WO2021193221A1 - Resin composition, cured film, method for producing microlens, solid state imaging device, microlens, and touch panel - Google Patents
Resin composition, cured film, method for producing microlens, solid state imaging device, microlens, and touch panel Download PDFInfo
- Publication number
- WO2021193221A1 WO2021193221A1 PCT/JP2021/010522 JP2021010522W WO2021193221A1 WO 2021193221 A1 WO2021193221 A1 WO 2021193221A1 JP 2021010522 W JP2021010522 W JP 2021010522W WO 2021193221 A1 WO2021193221 A1 WO 2021193221A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin composition
- particles
- weight
- polysiloxane
- group
- Prior art date
Links
- 239000011342 resin composition Substances 0.000 title claims abstract description 122
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000007787 solid Substances 0.000 title description 51
- 238000003384 imaging method Methods 0.000 title 1
- 239000002245 particle Substances 0.000 claims abstract description 133
- -1 polycyclic aromatic compound Chemical class 0.000 claims abstract description 118
- 229920001296 polysiloxane Polymers 0.000 claims abstract description 92
- 239000002131 composite material Substances 0.000 claims abstract description 40
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 33
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims abstract description 33
- 229910052718 tin Inorganic materials 0.000 claims abstract description 33
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 33
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 31
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 31
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 27
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 27
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 27
- 239000002904 solvent Substances 0.000 claims abstract description 27
- 239000010936 titanium Substances 0.000 claims abstract description 27
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 27
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 26
- 238000001312 dry etching Methods 0.000 claims abstract description 22
- 239000010703 silicon Substances 0.000 claims abstract description 17
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 9
- 125000003545 alkoxy group Chemical group 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 41
- 239000011347 resin Substances 0.000 claims description 18
- 229920005989 resin Polymers 0.000 claims description 18
- 125000002947 alkylene group Chemical group 0.000 claims description 4
- 125000003118 aryl group Chemical group 0.000 claims description 4
- 150000002736 metal compounds Chemical class 0.000 abstract 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 63
- 238000011156 evaluation Methods 0.000 description 60
- 239000000126 substance Substances 0.000 description 50
- 150000001875 compounds Chemical class 0.000 description 42
- 238000000576 coating method Methods 0.000 description 36
- 239000011248 coating agent Substances 0.000 description 34
- 239000000203 mixture Substances 0.000 description 29
- 239000000243 solution Substances 0.000 description 28
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 26
- 239000010410 layer Substances 0.000 description 21
- 238000000059 patterning Methods 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 239000003054 catalyst Substances 0.000 description 18
- 238000006460 hydrolysis reaction Methods 0.000 description 18
- 239000000758 substrate Substances 0.000 description 18
- 238000010438 heat treatment Methods 0.000 description 17
- 238000005259 measurement Methods 0.000 description 17
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 14
- 239000000463 material Substances 0.000 description 14
- 230000008859 change Effects 0.000 description 12
- 238000005530 etching Methods 0.000 description 12
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 12
- 239000011259 mixed solution Substances 0.000 description 12
- 239000003921 oil Substances 0.000 description 12
- 239000004094 surface-active agent Substances 0.000 description 12
- 206010034972 Photosensitivity reaction Diseases 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- 230000036211 photosensitivity Effects 0.000 description 10
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 10
- MVRPPTGLVPEMPI-UHFFFAOYSA-N 2-cyclohexylphenol Chemical compound OC1=CC=CC=C1C1CCCCC1 MVRPPTGLVPEMPI-UHFFFAOYSA-N 0.000 description 9
- 125000004203 4-hydroxyphenyl group Chemical group [H]OC1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 9
- 238000006482 condensation reaction Methods 0.000 description 9
- 238000011161 development Methods 0.000 description 9
- 230000018109 developmental process Effects 0.000 description 9
- 230000007062 hydrolysis Effects 0.000 description 9
- 238000001723 curing Methods 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 8
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 8
- 230000035945 sensitivity Effects 0.000 description 8
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 7
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 7
- 238000006555 catalytic reaction Methods 0.000 description 7
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Natural products CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000003377 acid catalyst Substances 0.000 description 6
