Nothing Special   »   [go: up one dir, main page]

WO2021193221A1 - Resin composition, cured film, method for producing microlens, solid state imaging device, microlens, and touch panel - Google Patents

Resin composition, cured film, method for producing microlens, solid state imaging device, microlens, and touch panel Download PDF

Info

Publication number
WO2021193221A1
WO2021193221A1 PCT/JP2021/010522 JP2021010522W WO2021193221A1 WO 2021193221 A1 WO2021193221 A1 WO 2021193221A1 JP 2021010522 W JP2021010522 W JP 2021010522W WO 2021193221 A1 WO2021193221 A1 WO 2021193221A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
particles
weight
polysiloxane
group
Prior art date
Application number
PCT/JP2021/010522
Other languages
French (fr)
Japanese (ja)
Inventor
石川世志美
日比野利保
鳴戸真之
諏訪充史
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2021517709A priority Critical patent/JPWO2021193221A1/ja
Publication of WO2021193221A1 publication Critical patent/WO2021193221A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • C08K5/27Compounds containing a nitrogen atom bound to two other nitrogen atoms, e.g. diazoamino-compounds
    • C08K5/28Azides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Definitions

  • the present invention relates to a resin composition, a cured film, a method for manufacturing a microlens, a solid-state image sensor, a microlens, and a touch panel.
  • a material for forming a microlens is applied, cured, a photoresist is applied on the upper part, exposed and developed, a pattern is processed to the size of the microlens, and then the photoresist is used. Is used as a mask, and the material for forming a microlens is processed into a microlens shape by dry etching.
  • the material for forming a microlens is required to have a high refractive index in order to efficiently collect light, and at the same time, it is required to have excellent moisture resistance, chemical resistance, etc. while maintaining high transmittance. ..
  • a polysiloxane resin is used as a resin that satisfies such a requirement.
  • Patent Document 1 reports a siloxane resin composition for forming a microlens, which contains a siloxane resin having a condensed polycyclic aromatic group and a composite oxide such as aluminum, titanium, tin or zirconium.
  • the siloxane resin composition for forming a microlens containing a siloxane resin having a condensed polycyclic aromatic group and metal compound particles described in Patent Document 1 contains a composite oxide such as aluminum, titanium, tin or zirconium. Therefore, it is difficult to dry etch, and there is a problem in the process compatibility of microlens formation. Further, there are problems that the heat resistance is insufficient and the chemical resistance of the cured film is insufficient due to the thermal decomposition of the condensed polycyclic aromatic group at a high temperature.
  • the present invention has the following configurations.
  • Titanium composite oxide particles (B1) having a total content of one or more elements selected from the group consisting of resin (A), aluminum, tin and zirconium of 2% by weight or more and 15% by weight or less, and aluminum.
  • Resin composition is a total content of one or more elements selected from the group consisting of resin (A), aluminum, tin and zirconium of 2% by weight or more and 15% by weight or less, and aluminum.
  • Two types of particles of titanium composite oxide particles (B2) having a total content of one or more elements selected from the group consisting of tin and zirconium of less than 2% by weight, and a solvent (C). Resin composition.
  • Particles (B) which are a composite oxide of one or more types of polysiloxane (a1) having a structure represented by the formula (1), aluminum, tin, zirconium and silicon selected from the group and titanium, and A resin composition containing the solvent (C).
  • R 1 represents an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms.
  • n is 0 or 1
  • * means a bond directly connected to a silicon atom.
  • the resin composition of the present invention is excellent in high heat resistance, etching property and chemical resistance.
  • the resin composition of the present invention is a titanium composite oxide particle having a total content of one or more elements selected from the group consisting of resin (A), aluminum, tin and zirconium of 2% by weight or more and 15% by weight or less.
  • the resin composition of another aspect of the present invention is one or more selected from the group consisting of polysiloxane (a1) having a structure represented by the formula (1), aluminum, tin, zirconium and silicon, and titanium. It contains particles (B) which are composite oxides and a solvent (C).
  • the polysiloxane (a1) having the structure represented by the formula (1) may be hereinafter referred to as polysiloxane (a1).
  • Particles (B) which are a composite oxide of one or more kinds and titanium selected from the group consisting of aluminum, tin, zirconium and silicon may be hereinafter referred to as particles (B).
  • R 1 represents an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms.
  • n is 0 or 1
  • * means a bond directly connected to a silicon atom.
  • the resin (A) in the present invention examples include general resins (those having a repeating unit structure) such as acrylic resins, epoxy resins, polyethylenes, polyimides, and polysiloxanes, but with the particles (B) described later. It is particularly desirable that the resin (A) is polysiloxane (A1) from the viewpoint of compatibility, heat resistance of the formed cured film, and chemical resistance. Further, since the cured film has a high refractive index and good chemical resistance, the refractive index of the polysiloxane (A1) at a wavelength of 633 nm is preferably 1.60 or more and less than 1.80.
  • the polysiloxane (A1) is a polysiloxane (a1) having a structure represented by the formula (1).
  • R 1 represents an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms.
  • n is 0 or 1
  • * means a bond directly connected to a silicon atom.
  • the polysiloxane (a1) has the structure of the formula (1), it is possible to impart high refractive index, high heat resistance and good etching property to the cured film.
  • the mol ratio of the structure represented by the formula (1) in the polysiloxane (a1) is preferably 10 to 90 mol% with respect to 100 mol% of all Si atoms contained in the polysiloxane (a1). Within the above range, the refractive index, heat resistance and etching property of the cured film can be further improved. As the lower limit, the mol ratio of the structure represented by the formula (1) in the polysiloxane (a1) is more preferably 20 mol% or more with respect to 100 mol% of all Si atoms contained in the polysiloxane (a1). More preferably, it is 30 mol% or more.
  • the mol ratio of the structure represented by the formula (1) in the polysiloxane (a1) is more preferably 85 mol or less with respect to 100 mol% of all Si atoms contained in the polysiloxane (a1), and further. It is preferably 80 mol or less.
  • the polysiloxane (A1) or polysiloxane (a1) preferably has a structure represented by the formula (2) and / or a structure represented by the formula (3).
  • R 2 represents an alkylene group having 1 to 4 carbon atoms or a divalent aromatic group having 1 to 8 carbon atoms. * Means a bond that is directly linked to a silicon atom.
  • the total is preferably 1 to 30 mol%, more preferably 5 to 20 mol%. Within this range, the chemical resistance of the cured film can be improved.
  • Polysiloxane (A1) or polysiloxane (a1) can be obtained by a known method of hydrolyzing an alkoxysilane compound as a raw material in an organic solvent and partially condensing it. At this time, an arbitrary substituent can be introduced into the polysiloxane by selecting the type of the raw material alkoxysilane.
  • the structure of the formula (1) can be introduced by using the alkoxysilane compound represented by the formula (4).
  • R 1 represents an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms.
  • n is 0 or 1
  • R 3 is an alkyl group having 1 to 4 carbon atoms.
  • R 4 is a hydrocarbon group having 1 to 10 carbon atoms.
  • m is 0 or 1.
  • alkoxysilane compound represented by the formula (4) examples include biphenyltrimethoxysilane, biphenyltriethoxysilane, biphenylmethyldimethoxysilane, biphenylmethyldiethoxysilane, 4-methylbiphenyltrimethoxysilane, and 4-methylbiphenyltriethoxysilane. Examples thereof include 4-methoxybiphenyltrimethoxysilane and 4-methoxybiphenyltriethoxysilane. These alkoxysilane compounds may be used alone or in combination of two or more.
  • the structure represented by the formula (2) and / or the structure represented by the formula (3) can be introduced by using the alkoxysilane compound represented by the formula (5).
  • R 2 represents an alkylene group having 1 to 4 carbon atoms or a divalent aromatic group having 1 to 8 carbon atoms.
  • R 5 is an alkyl group having 1 to 4 carbon atoms.
  • R 6 is a hydrocarbon group having 1 to 10 carbon atoms. l is 0 or 1.
  • alkoxysilane compound represented by the formula (5) examples include 3-trimethoxysilylpropyl succinic anhydride, 3-triethoxysilylpropyl succinic anhydride, 3-triphenyloxysilylpropyl succinic anhydride, and 3-tri. Examples thereof include methoxycisilylpropylphthalic anhydride, 3-trimethoxycyclylpropylcyclohexyldicarboxylic anhydride, and the like. These alkoxysilane compounds may be used alone or in combination of two or more.
  • the polysiloxane (A1) or the polysiloxane (a1) may contain an alkoxysilane compound other than the above as a raw material.
  • alkoxysilane compounds other than the above include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltriisopropoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, and hexyltrimethoxysilane.
  • alkoxysilane compounds methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, and phenyltriethoxysilane are preferable from the viewpoint of chemical resistance of the obtained cured film.
  • These alkoxysilane compounds may be used alone or in combination of two or more.
  • the content of the polysiloxane (A1) and / or the polysiloxane (a1) is based on the total amount of the solid content of the resin composition excluding the solvent (C) from the viewpoint of further enhancing the light transmittance and crack resistance of the cured film. 10% by weight or more is preferable, and 20% by weight or more is more preferable.
  • the content of polysiloxane (A1) and / or polysiloxane (a1) is the total amount of solids excluding the solvent (C) of the resin composition from the viewpoint of further enhancing the light transmittance and crack resistance of the cured film. 80% by weight or less is more preferable.
  • Polysiloxane (A1) or polysiloxane (a1) can be obtained by hydrolyzing and condensing an alkoxysilane compound as a raw material.
  • an acid catalyst and water are added to the above-mentioned alkoxysilane compound in a solvent to generate a silanol group. It is preferable to add an acid catalyst and water to the alkoxysilane compound over 1 to 180 minutes, and then react at room temperature to 110 ° C. for 1 to 180 minutes. By carrying out the hydrolysis reaction under such conditions, a rapid reaction can be suppressed. A more preferable reaction temperature is 40 to 105 ° C.
  • condensation reaction is carried out to obtain polysiloxane.
  • the condensation reaction is preferably carried out by heating the reaction solution at 50 ° C. or higher and below the boiling point of the solvent for 1 to 100 hours. It is also effective to reheat or add a base catalyst in order to increase the degree of polymerization of the polysiloxane compound obtained by the condensation reaction.
  • Examples of the acid catalyst used in the hydrolysis reaction include acid catalysts such as hydrochloric acid, acetic acid, formic acid, nitrate, oxalic acid, hydrochloric acid, sulfuric acid, phosphoric acid, polyphosphoric acid, polyvalent carboxylic acid or its anhydride, and ion exchange resin.
  • acid catalysts such as hydrochloric acid, acetic acid, formic acid, nitrate, oxalic acid, hydrochloric acid, sulfuric acid, phosphoric acid, polyphosphoric acid, polyvalent carboxylic acid or its anhydride, and ion exchange resin.
  • an acidic aqueous solution using formic acid, acetic acid or phosphoric acid is preferable.
  • the preferable content of these acid catalysts is preferably 0.05 parts by weight or more, more preferably 0.1 parts by weight or more, based on 100 parts by weight of the total polysiloxane compound before the hydrolysis reaction. Further, it is preferably 10 parts by weight or less, more preferably 5 parts by weight or less.
  • the total amount of the polysiloxane compound is a compound having a silicon atom and includes all of the alkoxysilane compound which is a raw material of the polysiloxane, its hydrolyzate, and the polysiloxane which is a condensate thereof. To tell. The definition is the same below.
  • the solvent used for the hydrolysis / condensation reaction is not particularly limited, but is appropriately selected in consideration of the stability, wettability, volatility, etc. of the resin composition. Not only one type of solvent but also two or more types can be used.
  • the solvent used for the hydrolysis / condensation reaction may be contained as it is as the solvent (C) of the resin composition.
  • solvent examples include the following. Methanol, ethanol, propanol, isopropanol, butanol, isobutanol, t-butanol, pentanol, 4-methyl-2-pentanol, 3-methyl-2-butanol, 3-methyl-3-methoxy-1-butanol, di Alcohols such as acetone alcohol.
  • Glycols such as ethylene glycol and propylene glycol.
  • Ketones such as methyl ethyl ketone, acetylacetone, methyl propyl ketone, methyl butyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclopentanone, and 2-heptanone.
  • Amides such as dimethylformamide and dimethylacetamide. Ethyl acetate, propyl acetate, butyl acetate, isobutyl acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, methyl lactate, ethyl lactate, butyl lactate, etc. Acetic acids; aromatic or aliphatic hydrocarbons such as toluene, xylene, hexane, cyclohexane.
  • propylene glycol monomethyl ether propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, and propylene glycol mono-t are considered in terms of the permeability of the cured film and crack resistance.
  • -Butyl ether, ⁇ -butylollactone and the like are preferably used.
  • the concentration or viscosity of the resin composition is also preferable to adjust the concentration or viscosity of the resin composition to an appropriate level by further adding a solvent after the completion of the hydrolysis / condensation reaction. It is also possible to distill and remove all or part of vaporizable hydrolysis products such as alcohol produced by heating and / or under reduced pressure after hydrolysis, and then add a suitable solvent.
  • the amount of the solvent used in the hydrolysis reaction is preferably 50 parts by weight or more, more preferably 80 parts by weight or more, and preferably 500 parts by weight or less, based on 100 parts by weight of the total polysiloxane compound. Preferably, it is 200 parts by weight or less. Gel formation can be suppressed by setting the amount of the solvent to 50 parts by weight or more. Further, when the content is 500 parts by weight or less, the hydrolysis reaction proceeds rapidly.
  • water used for the hydrolysis reaction ion-exchanged water is preferable.
  • the amount of water can be arbitrarily selected, but it is preferably used in the range of 1.0 to 4.0 mol with respect to 1 mol of the alkoxysilane compound.
  • the resin composition of the present invention contains titanium composite oxide particles (B1) having a total content of one or more elements selected from the group consisting of aluminum, tin and zirconium of 2% by weight or more and 15% by weight or less (hereinafter, (Sometimes referred to as particles (B1)) and titanium composite oxide particles (B2) having an elemental layer content of less than 2% by weight selected from the group consisting of aluminum, tin and zirconium (hereinafter, referred to as “B1)”. It contains two types of particles (sometimes referred to as particles (B2)). By containing these two types of particles, the refractive index and etching processability can be improved.
  • the total element content refers to the ratio (% by weight) of the total content of the relevant element to the total weight of the relevant particle, and when a dispersant containing the particles (B1) or (B2) is used, the ratio thereof is used.
  • the ratio of the total content of the corresponding elements shall be calculated with the total amount of solids as the weight of the particles.
  • the total content of one or more elements selected from the group consisting of aluminum, tin and zirconium of the particles (B2) is preferably less than 0.5% by weight, more preferably 0.1% by weight, from the viewpoint of etchability. More preferably, it is less than%. Furthermore, it is desirable that the amount is as small as possible, and ideally 0% by weight.
  • the mixed weight ratio (B1 / B2) of these particles (B1) and the particles (B2) is preferably 0.25 to 4. Being in this range improves the etching property.
  • the content of the corresponding element of the particle (B1) or the particle (B2) can be measured by a fluorescent X-ray analysis method, an ICP emission spectroscopic analysis method, an ICP weight analysis method, or an atomic absorption spectrometry method.
  • the total amount of aluminum, tin and zirconium contained in the resin composition is preferably 0.01% by weight or more and less than 1% by weight with respect to 100% by weight of the total amount of the resin composition. For example, by adjusting the mixing ratio of the particles (B1) and the particles (B2) as described above, the total amount of aluminum, tin, and zirconium contained in the resin composition can be adjusted.
  • the total content of the particles (B1) and the particles (B2) is preferably 35 to 70% by weight with respect to the solid content in the resin composition. Within the above range, high refractive index, crack resistance and transparency can be achieved at the same time. As a lower limit, the total content of the particles (B1) and the particles (B2) is more preferably 40% by weight or more, still more preferably 45% by weight or more, based on the solid content in the resin composition. As an upper limit, the total content of the particles (B1) and the particles (B2) is more preferably 65% by weight or less, still more preferably 60% by weight or less, based on the solid content in the resin composition.
  • the resin composition of another aspect of the present invention contains particles (B) which are composite oxides of titanium and one or more selected from the group consisting of aluminum, tin, zirconium and silicon.
  • the above-mentioned particles (B1) and particles (B2) are also assumed to be a kind of particles (B).
  • Particle (B) has a high refractive index and stability, and is preferably used. Among them, particles which are a composite oxide of tin and / or zirconium and titanium have a high refractive index and are more preferable.
  • the particles (B) are one or more selected from the group consisting of aluminum, tin and zirconium, the particles (B3) which are composite oxides of titanium, and the particles (B4) which are composite oxides of silicon and titanium. ), It is more preferable to contain two types of particles. Etching property is improved by containing two kinds of particles, the particles (B3) and the particles (B4).
  • One or more kinds selected from the group consisting of aluminum, tin and zirconium, and particles (B3) which are composite oxides of titanium may be hereinafter referred to as particles (B3).
  • Particles (B4) which are composite oxides of silicon and titanium may be hereinafter referred to as particles (B4). It is assumed that the particle (B3) and the particle (B4) are a kind of the particle (B).
  • the number average particle size of the particles (B) is preferably 1 to 200 nm. In order to obtain a cured film having high transmittance, the number average particle diameter of the particles (B) is more preferably 1 nm to 70 nm.
  • the number average particle diameter of the particles (B) can be measured by a gas adsorption method, a dynamic light scattering method, a small-angle X-ray scattering method, a transmission electron microscope, or a scanning electron microscope.
  • the content of the particles (B) is preferably 35 to 70% by weight with respect to the solid content in the resin composition. Within the above range, high refractive index, crack resistance and transparency can be achieved at the same time.
  • the content of the particles (B) is more preferably 40% by weight or more, still more preferably 45% by weight or more, based on the solid content in the resin composition.
  • the content of the particles (B) is more preferably 65% by weight or less, still more preferably 60% by weight or less, based on the solid content in the resin composition.
  • the total content of the particles (B3) and the particles (B4) is preferably 35 to 70% by weight with respect to the solid content in the resin composition.
  • the total content of the particles (B3) and the particles (B4) is more preferably 40% by weight or more, still more preferably 45% by weight or more, based on the solid content in the resin composition.
  • the total content of the particles (B3) and the particles (B4) is more preferably 65% by weight or less, still more preferably 60% by weight or less, based on the solid content in the resin composition.
  • the content of aluminum, tin, zirconium and silicon in the composite oxide is not particularly limited, but the total amount of aluminum, tin, zirconium contained in the resin composition is 100% by weight based on the total amount of the resin composition. , 0.01% by weight or more and less than 1% by weight. Within this range, the etching property is improved and it becomes easier to form a lens.
  • Titanium oxide includes those having different crystal structures, such as anatase-type titanium oxide and rutile-type titanium oxide, but the crystal structure of the particles (B) is not particularly limited, and particles (B) having an appropriate structure depending on the application are not particularly limited. ) Can be used.
  • the surface of the particles (B) may be coated with a polymer, a dispersant, or the like.
  • the dispersed state of the surface-coated particles (B) is stabilized, and aggregation and precipitation tend to be suppressed even if the content of the particles (B) in the resin composition is increased.
  • the polysiloxane (A1) in the resin composition also contributes to the dispersion stabilization of the particles (B).
  • the polysiloxane (A1) and the particles (B) easily interact with each other, and the dispersion stability can be improved by simply mixing them.
  • the polysiloxane (A1) and the particles (B) are bonded by mixing the particles (B) in the process of hydrolysis / condensation reaction of the alkoxysilane compound as a raw material.
  • a complex (E) of polysiloxane and particles can be formed.
  • particles (B1) or particles (B2) are mixed in the process of hydrolysis / condensation reaction of the alkoxysilane compound as a raw material to obtain polysiloxane (A1).
  • a composite (E) of a polysiloxane and a particle in which the particle (B1) or the particle (B2) is bonded can be formed.
  • the resin composition of the present invention preferably contains a polysiloxane (A1) and a composite (E) of the polysiloxane and the particles in which the particles (B1) or the particles (B2) are bonded.
  • a complex (E1) of the polysiloxane and the particles in which the polysiloxane (a1) and the particles (B) are bonded is formed.
  • the resin composition of the present invention preferably contains a polysiloxane (a1) and a complex (E1) of the polysiloxane and the particles to which the particles (B) are bonded.
  • the dispersion stability of the particles (B1) or the particles (B2) or the particles (B) is further improved. be able to.
  • Examples of commercially available particles (B) are “Optrake®” TR-502, “Optrake” TR-503, “Optrake” TR-504, “Optrake®” TR-502, “Optrake” TR-504, “Optrake®” TR-502, “Optrake” TR-504, which are silicon oxide-titanium oxide composite particles.
  • Examples of particles (B1) include the above-mentioned "Optrake” TR-550 (trade name, manufactured by Catalysis Chemical Industry Co., Ltd.), zirconium oxide particles (manufactured by High Purity Chemical Laboratory Co., Ltd.), tin oxide-oxidation. Zirconium composite particles (manufactured by Catalysis Chemical Industry Co., Ltd.), etc. can be mentioned.
  • Examples of particles (B3) include the above-mentioned "Optrake” TR-550 (trade name, manufactured by Catalysis Chemical Industry Co., Ltd.), zirconium oxide particles (manufactured by High Purity Chemical Laboratory Co., Ltd.), tin oxide-oxidation. Zirconium composite particles (manufactured by Catalysis Chemical Industry Co., Ltd.), etc. are mentioned, and examples of the particles (B4) include the above-mentioned "Optrake (registered trademark)" TR-502, “Optrake” TR-503, ".
  • ⁇ Chinone diazide compound (D)> In order to impart positive photosensitivity to the resin composition of the present invention, it is preferable to further contain the quinone diazide compound (D).
  • the quinone diazide compound (D) By containing the quinonediazide compound, a positive relief pattern can be obtained by improving the solubility of the exposed portion in the aqueous solution of tetramethylammonium hydroxide.
  • the quinone diazide compound (D) the compound represented by any of the formula (6) is preferable. It is a compound in which a sulfonic acid of naphthoquinonediazide is ester-bonded to a compound having a phenolic hydroxyl group.
  • R 7 indicates the residue after esterification of the compound having a phenolic hydroxyl group.
  • Examples of the compound having a phenolic hydroxyl group used here include 4,4'-Cyclohexylidenobis phenol, 4,4'-Cyclohexylidenebis [2-methylphenol], 5,5'-(1,1'-Cyclohexylidene) bis-.
  • compounds having a particularly preferable phenolic hydroxyl group include, for example, 4,4'-Cyclohexylidobis phenol, 4,4,4', 4'Tetracis [(1-methylthylide) bis (1,4-cyclohexylide)].
  • a compound obtained by introducing 4-naphthoquinonediazide sulfonic acid or 5-naphthoquinone diazidosulfonic acid into the compound having a phenolic hydroxyl group described above by an ester bond can be exemplified as a preferable compound.
  • Other compounds can also be used.
  • the content of the quinone diazide compound (D) is 1 to 50 parts by weight, more preferably 2 to 10 parts by weight, based on the resin (A) and / or the polysiloxane (A1).
  • the content of the quinone diazide compound (D) is preferably 1 to 50 parts by weight, more preferably 2 to 10 parts by weight, based on the polysiloxane (a1). By setting the amount to 1 part by weight or more, pattern formation can be performed with practical sensitivity. Further, when the content is 50 parts by weight or less, a resin composition having excellent transmittance and pattern resolution can be obtained.
  • the preferable molecular weight of the quinonediazide compound (D) is 300 or more, more preferably 350 or more. Further, it is 1000 or less, more preferably 800 or less. By setting the molecular weight to 300 or more, the effect of suppressing dissolution of the unexposed portion can be obtained. Further, by setting the molecular weight to 1000 or less, a relief pattern without scum can be obtained in a portion developed after exposure and from which the photosensitive resin composition has been removed.
  • the resin composition of the present invention contains a solvent (C).
  • the solvent (C) include the following.
  • Ethylene glycol monomethyl ether ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol mono-t-butyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, Ether-based compounds such as ethylene glycol dibutyl ether.
  • Lactate SL such as methyl lactate, ethyl lactate, and butyl lactate.
  • Ketone compounds such as acetylacetone, methylpropylketone, methylbutylketone, methylisobutylketone, cyclopentanone, 2-heptanone, and mesityl oxide.
  • Alcohols such as methanol, ethanol, propanol, butanol, isobutyl alcohol, pentanol, 4-methyl-2-pentanol, 3-methyl-2-butanol, 3-methyl-3-methoxy-1-butanol, diacetone alcohol, etc.
  • Compound. Aromatic hydrocarbon compounds such as toluene and xylene.
  • ⁇ -butyrolactone, N-methylpyrrolidinone, etc. may be contained alone or in two or more kinds.
  • examples of particularly preferable solvents are propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol mono-t-butyl ether, and diacetone alcohol. , Gamma-butylollactone. These may be contained alone or in two or more kinds.
  • the content of the solvent (C) in the resin composition is preferably in the range of 100 parts by weight to 9900 parts by weight, more preferably in the range of 100 parts by weight to 5000 parts by weight, based on 100 parts by weight of the total polysiloxane compound. be.
  • the resin composition of the present invention may contain various surfactants in order to improve the flowability and the uniformity of the film thickness at the time of coating.
  • the type of surfactant is not particularly limited, and for example, a fluorine-based surfactant, a silicone-based surfactant, a polyalkylene oxide-based surfactant, a poly (meth) acrylate-based surfactant, or the like can be used. Of these, a fluorine-based surfactant is particularly preferably used from the viewpoint of flowability and film thickness uniformity.
  • fluorine-based surfactant examples include 1,1,2,2-tetrafluorooctyl (1,1,2,2-tetrafluoropropyl) ether and 1,1,2,2-tetrafluorooctyl.
  • silicone-based surfactants include SH28PA, SH7PA, SH21PA, SH30PA, and ST94PA (all manufactured by Toray Dow Corning Silicone Co., Ltd.), BYK-333, and BYK-352 (manufactured by Big Chemie Japan Co., Ltd.). ), KL-700, LE-302, LE-303, LE-304 (Kyoeisha Chemical Co., Ltd.) and the like.
  • surfactants include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene nonylphenyl ether, polyoxyethylene distearate and the like.
  • the content of the surfactant is usually 0.001 to 10 parts by weight with respect to 100 parts by weight of the total polysiloxane compound content in the resin composition. These may be used alone or in combination of two or more at the same time.
  • the resin composition may contain a polymerization inhibitor for the purpose of suppressing thermal polymerization at the time of prebaking for vaporizing the solvent, for example.
  • a polymerization inhibitor for the purpose of suppressing thermal polymerization at the time of prebaking for vaporizing the solvent, for example.
  • the polymerization inhibitor include catechols such as phenol, hydroquinone, p-methoxyphenol, benzoquinone, methoxybenzoquinone, 1,2-naphthoquinone, cresol, and pt-butylcatechol, alkylphenols, alkylbisphenols, phenothiazine, and the like.
  • the content of the polymerization inhibitor in the resin composition of the present invention is preferably 0.000005 to 0.2% by weight, preferably 0.00005 to 0.1% by weight, based on the entire resin composition. More preferred. Further, 0.0001 to 0.5% by weight is preferable, and 0.001 to 0.2% by weight is more preferable with respect to all the components other than the organic solvent.
  • the resin composition of the present invention can contain a viscosity regulator, a stabilizer, a colorant, an ultraviolet absorber and the like, if necessary.
  • the resin composition of the present invention is applied onto a substrate to obtain a coating film.
  • a cured film can be formed by drying and curing this by heating.
  • microgravure coating spin coating, dip coating, curtain flow coating, roll coating, spray coating, slit coating, sink coating method and the like can be preferably used.
  • the heat-drying and curing conditions are appropriately selected depending on the substrate to be applied and the resin composition, but usually, the treatment is carried out at a temperature of room temperature or higher and 400 ° C. or lower for 0.5 to 240 minutes. Is preferable.
  • a particularly preferable curing temperature is 100 to 400 ° C, more preferably 150 to 400 ° C.
  • the film thickness of the coating film and the cured film is not particularly limited, but both are generally in the range of 0.001 to 100 ⁇ m.
  • the method for producing a cured film preferably includes the following steps.
  • the above resin composition is applied to the substrate by a known method such as spin coating or slit coating, and heated in a hot plate, oven or the like. Heat using the device. This is called prebake.
  • Prebaking is preferably carried out in a temperature range of 50 to 150 ° C. for 30 seconds to 30 minutes.
  • the film thickness after prebaking is preferably 0.1 to 15 ⁇ m.
  • an ultraviolet-visible exposure machine such as a stepper, a mirror projection mask aligner (MPA), or a parallel light mask aligner (PLA) is used to expose about 10 to 4000 J / m 2 (wavelength 365 nm exposure). The entire surface of the coating film is exposed with an exposure amount of (quantity conversion).
  • the coating film that has undergone the step (I) of heating and curing the coating film, or the coating film that has undergone (I) and (II) is heated at 150 to 450 ° C. using a heating device such as a hot plate or an oven.
  • a cured film is obtained by heating (curing) for about 30 seconds to 2 hours in the temperature range of.
  • the above resin composition has photosensitive property and a patterned cured film is produced, it is preferable to include the following steps.
  • Step of applying the resin composition on the substrate to form a coating film The above resin composition is applied on the substrate by a known method such as spin coating or slit coating, and heated in a hot plate, an oven, or the like. Heat using the device. This is called prebake. Prebaking is preferably carried out in a temperature range of 50 to 150 ° C. for 30 seconds to 30 minutes. The film thickness after prebaking is preferably 0.1 to 15 ⁇ m.
  • a step of removing an exposed portion of the coating film by developing the coating film with a developing solution after a pattern exposure step After prebaking, a stepper, a mirror projection mask aligner (MPA), and a parallel light mask aligner (pla).
  • a pattern exposure is performed with an exposure amount of about 10 to 4000 J / m 2 (equivalent to an exposure amount of 365 nm wavelength) through a desired mask using an ultraviolet visible exposure machine such as the above.
  • the film in the exposed area is dissolved and removed by development to obtain a positive pattern.
  • the resolution of the pattern is preferably 15 ⁇ m or less.
  • the developing method include methods such as showering, dipping, and paddle, and it is preferable to immerse the film in a developing solution for 5 seconds to 10 minutes.
  • a known alkaline developing solution can be used, and examples thereof include an aqueous solution of the following alkaline components.
  • Inorganic alkaline components such as alkali metal hydroxides, carbonates, phosphates, silicates and borates, amines such as 2-diethylaminoethanol, monoethanolamine and diethanolamine, tetramethylammonium hydroxide (TMAH) , Colin and other quaternary ammonium salts. Two or more of these may be used as the alkaline developer.
  • TMAH tetramethylammonium hydroxide
  • dehydration drying baking may be performed in a temperature range of 50 to 150 ° C. with a heating device such as a hot plate or an oven. Further, if necessary, heating is performed in a heating device such as a hot plate or an oven in a temperature range of 50 to 300 ° C. for 30 seconds to 30 minutes. This is called soft bake.
  • Step of exposing the coating film remaining after the development an ultraviolet visible exposure machine such as a stepper, a mirror projection mask aligner (mpa), a parallel light mask aligner (pla) is used, and the coating film remains through a desired mask. Pattern exposure is performed at an exposure amount of about 10 to 4000 J / m 2 (wavelength 365 nm exposure amount conversion).
  • a cured film is obtained by heating (curing) the coating film that has undergone (iii) in a heating device such as a hot plate or an oven in a temperature range of 150 to 450 ° C. for about 30 seconds to 2 hours.
  • a heating device such as a hot plate or an oven in a temperature range of 150 to 450 ° C. for about 30 seconds to 2 hours.
  • the resin composition of the present invention preferably has a sensitivity of 1500 J / m 2 or less, preferably 1000 J / m 2 or less, from the viewpoint of productivity in pattern formation. Is more preferable.
  • the sensitivity at the time of exposure is obtained by the following method.
  • the photosensitive resin composition is spin-coated on a silicon wafer at an arbitrary rotation speed using a spin coater.
  • the coating film is prebaked at 120 ° C. for 3 minutes using a hot plate to prepare a prebaked film having a film thickness of 1 ⁇ m.
  • PLA PLA-501F manufactured by Canon Inc.
  • an ultra-high pressure mercury lamp is used, and a grayscale mask having a line and space pattern of 1 to 10 ⁇ m, which is a mask for sensitivity measurement, is used.
  • the pre-baked film is exposed.
  • the sensitivity is defined as the sensitivity. ..
  • thermosetting step a cured film is prepared by curing at 220 ° C. for 5 minutes using a hot plate, and the minimum pattern dimension in sensitivity is obtained as the post-cure resolution.
  • the cured film of the present invention is a cured film obtained by curing the resin composition of the present invention.
  • the resin composition of the present invention and its cured film are suitably used as index matching materials for optical devices such as solid-state image sensors, optical filters, and displays, and touch panels. More specifically, a light-collecting microlens and an optical waveguide formed on a solid-state image sensor such as a back-illuminated CMOS image sensor, an antireflection film installed as an optical filter, and a flattening material for a TFT substrate for a display. Examples thereof include a color filter such as a liquid crystal display, a protective film thereof, and a phase shifter.
  • the resin composition of the present invention and the cured film thereof can also be used as a buffer coat of a semiconductor device, an interlayer insulating film, and various protective films.
  • the solid-state image sensor of the present invention comprises the cured film of the present invention.
  • a transparent resin layer such as a color filter, a microlens (array), and an antireflection film is sequentially provided on a substrate having a semiconductor light receiving element from the substrate side.
  • Light from the outside passes through the transparent resin layer, the microlens, and the color filter in this order, reaches the light receiving element, and is detected.
  • the cured film formed from the resin composition of the present invention as a microlens, efficient light collection to the light receiving element becomes possible. It functions over the pixels of the light receiving element that detects light corresponding to each of RGB, and obtains an extremely clear image even when the pixels of the light receiving element and the individual lenses of the microlens are arranged at high density. Can be done.
  • a resin layer that functions as an optical waveguide, a color filter, a microlens (array), and a resin layer such as an antireflection film are sequentially formed on a substrate having a light receiving element.
  • the cured film formed from the resin composition of the present invention can be suitably used as a microlens or an optical waveguide.
  • the microlens of the present invention comprises the cured product of the present invention.
  • the microlens forming method an example of the microlens array forming step will be described.
  • the unevenness of the element is embedded and flattened by spin coating with a transparent resin.
  • the lens material is uniformly applied to the flattened surface to form a cured film by the method described above.
  • the resist is uniformly applied on it.
  • the resist is irradiated with ultraviolet rays using a reticle as a mask to expose a portion of the space between lenses.
  • the exposed part is decomposed and removed with a developing solution to form a pattern. Obtained by heating a hemispherical pattern.
  • the resist melts into a liquid phase, becomes a hemispherical state, and then changes to a solid phase. Then, the hemispherical pattern layer of the resist material and the layer of the lens material are etched by dry etching. In this way, a lens array in which hemispherical lenses are arranged can be formed. Since the cured film of the present invention has excellent dry etching properties, patterning in the dry etching step is easy.
  • Etching gases used for dry etching include fluorogas such as CF 4, C 4 F 6, C 4 F 8, C 4 F 8, CHF 3, SF 6 , and NF 3 gas, O 2 gas, Ar gas, and N. 2 Gas or the like can be used.
  • the microlens there is a method of omitting the use of the resist material described above and directly patterning the lens material by exposure.
  • the patterned lens material is melted by a heating step to obtain a hemispherical lens.
  • the resin composition of the present invention has positive photosensitivity, it can be suitably used for such an embodiment.
  • the work can be simplified and deterioration of the wiring portion due to the etching chemical solution or plasma can be avoided.
  • the touch panel of the present invention comprises the cured film of the present invention. Further, the cured film of the present invention is suitably used for an on-cell type or film type touch panel.
  • the touch panel referred to here is a capacitive touch panel.
  • the sensor layer of the capacitive touch panel has wiring in which ITO (Indium Tin Oxide) and metal (silver, molybdenum, aluminum, etc.) are patterned on a base material such as glass or film, and other wiring intersections.
  • ITO Indium Tin Oxide
  • metal silver, molybdenum, aluminum, etc.
  • a structure having an insulating film and a protective film for protecting ITO and metal is common.
  • the touch panel method is an on-cell method in which a sensor layer is formed on a liquid crystal panel, an OGS (One Glass Solution) method in which a touch panel layer is directly laminated on a cover glass, and a sensor layer is provided between the cover glass and the liquid crystal panel.
  • OGS One Glass Solution
  • Examples include an out-cell method of forming, and a film method using a sensor layer having a film as a support layer.
  • One form of these touch panels includes a form in which an index matching layer is provided below or above the ITO or metal wiring pattern layer in order to suppress the phenomenon in which the ITO or metal wiring is visually recognized (bone visibility phenomenon).
  • the cured film formed from the resin composition of the present invention can be suitably used as an index matching layer (or a high refractive index layer in the layer).
  • the on-cell method forms the touch panel layer directly on the liquid crystal panel
  • the wiring, the protective film, the insulating film material, and the index matching layer need to be processed and formed at a low temperature equal to or lower than the heat resistant temperature of the liquid crystal.
  • the film method it is necessary to process and form the wiring, the protective film, the insulating film material, and the index matching layer at a low temperature below the heat resistant temperature of the film. In these cases, it is difficult to apply an inorganic material formed by high-temperature film formation by CVD (Chemical Vapor Deposition), and the cured film of the present invention can be preferably used.
  • MTMS Methyltrimethoxysilane
  • BPTMS Biphenyltrimethoxysilane
  • BPDMS Biphenylmethyldimethoxysilane
  • TMS 3-Trimethoxysilylpropyl succinic acid anhydride
  • NaPTMS 1-naphthyltrimethoxysilane.
  • the measurement method performed in this example is as follows.
  • Solid content concentration of the polysiloxane solution was determined by the following method. 1.5 g of the polysiloxane solution was weighed in an aluminum cup and heated at 250 ° C. for 30 minutes using a hot plate to evaporate the liquid content. The solid content remaining in the aluminum cup after heating was weighed to determine the solid content concentration of the polysiloxane solution.
  • ⁇ Creation of cured film> A resin composition was applied onto an 8-inch silicon wafer substrate using a spin coater (model name: Clean Track Mark 7 manufactured by Tokyo Electron Limited). After coating, the film was prebaked at 100 ° C. for 3 minutes, exposed to the entire surface with an I-line stepper exposure machine at an exposure amount of 400 mJ / cm 2 , and finally heated and cured at 230 ° C. for 5 minutes to obtain a cured film of about 1 ⁇ m.
  • a spin coater model name: Clean Track Mark 7 manufactured by Tokyo Electron Limited
  • ⁇ Dry etching evaluation> The obtained cured film was evaluated by dry etching under the following equipment and conditions, and the film surface roughness Ra after etching was measured with a surfcom stylus film thickness measuring device.
  • the obtained surface roughness Ra was determined as follows. Dry etching equipment: RIE-10N Dry etching conditions: Output 200W Pressure 15Pa Gas CF 4 Flow rate 30ccm Time 3 minutes Surface roughness Ra (nm): AA: Ra ⁇ 5 nm A: 5 nm ⁇ Ra ⁇ 8 nm B: 8 nm ⁇ Ra ⁇ 14 nm C: 14 ⁇ Ra ⁇ 20 nm. D: Ra> 20 nm.
  • a resin composition was applied onto an 8-inch silicon wafer substrate using a spin coater (model name: Clean Track Mark 7 manufactured by Tokyo Electron Limited). After coating, it was prebaked at 80 ° C. for 1 minute and exposed with an I-line stepper exposure machine at an exposure amount of 400 mJ / cm 2 through a photomask. As the photomask, a light-shielding mask having 50 ⁇ m, 30 ⁇ m, and 10 ⁇ m line & space openings was used. The exposed substrate was then immersed in 2.38% TMAH for 90 seconds and then rinsed with water for 30 seconds.
  • the residual film portion was entirely exposed with an I-line stepper at an exposure amount of 400 mJ / cm 2 , and then heated at 230 ° C. for 5 minutes to obtain a pattern film of about 1 ⁇ m.
  • the square pattern of the obtained pattern film was observed, and the smallest pattern dimension (the size of the side of the square) in which the missing pattern was observed was taken as the resolution.
  • the evaluation criteria were set as follows. resolution: A: Resolution ⁇ 10 ⁇ m B: 10 ⁇ m ⁇ resolution ⁇ 30 ⁇ m C: 30 ⁇ m ⁇ resolution ⁇ 50 ⁇ m D: Resolution> 50 ⁇ m.
  • the polymer synthesis method used in the examples is as follows.
  • methanol sol TR-527 solid content concentration 20.5% by weight, manufactured by JGC Catalysts and Chemicals, which is a composite oxide particle of silicon and titanium, was charged, and 11.16 g of water and 0 phosphoric acid were charged while stirring at room temperature. .22 g of the mixture was added over 30 minutes. Then, the flask was immersed in an oil bath at 70 ° C. and stirred for 1 hour, and then the temperature of the oil bath was raised to 120 ° C. Thirty minutes after the start of temperature rise, the internal temperature of the solution reached 100 ° C., and the mixture was heated and stirred for 2 hours. The temperature inside the flask was 100 to 110 ° C.
  • methanol sol TR-527 solid content concentration 20.5% by weight, manufactured by JGC Catalysts and Chemicals, which is a composite oxide particle of silicon and titanium, was charged, and 80.09 g was charged. .23 g of the mixture was added over 30 minutes. Then, the flask was immersed in an oil bath at 70 ° C. and stirred for 1 hour, and then the temperature of the oil bath was raised to 120 ° C. Thirty minutes after the start of temperature rise, the internal temperature of the solution reached 100 ° C., and the mixture was heated and stirred for 2 hours. The temperature inside the flask was 100 to 110 ° C.
  • the polymer used in the comparative example was synthesized as follows.
  • the resin composition was prepared and evaluated as follows.
  • X-1 solid content concentration 34.9% by weight
  • TR-550 solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals
  • DAA 0. 44 g and 0.26 g of MeOH were mixed under a yellow lamp, stirred with shaking, and then filtered through a filter having a diameter of 0.45 ⁇ m to obtain Composition 1.
  • the metal content in the obtained resin composition was 1.03% by weight.
  • a cured film was formed according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation and dry etching evaluation were performed.
  • the composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3. Since it does not have photosensitivity, patterning evaluation was not performed, and the patterning evaluation was set to "-".
  • X-2 solid content concentration 34.6% by weight
  • TR-550 solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals
  • DAA is 0.38 g
  • MeOH is 0. .26 g
  • the metal content in the obtained resin composition was 1.03% by weight.
  • a cured film was formed according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation and dry etching evaluation were performed.
  • the composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3. Since it does not have photosensitivity, patterning evaluation was not performed, and the patterning evaluation was set to "-".
  • X-1 solid content concentration 34.9% by weight
  • TR-550 solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals
  • TR-527 solid content concentration 20. 11.06 g (5% by weight, manufactured by JGC Catalysts and Chemicals)
  • 0.42 g of DAA, 0.26 g of MeOH mixed under a yellow light, stirred with shaking, and filtered through a filter having a diameter of 0.45 ⁇ m to form a composition.
  • the metal content in the obtained resin composition was 0.11% by weight.
  • a cured film was formed according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation and dry etching evaluation were performed.
  • the composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3. Since it does not have photosensitivity, patterning evaluation was not performed, and the patterning evaluation was set to "-".
  • X-1 solid content concentration 34.9% by weight
  • TR-550 solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals
  • TR-527 solid content concentration 20. (5% by weight, manufactured by JGC Catalysts and Chemicals)
  • 6.07 g solid content concentration 20. (5% by weight, manufactured by JGC Catalysts and Chemicals)
  • DAA 0.44 g
  • MeOH 0.26 g
  • a cured film was formed according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation and dry etching evaluation were performed.
  • the composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3. Since it does not have photosensitivity, patterning evaluation was not performed, and the patterning evaluation was set to "-".
  • X-1 solid content concentration 34.9% by weight
  • TR-550 solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals
  • TR-527 solid content concentration 20. 1.72 g (5% by weight, manufactured by JGC Catalysts and Chemicals)
  • 0.44 g of DAA, 0.26 g of MeOH mixed under a yellow light, stirred with shaking, and filtered through a filter having a diameter of 0.45 ⁇ m to form a composition.
  • the metal content in the obtained resin composition was 0.86% by weight.
  • a cured film was formed according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation and dry etching evaluation were performed.
  • the composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3. Since it does not have photosensitivity, patterning evaluation was not performed, and the patterning evaluation was set to "-".
  • a cured film was formed according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation and dry etching evaluation were performed.
  • the composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3. Since it does not have photosensitivity, patterning evaluation was not performed, and the patterning evaluation was set to "-".
  • Example 7 7.18 g of X-3 (solid content concentration 34.8% by weight), 6.07 g of TR-550 (solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals), TR-527 (solid content concentration 20. (5% by weight, manufactured by JGC Catalysts and Chemicals) was mixed at 6.07 g, DAA at 0.28, THP-17 at 0.40 g under a yellow light, stirred with shaking, and then filtered through a filter having a diameter of 0.45 ⁇ m. Composition 7 was obtained. The metal content in the obtained resin composition was 0.51% by weight.
  • a cured film was formed on the obtained resin composition according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation, dry etching evaluation and patterning evaluation were performed.
  • the composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3.
  • Example 8> After mixing 14.41 g of X-4 (solid content concentration 34.7% by weight), 1.59 g of DAA, 3.60 g of PGMEA, 0.40 g of THP-17 under a yellow light, and shaking and stirring.
  • the composition 8 was obtained by filtering with a filter having a diameter of 0.45 ⁇ m.
  • the metal content in the obtained resin composition was 0.53% by weight.
  • a cured film was formed on the obtained resin composition according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation, dry etching evaluation and patterning evaluation were performed.
  • the composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3.
  • Example 9 After mixing 14.33 g of X-5 (solid content concentration 34.7% by weight), 1.67 g of DAA, 3.60 g of PGMEA, 0.40 g of THP-17 under a yellow light, and shaking and stirring.
  • the composition 9 was obtained by filtering with a filter having a diameter of 0.45 ⁇ m.
  • the metal content in the obtained resin composition was 0.52% by weight.
  • a cured film was formed on the obtained resin composition according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation, dry etching evaluation and patterning evaluation were performed.
  • the composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3.
  • the resin composition of the present invention is a composition having excellent heat resistance and dry etching properties. Further, it can be seen that Examples 3 to 9 are excellent in etching properties, and Examples 8 and 9 are particularly excellent. Further, it was found that Examples 6 to 9 were excellent in chemical resistance. Photosensitivity patterning was possible for Examples 7-9.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides a high refractive index resin composition that exhibits excellent heat resistance and dry etching properties by not containing a fused polycyclic aromatic compound and lowering the quantity of a metal compound that is difficult to etch. This resin composition contains: a polysiloxane (A) having a structure represented by formula (1); particles (B) of a composite oxide of titanium and one or more elements selected from the group consisting of aluminum, tin, zirconium and silicon; and a solvent (C). R1 denotes an alkyl group having 1-4 carbon atoms or an alkoxy group having 1-4 carbon atoms. n is 0 or 1, and * denotes a direct bond to a silicon atom.

