
Examples of the ethylenically unsaturated carboxylic acid monomer include (meth) acrylic acid, itaconic acid, crotonic acid, maleic acid, and fumaric acid; and (meth) acrylamide alkyl such as (meth) acrylamide hexane acid and (meth) acrylamide dodecanoic acid. Carboxylic acid; ethylenically unsaturated monomers having carboxyl groups such as monohydroxyethyl succinate (meth) acrylate, ω-carboxy-caprolactone mono (meth) acrylate, β-carboxyethyl (meth) acrylate, or (partial) thereof. ) Alkaline neutralized products may be mentioned, and one of these may be used alone, or two or more thereof may be used in combination. Among the above, a compound having an acryloyl group as a polymerizable functional group is preferable, and acrylic acid is particularly preferable, in that a polymer having a long primary chain length can be obtained due to a high polymerization rate and the binding force of the binder is good. Is. When acrylic acid is used as the ethylenically unsaturated carboxylic acid monomer, a polymer having a high carboxyl group content can be obtained.
本架橋重合体における(a1)成分の含有量は、本架橋重合体の全構造単位に対して50質量%以上、100質量%以下含むことができる。かかる範囲で(a1)成分を含有することで、集電体に対する優れた接着性を容易に確保することができる。下限が50質量%以上の場合、本組成物の分散安定性が良好となり、より高い結着力が得られるため好ましく、60質量%以上であってもよく、70質量%以上であってもよく、80質量%以上であってもよい。また、上限は、例えば、99.9質量%以下であり、また例えば99.5質量%以下であり、また例えば99質量%以下であり、また例えば98質量%以下であり、また例えば95質量%以下であり、また例えば90質量%以下であり、また例えば80質量%以下である。範囲としては、こうした下限及び上限を適宜組み合わせた範囲とすることができるが、例えば50質量%以上、100質量%以下であり、また例えば50質量%以上、99.9質量%以下であり、また例えば50質量%以上、99質量%以下であり、また例えば50質量%以上、98質量%以下などとすることができる。
The content of the component (a1) in the crosslinked polymer can be 50% by mass or more and 100% by mass or less with respect to all the structural units of the crosslinked polymer. By containing the component (a1) in such a range, excellent adhesiveness to the current collector can be easily ensured. When the lower limit is 50% by mass or more, the dispersion stability of the present composition becomes good and a higher binding force can be obtained, which is preferable, and it may be 60% by mass or more, or 70% by mass or more. It may be 80% by mass or more. Further, the upper limit is, for example, 99.9% by mass or less, for example, 99.5% by mass or less, for example, 99% by mass or less, for example, 98% by mass or less, and for example, 95% by mass. It is less than or equal to, for example, 90% by mass or less, and for example, 80% by mass or less. The range may be a range in which such a lower limit and an upper limit are appropriately combined, and is, for example, 50% by mass or more and 100% by mass or less, and for example, 50% by mass or more and 99.9% by mass or less. For example, it can be 50% by mass or more and 99% by mass or less, and can be, for example, 50% by mass or more and 98% by mass or less.
<その他の構造単位>
本架橋重合体は、(a1)成分以外に、これらと共重合可能な他のエチレン性不飽和単量体に由来する構造単位(以下、「(b1)成分」ともいう。)を含むことができる。(b1)成分としては、例えば、スルホン酸基及びリン酸基等のカルボキシル基以外のアニオン性基を有するエチレン性不飽和単量体化合物、又は非イオン性のエチレン性不飽和単量体等に由来する構造単位が挙げられる。これらの構造単位は、スルホン酸基及びリン酸基等のカルボキシル基以外のアニオン性基を有するエチレン性不飽和単量体化合物、又は非イオン性のエチレン性不飽和単量体を含む単量体を共重合することにより導入することができる。 <Other structural units>
The crosslinked polymer may contain, in addition to the component (a1), a structural unit derived from another ethylenically unsaturated monomer copolymerizable with the component (hereinafter, also referred to as “component (b1)”). it can. Examples of the component (b1) include an ethylenically unsaturated monomer compound having an anionic group other than a carboxyl group such as a sulfonic acid group and a phosphoric acid group, a nonionic ethylenically unsaturated monomer, and the like. The structural unit from which it is derived can be mentioned. These structural units are ethylenically unsaturated monomer compounds having an anionic group other than a carboxyl group such as a sulfonic acid group and a phosphoric acid group, or a monomer containing a nonionic ethylenically unsaturated monomer. Can be introduced by copolymerizing.
本架橋重合体は、(a1)成分以外に、これらと共重合可能な他のエチレン性不飽和単量体に由来する構造単位(以下、「(b1)成分」ともいう。)を含むことができる。(b1)成分としては、例えば、スルホン酸基及びリン酸基等のカルボキシル基以外のアニオン性基を有するエチレン性不飽和単量体化合物、又は非イオン性のエチレン性不飽和単量体等に由来する構造単位が挙げられる。これらの構造単位は、スルホン酸基及びリン酸基等のカルボキシル基以外のアニオン性基を有するエチレン性不飽和単量体化合物、又は非イオン性のエチレン性不飽和単量体を含む単量体を共重合することにより導入することができる。 <Other structural units>
The crosslinked polymer may contain, in addition to the component (a1), a structural unit derived from another ethylenically unsaturated monomer copolymerizable with the component (hereinafter, also referred to as “component (b1)”). it can. Examples of the component (b1) include an ethylenically unsaturated monomer compound having an anionic group other than a carboxyl group such as a sulfonic acid group and a phosphoric acid group, a nonionic ethylenically unsaturated monomer, and the like. The structural unit from which it is derived can be mentioned. These structural units are ethylenically unsaturated monomer compounds having an anionic group other than a carboxyl group such as a sulfonic acid group and a phosphoric acid group, or a monomer containing a nonionic ethylenically unsaturated monomer. Can be introduced by copolymerizing.
(b1)成分の割合は、本架橋重合体の全構造単位に対し、0質量%以上、50質量%以下とすることができる。(b1)成分の割合は、1質量%以上、50質量%以下であってもよく、2質量%以上、50質量%以下であってもよく、5質量%以上、50質量%以下であってもよく、10質量%以上、50質量%以下であってもよい。また、本架橋重合体の全構造単位に対して(b1)成分を1質量%以上含む場合、電解液への親和性が向上するため、リチウムイオン伝導性が向上する効果も期待できる。
The ratio of the component (b1) can be 0% by mass or more and 50% by mass or less with respect to all the structural units of the present crosslinked polymer. The ratio of the component (b1) may be 1% by mass or more and 50% by mass or less, 2% by mass or more and 50% by mass or less, and 5% by mass or more and 50% by mass or less. It may be 10% by mass or more and 50% by mass or less. Further, when the component (b1) is contained in an amount of 1% by mass or more with respect to all the structural units of the crosslinked polymer, the affinity for the electrolytic solution is improved, so that the effect of improving the lithium ion conductivity can be expected.
(b1)成分としては、前記した中でも、耐屈曲性が良好な電極が得られる観点から非イオン性のエチレン性不飽和単量体に由来する構造単位が好ましく、非イオン性のエチレン性不飽和単量体としては、(メタ)アクリルアミド及びその誘導体、ニトリル基含有エチレン性不飽和単量体、脂環構造含有エチレン性不飽和単量体、水酸基含有エチレン性不飽和単量体等が挙げられる。
As the component (b1), among the above-mentioned components, a structural unit derived from a nonionic ethylenically unsaturated monomer is preferable from the viewpoint of obtaining an electrode having good bending resistance, and a nonionic ethylenically unsaturated monomer is preferable. Examples of the monomer include (meth) acrylamide and its derivatives, a nitrile group-containing ethylenically unsaturated monomer, an alicyclic structure-containing ethylenically unsaturated monomer, a hydroxyl group-containing ethylenically unsaturated monomer, and the like. ..
(メタ)アクリルアミド誘導体としては、例えば、イソプロピル(メタ)アクリルアミド、t-ブチル(メタ)アクリルアミド等のN-アルキル(メタ)アクリルアミド化合物;N-n-ブトキシメチル(メタ)アクリルアミド、N-イソブトキシメチル(メタ)アクリルアミド等のN-アルコキシアルキル(メタ)アクリルアミド化合物;ジメチル(メタ)アクリルアミド、ジエチル(メタ)アクリルアミド等のN,N-ジアルキル(メタ)アクリルアミド化合物が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
Examples of the (meth) acrylamide derivative include N-alkyl (meth) acrylamide compounds such as isopropyl (meth) acrylamide and t-butyl (meth) acrylamide; Nn-butoxymethyl (meth) acrylamide and N-isobutoxymethyl. N-alkoxyalkyl (meth) acrylamide compounds such as (meth) acrylamide; N, N-dialkyl (meth) acrylamide compounds such as dimethyl (meth) acrylamide and diethyl (meth) acrylamide include one of them. It may be used alone or in combination of two or more.
ニトリル基含有エチレン性不飽和単量体としては、例えば、(メタ)アクロリニトリル;(メタ)アクリル酸シアノメチル、(メタ)アクリル酸シアノエチル等の(メタ)アクリル酸シアノアルキルエステル化合物;4-シアノスチレン、4-シアノ-α-メチルスチレン等のシアノ基含有不飽和芳香族化合物;シアン化ビニリデン等が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。上記の中でも、ニトリル基含有量が多い点でアクリロニトリルが好ましい。
Examples of the nitrile group-containing ethylenically unsaturated monomer include (meth) achlorinitrile; (meth) cyanomethyl acrylate, (meth) cyanoethyl acrylate and other (meth) acrylate cyanoalkyl ester compounds; 4-cyanostyrene. , 4-Cyano-α-methylstyrene and other unsaturated aromatic compounds containing cyano groups; vinylidene cyanide and the like, and one of these may be used alone or in combination of two or more. You may use it. Among the above, acrylonitrile is preferable because it has a high nitrile group content.
脂環構造含有エチレン性不飽和単量体としては、例えば、(メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸メチルシクロヘキシル、(メタ)アクリル酸t-ブチルシクロヘキシル、(メタ)アクリル酸シクロデシル及び(メタ)アクリル酸シクロドデシル等の脂肪族置換基を有していてもよい(メタ)アクリル酸シクロアルキルエステル;(メタ)アクリル酸イソボルニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸ジシクロペンテニル、(メタ)アクリル酸ジシクロペンテニルオキシエチル、(メタ)アクリル酸ジシクロペンタニル、並びに、シクロヘキサンジメタノールモノ(メタ)アクリレート及びシクロデカンジメタノールモノ(メタ)アクリレート等のシクロアルキルポリアルコールモノ(メタ)アクリレート等が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
Examples of the alicyclic structure-containing ethylenically unsaturated monomer include cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, methylcyclohexyl (meth) acrylate, t-butylcyclohexyl (meth) acrylate, and (meth). ) Cyclodecyl acrylate and cyclododecyl (meth) acrylate and other aliphatic substituents may have (meth) cycloalkyl acrylate; isobornyl (meth) acrylate, adamantyl (meth) acrylate, (meth). ) Dicyclopentenyl acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and cyclohexanedimethanol mono (meth) acrylate and cyclodecanedimethanol mono (meth) acrylate, etc. Cycloalkyl polyalcohol mono (meth) acrylate and the like can be mentioned, and one of these may be used alone, or two or more thereof may be used in combination.
水酸基含有エチレン性不飽和単量体としては、例えば、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル及び(メタ)アクリル酸ヒドロキシブチル等が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
Examples of the hydroxyl group-containing ethylenically unsaturated monomer include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and hydroxybutyl (meth) acrylate, and one of these is used alone. It may be used in combination, or two or more kinds may be used in combination.
本架橋重合体又はその塩は、本バインダーの結着性が優れる点で、(メタ)アクリルアミド及びその誘導体、並びに、ニトリル基含有エチレン性不飽和単量体、脂環構造含有エチレン性不飽和単量体等に由来する構造単位を含むことが好ましい。また、(c)成分として、水中への溶解性が1g/100ml以下の疎水性のエチレン性不飽和単量体に由来する構造単位を導入した場合、電極材料と強い相互作用を奏することができ、活物質に対して良好な結着性を発揮することができる。これにより、堅固で一体性の良好な電極合剤層を得ることができるため、前記した「水中への溶解性が1g/100ml以下の疎水性のエチレン性不飽和単量体」としては、特に脂環構造含有エチレン性不飽和単量体が好ましい。
The crosslinked polymer or a salt thereof has excellent binding properties of the binder, and thus contains (meth) acrylamide and its derivatives, a nitrile group-containing ethylenically unsaturated monomer, and an alicyclic structure-containing ethylenically unsaturated monomer. It is preferable to include a structural unit derived from a polymer or the like. Further, when a structural unit derived from a hydrophobic ethylenically unsaturated monomer having a solubility in water of 1 g / 100 ml or less is introduced as the component (c), a strong interaction with the electrode material can be achieved. , Can exhibit good binding properties to active materials. As a result, a solid and well-integrated electrode mixture layer can be obtained. Therefore, the above-mentioned "hydrophobic ethylenically unsaturated monomer having a solubility in water of 1 g / 100 ml or less" is particularly selected. An alicyclic structure-containing ethylenically unsaturated monomer is preferable.
本架橋重合体又はその塩は、得られる二次電池のサイクル特性が向上する点で、水酸基含有エチレン性不飽和単量体に由来する構造単位を含むことが好ましく、当該構造単位を0.5質量%以上、50質量%以下含むことが好ましく、2.0質量%以上、50質量%以下含むことがより好ましく、10.0質量%以上、50質量%以下含むことがさらに好ましい。
The crosslinked polymer or a salt thereof preferably contains a structural unit derived from a hydroxyl group-containing ethylenically unsaturated monomer from the viewpoint of improving the cycle characteristics of the obtained secondary battery, and the structural unit is 0.5. It is preferably contained in an amount of mass% or more and 50% by mass or less, more preferably 2.0% by mass or more and 50% by mass or less, and further preferably 10.0% by mass or more and 50% by mass or less.
また、その他の非イオン性のエチレン性不飽和単量体としては、例えば(メタ)アクリル酸エステルを用いてもよい。(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸2-エチルヘキシル等の(メタ)アクリル酸アルキルエステル化合物;
(メタ)アクリル酸フェニル、(メタ)アクリル酸フェニルメチル、(メタ)アクリル酸フェニルエチル等の芳香族(メタ)アクリル酸エステル化合物;
(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル等の(メタ)アクリル酸アルコキシアルキルエステル化合物等が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Further, as the other nonionic ethylenically unsaturated monomer, for example, (meth) acrylic acid ester may be used. Examples of the (meth) acrylic acid ester include (meth) methyl acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and the like. Meta) Acrylic acid alkyl ester compound;
Aromatic (meth) acrylic acid ester compounds such as (meth) phenyl acrylate, (meth) phenylmethyl acrylate, and (meth) phenylethyl acrylate;
Examples thereof include (meth) acrylic acid alkoxyalkyl ester compounds such as 2-methoxyethyl (meth) acrylic acid and 2-ethoxyethyl (meth) acrylic acid, and one of these may be used alone. Two or more types may be used in combination.
(メタ)アクリル酸フェニル、(メタ)アクリル酸フェニルメチル、(メタ)アクリル酸フェニルエチル等の芳香族(メタ)アクリル酸エステル化合物;
(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル等の(メタ)アクリル酸アルコキシアルキルエステル化合物等が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Further, as the other nonionic ethylenically unsaturated monomer, for example, (meth) acrylic acid ester may be used. Examples of the (meth) acrylic acid ester include (meth) methyl acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and the like. Meta) Acrylic acid alkyl ester compound;
Aromatic (meth) acrylic acid ester compounds such as (meth) phenyl acrylate, (meth) phenylmethyl acrylate, and (meth) phenylethyl acrylate;
Examples thereof include (meth) acrylic acid alkoxyalkyl ester compounds such as 2-methoxyethyl (meth) acrylic acid and 2-ethoxyethyl (meth) acrylic acid, and one of these may be used alone. Two or more types may be used in combination.
活物質との密着性及びサイクル特性の観点からは、芳香族(メタ)アクリル酸エステル化合物を好ましく用いることができる。リチウムイオン伝導性及びハイレート特性がより向上する観点から、(メタ)アクリル酸2-メトキシエチル及び(メタ)アクリル酸2-エトキシエチルなどの(メタ)アクリル酸アルコキシアルキルエステル等、エーテル結合を有する化合物が好ましく、(メタ)アクリル酸2-メトキシエチルがより好ましい。
From the viewpoint of adhesion to the active material and cycle characteristics, an aromatic (meth) acrylic acid ester compound can be preferably used. From the viewpoint of further improving lithium ion conductivity and high-rate characteristics, compounds having an ether bond such as (meth) acrylic acid alkoxyalkyl ester such as 2-methoxyethyl (meth) acrylate and 2-ethoxyethyl (meth) acrylate. Is preferable, and 2-methoxyethyl (meth) acrylate is more preferable.
非イオン性のエチレン性不飽和単量体の中でも、重合速度が速いために一次鎖長の長い重合体が得られ、本バインダーの結着力が良好となる点でアクリロイル基を有する化合物が好ましい。また、非イオン性のエチレン性不飽和単量体としては、得られる電極の耐屈曲性が良好となる点でホモポリマーのガラス転移温度(Tg)が0℃以下の化合物が好ましい。
Among the nonionic ethylenically unsaturated monomers, a compound having an acryloyl group is preferable in that a polymer having a long primary chain length can be obtained due to its high polymerization rate and the binding force of this binder is improved. Further, as the nonionic ethylenically unsaturated monomer, a compound having a homopolymer glass transition temperature (Tg) of 0 ° C. or lower is preferable in terms of improving the bending resistance of the obtained electrode.
本架橋重合体は、当該重合体中に含まれるカルボキシル基の一部又は全部が中和された塩の形態であってもよい。塩の種類としては特に限定しないが、リチウム塩、ナトリウム塩及びカリウム塩等のアルカリ金属塩;マグネシウム塩、カルシウム塩及びバリウム塩等のアルカリ土類金属塩;アルミニウム塩等のその他の金属塩;アンモニウム塩及び有機アミン塩等が挙げられる。これらの中でも電池特性への悪影響が生じにくい点からアルカリ金属塩及びアルカリ土類金属塩が好ましく、アルカリ金属塩がより好ましい。
The crosslinked polymer may be in the form of a salt in which some or all of the carboxyl groups contained in the polymer are neutralized. The type of salt is not particularly limited, but alkali metal salts such as lithium salt, sodium salt and potassium salt; alkaline earth metal salts such as magnesium salt, calcium salt and barium salt; other metal salts such as aluminum salt; ammonium. Examples thereof include salts and organic amine salts. Among these, alkali metal salts and alkaline earth metal salts are preferable, and alkali metal salts are more preferable, from the viewpoint that adverse effects on battery characteristics are unlikely to occur.
本重合体は、架橋構造を有する重合体(本架橋重合体)であることが好ましい。本架橋重合体における架橋方法は特に制限されるものではなく、例えば以下の方法による態様が例示される。
1)架橋性単量体の共重合
2)ラジカル重合時のポリマー鎖への連鎖移動を利用
3)反応性官能基を有する重合体を合成後、必要に応じて架橋剤を添加して後架橋
本重合体が架橋構造を有することにより、当該重合体又はその塩を含むバインダーは、優れた結着力を有することができる。上記の内でも、操作が簡便であり、架橋の程度を制御し易い点から架橋性単量体の共重合による方法が好ましい。 The present polymer is preferably a polymer having a crosslinked structure (the present crosslinked polymer). The cross-linking method in the present cross-linked polymer is not particularly limited, and examples thereof include the following methods.
1) Copolymerization of crosslinkable monomers 2) Utilizing chain transfer to polymer chains during radical polymerization 3) After synthesizing a polymer having a reactive functional group, post-crosslinking is performed by adding a crosslinking agent as necessary. Since the present polymer has a crosslinked structure, the binder containing the polymer or a salt thereof can have an excellent binding force. Among the above, the method by copolymerizing the crosslinkable monomer is preferable from the viewpoint that the operation is simple and the degree of crosslinking can be easily controlled.
1)架橋性単量体の共重合
2)ラジカル重合時のポリマー鎖への連鎖移動を利用
3)反応性官能基を有する重合体を合成後、必要に応じて架橋剤を添加して後架橋
本重合体が架橋構造を有することにより、当該重合体又はその塩を含むバインダーは、優れた結着力を有することができる。上記の内でも、操作が簡便であり、架橋の程度を制御し易い点から架橋性単量体の共重合による方法が好ましい。 The present polymer is preferably a polymer having a crosslinked structure (the present crosslinked polymer). The cross-linking method in the present cross-linked polymer is not particularly limited, and examples thereof include the following methods.
1) Copolymerization of crosslinkable monomers 2) Utilizing chain transfer to polymer chains during radical polymerization 3) After synthesizing a polymer having a reactive functional group, post-crosslinking is performed by adding a crosslinking agent as necessary. Since the present polymer has a crosslinked structure, the binder containing the polymer or a salt thereof can have an excellent binding force. Among the above, the method by copolymerizing the crosslinkable monomer is preferable from the viewpoint that the operation is simple and the degree of crosslinking can be easily controlled.
<架橋性単量体>
架橋性単量体としては、2個以上の重合性不飽和基を有する多官能重合性単量体、及び加水分解性シリル基等の自己架橋可能な架橋性官能基を有する単量体等が挙げられる。 <Crosslinkable monomer>
Examples of the crosslinkable monomer include a polyfunctional polymerizable monomer having two or more polymerizable unsaturated groups, a monomer having a self-crosslinkable crosslinkable functional group such as a hydrolyzable silyl group, and the like. Can be mentioned.
架橋性単量体としては、2個以上の重合性不飽和基を有する多官能重合性単量体、及び加水分解性シリル基等の自己架橋可能な架橋性官能基を有する単量体等が挙げられる。 <Crosslinkable monomer>
Examples of the crosslinkable monomer include a polyfunctional polymerizable monomer having two or more polymerizable unsaturated groups, a monomer having a self-crosslinkable crosslinkable functional group such as a hydrolyzable silyl group, and the like. Can be mentioned.
上記多官能重合性単量体は、(メタ)アクリロイル基、アルケニル基等の重合性官能基を分子内に2つ以上有する化合物であり、多官能(メタ)アクリレート化合物、多官能アルケニル化合物、(メタ)アクリロイル基及びアルケニル基の両方を有する化合物等が挙げられる。これらの化合物は、1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの内でも、均一な架橋構造を得やすい点で多官能アルケニル化合物が好ましく、分子内に2個以上のアリルエーテル基を有する多官能アリルエーテル化合物が特に好ましい。
The polyfunctional polymerizable monomer is a compound having two or more polymerizable functional groups such as a (meth) acryloyl group and an alkenyl group in the molecule, and is a polyfunctional (meth) acrylate compound, a polyfunctional alkenyl compound, ( Meta) Examples thereof include compounds having both an acryloyl group and an alkenyl group. These compounds may be used alone or in combination of two or more. Among these, a polyfunctional alkenyl compound is preferable because a uniform crosslinked structure can be easily obtained, and a polyfunctional allyl ether compound having two or more allyl ether groups in the molecule is particularly preferable.