- 239000006227 byproduct Substances 0.000 description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 5
- 239000011246 composite particle Substances 0.000 description 5
- 239000004973 liquid crystal related substance Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- 238000002834 transmittance Methods 0.000 description 5
- RWNUSVWFHDHRCJ-UHFFFAOYSA-N 1-butoxypropan-2-ol Chemical compound CCCCOCC(C)O RWNUSVWFHDHRCJ-UHFFFAOYSA-N 0.000 description 4
- JOLQKTGDSGKSKJ-UHFFFAOYSA-N 1-ethoxypropan-2-ol Chemical compound CCOCC(C)O JOLQKTGDSGKSKJ-UHFFFAOYSA-N 0.000 description 4
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 4
- MXLMTQWGSQIYOW-UHFFFAOYSA-N 3-methyl-2-butanol Chemical compound CC(C)C(C)O MXLMTQWGSQIYOW-UHFFFAOYSA-N 0.000 description 4
- LDMRLRNXHLPZJN-UHFFFAOYSA-N 3-propoxypropan-1-ol Chemical compound CCCOCCCO LDMRLRNXHLPZJN-UHFFFAOYSA-N 0.000 description 4
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 4
- 229930185605 Bisphenol Natural products 0.000 description 4
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 239000007983 Tris buffer Substances 0.000 description 4
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 4
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 4
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 4
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 4
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 4
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 4
- XNLICIUVMPYHGG-UHFFFAOYSA-N pentan-2-one Chemical compound CCCC(C)=O XNLICIUVMPYHGG-UHFFFAOYSA-N 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 4
- GQCZPFJGIXHZMB-UHFFFAOYSA-N 1-tert-Butoxy-2-propanol Chemical compound CC(O)COC(C)(C)C GQCZPFJGIXHZMB-UHFFFAOYSA-N 0.000 description 3
- NXXYKOUNUYWIHA-UHFFFAOYSA-N 2,6-di-methyl phenol Natural products CC1=CC=CC(C)=C1O NXXYKOUNUYWIHA-UHFFFAOYSA-N 0.000 description 3
- TYTPPOBYRKMHAV-UHFFFAOYSA-N 2,6-dimethylphenol Chemical compound CC1=CC=CC(C)=C1O.CC1=CC=CC(C)=C1O TYTPPOBYRKMHAV-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 241001582429 Tetracis Species 0.000 description 3
- 235000011054 acetic acid Nutrition 0.000 description 3
- 150000008064 anhydrides Chemical class 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- QVEIBLDXZNGPHR-UHFFFAOYSA-N naphthalene-1,4-dione;diazide Chemical compound [N-]=[N+]=[N-].[N-]=[N+]=[N-].C1=CC=C2C(=O)C=CC(=O)C2=C1 QVEIBLDXZNGPHR-UHFFFAOYSA-N 0.000 description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- 229910001928 zirconium oxide Inorganic materials 0.000 description 3
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 2
- RYNQKSJRFHJZTK-UHFFFAOYSA-N (3-methoxy-3-methylbutyl) acetate Chemical compound COC(C)(C)CCOC(C)=O RYNQKSJRFHJZTK-UHFFFAOYSA-N 0.000 description 2
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 2
- GDXHBFHOEYVPED-UHFFFAOYSA-N 1-(2-butoxyethoxy)butane Chemical compound CCCCOCCOCCCC GDXHBFHOEYVPED-UHFFFAOYSA-N 0.000 description 2
- RKMNQXFECVRTNI-UHFFFAOYSA-N 1-methylcyclohexa-2,4-dien-1-ol Chemical compound CC1(O)CC=CC=C1 RKMNQXFECVRTNI-UHFFFAOYSA-N 0.000 description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 2
- QQZOPKMRPOGIEB-UHFFFAOYSA-N 2-Oxohexane Chemical compound CCCCC(C)=O QQZOPKMRPOGIEB-UHFFFAOYSA-N 0.000 description 2
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 2
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 2
- ZADOWCXTUZWAKL-UHFFFAOYSA-N 3-(3-trimethoxysilylpropyl)oxolane-2,5-dione Chemical compound CO[Si](OC)(OC)CCCC1CC(=O)OC1=O ZADOWCXTUZWAKL-UHFFFAOYSA-N 0.000 description 2
- MFKRHJVUCZRDTF-UHFFFAOYSA-N 3-methoxy-3-methylbutan-1-ol Chemical compound COC(C)(C)CCO MFKRHJVUCZRDTF-UHFFFAOYSA-N 0.000 description 2
- QMYGFTJCQFEDST-UHFFFAOYSA-N 3-methoxybutyl acetate Chemical compound COC(C)CCOC(C)=O QMYGFTJCQFEDST-UHFFFAOYSA-N 0.000 description 2
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 2
- KXNGHSFCHPSAOV-UHFFFAOYSA-N 4,6-bis[(4-hydroxyphenyl)methyl]benzene-1,3-diol Chemical compound C1=CC(O)=CC=C1CC1=CC(CC=2C=CC(O)=CC=2)=C(O)C=C1O KXNGHSFCHPSAOV-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- BXXUUZSHXORWRC-UHFFFAOYSA-N 4-[[3-[(2,4-dihydroxyphenyl)methyl]-2-hydroxy-5-methylphenyl]methyl]benzene-1,3-diol Chemical compound OC=1C(CC=2C(=CC(O)=CC=2)O)=CC(C)=CC=1CC1=CC=C(O)C=C1O BXXUUZSHXORWRC-UHFFFAOYSA-N 0.000 description 2
- WVYWICLMDOOCFB-UHFFFAOYSA-N 4-methyl-2-pentanol Chemical compound CC(C)CC(C)O WVYWICLMDOOCFB-UHFFFAOYSA-N 0.000 description 2
- LPEKGGXMPWTOCB-UHFFFAOYSA-N 8beta-(2,3-epoxy-2-methylbutyryloxy)-14-acetoxytithifolin Natural products COC(=O)C(C)O LPEKGGXMPWTOCB-UHFFFAOYSA-N 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- MRABAEUHTLLEML-UHFFFAOYSA-N Butyl lactate Chemical compound CCCCOC(=O)C(C)O MRABAEUHTLLEML-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 2
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000001191 butyl (2R)-2-hydroxypropanoate Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000006059 cover glass Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- SZRLKIKBPASKQH-UHFFFAOYSA-M dibutyldithiocarbamate Chemical compound CCCCN(C([S-])=S)CCCC SZRLKIKBPASKQH-UHFFFAOYSA-M 0.000 description 2
- ODQWQRRAPPTVAG-GZTJUZNOSA-N doxepin Chemical compound C1OC2=CC=CC=C2C(=C/CCN(C)C)/C2=CC=CC=C21 ODQWQRRAPPTVAG-GZTJUZNOSA-N 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 229940116333 ethyl lactate Drugs 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 2