Description

樹脂組成物、硬化膜、マイクロレンズの製造方法、固体撮像素子、マイクロレンズ、タッチパネルResin composition, cured film, manufacturing method of microlens, solid-state image sensor, microlens, touch panel
 本発明は、樹脂組成物、硬化膜、マイクロレンズの製造方法、固体撮像素子、マイクロレンズ、タッチパネルに関する。 The present invention relates to a resin composition, a cured film, a method for manufacturing a microlens, a solid-state image sensor, a microlens, and a touch panel.
 近年、デジタルカメラやカメラ付携帯電話等の急速な発展に伴って、固体撮像素子の小型化、高画素化が要求されている。固体撮像素子の小型化は、光の利用効率の減少による感度低下を招くため、光取り込み口のカラーフィルタ上にマイクロレンズを各画素上に作製することで、光を効率的に集光し、感度の低下を防いでいる。 In recent years, with the rapid development of digital cameras, camera-equipped mobile phones, etc., there is a demand for smaller size and higher pixel count of solid-state image sensors. Since the miniaturization of the solid-state image sensor causes a decrease in sensitivity due to a decrease in light utilization efficiency, a microlens is formed on each pixel on the color filter of the light intake port to efficiently collect light. It prevents the decrease in sensitivity.
 マイクロレンズの一般的な作製方法としては、マイクロレンズ形成用材料を塗布し、硬化した後、上部にフォトレジストを塗布後、露光、現像して、マイクロレンズの大きさにパターン加工後、フォトレジストをマスクとして、マイクロレンズ形成用材料をドライエッチングにより、マイクロレンズ形状に加工している。 As a general method for manufacturing a microlens, a material for forming a microlens is applied, cured, a photoresist is applied on the upper part, exposed and developed, a pattern is processed to the size of the microlens, and then the photoresist is used. Is used as a mask, and the material for forming a microlens is processed into a microlens shape by dry etching.
 マイクロレンズ形成用材料には、光を効率的に集光するため高い屈折率が求められ、それと同時に、高い透過率を維持しつつ、耐湿性、耐薬品性、等に優れることが要求される。このような要求を満たす樹脂として、ポリシロキサン樹脂が用いられている。 The material for forming a microlens is required to have a high refractive index in order to efficiently collect light, and at the same time, it is required to have excellent moisture resistance, chemical resistance, etc. while maintaining high transmittance. .. A polysiloxane resin is used as a resin that satisfies such a requirement.
 例えば、特許文献1には、縮合多環芳香族基を有するシロキサン樹脂とアルミニウム、チタン、スズ又はジルコニウム等の複合酸化物を含有するマイクロレンズ形成用シロキサン樹脂組成物が報告されている。 For example, Patent Document 1 reports a siloxane resin composition for forming a microlens, which contains a siloxane resin having a condensed polycyclic aromatic group and a composite oxide such as aluminum, titanium, tin or zirconium.
国際公開第2015/002183号International Publication No. 2015/002183
 特許文献1に記載の、縮合多環芳香族基を有するシロキサン樹脂と金属化合物粒子を含有するマイクロレンズ形成用シロキサン樹脂組成物は、アルミニウム、チタン、スズ又はジルコニウム等の複合酸化物を含有しているため、難ドライエッチング性であり、マイクロレンズ形成のプロセス適合性に課題があった。また、高温での縮合多環芳香族基の熱分解のため、耐熱性が不十分である、硬化膜の耐薬品性が不十分であるという課題があった。 The siloxane resin composition for forming a microlens containing a siloxane resin having a condensed polycyclic aromatic group and metal compound particles described in Patent Document 1 contains a composite oxide such as aluminum, titanium, tin or zirconium. Therefore, it is difficult to dry etch, and there is a problem in the process compatibility of microlens formation. Further, there are problems that the heat resistance is insufficient and the chemical resistance of the cured film is insufficient due to the thermal decomposition of the condensed polycyclic aromatic group at a high temperature.
 上記課題を解決するために本発明は以下の構成からなる。
(1)樹脂(A)、アルミニウム、スズ及びジルコニウムからなる群より選択される1種類以上の元素総含有量が2重量%以上15重量%以下であるチタン複合酸化物粒子(B1)と、アルミニウム、スズ及びジルコニウムからなる群より選択される1種類以上の元素総含有量が2重量%未満であるチタン複合酸化物粒子(B2)、の2種類の粒子、及び溶媒(C)、を含有する樹脂組成物。
(2)式(1)で示される構造を有するポリシロキサン(a1)、アルミニウム、スズ、ジルコニウム及びケイ素からなる群より選択される1種類以上とチタンの複合酸化物である粒子(B)、並びに溶媒(C)、を含有する樹脂組成物。
In order to solve the above problems, the present invention has the following configurations.
(1) Titanium composite oxide particles (B1) having a total content of one or more elements selected from the group consisting of resin (A), aluminum, tin and zirconium of 2% by weight or more and 15% by weight or less, and aluminum. , Two types of particles of titanium composite oxide particles (B2) having a total content of one or more elements selected from the group consisting of tin and zirconium of less than 2% by weight, and a solvent (C). Resin composition.
(2) Particles (B) which are a composite oxide of one or more types of polysiloxane (a1) having a structure represented by the formula (1), aluminum, tin, zirconium and silicon selected from the group and titanium, and A resin composition containing the solvent (C).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
は炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示す。nは0又は1であって、*はケイ素原子に直結する結合を意味する。 R 1 represents an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms. n is 0 or 1, and * means a bond directly connected to a silicon atom.
 本発明の樹脂組成物は、高耐熱性、エッチング性及び耐薬品性に優れる。 The resin composition of the present invention is excellent in high heat resistance, etching property and chemical resistance.
 本発明の樹脂組成物は、樹脂(A)、アルミニウム、スズ及びジルコニウムからなる群より選択される1種類以上の元素総含有量が2重量%以上15重量%以下であるチタン複合酸化物粒子(B1)と、アルミニウム、スズ及びジルコニウムからなる群より選択される1種類以上の元素総含有量が2重量%未満であるチタン複合酸化物粒子(B2)、の2種類の粒子、及び溶媒(C)、を含有する。 The resin composition of the present invention is a titanium composite oxide particle having a total content of one or more elements selected from the group consisting of resin (A), aluminum, tin and zirconium of 2% by weight or more and 15% by weight or less. Two types of particles, B1), titanium composite oxide particles (B2) having a total content of one or more elements selected from the group consisting of aluminum, tin and zirconium of less than 2% by weight, and a solvent (C). ), Contains.
 また、本発明の別の様態の樹脂組成物は、式(1)で示される構造を有するポリシロキサン(a1)、アルミニウム、スズ、ジルコニウム及びケイ素からなる群より選択される1種類以上とチタンの複合酸化物である粒子(B)、並びに溶媒(C)、を含有する。式(1)で示される構造を有するポリシロキサン(a1)は、以下、ポリシロキサン(a1)と呼ぶ場合がある。アルミニウム、スズ、ジルコニウム及びケイ素からなる群より選択される1種類以上とチタンの複合酸化物である粒子(B)は、以下、粒子(B)と呼ぶ場合がある。 Further, the resin composition of another aspect of the present invention is one or more selected from the group consisting of polysiloxane (a1) having a structure represented by the formula (1), aluminum, tin, zirconium and silicon, and titanium. It contains particles (B) which are composite oxides and a solvent (C). The polysiloxane (a1) having the structure represented by the formula (1) may be hereinafter referred to as polysiloxane (a1). Particles (B) which are a composite oxide of one or more kinds and titanium selected from the group consisting of aluminum, tin, zirconium and silicon may be hereinafter referred to as particles (B).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
は炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示す。nは0又は1であって、*はケイ素原子に直結する結合を意味する。 R 1 represents an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms. n is 0 or 1, and * means a bond directly connected to a silicon atom.
 <樹脂(A)>
 本発明における樹脂(A)としては、一般的な樹脂(繰り返し単位構造を有するもの)、例えばアクリル樹脂、エポキシ樹脂、ポリエチレン、ポリイミド、ポリシロキサン等が挙げられるが、後述の粒子(B)との相溶性、形成した硬化膜の耐熱性及び耐薬品性の観点から、樹脂(A)がポリシロキサン(A1)であることが特に望ましい。さらに、その硬化膜が高屈折率かつ耐薬品性良好となるため、ポリシロキサン(A1)の波長633nmにおける屈折率が1.60以上1.80未満であることが好ましい。
<Resin (A)>
Examples of the resin (A) in the present invention include general resins (those having a repeating unit structure) such as acrylic resins, epoxy resins, polyethylenes, polyimides, and polysiloxanes, but with the particles (B) described later. It is particularly desirable that the resin (A) is polysiloxane (A1) from the viewpoint of compatibility, heat resistance of the formed cured film, and chemical resistance. Further, since the cured film has a high refractive index and good chemical resistance, the refractive index of the polysiloxane (A1) at a wavelength of 633 nm is preferably 1.60 or more and less than 1.80.
 さらに、ポリシロキサン(A1)は、式(1)で示される構造を有するポリシロキサン(a1)であることが望ましい。 Further, it is desirable that the polysiloxane (A1) is a polysiloxane (a1) having a structure represented by the formula (1).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
は炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示す。nは0又は1であって、*はケイ素原子に直結する結合を意味する。 R 1 represents an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms. n is 0 or 1, and * means a bond directly connected to a silicon atom.
 ポリシロキサン(a1)が式(1)の構造を有することで、硬化膜に高屈折率かつ高耐熱性及び良好なエッチング性を付与できる。 Since the polysiloxane (a1) has the structure of the formula (1), it is possible to impart high refractive index, high heat resistance and good etching property to the cured film.
 ポリシロキサン(a1)中に含まれる全Si原子100mol%に対し、ポリシロキサン(a1)中の式(1)で示される構造のmol比率は、10~90mol%であることが好ましい。上記範囲であると、硬化膜の屈折率、耐熱性及びエッチング性をより向上させることができる。下限としては、ポリシロキサン(a1)中に含まれる全Si原子100mol%に対し、ポリシロキサン(a1)中の式(1)で示される構造のmol比率は、より好ましくは20mol%以上であり、さらに好ましくは30mol%以上である。上限としては、ポリシロキサン(a1)中に含まれる全Si原子100mol%に対し、ポリシロキサン(a1)中の式(1)で示される構造のmol比率は、より好ましくは85mol以下であり、さらに好ましくは80mol以下である。 The mol ratio of the structure represented by the formula (1) in the polysiloxane (a1) is preferably 10 to 90 mol% with respect to 100 mol% of all Si atoms contained in the polysiloxane (a1). Within the above range, the refractive index, heat resistance and etching property of the cured film can be further improved. As the lower limit, the mol ratio of the structure represented by the formula (1) in the polysiloxane (a1) is more preferably 20 mol% or more with respect to 100 mol% of all Si atoms contained in the polysiloxane (a1). More preferably, it is 30 mol% or more. As an upper limit, the mol ratio of the structure represented by the formula (1) in the polysiloxane (a1) is more preferably 85 mol or less with respect to 100 mol% of all Si atoms contained in the polysiloxane (a1), and further. It is preferably 80 mol or less.
 さらに、硬化膜の耐薬品性の観点から、ポリシロキサン(A1)又はポリシロキサン(a1)は、式(2)で示される構造及び/又は式(3)で示される構造を有することが好ましい。 Further, from the viewpoint of chemical resistance of the cured film, the polysiloxane (A1) or polysiloxane (a1) preferably has a structure represented by the formula (2) and / or a structure represented by the formula (3).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
は炭素数1~4のアルキレン基又は炭素数1~8の2価の芳香族基を示す。*はケイ素原子に直結する結合を意味する。 R 2 represents an alkylene group having 1 to 4 carbon atoms or a divalent aromatic group having 1 to 8 carbon atoms. * Means a bond that is directly linked to a silicon atom.
 ポリシロキサン(A1)又はポリシロキサン(a1)中に含まれる全Si原子の100mol%に対し、ポリシロキサン(A1)又はポリシロキサン(a1)中の式(2)及び式(3)のmol比率の合計は、1~30mol%であることが好ましく、より好ましくは5~20mol%である。この範囲にあることで硬化膜の耐薬品性を向上することができる。 The mol ratio of the formulas (2) and (3) in the polysiloxane (A1) or polysiloxane (a1) to 100 mol% of all Si atoms contained in the polysiloxane (A1) or polysiloxane (a1). The total is preferably 1 to 30 mol%, more preferably 5 to 20 mol%. Within this range, the chemical resistance of the cured film can be improved.
 ポリシロキサン(A1)又はポリシロキサン(a1)は、原料となるアルコキシシラン化合物を有機溶媒中で加水分解し、部分縮合する公知の方法で得られる。このとき、原料のアルコキシシランの種類を選択することによって、ポリシロキサン中に任意の置換基を導入することができる。 Polysiloxane (A1) or polysiloxane (a1) can be obtained by a known method of hydrolyzing an alkoxysilane compound as a raw material in an organic solvent and partially condensing it. At this time, an arbitrary substituent can be introduced into the polysiloxane by selecting the type of the raw material alkoxysilane.
 式(1)の構造は、式(4)で示されるアルコキシシラン化合物を用いることで導入することができる。 The structure of the formula (1) can be introduced by using the alkoxysilane compound represented by the formula (4).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
は炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示す。nは0又は1であって、Rは炭素数1~4のアルキル基である。Rは炭素数1~10の炭化水素基である。mは0又は1である。 R 1 represents an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms. n is 0 or 1, and R 3 is an alkyl group having 1 to 4 carbon atoms. R 4 is a hydrocarbon group having 1 to 10 carbon atoms. m is 0 or 1.
 式(4)で示されるアルコキシシラン化合物としては、ビフェニルトリメトキシシラン、ビフェニルトリエトキシシラン、ビフェニルメチルジメトキシシラン、ビフェニルメチルジエトキシシラン、4-メチルビフェニルトリメトキシシラン、4-メチルビフェニルトリエトキシシラン、4-メトキシビフェニルトリメトキシシラン、4-メトキシビフェニルトリエトキシシラン等が挙げられる。これらのアルコキシシラン化合物は単独で使用しても、2種以上を組み合わせて使用してもよい。 Examples of the alkoxysilane compound represented by the formula (4) include biphenyltrimethoxysilane, biphenyltriethoxysilane, biphenylmethyldimethoxysilane, biphenylmethyldiethoxysilane, 4-methylbiphenyltrimethoxysilane, and 4-methylbiphenyltriethoxysilane. Examples thereof include 4-methoxybiphenyltrimethoxysilane and 4-methoxybiphenyltriethoxysilane. These alkoxysilane compounds may be used alone or in combination of two or more.
 式(2)で示される構造及び/又は式(3)で示される構造は、式(5)で示されるアルコキシシラン化合物を用いることで導入することができる。 The structure represented by the formula (2) and / or the structure represented by the formula (3) can be introduced by using the alkoxysilane compound represented by the formula (5).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
は炭素数1~4のアルキレン基又は炭素数1~8の2価の芳香族基を示す。Rは炭素数1~4のアルキル基である。Rは炭素数1~10の炭化水素基である。lは0又は1である。 R 2 represents an alkylene group having 1 to 4 carbon atoms or a divalent aromatic group having 1 to 8 carbon atoms. R 5 is an alkyl group having 1 to 4 carbon atoms. R 6 is a hydrocarbon group having 1 to 10 carbon atoms. l is 0 or 1.
 式(5)で示されるアルコキシシラン化合物としては、3-トリメトキシシリルプロピルコハク酸無水物、3-トリエトキシシシリルプロピルコハク酸無水物、3-トリフェノキシシリルプロピルコハク酸無水物、3-トリメトキシシシリルプロピルフタル酸無水物、3-トリメトキシシシリルプロピルシクロヘキシルジカルボン酸無水物など、が挙げられる。これらのアルコキシシラン化合物は単独で使用しても、2種以上を組み合わせて使用してもよい。 Examples of the alkoxysilane compound represented by the formula (5) include 3-trimethoxysilylpropyl succinic anhydride, 3-triethoxysilylpropyl succinic anhydride, 3-triphenyloxysilylpropyl succinic anhydride, and 3-tri. Examples thereof include methoxycisilylpropylphthalic anhydride, 3-trimethoxycyclylpropylcyclohexyldicarboxylic anhydride, and the like. These alkoxysilane compounds may be used alone or in combination of two or more.
 さらにポリシロキサン(A1)又はポリシロキサン(a1)は、上記以外のアルコキシシラン化合物を原料として含有してもよい。上記以外のアルコキシシラン化合物としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリイソプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ヘキシルトリメトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリイソプロポキシシラン、1-ナフチルトリメトキシシラン、1-ナフチルトリエトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-クロロプロピルトリメトキシシラン、3-(N,N-ジグリシジル)アミノプロピルトリメトキシシラン、3-グリシドキシシプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-メタクリルオキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、β-シアノエチルトリエトキシシラン、トリフルオロメチルトリメトキシシラン、トリフルオロメチルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、パーフルオロプロピルエチルトリメトキシシラン、パーフルオロプロピルエチルトリエトキシシラン、パーフルオロペンチルエチルトリメトキシシラン、パーフルオロペンチルエチルトリエトキシシラン、トリデカフルオロオクチルトリメトキシシラン、トリデカフルオロオクチルトリエトキシシラン、トリデカフルオロオクチルトリプロポキシシラン、トリデカフルオロオクチルトリイソプロポキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ヘプタデカフルオロデシルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、メチルフェニルジメトキシシラン、メチルビニルジメトキシシラン、メチルビニルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、γ-メタクリルオキシプロピルメチルジメトキシシラン、γ-メタクリルオキシプロピルメチルジエトキシシラン、トリフルオロプロピルメチルジメトキシシラン、トリフルオロプロピルメチルジエトキシシラン、トリフルオロプロピルエチルジメトキシシラン、トリフルオロプロピルエチルジエトキシシラン、トリフルオロプロピルビニルジメトキシシラン、トリフルオロプロピルビニルジエトキシシラン、ヘプタデカフルオロデシルメチルジメトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルメチルジエトキシシラン、シクロヘキシルメチルジメトキシシラン、オクタデシルメチルジメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン等が挙げられる。 Further, the polysiloxane (A1) or the polysiloxane (a1) may contain an alkoxysilane compound other than the above as a raw material. Examples of alkoxysilane compounds other than the above include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltriisopropoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, and hexyltrimethoxysilane. Octadecyltrimethoxysilane, octadecyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriisopropoxysilane, 1-naphthyltrimethoxysilane, 1-naphthyltriethoxysilane, 3-aminopropyltriethoxysilane, N- (2-Aminoethyl) -3-aminopropyltrimethoxysilane, 3-chloropropyltrimethoxysilane, 3- (N, N-diglycidyl) aminopropyltrimethoxysilane, 3-glycidoxysipropyltrimethoxysilane, vinyltri Methoxysilane, vinyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -Γ-Aminopropyltrimethoxysilane, β-cyanoethyltriethoxysilane, trifluoromethyltrimethoxysilane, trifluoromethyltriethoxysilane, trifluoropropyltrimethoxysilane, trifluoropropyltriethoxysilane, perfluoropropylethyltrimethoxy Silane, Perfluoropropylethyltriethoxysilane, Perfluoropentylethyltrimethoxysilane, Perfluoropentylethyltriethoxysilane, Tridecafluorooctyltrimethoxysilane, Tridecafluorooctyltriethoxysilane, Tridecafluorooctyllippropoxysilane, Tridecafluorooctyl triisopropoxysilane, heptadecafluorodecyltrimethoxysilane, heptadecafluorodecyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, methylphenyldimethoxysilane, methylvinyl Dimethoxysilane, methylvinyldiethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldiethoxysilane, N- (2) -Aminoethyl) -3-aminopropylmethyldimethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, trifluoropropylmethyldimethoxysilane, trifluoropropylmethyldiethoxysilane, trifluoropropyl Ethyldimethoxysilane, trifluoropropylethyldiethoxysilane, trifluoropropylvinyldimethoxysilane, trifluoropropylvinyldiethoxysilane, heptadecafluorodecylmethyldimethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloropropylmethyldiethoxy Examples thereof include silane, cyclohexylmethyldimethoxysilane, octadecylmethyldimethoxysilane, tetramethoxysilane, tetraethoxysilane, and tetrapropoxysilane.
 前記アルコキシシラン化合物のうち、得られる硬化膜の耐薬品性の観点から、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、及びフェニルトリエトキシシランが好ましい。これらアルコキシシラン化合物は、単独で用いても、2種以上を組み合わせて用いてもよい。 Among the alkoxysilane compounds, methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, and phenyltriethoxysilane are preferable from the viewpoint of chemical resistance of the obtained cured film. These alkoxysilane compounds may be used alone or in combination of two or more.
 ポリシロキサン(A1)及び/又はポリシロキサン(a1)の含有量は、硬化膜の光の透過率とクラック耐性とをより高める観点から、樹脂組成物の溶剤(C)を除く固形分全量に対して10重量%以上が好ましく、20重量%以上がより好ましい。また、ポリシロキサン(A1)及び/又はポリシロキサン(a1)の含有量は、硬化膜の光の透過率とクラック耐性とをより高める観点から、樹脂組成物の溶剤(C)を除く固形分全量に対して80重量%以下がより好ましい。 The content of the polysiloxane (A1) and / or the polysiloxane (a1) is based on the total amount of the solid content of the resin composition excluding the solvent (C) from the viewpoint of further enhancing the light transmittance and crack resistance of the cured film. 10% by weight or more is preferable, and 20% by weight or more is more preferable. The content of polysiloxane (A1) and / or polysiloxane (a1) is the total amount of solids excluding the solvent (C) of the resin composition from the viewpoint of further enhancing the light transmittance and crack resistance of the cured film. 80% by weight or less is more preferable.
 次に、ポリシロキサン(A1)又はポリシロキサン(a1)の製造方法について説明する。 Next, a method for producing polysiloxane (A1) or polysiloxane (a1) will be described.
 ポリシロキサン(A1)又はポリシロキサン(a1)は原料となるアルコキシシラン化合物を加水分解・縮合反応させることにより得ることができる。 Polysiloxane (A1) or polysiloxane (a1) can be obtained by hydrolyzing and condensing an alkoxysilane compound as a raw material.
 加水分解反応は、溶剤中、上記したアルコキシシラン化合物に酸触媒及び水を添加してシラノール基を生じさせる。アルコキシシラン化合物に酸触媒及び水を1~180分かけて添加した後、室温~110℃で1~180分反応させることが好ましい。このような条件で加水分解反応を行うことにより、急激な反応を抑制することができる。より好ましい反応温度は40~105℃である。 In the hydrolysis reaction, an acid catalyst and water are added to the above-mentioned alkoxysilane compound in a solvent to generate a silanol group. It is preferable to add an acid catalyst and water to the alkoxysilane compound over 1 to 180 minutes, and then react at room temperature to 110 ° C. for 1 to 180 minutes. By carrying out the hydrolysis reaction under such conditions, a rapid reaction can be suppressed. A more preferable reaction temperature is 40 to 105 ° C.
 また、加水分解反応の後、縮合反応を行いポリシロキサンを得る。縮合反応は反応液を50℃以上溶剤の沸点以下で1~100時間加熱し行うことが好ましい。また、縮合反応により得られるポリシロキサン化合物の重合度を上げるために、再加熱もしくは塩基触媒の添加を行うことも有効である。 Further, after the hydrolysis reaction, a condensation reaction is carried out to obtain polysiloxane. The condensation reaction is preferably carried out by heating the reaction solution at 50 ° C. or higher and below the boiling point of the solvent for 1 to 100 hours. It is also effective to reheat or add a base catalyst in order to increase the degree of polymerization of the polysiloxane compound obtained by the condensation reaction.
 加水分解・縮合反応における各種条件は、反応スケール、反応容器の大きさ、形状などを考慮して、たとえば酸濃度、反応温度、反応時間などを設定することによって、目的とする用途に適した物性を得ることができる。 Various conditions in the hydrolysis / condensation reaction are suitable for the intended use by setting, for example, the acid concentration, reaction temperature, reaction time, etc. in consideration of the reaction scale, size, shape, etc. of the reaction vessel. Can be obtained.
 加水分解反応に用いる酸触媒としては、塩酸、酢酸、蟻酸、硝酸、蓚酸、塩酸、硫酸、リン酸、ポリリン酸、多価カルボン酸あるいはその無水物、イオン交換樹脂などの酸触媒が挙げられる。特に蟻酸、酢酸又はリン酸を用いた酸性水溶液が好ましい。 Examples of the acid catalyst used in the hydrolysis reaction include acid catalysts such as hydrochloric acid, acetic acid, formic acid, nitrate, oxalic acid, hydrochloric acid, sulfuric acid, phosphoric acid, polyphosphoric acid, polyvalent carboxylic acid or its anhydride, and ion exchange resin. In particular, an acidic aqueous solution using formic acid, acetic acid or phosphoric acid is preferable.
 これら酸触媒の好ましい含有量としては、加水分解反応前の全ポリシロキサン化合物100重量部に対して、好ましくは、0.05重量部以上、より好ましくは0.1重量部以上である。また、好ましくは10重量部以下、より好ましくは5重量部以下である。ここで、全ポリシロキサン化合物量とは、ケイ素原子を有する化合物であって、ポリシロキサンの原料であるアルコキシシラン化合物、その加水分解物及びその縮合物であるポリシロキサン全てを含んだ量のことを言う。その定義は以下同じとする。酸触媒の量を0.05重量部以上とすることでスムーズに加水分解が進行し、また10重量部以下とすることで加水分解反応の制御が容易となる。 The preferable content of these acid catalysts is preferably 0.05 parts by weight or more, more preferably 0.1 parts by weight or more, based on 100 parts by weight of the total polysiloxane compound before the hydrolysis reaction. Further, it is preferably 10 parts by weight or less, more preferably 5 parts by weight or less. Here, the total amount of the polysiloxane compound is a compound having a silicon atom and includes all of the alkoxysilane compound which is a raw material of the polysiloxane, its hydrolyzate, and the polysiloxane which is a condensate thereof. To tell. The definition is the same below. When the amount of the acid catalyst is 0.05 parts by weight or more, the hydrolysis proceeds smoothly, and when the amount is 10 parts by weight or less, the hydrolysis reaction can be easily controlled.
 加水分解・縮合反応に用いる溶剤は特に限定されないが、樹脂組成物の安定性、濡れ性、揮発性などを考慮して適宜選択する。溶剤は1種類のみならず2種類以上用いることも可能である。加水分解・縮合反応に用いた溶剤をそのまま樹脂組成物の溶剤(C)として含有させてもよい。 The solvent used for the hydrolysis / condensation reaction is not particularly limited, but is appropriately selected in consideration of the stability, wettability, volatility, etc. of the resin composition. Not only one type of solvent but also two or more types can be used. The solvent used for the hydrolysis / condensation reaction may be contained as it is as the solvent (C) of the resin composition.