多官能(メタ)アクリレート化合物としては、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等の2価アルコールのジ(メタ)アクリレート類;トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性体のトリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等の3価以上の多価アルコールのトリ(メタ)アクリレート、テトラ(メタ)アクリレート等のポリ(メタ)アクリレート;メチレンビスアクリルアミド、ヒドロキシエチレンビスアクリルアミド等のビスアミド類等を挙げることができる。
Examples of the polyfunctional (meth) acrylate compound include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and polypropylene glycol di (meth) acrylate. Di (meth) acrylates of dihydric alcohols such as meta) acrylate; trimethylol propantri (meth) acrylate, tri (meth) acrylate of trimethyl propanethylene oxide modified product, glycerin tri (meth) acrylate, pentaerythritol tri (meth) Tri (meth) acrylates of trivalent or higher polyhydric alcohols such as meta) acrylates and pentaerythritol tetra (meth) acrylates, poly (meth) acrylates such as tetra (meth) acrylates; Bisamides and the like can be mentioned.
多官能アルケニル化合物としては、トリメチロールプロパンジアリルエーテル、トリメチロールプロパントリアリルエーテル、ペンタエリスリトールジアリルエーテル、ペンタエリスリトールトリアリルエーテル、テトラアリルオキシエタン、ポリアリルサッカロース等の多官能アリルエーテル化合物;ジアリルフタレート等の多官能アリル化合物;ジビニルベンゼン等の多官能ビニル化合物等を挙げることができる。
Examples of the polyfunctional alkenyl compound include polyfunctional allyl ether compounds such as trimethylolpropanediallyl ether, trimethylolpropanetriallyl ether, pentaerythritol diallyl ether, pentaerythritol triallyl ether, tetraallyloxyethane, and polyallyl saccharose; diallyl phthalate and the like. Polyfunctional allyl compound; Polyfunctional vinyl compounds such as divinylbenzene and the like can be mentioned.
(メタ)アクリロイル基及びアルケニル基の両方を有する化合物としては、(メタ)アクリル酸アリル、(メタ)アクリル酸イソプロペニル、(メタ)アクリル酸ブテニル、(メタ)アクリル酸ペンテニル、(メタ)アクリル酸2-(2-ビニロキシエトキシ)エチル等を挙げることができる。
Compounds having both (meth) acryloyl group and alkenyl group include allyl (meth) acrylate, isopropenyl (meth) acrylate, butenyl (meth) acrylate, pentenyl (meth) acrylate, and (meth) acrylate. 2- (2-Vinyloxyethoxy) ethyl and the like can be mentioned.
上記自己架橋可能な架橋性官能基を有する単量体の具体的な例としては、加水分解性シリル基含有ビニル単量体、N-メチロール(メタ)アクリルアミド、N-メトキシアルキルアクリルアミド等が挙げられる。これらの化合物は、1種単独であるいは2種以上を組み合わせて用いることができる。
Specific examples of the monomer having a crosslinkable functional group include hydrolyzable silyl group-containing vinyl monomer, N-methylol (meth) acrylamide, N-methoxyalkylacrylamide and the like. .. These compounds can be used alone or in combination of two or more.
加水分解性シリル基含有ビニル単量体としては、加水分解性シリル基を少なくとも1個有するビニル単量体であれば、特に限定されない。例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルメトキシシランン等のビニルシラン類;アクリル酸トリメトキシシリルプロピル、アクリル酸トリエトキシシリルプロピル、アクリル酸メチルジメトキシシリルプロピル等のシリル基含有アクリル酸エステル類;メタクリル酸トリメトキシシリルプロピル、メタクリル酸トリエトキシシリルプロピル、メタクリル酸メチルジメトキシシリルプロピル、メタクリル酸ジメチルメトキシシリルプロピル等のシリル基含有メタクリル酸エステル類;トリメトキシシリルプロピルビニルエーテル等のシリル基含有ビニルエーテル類;トリメトキシシリルウンデカン酸ビニル等のシリル基含有ビニルエステル類等を挙げることができる。
The hydrolyzable silyl group-containing vinyl monomer is not particularly limited as long as it is a vinyl monomer having at least one hydrolyzable silyl group. For example, vinyl silanes such as vinyl trimethoxysilane, vinyl triethoxysilane, vinyl methyl dimethoxysilane, vinyl dimethyl methoxysilanen; silyl such as trimethoxysilylpropyl acrylate, triethoxysilylpropyl acrylate, methyldimethoxysilylpropyl acrylate and the like. Group-containing acrylic acid esters; silyl group-containing methacrylate esters such as trimethoxysilylpropyl methacrylate, triethoxysilylpropyl methacrylate, methyldimethoxysilylpropyl methacrylate, dimethylmethoxysilylpropyl methacrylate; trimethoxysilylpropyl vinyl ether and the like. Cyril group-containing vinyl ethers; silyl group-containing vinyl esters such as trimethoxysilyl undecanoate vinyl and the like can be mentioned.
本架橋重合体が架橋性単量体により架橋されたものである場合、当該架橋性単量体の使用量は、架橋性単量体以外の単量体(非架橋性単量体)の総量100質量部に対して好ましくは0.05質量部以上5.0質量部以下であり、より好ましくは0.1質量部以上5.0質量部以下であり、さらに好ましくは0.2質量部以上4.0質量部以下であり、一層好ましくは0.3質量部以上3.0質量部以下である。架橋性単量体の使用量が0.05質量部以上であれば結着性及び電極スラリーの安定性がより良好となる点で好ましい。5.0質量部以下であれば、重合体の安定性が高くなる傾向がある。
同様に、上記架橋性単量体の使用量は、架橋性単量体以外の単量体(非架橋性単量体)の総量に対して0.02~1.7モル%であることが好ましく、0.10~1.0モル%であることがより好ましい。 When the present crosslinked polymer is crosslinked with a crosslinkable monomer, the amount of the crosslinkable monomer used is the total amount of monomers other than the crosslinkable monomer (non-crosslinkable monomer). It is preferably 0.05 parts by mass or more and 5.0 parts by mass or less, more preferably 0.1 parts by mass or more and 5.0 parts by mass or less, and further preferably 0.2 parts by mass or more with respect to 100 parts by mass. It is 4.0 parts by mass or less, more preferably 0.3 parts by mass or more and 3.0 parts by mass or less. When the amount of the crosslinkable monomer used is 0.05 parts by mass or more, the binding property and the stability of the electrode slurry are more preferable. If it is 5.0 parts by mass or less, the stability of the polymer tends to be high.
Similarly, the amount of the crosslinkable monomer used may be 0.02 to 1.7 mol% with respect to the total amount of the monomers other than the crosslinkable monomer (non-crosslinkable monomer). It is preferably 0.10 to 1.0 mol%, more preferably 0.10 to 1.0 mol%.
同様に、上記架橋性単量体の使用量は、架橋性単量体以外の単量体(非架橋性単量体)の総量に対して0.02~1.7モル%であることが好ましく、0.10~1.0モル%であることがより好ましい。 When the present crosslinked polymer is crosslinked with a crosslinkable monomer, the amount of the crosslinkable monomer used is the total amount of monomers other than the crosslinkable monomer (non-crosslinkable monomer). It is preferably 0.05 parts by mass or more and 5.0 parts by mass or less, more preferably 0.1 parts by mass or more and 5.0 parts by mass or less, and further preferably 0.2 parts by mass or more with respect to 100 parts by mass. It is 4.0 parts by mass or less, more preferably 0.3 parts by mass or more and 3.0 parts by mass or less. When the amount of the crosslinkable monomer used is 0.05 parts by mass or more, the binding property and the stability of the electrode slurry are more preferable. If it is 5.0 parts by mass or less, the stability of the polymer tends to be high.
Similarly, the amount of the crosslinkable monomer used may be 0.02 to 1.7 mol% with respect to the total amount of the monomers other than the crosslinkable monomer (non-crosslinkable monomer). It is preferably 0.10 to 1.0 mol%, more preferably 0.10 to 1.0 mol%.
<本架橋重合体の水溶液粘度>
本架橋重合体は、その2質量%濃度水溶液の粘度が10,000mPa・s以下であることが好ましい。2質量%濃度水溶液の粘度が10,000mPa・s以下の場合、充放電時の活物質の体積変化に追随し得る耐久性を備えることが可能となる。2質量%濃度水溶液の粘度は、5,000mPa・s以下であってもよく、3,000mPa・s以下であってもよく、2,000mPa・s以下であってもよい。
水溶液粘度は、所定の濃度となる量の本架橋重合体を水中に均一に溶解又は分散した後、実施例に記載の方法に従い、12rpmにおけるB型粘度(25℃)を測定することにより得られる。 <Aqueous viscosity of this crosslinked polymer>
The crosslinked polymer preferably has a viscosity of a 2% by mass aqueous solution of 10,000 mPa · s or less. When the viscosity of the 2% by mass aqueous solution is 10,000 mPa · s or less, it is possible to provide durability that can follow the volume change of the active material at the time of charging / discharging. The viscosity of the 2% by mass aqueous solution may be 5,000 mPa · s or less, 3,000 mPa · s or less, or 2,000 mPa · s or less.
The viscosity of the aqueous solution can be obtained by uniformly dissolving or dispersing the present crosslinked polymer in an amount having a predetermined concentration in water, and then measuring the B-type viscosity (25 ° C.) at 12 rpm according to the method described in Examples. ..
本架橋重合体は、その2質量%濃度水溶液の粘度が10,000mPa・s以下であることが好ましい。2質量%濃度水溶液の粘度が10,000mPa・s以下の場合、充放電時の活物質の体積変化に追随し得る耐久性を備えることが可能となる。2質量%濃度水溶液の粘度は、5,000mPa・s以下であってもよく、3,000mPa・s以下であってもよく、2,000mPa・s以下であってもよい。
水溶液粘度は、所定の濃度となる量の本架橋重合体を水中に均一に溶解又は分散した後、実施例に記載の方法に従い、12rpmにおけるB型粘度(25℃)を測定することにより得られる。 <Aqueous viscosity of this crosslinked polymer>
The crosslinked polymer preferably has a viscosity of a 2% by mass aqueous solution of 10,000 mPa · s or less. When the viscosity of the 2% by mass aqueous solution is 10,000 mPa · s or less, it is possible to provide durability that can follow the volume change of the active material at the time of charging / discharging. The viscosity of the 2% by mass aqueous solution may be 5,000 mPa · s or less, 3,000 mPa · s or less, or 2,000 mPa · s or less.
The viscosity of the aqueous solution can be obtained by uniformly dissolving or dispersing the present crosslinked polymer in an amount having a predetermined concentration in water, and then measuring the B-type viscosity (25 ° C.) at 12 rpm according to the method described in Examples. ..
本架橋重合体又はその塩は、水中では水を吸収して膨潤した状態となる。一般に、架橋重合体が適度な架橋度を有する場合、当該架橋重合体が有する親水性基の量が多いほど、架橋重合体は水を吸収して膨潤し易くなる。また、架橋度についていえば、架橋度が低いほど、架橋重合体は膨潤し易くなる。但し、架橋点の数が同じであっても、分子量(一次鎖長)が大きいほど三次元ネットワークの形成に寄与する架橋点が増えるため、架橋重合体は膨潤し難くなる。よって、架橋重合体の親水性基の量、架橋点の数及び一次鎖長等を調整することにより、架橋重合体水溶液の粘度を調節することができる。この際、上記架橋点の数は、例えば、架橋性単量体の使用量、ポリマー鎖への連鎖移動反応及び後架橋反応等により調整が可能である。また、重合体の一次鎖長は、開始剤及び重合温度等のラジカル発生量に関連する条件の設定、並びに、連鎖移動等を考慮した重合溶媒の選択等により調整することができる。
The crosslinked polymer or a salt thereof absorbs water and becomes swollen in water. In general, when the crosslinked polymer has an appropriate degree of crosslinkage, the larger the amount of hydrophilic groups contained in the crosslinked polymer, the easier it is for the crosslinked polymer to absorb water and swell. Regarding the degree of cross-linking, the lower the degree of cross-linking, the easier it is for the cross-linked polymer to swell. However, even if the number of cross-linking points is the same, the larger the molecular weight (primary chain length), the more cross-linking points that contribute to the formation of the three-dimensional network, so that the cross-linked polymer is less likely to swell. Therefore, the viscosity of the crosslinked polymer aqueous solution can be adjusted by adjusting the amount of hydrophilic groups of the crosslinked polymer, the number of crosslinked points, the primary chain length, and the like. At this time, the number of the cross-linking points can be adjusted by, for example, the amount of the cross-linking monomer used, the chain transfer reaction to the polymer chain, the post-crosslinking reaction, and the like. Further, the primary chain length of the polymer can be adjusted by setting conditions related to the amount of radicals generated such as the initiator and the polymerization temperature, and selecting the polymerization solvent in consideration of chain transfer and the like.
<本架橋重合体の粒子径>
本組成物において、本架橋重合体は大粒径の塊(二次凝集体)として存在することなく、適度な粒子径を有する水膨潤粒子として良好に分散していることが、当該架橋重合体を含むバインダーが良好な結着性能を発揮し得るため好ましい。 <Particle size of this crosslinked polymer>
In the present composition, the crosslinked polymer does not exist as a mass (secondary agglomerate) having a large particle size, but is well dispersed as water-swelled particles having an appropriate particle size. A binder containing the above is preferable because it can exhibit good binding performance.
本組成物において、本架橋重合体は大粒径の塊(二次凝集体)として存在することなく、適度な粒子径を有する水膨潤粒子として良好に分散していることが、当該架橋重合体を含むバインダーが良好な結着性能を発揮し得るため好ましい。 <Particle size of this crosslinked polymer>
In the present composition, the crosslinked polymer does not exist as a mass (secondary agglomerate) having a large particle size, but is well dispersed as water-swelled particles having an appropriate particle size. A binder containing the above is preferable because it can exhibit good binding performance.
本架橋重合体は、当該架橋重合体が有するカルボキシル基に基づく中和度が70~100モル%であるものを水中に分散させた際の粒子径(水膨潤粒子径)が、体積基準メジアン径で0.1μm以上、10.0μm以下の範囲にあることが好ましい。上記粒子径のより好ましい範囲は0.1μm以上、8.0μm以下であり、さらに好ましい範囲は0.1μm以上、7.0μm以下であり、一層好ましい範囲は0.2μm以上、5.0μm以下であり、より一層好ましい範囲は0.5μm以上、3.0μm以下である。粒子径が0.1μm以上、10.0μm以下の範囲であれば、本組成物中において好適な大きさで均一に存在するため、本組成物の安定性が高く、優れた結着性を発揮することが可能となる。粒子径が10.0μmを超えると、上記の通り結着性が不十分となる虞がある。また、平滑性な塗面が得られにくい点で、塗工性が不十分となる虞がある。一方、粒子径が0.1μm未満の場合には、安定製造性の観点において懸念される。
In this crosslinked polymer, the particle size (water-swelling particle size) when a crosslinked polymer having a degree of neutralization based on a carboxyl group of 70 to 100 mol% is dispersed in water is a volume-based median diameter. It is preferably in the range of 0.1 μm or more and 10.0 μm or less. The more preferable range of the particle size is 0.1 μm or more and 8.0 μm or less, the more preferable range is 0.1 μm or more and 7.0 μm or less, and the more preferable range is 0.2 μm or more and 5.0 μm or less. Yes, and even more preferable ranges are 0.5 μm or more and 3.0 μm or less. When the particle size is in the range of 0.1 μm or more and 10.0 μm or less, the composition is uniformly present in a suitable size in the present composition, so that the present composition is highly stable and exhibits excellent binding properties. It becomes possible to do. If the particle size exceeds 10.0 μm, the binding property may be insufficient as described above. In addition, there is a risk that the coatability will be insufficient because it is difficult to obtain a smooth coated surface. On the other hand, when the particle size is less than 0.1 μm, there is concern from the viewpoint of stable manufacturability.
また、本架橋重合体の乾燥時における粒子径(乾燥粒子径)は、体積基準メジアン径で0.03μm以上、3μm以下の範囲にあることが好ましい。上記粒子径のより好ましい範囲は0.1μm以上、1μm以下であり、さらに好ましい範囲は0.3μm以上、0.8μm以下である。
Further, the particle size (dry particle size) of the crosslinked polymer at the time of drying is preferably in the range of 0.03 μm or more and 3 μm or less in terms of volume-based median diameter. A more preferable range of the particle size is 0.1 μm or more and 1 μm or less, and a more preferable range is 0.3 μm or more and 0.8 μm or less.
本架橋重合体は、本組成物中において、中和度が20モル%以上となるように、エチレン性不飽和カルボン酸単量体由来のカルボキシル基等の酸基が中和され、塩の態様として用いることが好ましい。上記中和度は、より好ましくは50モル%以上であり、さらに好ましくは70モル%以上であり、一層好ましくは75モル%以上であり、より一層好ましくは80モル%以上であり、特に好ましくは85モル%以上である。中和度の上限値は100モル%であり、98モル%であってもよく95モル%であってもよい。中和度の範囲は、上記下限値及び上限値を適宜組合せることができ、例えば、50モル%以上100モル%以下であってもよく、75モル%以上100モル%以下であってもよく、80モル%以上100モル%以下であってもよい。中和度が20モル%以上の場合、水膨潤性が良好となり分散安定化効果が得やすいという点で好ましい。本明細書では、上記中和度は、カルボキシル基等の酸基を有する単量体及び中和に用いる中和剤の仕込み値から計算により算出することができる。なお、中和度は架橋重合体又はその塩を、減圧条件下、80℃で3時間乾燥処理後の粉末をIR測定し、カルボン酸のC=O基由来のピークとカルボン酸塩のC=O基由来のピークの強度比より確認することができる。
In the present crosslinked polymer, acid groups such as a carboxyl group derived from an ethylenically unsaturated carboxylic acid monomer are neutralized so that the degree of neutralization is 20 mol% or more in the present composition, and the mode of the salt is It is preferable to use as. The degree of neutralization is more preferably 50 mol% or more, further preferably 70 mol% or more, still more preferably 75 mol% or more, still more preferably 80 mol% or more, and particularly preferably. It is 85 mol% or more. The upper limit of the degree of neutralization is 100 mol%, and may be 98 mol% or 95 mol%. The range of the degree of neutralization may be appropriately combined with the above lower limit value and upper limit value, and may be, for example, 50 mol% or more and 100 mol% or less, or 75 mol% or more and 100 mol% or less. , 80 mol% or more and 100 mol% or less. When the degree of neutralization is 20 mol% or more, the water swelling property is good and the dispersion stabilizing effect is easily obtained, which is preferable. In the present specification, the degree of neutralization can be calculated by calculation from the charged values of a monomer having an acid group such as a carboxyl group and a neutralizing agent used for neutralization. The degree of neutralization was determined by measuring the IR of the crosslinked polymer or a salt thereof after drying the crosslinked polymer or a salt thereof at 80 ° C. for 3 hours under reduced pressure, and measuring the peak derived from the C = O group of the carboxylic acid and the C = of the carboxylate. It can be confirmed from the intensity ratio of the peak derived from the O group.
<本架橋重合体の製造方法>
本架橋重合体は、溶液重合、沈殿重合、懸濁重合、乳化重合等の公知の重合方法を使用することが可能であるが、生産性の点で沈殿重合及び懸濁重合(逆相懸濁重合)が好ましい。結着性等に関してより良好な性能が得られる点で、沈殿重合、懸濁重合、乳化重合等の不均一系の重合法が好ましく、中でも沈殿重合法がより好ましい。
沈殿重合は、原料である不飽和単量体を溶解するが、生成する重合体を実質溶解しない溶媒中で重合反応を行うことにより重合体を製造する方法である。重合の進行とともにポリマー粒子は凝集及び成長により大きくなり、数十nm~数百nmの一次粒子が数μm~数十μmに二次凝集したポリマー粒子の分散液が得られる。ポリマーの粒子サイズを制御するために分散安定剤を使用することもできる。
尚、分散安定剤や重合溶剤等を選定することにより上記二次凝集を抑制することもできる。一般に、二次凝集を抑制した沈殿重合は、分散重合とも呼ばれる。 <Manufacturing method of this crosslinked polymer>
Known polymerization methods such as solution polymerization, precipitation polymerization, suspension polymerization, and emulsion polymerization can be used for this crosslinked polymer, but precipitation polymerization and suspension polymerization (reverse phase suspension) can be used in terms of productivity. Polymerization) is preferable. Non-homogeneous polymerization methods such as precipitation polymerization, suspension polymerization, and emulsion polymerization are preferable, and the precipitation polymerization method is more preferable, because better performance can be obtained in terms of binding property and the like.
Precipitation polymerization is a method for producing a polymer by carrying out a polymerization reaction in a solvent that dissolves an unsaturated monomer as a raw material but does not substantially dissolve the polymer to be produced. As the polymerization progresses, the polymer particles become larger due to aggregation and growth, and a dispersion of polymer particles in which primary particles of several tens of nm to several hundreds nm are secondarily aggregated to several μm to several tens of μm can be obtained. Dispersion stabilizers can also be used to control the particle size of the polymer.
The secondary aggregation can also be suppressed by selecting a dispersion stabilizer, a polymerization solvent, or the like. In general, precipitation polymerization in which secondary aggregation is suppressed is also called dispersion polymerization.
本架橋重合体は、溶液重合、沈殿重合、懸濁重合、乳化重合等の公知の重合方法を使用することが可能であるが、生産性の点で沈殿重合及び懸濁重合(逆相懸濁重合)が好ましい。結着性等に関してより良好な性能が得られる点で、沈殿重合、懸濁重合、乳化重合等の不均一系の重合法が好ましく、中でも沈殿重合法がより好ましい。
沈殿重合は、原料である不飽和単量体を溶解するが、生成する重合体を実質溶解しない溶媒中で重合反応を行うことにより重合体を製造する方法である。重合の進行とともにポリマー粒子は凝集及び成長により大きくなり、数十nm~数百nmの一次粒子が数μm~数十μmに二次凝集したポリマー粒子の分散液が得られる。ポリマーの粒子サイズを制御するために分散安定剤を使用することもできる。
尚、分散安定剤や重合溶剤等を選定することにより上記二次凝集を抑制することもできる。一般に、二次凝集を抑制した沈殿重合は、分散重合とも呼ばれる。 <Manufacturing method of this crosslinked polymer>
Known polymerization methods such as solution polymerization, precipitation polymerization, suspension polymerization, and emulsion polymerization can be used for this crosslinked polymer, but precipitation polymerization and suspension polymerization (reverse phase suspension) can be used in terms of productivity. Polymerization) is preferable. Non-homogeneous polymerization methods such as precipitation polymerization, suspension polymerization, and emulsion polymerization are preferable, and the precipitation polymerization method is more preferable, because better performance can be obtained in terms of binding property and the like.
Precipitation polymerization is a method for producing a polymer by carrying out a polymerization reaction in a solvent that dissolves an unsaturated monomer as a raw material but does not substantially dissolve the polymer to be produced. As the polymerization progresses, the polymer particles become larger due to aggregation and growth, and a dispersion of polymer particles in which primary particles of several tens of nm to several hundreds nm are secondarily aggregated to several μm to several tens of μm can be obtained. Dispersion stabilizers can also be used to control the particle size of the polymer.