- 238000013007 heat curing Methods 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- GJRQTCIYDGXPES-UHFFFAOYSA-N iso-butyl acetate Natural products CC(C)COC(C)=O GJRQTCIYDGXPES-UHFFFAOYSA-N 0.000 description 2
- FGKJLKRYENPLQH-UHFFFAOYSA-M isocaproate Chemical compound CC(C)CCC([O-])=O FGKJLKRYENPLQH-UHFFFAOYSA-M 0.000 description 2
- OQAGVSWESNCJJT-UHFFFAOYSA-N isovaleric acid methyl ester Natural products COC(=O)CC(C)C OQAGVSWESNCJJT-UHFFFAOYSA-N 0.000 description 2
- 229940043265 methyl isobutyl ketone Drugs 0.000 description 2
- 229940057867 methyl lactate Drugs 0.000 description 2
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 229940090181 propyl acetate Drugs 0.000 description 2
- 230000007261 regionalization Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 2
- JCVQKRGIASEUKR-UHFFFAOYSA-N triethoxy(phenyl)silane Chemical compound CCO[Si](OCC)(OCC)C1=CC=CC=C1 JCVQKRGIASEUKR-UHFFFAOYSA-N 0.000 description 2
- ZSOVVFMGSCDMIF-UHFFFAOYSA-N trimethoxy(naphthalen-1-yl)silane Chemical compound C1=CC=C2C([Si](OC)(OC)OC)=CC=CC2=C1 ZSOVVFMGSCDMIF-UHFFFAOYSA-N 0.000 description 2
- ZNOCGWVLWPVKAO-UHFFFAOYSA-N trimethoxy(phenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=CC=C1 ZNOCGWVLWPVKAO-UHFFFAOYSA-N 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- YQRBNIBJIJOQNQ-UHFFFAOYSA-N 1,1,1,2,3,3,4,4,5,5,6,6,7,7,7-pentadecafluoroheptan-2-yloxy-bis(1,1,2,2,2-pentafluoroethoxy)-(1,1,2,2,2-pentafluoroethyl)silane Chemical compound FC(F)(F)C(F)(F)O[Si](OC(F)(F)C(F)(F)F)(C(F)(F)C(F)(F)F)OC(F)(C(F)(F)F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F YQRBNIBJIJOQNQ-UHFFFAOYSA-N 0.000 description 1
- KDDKDGPEMJSGSK-UHFFFAOYSA-N 1,1,2,2,2-pentafluoroethyl-(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexoxy)-bis(trifluoromethoxy)silane Chemical compound FC(F)(F)O[Si](OC(F)(F)F)(C(F)(F)C(F)(F)F)OC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F KDDKDGPEMJSGSK-UHFFFAOYSA-N 0.000 description 1
- CENJEWLNEQORKN-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,4-nonafluorobutoxy-(1,1,2,2,2-pentafluoroethyl)-bis(trifluoromethoxy)silane Chemical compound FC(F)(F)O[Si](OC(F)(F)F)(C(F)(F)C(F)(F)F)OC(F)(F)C(F)(F)C(F)(F)C(F)(F)F CENJEWLNEQORKN-UHFFFAOYSA-N 0.000 description 1
- KKYDYRWEUFJLER-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6,7,7,10,10,10-heptadecafluorodecyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)CCC(F)(F)F KKYDYRWEUFJLER-UHFFFAOYSA-N 0.000 description 1
- HNJCRKROKIPREU-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6,7,7,10,10,10-heptadecafluorodecyl-dimethoxy-methylsilane Chemical compound CO[Si](C)(OC)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)CCC(F)(F)F HNJCRKROKIPREU-UHFFFAOYSA-N 0.000 description 1
- CFCRODHVHXGTPC-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-pentacosafluorododecane-1-sulfonic acid Chemical compound OS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F CFCRODHVHXGTPC-UHFFFAOYSA-N 0.000 description 1
- HBYPJODCYCAUHA-UHFFFAOYSA-N 1,1,2,2,3,3,9,9,10,10-decafluorodecane Chemical compound FC(C(CCCCCC(C(C(F)F)(F)F)(F)F)(F)F)F HBYPJODCYCAUHA-UHFFFAOYSA-N 0.000 description 1
- KMMOLDZBACYVIN-UHFFFAOYSA-N 1,1,2,2,3,3-hexafluoro-1-[2-[2-[2-[2-[2-[2-(1,1,2,2,3,3-hexafluoropentoxy)propoxy]propoxy]propoxy]propoxy]propoxy]propoxy]pentane Chemical compound CCC(F)(F)C(F)(F)C(F)(F)OCC(C)OCC(C)OCC(C)OCC(C)OCC(C)OCC(C)OC(F)(F)C(F)(F)C(F)(F)CC KMMOLDZBACYVIN-UHFFFAOYSA-N 0.000 description 1
- FWFUGQANHCJOAR-UHFFFAOYSA-N 1,1,2,2,3,3-hexafluorodecane Chemical compound CCCCCCCC(F)(F)C(F)(F)C(F)F FWFUGQANHCJOAR-UHFFFAOYSA-N 0.000 description 1
- MKNKAWHZNOFVLS-UHFFFAOYSA-N 1,1,2,2-tetrafluoro-1-(1,1,2,2-tetrafluoropropoxy)octane Chemical compound CCCCCCC(F)(F)C(F)(F)OC(F)(F)C(C)(F)F MKNKAWHZNOFVLS-UHFFFAOYSA-N 0.000 description 1
- GCCPAVALGCCVQZ-UHFFFAOYSA-N 1,1,2,2-tetrafluoro-1-[2-[2-[2-[2-[2-[2-[2-[2-(1,1,2,2-tetrafluorobutoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]butane Chemical compound CCC(F)(F)C(F)(F)OCCOCCOCCOCCOCCOCCOCCOCCOC(F)(F)C(F)(F)CC GCCPAVALGCCVQZ-UHFFFAOYSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- 150000005206 1,2-dihydroxybenzenes Chemical class 0.000 description 1
- KETQAJRQOHHATG-UHFFFAOYSA-N 1,2-naphthoquinone Chemical compound C1=CC=C2C(=O)C(=O)C=CC2=C1 KETQAJRQOHHATG-UHFFFAOYSA-N 0.000 description 1
- 229940105324 1,2-naphthoquinone Drugs 0.000 description 1
- OZXIZRZFGJZWBF-UHFFFAOYSA-N 1,3,5-trimethyl-2-(2,4,6-trimethylphenoxy)benzene Chemical compound CC1=CC(C)=CC(C)=C1OC1=C(C)C=C(C)C=C1C OZXIZRZFGJZWBF-UHFFFAOYSA-N 0.000 description 1
- YHMYGUUIMTVXNW-UHFFFAOYSA-N 1,3-dihydrobenzimidazole-2-thione Chemical compound C1=CC=C2NC(S)=NC2=C1 YHMYGUUIMTVXNW-UHFFFAOYSA-N 0.000 description 1
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 1
- BPIUIOXAFBGMNB-UHFFFAOYSA-N 1-hexoxyhexane Chemical compound CCCCCCOCCCCCC BPIUIOXAFBGMNB-UHFFFAOYSA-N 0.000 description 1
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 1
- KGRVJHAUYBGFFP-UHFFFAOYSA-N 2,2'-Methylenebis(4-methyl-6-tert-butylphenol) Chemical compound CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O KGRVJHAUYBGFFP-UHFFFAOYSA-N 0.000 description 1
- MCMHZGRRCCQFMZ-UHFFFAOYSA-N 2,4,6-tris[(4-hydroxyphenyl)methyl]benzene-1,3-diol Chemical compound C1=CC(O)=CC=C1CC1=CC(CC=2C=CC(O)=CC=2)=C(O)C(CC=2C=CC(O)=CC=2)=C1O MCMHZGRRCCQFMZ-UHFFFAOYSA-N 0.000 description 1