 溶剤の具体例としては以下のものが例示される。メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、t-ブタノール、ペンタノール、4-メチル-2-ペンタノール、3-メチル-2-ブタノール、3-メチル-3-メトキシ-1-ブタノール、ジアセトンアルコールなどのアルコール類。 Specific examples of the solvent include the following. Methanol, ethanol, propanol, isopropanol, butanol, isobutanol, t-butanol, pentanol, 4-methyl-2-pentanol, 3-methyl-2-butanol, 3-methyl-3-methoxy-1-butanol, di Alcohols such as acetone alcohol.
 エチレングリコール、プロピレングリコールなどのグリコール類。
エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノ-t-ブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチルエーテルなどのエーテル類。
Glycols such as ethylene glycol and propylene glycol.
Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol mono-t-butyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, Ethers such as ethylene glycol dibutyl ether and diethyl ether.
 メチルエチルケトン、アセチルアセトン、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、2-ヘプタノンなどのケトン類。 Ketones such as methyl ethyl ketone, acetylacetone, methyl propyl ketone, methyl butyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclopentanone, and 2-heptanone.
 ジメチルホルムアミド、ジメチルアセトアミドなどのアミド類。
エチルアセテート、プロピルアセテート、ブチルアセテート、イソブチルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、乳酸メチル、乳酸エチル、乳酸ブチルなどのアセテート類;トルエン、キシレン、ヘキサン、シクロヘキサンなどの芳香族あるいは脂肪族炭化水素。
Amides such as dimethylformamide and dimethylacetamide.
Ethyl acetate, propyl acetate, butyl acetate, isobutyl acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, methyl lactate, ethyl lactate, butyl lactate, etc. Acetic acids; aromatic or aliphatic hydrocarbons such as toluene, xylene, hexane, cyclohexane.
 その他にγ-ブチロラクトン、N-メチル-2-ピロリドン、ジメチルスルホキシドなど。 In addition, γ-butyrolactone, N-methyl-2-pyrrolidone, dimethyl sulfoxide, etc.
 これらのうち、硬化膜の透過率、クラック耐性等の点で、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノ-t-ブチルエーテル、γ-ブチロラクトン等が好ましく用いられる。 Of these, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, and propylene glycol mono-t are considered in terms of the permeability of the cured film and crack resistance. -Butyl ether, γ-butylollactone and the like are preferably used.
 また、加水分解・縮合反応終了後に、さらに溶剤を添加することにより、樹脂組成物として適切な濃度又は粘度に調整することも好ましい。また、加水分解後に加熱及び/又は減圧下により生成したアルコール等の気化性の加水分解生成物を全量あるいは一部を留出、除去し、その後好適な溶剤を添加することもできる。 It is also preferable to adjust the concentration or viscosity of the resin composition to an appropriate level by further adding a solvent after the completion of the hydrolysis / condensation reaction. It is also possible to distill and remove all or part of vaporizable hydrolysis products such as alcohol produced by heating and / or under reduced pressure after hydrolysis, and then add a suitable solvent.
 加水分解反応時に使用される溶剤の量は、全ポリシロキサン化合物100重量部に対して、好ましくは50重量部以上、より好ましくは80重量部以上であり、また、好ましくは500重量部以下、より好ましくは、200重量部以下である。溶剤の量を50重量部以上とすることでゲルの生成を抑制できる。また500重量部以下とすることで加水分解反応が速やかに進行する。 The amount of the solvent used in the hydrolysis reaction is preferably 50 parts by weight or more, more preferably 80 parts by weight or more, and preferably 500 parts by weight or less, based on 100 parts by weight of the total polysiloxane compound. Preferably, it is 200 parts by weight or less. Gel formation can be suppressed by setting the amount of the solvent to 50 parts by weight or more. Further, when the content is 500 parts by weight or less, the hydrolysis reaction proceeds rapidly.
 また、加水分解反応に用いる水としては、イオン交換水が好ましい。水の量は任意に選択可能であるが、アルコキシシラン化合物1molに対して、1.0~4.0molの範囲で用いることが好ましい。 Further, as the water used for the hydrolysis reaction, ion-exchanged water is preferable. The amount of water can be arbitrarily selected, but it is preferably used in the range of 1.0 to 4.0 mol with respect to 1 mol of the alkoxysilane compound.
 <粒子(B)>
 本発明の樹脂組成物は、アルミニウム、スズ及びジルコニウムからなる群より選択される1種類以上の元素総含有量が2重量%以上15重量%以下であるチタン複合酸化物粒子(B1)(以下、粒子(B1)と呼ぶ場合がある)と、アルミニウム、スズ及びジルコニウムからなる群より選択される1種類以上の元素層含有量が2重量%未満であるチタン複合酸化物粒子(B2)(以下、粒子(B2)と呼ぶ場合がある)、の2種類の粒子を含有する。これら2種類の粒子を含有することにより、屈折率及びエッチング加工性の向上が可能となる。
<Particle (B)>
The resin composition of the present invention contains titanium composite oxide particles (B1) having a total content of one or more elements selected from the group consisting of aluminum, tin and zirconium of 2% by weight or more and 15% by weight or less (hereinafter, (Sometimes referred to as particles (B1)) and titanium composite oxide particles (B2) having an elemental layer content of less than 2% by weight selected from the group consisting of aluminum, tin and zirconium (hereinafter, referred to as “B1)”. It contains two types of particles (sometimes referred to as particles (B2)). By containing these two types of particles, the refractive index and etching processability can be improved.
 元素総含有量とは、該当する粒子の全重量に対する該当する元素の含有量総量の割合(重量%)を指し、粒子(B1)又は(B2)を含有する分散剤を使用する場合は、その固形分全量を粒子の重量として、該当する元素総含有量の比率を算出するものとする。 The total element content refers to the ratio (% by weight) of the total content of the relevant element to the total weight of the relevant particle, and when a dispersant containing the particles (B1) or (B2) is used, the ratio thereof is used. The ratio of the total content of the corresponding elements shall be calculated with the total amount of solids as the weight of the particles.
 粒子(B2)のアルミニウム、スズ及びジルコニウムからなる群より選択される1種類以上の元素総含有量は、エッチング性の観点から、0.5重量%未満であることが好ましく、さらに0.1重量%未満であることが、より好ましい。さらには、できるだけ少ないことが望ましく、理想的には0重量%であることがより望ましい。 The total content of one or more elements selected from the group consisting of aluminum, tin and zirconium of the particles (B2) is preferably less than 0.5% by weight, more preferably 0.1% by weight, from the viewpoint of etchability. More preferably, it is less than%. Furthermore, it is desirable that the amount is as small as possible, and ideally 0% by weight.
 これら粒子(B1)と粒子(B2)の混合重量比率(B1/B2)が、0.25~4であることが好ましい。この範囲にあることでエッチング性が向上する。 The mixed weight ratio (B1 / B2) of these particles (B1) and the particles (B2) is preferably 0.25 to 4. Being in this range improves the etching property.
 なお、粒子(B1)又は粒子(B2)の該当する元素の含有量は、蛍光X線分析法、ICP発光分光分析法、ICP重量分析法、原子吸光分析法により測定することができる。樹脂組成物中に含まれるアルミニウム、スズ及びジルコニウムの全量が、樹脂組成物の全量100重量%に対して、0.01重量%以上1重量%未満であることが好ましい。例えば、前述のように粒子(B1)と粒子(B2)の混合比率を調整することで、樹脂組成物中に含まれるアルミニウム、スズ及びジルコニウムの全量は調整可能である。 The content of the corresponding element of the particle (B1) or the particle (B2) can be measured by a fluorescent X-ray analysis method, an ICP emission spectroscopic analysis method, an ICP weight analysis method, or an atomic absorption spectrometry method. The total amount of aluminum, tin and zirconium contained in the resin composition is preferably 0.01% by weight or more and less than 1% by weight with respect to 100% by weight of the total amount of the resin composition. For example, by adjusting the mixing ratio of the particles (B1) and the particles (B2) as described above, the total amount of aluminum, tin, and zirconium contained in the resin composition can be adjusted.
 粒子(B1)及び粒子(B2)の総含有量としては、樹脂組成物中の固形分に対して、35~70重量%であることが好ましい。上記範囲であると、高屈折率とクラック耐性と透明性を両立することができる。下限としては、粒子(B1)及び粒子(B2)の総含有量は、樹脂組成物中の固形分に対して、より好ましくは40重量%以上であり、さらに好ましくは45重量%以上である。上限としては、粒子(B1)及び粒子(B2)の総含有量は、樹脂組成物中の固形分に対して、より好ましくは65重量%以下であり、さらに好ましくは60重量%以下である。 The total content of the particles (B1) and the particles (B2) is preferably 35 to 70% by weight with respect to the solid content in the resin composition. Within the above range, high refractive index, crack resistance and transparency can be achieved at the same time. As a lower limit, the total content of the particles (B1) and the particles (B2) is more preferably 40% by weight or more, still more preferably 45% by weight or more, based on the solid content in the resin composition. As an upper limit, the total content of the particles (B1) and the particles (B2) is more preferably 65% by weight or less, still more preferably 60% by weight or less, based on the solid content in the resin composition.
 また、本発明の別の様態の樹脂組成物は、アルミニウム、スズ、ジルコニウム及びケイ素からなる群より選択される1種類以上とチタンの複合酸化物である粒子(B)を含有する。前述の粒子(B1)及び粒子(B2)も、粒子(B)の一種であるとする。 Further, the resin composition of another aspect of the present invention contains particles (B) which are composite oxides of titanium and one or more selected from the group consisting of aluminum, tin, zirconium and silicon. The above-mentioned particles (B1) and particles (B2) are also assumed to be a kind of particles (B).
 粒子(B)は屈折率及び安定性が高く、好適に用いられる。中でも、スズ及び/又はジルコニウムとチタンの複合酸化物である粒子は屈折率が高く、より好ましい。 Particle (B) has a high refractive index and stability, and is preferably used. Among them, particles which are a composite oxide of tin and / or zirconium and titanium have a high refractive index and are more preferable.
 さらに、粒子(B)が、アルミニウム、スズ及びジルコニウムからなる群より選択される1種類以上と、チタンの複合酸化物である粒子(B3)と、ケイ素とチタンの複合酸化物である粒子(B4)、の2種類の粒子を含有することがより好ましい。前記粒子(B3)と粒子(B4)の2種類の粒子を含有することでエッチング性が向上する。アルミニウム、スズ及びジルコニウムからなる群より選択される1種類以上と、チタンの複合酸化物である粒子(B3)を、以下、粒子(B3)と呼ぶ場合がある。ケイ素とチタンの複合酸化物である粒子(B4)を、以下、粒子(B4)と呼ぶ場合がある。粒子(B3)及び粒子(B4)は、粒子(B)の一種であるとする。 Further, the particles (B) are one or more selected from the group consisting of aluminum, tin and zirconium, the particles (B3) which are composite oxides of titanium, and the particles (B4) which are composite oxides of silicon and titanium. ), It is more preferable to contain two types of particles. Etching property is improved by containing two kinds of particles, the particles (B3) and the particles (B4). One or more kinds selected from the group consisting of aluminum, tin and zirconium, and particles (B3) which are composite oxides of titanium may be hereinafter referred to as particles (B3). Particles (B4) which are composite oxides of silicon and titanium may be hereinafter referred to as particles (B4). It is assumed that the particle (B3) and the particle (B4) are a kind of the particle (B).
 粒子(B)の数平均粒子径は1~200nmが好ましい。透過率の高い硬化膜を得るためには、粒子(B)の数平均粒子径は1nm~70nmであることがより好ましい。ここで、粒子(B)の数平均粒子径は、ガス吸着法や動的光散乱法、X線小角散乱法、透過型電子顕微鏡や走査型電子顕微鏡により測定することができる。 The number average particle size of the particles (B) is preferably 1 to 200 nm. In order to obtain a cured film having high transmittance, the number average particle diameter of the particles (B) is more preferably 1 nm to 70 nm. Here, the number average particle diameter of the particles (B) can be measured by a gas adsorption method, a dynamic light scattering method, a small-angle X-ray scattering method, a transmission electron microscope, or a scanning electron microscope.
 粒子(B)の含有量としては、樹脂組成物中の固形分に対して、35~70重量%であることが好ましい。上記範囲であると、高屈折率とクラック耐性と透明性を両立することができる。下限としては、粒子(B)の含有量は、樹脂組成物中の固形分に対して、より好ましくは40重量%以上であり、さらに好ましくは45重量%以上である。上限としては、粒子(B)の含有量は、樹脂組成物中の固形分に対して、より好ましくは65重量%以下であり、さらに好ましくは60重量%以下である。また、粒子(B3)及び粒子(B4)の総含有量としては、樹脂組成物中の固形分に対して、35~70重量%であることが好ましい。下限としては、粒子(B3)及び粒子(B4)の総含有量は、樹脂組成物中の固形分に対して、より好ましくは40重量%以上であり、さらに好ましくは45重量%以上である。上限としては、粒子(B3)及び粒子(B4)の総含有量は、樹脂組成物中の固形分に対して、より好ましくは65重量%以下であり、さらに好ましくは60重量%以下である。 The content of the particles (B) is preferably 35 to 70% by weight with respect to the solid content in the resin composition. Within the above range, high refractive index, crack resistance and transparency can be achieved at the same time. As a lower limit, the content of the particles (B) is more preferably 40% by weight or more, still more preferably 45% by weight or more, based on the solid content in the resin composition. As an upper limit, the content of the particles (B) is more preferably 65% by weight or less, still more preferably 60% by weight or less, based on the solid content in the resin composition. The total content of the particles (B3) and the particles (B4) is preferably 35 to 70% by weight with respect to the solid content in the resin composition. As a lower limit, the total content of the particles (B3) and the particles (B4) is more preferably 40% by weight or more, still more preferably 45% by weight or more, based on the solid content in the resin composition. As an upper limit, the total content of the particles (B3) and the particles (B4) is more preferably 65% by weight or less, still more preferably 60% by weight or less, based on the solid content in the resin composition.
 複合酸化物中のアルミニウム、スズ、ジルコニウム及びケイ素の含有量については特に制限はないが、樹脂組成物中に含まれるアルミニウム、スズ及びジルコニウムの全量は、樹脂組成物の全量100重量%に対して、0.01重量%以上1重量%未満であることが好ましい。この範囲にあることでエッチング性が向上しよりレンズ形成がしやすくなる。 The content of aluminum, tin, zirconium and silicon in the composite oxide is not particularly limited, but the total amount of aluminum, tin and zirconium contained in the resin composition is 100% by weight based on the total amount of the resin composition. , 0.01% by weight or more and less than 1% by weight. Within this range, the etching property is improved and it becomes easier to form a lens.
 酸化チタンには、アナタース型酸化チタンとルチル型酸化チタンのように、結晶構造の異なるものが存在するが、粒子(B)の結晶構造に特に制限はなく、用途によって適当な構造の粒子(B)を用いることができる。 Titanium oxide includes those having different crystal structures, such as anatase-type titanium oxide and rutile-type titanium oxide, but the crystal structure of the particles (B) is not particularly limited, and particles (B) having an appropriate structure depending on the application are not particularly limited. ) Can be used.
 また、粒子(B)はポリマーや分散剤などで表面が被覆されていてもよい。表面が被覆された粒子(B)は分散状態が安定化し、樹脂組成物中の粒子(B)の含有量を増やしても凝集や析出が抑制できる傾向にある。 Further, the surface of the particles (B) may be coated with a polymer, a dispersant, or the like. The dispersed state of the surface-coated particles (B) is stabilized, and aggregation and precipitation tend to be suppressed even if the content of the particles (B) in the resin composition is increased.
 粒子(B)の表面を被覆するポリマーや分散剤に特に制限はない。一方、樹脂組成物中のポリシロキサン(A1)は粒子(B)の分散安定化にも寄与する。ポリシロキサン(A1)と粒子(B)は相互作用しやすく、単に混合することで分散安定性を向上させることができる。 There are no particular restrictions on the polymer or dispersant that coats the surface of the particles (B). On the other hand, the polysiloxane (A1) in the resin composition also contributes to the dispersion stabilization of the particles (B). The polysiloxane (A1) and the particles (B) easily interact with each other, and the dispersion stability can be improved by simply mixing them.
 ポリシロキサン(A1)を重合する際、原料であるアルコキシシラン化合物の加水分解・縮合反応の過程で粒子(B)を混合することで、ポリシロキサン(A1)と、粒子(B)とが結合したポリシロキサンと粒子の複合体(E)を形成することができる。同様に、ポリシロキサン(A1)を重合する際、原料であるアルコキシシラン化合物の加水分解・縮合反応の過程で粒子(B1)又は粒子(B2)を混合することで、ポリシロキサン(A1)と、粒子(B1)又は粒子(B2)とが結合したポリシロキサンと粒子の複合体(E)を形成することができる。本発明の樹脂組成物は、ポリシロキサン(A1)と、粒子(B1)又は粒子(B2)とが結合しているポリシロキサンと粒子の複合体(E)を含有することが好ましい。 When the polysiloxane (A1) is polymerized, the polysiloxane (A1) and the particles (B) are bonded by mixing the particles (B) in the process of hydrolysis / condensation reaction of the alkoxysilane compound as a raw material. A complex (E) of polysiloxane and particles can be formed. Similarly, when polymerizing polysiloxane (A1), particles (B1) or particles (B2) are mixed in the process of hydrolysis / condensation reaction of the alkoxysilane compound as a raw material to obtain polysiloxane (A1). A composite (E) of a polysiloxane and a particle in which the particle (B1) or the particle (B2) is bonded can be formed. The resin composition of the present invention preferably contains a polysiloxane (A1) and a composite (E) of the polysiloxane and the particles in which the particles (B1) or the particles (B2) are bonded.
 式(1)で示される構造を有するポリシロキサン(a1)についても、同様にポリシロキサン(a1)と粒子(B)とが結合しているポリシロキサンと粒子の複合体(E1)を形成することが好ましい。本発明の樹脂組成物は、ポリシロキサン(a1)と、粒子(B)とが結合しているポリシロキサンと粒子の複合体(E1)を含有することが好ましい。 Similarly, for the polysiloxane (a1) having the structure represented by the formula (1), a complex (E1) of the polysiloxane and the particles in which the polysiloxane (a1) and the particles (B) are bonded is formed. Is preferable. The resin composition of the present invention preferably contains a polysiloxane (a1) and a complex (E1) of the polysiloxane and the particles to which the particles (B) are bonded.
 本発明の樹脂組成物中に、複合体(E)、又は、(E1)を含有させることにより、粒子(B1)又は粒子(B2)、又は、粒子(B)の分散安定性をより向上させることができる。 By containing the complex (E) or (E1) in the resin composition of the present invention, the dispersion stability of the particles (B1) or the particles (B2) or the particles (B) is further improved. be able to.
 市販されている粒子(B)の例としては、酸化ケイ素-酸化チタン複合粒子の“オプトレイク(登録商標)”TR-502、“オプトレイク”TR-503、“オプトレイク”TR-504、“オプトレイク”TR-513、“オプトレイク”TR-520、“オプトレイク”TR-527、“オプトレイク”TR-528、“オプトレイク”TR-529、酸化ジルコニウム-酸化スズ-酸化ケイ素-酸化チタン複合粒子の“オプトレイク”TR-550、酸化チタン粒子の“オプトレイク”TR-505(以上、商品名、触媒化成工業(株)製)、酸化ジルコニウム粒子((株)高純度化学研究所製)、酸化スズ-酸化ジルコニウム複合粒子(触媒化成工業(株)製)、などが挙げられる。 Examples of commercially available particles (B) are "Optrake®" TR-502, "Optrake" TR-503, "Optrake" TR-504, "Optrake®" TR-502, "Optrake" TR-504, "Optrake®" TR-502, "Optrake" TR-504, which are silicon oxide-titanium oxide composite particles. Optrake "TR-513", "Optrake" TR-520, "Optrake" TR-527, "Optrake" TR-528, "Optrake" TR-529, Zirconium oxide-tin oxide-silicon oxide-titanium oxide Composite particle "Optrake" TR-550, titanium oxide particle "Optrake" TR-505 (trade name, manufactured by Catalysis Chemical Industry Co., Ltd.), zirconium oxide particle (manufactured by High Purity Chemical Laboratory Co., Ltd.) ), Tin oxide-zinc oxide composite particles (manufactured by Catalysis Chemical Industry Co., Ltd.), and the like.
 粒子(B1)の例としては、前述の“オプトレイク”TR-550(商品名、触媒化成工業(株)製)、酸化ジルコニウム粒子((株)高純度化学研究所製)、酸化スズ-酸化ジルコニウム複合粒子(触媒化成工業(株)製)、などが挙げられる。 Examples of particles (B1) include the above-mentioned "Optrake" TR-550 (trade name, manufactured by Catalysis Chemical Industry Co., Ltd.), zirconium oxide particles (manufactured by High Purity Chemical Laboratory Co., Ltd.), tin oxide-oxidation. Zirconium composite particles (manufactured by Catalysis Chemical Industry Co., Ltd.), etc. can be mentioned.
 また、粒子(B2)の例としては、前述の“オプトレイク(登録商標)”TR-502、“オプトレイク”TR-503、“オプトレイク”TR-504、“オプトレイク”TR-513、“オプトレイク”TR-520、“オプトレイク”TR-527、“オプトレイク”TR-528、“オプトレイク”TR-529、“オプトレイク”TR-505(以上、商品名、触媒化成工業(株)製)、などが挙げられる。 Further, as an example of the particle (B2), the above-mentioned "Optrake (registered trademark)" TR-502, "Optrake" TR-503, "Optrake" TR-504, "Optrake" TR-513, " "Optrake" TR-520, "Optrake" TR-527, "Optrake" TR-528, "Optrake" TR-529, "Optrake" TR-505 (above, trade name, Catalytic Chemical Industry Co., Ltd.) Made), etc.
 粒子(B3)の例としては、前述の“オプトレイク”TR-550(商品名、触媒化成工業(株)製)、酸化ジルコニウム粒子((株)高純度化学研究所製)、酸化スズ-酸化ジルコニウム複合粒子(触媒化成工業(株)製)、などが挙げられ、粒子(B4)の例としては、前述の“オプトレイク(登録商標)”TR-502、“オプトレイク”TR-503、“オプトレイク”TR-504、“オプトレイク”TR-513、“オプトレイク”TR-520、“オプトレイク”TR-527、“オプトレイク”TR-528、“オプトレイク”TR-529、“オプトレイク”TR-505(以上、商品名、触媒化成工業(株)製)、などが挙げられる。 Examples of particles (B3) include the above-mentioned "Optrake" TR-550 (trade name, manufactured by Catalysis Chemical Industry Co., Ltd.), zirconium oxide particles (manufactured by High Purity Chemical Laboratory Co., Ltd.), tin oxide-oxidation. Zirconium composite particles (manufactured by Catalysis Chemical Industry Co., Ltd.), etc. are mentioned, and examples of the particles (B4) include the above-mentioned "Optrake (registered trademark)" TR-502, "Optrake" TR-503, ". "Optrake" TR-504, "Optrake" TR-513, "Optrake" TR-520, "Optrake" TR-527, "Optrake" TR-528, "Optrake" TR-529, "Optrake" "TR-505 (above, trade name, manufactured by Catalysis Chemical Industry Co., Ltd.), etc. can be mentioned.
 <キノンジアジド化合物(D)>
 本発明の樹脂組成物にポジ型感光性を付与するため、さらにキノンジアジド化合物(D)を含有することが好ましい。キノンジアジド化合物を含有することにより、露光部のテトラメチルアンモニウムヒドロキシド水溶液に対する溶解性を向上させることにより、ポジのレリーフパターンを得ることができる。
<Chinone diazide compound (D)>
In order to impart positive photosensitivity to the resin composition of the present invention, it is preferable to further contain the quinone diazide compound (D). By containing the quinonediazide compound, a positive relief pattern can be obtained by improving the solubility of the exposed portion in the aqueous solution of tetramethylammonium hydroxide.
 キノンジアジド化合物(D)としては、式(6)のいずれかで示される化合物が好ましい。フェノール性水酸基を有する化合物にナフトキノンジアジドのスルホン酸がエステルで結合した化合物である。 As the quinone diazide compound (D), the compound represented by any of the formula (6) is preferable. It is a compound in which a sulfonic acid of naphthoquinonediazide is ester-bonded to a compound having a phenolic hydroxyl group.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
はフェノール性水酸基を有する化合物のエステル化後の残基を示す。 R 7 indicates the residue after esterification of the compound having a phenolic hydroxyl group.