The secondary aggregation can also be suppressed by selecting a dispersion stabilizer, a polymerization solvent, or the like. In general, precipitation polymerization in which secondary aggregation is suppressed is also called dispersion polymerization.
沈殿重合の場合、重合溶媒は、使用する単量体の種類等を考慮して水及び各種有機溶剤等から選択される溶媒を使用することができる。より一次鎖長の長い重合体を得るためには、連鎖移動定数の小さい溶媒を使用することが好ましい。
In the case of precipitation polymerization, a solvent selected from water, various organic solvents, etc. can be used as the polymerization solvent in consideration of the type of monomer used. In order to obtain a polymer having a longer primary chain length, it is preferable to use a solvent having a small chain transfer constant.
具体的な重合溶媒としては、メタノール、t-ブチルアルコール、アセトン、メチルエチルケトン、アセトニトリル及びテトラヒドロフラン等の水溶性溶剤の他、ベンゼン、酢酸エチル、ジクロロエタン、n-ヘキサン、シクロヘキサン及びn-ヘプタン等が挙げられ、これらの1種を単独であるいは2種以上を組み合わせて用いることができる。又は、これらと水との混合溶媒として用いてもよい。本発明において水溶性溶剤とは、20℃における水への溶解度が10g/100mlより大きいものを指す。
上記の内、粗大粒子の生成や反応器への付着が小さく重合安定性が良好であること、析出した重合体微粒子が二次凝集しにくい(若しくは二次凝集が生じても水媒体中で解れやすい)こと、連鎖移動定数が小さく重合度(一次鎖長)の大きい重合体が得られること、及び後述する工程中和の際に操作が容易であること等の点で、メチルエチルケトン及びアセトニトリルが好ましい。 Specific examples of the polymerization solvent include water-soluble solvents such as methanol, t-butyl alcohol, acetone, methyl ethyl ketone, acetonitrile and tetrahydrofuran, as well as benzene, ethyl acetate, dichloroethane, n-hexane, cyclohexane and n-heptane. , One of these can be used alone or in combination of two or more. Alternatively, it may be used as a mixed solvent of these and water. In the present invention, the water-soluble solvent refers to a solvent having a solubility in water at 20 ° C. of more than 10 g / 100 ml.
Of the above, the formation of coarse particles and adhesion to the reactor are small and the polymerization stability is good, and the precipitated polymer fine particles are difficult to secondary agglomerate (or even if secondary agglomeration occurs, they dissolve in the aqueous medium. Methyl ethyl ketone and acetonitrile are preferable because they are easy to use), a polymer having a small chain transfer constant and a large degree of polymerization (primary chain length) can be obtained, and the operation is easy during the step neutralization described later. ..
上記の内、粗大粒子の生成や反応器への付着が小さく重合安定性が良好であること、析出した重合体微粒子が二次凝集しにくい(若しくは二次凝集が生じても水媒体中で解れやすい)こと、連鎖移動定数が小さく重合度(一次鎖長)の大きい重合体が得られること、及び後述する工程中和の際に操作が容易であること等の点で、メチルエチルケトン及びアセトニトリルが好ましい。 Specific examples of the polymerization solvent include water-soluble solvents such as methanol, t-butyl alcohol, acetone, methyl ethyl ketone, acetonitrile and tetrahydrofuran, as well as benzene, ethyl acetate, dichloroethane, n-hexane, cyclohexane and n-heptane. , One of these can be used alone or in combination of two or more. Alternatively, it may be used as a mixed solvent of these and water. In the present invention, the water-soluble solvent refers to a solvent having a solubility in water at 20 ° C. of more than 10 g / 100 ml.
Of the above, the formation of coarse particles and adhesion to the reactor are small and the polymerization stability is good, and the precipitated polymer fine particles are difficult to secondary agglomerate (or even if secondary agglomeration occurs, they dissolve in the aqueous medium. Methyl ethyl ketone and acetonitrile are preferable because they are easy to use), a polymer having a small chain transfer constant and a large degree of polymerization (primary chain length) can be obtained, and the operation is easy during the step neutralization described later. ..
重合開始剤は、アゾ系化合物、有機過酸化物、無機過酸化物等の公知の重合開始剤を用いることができるが、特に限定されるものではない。熱開始、還元剤を併用したレドックス開始、UV開始等、公知の方法で適切なラジカル発生量となるように使用条件を調整することができる。一次鎖長の長い架橋重合体を得るためには、製造時間が許容される範囲内で、ラジカル発生量がより少なくなるように条件を設定することが好ましい。
As the polymerization initiator, known polymerization initiators such as azo compounds, organic peroxides, and inorganic peroxides can be used, but the polymerization initiator is not particularly limited. The conditions of use can be adjusted by known methods such as heat initiation, redox initiation with a reducing agent, and UV initiation so that the amount of radicals generated is appropriate. In order to obtain a crosslinked polymer having a long primary chain length, it is preferable to set the conditions so that the amount of radicals generated is smaller within the allowable range of the production time.
重合開始剤の好ましい使用量は、用いる単量体成分の総量を100質量部としたときに、例えば、0.001~2質量部であり、また例えば、0.005~1質量部であり、また例えば、0.01~0.1質量部である。重合開始剤の使用量が0.001質量部以上であれば重合反応を安定的に行うことができ、2質量部以下であれば一次鎖長の長い重合体を得やすい。
The preferable amount of the polymerization initiator used is, for example, 0.001 to 2 parts by mass and, for example, 0.005 to 1 part by mass, when the total amount of the monomer components used is 100 parts by mass. Further, for example, it is 0.01 to 0.1 parts by mass. When the amount of the polymerization initiator used is 0.001 part by mass or more, the polymerization reaction can be stably carried out, and when it is 2 parts by mass or less, a polymer having a long primary chain length can be easily obtained.
重合温度は、使用する単量体の種類及び濃度等の条件にもよるが、0~100℃が好ましく、20~80℃がより好ましい。重合温度は一定であってもよいし、重合反応の期間において変化するものであってもよい。また、重合時間は1分間~20時間が好ましく、1時間~10時間がより好ましい。
The polymerization temperature is preferably 0 to 100 ° C, more preferably 20 to 80 ° C, although it depends on conditions such as the type and concentration of the monomer used. The polymerization temperature may be constant or may change during the polymerization reaction. The polymerization time is preferably 1 minute to 20 hours, more preferably 1 hour to 10 hours.
2.本非架橋重合体
本バインダーに含まれる本非架橋重合体は、エチレン性不飽和カルボン酸単量体に由来する構造単位(前記(a1)成分)を50質量%以上100質量%以下含む。本非架橋重合体の(a1)成分の導入方法は、本架橋重合体の(a1)成分において記載した方法と同様であってもよい。また、(メタ)アクリル酸アルキルエステル化合物(本架橋重合体の(b1)成分として前記したもの)に由来する構造単位を含む重合体のけん化による方法であってもよく、当該(メタ)アクリル酸アルキルエステル化合物としては、けん化反応が進行しやすい等の点から、アクリル酸メチル、メタクリル酸メチルが好ましく、1種を単独で使用してもよいし、2種以上を併用してもよい。 2. The non-crosslinked polymer The non-crosslinked polymer contained in the binder contains 50% by mass or more and 100% by mass or less of a structural unit (component (a1)) derived from an ethylenically unsaturated carboxylic acid monomer. The method for introducing the component (a1) of the non-crosslinked polymer may be the same as the method described for the component (a1) of the present crosslinked polymer. Further, the method may be a method by saponification of a polymer containing a structural unit derived from a (meth) acrylic acid alkyl ester compound (the above-mentioned component (b1) of the crosslinked polymer), and the (meth) acrylic acid. As the alkyl ester compound, methyl acrylate and methyl methacrylate are preferable from the viewpoint that the saponification reaction easily proceeds, and one kind may be used alone or two or more kinds may be used in combination.
本バインダーに含まれる本非架橋重合体は、エチレン性不飽和カルボン酸単量体に由来する構造単位(前記(a1)成分)を50質量%以上100質量%以下含む。本非架橋重合体の(a1)成分の導入方法は、本架橋重合体の(a1)成分において記載した方法と同様であってもよい。また、(メタ)アクリル酸アルキルエステル化合物(本架橋重合体の(b1)成分として前記したもの)に由来する構造単位を含む重合体のけん化による方法であってもよく、当該(メタ)アクリル酸アルキルエステル化合物としては、けん化反応が進行しやすい等の点から、アクリル酸メチル、メタクリル酸メチルが好ましく、1種を単独で使用してもよいし、2種以上を併用してもよい。 2. The non-crosslinked polymer The non-crosslinked polymer contained in the binder contains 50% by mass or more and 100% by mass or less of a structural unit (component (a1)) derived from an ethylenically unsaturated carboxylic acid monomer. The method for introducing the component (a1) of the non-crosslinked polymer may be the same as the method described for the component (a1) of the present crosslinked polymer. Further, the method may be a method by saponification of a polymer containing a structural unit derived from a (meth) acrylic acid alkyl ester compound (the above-mentioned component (b1) of the crosslinked polymer), and the (meth) acrylic acid. As the alkyl ester compound, methyl acrylate and methyl methacrylate are preferable from the viewpoint that the saponification reaction easily proceeds, and one kind may be used alone or two or more kinds may be used in combination.
本非架橋重合体は、本架橋重合体よりも高粘度である。これは、本非架橋重合体は分子鎖が広がっている一方、本架橋重合体は粒子状になっているため、見かけの分子量が小さいことが原因と推定される。
本非架橋重合体は、本架橋重合体塩よりも高粘度であっても、本非架橋重合体又はその塩、並びに、アルカリ金属水酸化物又は本アルカリ金属塩を含有する水系バインダーを用いると、本組成物の粘度が低減することで塗工性が向上し、さらに、二次電池のサイクル特性も向上する。 The non-crosslinked polymer has a higher viscosity than the present crosslinked polymer. It is presumed that this is because the non-crosslinked polymer has a wide molecular chain, while the crosslinked polymer is in the form of particles, so that the apparent molecular weight is small.
Even if the non-crosslinked polymer has a higher viscosity than the present crosslinked polymer salt, if an aqueous binder containing the present non-crosslinked polymer or a salt thereof and an alkali metal hydroxide or the present alkali metal salt is used. By reducing the viscosity of the present composition, the coatability is improved, and the cycle characteristics of the secondary battery are also improved.
本非架橋重合体は、本架橋重合体塩よりも高粘度であっても、本非架橋重合体又はその塩、並びに、アルカリ金属水酸化物又は本アルカリ金属塩を含有する水系バインダーを用いると、本組成物の粘度が低減することで塗工性が向上し、さらに、二次電池のサイクル特性も向上する。 The non-crosslinked polymer has a higher viscosity than the present crosslinked polymer. It is presumed that this is because the non-crosslinked polymer has a wide molecular chain, while the crosslinked polymer is in the form of particles, so that the apparent molecular weight is small.
Even if the non-crosslinked polymer has a higher viscosity than the present crosslinked polymer salt, if an aqueous binder containing the present non-crosslinked polymer or a salt thereof and an alkali metal hydroxide or the present alkali metal salt is used. By reducing the viscosity of the present composition, the coatability is improved, and the cycle characteristics of the secondary battery are also improved.
本非架橋重合体における(a1)成分の含有量は、水への溶解性の点で、本非架橋重合体の全構造単位に対して、50質量%以上、100質量%以下であり、好ましくは60質量%以上、100質量%以下であり、より好ましくは70質量%以上、100質量%以下であり、さらに好ましくは80質量%以上、100質量%以下である。
The content of the component (a1) in the non-crosslinked polymer is preferably 50% by mass or more and 100% by mass or less with respect to all the structural units of the non-crosslinked polymer in terms of solubility in water. Is 60% by mass or more and 100% by mass or less, more preferably 70% by mass or more and 100% by mass or less, and further preferably 80% by mass or more and 100% by mass or less.
<その他の構造単位>
本非架橋重合体は、(a1)成分以外に、これらと共重合可能な他のエチレン性不飽和単量体に由来する構造単位(前記(b1)成分)を含むことができる。
(b1)成分の導入方法は、本架橋重合体の(b1)成分において記載した方法と同様であってもよい。また、酢酸ビニル、プロピオン酸ビニル等のビニルエステル化合物に由来する構造単位を含む重合体をけん化させる方法であってもよく、当該ビニルエステル化合物としては、原料の入手の容易さ等の点から、酢酸ビニルが好ましく、1種を単独で使用してもよいし、2種以上を併用してもよい。 <Other structural units>
In addition to the component (a1), the non-crosslinked polymer can contain a structural unit (the component (b1)) derived from another ethylenically unsaturated monomer copolymerizable with the component (a1).
The method for introducing the component (b1) may be the same as the method described for the component (b1) of the present crosslinked polymer. Further, a method of saponifying a polymer containing a structural unit derived from a vinyl ester compound such as vinyl acetate or vinyl propionate may be used, and the vinyl ester compound may be used from the viewpoint of easy availability of raw materials. Vinyl acetate is preferable, and one type may be used alone, or two or more types may be used in combination.
本非架橋重合体は、(a1)成分以外に、これらと共重合可能な他のエチレン性不飽和単量体に由来する構造単位(前記(b1)成分)を含むことができる。
(b1)成分の導入方法は、本架橋重合体の(b1)成分において記載した方法と同様であってもよい。また、酢酸ビニル、プロピオン酸ビニル等のビニルエステル化合物に由来する構造単位を含む重合体をけん化させる方法であってもよく、当該ビニルエステル化合物としては、原料の入手の容易さ等の点から、酢酸ビニルが好ましく、1種を単独で使用してもよいし、2種以上を併用してもよい。 <Other structural units>
In addition to the component (a1), the non-crosslinked polymer can contain a structural unit (the component (b1)) derived from another ethylenically unsaturated monomer copolymerizable with the component (a1).
The method for introducing the component (b1) may be the same as the method described for the component (b1) of the present crosslinked polymer. Further, a method of saponifying a polymer containing a structural unit derived from a vinyl ester compound such as vinyl acetate or vinyl propionate may be used, and the vinyl ester compound may be used from the viewpoint of easy availability of raw materials. Vinyl acetate is preferable, and one type may be used alone, or two or more types may be used in combination.
(b1)成分の割合は、本非架橋重合体の全構造単位に対し、0質量%以上、50質量%以下とすることができる。(b1)成分の割合は、1質量%以上、50質量%以下であってもよく、2質量%以上、50質量%以下であってもよく、5質量%以上、50質量%以下であってもよく、10質量%以上、50質量%以下であってもよい。
The ratio of the component (b1) can be 0% by mass or more and 50% by mass or less with respect to all the structural units of the non-crosslinked polymer. The ratio of the component (b1) may be 1% by mass or more and 50% by mass or less, 2% by mass or more and 50% by mass or less, and 5% by mass or more and 50% by mass or less. It may be 10% by mass or more and 50% by mass or less.
本非架橋重合体は、当該重合体中に含まれるカルボキシル基の一部又は全部が中和された塩の形態であってもよい。塩の種類としては特に限定しないが、リチウム、ナトリウム、カリウム等のアルカリ金属塩;マグネシウム塩。カルシウム塩及びバリウム塩等のアルカリ土類金属塩;アルミニウム塩等のその他の金属塩;アンモニウム塩及び有機アミン塩等が挙げられる。これらの中でも電池特性への悪影響が生じにくい点からアルカリ金属塩及びアルカリ土類金属塩が好ましく、アルカリ金属塩がより好ましい。
The non-crosslinked polymer may be in the form of a salt in which some or all of the carboxyl groups contained in the polymer are neutralized. The type of salt is not particularly limited, but alkali metal salts such as lithium, sodium and potassium; magnesium salts. Alkaline earth metal salts such as calcium salts and barium salts; other metal salts such as aluminum salts; ammonium salts, organic amine salts and the like. Among these, alkali metal salts and alkaline earth metal salts are preferable, and alkali metal salts are more preferable, from the viewpoint that adverse effects on battery characteristics are unlikely to occur.
本非架橋重合体は、本組成物中において、中和度が20モル%以上となるように、エチレン性不飽和カルボン酸単量体由来のカルボキシル基等の酸基が中和され、塩の態様として用いることが好ましい。上記中和度は、より好ましくは50モル%以上であり、さらに好ましくは70モル%以上であり、一層好ましくは75モル%以上であり、より一層好ましくは80モル%以上であり、特に好ましくは85モル%以上である。中和度の上限値は100モル%であり、98モル%であってもよく95モル%であってもよい。中和度の範囲は、上記下限値及び上限値を適宜組合せることができ、例えば、50モル%以上100モル%以下であってもよく、75モル%以上100モル%以下であってもよく、80モル%以上100モル%以下であってもよい。中和度が20モル%以上の場合、水への溶解性が確保しやすい点で好ましい。本明細書では、上記中和度は、カルボキシル基等の酸基を有する単量体及び中和に用いる中和剤の仕込み値から計算により算出することができる。なお、中和度は架橋重合体又はその塩を、減圧条件下、80℃で3時間乾燥処理後の粉末をIR測定し、カルボン酸のC=O基由来のピークとカルボン酸塩のC=O基由来のピークの強度比より確認することができる。
In the present non-crosslinked polymer, acid groups such as a carboxyl group derived from an ethylenically unsaturated carboxylic acid monomer are neutralized so that the degree of neutralization is 20 mol% or more in the present composition, and the salt is a salt. It is preferable to use it as an embodiment. The degree of neutralization is more preferably 50 mol% or more, further preferably 70 mol% or more, still more preferably 75 mol% or more, still more preferably 80 mol% or more, and particularly preferably. It is 85 mol% or more. The upper limit of the degree of neutralization is 100 mol%, and may be 98 mol% or 95 mol%. The range of the degree of neutralization may be appropriately combined with the above lower limit value and upper limit value, and may be, for example, 50 mol% or more and 100 mol% or less, or 75 mol% or more and 100 mol% or less. , 80 mol% or more and 100 mol% or less. When the degree of neutralization is 20 mol% or more, it is preferable because the solubility in water can be easily ensured. In the present specification, the degree of neutralization can be calculated by calculation from the charged values of a monomer having an acid group such as a carboxyl group and a neutralizing agent used for neutralization. The degree of neutralization was determined by measuring the IR of the crosslinked polymer or a salt thereof after drying the crosslinked polymer or a salt thereof at 80 ° C. for 3 hours under reduced pressure, and measuring the peak derived from the C = O group of the carboxylic acid and the C = of the carboxylate. It can be confirmed from the intensity ratio of the peak derived from the O group.
本非架橋重合体の重量平均分子量(Mw)は、特に限定するものではないが、結着性に優れる電極合剤層が得られる点で、好ましくは5,000以上であり、より好ましくは10,000以上である。Mwは、100,000以上であってもよく、500,000以上であってもよく、1,000,000以上であってもよい。Mwの上限値も特に限定するものではないが、製造上の扱いの観点から、例えば10,000,000以下であり、5,000,000以下であってもよい。
The weight average molecular weight (Mw) of the non-crosslinked polymer is not particularly limited, but is preferably 5,000 or more, more preferably 10 in terms of obtaining an electrode mixture layer having excellent binding properties. It is over 000. Mw may be 100,000 or more, 500,000 or more, or 1,000,000 or more. The upper limit of Mw is not particularly limited, but from the viewpoint of manufacturing handling, it may be, for example, 1,000,000 or less, and may be 5,000,000 or less.
本バインダーは、本架橋重合体及び本非架橋重合体を含む場合には、本非架橋重合体の使用量は、本架橋重合体の総量100質量部に対し、7.5質量部以上200質量部以下であることが好ましい。前記の本非架橋重合体の使用量は、15質量部以上であってもよく、25質量部以上であってもよく、35質量部以上であってもよく、45質量部以上であってもよい。上限は、190質量部以下であってもよく、180質量部以下であってもよく、170質量部以下であってもよく、160質量部以下であってもよい。範囲としては、こうした下限及び上限を適宜組み合わせた範囲とすることができるが、例えば、15質量部以上、190質量部以下であり、例えば、25質量部以上、180質量部以下であり、また例えば35質量部以上、170質量部以下であり、また例えば35質量部以上、160質量部以下などとすることができる。
When the present binder contains the present crosslinked polymer and the present non-crosslinked polymer, the amount of the present non-crosslinked polymer used is 7.5 parts by mass or more and 200 parts by mass with respect to 100 parts by mass of the total amount of the present crosslinked polymer. It is preferably less than or equal to a portion. The amount of the non-crosslinked polymer used may be 15 parts by mass or more, 25 parts by mass or more, 35 parts by mass or more, or 45 parts by mass or more. Good. The upper limit may be 190 parts by mass or less, 180 parts by mass or less, 170 parts by mass or less, or 160 parts by mass or less. The range may be a range in which such a lower limit and an upper limit are appropriately combined, and is, for example, 15 parts by mass or more and 190 parts by mass or less, for example, 25 parts by mass or more and 180 parts by mass or less, and for example. It may be 35 parts by mass or more and 170 parts by mass or less, and may be, for example, 35 parts by mass or more and 160 parts by mass or less.
このように、本架橋重合体に対し、特定量の本非架橋重合体を併せて使用することもでき、従来よりも電極合剤層用組成物の固形分濃度が高い場合において、電極スラリーの粘度低減により塗工性を確保しつつ、優れたサイクル特性を発揮する二次電池を得ることができる。本非架橋性重合体の使用量が7.5質量部以上であれば、係る効果を発現することができる。また、本非架橋性重合体の使用量が200質量部を超えた場合は、十分な塗工性が得られないことがある。
As described above, a specific amount of the present non-crosslinked polymer can be used in combination with the present crosslinked polymer, and when the solid content concentration of the composition for the electrode mixture layer is higher than before, the electrode slurry can be used. It is possible to obtain a secondary battery that exhibits excellent cycle characteristics while ensuring coatability by reducing the viscosity. When the amount of the non-crosslinkable polymer used is 7.5 parts by mass or more, such an effect can be exhibited. Further, if the amount of the non-crosslinkable polymer used exceeds 200 parts by mass, sufficient coatability may not be obtained.
<本非架橋重合体の製造方法>
本非架橋重合体は、溶液重合、沈殿重合、懸濁重合、乳化重合等の公知の重合方法を使用することが可能であり、分子量又は組成等により適宜選定すればよい。 <Method for producing this non-crosslinked polymer>
As the non-crosslinked polymer, known polymerization methods such as solution polymerization, precipitation polymerization, suspension polymerization, and emulsion polymerization can be used, and may be appropriately selected depending on the molecular weight, composition, and the like.
本非架橋重合体は、溶液重合、沈殿重合、懸濁重合、乳化重合等の公知の重合方法を使用することが可能であり、分子量又は組成等により適宜選定すればよい。 <Method for producing this non-crosslinked polymer>
As the non-crosslinked polymer, known polymerization methods such as solution polymerization, precipitation polymerization, suspension polymerization, and emulsion polymerization can be used, and may be appropriately selected depending on the molecular weight, composition, and the like.