- JZODKRWQWUWGCD-UHFFFAOYSA-N 2,5-di-tert-butylbenzene-1,4-diol Chemical compound CC(C)(C)C1=CC(O)=C(C(C)(C)C)C=C1O JZODKRWQWUWGCD-UHFFFAOYSA-N 0.000 description 1
- LKALLEFLBKHPTQ-UHFFFAOYSA-N 2,6-bis[(3-tert-butyl-2-hydroxy-5-methylphenyl)methyl]-4-methylphenol Chemical compound OC=1C(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=CC(C)=CC=1CC1=CC(C)=CC(C(C)(C)C)=C1O LKALLEFLBKHPTQ-UHFFFAOYSA-N 0.000 description 1
- DKCPKDPYUFEZCP-UHFFFAOYSA-N 2,6-di-tert-butylphenol Chemical compound CC(C)(C)C1=CC=CC(C(C)(C)C)=C1O DKCPKDPYUFEZCP-UHFFFAOYSA-N 0.000 description 1
- JHOPNNNTBHXSHY-UHFFFAOYSA-N 2-(4-hydroxyphenyl)phenol Chemical compound C1=CC(O)=CC=C1C1=CC=CC=C1O JHOPNNNTBHXSHY-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- ZJKWJHONFFKJHG-UHFFFAOYSA-N 2-Methoxy-1,4-benzoquinone Chemical compound COC1=CC(=O)C=CC1=O ZJKWJHONFFKJHG-UHFFFAOYSA-N 0.000 description 1
- PTTPXKJBFFKCEK-UHFFFAOYSA-N 2-Methyl-4-heptanone Chemical compound CC(C)CC(=O)CC(C)C PTTPXKJBFFKCEK-UHFFFAOYSA-N 0.000 description 1
- MAUGGXUAHNSMKF-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-(1,1,2,2,3,3-hexafluoropentoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound CCC(F)(F)C(F)(F)C(F)(F)OCCOCCOCCOCCOCCOCCO MAUGGXUAHNSMKF-UHFFFAOYSA-N 0.000 description 1
- ZZEANNAZZVVPKU-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-(2-hydroxypropoxy)propoxy]propoxy]propoxy]propoxy]propoxy]propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)COC(C)COC(C)COC(C)COC(C)COC(C)CO ZZEANNAZZVVPKU-UHFFFAOYSA-N 0.000 description 1
- QSRJVOOOWGXUDY-UHFFFAOYSA-N 2-[2-[2-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoyloxy]ethoxy]ethoxy]ethyl 3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C)=CC(CCC(=O)OCCOCCOCCOC(=O)CCC=2C=C(C(O)=C(C)C=2)C(C)(C)C)=C1 QSRJVOOOWGXUDY-UHFFFAOYSA-N 0.000 description 1
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 description 1
- VJKZIQFVKMUTID-UHFFFAOYSA-N 2-diazonio-5-sulfonaphthalen-1-olate Chemical compound N#[N+]C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1[O-] VJKZIQFVKMUTID-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- 229940013085 2-diethylaminoethanol Drugs 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- PFANXOISJYKQRP-UHFFFAOYSA-N 2-tert-butyl-4-[1-(5-tert-butyl-4-hydroxy-2-methylphenyl)butyl]-5-methylphenol Chemical compound C=1C(C(C)(C)C)=C(O)C=C(C)C=1C(CCC)C1=CC(C(C)(C)C)=C(O)C=C1C PFANXOISJYKQRP-UHFFFAOYSA-N 0.000 description 1
- XOUQAVYLRNOXDO-UHFFFAOYSA-N 2-tert-butyl-5-methylphenol Chemical compound CC1=CC=C(C(C)(C)C)C(O)=C1 XOUQAVYLRNOXDO-UHFFFAOYSA-N 0.000 description 1
- ODJQKYXPKWQWNK-UHFFFAOYSA-N 3,3'-Thiobispropanoic acid Chemical class OC(=O)CCSCCC(O)=O ODJQKYXPKWQWNK-UHFFFAOYSA-N 0.000 description 1
- GXDMUOPCQNLBCZ-UHFFFAOYSA-N 3-(3-triethoxysilylpropyl)oxolane-2,5-dione Chemical compound CCO[Si](OCC)(OCC)CCCC1CC(=O)OC1=O GXDMUOPCQNLBCZ-UHFFFAOYSA-N 0.000 description 1
- HXLAEGYMDGUSBD-UHFFFAOYSA-N 3-[diethoxy(methyl)silyl]propan-1-amine Chemical compound CCO[Si](C)(OCC)CCCN HXLAEGYMDGUSBD-UHFFFAOYSA-N 0.000 description 1
- DOYKFSOCSXVQAN-UHFFFAOYSA-N 3-[diethoxy(methyl)silyl]propyl 2-methylprop-2-enoate Chemical compound CCO[Si](C)(OCC)CCCOC(=O)C(C)=C DOYKFSOCSXVQAN-UHFFFAOYSA-N 0.000 description 1
- ZYAASQNKCWTPKI-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propan-1-amine Chemical compound CO[Si](C)(OC)CCCN ZYAASQNKCWTPKI-UHFFFAOYSA-N 0.000 description 1
- LZMNXXQIQIHFGC-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propyl 2-methylprop-2-enoate Chemical compound CO[Si](C)(OC)CCCOC(=O)C(C)=C LZMNXXQIQIHFGC-UHFFFAOYSA-N 0.000 description 1
- OXYZDRAJMHGSMW-UHFFFAOYSA-N 3-chloropropyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)CCCCl OXYZDRAJMHGSMW-UHFFFAOYSA-N 0.000 description 1
- KNTKCYKJRSMRMZ-UHFFFAOYSA-N 3-chloropropyl-dimethoxy-methylsilane Chemical compound CO[Si](C)(OC)CCCCl KNTKCYKJRSMRMZ-UHFFFAOYSA-N 0.000 description 1
- MRBKEAMVRSLQPH-UHFFFAOYSA-N 3-tert-butyl-4-hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1 MRBKEAMVRSLQPH-UHFFFAOYSA-N 0.000 description 1
- GBQYMXVQHATSCC-UHFFFAOYSA-N 3-triethoxysilylpropanenitrile Chemical compound CCO[Si](OCC)(OCC)CCC#N GBQYMXVQHATSCC-UHFFFAOYSA-N 0.000 description 1
- URDOJQUSEUXVRP-UHFFFAOYSA-N 3-triethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CCO[Si](OCC)(OCC)CCCOC(=O)C(C)=C URDOJQUSEUXVRP-UHFFFAOYSA-N 0.000 description 1
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- MDWVSAYEQPLWMX-UHFFFAOYSA-N 4,4'-Methylenebis(2,6-di-tert-butylphenol) Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 MDWVSAYEQPLWMX-UHFFFAOYSA-N 0.000 description 1
- SVOBELCYOCEECO-UHFFFAOYSA-N 4-[1-(4-hydroxy-3-methylphenyl)cyclohexyl]-2-methylphenol Chemical compound C1=C(O)C(C)=CC(C2(CCCCC2)C=2C=C(C)C(O)=CC=2)=C1 SVOBELCYOCEECO-UHFFFAOYSA-N 0.000 description 1