 ここで用いられるフェノール性水酸基を有する化合物としては、例えば、4,4‘-Cyclohexylidenobis phenol、4,4’-Cyclohexylidenebis[2-methylphenol]、5,5‘-(1,1’-Cyclohexylidene)bis-[1,1‘-(biphenyl)-2-ol]、4,4’-Cyclopentylidenebis phenol、4,4‘-Cyclohexylidenebis[2,6-dimethyl phenol]、4,4’-Cyclohexylidenebis[2-(1,1-dimethylethyl)phenol]、4,4‘-Cyclohexylidenebis[2-cyclohexyl phenol]、4,4’-Cyclopentylidenebis[2-methylphenol]、4,4’-(4-Methylcyclohexylidene)bis phenol4,4’-Cyclopentylidenebis[2,6-dimethylphenol]、4,4‘-[4-(1-Methylethyl)cyclohexylidene]bisphenol、4,4’-[4-(1-methylethyl)cyclohexylidene]bis[2-methylphenol]、4,4‘-[4-(1-Methylethyl)cycrohexylidene]bis[2-cycrohexyl phenol]、4,4‘-Cyclopentylidenebis[2-(1-methylethyl phenol)、4,4’-[4-(1-Methylethyl)cyclohexylidene」bis[2,6-dimethyl phenol]、4,4‘-Cyclopentylidenebis [2-(1,1-dimethylethyl)phenol]、4,4,4’、4‘Tetrakis[(1-methylethylidene)bis(1,4-cyclohexylidene)]phenol)、4,4’、4‘’-Ethylidenetris phenol、4,4‘-[1-[4-[1-(4-Hydroxyphenyl)-1-methylethyl]phenyl]ethylidene]bisphenol、Cyclohexylidenebis[2-fluoro phenol]、4,6-Bis[(4-hydroxyphenyl)methyl]-1,3-benzenediol、4,6-Bis[(3,5-dimethyl-4-hydroxyphenyl)methyl]-1,2,3-benzenetriol、2,4,6-Tris(4-hydroxyphenylmethyl)-1,3-benzenediol、2,4-Bis[(3-methyl-4-hydroxyphenyl)methyl]-6-cyclohexylphenol、2,4-Bis[(5-methyl-2-hydoxyphenyl)methyl]-6-cyclohexylphenol、2,4-Bis[(2,5-dimethyl-4-hydroxyphenyl)methyl]-6-cyclohexyl phenol、2,4-Bis[(3,5-dimethyl-4-hydroxyphenyl)methyl]-6-cyclohexyl phenol、2,4-Bis[(4-hydroxy-3-cyclohexylphenyl)methyl]-6-methylphenol、2,4-Bis[(2,3,6-trimethyl-4-hydroxyphenyl)methyl]-6-cycrohexyl phenol、4,6-Bis[3,5-dimethyl-4-hydroxyphenyl]methyl]-1,3-benzenediol、2,4-Bis[(2,4-dihydroxyphenyl)methyl]-6-cyclohexyl phenol、4-[1-(4-Hydroxyphenyl)-1-phenylethyl]-1,2-benzenediol、BIR-OC、BIP-PC、2,6-Bis(2,4-dihydroxybenzyl)-4-methylphenol、BIR-PTBP、BIR-PCHP、BIP-BIOC-F、4PC、BIR-BIPC-F、TEP-BIP-A(以上、商品名、旭有機材工業(株)製)、4,4’-スルホニルジフェノール(和光純薬(株)社製)、9,9-Bis(4-hydroxyphenyl)fluorene(商品名、JFEケミカル(株)製)などが挙げられる。 Examples of the compound having a phenolic hydroxyl group used here include 4,4'-Cyclohexylidenobis phenol, 4,4'-Cyclohexylidenebis [2-methylphenol], 5,5'-(1,1'-Cyclohexylidene) bis-. [1,1'-(biphenyl) -2-ol], 4,4'-Cyclopendylidephenol, 4,4'-Cyclohexylphenol [2,6-dimethylphenol], 4,4'-Cyclohexylridebis [2- (1,1,) 1-dimethylphenol], 4,4'-Cyclohexylphenol [2-cyclohexylphenol], 4,4'-Cyclopentylphenol [2-methylphenol], 4,4'-(4-Methylcylide4 2,6-dimethylphenol], 4,4'-[4- (1-Methylphenol) cyclohexylphenol] bisphenol, 4,4'-[4- (1-methylphenol) cyclohexylphenol] bis [2-methylphenol], 4,4' -[4- (1-Methylly) cyclohexylphenol] bis [2-cyclohexylphenol], 4,4'-Cyclopentylylenebis [2- (1-methyltyl) phenol), 4,4'-[4- (1-Methylly") bis [2,6-dimethylphenol], 4,4'-Cyclopentylidenebis [2- (1,1-dimethyl) phenol], 4,4,4', 4'Tetracis [(1-methylylide) bis (1,4) -Cyclohexylidene)] phenol), 4,4', 4''-Ethylidenetris phenol, 4,4'-[1- [4- [4- [4-Hydroxyphenyl) -1-methylyl] phenol] ethylylene] phenol, Cyclohy [2-fl uoro phenol], 4,6-Bis [(4-hydroxyphenyl) methyl] -1,3-benzenediol, 4,6-Bis [(3,5-dimethyl-4-hydroxyphenyl) methyl] -1,2,3- phenol, 2,4,6-Tris (4-hydroxyphenylphenol) -1,3-benzenediol, 2,4-Bis [(3-methyl-4-hydroxyphenyl) methyl] -6-cyclohexylphenol, 2,4-Bis [( 5-methyl-2-hydoxyphenyl) methyl] -6-cyclohexylphenol, 2,4-Bis [(2,5-dimethyl-4-hydroxyphenyl) methyl] -6-cyclohexylphenol, 2,4-Bis [(3,5) -Dimethyl-4-hydroxyphenol] methyl] -6-cyclohexylphenol, 2,4-Bis [(4-hydroxy-3-cyclohexylphenyl) methyl] -6-methylphenol, 2,4-Bis [(2,3,6-) Trimethyl-4-hydroxyphenyl) methyl] -6-cycrohexyl phenol, 4,6-Bis [3,5-dimethyl-4-hydroxyphenyl] methyl] -1,3-benzenediol, 2,4-Biz [(2,4-2,4-) dihydroxyphenyl) methyl] -6-cyclohexyl phenol, 4- [1- (4-Hydroxyphenyl) -1-phenyl] -1,2-benzenedol, BIR-OC, BIP-PC, 2,6-Bis (2,4-Bis) dihydroxybenzal) -4-methylphenol, BIR-PTBP, BIR-PCHP, BIP-BIOC-F, 4PC, BIR-BIPC-F, TEP-BIP-A (trade name, manufactured by Asahi Organic Materials Industry Co., Ltd.), Examples thereof include 4,4'-sulfonyldiphenol (manufactured by Wako Pure Chemical Industries, Ltd.) and 9,9-Biz (4-hydroxyphenyl) fluorolene (trade name, manufactured by JFE Chemical Co., Ltd.).
 これらのうち、好ましいフェノール性水酸基を有する化合物としては以下のものがあげられる。 Among these, the following are examples of compounds having a preferable phenolic hydroxyl group.
 4,4‘-Cyclohexylidenobis phenol、4,4,4’,4‘Tetrakis[(1-methylethylidene)bis(1,4-cyclohexylidene)]phenol、4,4’、4‘’-Ethylidenetris phenol、4,4‘-[1-[4-[1-(4-Hydroxyphenyl)-1-methylethyl]phenyl]ethylidene]bisphenol、4,4‘-Cyclohexylidenebis[2-cyclohexyl phenol]、4,4’-(4-Methylcyclohexylidene)bis phenol、4,4‘-[4-(1-Methylethyl)cyclohexylidene]bis phenol、4,4‘-[4-(1-Methylethyl)cycrohexylidene]bis[2-cycrohexyl phenol]、4,4’-Cyclopentylidenebis phenol、4,6-Bis[(4-hydroxyphenyl)methyl]-1,3-benzenediol、2,4,6-Tris(4-hydroxyphenylmethyl)-1,3-benzenediol、2,4-Bis[(5-methyl-2-hydoxyphenyl)methyl]-6-cyclohexylphenol、4,6-Bis[3,5-dimethyl-4-hydroxyphenyl]methyl]-1,3-benzenediol、4-[1-(4-Hydroxyphenyl)-1-phenylethyl]-1,2-benzenediol、BIP-PC、2,6-Bis(2,4-dihydroxybenzyl)-4-methylphenol、BIR-PTBP、BIR-BIPC-F、9,9-Bis(4-hydroxyphenyl)fluorene。 4,4'-Cyclohexylidobis phenol, 4,4,4', 4'Tetracis [(1-methylthylide) bis (1,4-cyclohexylidene)] phenol, 4,4', 4''-Ethylidenellis phenol, 4,4 '-[1- [4- [1- (4-Hydroxyphenyl) -1-methylly] phenyl] ethylide] bisphenol, 4,4'-Cyclohexylphenol [2-cyclohexylphenol], 4,4'-(4-Methyllic) bis phenol, 4,4'-[4- (1-Methyrethyl) cyclohexylphenol] bis phenol, 4,4'-[4- (1-Methyl thyll) cyclohexylphenol] bis [2-cyclohexylphenol], 4,4'-C phenol, 4,6-Bis [(4-hydroxyphenyl) methyl] -1,3-benzenediol, 2,4,6-Tris (4-hydroxyphenylmethyl) -1,3-benzenediol, 2,4-Bis [(5-5-bisphenol)] methyl-2-hydroxyphenyl) methyl] -6-cyclohexylphenol, 4,6-Bis [3,5-dimethyl-4-hydroxyphenyl] methyl] -1,3-benzenediol, 4- [1- (4-Hydroxyphenol) -Phenylphenol] -1,2-phenendiol, BIP-PC, 2,6-Bis (2,4-dihydroxybenzyl) -4-methylphenol, BIR-PTBP, BIR-BIPC-F, 9,9-Biz (4-hydroxyphenyl) ) Phenol.
 これらのうち、特に好ましいフェノール性水酸基を有する化合物としては、たとえば、4,4‘-Cyclohexylidenobis phenol、4,4,4’、4‘Tetrakis[(1-methylethylidene)bis(1,4-cyclohexylidene)]phenol、4,4’、4‘’-Ethylidenetris phenol、4,4‘-[1-[4-[1-(4-Hydroxyphenyl)-1-methylethyl]phenyl]ethylidene]bisphenol、4,6-Bis[(4-hydroxyphenyl)methyl]-1,3-benzenediol、2,4,6-Tris(4-hydroxyphenylmethyl)-1,3-benzenediol、4-[1-(4-Hydroxyphenyl)-1-phenylethyl]-1,2-benzenediol、2,6-Bis(2,4-dihydroxybenzyl)-4-methylphenol、BIR-PTBP、BIR-BIPC-F、4,4’-スルホニルジフェノール、9,9-Bis(4-hydroxyphenyl)fluoreneなどが挙げられる。 Among these, compounds having a particularly preferable phenolic hydroxyl group include, for example, 4,4'-Cyclohexylidobis phenol, 4,4,4', 4'Tetracis [(1-methylthylide) bis (1,4-cyclohexylide)]. phenol, 4,4', 4''-Ethylidephenol, 4,4'-[1- [4- [1- (4-Hydroxyphenyl) -1-methylly] phenyl] etheridene] phenol, 4,6-Bis [ (4-Hydroxyphenyl) methyl] -1,3-benzenediol, 2,4,6-Tris (4-hydroxyphenylmethyl) -1,3-benzenedil, 4- [1- (4-Hydroxyphenyl) -1-phenyl] -1 , 2-benzenediol, 2,6-Bis (2,4-dihydroxybenzyl) -4-methylphenol, BIR-PTBP, BIR-BIPC-F, 4,4'-sulfonyldiphenol, 9,9-Biz (4-hydroxyphenyl) ) Phenol and the like.
 上で説明したフェノール性水酸基を有する化合物に4-ナフトキノンジアジドスルホン酸又は5-ナフトキノンジアジドスルホン酸をエステル結合で導入したものが好ましいものとして例示することができる。これ以外の化合物を使用することもできる。 A compound obtained by introducing 4-naphthoquinonediazide sulfonic acid or 5-naphthoquinone diazidosulfonic acid into the compound having a phenolic hydroxyl group described above by an ester bond can be exemplified as a preferable compound. Other compounds can also be used.
 キノンジアジド化合物(D)の含有量は、樹脂(A)及び/又はポリシロキサン(A1)に対して、1~50重量部、より好ましくは2~10重量部である。また、キノンジアジド化合物(D)の含有量は、ポリシロキサン(a1)に対して、1~50重量部であることが好ましく、2~10重量部であることがより好ましい。1重量部以上とすることで、実用的な感度でパターン形成を行うことができる。また、50重量部以下とすることで、透過率やパターン解像性に優れた樹脂組成物が得られる。 The content of the quinone diazide compound (D) is 1 to 50 parts by weight, more preferably 2 to 10 parts by weight, based on the resin (A) and / or the polysiloxane (A1). The content of the quinone diazide compound (D) is preferably 1 to 50 parts by weight, more preferably 2 to 10 parts by weight, based on the polysiloxane (a1). By setting the amount to 1 part by weight or more, pattern formation can be performed with practical sensitivity. Further, when the content is 50 parts by weight or less, a resin composition having excellent transmittance and pattern resolution can be obtained.
 キノンジアジド化合物(D)の好ましい分子量は300以上、より好ましくは350以上である。また1000以下、より好ましくは800以下である。分子量を300以上とすることで、未露光部の溶解抑止効果が得られる。また分子量を1000以下とすることで、露光後、現像し、感光性樹脂組成物を除去した部分においてスカムがないレリーフパターンが得られる。 The preferable molecular weight of the quinonediazide compound (D) is 300 or more, more preferably 350 or more. Further, it is 1000 or less, more preferably 800 or less. By setting the molecular weight to 300 or more, the effect of suppressing dissolution of the unexposed portion can be obtained. Further, by setting the molecular weight to 1000 or less, a relief pattern without scum can be obtained in a portion developed after exposure and from which the photosensitive resin composition has been removed.
 キノンジアジド化合物(D)を添加しているので、未露光部の塗膜の中にはナフトキノンジアジド基が残留し、それが原因で加熱硬化後に膜の着色が生じることがある。透明な硬化膜を得るためには、現像後の膜の全面に紫外線を照射して、ナフトキノンジアジド化合物を分解し、その後に加熱硬化を行うことが好ましい。 Since the quinone diazide compound (D) is added, naphthoquinone diazide groups remain in the coating film in the unexposed area, which may cause coloration of the film after heat curing. In order to obtain a transparent cured film, it is preferable to irradiate the entire surface of the developed film with ultraviolet rays to decompose the naphthoquinone diazide compound, and then perform heat curing.
 <溶剤(C)>
 本発明の樹脂組成物は溶剤(C)を含む。溶剤(C)としては、以下のものがあげられる。
<Solvent (C)>
The resin composition of the present invention contains a solvent (C). Examples of the solvent (C) include the following.
 エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノ-t-ブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル等のエーテル系化合物。
エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピルアセテート、ブチルアセテート、イソブチルアセテート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート等のアセテート系化合物。
乳酸メチル、乳酸エチル、乳酸ブチル等の乳酸エスエル。アセチルアセトン、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、シクロペンタノン、2-ヘプタノン、メシチルオキシド等のケトン化合物。メタノール、エタノール、プロパノール、ブタノール、イソブチルアルコール、ペンタノール、4-メチル-2-ペンタノール、3-メチル-2-ブタノール、3-メチル-3-メトキシ-1-ブタノール、ジアセトンアルコール等のアルコール系化合物。トルエン、キシレン等の芳香族炭化水素系化合物。そのほかγ-ブチロラクトン、N-メチルピロリジノン等。これらは単独あるいは2種以上含有しても構わない。
Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol mono-t-butyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, Ether-based compounds such as ethylene glycol dibutyl ether.
Ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, propyl acetate, butyl acetate, isobutyl acetate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate and other acetate compounds.
Lactate SL such as methyl lactate, ethyl lactate, and butyl lactate. Ketone compounds such as acetylacetone, methylpropylketone, methylbutylketone, methylisobutylketone, cyclopentanone, 2-heptanone, and mesityl oxide. Alcohols such as methanol, ethanol, propanol, butanol, isobutyl alcohol, pentanol, 4-methyl-2-pentanol, 3-methyl-2-butanol, 3-methyl-3-methoxy-1-butanol, diacetone alcohol, etc. Compound. Aromatic hydrocarbon compounds such as toluene and xylene. In addition, γ-butyrolactone, N-methylpyrrolidinone, etc. These may be contained alone or in two or more kinds.
 これらのうち、特に好ましい溶剤の例は、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノ-t-ブチルエーテル、ジアセトンアルコール、γ-ブチロラクトンである。これらは単独あるいは2種以上含有してもかまわない。 Among these, examples of particularly preferable solvents are propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol mono-t-butyl ether, and diacetone alcohol. , Gamma-butylollactone. These may be contained alone or in two or more kinds.
 樹脂組成物における溶剤(C)の含有量は、全ポリシロキサン化合物100重量部に対して、100重量部~9900重量部の範囲が好ましく、より好ましくは、100重量部~5000重量部の範囲である。 The content of the solvent (C) in the resin composition is preferably in the range of 100 parts by weight to 9900 parts by weight, more preferably in the range of 100 parts by weight to 5000 parts by weight, based on 100 parts by weight of the total polysiloxane compound. be.
 <その他の成分>
 本発明の樹脂組成物は、塗布時におけるフロー性や膜厚の均一性向上のために、各種界面活性剤を含有してもよい。界面活性剤の種類に特に制限はなく、例えば、フッ素系界面活性剤、シリコーン系界面活性剤、ポリアルキレンオキシド系界面活性剤、ポリ(メタ)アクリレート系界面活性剤などを用いることができる。これらのうち、フロー性や膜厚均一性の観点から、フッ素系界面活性剤が特に好ましく用いられる。
<Other ingredients>
The resin composition of the present invention may contain various surfactants in order to improve the flowability and the uniformity of the film thickness at the time of coating. The type of surfactant is not particularly limited, and for example, a fluorine-based surfactant, a silicone-based surfactant, a polyalkylene oxide-based surfactant, a poly (meth) acrylate-based surfactant, or the like can be used. Of these, a fluorine-based surfactant is particularly preferably used from the viewpoint of flowability and film thickness uniformity.
 フッ素系界面活性剤の具体的な例としては、1,1,2,2-テトラフロロオクチル(1,1,2,2-テトラフロロプロピル)エーテル、1,1,2,2-テトラフロロオクチルヘキシルエーテル、オクタエチレングリコールジ(1,1,2,2-テトラフロロブチル)エーテル、ヘキサエチレングリコール(1,1,2,2,3,3-ヘキサフロロペンチル)エーテル、オクタプロピレングリコールジ(1,1,2,2-テトラフロロブチル)エーテル、ヘキサプロピレングリコールジ(1,1,2,2,3,3-ヘキサフロロペンチル)エーテル、パーフロロドデシルスルホン酸ナトリウム、1,1,2,2,8,8,9,9,10,10-デカフロロドデカン、1,1,2,2,3,3-ヘキサフロロデカン、N-[3-(パーフルオロオクタンスルホンアミド)プロピル]-N,N′-ジメチル-N-カルボキシメチレンアンモニウムベタイン、パーフルオロアルキルスルホンアミドプロピルトリメチルアンモニウム塩、パーフルオロアルキル-N-エチルスルホニルグリシン塩、リン酸ビス(N-パーフルオロオクチルスルホニル-N-エチルアミノエチル)、モノパーフルオロアルキルエチルリン酸エステルなどの末端、主鎖及び側鎖の少なくとも何れかの部位にフルオロアルキル又はフルオロアルキレン基を有する化合物からなるフッ素系界面活性剤を挙げることができる。 Specific examples of the fluorine-based surfactant include 1,1,2,2-tetrafluorooctyl (1,1,2,2-tetrafluoropropyl) ether and 1,1,2,2-tetrafluorooctyl. Hexyl ether, octaethylene glycol di (1,1,2,2-tetrafluorobutyl) ether, hexaethylene glycol (1,1,2,2,3,3-hexafluoropentyl) ether, octapropylene glycol di (1) , 1,2,2-tetrafluorobutyl) ether, hexapropylene glycol di (1,1,2,2,3,3-hexafluoropentyl) ether, sodium perfluorododecylsulfonate, 1,1,2,2 , 8,8,9,9,10,10-decafluorodecan, 1,1,2,2,3,3-hexafluorodecane, N- [3- (perfluorooctane sulfonamide) propyl] -N, N'-dimethyl-N-carboxymethyleneammonium betaine, perfluoroalkylsulfonamide propyltrimethylammonium salt, perfluoroalkyl-N-ethylsulfonylglycine salt, bis phosphate (N-perfluorooctylsulfonyl-N-ethylaminoethyl) , Monoperfluoroalkylethyl phosphate, etc. Fluorescent surfactants comprising compounds having a fluoroalkyl or fluoroalkylene group at at least any of the terminal, main chain and side chains can be mentioned.
 また、市販品としては、“メガファック”(登録商標)F142D、同F172、同F173、同F183、同F410、同F477、同F553、同F554、同F556、同F557、同F559、同F560、同F563、RS-72-K、DS-21、R-41(以上、大日本インキ化学工業(株)製)、“エフトップ”(登録商標)EF301、同303、同352(新秋田化成(株)製)、“フロラード”FC-430、同FC-431(住友スリーエム(株)製)、“アサヒガード”(登録商標)AG710、“サーフロン”(登録商標)S-382、同SC-101、同SC-102、同SC-103、同SC-104、同SC-105、同SC-106(旭硝子(株)製)、BM-1000、BM-1100(裕商(株)製)、NBX-15、FTX-218((株)ネオス製)などのフッ素系界面活性剤を挙げることができる。これらの中でも、上記“メガファック”(登録商標)F477、同F556、同F563、BM-1000、BM-1100、NBX-15、FTX-218がフロー性や膜厚均一性の観点から特に好ましい。 As commercially available products, "Megafuck" (registered trademark) F142D, F172, F173, F183, F410, F477, F553, F554, F556, F557, F559, F560, etc. F563, RS-72-K, DS-21, R-41 (all manufactured by Dainippon Ink and Chemicals Co., Ltd.), "Ftop" (registered trademark) EF301, 303, 352 (Shin-Akita Kasei (Shin-Akita Kasei) (Manufactured by Sumitomo Co., Ltd.), "Florard" FC-430, FC-431 (manufactured by Sumitomo 3M Co., Ltd.), "Asahi Guard" (registered trademark) AG710, "Surfron" (registered trademark) S-382, SC-101 , SC-102, SC-103, SC-104, SC-105, SC-106 (manufactured by Asahi Glass Co., Ltd.), BM-1000, BM-1100 (manufactured by Yusho Co., Ltd.), NBX -15, FTX-218 (manufactured by Neos Co., Ltd.) and other fluorosurfactants can be mentioned. Among these, the above-mentioned "Mega Fvck" (registered trademark) F477, F556, F563, BM-1000, BM-1100, NBX-15, and FTX-218 are particularly preferable from the viewpoint of flowability and film thickness uniformity.
 シリコーン系界面活性剤の市販品としては、SH28PA、SH7PA、SH21PA、SH30PA、ST94PA(いずれも東レ・ダウコーニング・シリコーン(株)製)、BYK-333、BYK-352(ビックケミー・ジャパン(株)製)、KL-700、LE-302、LE-303、LE-304(共栄社化学(株))などが挙げられる。その他の界面活性剤の例としては、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンジステアレートなどが挙げられる。 Commercially available silicone-based surfactants include SH28PA, SH7PA, SH21PA, SH30PA, and ST94PA (all manufactured by Toray Dow Corning Silicone Co., Ltd.), BYK-333, and BYK-352 (manufactured by Big Chemie Japan Co., Ltd.). ), KL-700, LE-302, LE-303, LE-304 (Kyoeisha Chemical Co., Ltd.) and the like. Examples of other surfactants include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene nonylphenyl ether, polyoxyethylene distearate and the like.
 界面活性剤の含有量は、樹脂組成物中の全ポリシロキサン化合物含有量100重量部に対して、通常、0.001~10重量部である。これらは、1種あるいは2種以上を同時に使用してもよい。 The content of the surfactant is usually 0.001 to 10 parts by weight with respect to 100 parts by weight of the total polysiloxane compound content in the resin composition. These may be used alone or in combination of two or more at the same time.
 さらに、樹脂組成物は、例えば溶剤を気化させるためのプリベーク時の熱重合を抑制する目的で、重合禁止剤を含有しても構わない。重合禁止剤としては、例えば、フェノール、ハイドロキノン、p-メトキシフェノール、ベンゾキノン、メトキシベンゾキノン、1,2-ナフトキノン、クレゾール、p-t-ブチルカテコール等のカテコール類、アルキルフェノール類、アルキルビスフェノール類、フェノチアジン、2,5-ジ-t-ブチルハイドロキノン、2,6-ジ-t-ブチルフェノール、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマイド)、2,2’メチレンビス(4-メチル-6-t-ブチルフェノール)、4,4’メチレンビス(2,6-ジ-t-ブチルフェノール)、4,4’ブチリデンビス(3-メチル-6-t-ブチルフェノール)、2,6-ビス(2’-ヒドロキシ-3’-t-ブチル-5’-メチルベンジル)4-メチルフェノール、1,1,3-トリス(2’-メチル-5’-t-ブチル-4’-ヒドロキシフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3’-5’-ジ-t-ブチル-4’-ヒドロキシベンジル)ベンゼン、トリエチレングリコールビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、ペンタエリスリチルテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2,4-ジメチル-6-t-ブチルフェノール、2-t-ブチル-4-メトキシフェノール等のフェノール類、6-t-ブチル-m-クレゾール、2,6-ジ-t-ブチル-p-クレゾール、2-t-ブチルハイドロキノン、メチレンブルー、ジメチルジチオカルバミン酸銅塩、ジエチルジチオカルバミン酸銅塩、ジプロピルジチオカルバミン酸銅塩、ジブチルジチオカルバミン酸銅塩、ジブチルジチオカルバミン酸銅、サリチル酸銅、チオジプロピオン酸エステル類、メルカプトベンズイミダゾール若しくはホスファイト類これら化合物と空気等の酸素含有ガスとの併用が挙げられる。本発明の樹脂組成物中の重合禁止剤含有量は、樹脂組成物全体に対して0.000005~0.2重量%であることが好ましく、0.00005~0.1重量%であることがより好ましい。また、有機溶媒以外の全成分に対して0.0001~0.5重量%が好ましく、0.001~0.2重量%がより好ましい。 Further, the resin composition may contain a polymerization inhibitor for the purpose of suppressing thermal polymerization at the time of prebaking for vaporizing the solvent, for example. Examples of the polymerization inhibitor include catechols such as phenol, hydroquinone, p-methoxyphenol, benzoquinone, methoxybenzoquinone, 1,2-naphthoquinone, cresol, and pt-butylcatechol, alkylphenols, alkylbisphenols, phenothiazine, and the like. 2,5-di-t-butylhydroquinone, 2,6-di-t-butylphenol, octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, N, N'-hexamethylene Bis (3,5-di-t-butyl-4-hydroxy-hydrocinnamide), 2,2'methylenebis (4-methyl-6-t-butylphenol), 4,4'methylenebis (2,6-di- t-Butylphenol), 4,4'butylidenebis (3-methyl-6-t-butylphenol), 2,6-bis (2'-hydroxy-3'-t-butyl-5'-methylbenzyl) 4-methylphenol , 1,1,3-Tris (2'-methyl-5'-t-butyl-4'-hydroxyphenyl) butane, 1,3,5-trimethyl-2,4,6-Tris (3'-5') -Di-t-butyl-4'-hydroxybenzyl) benzene, triethylene glycol bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate], pentaerythrityltetrax [3- (3) , 5-di-t-butyl-4-hydroxyphenyl) propionate], 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate, 2, Phenols such as 4-dimethyl-6-t-butylphenol and 2-t-butyl-4-methoxyphenol, 6-t-butyl-m-cresol, 2,6-di-t-butyl-p-cresol, 2 -T-Butyl hydroquinone, methylene blue, dimethyl dithiocarbamic acid copper salt, diethyl dithiocarbamic acid copper salt, dipropyl dithiocarbamic acid copper salt, dibutyl dithiocarbamic acid copper salt, dibutyl dithiocarbamate copper, dibutyl dithiocarbamate copper, salicylate copper, thiodipropionic acid esters, mercaptobenz Imidazole or phosphites Examples thereof include the combined use of these compounds with an oxygen-containing gas such as air. The content of the polymerization inhibitor in the resin composition of the present invention is preferably 0.000005 to 0.2% by weight, preferably 0.00005 to 0.1% by weight, based on the entire resin composition. More preferred. Further, 0.0001 to 0.5% by weight is preferable, and 0.001 to 0.2% by weight is more preferable with respect to all the components other than the organic solvent.
 さらに本発明の樹脂組成物には、必要に応じて、粘度調整剤、安定化剤、着色剤、紫外線吸収剤等を含有することができる。 Further, the resin composition of the present invention can contain a viscosity regulator, a stabilizer, a colorant, an ultraviolet absorber and the like, if necessary.
 <硬化膜>
 本発明の樹脂組成物を基板上に塗布して塗布膜を得る。これを加熱により乾燥、硬化させることにより硬化膜を形成することができる。
<Cured film>
The resin composition of the present invention is applied onto a substrate to obtain a coating film. A cured film can be formed by drying and curing this by heating.
 本発明の樹脂組成物の塗布方法としては、マイクログラビアコーティング、スピンコーティング、ディップコーティング、カーテンフローコーティング、ロールコーティング、スプレーコーティング、スリットコーティング、流し塗り法などを好ましく用いることができる。 As the coating method of the resin composition of the present invention, microgravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating, slit coating, sink coating method and the like can be preferably used.
 加熱乾燥及び硬化条件としては、適用される基板、及び樹脂組成物に応じて適宜選択されるが、通常は室温以上、400℃以下の温度で、0.5分間から240分間の処理を行うことが好ましい。特に好ましい硬化温度としては、100~400℃が好ましく、さらに好ましくは、150~400℃である。 The heat-drying and curing conditions are appropriately selected depending on the substrate to be applied and the resin composition, but usually, the treatment is carried out at a temperature of room temperature or higher and 400 ° C. or lower for 0.5 to 240 minutes. Is preferable. A particularly preferable curing temperature is 100 to 400 ° C, more preferably 150 to 400 ° C.
 塗布膜及び硬化膜の膜厚に特に制限はないが、ともに0.001~100μmの範囲にあるのが一般的である。 The film thickness of the coating film and the cured film is not particularly limited, but both are generally in the range of 0.001 to 100 μm.
 上記の樹脂組成物が感光性を有する場合の硬化膜の製造方法は、以下の工程を含むことが好ましい。
(I)樹脂組成物を基板上に塗布して塗膜を形成する工程、
(II)前記塗膜を露光する工程
(III)前記露光後の塗膜を加熱する工程。
When the above resin composition has photosensitivity, the method for producing a cured film preferably includes the following steps.
(I) A step of applying a resin composition onto a substrate to form a coating film,
(II) Step of exposing the coating film (III) Step of heating the coating film after the exposure.
 上記各工程を順に説明する。 Each of the above steps will be described in order.
 (I)樹脂組成物を基板上に塗布して塗膜を形成する工程
 上記の樹脂組成物を、スピン塗布やスリット塗布等の公知の方法によって基板上に塗布し、ホットプレート、オーブン等の加熱装置を用いて加熱する。これをプリベークという。プリベークは、50~150℃の温度範囲で30秒~30分間行うことが好ましい。プリベーク後の膜厚は0.1~15μmが好ましい。
(I) Step of Applying Resin Composition to Substrate to Form Coating Film The above resin composition is applied to the substrate by a known method such as spin coating or slit coating, and heated in a hot plate, oven or the like. Heat using the device. This is called prebake. Prebaking is preferably carried out in a temperature range of 50 to 150 ° C. for 30 seconds to 30 minutes. The film thickness after prebaking is preferably 0.1 to 15 μm.
 (II)前記塗膜を露光する工程
 プリベーク後、ステッパー、ミラープロジェクションマスクアライナー(MPA)、パラレルライトマスクアライナー(PLA)等の紫外可視露光機を用い、10~4000J/m程度(波長365nm露光量換算)の露光量にて、塗膜全面を露光する。
(II) Step of exposing the coating film After prebaking, an ultraviolet-visible exposure machine such as a stepper, a mirror projection mask aligner (MPA), or a parallel light mask aligner (PLA) is used to expose about 10 to 4000 J / m 2 (wavelength 365 nm exposure). The entire surface of the coating film is exposed with an exposure amount of (quantity conversion).
 (III)前記塗膜を加熱して硬化する工程
 (I)を経た塗膜、又は、(I)及び(II)を経た塗膜を、ホットプレート、オーブン等の加熱装置で、150~450℃の温度範囲で30秒~2時間程度加熱(キュア)することで、硬化膜を得る。
(III) The coating film that has undergone the step (I) of heating and curing the coating film, or the coating film that has undergone (I) and (II) is heated at 150 to 450 ° C. using a heating device such as a hot plate or an oven. A cured film is obtained by heating (curing) for about 30 seconds to 2 hours in the temperature range of.
 また、上記の樹脂組成物が感光性を有する場合でパターン加工した硬化膜を製造する場合には、以下の工程を含むことが好ましい。
(i)樹脂組成物を基板上に塗布して塗膜を形成する工程、
(ii)前記塗膜をパターン露光工程の後、現像液で現像することにより、塗膜の露光部分を除去する工程、
(iii)前記現像後残った塗膜を露光する工程、
(iv)前記露光後の塗膜を加熱する工程。
Further, when the above resin composition has photosensitive property and a patterned cured film is produced, it is preferable to include the following steps.
(I) A step of applying a resin composition onto a substrate to form a coating film,