重合開始剤は、アゾ系化合物、有機過酸化物、無機過酸化物等の公知の重合開始剤を用いることができるが、特に限定されるものではない。熱開始、還元剤を併用したレドックス開始、UV開始等、公知の方法で適切なラジカル発生量となるように使用条件を調整することができる。
また、分子量の調整等を目的として、必要に応じて公知の連鎖移動剤を使用してもよい。 As the polymerization initiator, known polymerization initiators such as azo compounds, organic peroxides, and inorganic peroxides can be used, but the polymerization initiator is not particularly limited. The conditions of use can be adjusted by known methods such as heat initiation, redox initiation with a reducing agent, and UV initiation so that the amount of radicals generated is appropriate.
Further, a known chain transfer agent may be used if necessary for the purpose of adjusting the molecular weight or the like.
また、分子量の調整等を目的として、必要に応じて公知の連鎖移動剤を使用してもよい。 As the polymerization initiator, known polymerization initiators such as azo compounds, organic peroxides, and inorganic peroxides can be used, but the polymerization initiator is not particularly limited. The conditions of use can be adjusted by known methods such as heat initiation, redox initiation with a reducing agent, and UV initiation so that the amount of radicals generated is appropriate.
Further, a known chain transfer agent may be used if necessary for the purpose of adjusting the molecular weight or the like.
<本非架橋重合体の水溶液粘度>
本非架橋重合体は、その2質量%濃度水溶液の粘度が10,000mPa・s以下であることが好ましい。2質量%濃度水溶液の粘度が10,000mPa・s以下の場合、充放電時の活物質の体積変化に追随し得る耐久性を備えることが可能となる。2質量%濃度水溶液の粘度は、5,000mPa・s以下であってもよく、3,000mPa・s以下であってもよく、2,000mPa・s以下であってもよい。
水溶液粘度は、所定の濃度となる量の本非架橋重合体を水中に均一に溶解又は分散した後、実施例に記載の方法に従い、12rpmにおけるB型粘度(25℃)を測定することにより得られる。 <Aqueous viscosity of this non-crosslinked polymer>
The viscosity of the 2% by mass aqueous solution of the non-crosslinked polymer is preferably 10,000 mPa · s or less. When the viscosity of the 2% by mass aqueous solution is 10,000 mPa · s or less, it is possible to provide durability that can follow the volume change of the active material at the time of charging / discharging. The viscosity of the 2% by mass aqueous solution may be 5,000 mPa · s or less, 3,000 mPa · s or less, or 2,000 mPa · s or less.
The viscosity of the aqueous solution can be obtained by uniformly dissolving or dispersing the non-crosslinked polymer in an amount having a predetermined concentration in water, and then measuring the B-type viscosity (25 ° C.) at 12 rpm according to the method described in Examples. Be done.
本非架橋重合体は、その2質量%濃度水溶液の粘度が10,000mPa・s以下であることが好ましい。2質量%濃度水溶液の粘度が10,000mPa・s以下の場合、充放電時の活物質の体積変化に追随し得る耐久性を備えることが可能となる。2質量%濃度水溶液の粘度は、5,000mPa・s以下であってもよく、3,000mPa・s以下であってもよく、2,000mPa・s以下であってもよい。
水溶液粘度は、所定の濃度となる量の本非架橋重合体を水中に均一に溶解又は分散した後、実施例に記載の方法に従い、12rpmにおけるB型粘度(25℃)を測定することにより得られる。 <Aqueous viscosity of this non-crosslinked polymer>
The viscosity of the 2% by mass aqueous solution of the non-crosslinked polymer is preferably 10,000 mPa · s or less. When the viscosity of the 2% by mass aqueous solution is 10,000 mPa · s or less, it is possible to provide durability that can follow the volume change of the active material at the time of charging / discharging. The viscosity of the 2% by mass aqueous solution may be 5,000 mPa · s or less, 3,000 mPa · s or less, or 2,000 mPa · s or less.
The viscosity of the aqueous solution can be obtained by uniformly dissolving or dispersing the non-crosslinked polymer in an amount having a predetermined concentration in water, and then measuring the B-type viscosity (25 ° C.) at 12 rpm according to the method described in Examples. Be done.
3.アルカリ金属水酸化物又は本アルカリ金属塩
本バインダーは、本重合体又はその塩に加えて、アルカリ金属水酸化物又は本アルカリ金属塩を含む。なお、本バインダーが、アルカリ金属水酸化物を含む場合、本架橋重合体は100モル%中和された塩である。中和度が100モル%の本架橋重合体塩とアルカリ金属水酸化物を混合して本バインダーを得ても良いし、中和度が100モル%未満の本重合体塩と、当該重合体塩の中和度が100モル%超となる量のアルカリ金属水酸化物を混合して本バインダーを得ても良い。 3. 3. Alkali Metal Hydroxide or Alkali Metal Salt The binder contains an alkali metal hydroxide or an alkali metal salt in addition to the polymer or a salt thereof. When the binder contains an alkali metal hydroxide, the crosslinked polymer is a 100 mol% neutralized salt. The present binder may be obtained by mixing the present crosslinked polymer salt having a neutralization degree of 100 mol% and an alkali metal hydroxide, or the present polymer salt having a neutralization degree of less than 100 mol% and the polymer. The present binder may be obtained by mixing an amount of alkali metal hydroxide having a salt neutralization degree of more than 100 mol%.
本バインダーは、本重合体又はその塩に加えて、アルカリ金属水酸化物又は本アルカリ金属塩を含む。なお、本バインダーが、アルカリ金属水酸化物を含む場合、本架橋重合体は100モル%中和された塩である。中和度が100モル%の本架橋重合体塩とアルカリ金属水酸化物を混合して本バインダーを得ても良いし、中和度が100モル%未満の本重合体塩と、当該重合体塩の中和度が100モル%超となる量のアルカリ金属水酸化物を混合して本バインダーを得ても良い。 3. 3. Alkali Metal Hydroxide or Alkali Metal Salt The binder contains an alkali metal hydroxide or an alkali metal salt in addition to the polymer or a salt thereof. When the binder contains an alkali metal hydroxide, the crosslinked polymer is a 100 mol% neutralized salt. The present binder may be obtained by mixing the present crosslinked polymer salt having a neutralization degree of 100 mol% and an alkali metal hydroxide, or the present polymer salt having a neutralization degree of less than 100 mol% and the polymer. The present binder may be obtained by mixing an amount of alkali metal hydroxide having a salt neutralization degree of more than 100 mol%.
アルカリ金属水酸化物の具体例としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等が挙げられる。
アルカリ金属水酸化物は、上記の1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。 Specific examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide and the like.
As the alkali metal hydroxide, one of the above may be used alone, or two or more thereof may be used in combination.
アルカリ金属水酸化物は、上記の1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。 Specific examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide and the like.
As the alkali metal hydroxide, one of the above may be used alone, or two or more thereof may be used in combination.
アルカリ金属水酸化物の使用量は、特に限定するものではないが、本組成物のpHを12.5未満にすることができる点で、中和度が100モル%の本重合体の総量100質量部に対し、好ましくは5質量部以上50質量部以下であり、より好ましくは10質量部以上45質量部以下であり、さらに好ましくは10質量部以上40質量部以下である。
The amount of the alkali metal hydroxide used is not particularly limited, but the total amount of the present polymer having a neutralization degree of 100 mol% is 100 in that the pH of the present composition can be less than 12.5. It is preferably 5 parts by mass or more and 50 parts by mass or less, more preferably 10 parts by mass or more and 45 parts by mass or less, and further preferably 10 parts by mass or more and 40 parts by mass or less.
ここで、電極スラリーのpHの上昇を抑制し、例えば、カルボキシメチルセルロース(CMC)を配合する場合にはその加水分解の懸念が小さい点で、本アルカリ金属塩を含むことが好ましい。また、本アルカリ金属塩はエチレン性不飽和基を有しないことから、電極スラリーの製造中や得られた電極スラリーの保存中に重合が進行することがないため、電極スラリーが増粘する懸念が小さい。
Here, it is preferable to contain the present alkali metal salt in that the increase in pH of the electrode slurry is suppressed, and for example, when carboxymethyl cellulose (CMC) is blended, there is little concern about hydrolysis thereof. In addition, since this alkali metal salt does not have an ethylenically unsaturated group, polymerization does not proceed during the production of the electrode slurry or the storage of the obtained electrode slurry, so that there is a concern that the electrode slurry may thicken. small.
本アルカリ金属塩の式量は、従来よりも電極合剤層用組成物の固形分濃度が高い場合において、電極スラリーの粘度低減により塗工性を確保しつつ、優れたサイクル特性を発揮する二次電池を得ることができる点で、200以下であり、好ましくは180以下であり、より好ましくは160以下であり、さらに好ましくは140以下である。
The formula amount of this alkali metal salt exhibits excellent cycle characteristics while ensuring coatability by reducing the viscosity of the electrode slurry when the solid content concentration of the composition for the electrode mixture layer is higher than before. In terms of obtaining a next battery, it is 200 or less, preferably 180 or less, more preferably 160 or less, and further preferably 140 or less.
本アルカリ金属塩としては、有機酸アルカリ金属塩、アルカリ金属炭酸塩化合物、アルカリ金属炭酸水素塩、アルカリ金属亜硝酸塩化合物、アルカリ金属塩化物、アルカリ金属臭化物等が挙げられ、これらの無水和物又は水和物であってもよい。
有機酸アルカリ金属塩の具体例としては、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、プロピオン酸リチウム、プロピオン酸ナトリウム、プロピオン酸カリウム等;
アルカリ金属炭酸塩の具体例としては、炭酸リチウム、炭酸ナトリウム、炭酸カリウム等;
アルカリ金属炭酸水素塩の具体例としては、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム等;
アルカリ金属亜硝酸塩化合物の具体例としては、亜硝酸リチウム、亜硝酸ナトリウム、亜硝酸カリウム等;
アルカリ金属塩化物の具体例としては、塩化リチウム、塩化ナトリウム、塩化カリウム等;
アルカリ金属臭化物の具体例としては、臭化リチウム、臭化ナトリウム、臭化カリウム等が挙げられる。
これらの中でも、本発明の奏する効果が特に大きい点で、有機酸アルカリ金属塩が好ましく、さらに、リチウム塩、ナトリウム塩及びカリウム塩からなる群より選択される少なくとも1種を含むことが好ましく、特に、酢酸リチウムが好ましい。ここで、有機酸アルカリ金属塩の有機酸としては、カルボキシル基を有する本重合体同士の橋掛けによるゲル化を防止する観点から、1分子中に1個のカルボキシル基を有する有機酸が好ましい。
本アルカリ金属塩は、上記の1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。 Examples of the alkali metal salt include organic acid alkali metal salts, alkali metal carbonate compounds, alkali metal hydrogen carbonates, alkali metal nitrite compounds, alkali metal chlorides, alkali metal bromide and the like, and these anhydrous products or It may be a hydrate.
Specific examples of the organic acid alkali metal salt include lithium acetate, sodium acetate, potassium acetate, lithium propionate, sodium propionate, potassium propionate and the like;
Specific examples of alkali metal carbonates include lithium carbonate, sodium carbonate, potassium carbonate and the like;
Specific examples of alkali metal bicarbonates include lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, etc .;
Specific examples of the alkali metal nitrite compound include lithium nitrite, sodium nitrite, potassium nitrite, and the like;
Specific examples of alkali metal chlorides include lithium chloride, sodium chloride, potassium chloride and the like;
Specific examples of the alkali metal bromide include lithium bromide, sodium bromide, potassium bromide and the like.
Among these, an organic acid alkali metal salt is preferable, and at least one selected from the group consisting of a lithium salt, a sodium salt and a potassium salt is preferably contained, in particular, because the effect of the present invention is particularly large. , Lithium acetate is preferred. Here, as the organic acid of the organic acid alkali metal salt, an organic acid having one carboxyl group in one molecule is preferable from the viewpoint of preventing gelation due to bridging between the present polymers having a carboxyl group.
As the present alkali metal salt, one of the above may be used alone, or two or more thereof may be used in combination.
有機酸アルカリ金属塩の具体例としては、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、プロピオン酸リチウム、プロピオン酸ナトリウム、プロピオン酸カリウム等;
アルカリ金属炭酸塩の具体例としては、炭酸リチウム、炭酸ナトリウム、炭酸カリウム等;
アルカリ金属炭酸水素塩の具体例としては、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム等;
アルカリ金属亜硝酸塩化合物の具体例としては、亜硝酸リチウム、亜硝酸ナトリウム、亜硝酸カリウム等;
アルカリ金属塩化物の具体例としては、塩化リチウム、塩化ナトリウム、塩化カリウム等;
アルカリ金属臭化物の具体例としては、臭化リチウム、臭化ナトリウム、臭化カリウム等が挙げられる。
これらの中でも、本発明の奏する効果が特に大きい点で、有機酸アルカリ金属塩が好ましく、さらに、リチウム塩、ナトリウム塩及びカリウム塩からなる群より選択される少なくとも1種を含むことが好ましく、特に、酢酸リチウムが好ましい。ここで、有機酸アルカリ金属塩の有機酸としては、カルボキシル基を有する本重合体同士の橋掛けによるゲル化を防止する観点から、1分子中に1個のカルボキシル基を有する有機酸が好ましい。
本アルカリ金属塩は、上記の1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。 Examples of the alkali metal salt include organic acid alkali metal salts, alkali metal carbonate compounds, alkali metal hydrogen carbonates, alkali metal nitrite compounds, alkali metal chlorides, alkali metal bromide and the like, and these anhydrous products or It may be a hydrate.
Specific examples of the organic acid alkali metal salt include lithium acetate, sodium acetate, potassium acetate, lithium propionate, sodium propionate, potassium propionate and the like;
Specific examples of alkali metal carbonates include lithium carbonate, sodium carbonate, potassium carbonate and the like;
Specific examples of alkali metal bicarbonates include lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, etc .;
Specific examples of the alkali metal nitrite compound include lithium nitrite, sodium nitrite, potassium nitrite, and the like;
Specific examples of alkali metal chlorides include lithium chloride, sodium chloride, potassium chloride and the like;
Specific examples of the alkali metal bromide include lithium bromide, sodium bromide, potassium bromide and the like.
Among these, an organic acid alkali metal salt is preferable, and at least one selected from the group consisting of a lithium salt, a sodium salt and a potassium salt is preferably contained, in particular, because the effect of the present invention is particularly large. , Lithium acetate is preferred. Here, as the organic acid of the organic acid alkali metal salt, an organic acid having one carboxyl group in one molecule is preferable from the viewpoint of preventing gelation due to bridging between the present polymers having a carboxyl group.
As the present alkali metal salt, one of the above may be used alone, or two or more thereof may be used in combination.
本アルカリ金属塩の使用量は、特に限定するものではないが、従来よりも電極合剤層用組成物の固形分濃度が高い場合において、電極スラリーの粘度低減により塗工性を確保しつつ、優れたサイクル特性を発揮する二次電池を得ることができる点で、本重合体の総量100質量部に対し、好ましくは5.0質量部以上175質量部以下であり、より好ましくは10質量部以上150質量部以下であり、さらに好ましくは15質量部以上125質量部以下であり、一層好ましくは20質量部以上100質量部以下である。
The amount of this alkali metal salt used is not particularly limited, but when the solid content concentration of the composition for the electrode mixture layer is higher than before, the coatability is ensured by reducing the viscosity of the electrode slurry. In terms of obtaining a secondary battery exhibiting excellent cycle characteristics, the amount is preferably 5.0 parts by mass or more and 175 parts by mass or less, more preferably 10 parts by mass, based on 100 parts by mass of the total amount of the present polymer. It is 150 parts by mass or less, more preferably 15 parts by mass or more and 125 parts by mass or less, and further preferably 20 parts by mass or more and 100 parts by mass or less.
3.二次電池電極合剤層用組成物
本発明の二次電池電極合剤層用組成物は、本バインダー、活物質及び水を含む。
本組成物における本バインダーの使用量は、活物質の全量100質量部に対して、例えば、0.1質量部以上20質量部以下である。上記使用量は、また例えば、0.2質量部以上10質量部以下であり、また例えば0.3質量部以上8質量部以下であり、また例えば0.4質量部以上5質量部以下である。本バインダーの使用量が0.1質量部以上であれば、十分な結着性を得ることができる。また、活物質等の分散安定性を確保することができ、均一な合剤層を形成することができる。本バインダーの使用量が20質量部以下であれば、本組成物が高粘度となることはなく、集電体への塗工性を確保することができる。その結果、均一で平滑な表面を有する合剤層を形成することができる。 3. 3. Composition for secondary battery electrode mixture layer The composition for secondary battery electrode mixture layer of the present invention contains the present binder, active material and water.
The amount of the binder used in the composition is, for example, 0.1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the total amount of the active material. The amount used is, for example, 0.2 parts by mass or more and 10 parts by mass or less, for example, 0.3 parts by mass or more and 8 parts by mass or less, and for example, 0.4 parts by mass or more and 5 parts by mass or less. .. When the amount of the binder used is 0.1 parts by mass or more, sufficient binding property can be obtained. Further, the dispersion stability of the active material or the like can be ensured, and a uniform mixture layer can be formed. When the amount of the binder used is 20 parts by mass or less, the composition does not have a high viscosity, and the coatability to the current collector can be ensured. As a result, a mixture layer having a uniform and smooth surface can be formed.
本発明の二次電池電極合剤層用組成物は、本バインダー、活物質及び水を含む。
本組成物における本バインダーの使用量は、活物質の全量100質量部に対して、例えば、0.1質量部以上20質量部以下である。上記使用量は、また例えば、0.2質量部以上10質量部以下であり、また例えば0.3質量部以上8質量部以下であり、また例えば0.4質量部以上5質量部以下である。本バインダーの使用量が0.1質量部以上であれば、十分な結着性を得ることができる。また、活物質等の分散安定性を確保することができ、均一な合剤層を形成することができる。本バインダーの使用量が20質量部以下であれば、本組成物が高粘度となることはなく、集電体への塗工性を確保することができる。その結果、均一で平滑な表面を有する合剤層を形成することができる。 3. 3. Composition for secondary battery electrode mixture layer The composition for secondary battery electrode mixture layer of the present invention contains the present binder, active material and water.
The amount of the binder used in the composition is, for example, 0.1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the total amount of the active material. The amount used is, for example, 0.2 parts by mass or more and 10 parts by mass or less, for example, 0.3 parts by mass or more and 8 parts by mass or less, and for example, 0.4 parts by mass or more and 5 parts by mass or less. .. When the amount of the binder used is 0.1 parts by mass or more, sufficient binding property can be obtained. Further, the dispersion stability of the active material or the like can be ensured, and a uniform mixture layer can be formed. When the amount of the binder used is 20 parts by mass or less, the composition does not have a high viscosity, and the coatability to the current collector can be ensured. As a result, a mixture layer having a uniform and smooth surface can be formed.
上記活物質の内、正極活物質としては遷移金属酸化物のリチウム塩を用いることができ、例えば、層状岩塩型及びスピネル型のリチウム含有金属酸化物を使用することができる。層状岩塩型の正極活物質の具体的な化合物としては、コバルト酸リチウム、ニッケル酸リチウム、並びに、三元系と呼ばれるNCM{Li(Nix,Coy,Mnz)、x+y+z=1}及びNCA{Li(Ni1-a-bCoaAlb)}等が挙げられる。また、スピネル型の正極活物質としてはマンガン酸リチウム等が挙げられる。酸化物以外にもリン酸塩、ケイ酸塩及び硫黄等が使用され、リン酸塩としては、オリビン型のリン酸鉄リチウム等が挙げられる。正極活物質としては、上記のうちの1種を単独で使用してもよく、2種以上を組み合わせて混合物又は複合物として使用してもよい。
Among the above active materials, a lithium salt of a transition metal oxide can be used as the positive electrode active material, and for example, layered rock salt type and spinel type lithium-containing metal oxides can be used. Specific compounds of the layered rock salt type positive electrode active material include lithium cobalt oxide, lithium nickel oxide, and NCM {Li (Ni x , Co y , Mn z ), x + y + z = 1} and NCA, which are called ternary systems. {Li (Ni 1-ab Co a Al b )} and the like can be mentioned. Moreover, as a spinel type positive electrode active material, lithium manganate and the like can be mentioned. In addition to oxides, phosphates, silicates, sulfur and the like are used, and examples of phosphates include olivine-type lithium iron phosphate and the like. As the positive electrode active material, one of the above may be used alone, or two or more thereof may be combined and used as a mixture or a composite.
尚、層状岩塩型のリチウム含有金属酸化物を含む正極活物質を水に分散させた場合、活物質表面のリチウムイオンと水中の水素イオンとが交換されることにより、分散液がアルカリ性を示す。このため、一般的な正極用集電体材料であるアルミ箔(Al)等が腐食される虞がある。このような場合には、本バインダーとして未中和又は部分中和された本重合体を用いることにより、活物質から溶出するアルカリ分を中和することが好ましい。また、未中和又は部分中和された本重合体の使用量は、本重合体の中和されていないカルボキシル基量が活物質から溶出するアルカリ量に対して当量以上となるように用いることが好ましい。
When a positive electrode active material containing a layered rock salt type lithium-containing metal oxide is dispersed in water, the dispersion liquid becomes alkaline by exchanging lithium ions on the surface of the active material and hydrogen ions in water. Therefore, there is a risk that aluminum foil (Al), which is a general current collector material for positive electrodes, will be corroded. In such a case, it is preferable to neutralize the alkali content eluted from the active material by using the present polymer which has not been neutralized or partially neutralized as the present binder. The amount of the unneutralized or partially neutralized present polymer used should be equal to or greater than the amount of alkali eluted from the active material in the amount of unneutralized carboxyl groups in the present polymer. Is preferable.
正極活物質はいずれも電気伝導性が低いため、導電助剤を添加して使用されるのが一般的である。導電助剤としては、カーボンブラック、カーボンナノチューブ、カーボンファイバー、黒鉛微粉、炭素繊維等の炭素系材料が挙げられ、これらの内、優れた導電性を得やすい点からカーボンブラック、カーボンナノチューブ及びカーボンファイバーが好ましい。また、カーボンブラックとしては、ケッチェンブラック及びアセチレンブラックが好ましい。導電助剤は、上記の1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。導電助剤の使用量は、導電性とエネルギー密度を両立するという観点から、活物質の全量100質量部に対して、例えば、0.2~20質量部とすることができ、また例えば、0.2~10質量部とすることができる。また、正極活物質は導電性を有する炭素系材料で表面コーティングしたものを使用してもよい。
Since all positive electrode active materials have low electrical conductivity, they are generally used with a conductive additive added. Examples of the conductive auxiliary agent include carbon-based materials such as carbon black, carbon nanotubes, carbon fibers, graphite fine powder, and carbon fibers. Among these, carbon black, carbon nanotubes, and carbon fibers are easy to obtain excellent conductivity. Is preferable. Further, as the carbon black, Ketjen black and acetylene black are preferable. As the conductive auxiliary agent, one of the above types may be used alone, or two or more types may be used in combination. The amount of the conductive auxiliary agent used can be, for example, 0.2 to 20 parts by mass with respect to 100 parts by mass of the total amount of the active material from the viewpoint of achieving both conductivity and energy density, and for example, 0. It can be 2 to 10 parts by mass. Further, as the positive electrode active material, a material whose surface is coated with a conductive carbon-based material may be used.