- PRWJPWSKLXYEPD-UHFFFAOYSA-N 4-[4,4-bis(5-tert-butyl-4-hydroxy-2-methylphenyl)butan-2-yl]-2-tert-butyl-5-methylphenol Chemical compound C=1C(C(C)(C)C)=C(O)C=C(C)C=1C(C)CC(C=1C(=CC(O)=C(C=1)C(C)(C)C)C)C1=CC(C(C)(C)C)=C(O)C=C1C PRWJPWSKLXYEPD-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- HOXHRRIZNBLRSY-UHFFFAOYSA-N N(=[N+]=[N-])OS(=O)(=O)N=[N+]=[N-].C1(C=CC=C2C(C=CC=C12)=O)=O Chemical compound N(=[N+]=[N-])OS(=O)(=O)N=[N+]=[N-].C1(C=CC=C2C(C=CC=C12)=O)=O HOXHRRIZNBLRSY-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- GSBKRFGXEJLVMI-UHFFFAOYSA-N Nervonyl carnitine Chemical class CCC[N+](C)(C)C GSBKRFGXEJLVMI-UHFFFAOYSA-N 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- BGNXCDMCOKJUMV-UHFFFAOYSA-N Tert-Butylhydroquinone Chemical compound CC(C)(C)C1=CC(O)=CC=C1O BGNXCDMCOKJUMV-UHFFFAOYSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- IORUEKDKNHHQAL-UHFFFAOYSA-N [2-tert-butyl-6-[(3-tert-butyl-2-hydroxy-5-methylphenyl)methyl]-4-methylphenyl] prop-2-enoate Chemical compound CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)OC(=O)C=C)=C1O IORUEKDKNHHQAL-UHFFFAOYSA-N 0.000 description 1
- YYTSFVYFRFGQTJ-UHFFFAOYSA-N [O-2].[Zr+4].[O-2].[Ti+4].[Sn+2]=O.[Si+2]=O Chemical compound [O-2].[Zr+4].[O-2].[Ti+4].[Sn+2]=O.[Si+2]=O YYTSFVYFRFGQTJ-UHFFFAOYSA-N 0.000 description 1
- KKEYTLVFLSCKDE-UHFFFAOYSA-N [Sn+2]=O.[O-2].[Zn+2].[O-2] Chemical compound [Sn+2]=O.[O-2].[Zn+2].[O-2] KKEYTLVFLSCKDE-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 150000001243 acetic acids Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- HUIYDPADWIGZFT-UHFFFAOYSA-N bis(1,1,2,2,2-pentafluoroethoxy)-(1,1,2,2,2-pentafluoroethyl)-(1,1,1,2,3,3,4,4,5,5,5-undecafluoropentan-2-yloxy)silane Chemical compound FC(F)(F)C(F)(F)O[Si](OC(F)(F)C(F)(F)F)(C(F)(F)C(F)(F)F)OC(F)(C(F)(F)F)C(F)(F)C(F)(F)C(F)(F)F HUIYDPADWIGZFT-UHFFFAOYSA-N 0.000 description 1
- 125000005340 bisphosphate group Chemical group 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- CMRVDFLZXRTMTH-UHFFFAOYSA-L copper;2-carboxyphenolate Chemical compound [Cu+2].OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O CMRVDFLZXRTMTH-UHFFFAOYSA-L 0.000 description 1
- IXPUJMULXNNEHS-UHFFFAOYSA-L copper;n,n-dibutylcarbamodithioate Chemical compound [Cu+2].CCCCN(C([S-])=S)CCCC.CCCCN(C([S-])=S)CCCC IXPUJMULXNNEHS-UHFFFAOYSA-L 0.000 description 1
- OBBCYCYCTJQCCK-UHFFFAOYSA-L copper;n,n-diethylcarbamodithioate Chemical compound [Cu+2].CCN(CC)C([S-])=S.CCN(CC)C([S-])=S OBBCYCYCTJQCCK-UHFFFAOYSA-L 0.000 description 1
- ZOUQIAGHKFLHIA-UHFFFAOYSA-L copper;n,n-dimethylcarbamodithioate Chemical compound [Cu+2].CN(C)C([S-])=S.CN(C)C([S-])=S ZOUQIAGHKFLHIA-UHFFFAOYSA-L 0.000 description 1
- UQMKZLGQBFCRSN-UHFFFAOYSA-L copper;n,n-dipropylcarbamodithioate Chemical compound [Cu+2].CCCN(C([S-])=S)CCC.CCCN(C([S-])=S)CCC UQMKZLGQBFCRSN-UHFFFAOYSA-L 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- SJJCABYOVIHNPZ-UHFFFAOYSA-N cyclohexyl-dimethoxy-methylsilane Chemical compound CO[Si](C)(OC)C1CCCCC1 SJJCABYOVIHNPZ-UHFFFAOYSA-N 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- UGNNKSKUIPTWGK-UHFFFAOYSA-N diethoxy(5,5,5-trifluoropent-1-enyl)silane Chemical compound FC(CCC=C[SiH](OCC)OCC)(F)F UGNNKSKUIPTWGK-UHFFFAOYSA-N 0.000 description 1
- ZZNQQQWFKKTOSD-UHFFFAOYSA-N diethoxy(diphenyl)silane Chemical compound C=1C=CC=CC=1[Si](OCC)(OCC)C1=CC=CC=C1 ZZNQQQWFKKTOSD-UHFFFAOYSA-N 0.000 description 1
- PDDLLXZZXNBORU-UHFFFAOYSA-N diethoxy-ethyl-(3,3,3-trifluoropropyl)silane Chemical compound CCO[Si](CC)(OCC)CCC(F)(F)F PDDLLXZZXNBORU-UHFFFAOYSA-N 0.000 description 1
- VJYNTADJZPKUAF-UHFFFAOYSA-N diethoxy-methyl-(3,3,3-trifluoropropyl)silane Chemical compound CCO[Si](C)(OCC)CCC(F)(F)F VJYNTADJZPKUAF-UHFFFAOYSA-N 0.000 description 1
- YCGCUJPXPRFAHA-UHFFFAOYSA-N dimethoxy(5,5,5-trifluoropent-1-enyl)silane Chemical compound FC(CCC=C[SiH](OC)OC)(F)F YCGCUJPXPRFAHA-UHFFFAOYSA-N 0.000 description 1
- JJQZDUKDJDQPMQ-UHFFFAOYSA-N dimethoxy(dimethyl)silane Chemical compound CO[Si](C)(C)OC JJQZDUKDJDQPMQ-UHFFFAOYSA-N 0.000 description 1
- AHUXYBVKTIBBJW-UHFFFAOYSA-N dimethoxy(diphenyl)silane Chemical compound C=1C=CC=CC=1[Si](OC)(OC)C1=CC=CC=C1 AHUXYBVKTIBBJW-UHFFFAOYSA-N 0.000 description 1
- DIJRHOZMLZRNLM-UHFFFAOYSA-N dimethoxy-methyl-(3,3,3-trifluoropropyl)silane Chemical compound CO[Si](C)(OC)CCC(F)(F)F DIJRHOZMLZRNLM-UHFFFAOYSA-N 0.000 description 1
- WHGNXNCOTZPEEK-UHFFFAOYSA-N dimethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](C)(OC)CCCOCC1CO1 WHGNXNCOTZPEEK-UHFFFAOYSA-N 0.000 description 1
- UBCPEZPOCJYHPM-UHFFFAOYSA-N dimethoxy-methyl-octadecylsilane Chemical compound CCCCCCCCCCCCCCCCCC[Si](C)(OC)OC UBCPEZPOCJYHPM-UHFFFAOYSA-N 0.000 description 1
- CVQVSVBUMVSJES-UHFFFAOYSA-N dimethoxy-methyl-phenylsilane Chemical compound CO[Si](C)(OC)C1=CC=CC=C1 CVQVSVBUMVSJES-UHFFFAOYSA-N 0.000 description 1
- YYLGKUPAFFKGRQ-UHFFFAOYSA-N dimethyldiethoxysilane Chemical compound CCO[Si](C)(C)OCC YYLGKUPAFFKGRQ-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- MBGQQKKTDDNCSG-UHFFFAOYSA-N ethenyl-diethoxy-methylsilane Chemical compound CCO[Si](C)(C=C)OCC MBGQQKKTDDNCSG-UHFFFAOYSA-N 0.000 description 1
- ZLNAFSPCNATQPQ-UHFFFAOYSA-N ethenyl-dimethoxy-methylsilane Chemical compound CO[Si](C)(OC)C=C ZLNAFSPCNATQPQ-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- SBRXLTRZCJVAPH-UHFFFAOYSA-N ethyl(trimethoxy)silane Chemical compound CC[Si](OC)(OC)OC SBRXLTRZCJVAPH-UHFFFAOYSA-N 0.000 description 1
- HUPOESGDHWXZLA-UHFFFAOYSA-N ethyl-dimethoxy-(3,3,3-trifluoropropyl)silane Chemical compound CC[Si](OC)(OC)CCC(F)(F)F HUPOESGDHWXZLA-UHFFFAOYSA-N 0.000 description 1
- 125000003709 fluoroalkyl group Chemical group 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- CZWLNMOIEMTDJY-UHFFFAOYSA-N hexyl(trimethoxy)silane Chemical compound CCCCCC[Si](OC)(OC)OC CZWLNMOIEMTDJY-UHFFFAOYSA-N 0.000 description 1