(Ii) A step of removing an exposed portion of the coating film by developing the coating film with a developing solution after a pattern exposure step.
(Iii) A step of exposing the coating film remaining after development,
(Iv) A step of heating the coating film after the exposure.
  上記各工程を順に説明する。 Each of the above processes will be explained in order.
 (i)樹脂組成物を基板上に塗布して塗膜を形成する工程
 上記の樹脂組成物を、スピン塗布やスリット塗布等の公知の方法によって基板上に塗布し、ホットプレート、オーブン等の加熱装置を用いて加熱する。これをプリベークという。プリベークは、50~150℃の温度範囲で30秒~30分間行うことが好ましい。プリベーク後の膜厚は0.1~15μmが好ましい。
(I) Step of applying the resin composition on the substrate to form a coating film The above resin composition is applied on the substrate by a known method such as spin coating or slit coating, and heated in a hot plate, an oven, or the like. Heat using the device. This is called prebake. Prebaking is preferably carried out in a temperature range of 50 to 150 ° C. for 30 seconds to 30 minutes. The film thickness after prebaking is preferably 0.1 to 15 μm.
 (ii)該塗膜をパターン露光工程の後、現像液で現像することにより、塗膜の露光部分を除去する工程
 プリベーク後、ステッパー、ミラープロジェクションマスクアライナー(MPA)、パラレルライトマスクアライナー(pla)等の紫外可視露光機を用い、所望のマスクを介して、10~4000J/m程度(波長365nm露光量換算)の露光量にて、パターン露光する。
(Ii) A step of removing an exposed portion of the coating film by developing the coating film with a developing solution after a pattern exposure step. After prebaking, a stepper, a mirror projection mask aligner (MPA), and a parallel light mask aligner (pla). A pattern exposure is performed with an exposure amount of about 10 to 4000 J / m 2 (equivalent to an exposure amount of 365 nm wavelength) through a desired mask using an ultraviolet visible exposure machine such as the above.
 露光後、現像により露光部の膜を溶解除去し、ポジパターンを得る。パターンの解像度は、好ましくは15μm以下である。現像方法としては、シャワー、ディップ、パドル等の方法が挙げられ、現像液に5秒~10分間、膜を浸漬することが好ましい。現像液としては、公知のアルカリ現像液を用いることができ、例えば、以下のアルカリ成分の水溶液等が挙げられる。アルカリ金属の水酸化物、炭酸塩、リン酸塩、ケイ酸塩、ホウ酸塩等の無機アルカリ成分、2-ジエチルアミノエタノール、モノエタノールアミン、ジエタノールアミン等のアミン類、水酸化テトラメチルアンモニウム(TMAH)、コリン等の4級アンモニウム塩。アルカリ現像液として、これらを2種以上用いてもよい。 After exposure, the film in the exposed area is dissolved and removed by development to obtain a positive pattern. The resolution of the pattern is preferably 15 μm or less. Examples of the developing method include methods such as showering, dipping, and paddle, and it is preferable to immerse the film in a developing solution for 5 seconds to 10 minutes. As the developing solution, a known alkaline developing solution can be used, and examples thereof include an aqueous solution of the following alkaline components. Inorganic alkaline components such as alkali metal hydroxides, carbonates, phosphates, silicates and borates, amines such as 2-diethylaminoethanol, monoethanolamine and diethanolamine, tetramethylammonium hydroxide (TMAH) , Colin and other quaternary ammonium salts. Two or more of these may be used as the alkaline developer.
 また、現像後は水でリンスすることが好ましく、必要であれば、ホットプレート、オーブン等の加熱装置で50~150℃の温度範囲で脱水乾燥ベークを行ってもよい。さらに、必要であれば、ホットプレート、オーブン等の加熱装置で、50~300℃の温度範囲で30秒~30分間加熱を行う。これをソフトベークという。 Further, it is preferable to rinse with water after development, and if necessary, dehydration drying baking may be performed in a temperature range of 50 to 150 ° C. with a heating device such as a hot plate or an oven. Further, if necessary, heating is performed in a heating device such as a hot plate or an oven in a temperature range of 50 to 300 ° C. for 30 seconds to 30 minutes. This is called soft bake.
 (iii)該現像後残った塗膜を露光する工程
 現像後、ステッパー、ミラープロジェクションマスクアライナー(mpa)、パラレルライトマスクアライナー(pla)等の紫外可視露光機を用い、所望のマスクを介して、10~4000J/m程度(波長365nm露光量換算)の露光量にて、パターン露光する。
(Iii) Step of exposing the coating film remaining after the development After the development, an ultraviolet visible exposure machine such as a stepper, a mirror projection mask aligner (mpa), a parallel light mask aligner (pla) is used, and the coating film remains through a desired mask. Pattern exposure is performed at an exposure amount of about 10 to 4000 J / m 2 (wavelength 365 nm exposure amount conversion).
 (iv)前記露光後の塗膜を加熱する工程。 (Iv) A step of heating the coating film after the exposure.
 (iii)を経た塗膜を、ホットプレート、オーブン等の加熱装置で、150~450℃の温度範囲で30秒~2時間程度加熱(キュア)することで、硬化膜を得る。 A cured film is obtained by heating (curing) the coating film that has undergone (iii) in a heating device such as a hot plate or an oven in a temperature range of 150 to 450 ° C. for about 30 seconds to 2 hours.
 本発明の樹脂組成物は、(ii)露光及び現像する工程において、パターン形成における生産性の観点から、露光時の感度が1500J/m以下であることが好ましく、1000J/m以下であることがより好ましい。 In the steps of (ii) exposure and development, the resin composition of the present invention preferably has a sensitivity of 1500 J / m 2 or less, preferably 1000 J / m 2 or less, from the viewpoint of productivity in pattern formation. Is more preferable.
 露光時の感度は、以下の方法により求められる。感光性樹脂組成物を、シリコンウェハ上に、スピンコーターを用いて任意の回転数でスピン塗布する。ホットプレートを用いて120℃で3分間、塗膜をプリベークし、膜厚1μmのプリベーク膜を作製する。マスクアライナであるPLA(キヤノン(株)製PLA-501F)を用いて、超高圧水銀灯により、感度測定用のマスクである、1~10μmのライン・アンド・スペースパターンを有するグレースケールマスクを介してプリベーク膜を露光する。その後、自動現像装置(滝沢産業(株)製AD-2000)を用いて、2.38重量%TMAH水溶液で90秒間シャワー現像し、次いで水で30秒間リンスする。形成されたパターンにおいて、設計寸法100μmの正方形パターンが現像後に剥がれず、基板上に残って形成される露光量のうちもっとも露光量が低いもの(以下、これを最適露光量という)を感度とする。 The sensitivity at the time of exposure is obtained by the following method. The photosensitive resin composition is spin-coated on a silicon wafer at an arbitrary rotation speed using a spin coater. The coating film is prebaked at 120 ° C. for 3 minutes using a hot plate to prepare a prebaked film having a film thickness of 1 μm. Using PLA (PLA-501F manufactured by Canon Inc.), which is a mask aligner, an ultra-high pressure mercury lamp is used, and a grayscale mask having a line and space pattern of 1 to 10 μm, which is a mask for sensitivity measurement, is used. The pre-baked film is exposed. Then, using an automatic developing device (AD-2000 manufactured by Takizawa Sangyo Co., Ltd.), shower development is performed with a 2.38 wt% TMAH aqueous solution for 90 seconds, and then rinse with water for 30 seconds. Among the formed patterns, the one with the lowest exposure amount (hereinafter referred to as the optimum exposure amount) among the exposure amounts formed on the substrate without peeling off after development of a square pattern having a design dimension of 100 μm is defined as the sensitivity. ..
 その後、熱硬化工程として、ホットプレートを用いて220℃で5分間キュアして硬化膜を作製し、感度における最小パターン寸法をキュア後解像度として求める。 Then, as a thermosetting step, a cured film is prepared by curing at 220 ° C. for 5 minutes using a hot plate, and the minimum pattern dimension in sensitivity is obtained as the post-cure resolution.
 本発明の硬化膜は、本発明の樹脂組成物を硬化させてなる硬化膜である。 The cured film of the present invention is a cured film obtained by curing the resin composition of the present invention.
 本発明の樹脂組成物及びその硬化膜は、固体撮像素子、光学フィルタ、ディスプレイ等の光学デバイスやタッチパネルのインデックスマッチング材料に好適に用いられる。より具体的には、裏面照射型CMOSイメージセンサなどの固体撮像素子等に形成される集光用マイクロレンズや光導波路、光学フィルタとして設置される反射防止膜、ディスプレイ用TFT基板の平坦化材、液晶ディスプレイ等のカラーフィルタ及びその保護膜、位相シフター等が挙げられる。これらの中でも、高い透明性と高い屈折率を両立できることから、固体撮像素子上に形成される集光用マイクロレンズや、集光用マイクロレンズと光センサー部を繋ぐ光導波路として特に好適に用いられる。また、本発明の樹脂組成物及びその硬化膜は、半導体装置のバッファコート、層間絶縁膜や、各種保護膜として用いることもできる。 The resin composition of the present invention and its cured film are suitably used as index matching materials for optical devices such as solid-state image sensors, optical filters, and displays, and touch panels. More specifically, a light-collecting microlens and an optical waveguide formed on a solid-state image sensor such as a back-illuminated CMOS image sensor, an antireflection film installed as an optical filter, and a flattening material for a TFT substrate for a display. Examples thereof include a color filter such as a liquid crystal display, a protective film thereof, and a phase shifter. Among these, since it is possible to achieve both high transparency and high refractive index, it is particularly preferably used as a condensing microlens formed on a solid-state image sensor or an optical waveguide connecting a condensing microlens and an optical sensor unit. .. Further, the resin composition of the present invention and the cured film thereof can also be used as a buffer coat of a semiconductor device, an interlayer insulating film, and various protective films.
 <固体撮像素子>
 本発明の固体撮像素子は、本発明の硬化膜を具備する。一例として、半導体受光素子を有する基板上に、基板側からカラーフィルタ、マイクロレンズ(アレイ)、さらに反射防止膜等の透明樹脂層を順に具備する形態が挙げられる。外部からの光は、透明樹脂層、マイクロレンズ、及びカラーフィルタの順に透過して受光素子へと到達し、検知される。この際、本発明の樹脂組成物から形成した硬化膜をマイクロレンズとして適用することで、受光素子への効率的な集光が可能となる。RGBそれぞれに対応する光を検知する受光素子の画素の全般に渡って機能し、受光素子の画素とマイクロレンズの個々のレンズが高密度に配列されている場合でも、きわめて鮮明な画像を得ることができる。
<Solid image sensor>
The solid-state image sensor of the present invention comprises the cured film of the present invention. As an example, there is a form in which a transparent resin layer such as a color filter, a microlens (array), and an antireflection film is sequentially provided on a substrate having a semiconductor light receiving element from the substrate side. Light from the outside passes through the transparent resin layer, the microlens, and the color filter in this order, reaches the light receiving element, and is detected. At this time, by applying the cured film formed from the resin composition of the present invention as a microlens, efficient light collection to the light receiving element becomes possible. It functions over the pixels of the light receiving element that detects light corresponding to each of RGB, and obtains an extremely clear image even when the pixels of the light receiving element and the individual lenses of the microlens are arranged at high density. Can be done.
 また、別の形態として、受光素子を有する基板上に、光導波路として機能する樹脂層、カラーフィルタ、マイクロレンズ(アレイ)、さらに反射防止膜等の樹脂層を順に形成されたものが挙げられる。この際、本発明の樹脂組成物から形成した硬化膜をマイクロレンズ、もしくは光導波路として好適に利用することができる。 Further, as another form, a resin layer that functions as an optical waveguide, a color filter, a microlens (array), and a resin layer such as an antireflection film are sequentially formed on a substrate having a light receiving element. At this time, the cured film formed from the resin composition of the present invention can be suitably used as a microlens or an optical waveguide.
 <マイクロレンズ>
 本発明のマイクロレンズは本発明の硬化物からなる。マイクロレンズ形成方法の一形態として、マイクロレンズアレイの形成工程の一例について説明する。必要により、素子の凹凸を、透明樹脂をスピンコートすることで埋め込み、平坦化しておく。平坦化した表面にレンズ材料を均一に塗布し、前述の方法にて硬化膜を形成する。さらにその上に、レジストを均一に塗布する。ステッパー装置を用いて、レチクルをマスクとしてレジストに紫外線を照射し、レンズ間スペースの部分を露光する。感光した部分を現像液で分解除去しパターン形成する。半球状のパターンを加熱することで得る。このときレジストは溶融し液相となり、半球状態になった後、固相に変化する。その後、ドライエッチングによりレジスト材料の半球状パターン層およびレンズ材料の層をエッチングする。このようにして半球状のレンズが配列されたレンズアレイを形成することができる。本発明の硬化膜はドライエッチング性に優れるため、前記ドライエッチング工程でのパターン化が容易である。ドライエッチングに用いるエッチングガスとしては、CF4、6、8、8、CHF3、SF、NFガス等のフッ素系ガス、Oガス、Arガス、Nガスなどを用いることができる。
<Micro lens>
The microlens of the present invention comprises the cured product of the present invention. As one form of the microlens forming method, an example of the microlens array forming step will be described. If necessary, the unevenness of the element is embedded and flattened by spin coating with a transparent resin. The lens material is uniformly applied to the flattened surface to form a cured film by the method described above. Further, the resist is uniformly applied on it. Using a stepper device, the resist is irradiated with ultraviolet rays using a reticle as a mask to expose a portion of the space between lenses. The exposed part is decomposed and removed with a developing solution to form a pattern. Obtained by heating a hemispherical pattern. At this time, the resist melts into a liquid phase, becomes a hemispherical state, and then changes to a solid phase. Then, the hemispherical pattern layer of the resist material and the layer of the lens material are etched by dry etching. In this way, a lens array in which hemispherical lenses are arranged can be formed. Since the cured film of the present invention has excellent dry etching properties, patterning in the dry etching step is easy. Etching gases used for dry etching include fluorogas such as CF 4, C 4 F 6, C 4 F 8, C 4 F 8, CHF 3, SF 6 , and NF 3 gas, O 2 gas, Ar gas, and N. 2 Gas or the like can be used.
 また、マイクロレンズの別の実施形態としては、上記のレジスト材料の使用を省略し、レンズ材料を露光により直接パターン化する方法が挙げられる。この実施形態では、パターン化したレンズ材料を加熱工程により溶融し、半球状のレンズを得る。本発明の樹脂組成物がポジ型感光性を有する際、このような実施形態に好適に用いることができる。この際、エッチング法によるパターン形成が不要であるため作業の簡略化が可能であり、エッチング薬液やプラズマによる配線部の劣化を回避することができる。 Further, as another embodiment of the microlens, there is a method of omitting the use of the resist material described above and directly patterning the lens material by exposure. In this embodiment, the patterned lens material is melted by a heating step to obtain a hemispherical lens. When the resin composition of the present invention has positive photosensitivity, it can be suitably used for such an embodiment. At this time, since it is not necessary to form a pattern by the etching method, the work can be simplified and deterioration of the wiring portion due to the etching chemical solution or plasma can be avoided.
 <タッチパネル>
 本発明のタッチパネルは、本発明の硬化膜を具備する。さらに、本発明の硬化膜はオンセル方式又はフイルム方式のタッチパネルに好適に用いられる。ここでいうタッチパネルとは、静電容量式タッチパネルである。静電容量式タッチパネルのセンサー層は、ガラスやフイルム等の基材上に、ITO(Indium Tin Oxide)や金属(銀、モリブデン、アルミニウムなど)がパターニングされた配線を有し、そのほか、配線の交差部に絶縁膜、ITOや金属を保護する保護膜を有する構造が一般的である。タッチパネルの方式は、液晶パネル上にセンサー層を形成するオンセル方式、カバーガラス上にタッチパネル層を直接積層して形成するOGS(One Glass Solution)方式、カバーガラスと液晶パネルとの間にセンサー層を形成するアウトセル方式、その中でもフイルムを支持層とするセンサー層を使用するフイルム方式、などが挙げられる。これらタッチパネルの一形態として、ITOや金属配線が視認される現象(骨見え現象)を抑制するため、ITOや金属配線パターン層の下又は上に、インデックスマッチング層を具備する形態が挙げられる。本発明の樹脂組成物から形成した硬化膜は、インデックスマッチング層(もしくは層内の高屈折率層)として好適に用いることができる。さらに、オンセル方式は液晶パネル上に直接タッチパネル層を形成するため、配線や保護膜、絶縁膜材料、インデックスマッチング層は液晶の耐熱温度以下の低温で加工・形成する必要がある。また、フイルム方式の場合、フイルムの耐熱温度以下での低温にて、配線や保護膜、絶縁膜材料、インデックスマッチング層を加工・形成する必要がある。これらでは、CVD(Chemial Vapor Deposition)により高温製膜して形成される無機系材料の適用が困難であり、本発明の硬化膜を好適に用いることができる。
<Touch panel>
The touch panel of the present invention comprises the cured film of the present invention. Further, the cured film of the present invention is suitably used for an on-cell type or film type touch panel. The touch panel referred to here is a capacitive touch panel. The sensor layer of the capacitive touch panel has wiring in which ITO (Indium Tin Oxide) and metal (silver, molybdenum, aluminum, etc.) are patterned on a base material such as glass or film, and other wiring intersections. A structure having an insulating film and a protective film for protecting ITO and metal is common. The touch panel method is an on-cell method in which a sensor layer is formed on a liquid crystal panel, an OGS (One Glass Solution) method in which a touch panel layer is directly laminated on a cover glass, and a sensor layer is provided between the cover glass and the liquid crystal panel. Examples include an out-cell method of forming, and a film method using a sensor layer having a film as a support layer. One form of these touch panels includes a form in which an index matching layer is provided below or above the ITO or metal wiring pattern layer in order to suppress the phenomenon in which the ITO or metal wiring is visually recognized (bone visibility phenomenon). The cured film formed from the resin composition of the present invention can be suitably used as an index matching layer (or a high refractive index layer in the layer). Further, since the on-cell method forms the touch panel layer directly on the liquid crystal panel, the wiring, the protective film, the insulating film material, and the index matching layer need to be processed and formed at a low temperature equal to or lower than the heat resistant temperature of the liquid crystal. Further, in the case of the film method, it is necessary to process and form the wiring, the protective film, the insulating film material, and the index matching layer at a low temperature below the heat resistant temperature of the film. In these cases, it is difficult to apply an inorganic material formed by high-temperature film formation by CVD (Chemical Vapor Deposition), and the cured film of the present invention can be preferably used.
 以下、実施例を挙げて、本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されない。合成例及び実施例に用いた化合物のうち、略語を使用しているものは以下のとおりである。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. Among the compounds used in the synthesis examples and examples, those using abbreviations are as follows.
 <アルコキシシラン化合物>
MTMS:メチルトリメトキシシラン
BPTMS:ビフェニルトリメトキシシラン
BPDMS:ビフェニルメチルジメトキシシラン
SuTMS:3-トリメトキシシリルプロピルコハク酸無水物
NaPTMS:1-ナフチルトリメトキシシラン。
<Alkoxysilane compound>
MTMS: Methyltrimethoxysilane BPTMS: Biphenyltrimethoxysilane BPDMS: Biphenylmethyldimethoxysilane SuTMS: 3-Trimethoxysilylpropyl succinic acid anhydride NaPTMS: 1-naphthyltrimethoxysilane.
 <溶媒>
PGMEA:プロピレングリコールモノメチルエーテルアセテート
DAA:ジアセトンアルコール
MeOH:メタノール。
<Solvent>
PGMEA: Propylene glycol monomethyl ether acetate DAA: Diacetone alcohol MeOH: Methanol.
 <キノンジアジド化合物>
THP-17:(4,4’,4”-Ethylidyne-tris phenolと1,2-ナフトキノン―2-ジアジド―5-スルホン酸とのスルホン酸エステル)(ダイトーケミックス(株)製)。
<Chinone diazide compound>
THP-17: (Sulfonic acid ester of 4,4', 4 "-Ethylidine-tris phenol and 1,2-naphthoquinone-2-diazide-5-sulfonic acid) (manufactured by Daito Chemix Co., Ltd.).
 本実施例で行った測定方法は以下のとおりである。 The measurement method performed in this example is as follows.
 <固形分濃度>
 ポリシロキサン溶液の固形分濃度は、以下の方法により求めた。アルミカップにポリシロキサン溶液を1.5g秤取し、ホットプレートを用いて250℃で30分間加熱して液分を蒸発させた。加熱後のアルミカップに残った固形分を秤量して、ポリシロキサン溶液の固形分濃度を求めた。
<Solid content concentration>
The solid content concentration of the polysiloxane solution was determined by the following method. 1.5 g of the polysiloxane solution was weighed in an aluminum cup and heated at 250 ° C. for 30 minutes using a hot plate to evaporate the liquid content. The solid content remaining in the aluminum cup after heating was weighed to determine the solid content concentration of the polysiloxane solution.
 <硬化膜の作成>
 8インチシリコンウェハ基板上に、スピンコーター(東京エレクトロン製 型式名クリーントラックマーク7)を用いて樹脂組成物を塗布した。塗布後、100℃で3分間プリベークし、I線ステッパー露光機により、露光量400mJ/cmで全面露光し、最後に230℃で5分間加熱、硬化し、約1μmの硬化膜を得た。
<Creation of cured film>
A resin composition was applied onto an 8-inch silicon wafer substrate using a spin coater (model name: Clean Track Mark 7 manufactured by Tokyo Electron Limited). After coating, the film was prebaked at 100 ° C. for 3 minutes, exposed to the entire surface with an I-line stepper exposure machine at an exposure amount of 400 mJ / cm 2 , and finally heated and cured at 230 ° C. for 5 minutes to obtain a cured film of about 1 μm.
 <金属含有量の分析>
 樹脂組成物中に含まれるアルミニウム、スズ及びジルコニウムの量を蛍光X線分析法にて定量した。試料をろ紙上の30mmΦ面内に採取し、測定用試料セルを用いて測定を行った。
装置:ZSX PrimusII(理学電機工業製)
測定条件:管球 Rh
測定雰囲気 真空中
測定面 30mmΦ
測定範囲 5B~92U。
<Analysis of metal content>
The amounts of aluminum, tin and zirconium contained in the resin composition were quantified by fluorescent X-ray analysis. A sample was collected in a 30 mmΦ plane on a filter paper, and measurement was performed using a sample cell for measurement.
Equipment: ZSX PrimusII (manufactured by Rigaku Denki Kogyo)
Measurement conditions: Tube Rh
Measurement atmosphere Measurement surface in vacuum 30 mmΦ
Measuring range 5B-92U.
 <硬化膜の屈折率の測定>
 得られた硬化膜について、大塚電子(株)製分光エリプソメータFE5000を用いて、22℃での633nmにおける屈折率を測定した。
<Measurement of refractive index of cured film>
The refractive index of the obtained cured film at 633 nm at 22 ° C. was measured using a spectroscopic ellipsometer FE5000 manufactured by Otsuka Electronics Co., Ltd.
 <硬化膜の耐熱性評価>
 得られた硬化膜の膜厚(T1)を測定した。次いで、この硬化膜付き基板をホットプレート上にて、280℃10分間追加キュアした後、硬化膜の膜厚(T2)を測定した。追加キュア前後の膜厚変化率を下記式より算出して、下記式で膜厚変化率を算出し、合否判定を行った。
膜厚変化率(%)=(T1-T2)/T1×100
A:膜厚変化率(%)≦3%
B:3%<膜厚変化率(%)≦5%。
C:膜厚変化率(%)>5%。
<Evaluation of heat resistance of cured film>
The film thickness (T1) of the obtained cured film was measured. Next, the substrate with the cured film was additionally cured at 280 ° C. for 10 minutes on a hot plate, and then the film thickness (T2) of the cured film was measured. The film thickness change rate before and after the additional cure was calculated from the following formula, the film thickness change rate was calculated by the following formula, and a pass / fail judgment was made.
Film thickness change rate (%) = (T1-T2) / T1 × 100
A: Film thickness change rate (%) ≤ 3%
B: 3% <Film thickness change rate (%) ≤ 5%.
C: Film thickness change rate (%)> 5%.
 <硬化膜の耐薬品性評価>
 得られた硬化膜の膜厚(T1)を測定した。次いで、この硬化膜付き基板を室温でN-メチルピロリドンに5分間浸漬し、次いで、ホットプレート上にて、100℃1分間乾燥した後、硬化膜の膜厚(T3)を測定した。追加キュア前後の膜厚変化率を下記式より算出して、下記式で膜厚変化率を算出し、合否判定を行った。
膜厚変化率(%)=(T1-T3)/T1×100
A:膜厚変化率(%)≦5%
B:5%<膜厚変化率(%)≦10%
C:膜厚変化率(%)>10%。
<Chemical resistance evaluation of cured film>
The film thickness (T1) of the obtained cured film was measured. Next, the substrate with the cured film was immersed in N-methylpyrrolidone at room temperature for 5 minutes, then dried on a hot plate at 100 ° C. for 1 minute, and then the film thickness (T3) of the cured film was measured. The film thickness change rate before and after the additional cure was calculated from the following formula, the film thickness change rate was calculated by the following formula, and a pass / fail judgment was made.
Film thickness change rate (%) = (T1-T3) / T1 × 100
A: Film thickness change rate (%) ≤ 5%
B: 5% <Film thickness change rate (%) ≤ 10%
C: Film thickness change rate (%)> 10%.
 <ドライエッチング評価>
 得られた硬化膜について下記の装置及び条件でドライエッチング評価を行い、エッチング後の膜表面ラフネスRaをサーフコム触針式膜厚測定装置にて測定した。得られた表面ラフネスRaについて、下記のように判定した。
ドライエッチング装置:RIE-10N
ドライエッチング条件:出力 200W
圧力 15Pa
ガス CF
流量 30ccm
時間 3分
表面ラフネスRa(nm):
AA:Ra<5nm
A:5nm≦Ra<8nm
B:8nm≦Ra<14nm
C:14≦Ra<20nm。
D:Ra>20nm。
<Dry etching evaluation>
The obtained cured film was evaluated by dry etching under the following equipment and conditions, and the film surface roughness Ra after etching was measured with a surfcom stylus film thickness measuring device. The obtained surface roughness Ra was determined as follows.
Dry etching equipment: RIE-10N
Dry etching conditions: Output 200W
Pressure 15Pa
Gas CF 4
Flow rate 30ccm
Time 3 minutes Surface roughness Ra (nm):
AA: Ra <5 nm
A: 5 nm ≤ Ra <8 nm
B: 8 nm ≤ Ra <14 nm
C: 14 ≦ Ra <20 nm.
D: Ra> 20 nm.
 <パターニング評価>
 8インチシリコンウェハ基板上に、スピンコーター(東京エレクトロン製 型式名クリーントラックマーク7)を用いて樹脂組成物を塗布した。塗布後、80℃で1分間プリベークし、I線ステッパー露光機により、フォトマスクを介して露光量400mJ/cmで露光した。フォトマスクは50μm、30μm及び10μmのライン&スペースの開口部を有する遮光マスクを使用した。次いで、露光した基板を2.38%TMAHで90秒間浸漬した後、水で30秒間洗い流した。さらにI線ステッパーにより残膜部を露光量400mJ/cmで全面露光した後、230℃で5分間加熱し、約1μmのパターン膜を得た。得られたパターン膜の正方形パターンを観察し、抜けパターンが認められた最小のパターン寸法(正方形の辺の大きさ)を解像度とした。評価基準を以下のように定めた。
解像度:
A:解像度≦10μm
B:10μm<解像度≦30μm
C:30μm<解像度≦50μm
D: 解像度>50μm。