一方、負極活物質としては、例えば炭素系材料、リチウム金属、リチウム合金及び金属酸化物等が挙げられ、これらの内の1種又は2種以上を組み合わせて用いることができる。これらの内でも、天然黒鉛、人造黒鉛、ハードカーボン及びソフトカーボン等の炭素系材料からなる活物質(以下、「炭素系活物質」ともいう。)が好ましく、天然黒鉛及び人造黒鉛等の黒鉛、並びにハードカーボンがより好ましい。また、黒鉛の場合、電池性能の面から球形化黒鉛が好適に用いられ、その粒子サイズの好ましい範囲は、例えば、1~20μmであり、また例えば、5~15μmである。また、エネルギー密度を高くするために、ケイ素やスズなどのリチウムを吸蔵できる金属又は金属酸化物等を負極活物質として使用することもできる。その中でも、ケイ素は黒鉛に比べて高容量であり、ケイ素、ケイ素合金及び一酸化ケイ素(SiO)等のケイ素酸化物のようなケイ素系材料からなる活物質(以下、「ケイ素系活物質」ともいう。)を用いることができる。しかし、上記ケイ素系活物質は高容量である反面充放電に伴う体積変化が大きい。このため、上記炭素系活物質と併用するのが好ましい。この場合、ケイ素系活物質の配合量が多いと電極材料の崩壊を招き、サイクル特性(耐久性)が大きく低下する場合がある。このような観点から、ケイ素系活物質を併用する場合、その使用量は炭素系活物質に対して、例えば、60質量%以下であり、また例えば、30質量%以下である。
On the other hand, examples of the negative electrode active material include carbon-based materials, lithium metals, lithium alloys, metal oxides, and the like, and one or a combination of two or more of these can be used. Among these, active materials made of carbon-based materials such as natural graphite, artificial graphite, hard carbon and soft carbon (hereinafter, also referred to as "carbon-based active material") are preferable, and graphite such as natural graphite and artificial graphite, Also, hard carbon is more preferred. Further, in the case of graphite, spherical graphite is preferably used from the viewpoint of battery performance, and the preferable range of the particle size thereof is, for example, 1 to 20 μm, and for example, 5 to 15 μm. Further, in order to increase the energy density, a metal or a metal oxide capable of occluding lithium such as silicon or tin can be used as the negative electrode active material. Among them, silicon has a higher capacity than graphite, and is an active material made of a silicon-based material such as silicon, a silicon alloy, and a silicon oxide such as silicon monoxide (SiO) (hereinafter, also referred to as "silicon-based active material"). ) Can be used. However, while the silicon-based active material has a high capacity, the volume change due to charging and discharging is large. Therefore, it is preferable to use it in combination with the above carbon-based active material. In this case, if the amount of the silicon-based active material is large, the electrode material may be disintegrated and the cycle characteristics (durability) may be significantly deteriorated. From such a viewpoint, when a silicon-based active material is used in combination, the amount used is, for example, 60% by mass or less, and for example, 30% by mass or less, based on the carbon-based active material.
炭素系活物質は、それ自身が良好な電気伝導性を有するため、必ずしも導電助剤を添加する必要はない。抵抗をより低減する等の目的で導電助剤を添加する場合、エネルギー密度の観点からその使用量は活物質の全量100質量部に対して、例えば、10質量部以下であり、また例えば、5質量部以下である。
Since the carbon-based active material itself has good electrical conductivity, it is not always necessary to add a conductive additive. When a conductive additive is added for the purpose of further reducing resistance, the amount used is, for example, 10 parts by mass or less with respect to 100 parts by mass of the total amount of the active material, and for example, 5 from the viewpoint of energy density. It is less than a part by mass.
本組成物がスラリー状態の場合、活物質の使用量は、本組成物全量に対して、例えば、10~75質量%の範囲であり、また例えば、30~65質量%の範囲である。活物質の使用量が10質量%以上であれば、本バインダー等のマイグレーションが抑えられるとともに、媒体の乾燥コストの面でも有利となる。一方、75質量%以下であれば、本組成物の流動性及び塗工性を確保することができ、均一な合剤層を形成することができる。
When the composition is in a slurry state, the amount of the active material used is, for example, in the range of 10 to 75% by mass, and for example, in the range of 30 to 65% by mass, based on the total amount of the composition. When the amount of the active material used is 10% by mass or more, migration of the binder or the like can be suppressed, and the drying cost of the medium is also advantageous. On the other hand, if it is 75% by mass or less, the fluidity and coatability of the present composition can be ensured, and a uniform mixture layer can be formed.
本組成物は、媒体として水を使用する。また、本組成物の性状及び乾燥性等を調整する目的で、メタノール及びエタノール等の低級アルコール類、エチレンカーボネート等のカーボネート類、アセトン等のケトン類、テトラヒドロフラン、N-メチルピロリドン等の水溶性有機溶剤との混合溶媒としてもよい。混合媒体中の水の割合は、例えば、50質量%以上であり、また例えば、70質量%以上である。
This composition uses water as a medium. Further, for the purpose of adjusting the properties and dryness of the composition, lower alcohols such as methanol and ethanol, carbonates such as ethylene carbonate, ketones such as acetone, and water-soluble organic substances such as tetrahydrofuran and N-methylpyrrolidone. It may be a mixed solvent with a solvent. The proportion of water in the mixing medium is, for example, 50% by mass or more, and for example, 70% by mass or more.
本組成物を塗工可能なスラリー状態とする場合、本組成物全体に占める水を含む媒体の含有量は、スラリーの塗工性、及び乾燥に必要なエネルギーコスト、生産性の観点から、例えば、25~60質量%の範囲とすることができ、また例えば、35~60質量%とすることができる。
When the composition is in a coatable slurry state, the content of the medium containing water in the entire composition is, for example, from the viewpoint of the coatability of the slurry, the energy cost required for drying, and the productivity. , 25-60% by mass, and can be, for example, 35-60% by mass.
本組成物は、さらに、スチレンブタジエンゴム(SBR)系ラテックス、カルボキシメチルセルロース(CMC)、アクリル系ラテックス及びポリフッ化ビニリデン系ラテックス等の他のバインダー成分を併用してもよい。他のバインダー成分を併用する場合、その使用量は、活物質の全量100質量部に対して、例えば、0.1~5質量部以下とすることができ、また例えば、0.1~2質量部以下とすることができ、また例えば、0.1~1質量部以下とすることができる。他のバインダー成分の使用量が5質量部を超えると抵抗が増大し、ハイレート特性が不十分なものとなる場合がある。上記の中でも、結着性及び耐屈曲性のバランスに優れる点で、SBR系ラテックス、CMCが好ましく、SBR系ラテックス及びCMCを併用する事がより好ましい。
The present composition may further contain other binder components such as styrene-butadiene rubber (SBR) -based latex, carboxymethyl cellulose (CMC), acrylic-based latex, and polyvinylidene fluoride-based latex. When other binder components are used in combination, the amount used may be, for example, 0.1 to 5 parts by mass or less, and for example, 0.1 to 2 parts by mass, based on 100 parts by mass of the total amount of the active material. It can be less than or equal to parts, and can be, for example, 0.1 to 1 part by mass or less. If the amount of the other binder component used exceeds 5 parts by mass, the resistance increases and the high rate characteristics may become insufficient. Among the above, SBR-based latex and CMC are preferable, and SBR-based latex and CMC are more preferable in combination because they are excellent in the balance between binding property and bending resistance.
上記SBR系ラテックスとは、スチレン等の芳香族ビニル単量体に由来する構造単位及び1,3-ブタジエン等の脂肪族共役ジエン系単量体に由来する構造単位を有する共重合体の水系分散体を示す。上記芳香族ビニル単量体としては、スチレンの他にα-メチルスチレン、ビニルトルエン、ジビニルベンゼン等が挙げられ、これらの内の1種又は2種以上を用いることができる。上記共重合体中における上記芳香族ビニル単量体に由来する構造単位は、主に結着性の観点から、例えば、20~70質量%の範囲とすることができ、また例えば、30~60質量%の範囲とすることができる。
上記脂肪族共役ジエン系単量体としては、1,3-ブタジエンの他に2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン等が挙げられ、これらの内の1種又は2種以上を用いることができる。上記共重合体中における上記脂肪族共役ジエン系単量体に由来する構造単位は、バインダーの結着性及び得られる電極の柔軟性が良好なものとなる点で、例えば、30~70質量%の範囲とすることができ、また例えば、40~60質量%の範囲とすることができる。
スチレン/ブタジエン系ラテックスは、上記の単量体以外にも、結着性等の性能をさらに向上させるために、その他の単量体として(メタ)アクリロニトリル等のニトリル基含有単量体、(メタ)アクリル酸、イタコン酸、マレイン酸等のカルボキシル基含有単量体、(メタ)アクリル酸メチル等のエステル基含有単量体を共重合単量体として用いてもよい。
上記共重合体中における上記その他の単量体に由来する構造単位は、例えば、0~30質量%の範囲とすることができ、また例えば、0~20質量%の範囲とすることができる。 The SBR latex is an aqueous dispersion of a copolymer having a structural unit derived from an aromatic vinyl monomer such as styrene and a structural unit derived from an aliphatic conjugated diene monomer such as 1,3-butadiene. Show the body. Examples of the aromatic vinyl monomer include α-methylstyrene, vinyltoluene, divinylbenzene and the like in addition to styrene, and one or more of these can be used. The structural unit derived from the aromatic vinyl monomer in the copolymer can be, for example, in the range of 20 to 70% by mass, and for example, 30 to 60, mainly from the viewpoint of binding property. It can be in the range of% by mass.
As the above-mentioned aliphatic conjugated diene-based monomer, in addition to 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3- Butadiene and the like can be mentioned, and one or more of these can be used. The structural unit derived from the aliphatic conjugated diene-based monomer in the copolymer is, for example, 30 to 70% by mass in that the binding property of the binder and the flexibility of the obtained electrode are good. It can be in the range of 40 to 60% by mass, for example.
In addition to the above-mentioned monomers, styrene / butadiene-based monomers include nitrile group-containing monomers such as (meth) acrylonitrile and (meth) as other monomers in order to further improve performance such as binding properties. ) A carboxyl group-containing monomer such as acrylic acid, itaconic acid, and maleic acid, and an ester group-containing monomer such as methyl (meth) acrylate may be used as the copolymerization monomer.
The structural unit derived from the other monomer in the copolymer can be, for example, in the range of 0 to 30% by mass, or can be, for example, in the range of 0 to 20% by mass.
上記脂肪族共役ジエン系単量体としては、1,3-ブタジエンの他に2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン等が挙げられ、これらの内の1種又は2種以上を用いることができる。上記共重合体中における上記脂肪族共役ジエン系単量体に由来する構造単位は、バインダーの結着性及び得られる電極の柔軟性が良好なものとなる点で、例えば、30~70質量%の範囲とすることができ、また例えば、40~60質量%の範囲とすることができる。
スチレン/ブタジエン系ラテックスは、上記の単量体以外にも、結着性等の性能をさらに向上させるために、その他の単量体として(メタ)アクリロニトリル等のニトリル基含有単量体、(メタ)アクリル酸、イタコン酸、マレイン酸等のカルボキシル基含有単量体、(メタ)アクリル酸メチル等のエステル基含有単量体を共重合単量体として用いてもよい。
上記共重合体中における上記その他の単量体に由来する構造単位は、例えば、0~30質量%の範囲とすることができ、また例えば、0~20質量%の範囲とすることができる。 The SBR latex is an aqueous dispersion of a copolymer having a structural unit derived from an aromatic vinyl monomer such as styrene and a structural unit derived from an aliphatic conjugated diene monomer such as 1,3-butadiene. Show the body. Examples of the aromatic vinyl monomer include α-methylstyrene, vinyltoluene, divinylbenzene and the like in addition to styrene, and one or more of these can be used. The structural unit derived from the aromatic vinyl monomer in the copolymer can be, for example, in the range of 20 to 70% by mass, and for example, 30 to 60, mainly from the viewpoint of binding property. It can be in the range of% by mass.
As the above-mentioned aliphatic conjugated diene-based monomer, in addition to 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3- Butadiene and the like can be mentioned, and one or more of these can be used. The structural unit derived from the aliphatic conjugated diene-based monomer in the copolymer is, for example, 30 to 70% by mass in that the binding property of the binder and the flexibility of the obtained electrode are good. It can be in the range of 40 to 60% by mass, for example.
In addition to the above-mentioned monomers, styrene / butadiene-based monomers include nitrile group-containing monomers such as (meth) acrylonitrile and (meth) as other monomers in order to further improve performance such as binding properties. ) A carboxyl group-containing monomer such as acrylic acid, itaconic acid, and maleic acid, and an ester group-containing monomer such as methyl (meth) acrylate may be used as the copolymerization monomer.
The structural unit derived from the other monomer in the copolymer can be, for example, in the range of 0 to 30% by mass, or can be, for example, in the range of 0 to 20% by mass.
上記CMCとは、ノニオン性セルロース系半合成高分子化合物をカルボキシメチル基により置換した置換体及びその塩を示す。上記ノニオン性セルロース系半合成高分子化合物としては、例えば、メチルセルロース、メチルエチルセルロース、エチルセルロース、マイクロクリスタリンセルロース等のアルキルセルロース;
ヒドロキシエチルセルロース、ヒドロキシブチルメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロースステアロキシエーテル、カルボキシメチルヒドロキシエチルセルロース、アルキルヒドロキシエチルセルロース、ノノキシニルヒドロキシエチルセルロース等のヒドロキシアルキルセルロースなどが挙げられる。 The CMC refers to a substitute obtained by substituting a nonionic cellulosic semi-synthetic polymer compound with a carboxymethyl group and a salt thereof. Examples of the nonionic cellulose-based semi-synthetic polymer compound include alkyl celluloses such as methyl cellulose, methyl ethyl cellulose, ethyl cellulose, and microcrystallin cellulose;
Examples thereof include hydroxyethyl cellulose, hydroxybutyl methyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose stearoxy ether, carboxymethyl hydroxyethyl cellulose, alkyl hydroxyethyl cellulose, hydroxyalkyl cellulose such as nonoxynyl hydroxyethyl cellulose and the like.
ヒドロキシエチルセルロース、ヒドロキシブチルメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロースステアロキシエーテル、カルボキシメチルヒドロキシエチルセルロース、アルキルヒドロキシエチルセルロース、ノノキシニルヒドロキシエチルセルロース等のヒドロキシアルキルセルロースなどが挙げられる。 The CMC refers to a substitute obtained by substituting a nonionic cellulosic semi-synthetic polymer compound with a carboxymethyl group and a salt thereof. Examples of the nonionic cellulose-based semi-synthetic polymer compound include alkyl celluloses such as methyl cellulose, methyl ethyl cellulose, ethyl cellulose, and microcrystallin cellulose;
Examples thereof include hydroxyethyl cellulose, hydroxybutyl methyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose stearoxy ether, carboxymethyl hydroxyethyl cellulose, alkyl hydroxyethyl cellulose, hydroxyalkyl cellulose such as nonoxynyl hydroxyethyl cellulose and the like.
本発明の二次電池電極合剤層用組成物は、上記の活物質、水及び本バインダーを必須の構成成分とするものであり、公知の手段を用いて各成分を混合することにより得られる。各成分の混合方法は特段制限されるものではなく、公知の方法を採用することができるが、活物質、導電助剤及びバインダー等の粉末成分をドライブレンドした後、水等の分散媒と混合し、分散混練する方法が好ましい。本組成物をスラリー状態で得る場合、分散不良や凝集のないスラリーに仕上げることが好ましい。混合手段としては、プラネタリーミキサー、薄膜旋回式ミキサー及び自公転式ミキサー等の公知のミキサーを使用することができるが、短時間で良好な分散状態が得られる点で薄膜旋回式ミキサーを使用して行うことが好ましい。また、薄膜旋回式ミキサーを用いる場合は、予めディスパー等の攪拌機で予備分散を行うことが好ましい。上記スラリーのpHは、本発明の効果を奏する限り特に制限されないが、12.5未満であることが好ましく、例えば、CMCを配合する場合にはその加水分解の懸念が小さい点で、11.5未満であることがより好ましく、10.5未満であることがさらに好ましい。また、上記スラリーの粘度は、本発明の効果を奏する限り特に制限されないが、20rpmにおけるB型粘度(25℃)として、例えば、100~5,000mPa・sの範囲とすることができ、また例えば、500~4,500mPa・s、また例えば、1,000~3,000mPa・sの範囲とすることができる。スラリーの粘度が上記の範囲内であれば、良好な塗工性を確保することができる。
The composition for the secondary battery electrode mixture layer of the present invention contains the above-mentioned active material, water and the present binder as essential constituents, and can be obtained by mixing the respective components using known means. .. The mixing method of each component is not particularly limited, and a known method can be adopted. However, powder components such as an active material, a conductive additive and a binder are dry-blended and then mixed with a dispersion medium such as water. However, the method of dispersion kneading is preferable. When the present composition is obtained in a slurry state, it is preferable to finish the composition into a slurry without poor dispersion or agglomeration. As the mixing means, a known mixer such as a planetary mixer, a thin film swirl mixer, or a self-revolving mixer can be used, but a thin film swirl mixer is used because a good dispersion state can be obtained in a short time. It is preferable to do this. When using a thin film swirl mixer, it is preferable to pre-disperse in advance with a stirrer such as a disper. The pH of the slurry is not particularly limited as long as the effect of the present invention is exhibited, but it is preferably less than 12.5. For example, when CMC is blended, there is little concern about hydrolysis thereof, and 11.5. It is more preferably less than 10.5 and even more preferably less than 10.5. The viscosity of the slurry is not particularly limited as long as the effect of the present invention is exhibited, but the B-type viscosity (25 ° C.) at 20 rpm can be, for example, in the range of 100 to 5,000 mPa · s, and for example. , 500 to 4,500 mPa · s, or, for example, the range of 1,000 to 3,000 mPa · s. When the viscosity of the slurry is within the above range, good coatability can be ensured.
4.二次電池電極
本発明の二次電池電極は、銅又はアルミニウム等の集電体表面に本発明の二次電池電極合剤層用組成物から形成される合剤層を備えてなるものである。合剤層は、集電体の表面に本組成物を塗工した後、水等の媒体を乾燥除去することにより形成される。本組成物を塗工する方法は特に限定されず、ドクターブレード法、ディップ法、ロールコート法、コンマコート法、カーテンコート法、グラビアコート法及びエクストルージョン法などの公知の方法を採用することができる。また、上記乾燥は、温風吹付け、減圧、(遠)赤外線、マイクロ波照射等の公知の方法により行うことができる。
通常、乾燥後に得られた合剤層には、金型プレス及びロールプレス等による圧縮処理が施される。圧縮することにより活物質及びバインダーを密着させ、合剤層の強度及び集電体への密着性を向上させることができる。圧縮により合剤層の厚みを、例えば、圧縮前の30~80%程度に調整することができ、圧縮後の合剤層の厚みは4~200μm程度が一般的である。 4. Secondary battery electrode The secondary battery electrode of the present invention is provided with a mixture layer formed from the composition for the mixture layer of the secondary battery electrode of the present invention on the surface of a current collector such as copper or aluminum. .. The mixture layer is formed by applying the present composition to the surface of the current collector and then drying and removing a medium such as water. The method for applying the present composition is not particularly limited, and known methods such as a doctor blade method, a dip method, a roll coating method, a comma coating method, a curtain coating method, a gravure coating method and an extrusion method can be adopted. it can. Further, the drying can be performed by a known method such as blowing warm air, reducing the pressure, (far) infrared rays, and irradiating microwaves.
Usually, the mixture layer obtained after drying is subjected to a compression treatment by a mold press, a roll press or the like. By compressing, the active material and the binder can be brought into close contact with each other, and the strength of the mixture layer and the adhesion to the current collector can be improved. The thickness of the mixture layer can be adjusted to, for example, about 30 to 80% before compression by compression, and the thickness of the mixture layer after compression is generally about 4 to 200 μm.
本発明の二次電池電極は、銅又はアルミニウム等の集電体表面に本発明の二次電池電極合剤層用組成物から形成される合剤層を備えてなるものである。合剤層は、集電体の表面に本組成物を塗工した後、水等の媒体を乾燥除去することにより形成される。本組成物を塗工する方法は特に限定されず、ドクターブレード法、ディップ法、ロールコート法、コンマコート法、カーテンコート法、グラビアコート法及びエクストルージョン法などの公知の方法を採用することができる。また、上記乾燥は、温風吹付け、減圧、(遠)赤外線、マイクロ波照射等の公知の方法により行うことができる。
通常、乾燥後に得られた合剤層には、金型プレス及びロールプレス等による圧縮処理が施される。圧縮することにより活物質及びバインダーを密着させ、合剤層の強度及び集電体への密着性を向上させることができる。圧縮により合剤層の厚みを、例えば、圧縮前の30~80%程度に調整することができ、圧縮後の合剤層の厚みは4~200μm程度が一般的である。 4. Secondary battery electrode The secondary battery electrode of the present invention is provided with a mixture layer formed from the composition for the mixture layer of the secondary battery electrode of the present invention on the surface of a current collector such as copper or aluminum. .. The mixture layer is formed by applying the present composition to the surface of the current collector and then drying and removing a medium such as water. The method for applying the present composition is not particularly limited, and known methods such as a doctor blade method, a dip method, a roll coating method, a comma coating method, a curtain coating method, a gravure coating method and an extrusion method can be adopted. it can. Further, the drying can be performed by a known method such as blowing warm air, reducing the pressure, (far) infrared rays, and irradiating microwaves.
Usually, the mixture layer obtained after drying is subjected to a compression treatment by a mold press, a roll press or the like. By compressing, the active material and the binder can be brought into close contact with each other, and the strength of the mixture layer and the adhesion to the current collector can be improved. The thickness of the mixture layer can be adjusted to, for example, about 30 to 80% before compression by compression, and the thickness of the mixture layer after compression is generally about 4 to 200 μm.
5.二次電池
本発明の二次電池電極にセパレータ及び電解液を備えることにより、二次電池を作製することができる。電解液は液状であってもよく、ゲル状であってもよい。
セパレータは電池の正極及び負極間に配され、両極の接触による短絡の防止や電解液を保持してイオン導電性を確保する役割を担う。セパレータにはフィルム状の絶縁性微多孔膜であって、良好なイオン透過性及び機械的強度を有するものが好ましい。具体的な素材としては、ポリエチレン及びポリプロピレン等のポリオレフィン、ポリテトラフルオロエチレン等を使用することができる。 5. Secondary battery A secondary battery can be manufactured by providing a separator and an electrolytic solution on the secondary battery electrode of the present invention. The electrolytic solution may be in the form of a liquid or a gel.
The separator is arranged between the positive electrode and the negative electrode of the battery, and plays a role of preventing a short circuit due to contact between the two electrodes and holding an electrolytic solution to ensure ionic conductivity. The separator is preferably a film-like insulating microporous membrane having good ion permeability and mechanical strength. As a specific material, polyolefins such as polyethylene and polypropylene, polytetrafluoroethylene and the like can be used.