- 235000011167 hydrochloric acid Nutrition 0.000 description 1
- XLSMFKSTNGKWQX-UHFFFAOYSA-N hydroxyacetone Chemical compound CC(=O)CO XLSMFKSTNGKWQX-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 229940035429 isobutyl alcohol Drugs 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- SHOJXDKTYKFBRD-UHFFFAOYSA-N mesityl oxide Natural products CC(C)=CC(C)=O SHOJXDKTYKFBRD-UHFFFAOYSA-N 0.000 description 1
- 239000011817 metal compound particle Substances 0.000 description 1
- RJMRIDVWCWSWFR-UHFFFAOYSA-N methyl(tripropoxy)silane Chemical compound CCCO[Si](C)(OCCC)OCCC RJMRIDVWCWSWFR-UHFFFAOYSA-N 0.000 description 1
- HLXDKGBELJJMHR-UHFFFAOYSA-N methyl-tri(propan-2-yloxy)silane Chemical compound CC(C)O[Si](C)(OC(C)C)OC(C)C HLXDKGBELJJMHR-UHFFFAOYSA-N 0.000 description 1
- CXKWCBBOMKCUKX-UHFFFAOYSA-M methylene blue Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 CXKWCBBOMKCUKX-UHFFFAOYSA-M 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- PHQOGHDTIVQXHL-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCN PHQOGHDTIVQXHL-UHFFFAOYSA-N 0.000 description 1
- SSDSCDGVMJFTEQ-UHFFFAOYSA-N octadecyl 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 SSDSCDGVMJFTEQ-UHFFFAOYSA-N 0.000 description 1
- SLYCYWCVSGPDFR-UHFFFAOYSA-N octadecyltrimethoxysilane Chemical compound CCCCCCCCCCCCCCCCCC[Si](OC)(OC)OC SLYCYWCVSGPDFR-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- FMLYSTGQBVZCGN-UHFFFAOYSA-N oxosilicon(2+) oxygen(2-) titanium(4+) Chemical compound [O-2].[Ti+4].[Si+2]=O.[O-2].[O-2] FMLYSTGQBVZCGN-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 1
- RRRXPPIDPYTNJG-UHFFFAOYSA-N perfluorooctanesulfonamide Chemical compound NS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F RRRXPPIDPYTNJG-UHFFFAOYSA-N 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 229950000688 phenothiazine Drugs 0.000 description 1
- VPLNCHFJAOKWBT-UHFFFAOYSA-N phenyl-tri(propan-2-yloxy)silane Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)C1=CC=CC=C1 VPLNCHFJAOKWBT-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000001955 polymer synthesis method Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920000259 polyoxyethylene lauryl ether Polymers 0.000 description 1
- 229920000137 polyphosphoric acid Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 125000005372 silanol group Chemical group 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000000235 small-angle X-ray scattering Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- 150000003459 sulfonic acid esters Chemical class 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
- ZQZCOBSUOFHDEE-UHFFFAOYSA-N tetrapropyl silicate Chemical compound CCCO[Si](OCCC)(OCCC)OCCC ZQZCOBSUOFHDEE-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000012719 thermal polymerization Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- GYZQBXUDWTVJDF-UHFFFAOYSA-N tributoxy(methyl)silane Chemical compound CCCCO[Si](C)(OCCCC)OCCCC GYZQBXUDWTVJDF-UHFFFAOYSA-N 0.000 description 1
- PMQIWLWDLURJOE-UHFFFAOYSA-N triethoxy(1,1,2,2,3,3,4,4,5,5,6,6,7,7,10,10,10-heptadecafluorodecyl)silane Chemical compound CCO[Si](OCC)(OCC)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)CCC(F)(F)F PMQIWLWDLURJOE-UHFFFAOYSA-N 0.000 description 1
- BPCXHCSZMTWUBW-UHFFFAOYSA-N triethoxy(1,1,2,2,3,3,4,4,5,5,8,8,8-tridecafluorooctyl)silane Chemical compound CCO[Si](OCC)(OCC)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)CCC(F)(F)F BPCXHCSZMTWUBW-UHFFFAOYSA-N 0.000 description 1
- ZLGWXNBXAXOQBG-UHFFFAOYSA-N triethoxy(3,3,3-trifluoropropyl)silane Chemical compound CCO[Si](OCC)(OCC)CCC(F)(F)F ZLGWXNBXAXOQBG-UHFFFAOYSA-N 0.000 description 1
- DENFJSAFJTVPJR-UHFFFAOYSA-N triethoxy(ethyl)silane Chemical compound CCO[Si](CC)(OCC)OCC DENFJSAFJTVPJR-UHFFFAOYSA-N 0.000 description 1
- ZJEYUFMTCHLQQI-UHFFFAOYSA-N triethoxy(naphthalen-1-yl)silane Chemical compound C1=CC=C2C([Si](OCC)(OCC)OCC)=CC=CC2=C1 ZJEYUFMTCHLQQI-UHFFFAOYSA-N 0.000 description 1
- FZMJEGJVKFTGMU-UHFFFAOYSA-N triethoxy(octadecyl)silane Chemical compound CCCCCCCCCCCCCCCCCC[Si](OCC)(OCC)OCC FZMJEGJVKFTGMU-UHFFFAOYSA-N 0.000 description 1
- BOVWGKNFLVZRDU-UHFFFAOYSA-N triethoxy(trifluoromethyl)silane Chemical compound CCO[Si](OCC)(OCC)C(F)(F)F BOVWGKNFLVZRDU-UHFFFAOYSA-N 0.000 description 1
- JLGNHOJUQFHYEZ-UHFFFAOYSA-N trimethoxy(3,3,3-trifluoropropyl)silane Chemical compound CO[Si](OC)(OC)CCC(F)(F)F JLGNHOJUQFHYEZ-UHFFFAOYSA-N 0.000 description 1
- ORVBHOQTQDOUIW-UHFFFAOYSA-N trimethoxy(trifluoromethyl)silane Chemical compound CO[Si](OC)(OC)C(F)(F)F ORVBHOQTQDOUIW-UHFFFAOYSA-N 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/22—Compounds containing nitrogen bound to another nitrogen atom
- C08K5/27—Compounds containing a nitrogen atom bound to two other nitrogen atoms, e.g. diazoamino-compounds
- C08K5/28—Azides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
Definitions
- the present invention relates to a resin composition, a cured film, a method for manufacturing a microlens, a solid-state image sensor, a microlens, and a touch panel.
- a material for forming a microlens is applied, cured, a photoresist is applied on the upper part, exposed and developed, a pattern is processed to the size of the microlens, and then the photoresist is used. Is used as a mask, and the material for forming a microlens is processed into a microlens shape by dry etching.