<Patterning evaluation>
A resin composition was applied onto an 8-inch silicon wafer substrate using a spin coater (model name: Clean Track Mark 7 manufactured by Tokyo Electron Limited). After coating, it was prebaked at 80 ° C. for 1 minute and exposed with an I-line stepper exposure machine at an exposure amount of 400 mJ / cm 2 through a photomask. As the photomask, a light-shielding mask having 50 μm, 30 μm, and 10 μm line & space openings was used. The exposed substrate was then immersed in 2.38% TMAH for 90 seconds and then rinsed with water for 30 seconds. Further, the residual film portion was entirely exposed with an I-line stepper at an exposure amount of 400 mJ / cm 2 , and then heated at 230 ° C. for 5 minutes to obtain a pattern film of about 1 μm. The square pattern of the obtained pattern film was observed, and the smallest pattern dimension (the size of the side of the square) in which the missing pattern was observed was taken as the resolution. The evaluation criteria were set as follows.
resolution:
A: Resolution ≤ 10 μm
B: 10 μm <resolution ≤ 30 μm
C: 30 μm <resolution ≤ 50 μm
D: Resolution> 50 μm.
 実施例に使用したポリマーの合成方法は以下のとおりである。 The polymer synthesis method used in the examples is as follows.
 <合成例1>ポリシロキサン溶液X-1の作製
 500mLの三口フラスコにMTMSを27.24g(0.20mol)、BPTMSを54.82g(0.20mol)、DAAを101.14g仕込み、室温で攪拌しながら水21.6gとリン酸0.41gの混合液を30分かけて添加した。その後、フラスコを70℃のオイルバスに浸けて1時間攪拌した後、オイルバスを120℃まで昇温した。昇温開始から30分後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌した。フラスコ内の温度は100~110℃とした。反応中に副生成物であるメタノール、水が合計49g留出した。フラスコ内に残留したポリシロキサンと複合酸化物粒子の溶液を混合溶液X-1とした。これの固形分濃度は34.9重量%であった。
<Synthesis Example 1> Preparation of Polysiloxane Solution X-1 27.24 g (0.20 mol) of MTMS, 54.82 g (0.20 mol) of BPTMS, and 101.14 g of DAA were placed in a 500 mL three-necked flask and stirred at room temperature. While doing so, a mixed solution of 21.6 g of water and 0.41 g of phosphoric acid was added over 30 minutes. Then, the flask was immersed in an oil bath at 70 ° C. and stirred for 1 hour, and then the temperature of the oil bath was raised to 120 ° C. Thirty minutes after the start of temperature rise, the internal temperature of the solution reached 100 ° C., and the mixture was heated and stirred for 2 hours. The temperature inside the flask was 100 to 110 ° C. During the reaction, a total of 49 g of methanol and water, which are by-products, were distilled off. The solution of the polysiloxane and the composite oxide particles remaining in the flask was used as a mixed solution X-1. The solid content concentration of this was 34.9% by weight.
 <合成例2>ポリシロキサン溶液X-2の作製
 500mLの三口フラスコにMTMSを27.24g(0.20mol)、BPDMSを51.68g(0.20mol)、DAAを103.85g仕込み、室温で攪拌しながら水18.00gとリン酸0.39gの混合液を30分かけて添加した。その後、フラスコを70℃のオイルバスに浸けて1時間攪拌した後、オイルバスを120℃まで昇温した。昇温開始から30分後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌した。フラスコ内の温度は100~110℃とした。反応中に副生成物であるメタノール、水が合計40g留出した。フラスコ内に残留したポリシロキサンと複合酸化物粒子の溶液を混合溶液X-2とした。これの固形分濃度は34.6重量%であった。
<Synthesis Example 2> Preparation of Polysiloxane Solution X-2 27.24 g (0.20 mol) of MTMS, 51.68 g (0.20 mol) of BPDMS, and 103.85 g of DAA were placed in a 500 mL three-necked flask and stirred at room temperature. While doing so, a mixed solution of 18.00 g of water and 0.39 g of phosphoric acid was added over 30 minutes. Then, the flask was immersed in an oil bath at 70 ° C. and stirred for 1 hour, and then the temperature of the oil bath was raised to 120 ° C. Thirty minutes after the start of temperature rise, the internal temperature of the solution reached 100 ° C., and the mixture was heated and stirred for 2 hours. The temperature inside the flask was 100 to 110 ° C. During the reaction, a total of 40 g of methanol and water, which are by-products, were distilled off. The solution of the polysiloxane and the composite oxide particles remaining in the flask was used as a mixed solution X-2. The solid content concentration of this was 34.6% by weight.
 <合成例3>ポリシロキサン溶液X-3の作製
 500mLの三口フラスコにMTMSを21.79g(0.16mol)、BPTMSを54.82g(0.20mol)、SuTMSを10.49g(0.04mol)、DAAを111.85g仕込み、室温で攪拌しながら水22.32gとリン酸0.44gの混合液を30分かけて添加した。その後、フラスコを70℃のオイルバスに浸けて1時間攪拌した後、オイルバスを120℃まで昇温した。昇温開始から30分後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌した。フラスコ内の温度は100~110℃とした。反応中に副生成物であるメタノール、水が合計49g留出した。フラスコ内に残留したポリシロキサンと複合酸化物粒子の溶液を混合溶液X-3とした。これの固形分濃度は34.8重量%であった。
<Synthesis Example 3> Preparation of Polysiloxane Solution X-3 21.79 g (0.16 mol) of MTMS, 54.82 g (0.20 mol) of BPTMS, and 10.49 g (0.04 mol) of SuTMS in a 500 mL three-necked flask. , DAA was charged in an amount of 111.85 g, and a mixed solution of 22.32 g of water and 0.44 g of phosphoric acid was added over 30 minutes while stirring at room temperature. Then, the flask was immersed in an oil bath at 70 ° C. and stirred for 1 hour, and then the temperature of the oil bath was raised to 120 ° C. Thirty minutes after the start of temperature rise, the internal temperature of the solution reached 100 ° C., and the mixture was heated and stirred for 2 hours. The temperature inside the flask was 100 to 110 ° C. During the reaction, a total of 49 g of methanol and water, which are by-products, were distilled off. The solution of the polysiloxane and the composite oxide particles remaining in the flask was used as a mixed solution X-3. The solid content concentration of this was 34.8% by weight.
 <合成例4>ポリシロキサンと複合酸化物粒子の混合溶液X-4の作製
 500mLの三口フラスコにMTMSを10.90g(0.08mol)、BPTMSを27.41g(0.10mol)、SuTMSを5.25g(0.02mol)、DAAを111.85g、スズ、ジルコニウム、ケイ素及びチタンの複合酸化物粒子のメタノールゾルTR-550(固形分濃度20.5重量%、日揮触媒化成製)を73.09g、ケイ素及びチタンの複合酸化物粒子のメタノールゾルTR-527(固形分濃度20.5重量%、日揮触媒化成製)を73.09g仕込み、室温で攪拌しながら水11.16gとリン酸0.22gの混合液を30分かけて添加した。その後、フラスコを70℃のオイルバスに浸けて1時間攪拌した後、オイルバスを120℃まで昇温した。昇温開始から30分後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌した。フラスコ内の温度は100~110℃とした。反応中に副生成物であるメタノール、水が合計139g留出した。フラスコ内に残留したポリシロキサンと複合酸化物粒子の溶液を混合溶液X-4とした。これの固形分濃度は34.7重量%であった。
<Synthesis Example 4> Preparation of mixed solution X-4 of polysiloxane and composite oxide particles 10.90 g (0.08 mol) of MTMS, 27.41 g (0.10 mol) of BPTMS, and 5 of SuTMS in a 500 mL three-necked flask. .25 g (0.02 mol), 111.85 g DAA, methanol sol TR-550 (solid content concentration 20.5% by weight, manufactured by JGC Catalysts and Chemicals) of composite oxide particles of tin, zirconium, silicon and titanium 73. 09.09 g, methanol sol TR-527 (solid content concentration 20.5% by weight, manufactured by JGC Catalysts and Chemicals), which is a composite oxide particle of silicon and titanium, was charged, and 11.16 g of water and 0 phosphoric acid were charged while stirring at room temperature. .22 g of the mixture was added over 30 minutes. Then, the flask was immersed in an oil bath at 70 ° C. and stirred for 1 hour, and then the temperature of the oil bath was raised to 120 ° C. Thirty minutes after the start of temperature rise, the internal temperature of the solution reached 100 ° C., and the mixture was heated and stirred for 2 hours. The temperature inside the flask was 100 to 110 ° C. A total of 139 g of methanol and water, which are by-products, were distilled off during the reaction. The solution of the polysiloxane and the composite oxide particles remaining in the flask was used as a mixed solution X-4. The solid content concentration of this was 34.7% by weight.
 <合成例5>ポリシロキサンと複合酸化物粒子の混合溶液X-5の作製
 500mLの三口フラスコにMTMSを8.17g(0.06mol)、BPTMSを27.41g(0.10mol)、SuTMSを10.49g(0.04mol)、DAAを122.55g、スズ、ジルコニウム、ケイ素及びチタンの複合酸化物粒子のメタノールゾルTR-550(固形分濃度20.5重量%、日揮触媒化成製)を80.09g、ケイ素及びチタンの複合酸化物粒子のメタノールゾルTR-527(固形分濃度20.5重量%、日揮触媒化成製)を80.09g仕込み、室温で攪拌しながら水11.52gとリン酸0.23gの混合液を30分かけて添加した。その後、フラスコを70℃のオイルバスに浸けて1時間攪拌した後、オイルバスを120℃まで昇温した。昇温開始から30分後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌した。フラスコ内の温度は100~110℃とした。反応中に副生成物であるメタノール、水が合計150g留出した。フラスコ内に残留したポリシロキサンと複合酸化物粒子の溶液を混合溶液X-5とした。これの固形分濃度は34.7重量%であった。
<Synthesis Example 5> Preparation of mixed solution X-5 of polysiloxane and composite oxide particles 8.17 g (0.06 mol) of MTMS, 27.41 g (0.10 mol) of BPTMS, and 10 SuTMS in a 500 mL three-necked flask. .49 g (0.04 mol), 122.55 g DAA, methanol sol TR-550 (solid content concentration 20.5% by weight, manufactured by JGC Catalysts and Chemicals) of composite oxide particles of tin, zirconium, silicon and titanium was 80. 09.09 g, methanol sol TR-527 (solid content concentration 20.5% by weight, manufactured by JGC Catalysts and Chemicals), which is a composite oxide particle of silicon and titanium, was charged, and 80.09 g was charged. .23 g of the mixture was added over 30 minutes. Then, the flask was immersed in an oil bath at 70 ° C. and stirred for 1 hour, and then the temperature of the oil bath was raised to 120 ° C. Thirty minutes after the start of temperature rise, the internal temperature of the solution reached 100 ° C., and the mixture was heated and stirred for 2 hours. The temperature inside the flask was 100 to 110 ° C. During the reaction, a total of 150 g of methanol and water, which are by-products, were distilled off. The solution of the polysiloxane and the composite oxide particles remaining in the flask was used as a mixed solution X-5. The solid content concentration of this was 34.7% by weight.
 比較例に使用したポリマーは以下のとおり合成した。 The polymer used in the comparative example was synthesized as follows.
 <合成例6>ポリシロキサン溶液R-1の作成
 500mLの三口フラスコにMTMSを27.24g(0.20mol)、NaPTMSを49.67g(0.20mol)、DAAを91.58g仕込み、室温で攪拌しながら水21.6gとリン酸0.38gの混合液を30分かけて添加した。その後、フラスコを70℃のオイルバスに浸けて1時間攪拌した後、オイルバスを120℃まで昇温した。昇温開始から30分後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌した。フラスコ内の温度は100~110℃とした。反応中に副生成物であるメタノール、水が合計49g留出した。フラスコ内に残留したポリシロキサンと複合酸化物粒子の溶液を混合溶液R-1とした。これの固形分濃度は34.8重量%であった。
<Synthesis Example 6> Preparation of Polysiloxane Solution R-1 27.24 g (0.20 mol) of MTMS, 49.67 g (0.20 mol) of NaPTMS, and 91.58 g of DAA were placed in a 500 mL three-necked flask and stirred at room temperature. While doing so, a mixed solution of 21.6 g of water and 0.38 g of phosphoric acid was added over 30 minutes. Then, the flask was immersed in an oil bath at 70 ° C. and stirred for 1 hour, and then the temperature of the oil bath was raised to 120 ° C. Thirty minutes after the start of temperature rise, the internal temperature of the solution reached 100 ° C., and the mixture was heated and stirred for 2 hours. The temperature inside the flask was 100 to 110 ° C. During the reaction, a total of 49 g of methanol and water, which are by-products, were distilled off. The solution of the polysiloxane and the composite oxide particles remaining in the flask was used as a mixed solution R-1. The solid content concentration of this was 34.8% by weight.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 以下のとおり樹脂組成物を作製し、評価した。 The resin composition was prepared and evaluated as follows.
 <実施例1>
 X-1(固形分濃度34.9重量%)を7.16g、TR-550(固形分濃度20.6重量%、日揮触媒化成製)を12.14g、溶媒(C)としてDAAを0.44g、MeOHを0.26g、黄色灯下で混合し、振とう撹拌した後0.45μm径のフィルタで濾過して組成物1を得た。得られた樹脂組成物中の金属含有量は1.03重量%であった。また、得られた樹脂組成物について、前述の方法に従って硬化膜を形成し、屈折率測定、耐熱性評価、耐薬品性評価及びドライエッチング評価を行った。樹脂組成物の組成を表2に、評価結果を表3に示す。なお、感光性を有していないためパターニング評価は行っておらず、パターニング評価を「-」とした。
<Example 1>
X-1 (solid content concentration 34.9% by weight) was 7.16 g, TR-550 (solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals) was 12.14 g, and DAA was 0. 44 g and 0.26 g of MeOH were mixed under a yellow lamp, stirred with shaking, and then filtered through a filter having a diameter of 0.45 μm to obtain Composition 1. The metal content in the obtained resin composition was 1.03% by weight. Further, with respect to the obtained resin composition, a cured film was formed according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation and dry etching evaluation were performed. The composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3. Since it does not have photosensitivity, patterning evaluation was not performed, and the patterning evaluation was set to "-".
 <実施例2>
 X-2(固形分濃度34.6重量%)を7.23g、TR-550(固形分濃度20.6重量%、日揮触媒化成製)を12.14g、DAAを0.38g、MeOHを0.26g、黄色灯下で混合し、振とう撹拌した後0.45μm径のフィルタで濾過して組成物2を得た。得られた樹脂組成物中の金属含有量は1.03重量%であった。また、得られた樹脂組成物について、前述の方法に従って硬化膜を形成し、屈折率測定、耐熱性評価、耐薬品性評価及びドライエッチング評価を行った。樹脂組成物の組成を表2に、評価結果を表3に示す。なお、感光性を有していないためパターニング評価は行っておらず、パターニング評価を「-」とした。
<Example 2>
X-2 (solid content concentration 34.6% by weight) is 7.23 g, TR-550 (solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals) is 12.14 g, DAA is 0.38 g, and MeOH is 0. .26 g was mixed under a yellow light, stirred with shaking, and then filtered through a filter having a diameter of 0.45 μm to obtain Composition 2. The metal content in the obtained resin composition was 1.03% by weight. Further, with respect to the obtained resin composition, a cured film was formed according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation and dry etching evaluation were performed. The composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3. Since it does not have photosensitivity, patterning evaluation was not performed, and the patterning evaluation was set to "-".
 <実施例3>
 X-1(固形分濃度34.9重量%)を7.16g、TR-550(固形分濃度20.6重量%、日揮触媒化成製)を1.10g、TR-527(固形分濃度20.5重量%、日揮触媒化成製)を11.06g、DAAを0.42g、MeOHを0.26g、黄色灯下で混合し、振とう撹拌した後0.45μm径のフィルタで濾過して組成物3を得た。得られた樹脂組成物中の金属含有量は0.11重量%であった。また、得られた樹脂組成物について、前述の方法に従って硬化膜を形成し、屈折率測定、耐熱性評価、耐薬品性評価及びドライエッチング評価を行った。樹脂組成物の組成を表2に、評価結果を表3に示す。なお、感光性を有していないためパターニング評価は行っておらず、パターニング評価を「-」とした。
<Example 3>
X-1 (solid content concentration 34.9% by weight) was 7.16 g, TR-550 (solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals) was 1.10 g, and TR-527 (solid content concentration 20. 11.06 g (5% by weight, manufactured by JGC Catalysts and Chemicals), 0.42 g of DAA, 0.26 g of MeOH, mixed under a yellow light, stirred with shaking, and filtered through a filter having a diameter of 0.45 μm to form a composition. I got 3. The metal content in the obtained resin composition was 0.11% by weight. Further, with respect to the obtained resin composition, a cured film was formed according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation and dry etching evaluation were performed. The composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3. Since it does not have photosensitivity, patterning evaluation was not performed, and the patterning evaluation was set to "-".
 <実施例4>
 X-1(固形分濃度34.9重量%)を7.16g、TR-550(固形分濃度20.6重量%、日揮触媒化成製)を6.07g、TR-527(固形分濃度20.5重量%、日揮触媒化成製)を6.07g、DAAを0.44g、MeOHを0.26g、黄色灯下で混合し、振とう撹拌した後0.45μm径のフィルタで濾過して組成物4を得た。得られた樹脂組成物中の金属含有量は0.54重量%であった。また、得られた樹脂組成物について、前述の方法に従って硬化膜を形成し、屈折率測定、耐熱性評価、耐薬品性評価及びドライエッチング評価を行った。樹脂組成物の組成を表2に、評価結果を表3に示す。なお、感光性を有していないためパターニング評価は行っておらず、パターニング評価を「-」とした。
<Example 4>
X-1 (solid content concentration 34.9% by weight) was 7.16 g, TR-550 (solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals) was 6.07 g, and TR-527 (solid content concentration 20. (5% by weight, manufactured by JGC Catalysts and Chemicals), 6.07 g, DAA (0.44 g), MeOH (0.26 g), mixed under a yellow light, stirred with shaking, and filtered through a filter having a diameter of 0.45 μm to form a composition. I got 4. The metal content in the obtained resin composition was 0.54% by weight. Further, with respect to the obtained resin composition, a cured film was formed according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation and dry etching evaluation were performed. The composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3. Since it does not have photosensitivity, patterning evaluation was not performed, and the patterning evaluation was set to "-".
 <実施例5>
 X-1(固形分濃度34.9重量%)を7.16g、TR-550(固形分濃度20.6重量%、日揮触媒化成製)を10.42g、TR-527(固形分濃度20.5重量%、日揮触媒化成製)を1.72g、DAAを0.44g、MeOHを0.26g、黄色灯下で混合し、振とう撹拌した後0.45μm径のフィルタで濾過して組成物5を得た。得られた樹脂組成物中の金属含有量は0.86重量%であった。また、得られた樹脂組成物について、前述の方法に従って硬化膜を形成し、屈折率測定、耐熱性評価、耐薬品性評価及びドライエッチング評価を行った。樹脂組成物の組成を表2に、評価結果を表3に示す。なお、感光性を有していないためパターニング評価は行っておらず、パターニング評価を「-」とした。
<Example 5>
X-1 (solid content concentration 34.9% by weight) was 7.16 g, TR-550 (solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals) was 10.42 g, and TR-527 (solid content concentration 20. 1.72 g (5% by weight, manufactured by JGC Catalysts and Chemicals), 0.44 g of DAA, 0.26 g of MeOH, mixed under a yellow light, stirred with shaking, and filtered through a filter having a diameter of 0.45 μm to form a composition. I got 5. The metal content in the obtained resin composition was 0.86% by weight. Further, with respect to the obtained resin composition, a cured film was formed according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation and dry etching evaluation were performed. The composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3. Since it does not have photosensitivity, patterning evaluation was not performed, and the patterning evaluation was set to "-".
 <実施例6>
 X-3(固形分濃度34.8重量%)を7.18g、TR-550(固形分濃度20.6重量%、日揮触媒化成製)を6.07g、TR-527(固形分濃度20.5重量%、日揮触媒化成製)を6.07g、DAAを0.42g、MeOHを0.26g、黄色灯下で混合し、振とう撹拌した後0.45μm径のフィルタで濾過して組成物6を得た。得られた樹脂組成物中の金属含有量は0.54重量%であった。また、得られた樹脂組成物について、前述の方法に従って硬化膜を形成し、屈折率測定、耐熱性評価、耐薬品性評価及びドライエッチング評価を行った。樹脂組成物の組成を表2に、評価結果を表3に示す。なお、感光性を有していないためパターニング評価は行っておらず、パターニング評価を「-」とした。
<Example 6>
7.18 g of X-3 (solid content concentration 34.8% by weight), 6.07 g of TR-550 (solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals), TR-527 (solid content concentration 20. (5% by weight, manufactured by JGC Catalysts and Chemicals), 6.07 g, DAA (0.42 g), MeOH (0.26 g), mixed under a yellow light, stirred with shaking, and filtered through a filter having a diameter of 0.45 μm to form a composition. I got 6. The metal content in the obtained resin composition was 0.54% by weight. Further, with respect to the obtained resin composition, a cured film was formed according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation and dry etching evaluation were performed. The composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3. Since it does not have photosensitivity, patterning evaluation was not performed, and the patterning evaluation was set to "-".
 <実施例7>
 X-3(固形分濃度34.8重量%)を7.18g、TR-550(固形分濃度20.6重量%、日揮触媒化成製)を6.07g、TR-527(固形分濃度20.5重量%、日揮触媒化成製)を6.07g、DAAを0.28、THP-17を0.40g、黄色灯下で混合し、振とう撹拌した後0.45μm径のフィルタで濾過して組成物7を得た。得られた樹脂組成物中の金属含有量は0.51重量%であった。また、得られた樹脂組成物について、前述の方法に従って硬化膜を形成し、屈折率測定、耐熱性評価、耐薬品性評価、ドライエッチング評価及びパターニング評価を行った。樹脂組成物の組成を表2に、評価結果を表3に示す。
<Example 7>
7.18 g of X-3 (solid content concentration 34.8% by weight), 6.07 g of TR-550 (solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals), TR-527 (solid content concentration 20. (5% by weight, manufactured by JGC Catalysts and Chemicals) was mixed at 6.07 g, DAA at 0.28, THP-17 at 0.40 g under a yellow light, stirred with shaking, and then filtered through a filter having a diameter of 0.45 μm. Composition 7 was obtained. The metal content in the obtained resin composition was 0.51% by weight. Further, a cured film was formed on the obtained resin composition according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation, dry etching evaluation and patterning evaluation were performed. The composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3.
 <実施例8>
 X-4(固形分濃度34.7重量%)を14.41g、DAAを1.59g、PGMEAを3.60g、THP-17を0.40g、黄色灯下で混合し、振とう撹拌した後0.45μm径のフィルタで濾過して組成物8を得た。得られた樹脂組成物中の金属含有量は0.53重量%であった。また、得られた樹脂組成物について、前述の方法に従って硬化膜を形成し、屈折率測定、耐熱性評価、耐薬品性評価、ドライエッチング評価及びパターニング評価を行った。樹脂組成物の組成を表2に、評価結果を表3に示す。
<Example 8>
After mixing 14.41 g of X-4 (solid content concentration 34.7% by weight), 1.59 g of DAA, 3.60 g of PGMEA, 0.40 g of THP-17 under a yellow light, and shaking and stirring. The composition 8 was obtained by filtering with a filter having a diameter of 0.45 μm. The metal content in the obtained resin composition was 0.53% by weight. Further, a cured film was formed on the obtained resin composition according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation, dry etching evaluation and patterning evaluation were performed. The composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3.
 <実施例9> 
 X-5(固形分濃度34.7重量%)を14.33g、DAAを1.67g、PGMEAを3.60g、THP-17を0.40g、黄色灯下で混合し、振とう撹拌した後0.45μm径のフィルタで濾過して組成物9を得た。得られた樹脂組成物中の金属含有量は0.52重量%であった。また、得られた樹脂組成物について、前述の方法に従って硬化膜を形成し、屈折率測定、耐熱性評価、耐薬品性評価、ドライエッチング評価及びパターニング評価を行った。樹脂組成物の組成を表2に、評価結果を表3に示す。
<Example 9>
After mixing 14.33 g of X-5 (solid content concentration 34.7% by weight), 1.67 g of DAA, 3.60 g of PGMEA, 0.40 g of THP-17 under a yellow light, and shaking and stirring. The composition 9 was obtained by filtering with a filter having a diameter of 0.45 μm. The metal content in the obtained resin composition was 0.52% by weight. Further, a cured film was formed on the obtained resin composition according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation, dry etching evaluation and patterning evaluation were performed. The composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3.
 <比較例1>
 R-1(固形分濃度34.8重量%)を7.23g、TR-550(固形分濃度20.6重量%、日揮触媒化成製)を12.14g、DAAを0.38g、MeOHを0.26g、黄色灯下で混合し、振とう撹拌した後0.45μm径のフィルタで濾過して組成物10を得た。得られた樹脂組成物中の金属含有量は1.03重量%であった。また、得られた樹脂組成物について、前述の方法に従って硬化膜を形成し、屈折率測定、耐熱性評価、耐薬品性評価、ドライエッチング評価を行った。樹脂組成物の組成を表2に、評価結果を表3に示す。
<Comparative example 1>
R-1 (solid content concentration 34.8% by weight) is 7.23 g, TR-550 (solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals) is 12.14 g, DAA is 0.38 g, and MeOH is 0. .26 g was mixed under a yellow light, stirred with shaking, and then filtered through a filter having a diameter of 0.45 μm to obtain composition 10. The metal content in the obtained resin composition was 1.03% by weight. Further, a cured film was formed on the obtained resin composition according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation, and dry etching evaluation were performed. The composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 実施例1~9と比較例1の対比により、本発明の樹脂組成物は耐熱性及びドライエッチング性に優れた組成物であることがわかる。また、実施例3~9はエッチング性に優れ、特に実施例8及び9が優れていることがわかる。さらに、実施例6~9は耐薬品性に優れていることが分かった。実施例7~9については感光性のパターニングが可能であった。 From the comparison between Examples 1 to 9 and Comparative Example 1, it can be seen that the resin composition of the present invention is a composition having excellent heat resistance and dry etching properties. Further, it can be seen that Examples 3 to 9 are excellent in etching properties, and Examples 8 and 9 are particularly excellent. Further, it was found that Examples 6 to 9 were excellent in chemical resistance. Photosensitivity patterning was possible for Examples 7-9.