本発明の二次電池電極にセパレータ及び電解液を備えることにより、二次電池を作製することができる。電解液は液状であってもよく、ゲル状であってもよい。
セパレータは電池の正極及び負極間に配され、両極の接触による短絡の防止や電解液を保持してイオン導電性を確保する役割を担う。セパレータにはフィルム状の絶縁性微多孔膜であって、良好なイオン透過性及び機械的強度を有するものが好ましい。具体的な素材としては、ポリエチレン及びポリプロピレン等のポリオレフィン、ポリテトラフルオロエチレン等を使用することができる。 5. Secondary battery A secondary battery can be manufactured by providing a separator and an electrolytic solution on the secondary battery electrode of the present invention. The electrolytic solution may be in the form of a liquid or a gel.
The separator is arranged between the positive electrode and the negative electrode of the battery, and plays a role of preventing a short circuit due to contact between the two electrodes and holding an electrolytic solution to ensure ionic conductivity. The separator is preferably a film-like insulating microporous membrane having good ion permeability and mechanical strength. As a specific material, polyolefins such as polyethylene and polypropylene, polytetrafluoroethylene and the like can be used.
電解液は、活物質の種類に応じて一般的に使用される公知のものを用いることができる。リチウムイオン二次電池では、具体的な溶媒として、プロピレンカーボネート及びエチレンカーボネート等の高誘電率で電解質の溶解能力の高い環状カーボネート、並びに、エチルメチルカーボネート、ジメチルカーボネート及びジエチルカーボネート等の粘性の低い鎖状カーボネート等が挙げられ、これらを単独で又は混合溶媒として使用することができる。電解液は、これらの溶媒にLiPF6、LiSbF6、LiBF4、LiClO4、LiAlO4等のリチウム塩を溶解して使用される。ニッケル水素二次電池では、電解液として水酸化カリウム水溶液を使用することができる。二次電池は、セパレータで仕切られた正極板及び負極板を渦巻き状又は積層構造にしてケース等に収納することにより得られる。
As the electrolytic solution, a known one that is generally used depending on the type of active material can be used. In the lithium ion secondary battery, specific solvents include cyclic carbonates having a high dielectric constant and high solubility of electrolytes such as propylene carbonate and ethylene carbonate, and low-viscosity chains such as ethylmethyl carbonate, dimethyl carbonate and diethyl carbonate. Examples thereof include form carbonates, which can be used alone or as a mixed solvent. The electrolytic solution is used by dissolving lithium salts such as LiPF 6 , LiSbF 6 , LiBF 4 , LiClO 4 , and LiAlO 4 in these solvents. In the nickel-metal hydride secondary battery, an aqueous potassium hydroxide solution can be used as the electrolytic solution. The secondary battery is obtained by forming a positive electrode plate and a negative electrode plate partitioned by a separator into a spiral or laminated structure and storing them in a case or the like.
以上説明したように、本明細書に開示される二次電池電極合剤層用組成物より形成される合剤層を備えた電極を具備した二次電池は、充放電を繰り返しても良好な耐久性(サイクル特性)を示すため、車載用二次電池等に好適である。
As described above, the secondary battery provided with the electrode having the mixture layer formed from the composition for the secondary battery electrode mixture layer disclosed in the present specification is good even if charging and discharging are repeated. Since it exhibits durability (cycle characteristics), it is suitable for in-vehicle secondary batteries and the like.
以下、実施例に基づいて本発明を具体的に説明する。尚、本発明は、これらの実施例により限定されるものではない。尚、以下において「部」及び「%」は、特に断らない限り質量部及び質量%を意味する。
Hereinafter, the present invention will be specifically described based on Examples. The present invention is not limited to these examples. In the following, "parts" and "%" mean parts by mass and% by mass unless otherwise specified.
(本重合体塩の2質量%濃度水溶液の粘度測定)
以下の各製造例において得られた本重合体塩を脱イオン水に溶解して2質量%濃度の水溶液を調製した。上記水溶液を液温25℃±1℃に調整した後、12rpmにおけるB型粘度計により2質量%濃度水溶液の粘度を測定した。 (Measurement of viscosity of 2% by mass aqueous solution of this polymer salt)
The present polymer salt obtained in each of the following production examples was dissolved in deionized water to prepare an aqueous solution having a concentration of 2% by mass. After adjusting the liquid temperature to 25 ° C. ± 1 ° C., the viscosity of the 2% by mass aqueous solution was measured with a B-type viscometer at 12 rpm.
以下の各製造例において得られた本重合体塩を脱イオン水に溶解して2質量%濃度の水溶液を調製した。上記水溶液を液温25℃±1℃に調整した後、12rpmにおけるB型粘度計により2質量%濃度水溶液の粘度を測定した。 (Measurement of viscosity of 2% by mass aqueous solution of this polymer salt)
The present polymer salt obtained in each of the following production examples was dissolved in deionized water to prepare an aqueous solution having a concentration of 2% by mass. After adjusting the liquid temperature to 25 ° C. ± 1 ° C., the viscosity of the 2% by mass aqueous solution was measured with a B-type viscometer at 12 rpm.
(電極スラリーのpH測定)
以下の各実施例及び比較例において得られた電極スラリーに、同質量の水を加えて固形分濃度が25%となるように調製し、25℃±1℃に調整した後、pHメーターで当該スラリーのpHを測定した。 (PH measurement of electrode slurry)
To the electrode slurries obtained in each of the following Examples and Comparative Examples, water of the same mass was added to prepare the solid content concentration to 25%, adjusted to 25 ° C. ± 1 ° C., and then measured with a pH meter. The pH of the slurry was measured.
以下の各実施例及び比較例において得られた電極スラリーに、同質量の水を加えて固形分濃度が25%となるように調製し、25℃±1℃に調整した後、pHメーターで当該スラリーのpHを測定した。 (PH measurement of electrode slurry)
To the electrode slurries obtained in each of the following Examples and Comparative Examples, water of the same mass was added to prepare the solid content concentration to 25%, adjusted to 25 ° C. ± 1 ° C., and then measured with a pH meter. The pH of the slurry was measured.
(電極スラリーの粘度測定)
以下の各実施例及び比較例において得られた電極スラリーについて、25℃±1℃に調整した後、20rpmにおけるB型粘度計によりスラリー粘度を測定した。 (Measurement of viscosity of electrode slurry)
The electrode slurries obtained in each of the following Examples and Comparative Examples were adjusted to 25 ° C. ± 1 ° C., and then the slurry viscosity was measured with a B-type viscometer at 20 rpm.
以下の各実施例及び比較例において得られた電極スラリーについて、25℃±1℃に調整した後、20rpmにおけるB型粘度計によりスラリー粘度を測定した。 (Measurement of viscosity of electrode slurry)
The electrode slurries obtained in each of the following Examples and Comparative Examples were adjusted to 25 ° C. ± 1 ° C., and then the slurry viscosity was measured with a B-type viscometer at 20 rpm.
≪本架橋重合体塩の製造≫
(製造例1:本架橋重合体塩R-1の製造)
重合には、攪拌翼、温度計、還流冷却器及び窒素導入管を備えた反応器を用いた。
反応器内にアセトニトリル567部、イオン交換水2.20部、アクリル酸(以下、「AA」という)100.0部、トリメチロールプロパンジアリルエーテル(ダイソー社製、商品名「ネオアリルT-20」)0.90部及び上記AAに対して1.0モル%に相当するトリエチルアミンを仕込んだ。反応器内を十分に窒素置換した後、加温して内温を55℃まで昇温した。内温が55℃で安定したことを確認した後、重合開始剤として2,2’-アゾビス(2,4-ジメチルバレロニトリル)(富士フイルム和光純薬社製、商品名「V-65」)0.040部を添加したところ、反応液に白濁が認められたため、この点を重合開始点とした。外温(水バス温度)を調整して内温を55℃に維持しながら重合反応を継続し、重合開始点から24時間経過した時点で重合反応液の冷却を開始し、内温が25℃まで低下した後、水酸化リチウム・一水和物(以下、「LiOH・H2O」という)の粉末52.4部を添加した。添加後室温下12時間撹拌を継続して、本架橋重合体塩R-1(Li塩、中和度90モル%)の粒子が媒体に分散したスラリー状の重合反応液を得た。 ≪Manufacturing of this crosslinked polymer salt≫
(Production Example 1: Production of this crosslinked polymer salt R-1)
A reactor equipped with a stirring blade, a thermometer, a reflux condenser and a nitrogen introduction tube was used for the polymerization.
567 parts of acetonitrile, 2.20 parts of ion-exchanged water, 100.0 parts of acrylic acid (hereinafter referred to as "AA"), trimethylolpropane diallyl ether (manufactured by Daiso, trade name "Neoallyl T-20") in the reactor. 0.99 parts and 1.0 mol% of triethylamine with respect to the above AA were charged. After sufficiently replacing the inside of the reactor with nitrogen, the inside temperature was raised to 55 ° C. by heating. After confirming that the internal temperature was stable at 55 ° C, 2,2'-azobis (2,4-dimethylvaleronitrile) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., trade name "V-65") was used as a polymerization initiator. When 0.040 part was added, white turbidity was observed in the reaction solution, and this point was set as the polymerization initiation point. The polymerization reaction is continued while adjusting the outside temperature (water bath temperature) to maintain the internal temperature at 55 ° C., and when 24 hours have passed from the polymerization start point, the polymerization reaction solution is started to cool, and the internal temperature is 25 ° C. after lowered to, lithium hydroxide monohydrate (hereinafter, referred to as "LiOH · H 2 O") were added 52.4 parts of powder. After the addition, stirring was continued at room temperature for 12 hours to obtain a slurry-like polymerization reaction solution in which particles of the present crosslinked polymer salt R-1 (Li salt, neutralization degree 90 mol%) were dispersed in a medium.
(製造例1:本架橋重合体塩R-1の製造)
重合には、攪拌翼、温度計、還流冷却器及び窒素導入管を備えた反応器を用いた。
反応器内にアセトニトリル567部、イオン交換水2.20部、アクリル酸(以下、「AA」という)100.0部、トリメチロールプロパンジアリルエーテル(ダイソー社製、商品名「ネオアリルT-20」)0.90部及び上記AAに対して1.0モル%に相当するトリエチルアミンを仕込んだ。反応器内を十分に窒素置換した後、加温して内温を55℃まで昇温した。内温が55℃で安定したことを確認した後、重合開始剤として2,2’-アゾビス(2,4-ジメチルバレロニトリル)(富士フイルム和光純薬社製、商品名「V-65」)0.040部を添加したところ、反応液に白濁が認められたため、この点を重合開始点とした。外温(水バス温度)を調整して内温を55℃に維持しながら重合反応を継続し、重合開始点から24時間経過した時点で重合反応液の冷却を開始し、内温が25℃まで低下した後、水酸化リチウム・一水和物(以下、「LiOH・H2O」という)の粉末52.4部を添加した。添加後室温下12時間撹拌を継続して、本架橋重合体塩R-1(Li塩、中和度90モル%)の粒子が媒体に分散したスラリー状の重合反応液を得た。 ≪Manufacturing of this crosslinked polymer salt≫
(Production Example 1: Production of this crosslinked polymer salt R-1)
A reactor equipped with a stirring blade, a thermometer, a reflux condenser and a nitrogen introduction tube was used for the polymerization.
567 parts of acetonitrile, 2.20 parts of ion-exchanged water, 100.0 parts of acrylic acid (hereinafter referred to as "AA"), trimethylolpropane diallyl ether (manufactured by Daiso, trade name "Neoallyl T-20") in the reactor. 0.99 parts and 1.0 mol% of triethylamine with respect to the above AA were charged. After sufficiently replacing the inside of the reactor with nitrogen, the inside temperature was raised to 55 ° C. by heating. After confirming that the internal temperature was stable at 55 ° C, 2,2'-azobis (2,4-dimethylvaleronitrile) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., trade name "V-65") was used as a polymerization initiator. When 0.040 part was added, white turbidity was observed in the reaction solution, and this point was set as the polymerization initiation point. The polymerization reaction is continued while adjusting the outside temperature (water bath temperature) to maintain the internal temperature at 55 ° C., and when 24 hours have passed from the polymerization start point, the polymerization reaction solution is started to cool, and the internal temperature is 25 ° C. after lowered to, lithium hydroxide monohydrate (hereinafter, referred to as "LiOH · H 2 O") were added 52.4 parts of powder. After the addition, stirring was continued at room temperature for 12 hours to obtain a slurry-like polymerization reaction solution in which particles of the present crosslinked polymer salt R-1 (Li salt, neutralization degree 90 mol%) were dispersed in a medium.
得られた重合反応液を遠心分離して重合体粒子を沈降させた後、上澄みを除去した。その後、重合反応液と同質量のアセトニトリルに沈降物を再分散させた後、遠心分離により重合体粒子を沈降させて上澄みを除去する洗浄操作を2回繰り返した。沈降物を回収し、減圧条件下、80℃で3時間乾燥処理を行い、揮発分を除去することにより、本架橋重合体塩R-1の粉末を得た。本架橋重合体塩R-1は吸湿性を有するため、水蒸気バリア性を有する容器に密封保管した。なお、本架橋重合体塩R-1の粉末をIR測定し、カルボン酸のC=O基由来のピークとカルボン酸LiのC=O由来のピークの強度比より中和度を求めたところ、仕込みからの計算値に等しく90モル%であった。R-1の2質量%濃度水溶液の粘度を表1に示す。
The obtained polymerization reaction solution was centrifuged to settle the polymer particles, and then the supernatant was removed. Then, after redispersing the precipitate in acetonitrile having the same mass as the polymerization reaction solution, the washing operation of precipitating the polymer particles by centrifugation to remove the supernatant was repeated twice. The precipitate was recovered and dried under reduced pressure at 80 ° C. for 3 hours to remove volatile components to obtain a powder of the present crosslinked polymer salt R-1. Since the crosslinked polymer salt R-1 has hygroscopicity, it was sealed and stored in a container having a water vapor barrier property. The powder of the crosslinked polymer salt R-1 was measured by IR, and the degree of neutralization was determined from the intensity ratio of the peak derived from the C = O group of the carboxylic acid and the peak derived from the C = O of the carboxylic acid Li. It was 90 mol%, which was equal to the calculated value from the preparation. Table 1 shows the viscosities of the 2% by mass aqueous solution of R-1.
(製造例2~6:本架橋重合体塩R-2~R-6の製造)
単量体、架橋性単量体、イオン交換水及び中和剤の仕込み量を表1に記載の通りとした以外は製造例1と同様の操作を行い、本架橋重合体塩R-2~R-6を含む重合反応液を得た。
次いで、各重合反応液について製造例1と同様の操作を行い、粉末状の架橋重合体塩R-2~R-6を得た。各本架橋重合体塩は、水蒸気バリア性を有する容器に密封保管した。R-2~R-6の2質量%濃度水溶液の粘度を表1に示す。 (Production Examples 2 to 6: Production of the present crosslinked polymer salts R-2 to R-6)
The same operation as in Production Example 1 was carried out except that the amounts of the monomer, the crosslinkable monomer, the ion-exchanged water and the neutralizing agent were as shown in Table 1, and the present crosslinked polymer salts R-2 to A polymerization reaction solution containing R-6 was obtained.
Next, the same operations as in Production Example 1 were carried out for each polymerization reaction solution to obtain powdered crosslinked polymer salts R-2 to R-6. Each of the crosslinked polymer salts was sealed and stored in a container having a water vapor barrier property. Table 1 shows the viscosities of the 2% by mass aqueous solutions of R-2 to R-6.
単量体、架橋性単量体、イオン交換水及び中和剤の仕込み量を表1に記載の通りとした以外は製造例1と同様の操作を行い、本架橋重合体塩R-2~R-6を含む重合反応液を得た。
次いで、各重合反応液について製造例1と同様の操作を行い、粉末状の架橋重合体塩R-2~R-6を得た。各本架橋重合体塩は、水蒸気バリア性を有する容器に密封保管した。R-2~R-6の2質量%濃度水溶液の粘度を表1に示す。 (Production Examples 2 to 6: Production of the present crosslinked polymer salts R-2 to R-6)
The same operation as in Production Example 1 was carried out except that the amounts of the monomer, the crosslinkable monomer, the ion-exchanged water and the neutralizing agent were as shown in Table 1, and the present crosslinked polymer salts R-2 to A polymerization reaction solution containing R-6 was obtained.
Next, the same operations as in Production Example 1 were carried out for each polymerization reaction solution to obtain powdered crosslinked polymer salts R-2 to R-6. Each of the crosslinked polymer salts was sealed and stored in a container having a water vapor barrier property. Table 1 shows the viscosities of the 2% by mass aqueous solutions of R-2 to R-6.
(製造例7:本非架橋重合体塩R-7の製造)
重合には、攪拌翼、温度計、還流冷却器及び窒素導入管を備えた反応器を用いた。
アクリル酸メチル(以下、「MA」という)8部、酢酸ビニル(以下、「VAc」という)12部を混合し、2,2‘-アゾビス(イソ酪酸)ジメチル(富士フイルム和光純薬社製、商品名「V-601」)0.67部を溶解させてモノマー溶液を調製した。
反応器内に、水410部、無水硫酸ナトリウム10部、部分けん化ポリビニルアルコール(クラレ社製、商品名「PVA-217」、けん化度88%)1部、前記モノマー溶液20.67部を仕込んだ。反応器内を十分に窒素置換した後、加温して内温を60℃まで昇温した。内温が60℃で安定したことを確認した後、MA32部及びVAc48部の混合溶液を滴下ロートにより4時間かけて滴下を行い、滴下完了から1時間経過した時点で反応液の冷却を開始し、反応を終了させ、MAとVAcの共重合体を含む重合反応液を得た。
ここで、ガスクロマトグラフィー(GC)測定により、残存モノマー量を測定し、モノマーの重合率を算出したところ、各モノマーの重合率は、MA98%、VAc82%であった。
また、得られた重合反応液の一部をテトラヒドロフランに溶解させた後メンブレンフィルター(ADVANTEC社製:孔径0.45μm)にてろ過を実施した後、MAとVAcの共重合体について、以下の条件にてゲルパーミエーションクロマトグラフィー(GPC)測定を行い、ポリスチレン換算による重量平均分子量(Mw)を得た結果、108万であった。
○測定条件
カラム:東ソー製TSKgel SuperMultiporeHZ-M×4本
溶媒:テトラヒドロフラン
温度:40℃
検出器:RI
流速:600μL/min (Production Example 7: Production of this non-crosslinked polymer salt R-7)
A reactor equipped with a stirring blade, a thermometer, a reflux condenser and a nitrogen introduction tube was used for the polymerization.
8 parts of methyl acrylate (hereinafter referred to as "MA") and 12 parts of vinyl acetate (hereinafter referred to as "VAc") are mixed, and 2,2'-azobis (isobutyric acid) dimethyl (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) A monomer solution was prepared by dissolving 0.67 parts of the product name “V-601”).
In the reactor, 410 parts of water, 10 parts of anhydrous sodium sulfate, 1 part of partially saponified polyvinyl alcohol (manufactured by Kuraray, trade name "PVA-217", saponification degree 88%), and 20.67 parts of the monomer solution were charged. .. After sufficiently replacing the inside of the reactor with nitrogen, the inside temperature was raised to 60 ° C. by heating. After confirming that the internal temperature was stable at 60 ° C., the mixed solution of 32 parts of MA and 48 parts of VAc was added dropwise using a dropping funnel over 4 hours, and cooling of the reaction solution was started 1 hour after the completion of the addition. , The reaction was terminated to obtain a polymerization reaction solution containing a copolymer of MA and VAc.
Here, when the amount of residual monomers was measured by gas chromatography (GC) measurement and the polymerization rate of the monomers was calculated, the polymerization rates of each monomer were MA98% and VAc82%.
Further, after partially dissolving a part of the obtained polymerization reaction solution in tetrahydrofuran and filtering with a membrane filter (manufactured by ADVANTEC: pore diameter 0.45 μm), the following conditions are applied to the copolymer of MA and VAc. As a result of performing gel permeation chromatography (GPC) measurement in 1 and obtaining a weight average molecular weight (Mw) in terms of polystyrene, it was 1.08 million.
○ Measurement conditions Column: Tosoh TSKgel SuperMultipore HZ-M x 4 Solvent: Tetrahydrofuran Temperature: 40 ° C
Detector: RI
Flow velocity: 600 μL / min
重合には、攪拌翼、温度計、還流冷却器及び窒素導入管を備えた反応器を用いた。
アクリル酸メチル(以下、「MA」という)8部、酢酸ビニル(以下、「VAc」という)12部を混合し、2,2‘-アゾビス(イソ酪酸)ジメチル(富士フイルム和光純薬社製、商品名「V-601」)0.67部を溶解させてモノマー溶液を調製した。
反応器内に、水410部、無水硫酸ナトリウム10部、部分けん化ポリビニルアルコール(クラレ社製、商品名「PVA-217」、けん化度88%)1部、前記モノマー溶液20.67部を仕込んだ。反応器内を十分に窒素置換した後、加温して内温を60℃まで昇温した。内温が60℃で安定したことを確認した後、MA32部及びVAc48部の混合溶液を滴下ロートにより4時間かけて滴下を行い、滴下完了から1時間経過した時点で反応液の冷却を開始し、反応を終了させ、MAとVAcの共重合体を含む重合反応液を得た。
ここで、ガスクロマトグラフィー(GC)測定により、残存モノマー量を測定し、モノマーの重合率を算出したところ、各モノマーの重合率は、MA98%、VAc82%であった。
また、得られた重合反応液の一部をテトラヒドロフランに溶解させた後メンブレンフィルター(ADVANTEC社製:孔径0.45μm)にてろ過を実施した後、MAとVAcの共重合体について、以下の条件にてゲルパーミエーションクロマトグラフィー(GPC)測定を行い、ポリスチレン換算による重量平均分子量(Mw)を得た結果、108万であった。
○測定条件
カラム:東ソー製TSKgel SuperMultiporeHZ-M×4本
溶媒:テトラヒドロフラン
温度:40℃
検出器:RI
流速:600μL/min (Production Example 7: Production of this non-crosslinked polymer salt R-7)
A reactor equipped with a stirring blade, a thermometer, a reflux condenser and a nitrogen introduction tube was used for the polymerization.
8 parts of methyl acrylate (hereinafter referred to as "MA") and 12 parts of vinyl acetate (hereinafter referred to as "VAc") are mixed, and 2,2'-azobis (isobutyric acid) dimethyl (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) A monomer solution was prepared by dissolving 0.67 parts of the product name “V-601”).
In the reactor, 410 parts of water, 10 parts of anhydrous sodium sulfate, 1 part of partially saponified polyvinyl alcohol (manufactured by Kuraray, trade name "PVA-217", saponification degree 88%), and 20.67 parts of the monomer solution were charged. .. After sufficiently replacing the inside of the reactor with nitrogen, the inside temperature was raised to 60 ° C. by heating. After confirming that the internal temperature was stable at 60 ° C., the mixed solution of 32 parts of MA and 48 parts of VAc was added dropwise using a dropping funnel over 4 hours, and cooling of the reaction solution was started 1 hour after the completion of the addition. , The reaction was terminated to obtain a polymerization reaction solution containing a copolymer of MA and VAc.