- the material for forming a microlens is required to have a high refractive index in order to efficiently collect light, and at the same time, it is required to have excellent moisture resistance, chemical resistance, etc. while maintaining high transmittance. ..
- a polysiloxane resin is used as a resin that satisfies such a requirement.
- Patent Document 1 reports a siloxane resin composition for forming a microlens, which contains a siloxane resin having a condensed polycyclic aromatic group and a composite oxide such as aluminum, titanium, tin or zirconium.
- the siloxane resin composition for forming a microlens containing a siloxane resin having a condensed polycyclic aromatic group and metal compound particles described in Patent Document 1 contains a composite oxide such as aluminum, titanium, tin or zirconium. Therefore, it is difficult to dry etch, and there is a problem in the process compatibility of microlens formation. Further, there are problems that the heat resistance is insufficient and the chemical resistance of the cured film is insufficient due to the thermal decomposition of the condensed polycyclic aromatic group at a high temperature.
- the present invention has the following configurations.
- Titanium composite oxide particles (B1) having a total content of one or more elements selected from the group consisting of resin (A), aluminum, tin and zirconium of 2% by weight or more and 15% by weight or less, and aluminum.
- Resin composition is a total content of one or more elements selected from the group consisting of resin (A), aluminum, tin and zirconium of 2% by weight or more and 15% by weight or less, and aluminum.
- Two types of particles of titanium composite oxide particles (B2) having a total content of one or more elements selected from the group consisting of tin and zirconium of less than 2% by weight, and a solvent (C). Resin composition.
- Particles (B) which are a composite oxide of one or more types of polysiloxane (a1) having a structure represented by the formula (1), aluminum, tin, zirconium and silicon selected from the group and titanium, and A resin composition containing the solvent (C).
- R 1 represents an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms.
- n is 0 or 1
- * means a bond directly connected to a silicon atom.
- the resin composition of the present invention is excellent in high heat resistance, etching property and chemical resistance.
- the resin composition of the present invention is a titanium composite oxide particle having a total content of one or more elements selected from the group consisting of resin (A), aluminum, tin and zirconium of 2% by weight or more and 15% by weight or less.
- the resin composition of another aspect of the present invention is one or more selected from the group consisting of polysiloxane (a1) having a structure represented by the formula (1), aluminum, tin, zirconium and silicon, and titanium. It contains particles (B) which are composite oxides and a solvent (C).
- the polysiloxane (a1) having the structure represented by the formula (1) may be hereinafter referred to as polysiloxane (a1).
- Particles (B) which are a composite oxide of one or more kinds and titanium selected from the group consisting of aluminum, tin, zirconium and silicon may be hereinafter referred to as particles (B).
- R 1 represents an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms.
- n is 0 or 1
- * means a bond directly connected to a silicon atom.
- the resin (A) in the present invention examples include general resins (those having a repeating unit structure) such as acrylic resins, epoxy resins, polyethylenes, polyimides, and polysiloxanes, but with the particles (B) described later. It is particularly desirable that the resin (A) is polysiloxane (A1) from the viewpoint of compatibility, heat resistance of the formed cured film, and chemical resistance. Further, since the cured film has a high refractive index and good chemical resistance, the refractive index of the polysiloxane (A1) at a wavelength of 633 nm is preferably 1.60 or more and less than 1.80.
- the polysiloxane (A1) is a polysiloxane (a1) having a structure represented by the formula (1).
- R 1 represents an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms.
- n is 0 or 1
- * means a bond directly connected to a silicon atom.
- the polysiloxane (a1) has the structure of the formula (1), it is possible to impart high refractive index, high heat resistance and good etching property to the cured film.
- the mol ratio of the structure represented by the formula (1) in the polysiloxane (a1) is preferably 10 to 90 mol% with respect to 100 mol% of all Si atoms contained in the polysiloxane (a1). Within the above range, the refractive index, heat resistance and etching property of the cured film can be further improved. As the lower limit, the mol ratio of the structure represented by the formula (1) in the polysiloxane (a1) is more preferably 20 mol% or more with respect to 100 mol% of all Si atoms contained in the polysiloxane (a1). More preferably, it is 30 mol% or more.
- the mol ratio of the structure represented by the formula (1) in the polysiloxane (a1) is more preferably 85 mol or less with respect to 100 mol% of all Si atoms contained in the polysiloxane (a1), and further. It is preferably 80 mol or less.
- the polysiloxane (A1) or polysiloxane (a1) preferably has a structure represented by the formula (2) and / or a structure represented by the formula (3).
- R 2 represents an alkylene group having 1 to 4 carbon atoms or a divalent aromatic group having 1 to 8 carbon atoms. * Means a bond that is directly linked to a silicon atom.
- the total is preferably 1 to 30 mol%, more preferably 5 to 20 mol%. Within this range, the chemical resistance of the cured film can be improved.
- Polysiloxane (A1) or polysiloxane (a1) can be obtained by a known method of hydrolyzing an alkoxysilane compound as a raw material in an organic solvent and partially condensing it. At this time, an arbitrary substituent can be introduced into the polysiloxane by selecting the type of the raw material alkoxysilane.
- the structure of the formula (1) can be introduced by using the alkoxysilane compound represented by the formula (4).
- R 1 represents an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms.
- n is 0 or 1
- R 3 is an alkyl group having 1 to 4 carbon atoms.
- R 4 is a hydrocarbon group having 1 to 10 carbon atoms.
- m is 0 or 1.
- alkoxysilane compound represented by the formula (4) examples include biphenyltrimethoxysilane, biphenyltriethoxysilane, biphenylmethyldimethoxysilane, biphenylmethyldiethoxysilane, 4-methylbiphenyltrimethoxysilane, and 4-methylbiphenyltriethoxysilane. Examples thereof include 4-methoxybiphenyltrimethoxysilane and 4-methoxybiphenyltriethoxysilane. These alkoxysilane compounds may be used alone or in combination of two or more.
- the structure represented by the formula (2) and / or the structure represented by the formula (3) can be introduced by using the alkoxysilane compound represented by the formula (5).
- R 2 represents an alkylene group having 1 to 4 carbon atoms or a divalent aromatic group having 1 to 8 carbon atoms.
- R 5 is an alkyl group having 1 to 4 carbon atoms.
- R 6 is a hydrocarbon group having 1 to 10 carbon atoms. l is 0 or 1.
- alkoxysilane compound represented by the formula (5) examples include 3-trimethoxysilylpropyl succinic anhydride, 3-triethoxysilylpropyl succinic anhydride, 3-triphenyloxysilylpropyl succinic anhydride, and 3-tri. Examples thereof include methoxycisilylpropylphthalic anhydride, 3-trimethoxycyclylpropylcyclohexyldicarboxylic anhydride, and the like. These alkoxysilane compounds may be used alone or in combination of two or more.
- the polysiloxane (A1) or the polysiloxane (a1) may contain an alkoxysilane compound other than the above as a raw material.