Claims (21)

  1. 樹脂(A)、
    アルミニウム、スズ及びジルコニウムからなる群より選択される1種類以上の元素総含有量が2重量%以上15重量%以下であるチタン複合酸化物粒子(B1)と、アルミニウム、スズ及びジルコニウムからなる群より選択される1種類以上の元素総含有量が2重量%未満であるチタン複合酸化物粒子(B2)、の2種類の粒子、及び
    溶媒(C)、を含有する樹脂組成物。
    Resin (A),
    From the group consisting of titanium composite oxide particles (B1) having a total content of one or more elements selected from the group consisting of aluminum, tin and zirconium of 2% by weight or more and 15% by weight or less, and the group consisting of aluminum, tin and zirconium. A resin composition containing two types of titanium composite oxide particles (B2) having a total content of one or more selected elements of less than 2% by weight, and a solvent (C).
  2. 粒子(B2)のアルミニウム、スズ及びジルコニウムからなる群より選択される1種類以上の元素総含有量が0.5重量%未満である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the total content of one or more elements selected from the group consisting of aluminum, tin and zirconium of the particles (B2) is less than 0.5% by weight.
  3. 粒子(B2)のアルミニウム、スズ及びジルコニウムからなる群より選択される1種類以上の元素総含有量が0.1重量%未満である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the total content of one or more elements selected from the group consisting of aluminum, tin and zirconium of the particles (B2) is less than 0.1% by weight.
  4. 粒子(B1)と粒子(B2)の混合重量比率(B1/B2)が、0.25~4である、請求項1~3のいずれかに記載の樹脂組成物。  The resin composition according to any one of claims 1 to 3, wherein the mixed weight ratio (B1 / B2) of the particles (B1) and the particles (B2) is 0.25 to 0.25 to 4. Twice
  5. 樹脂組成物中に含まれるアルミニウム、スズ及びジルコニウムの全量が、樹脂組成物の全量100重量%に対して、0.01重量%以上1重量%未満である請求項1~4のいずれかに記載の樹脂組成物。  7. Resin composition.
  6. 前記樹脂(A)がポリシロキサン(A1)である請求項1~5のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 5, wherein the resin (A) is a polysiloxane (A1).
  7. ポリシロキサン(A1)の波長633nmにおける屈折率が1.60以上1.80未満である請求項6に記載の樹脂組成物。 The resin composition according to claim 6, wherein the polysiloxane (A1) has a refractive index of 1.60 or more and less than 1.80 at a wavelength of 633 nm.
  8. ポリシロキサン(A1)と、粒子(B1)又は粒子(B2)とが結合しているポリシロキサンと粒子の複合体(E)を含有する請求項6又は7に記載の樹脂組成物。 The resin composition according to claim 6 or 7, which contains the polysiloxane (A1) and the composite (E) of the polysiloxane and the particles in which the particles (B1) or the particles (B2) are bonded.
  9. ポリシロキサン(A1)が、式(1)で示される構造を有するポリシロキサン(a1)である、請求項6~8のいずれかに記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (Rは炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示す。nは0又は1であって、*はケイ素原子に直結する結合を意味する。)
    The resin composition according to any one of claims 6 to 8, wherein the polysiloxane (A1) is a polysiloxane (a1) having a structure represented by the formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (R 1 represents an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms. N is 0 or 1, and * means a bond directly bonded to a silicon atom.)
  10. ポリシロキサン(A1)が式(2)で示される構造及び/又は式(3)で示される構造を有する請求項6~9のいずれかに記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (Rは炭素数1~4のアルキレン基又は炭素数1~8の2価の芳香族基を示す。*はケイ素原子に直結する結合を意味する。)
    The resin composition according to any one of claims 6 to 9, wherein the polysiloxane (A1) has a structure represented by the formula (2) and / or a structure represented by the formula (3).
    Figure JPOXMLDOC01-appb-C000002
    (R 2 represents an alkylene group having 1 to 4 carbon atoms or a divalent aromatic group having 1 to 8 carbon atoms. * Means a bond directly linked to a silicon atom.)
  11. 式(1)で示される構造を有するポリシロキサン(a1)、
    アルミニウム、スズ、ジルコニウム及びケイ素からなる群より選択される1種類以上と、チタンの複合酸化物である粒子(B)、
    並びに溶媒(C)、を含有する樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (Rは炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示す。nは0又は1であって、*はケイ素原子に直結する結合を意味する。)
    Polysiloxane (a1) having the structure represented by the formula (1),
    One or more selected from the group consisting of aluminum, tin, zirconium and silicon, and particles (B) which are composite oxides of titanium,
    A resin composition containing the solvent (C).
    Figure JPOXMLDOC01-appb-C000003
    (R 1 represents an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms. N is 0 or 1, and * means a bond directly bonded to a silicon atom.)
  12. 樹脂組成物中に含まれるアルミニウム、スズ及びジルコニウムの全量が、樹脂組成物の全量100重量%に対して、0.01重量%以上1重量%未満である請求項11に記載の樹脂組成物。 The resin composition according to claim 11, wherein the total amount of aluminum, tin and zirconium contained in the resin composition is 0.01% by weight or more and less than 1% by weight with respect to 100% by weight of the total amount of the resin composition.
  13. 粒子(B)が、アルミニウム、スズ及びジルコニウムからなる群より選択される1種類以上と、チタンの複合酸化物である粒子(B3)と、
    ケイ素とチタンの複合酸化物である粒子(B4)、の2種類の粒子を含有する、請求項11又は12に記載の樹脂組成物。
    The particles (B) are one or more selected from the group consisting of aluminum, tin and zirconium, and the particles (B3) which are composite oxides of titanium.
    The resin composition according to claim 11 or 12, which contains two types of particles, particles (B4) which are composite oxides of silicon and titanium.
  14. ポリシロキサン(a1)が式(2)で示される構造及び/又は式(3)で示される構造を有する請求項11~13のいずれかに記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
    (Rは炭素数1~4のアルキレン基又は炭素数1~8の2価の芳香族基を示す。*はケイ素原子に直結する結合を意味する。)
    The resin composition according to any one of claims 11 to 13, wherein the polysiloxane (a1) has a structure represented by the formula (2) and / or a structure represented by the formula (3).
    Figure JPOXMLDOC01-appb-C000004
    (R 2 represents an alkylene group having 1 to 4 carbon atoms or a divalent aromatic group having 1 to 8 carbon atoms. * Means a bond directly linked to a silicon atom.)
  15. さらにキノンジアジド化合物(D)を含有する請求項1~14のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 14, further containing the quinone diazide compound (D).
  16. ポリシロキサン(a1)と粒子(B)とが結合しているポリシロキサンと粒子の複合体(E1)を含有する請求項11~15のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 11 to 15, which contains a composite (E1) of polysiloxane and particles in which polysiloxane (a1) and particles (B) are bonded.
  17. 請求項1~16のいずれかに記載の樹脂組成物を硬化させてなる硬化膜。 A cured film obtained by curing the resin composition according to any one of claims 1 to 16.
  18. 請求項17に記載の硬化膜をドライエッチングによって加工するマイクロレンズの製造方法。 A method for manufacturing a microlens, wherein the cured film according to claim 17 is processed by dry etching.
  19. 請求項17に記載の硬化膜を具備する固体撮像素子。 A solid-state image sensor comprising the cured film according to claim 17.
  20. 請求項17に記載の硬化膜からなるマイクロレンズ。 The microlens made of the cured film according to claim 17.
  21. 請求項17に記載の硬化膜を具備するオンセル方式又はフイルム方式のタッチパネル。 An on-cell type or film type touch panel provided with the cured film according to claim 17.
PCT/JP2021/010522 2020-03-24 2021-03-16 Resin composition, cured film, method for producing microlens, solid state imaging device, microlens, and touch panel WO2021193221A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021517709A JPWO2021193221A1 (en) 2020-03-24 2021-03-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020052294 2020-03-24
JP2020-052294 2020-03-24