Here, when the amount of residual monomers was measured by gas chromatography (GC) measurement and the polymerization rate of the monomers was calculated, the polymerization rates of each monomer were MA98% and VAc82%.
Further, after partially dissolving a part of the obtained polymerization reaction solution in tetrahydrofuran and filtering with a membrane filter (manufactured by ADVANTEC: pore diameter 0.45 μm), the following conditions are applied to the copolymer of MA and VAc. As a result of performing gel permeation chromatography (GPC) measurement in 1 and obtaining a weight average molecular weight (Mw) in terms of polystyrene, it was 1.08 million.
○ Measurement conditions Column: Tosoh TSKgel SuperMultipore HZ-M x 4 Solvent: Tetrahydrofuran Temperature: 40 ° C
Detector: RI
Flow velocity: 600 μL / min
MAとVAcの共重合体を含む重合反応液を外温50℃に昇温後、減圧条件下で脱溶剤を行うことで、残存モノマーを除去した。その後、共重合モノマー(MA及びVAc)の仕込み合計量100部に対して、メタノール500部、LiOH・H2O38.8部仕込み、外温50℃で3時間、けん化反応を行い、MAとVAcの共重合体のけん化物を含む反応液を得た。
アセトン中で前記けん化物を含む反応液を再沈殿し、濾過した後、80℃で12時間乾燥を行い、揮発分を除去することにより、MAとVAcの共重合体のけん化物を得た。ここで、前記のMA及びVAcの重合率に基づくと、前記けん化物は、「アクリル酸に由来する構造単位を57質量%」及び「ビニルアルコールに由来する構造単位を43質量%」有する非架橋重合体のリチウム塩である。
前記非架橋重合体のリチウム塩R-7は吸湿性を有するため、水蒸気バリア性を有する容器に密封保管した。なお、本非架橋重合体塩R-7の粉末をIR測定し、カルボン酸のC=O基由来のピークとカルボン酸LiのC=O由来のピークの強度比より中和度を求めたところ、90モル%であった。
また、R-7の2質量%濃度水溶液の粘度は、9,000mPa・sであった。 The polymerization reaction solution containing the copolymer of MA and VAc was heated to an outside temperature of 50 ° C., and then the solvent was removed under reduced pressure conditions to remove the residual monomer. Then, 500 parts of methanol and 38.8 parts of LiOH · H 2 O were charged to 100 parts of the total amount of the copolymerized monomers (MA and VAc), and a saponification reaction was carried out at an outside temperature of 50 ° C. for 3 hours to carry out a saponification reaction with MA and VAc. A reaction solution containing a saponified product of the above copolymer was obtained.
The reaction solution containing the saponified product was reprecipitated in acetone, filtered, and dried at 80 ° C. for 12 hours to remove volatile components to obtain a saponified product of a copolymer of MA and VAc. Here, based on the polymerization rates of MA and VAc, the saponified product is non-crosslinked having "57% by mass of structural units derived from acrylic acid" and "43% by mass of structural units derived from vinyl alcohol". It is a lithium salt of a polymer.
Since the lithium salt R-7 of the non-crosslinked polymer has hygroscopicity, it was stored in a container having a water vapor barrier property. The powder of this non-crosslinked polymer salt R-7 was measured by IR, and the degree of neutralization was determined from the intensity ratio of the peak derived from the C = O group of the carboxylic acid and the peak derived from the C = O of the carboxylic acid Li. , 90 mol%.
The viscosity of the 2% by mass aqueous solution of R-7 was 9,000 mPa · s.
アセトン中で前記けん化物を含む反応液を再沈殿し、濾過した後、80℃で12時間乾燥を行い、揮発分を除去することにより、MAとVAcの共重合体のけん化物を得た。ここで、前記のMA及びVAcの重合率に基づくと、前記けん化物は、「アクリル酸に由来する構造単位を57質量%」及び「ビニルアルコールに由来する構造単位を43質量%」有する非架橋重合体のリチウム塩である。
前記非架橋重合体のリチウム塩R-7は吸湿性を有するため、水蒸気バリア性を有する容器に密封保管した。なお、本非架橋重合体塩R-7の粉末をIR測定し、カルボン酸のC=O基由来のピークとカルボン酸LiのC=O由来のピークの強度比より中和度を求めたところ、90モル%であった。
また、R-7の2質量%濃度水溶液の粘度は、9,000mPa・sであった。 The polymerization reaction solution containing the copolymer of MA and VAc was heated to an outside temperature of 50 ° C., and then the solvent was removed under reduced pressure conditions to remove the residual monomer. Then, 500 parts of methanol and 38.8 parts of LiOH · H 2 O were charged to 100 parts of the total amount of the copolymerized monomers (MA and VAc), and a saponification reaction was carried out at an outside temperature of 50 ° C. for 3 hours to carry out a saponification reaction with MA and VAc. A reaction solution containing a saponified product of the above copolymer was obtained.
The reaction solution containing the saponified product was reprecipitated in acetone, filtered, and dried at 80 ° C. for 12 hours to remove volatile components to obtain a saponified product of a copolymer of MA and VAc. Here, based on the polymerization rates of MA and VAc, the saponified product is non-crosslinked having "57% by mass of structural units derived from acrylic acid" and "43% by mass of structural units derived from vinyl alcohol". It is a lithium salt of a polymer.
Since the lithium salt R-7 of the non-crosslinked polymer has hygroscopicity, it was stored in a container having a water vapor barrier property. The powder of this non-crosslinked polymer salt R-7 was measured by IR, and the degree of neutralization was determined from the intensity ratio of the peak derived from the C = O group of the carboxylic acid and the peak derived from the C = O of the carboxylic acid Li. , 90 mol%.
The viscosity of the 2% by mass aqueous solution of R-7 was 9,000 mPa · s.
表1において用いた化合物の詳細を以下に示す。
AA:アクリル酸
HEA:アクリル酸2-ヒドロキシエチル
T-20:トリメチロールプロパンジアリルエーテル(ダイソー社製、商品名「ネオアリルT-20」)
TEA:トリエチルアミン
AcN:アセトニトリル
V-65:2,2’-アゾビス(2,4-ジメチルバレロニトリル)(富士フイルム和光純薬社製)
MA:アクリル酸メチル
VAc:酢酸ビニル
PVA:ポリビニルアルコール(クラレ社製、商品名「PVA-217」)
V-601:2,2’-アゾビス(イソ酪酸)ジメチル(富士フイルム和光純薬社製)
LiOH・H2O:水酸化リチウム・一水和物 Details of the compounds used in Table 1 are shown below.
AA: Acrylic acid HEA: 2-Hydroxyethyl acrylate T-20: Trimethylolpropane diallyl ether (manufactured by Daiso, trade name "Neoallyl T-20")
TEA: Triethylamine AcN: Acetonitrile V-65: 2,2'-azobis (2,4-dimethylvaleronitrile) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
MA: Methyl acrylate VAc: Vinyl acetate PVA: Polyvinyl alcohol (manufactured by Kuraray, trade name "PVA-217")
V-601: 2,2'-azobis (isobutyric acid) dimethyl (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
LiOH ・ H 2 O: Lithium hydroxide ・ Monohydrate
AA:アクリル酸
HEA:アクリル酸2-ヒドロキシエチル
T-20:トリメチロールプロパンジアリルエーテル(ダイソー社製、商品名「ネオアリルT-20」)
TEA:トリエチルアミン
AcN:アセトニトリル
V-65:2,2’-アゾビス(2,4-ジメチルバレロニトリル)(富士フイルム和光純薬社製)
MA:アクリル酸メチル
VAc:酢酸ビニル
PVA:ポリビニルアルコール(クラレ社製、商品名「PVA-217」)
V-601:2,2’-アゾビス(イソ酪酸)ジメチル(富士フイルム和光純薬社製)
LiOH・H2O:水酸化リチウム・一水和物 Details of the compounds used in Table 1 are shown below.
AA: Acrylic acid HEA: 2-Hydroxyethyl acrylate T-20: Trimethylolpropane diallyl ether (manufactured by Daiso, trade name "Neoallyl T-20")
TEA: Triethylamine AcN: Acetonitrile V-65: 2,2'-azobis (2,4-dimethylvaleronitrile) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
MA: Methyl acrylate VAc: Vinyl acetate PVA: Polyvinyl alcohol (manufactured by Kuraray, trade name "PVA-217")
V-601: 2,2'-azobis (isobutyric acid) dimethyl (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
LiOH ・ H 2 O: Lithium hydroxide ・ Monohydrate
実施例1
<電極合剤層用組成物の調製>
SiOx(0.8<x<1.2)の表面にCVD法で炭素を10%コートしたものを準備し(以下、「Si系活物質」という。)、黒鉛とSi系活物質とを混合したものを活物質として用いた。また、本バインダーとしては、架橋重合体塩R-1、酢酸リチウム、スチレン/ブタジエン系ラテックス(SBR)及びカルボキシメチルセルロース(CMC)の混合物を用いた。
電極合剤層用組成物の固形分濃度が50質量%となるように、水を希釈溶媒として、黒鉛:Si系活物質:R-1:酢酸リチウム:SBR:CMC=90:10:1.0:0.5:1.0:1.0(固形分)の質量比でプライミクス社製T.K.ハイビスミックスを用いて2時間混合し、スラリー状態の電極合剤層用組成物(電極スラリー)を調製した。電極スラリーの粘度は1,670mPa・sであり、十分低い値であった。
得られた電極スラリーを用いて電極を作製し、その評価を行った。具体的な手順及び評価方法等について以下に示す。 Example 1
<Preparation of composition for electrode mixture layer>
Prepare a SiOx (0.8 <x <1.2) surface coated with 10% carbon by the CVD method (hereinafter referred to as "Si-based active material"), and mix graphite and Si-based active material. Was used as an active material. As the present binder, a mixture of crosslinked polymer salt R-1, lithium acetate, styrene / butadiene latex (SBR) and carboxymethyl cellulose (CMC) was used.
Graphite: Si-based active material: R-1: Lithium acetate: SBR: CMC = 90: 10: 1 using water as a diluting solvent so that the solid content concentration of the composition for the electrode mixture layer is 50% by mass. With a mass ratio of 0: 0.5: 1.0: 1.0 (solid content), T.I. K. The mixture was mixed for 2 hours using a hibis mix to prepare a composition for an electrode mixture layer (electrode slurry) in a slurry state. The viscosity of the electrode slurry was 1,670 mPa · s, which was a sufficiently low value.
An electrode was prepared using the obtained electrode slurry and evaluated. The specific procedure and evaluation method are shown below.
<電極合剤層用組成物の調製>
SiOx(0.8<x<1.2)の表面にCVD法で炭素を10%コートしたものを準備し(以下、「Si系活物質」という。)、黒鉛とSi系活物質とを混合したものを活物質として用いた。また、本バインダーとしては、架橋重合体塩R-1、酢酸リチウム、スチレン/ブタジエン系ラテックス(SBR)及びカルボキシメチルセルロース(CMC)の混合物を用いた。
電極合剤層用組成物の固形分濃度が50質量%となるように、水を希釈溶媒として、黒鉛:Si系活物質:R-1:酢酸リチウム:SBR:CMC=90:10:1.0:0.5:1.0:1.0(固形分)の質量比でプライミクス社製T.K.ハイビスミックスを用いて2時間混合し、スラリー状態の電極合剤層用組成物(電極スラリー)を調製した。電極スラリーの粘度は1,670mPa・sであり、十分低い値であった。
得られた電極スラリーを用いて電極を作製し、その評価を行った。具体的な手順及び評価方法等について以下に示す。 Example 1
<Preparation of composition for electrode mixture layer>
Prepare a SiOx (0.8 <x <1.2) surface coated with 10% carbon by the CVD method (hereinafter referred to as "Si-based active material"), and mix graphite and Si-based active material. Was used as an active material. As the present binder, a mixture of crosslinked polymer salt R-1, lithium acetate, styrene / butadiene latex (SBR) and carboxymethyl cellulose (CMC) was used.
Graphite: Si-based active material: R-1: Lithium acetate: SBR: CMC = 90: 10: 1 using water as a diluting solvent so that the solid content concentration of the composition for the electrode mixture layer is 50% by mass. With a mass ratio of 0: 0.5: 1.0: 1.0 (solid content), T.I. K. The mixture was mixed for 2 hours using a hibis mix to prepare a composition for an electrode mixture layer (electrode slurry) in a slurry state. The viscosity of the electrode slurry was 1,670 mPa · s, which was a sufficiently low value.
An electrode was prepared using the obtained electrode slurry and evaluated. The specific procedure and evaluation method are shown below.
<負極極板の作製>
上記電極スラリーを銅箔(厚み:20μm)の両面に塗布し、乾燥することにより合剤層を形成した。その後、合剤層の厚みが27μm、充填密度が1.3g/cm3になるよう圧延した後、3cm正方に打ち抜いて負極極板を得た。 <Manufacturing of negative electrode plate>
The electrode slurry was applied to both sides of a copper foil (thickness: 20 μm) and dried to form a mixture layer. Then, after rolling so that the thickness of the mixture layer was 27 μm and the packing density was 1.3 g / cm 3 , the negative electrode electrode plate was obtained by punching 3 cm square.
上記電極スラリーを銅箔(厚み:20μm)の両面に塗布し、乾燥することにより合剤層を形成した。その後、合剤層の厚みが27μm、充填密度が1.3g/cm3になるよう圧延した後、3cm正方に打ち抜いて負極極板を得た。 <Manufacturing of negative electrode plate>
The electrode slurry was applied to both sides of a copper foil (thickness: 20 μm) and dried to form a mixture layer. Then, after rolling so that the thickness of the mixture layer was 27 μm and the packing density was 1.3 g / cm 3 , the negative electrode electrode plate was obtained by punching 3 cm square.
(塗工性)
上記負極極板の作製における電極スラリーの塗工性は、以下の基準に基づき評価され、「○」と評価された。
(評価基準)
○:表面に筋ムラ、ブツ等の外観異常が全く認められない。
△:表面に筋ムラ、ブツ等の外観異常がわずかに認められる。
×:表面に筋ムラ、ブツ等の外観異常が顕著に認められる。 (Paintability)
The coatability of the electrode slurry in the production of the negative electrode electrode plate was evaluated based on the following criteria, and was evaluated as “◯”.
(Evaluation criteria)
◯: No abnormal appearance such as streaks or bumps is observed on the surface.
Δ: Slight abnormalities in appearance such as streaks and bumps are observed on the surface.
X: Appearance abnormalities such as streaks and bumps are noticeably observed on the surface.
上記負極極板の作製における電極スラリーの塗工性は、以下の基準に基づき評価され、「○」と評価された。
(評価基準)
○:表面に筋ムラ、ブツ等の外観異常が全く認められない。
△:表面に筋ムラ、ブツ等の外観異常がわずかに認められる。
×:表面に筋ムラ、ブツ等の外観異常が顕著に認められる。 (Paintability)
The coatability of the electrode slurry in the production of the negative electrode electrode plate was evaluated based on the following criteria, and was evaluated as “◯”.
(Evaluation criteria)
◯: No abnormal appearance such as streaks or bumps is observed on the surface.
Δ: Slight abnormalities in appearance such as streaks and bumps are observed on the surface.
X: Appearance abnormalities such as streaks and bumps are noticeably observed on the surface.
<正極極板の作製>
N-メチルピロリドン(NMP)溶媒中、正極活物質としてリン酸鉄リチウム(LFP)を100部、導電剤としてカーボンナノチューブを0.2部、ケッチェンブラックを2部、気層法炭素繊維(VGCF)0.6部を混合して添加し、電極組成物用バインダーとしてポリフッ化ビニリデン(PVDF)を混合し、正極用組成物を調製した。アルミニウム集電体(厚み:15μm)に前記正極用組成物を塗布乾燥することにより合剤層を形成した。その後、合剤層の厚みが88μm、充填密度が3.1g/cm3になるように圧延した後、3cm正方に打ち抜いて正極極板を得た。 <Manufacturing of positive electrode plate>
In N-methylpyrrolidone (NMP) solvent, 100 parts of lithium iron phosphate (LFP) as the positive electrode active material, 0.2 parts of carbon nanotubes as the conductive agent, 2 parts of Ketjen black, and vapor layer carbon fiber (VGCF). ) 0.6 part was mixed and added, and polyvinylidene fluoride (PVDF) was mixed as a binder for the electrode composition to prepare a composition for a positive electrode. A mixture layer was formed by applying the positive electrode composition to an aluminum current collector (thickness: 15 μm) and drying it. Then, the mixture layer was rolled to a thickness of 88 μm and a packing density of 3.1 g / cm 3 , and then punched 3 cm square to obtain a positive electrode plate.
N-メチルピロリドン(NMP)溶媒中、正極活物質としてリン酸鉄リチウム(LFP)を100部、導電剤としてカーボンナノチューブを0.2部、ケッチェンブラックを2部、気層法炭素繊維(VGCF)0.6部を混合して添加し、電極組成物用バインダーとしてポリフッ化ビニリデン(PVDF)を混合し、正極用組成物を調製した。アルミニウム集電体(厚み:15μm)に前記正極用組成物を塗布乾燥することにより合剤層を形成した。その後、合剤層の厚みが88μm、充填密度が3.1g/cm3になるように圧延した後、3cm正方に打ち抜いて正極極板を得た。 <Manufacturing of positive electrode plate>
In N-methylpyrrolidone (NMP) solvent, 100 parts of lithium iron phosphate (LFP) as the positive electrode active material, 0.2 parts of carbon nanotubes as the conductive agent, 2 parts of Ketjen black, and vapor layer carbon fiber (VGCF). ) 0.6 part was mixed and added, and polyvinylidene fluoride (PVDF) was mixed as a binder for the electrode composition to prepare a composition for a positive electrode. A mixture layer was formed by applying the positive electrode composition to an aluminum current collector (thickness: 15 μm) and drying it. Then, the mixture layer was rolled to a thickness of 88 μm and a packing density of 3.1 g / cm 3 , and then punched 3 cm square to obtain a positive electrode plate.
<二次電池の作製>
上記正極極板、上記負極極板及びセパレータを用いて、ラミネート型セルのリチウムイオン二次電池を作製した。電解液としてはエチレンカーボネート(EC)、エチルメチルカーボネート(DEC)を体積比で25:75とした混合溶媒に、LiPF6を1.0mol/リットルの濃度で溶解させたものを用いた。 <Making secondary batteries>
Using the positive electrode plate, the negative electrode plate, and the separator, a lithium ion secondary battery of a laminated cell was produced. As the electrolytic solution, one in which LiPF 6 was dissolved at a concentration of 1.0 mol / liter in a mixed solvent containing ethylene carbonate (EC) and ethyl methyl carbonate (DEC) at a volume ratio of 25:75 was used.
上記正極極板、上記負極極板及びセパレータを用いて、ラミネート型セルのリチウムイオン二次電池を作製した。電解液としてはエチレンカーボネート(EC)、エチルメチルカーボネート(DEC)を体積比で25:75とした混合溶媒に、LiPF6を1.0mol/リットルの濃度で溶解させたものを用いた。 <Making secondary batteries>
Using the positive electrode plate, the negative electrode plate, and the separator, a lithium ion secondary battery of a laminated cell was produced. As the electrolytic solution, one in which LiPF 6 was dissolved at a concentration of 1.0 mol / liter in a mixed solvent containing ethylene carbonate (EC) and ethyl methyl carbonate (DEC) at a volume ratio of 25:75 was used.
(サイクル特性の評価)
上記で作製したラミネート型セルのリチウムイオン二次電池を、CC放電にて2.7から3.4Vの条件下、0.2Cの充放電レートにて充放電の操作を行い、初期容量C0を測定した。さらに、25℃の環境下で充放電を繰り返し、50サイクル後の容量C50を測定した。以下の式で算出されるサイクル特性(ΔC)は93.9%であり、以下の基準に基づくサイクル特性は「〇」と評価された。なお、ΔCの値が高いほどサイクル特性に優れることを示す。
ΔC=C50/C0×100(%)
(評価基準)
◎:充放電容量保持率が95.0%以上
〇:充放電容量保持率が90.0%以上95.0%未満
△:充放電容量保持率が85.0%以上90.0%未満
×:充放電容量保持率が85.0%未満 (Evaluation of cycle characteristics)
The lithium-ion secondary battery of the laminated cell produced above is charged / discharged at a charge / discharge rate of 0.2 C under the conditions of 2.7 to 3.4 V by CC discharge, and the initial capacity is C 0. Was measured. Furthermore, repeated charging and discharging under 25 ° C. environment was measured capacitance C 50 after 50 cycles. The cycle characteristic (ΔC) calculated by the following formula was 93.9%, and the cycle characteristic based on the following criteria was evaluated as “◯”. The higher the value of ΔC, the better the cycle characteristics.
ΔC = C 50 / C 0 × 100 (%)
(Evaluation criteria)
⊚: Charge / discharge capacity retention rate is 95.0% or more 〇: Charge / discharge capacity retention rate is 90.0% or more and less than 95.0% Δ: Charge / discharge capacity retention rate is 85.0% or more and less than 90.0% × : Charge / discharge capacity retention rate is less than 85.0%
上記で作製したラミネート型セルのリチウムイオン二次電池を、CC放電にて2.7から3.4Vの条件下、0.2Cの充放電レートにて充放電の操作を行い、初期容量C0を測定した。さらに、25℃の環境下で充放電を繰り返し、50サイクル後の容量C50を測定した。以下の式で算出されるサイクル特性(ΔC)は93.9%であり、以下の基準に基づくサイクル特性は「〇」と評価された。なお、ΔCの値が高いほどサイクル特性に優れることを示す。
ΔC=C50/C0×100(%)
(評価基準)
◎:充放電容量保持率が95.0%以上
〇:充放電容量保持率が90.0%以上95.0%未満
△:充放電容量保持率が85.0%以上90.0%未満
×:充放電容量保持率が85.0%未満 (Evaluation of cycle characteristics)
The lithium-ion secondary battery of the laminated cell produced above is charged / discharged at a charge / discharge rate of 0.2 C under the conditions of 2.7 to 3.4 V by CC discharge, and the initial capacity is C 0. Was measured. Furthermore, repeated charging and discharging under 25 ° C. environment was measured capacitance C 50 after 50 cycles. The cycle characteristic (ΔC) calculated by the following formula was 93.9%, and the cycle characteristic based on the following criteria was evaluated as “◯”. The higher the value of ΔC, the better the cycle characteristics.
ΔC = C 50 / C 0 × 100 (%)
(Evaluation criteria)
⊚: Charge / discharge capacity retention rate is 95.0% or more 〇: Charge / discharge capacity retention rate is 90.0% or more and less than 95.0% Δ: Charge / discharge capacity retention rate is 85.0% or more and less than 90.0% × : Charge / discharge capacity retention rate is less than 85.0%
実施例2~19、及び比較例1~3
本重合体塩及び、アルカリ金属水酸化物又は本アルカリ金属塩を表2に記載の通りとした以外は、実施例1と同様の操作を行うことにより電極スラリーを調製し、そのスラリー粘度を測定した。また、当該電極スラリーの塗工性、それを用いて得られた二次電池のサイクル特性を評価した。結果を表2に示す。
なお、実施例7は、中和度が90モル%の本架橋重合体塩R-1(1.0質量部)、アルカリ金属水酸化物として水酸化リチウム・1水和物(0.27質量部)、その他成分を混合して電極スラリーを得ているため、当該スラリーは、中和度が100モル%の本架橋重合体及び水酸化リチウムを含み、当該水酸化リチウムの含有量は、中和度が100モル%の本架橋重合体の総量100質量部に対して、水酸化リチウムを「水酸化リチウム・1水和物」に換算した値として21.3質量部となる。 Examples 2 to 19 and Comparative Examples 1 to 3
An electrode slurry was prepared by performing the same operation as in Example 1 except that the polymer salt and the alkali metal hydroxide or the alkali metal salt were as shown in Table 2, and the viscosity of the electrode slurry was measured. did. In addition, the coatability of the electrode slurry and the cycle characteristics of the secondary battery obtained by using the electrode slurry were evaluated. The results are shown in Table 2.