Publications (1)

Publication Number Publication Date
WO2021193221A1 true WO2021193221A1 (en) 2021-09-30

Family

ID=77892098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010522 WO2021193221A1 (en) 2020-03-24 2021-03-16 Resin composition, cured film, method for producing microlens, solid state imaging device, microlens, and touch panel

Country Status (3)

Country Link
JP (1) JPWO2021193221A1 (en)
TW (1) TW202136421A (en)
WO (1) WO2021193221A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725727A (en) * 1993-07-12 1995-01-27 Toshiba Silicone Co Ltd Complex globular powder and cosmetic containing the same
JPH08505858A (en) * 1991-08-09 1996-06-25 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー Antibacterial composition, production method and use thereof
JPH08253321A (en) * 1995-01-12 1996-10-01 Degussa Ag Surface-modified mixed oxide prepared by highly thermal decomposition and its preparation
JP2010229191A (en) * 2009-03-26 2010-10-14 Mitsubishi Engineering Plastics Corp Aromatic polycarbonate resin composition and molded article
JP2012087316A (en) * 2005-10-03 2012-05-10 Toray Ind Inc Siloxane-based resin composition, cured film, and optical article
WO2016143895A1 (en) * 2015-03-12 2016-09-15 出光興産株式会社 Polycarbonate-based resin composition and molded article thereof
JP2016183320A (en) * 2015-03-26 2016-10-20 東洋インキScホールディングス株式会社 Ray-reflecting resin composition and molded article
JP2017014522A (en) * 2016-08-29 2017-01-19 東洋インキScホールディングス株式会社 Resin composition for color molding
JP2018012746A (en) * 2016-07-19 2018-01-25 三菱ケミカル株式会社 White resin composition and white molded article and white laminate comprising the same
JP2019143097A (en) * 2018-02-23 2019-08-29 三井化学株式会社 Polyester resin composition for reflective material, and reflective material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08505858A (en) * 1991-08-09 1996-06-25 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー Antibacterial composition, production method and use thereof
JPH0725727A (en) * 1993-07-12 1995-01-27 Toshiba Silicone Co Ltd Complex globular powder and cosmetic containing the same
JPH08253321A (en) * 1995-01-12 1996-10-01 Degussa Ag Surface-modified mixed oxide prepared by highly thermal decomposition and its preparation
JP2012087316A (en) * 2005-10-03 2012-05-10 Toray Ind Inc Siloxane-based resin composition, cured film, and optical article
JP2010229191A (en) * 2009-03-26 2010-10-14 Mitsubishi Engineering Plastics Corp Aromatic polycarbonate resin composition and molded article
WO2016143895A1 (en) * 2015-03-12 2016-09-15 出光興産株式会社 Polycarbonate-based resin composition and molded article thereof
JP2016183320A (en) * 2015-03-26 2016-10-20 東洋インキScホールディングス株式会社 Ray-reflecting resin composition and molded article
JP2018012746A (en) * 2016-07-19 2018-01-25 三菱ケミカル株式会社 White resin composition and white molded article and white laminate comprising the same
JP2017014522A (en) * 2016-08-29 2017-01-19 東洋インキScホールディングス株式会社 Resin composition for color molding
JP2019143097A (en) * 2018-02-23 2019-08-29 三井化学株式会社 Polyester resin composition for reflective material, and reflective material

Also Published As

Publication number Publication date
JPWO2021193221A1 (en) 2021-09-30
TW202136421A (en) 2021-10-01

Similar Documents

Publication Publication Date Title
KR101739607B1 (en) Positive photosensitive resin composition, cured film formed from same, and element having cured film
JP5423802B2 (en) Positive photosensitive resin composition, cured film and optical device using the same
JP5764863B2 (en) Solid-state image sensor
JP5765235B2 (en) Photosensitive composition, cured film formed therefrom, and device having cured film
US8936891B2 (en) Photosensitive polysiloxane composition and uses thereof
TWI648346B (en) Positive photosensitive composition
JP5444704B2 (en) Photosensitive composition, cured film formed therefrom, and device having cured film
US9063419B2 (en) Photo-curing polysiloxane composition and application thereof
JP5343649B2 (en) Photosensitive composition, cured film formed therefrom, and device having cured film
JP5540632B2 (en) Photosensitive composition, cured film formed therefrom, and device having cured film
KR102493962B1 (en) Photosensitive resin composition and cured film prepared therefrom
KR102245396B1 (en) Positive photosensitive resin composition, cured film formed by curing same, and optical device equipped with same
JP5233526B2 (en) Photosensitive composition, cured film formed therefrom, and device having cured film
JP2018060191A (en) Photosensitive resin composition and cured film prepared therefrom
WO2021193221A1 (en) Resin composition, cured film, method for producing microlens, solid state imaging device, microlens, and touch panel
US11789363B2 (en) Positive photosensitive resin composition, cured film therefrom, and solid state image sensor comprising the same
JP6186766B2 (en) Photosensitive siloxane composition, cured film formed therefrom, and device having the cured film
JP2010262132A (en) Method of forming silica-based coating film, and device and member including silica-based coating film
CN107179652B (en) Positive photosensitive polysiloxane composition and application thereof
CN111770905A (en) Organically modified metal oxide or metalloid oxide polymer films

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021517709

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21775761

Country of ref document: EP

Kind code of ref document: A1