In Example 7, the crosslinked polymer salt R-1 (1.0 part by mass) having a neutralization degree of 90 mol% and lithium hydroxide monohydrate (0.27 mass by mass) as the alkali metal hydroxide. Part) and other components are mixed to obtain an electrode slurry, so that the slurry contains the main crosslinked polymer having a neutralization degree of 100 mol% and lithium hydroxide, and the content of the lithium hydroxide is medium. With respect to 100 parts by mass of the total amount of the crosslinked polymer having a degree of harmony of 100 mol%, the value obtained by converting lithium hydroxide into "lithium hydroxide monohydrate" is 21.3 parts by mass.
本重合体塩及び、アルカリ金属水酸化物又は本アルカリ金属塩を表2に記載の通りとした以外は、実施例1と同様の操作を行うことにより電極スラリーを調製し、そのスラリー粘度を測定した。また、当該電極スラリーの塗工性、それを用いて得られた二次電池のサイクル特性を評価した。結果を表2に示す。
なお、実施例7は、中和度が90モル%の本架橋重合体塩R-1(1.0質量部)、アルカリ金属水酸化物として水酸化リチウム・1水和物(0.27質量部)、その他成分を混合して電極スラリーを得ているため、当該スラリーは、中和度が100モル%の本架橋重合体及び水酸化リチウムを含み、当該水酸化リチウムの含有量は、中和度が100モル%の本架橋重合体の総量100質量部に対して、水酸化リチウムを「水酸化リチウム・1水和物」に換算した値として21.3質量部となる。 Examples 2 to 19 and Comparative Examples 1 to 3
An electrode slurry was prepared by performing the same operation as in Example 1 except that the polymer salt and the alkali metal hydroxide or the alkali metal salt were as shown in Table 2, and the viscosity of the electrode slurry was measured. did. In addition, the coatability of the electrode slurry and the cycle characteristics of the secondary battery obtained by using the electrode slurry were evaluated. The results are shown in Table 2.
In Example 7, the crosslinked polymer salt R-1 (1.0 part by mass) having a neutralization degree of 90 mol% and lithium hydroxide monohydrate (0.27 mass by mass) as the alkali metal hydroxide. Part) and other components are mixed to obtain an electrode slurry, so that the slurry contains the main crosslinked polymer having a neutralization degree of 100 mol% and lithium hydroxide, and the content of the lithium hydroxide is medium. With respect to 100 parts by mass of the total amount of the crosslinked polymer having a degree of harmony of 100 mol%, the value obtained by converting lithium hydroxide into "lithium hydroxide monohydrate" is 21.3 parts by mass.
表2において用いたアルカリ金属水酸化物及び本アルカリ金属塩の式量及び製造元を以下に示す。
酢酸リチウム:式量65.99、東京化成工業社製
炭酸リチウム:式量73.89、キシダ化学社製
水酸化リチウム・1水和物:式量41.96、昭和化学社製
塩化リチウム:式量42.39、本荘ケミカル社製
臭化リチウム・1水和物:式量104.86、富士フイルム和光純薬社製
亜硝酸リチウム:式量52.94、本荘ケミカル社製
酢酸ナトリウム:式量82.03、純正化学社製
炭酸カリウム:式量138.20、富士フイルム和光純薬社製
炭酸水素カリウム:式量100.12、富士フイルム和光純薬社製 The formula amounts and manufacturers of the alkali metal hydroxide and the alkali metal salt used in Table 2 are shown below.
Lithium acetate: formula 65.99, manufactured by Tokyo Kasei Kogyo Co., Ltd. Lithium carbonate: formula 73.89, manufactured by Kishida Chemical Co., Ltd. Lithium hydroxide / monohydrate: formula quantity 41.96, manufactured by Showa Chemical Co., Ltd. Lithium chloride: formula Amount 42.39, Lithium bromide monohydrate manufactured by Honjo Chemical Co., Ltd .: Formula amount 104.86, Lithium nitrite manufactured by Fujifilm Wako Pure Chemical Co., Ltd .: Formula amount 52.94, Sodium acetate manufactured by Honjo Chemical Co., Ltd .: Formulated amount 82.03, Genuine Chemical Co., Ltd. Potassium carbonate: Formula amount 138.20, Fujifilm Wako Junyaku Co., Ltd. Potassium hydrogen carbonate: Formula amount 100.12., Fujifilm Wako Junyaku Co., Ltd.
酢酸リチウム:式量65.99、東京化成工業社製
炭酸リチウム:式量73.89、キシダ化学社製
水酸化リチウム・1水和物:式量41.96、昭和化学社製
塩化リチウム:式量42.39、本荘ケミカル社製
臭化リチウム・1水和物:式量104.86、富士フイルム和光純薬社製
亜硝酸リチウム:式量52.94、本荘ケミカル社製
酢酸ナトリウム:式量82.03、純正化学社製
炭酸カリウム:式量138.20、富士フイルム和光純薬社製
炭酸水素カリウム:式量100.12、富士フイルム和光純薬社製 The formula amounts and manufacturers of the alkali metal hydroxide and the alkali metal salt used in Table 2 are shown below.
Lithium acetate: formula 65.99, manufactured by Tokyo Kasei Kogyo Co., Ltd. Lithium carbonate: formula 73.89, manufactured by Kishida Chemical Co., Ltd. Lithium hydroxide / monohydrate: formula quantity 41.96, manufactured by Showa Chemical Co., Ltd. Lithium chloride: formula Amount 42.39, Lithium bromide monohydrate manufactured by Honjo Chemical Co., Ltd .: Formula amount 104.86, Lithium nitrite manufactured by Fujifilm Wako Pure Chemical Co., Ltd .: Formula amount 52.94, Sodium acetate manufactured by Honjo Chemical Co., Ltd .: Formulated amount 82.03, Genuine Chemical Co., Ltd. Potassium carbonate: Formula amount 138.20, Fujifilm Wako Junyaku Co., Ltd. Potassium hydrogen carbonate: Formula amount 100.12., Fujifilm Wako Junyaku Co., Ltd.
≪評価結果≫
実施例1~19の結果から明らかなように、本発明の二次電池電極用水系バインダーを含む二次電池電極合剤層用組成物(電極スラリー)は、いずれも塗工性が良好であるとともに、当該組成物を使用して得られた電極を備えた二次電池のサイクル特性にも優れるものであった。これらの中でも、2質量%濃度水溶液の粘度が10,000mPa・s以下である本架橋重合体を含む水系バインダーを用いた場合には、塗工性に一段と優れるとともに、サイクル特性にも優れるものであった(実施例1~17、19)。また、本架橋重合体の総量100質量部に対し、本アルカリ金属塩として用いる酢酸リチウムの使用量が100質量部以下の場合、当該使用量が多いほど、塗工性及びサイクル特性の両立を高次元で達成できるものであった(実施例1、3、4)。 ≪Evaluation result≫
As is clear from the results of Examples 1 to 19, the composition for the secondary battery electrode mixture layer (electrode slurry) containing the aqueous binder for the secondary battery electrode of the present invention has good coatability. At the same time, the cycle characteristics of the secondary battery provided with the electrodes obtained by using the composition were also excellent. Among these, when an aqueous binder containing the present crosslinked polymer having a viscosity of a 2% by mass aqueous solution of 10,000 mPa · s or less is used, the coatability is further excellent and the cycle characteristics are also excellent. There were (Examples 1 to 17, 19). When the amount of lithium acetate used as the alkali metal salt is 100 parts by mass or less with respect to 100 parts by mass of the total amount of the crosslinked polymer, the larger the amount used, the higher the compatibility between coatability and cycle characteristics. It was something that could be achieved in dimensions (Examples 1, 3, and 4).
実施例1~19の結果から明らかなように、本発明の二次電池電極用水系バインダーを含む二次電池電極合剤層用組成物(電極スラリー)は、いずれも塗工性が良好であるとともに、当該組成物を使用して得られた電極を備えた二次電池のサイクル特性にも優れるものであった。これらの中でも、2質量%濃度水溶液の粘度が10,000mPa・s以下である本架橋重合体を含む水系バインダーを用いた場合には、塗工性に一段と優れるとともに、サイクル特性にも優れるものであった(実施例1~17、19)。また、本架橋重合体の総量100質量部に対し、本アルカリ金属塩として用いる酢酸リチウムの使用量が100質量部以下の場合、当該使用量が多いほど、塗工性及びサイクル特性の両立を高次元で達成できるものであった(実施例1、3、4)。 ≪Evaluation result≫
As is clear from the results of Examples 1 to 19, the composition for the secondary battery electrode mixture layer (electrode slurry) containing the aqueous binder for the secondary battery electrode of the present invention has good coatability. At the same time, the cycle characteristics of the secondary battery provided with the electrodes obtained by using the composition were also excellent. Among these, when an aqueous binder containing the present crosslinked polymer having a viscosity of a 2% by mass aqueous solution of 10,000 mPa · s or less is used, the coatability is further excellent and the cycle characteristics are also excellent. There were (Examples 1 to 17, 19). When the amount of lithium acetate used as the alkali metal salt is 100 parts by mass or less with respect to 100 parts by mass of the total amount of the crosslinked polymer, the larger the amount used, the higher the compatibility between coatability and cycle characteristics. It was something that could be achieved in dimensions (Examples 1, 3, and 4).
本非架橋重合体R-7は、本架橋重合体塩R-1~R-5よりも高粘度であっても、本アルカリ金属塩である酢酸リチウムとを含有する水系バインダーとして用いた場合には、本組成物の粘度が低減することで塗工性に優れ、さらに、二次電池のサイクル特性にも優れた(実施例19)。なお、本架橋重合体を用いた場合のサイクル特性が、本非架橋重合体を用いた場合よりも高いのは、本架橋重合体の方が強靭なバインダーであることに起因すると推定される。
The non-crosslinked polymer R-7 has a higher viscosity than the crosslinked polymer salts R-1 to R-5, but when used as an aqueous binder containing lithium acetate, which is the alkali metal salt. Is excellent in coatability due to the reduced viscosity of the present composition, and is also excellent in the cycle characteristics of the secondary battery (Example 19). It is presumed that the reason why the cycle characteristics when the present crosslinked polymer is used is higher than that when the present non-crosslinked polymer is used is that the present crosslinked polymer is a tougher binder.
これらに対して、アルカリ金属水酸化物又は本アルカリ金属塩を含有しない水系バインダーを含む二次電池電極合剤層用組成物の場合、サイクル特性あるいは塗工性のいずれかが著しく劣った(比較例1~3)。
On the other hand, in the case of the composition for the secondary battery electrode mixture layer containing the aqueous binder containing no alkali metal hydroxide or the present alkali metal salt, either the cycle characteristics or the coatability was significantly inferior (comparison). Examples 1 to 3).
本発明の二次電池電極用水系バインダーを含む二次電池電極合剤層用組成物を使用して得られた電極を備えた二次電池は、良好な耐久性(サイクル特性)を示すため、車載用二次電池への適用が期待される。また、シリコンを含む活物質の使用にも有用であり、電池の高容量化への寄与が期待される。
本発明の二次電池電極用水系バインダーは、特に非水電解質二次電池電極に好適に用いることができ、中でも、エネルギー密度が高い非水電解質リチウムイオン二次電池に有用である。 A secondary battery provided with an electrode obtained by using the composition for a secondary battery electrode mixture layer containing the aqueous binder for a secondary battery electrode of the present invention exhibits good durability (cycle characteristics). It is expected to be applied to in-vehicle secondary batteries. It is also useful for the use of active materials containing silicon, and is expected to contribute to increasing the capacity of batteries.
The water-based binder for a secondary battery electrode of the present invention can be particularly preferably used for a non-aqueous electrolyte secondary battery electrode, and is particularly useful for a non-aqueous electrolyte lithium ion secondary battery having a high energy density.
本発明の二次電池電極用水系バインダーは、特に非水電解質二次電池電極に好適に用いることができ、中でも、エネルギー密度が高い非水電解質リチウムイオン二次電池に有用である。 A secondary battery provided with an electrode obtained by using the composition for a secondary battery electrode mixture layer containing the aqueous binder for a secondary battery electrode of the present invention exhibits good durability (cycle characteristics). It is expected to be applied to in-vehicle secondary batteries. It is also useful for the use of active materials containing silicon, and is expected to contribute to increasing the capacity of batteries.
The water-based binder for a secondary battery electrode of the present invention can be particularly preferably used for a non-aqueous electrolyte secondary battery electrode, and is particularly useful for a non-aqueous electrolyte lithium ion secondary battery having a high energy density.
Claims (14)
- エチレン性不飽和カルボン酸単量体に由来する構造単位を50質量%以上100質量%以下含む重合体又はその塩、及び、アルカリ金属水酸化物又は式量200以下であって、エチレン性不飽和基を有しない化合物のアルカリ金属塩を含有する二次電池電極用水系バインダー。 A polymer containing 50% by mass or more and 100% by mass or less of a structural unit derived from an ethylenically unsaturated carboxylic acid monomer or a salt thereof, and an alkali metal hydroxide or a formula of 200 or less, which is ethylenically unsaturated. An aqueous binder for a secondary battery electrode containing an alkali metal salt of a compound having no group.
- 前記重合体は、架橋重合体又は非架橋重合体である、請求項1に記載の二次電池電極用水系バインダー。 The aqueous binder for a secondary battery electrode according to claim 1, wherein the polymer is a crosslinked polymer or a non-crosslinked polymer.
- 前記架橋重合体は、架橋性単量体を用いて得られたものであり、当該架橋性単量体の使用量は、非架橋性単量体の総量100質量部に対し、0.05質量部以上5.0質量部以下である、請求項2に記載の二次電池電極用水系バインダー。 The crosslinked polymer was obtained by using a crosslinkable monomer, and the amount of the crosslinked monomer used was 0.05 mass by mass with respect to 100 parts by mass of the total amount of the non-crosslinkable monomer. The aqueous binder for a secondary battery electrode according to claim 2, wherein the amount is equal to or more than 5.0 parts by mass or less.
- 前記非架重合体は、ビニルアルコールに由来する構造単位を50質量%以下含む、請求項2に記載の二次電池電極用水系バインダー。 The aqueous binder for a secondary battery electrode according to claim 2, wherein the non-frame polymer contains 50% by mass or less of a structural unit derived from vinyl alcohol.
- 前記重合体の2質量%濃度水溶液の粘度が10,000mPa・s以下である、請求項1~4のいずれか1項に記載の二次電池電極用水系バインダー。 The aqueous binder for a secondary battery electrode according to any one of claims 1 to 4, wherein the viscosity of the 2% by mass aqueous solution of the polymer is 10,000 mPa · s or less.
- 前記重合体の中和度が70モル%以上である、請求項1~5のいずれか1項に記載の二次電池電極用水系バインダー。 The aqueous binder for a secondary battery electrode according to any one of claims 1 to 5, wherein the degree of neutralization of the polymer is 70 mol% or more.
- 前記アルカリ金属塩の使用量が、前記重合体の総量100質量部に対し、5.0質量部以上175質量部以下である、請求項1~6のいずれか1項に記載の二次電池電極用水系バインダー。 The secondary battery electrode according to any one of claims 1 to 6, wherein the amount of the alkali metal salt used is 5.0 parts by mass or more and 175 parts by mass or less with respect to 100 parts by mass of the total amount of the polymer. Water-based binder.
- 前記アルカリ金属塩が、リチウム塩、ナトリウム塩及びカリウム塩からなる群より選択される少なくとも1種を含む、請求項1~7のいずれか1項に記載の二次電池電極用水系バインダー。 The aqueous binder for a secondary battery electrode according to any one of claims 1 to 7, wherein the alkali metal salt contains at least one selected from the group consisting of a lithium salt, a sodium salt and a potassium salt.
- 前記リチウム塩が、酢酸リチウムである、請求項8に記載の二次電池電極用水系バインダー。 The aqueous binder for a secondary battery electrode according to claim 8, wherein the lithium salt is lithium acetate.
- さらに、スチレンブタジエンゴム (SBR)系ラテックス及び/又はカルボキシメチルセルロース(CMC)を含有する、請求項1~9のいずれか1項に記載の二次電池電極用水系バインダー。 The aqueous binder for a secondary battery electrode according to any one of claims 1 to 9, further containing a styrene-butadiene rubber (SBR) -based latex and / or carboxymethyl cellulose (CMC).
- 請求項1~10のいずれか1項に記載の二次電池電極用水系バインダー、活物質及び水を含む二次電池電極合剤層用組成物。 A composition for a secondary battery electrode mixture layer containing an aqueous binder for a secondary battery electrode, an active material, and water according to any one of claims 1 to 10.
- 前記二次電池電極合材層用組成物のpHが12.5未満である、請求項11に記載の二次電池電極合材層用組成物。 The composition for a secondary battery electrode mixture layer according to claim 11, wherein the pH of the composition for the secondary battery electrode mixture layer is less than 12.5.
- 集電体表面に、請求項11又は12に記載の二次電池電極合剤層用組成物から形成される合剤層を備える、二次電池電極。 A secondary battery electrode comprising a mixture layer formed from the composition for the secondary battery electrode mixture layer according to claim 11 or 12 on the surface of a current collector.
- 請求項13に記載の二次電池電極を備える、二次電池。 A secondary battery comprising the secondary battery electrode according to claim 13.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021562587A JPWO2021111933A1 (en) | 2019-12-04 | 2020-11-25 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019219447 | 2019-12-04 | ||
JP2019-219447 | 2019-12-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021111933A1 true WO2021111933A1 (en) | 2021-06-10 |
Family
ID=76222197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/043719 WO2021111933A1 (en) | 2019-12-04 | 2020-11-25 | Aqueous binder for secondary battery electrodes, composition for secondary battery electrode mixture layers, secondary battery electrode, and secondary battery |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2021111933A1 (en) |
WO (1) | WO2021111933A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023085233A1 (en) * | 2021-11-09 | 2023-05-19 | 株式会社日本触媒 | Lithium-ion secondary battery negative electrode composition |
CN116285786A (en) * | 2023-05-23 | 2023-06-23 | 广汽埃安新能源汽车股份有限公司 | Adhesive, preparation method, electrode slurry, electrode plate and secondary battery |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015201267A (en) * | 2014-04-04 | 2015-11-12 | 住友精化株式会社 | Mixture for lithium ion secondary battery electrode, electrode for lithium ion secondary battery containing mixture, lithium ion secondary battery including electrode, and electric equipment |
JP2018142451A (en) * | 2017-02-28 | 2018-09-13 | 三洋化成工業株式会社 | Battery electrode binder |
JP2019139893A (en) * | 2018-02-08 | 2019-08-22 | 東亞合成株式会社 | Binder for secondary battery electrode and use thereof |
-
2020
- 2020-11-25 WO PCT/JP2020/043719 patent/WO2021111933A1/en active Application Filing
- 2020-11-25 JP JP2021562587A patent/JPWO2021111933A1/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015201267A (en) * | 2014-04-04 | 2015-11-12 | 住友精化株式会社 | Mixture for lithium ion secondary battery electrode, electrode for lithium ion secondary battery containing mixture, lithium ion secondary battery including electrode, and electric equipment |
JP2018142451A (en) * | 2017-02-28 | 2018-09-13 | 三洋化成工業株式会社 | Battery electrode binder |
JP2019139893A (en) * | 2018-02-08 | 2019-08-22 | 東亞合成株式会社 | Binder for secondary battery electrode and use thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023085233A1 (en) * | 2021-11-09 | 2023-05-19 | 株式会社日本触媒 | Lithium-ion secondary battery negative electrode composition |
CN116285786A (en) * | 2023-05-23 | 2023-06-23 | 广汽埃安新能源汽车股份有限公司 | Adhesive, preparation method, electrode slurry, electrode plate and secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021111933A1 (en) | 2021-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6150031B1 (en) | Nonaqueous electrolyte secondary battery electrode binder, method for producing the same, and use thereof | |
JP6729603B2 (en) | Binder for non-aqueous electrolyte secondary battery electrode, method for producing the same, and use thereof | |
JP6465323B2 (en) | Nonaqueous electrolyte secondary battery electrode binder and use thereof | |
JP6638747B2 (en) | Binder for secondary battery electrode and its use | |
JP6388145B2 (en) | Nonaqueous electrolyte secondary battery electrode mixture layer composition, method for producing the same, and use thereof | |
JP6981466B2 (en) | Method for producing crosslinked polymer or salt thereof | |
JPWO2016158939A1 (en) | Nonaqueous electrolyte secondary battery electrode mixture layer composition, method for producing the same, and use thereof | |
WO2018043484A1 (en) | Binder for nonaqueous electrolyte secondary battery electrodes and use of same | |
JP6792054B2 (en) | Binder for non-aqueous electrolyte secondary battery electrodes | |
WO2021111933A1 (en) | Aqueous binder for secondary battery electrodes, composition for secondary battery electrode mixture layers, secondary battery electrode, and secondary battery | |
JP7234934B2 (en) | Binder for secondary battery electrode and its use | |
JP6944610B2 (en) | Binder for non-aqueous electrolyte secondary battery electrodes | |
JPWO2020137523A1 (en) | Binder for secondary battery electrode and its use | |
JP6988888B2 (en) | Binder for non-aqueous electrolyte secondary battery electrode, its manufacturing method, and its application | |
JP7160222B2 (en) | Method for producing binder for non-aqueous electrolyte secondary battery electrode | |
WO2019230714A1 (en) | Binder for secondary battery electrode and use thereof | |
JP7327404B2 (en) | Binder for secondary battery electrode mixture layer, composition for secondary battery electrode mixture layer, and secondary battery electrode | |
JP6897759B2 (en) | Method for producing crosslinked polymer or salt thereof | |
WO2021100582A1 (en) | Secondary battery electrode compound layer composition, secondary battery electrode, and secondary battery | |
JPWO2019017315A1 (en) | Binder for non-aqueous electrolyte secondary battery electrode and use thereof | |
JP7211418B2 (en) | Binder for secondary battery electrode and its use | |
JP7480703B2 (en) | Composition for secondary battery electrode mixture layer and secondary battery electrode | |
WO2024034442A1 (en) | Binder for electrode of secondary battery that comprises secondary battery negative electrode containing silicon-based active material, and use of same | |
WO2023008296A1 (en) | Production method for slurry composition for secondary battery electrode, and production method for secondary battery electrode and secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20896477 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021562587 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20896477 Country of ref document: EP Kind code of ref document: A1 |