- alkoxysilane compounds other than the above include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltriisopropoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, and hexyltrimethoxysilane.
- alkoxysilane compounds methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, and phenyltriethoxysilane are preferable from the viewpoint of chemical resistance of the obtained cured film.
- These alkoxysilane compounds may be used alone or in combination of two or more.
- the content of the polysiloxane (A1) and / or the polysiloxane (a1) is based on the total amount of the solid content of the resin composition excluding the solvent (C) from the viewpoint of further enhancing the light transmittance and crack resistance of the cured film. 10% by weight or more is preferable, and 20% by weight or more is more preferable.
- the content of polysiloxane (A1) and / or polysiloxane (a1) is the total amount of solids excluding the solvent (C) of the resin composition from the viewpoint of further enhancing the light transmittance and crack resistance of the cured film. 80% by weight or less is more preferable.
- Polysiloxane (A1) or polysiloxane (a1) can be obtained by hydrolyzing and condensing an alkoxysilane compound as a raw material.
- an acid catalyst and water are added to the above-mentioned alkoxysilane compound in a solvent to generate a silanol group. It is preferable to add an acid catalyst and water to the alkoxysilane compound over 1 to 180 minutes, and then react at room temperature to 110 ° C. for 1 to 180 minutes. By carrying out the hydrolysis reaction under such conditions, a rapid reaction can be suppressed. A more preferable reaction temperature is 40 to 105 ° C.
- condensation reaction is carried out to obtain polysiloxane.
- the condensation reaction is preferably carried out by heating the reaction solution at 50 ° C. or higher and below the boiling point of the solvent for 1 to 100 hours. It is also effective to reheat or add a base catalyst in order to increase the degree of polymerization of the polysiloxane compound obtained by the condensation reaction.
- Examples of the acid catalyst used in the hydrolysis reaction include acid catalysts such as hydrochloric acid, acetic acid, formic acid, nitrate, oxalic acid, hydrochloric acid, sulfuric acid, phosphoric acid, polyphosphoric acid, polyvalent carboxylic acid or its anhydride, and ion exchange resin.
- acid catalysts such as hydrochloric acid, acetic acid, formic acid, nitrate, oxalic acid, hydrochloric acid, sulfuric acid, phosphoric acid, polyphosphoric acid, polyvalent carboxylic acid or its anhydride, and ion exchange resin.
- an acidic aqueous solution using formic acid, acetic acid or phosphoric acid is preferable.
- the preferable content of these acid catalysts is preferably 0.05 parts by weight or more, more preferably 0.1 parts by weight or more, based on 100 parts by weight of the total polysiloxane compound before the hydrolysis reaction. Further, it is preferably 10 parts by weight or less, more preferably 5 parts by weight or less.
- the total amount of the polysiloxane compound is a compound having a silicon atom and includes all of the alkoxysilane compound which is a raw material of the polysiloxane, its hydrolyzate, and the polysiloxane which is a condensate thereof. To tell. The definition is the same below.
- the solvent used for the hydrolysis / condensation reaction is not particularly limited, but is appropriately selected in consideration of the stability, wettability, volatility, etc. of the resin composition. Not only one type of solvent but also two or more types can be used.
- the solvent used for the hydrolysis / condensation reaction may be contained as it is as the solvent (C) of the resin composition.
- solvent examples include the following. Methanol, ethanol, propanol, isopropanol, butanol, isobutanol, t-butanol, pentanol, 4-methyl-2-pentanol, 3-methyl-2-butanol, 3-methyl-3-methoxy-1-butanol, di Alcohols such as acetone alcohol.
- Glycols such as ethylene glycol and propylene glycol.
- Ketones such as methyl ethyl ketone, acetylacetone, methyl propyl ketone, methyl butyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclopentanone, and 2-heptanone.
- Amides such as dimethylformamide and dimethylacetamide. Ethyl acetate, propyl acetate, butyl acetate, isobutyl acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, methyl lactate, ethyl lactate, butyl lactate, etc. Acetic acids; aromatic or aliphatic hydrocarbons such as toluene, xylene, hexane, cyclohexane.
- propylene glycol monomethyl ether propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, and propylene glycol mono-t are considered in terms of the permeability of the cured film and crack resistance.
- -Butyl ether, ⁇ -butylollactone and the like are preferably used.
- the concentration or viscosity of the resin composition is also preferable to adjust the concentration or viscosity of the resin composition to an appropriate level by further adding a solvent after the completion of the hydrolysis / condensation reaction. It is also possible to distill and remove all or part of vaporizable hydrolysis products such as alcohol produced by heating and / or under reduced pressure after hydrolysis, and then add a suitable solvent.
- the amount of the solvent used in the hydrolysis reaction is preferably 50 parts by weight or more, more preferably 80 parts by weight or more, and preferably 500 parts by weight or less, based on 100 parts by weight of the total polysiloxane compound. Preferably, it is 200 parts by weight or less. Gel formation can be suppressed by setting the amount of the solvent to 50 parts by weight or more. Further, when the content is 500 parts by weight or less, the hydrolysis reaction proceeds rapidly.
- water used for the hydrolysis reaction ion-exchanged water is preferable.
- the amount of water can be arbitrarily selected, but it is preferably used in the range of 1.0 to 4.0 mol with respect to 1 mol of the alkoxysilane compound.
- the resin composition of the present invention contains titanium composite oxide particles (B1) having a total content of one or more elements selected from the group consisting of aluminum, tin and zirconium of 2% by weight or more and 15% by weight or less (hereinafter, (Sometimes referred to as particles (B1)) and titanium composite oxide particles (B2) having an elemental layer content of less than 2% by weight selected from the group consisting of aluminum, tin and zirconium (hereinafter, referred to as “B1)”. It contains two types of particles (sometimes referred to as particles (B2)). By containing these two types of particles, the refractive index and etching processability can be improved.
- the total element content refers to the ratio (% by weight) of the total content of the relevant element to the total weight of the relevant particle, and when a dispersant containing the particles (B1) or (B2) is used, the ratio thereof is used.
- the ratio of the total content of the corresponding elements shall be calculated with the total amount of solids as the weight of the particles.
- the total content of one or more elements selected from the group consisting of aluminum, tin and zirconium of the particles (B2) is preferably less than 0.5% by weight, more preferably 0.1% by weight, from the viewpoint of etchability. More preferably, it is less than%. Furthermore, it is desirable that the amount is as small as possible, and ideally 0% by weight.
- the mixed weight ratio (B1 / B2) of these particles (B1) and the particles (B2) is preferably 0.25 to 4. Being in this range improves the etching property.
- the content of the corresponding element of the particle (B1) or the particle (B2) can be measured by a fluorescent X-ray analysis method, an ICP emission spectroscopic analysis method, an ICP weight analysis method, or an atomic absorption spectrometry method.
- the total amount of aluminum, tin and zirconium contained in the resin composition is preferably 0.01% by weight or more and less than 1% by weight with respect to 100% by weight of the total amount of the resin composition. For example, by adjusting the mixing ratio of the particles (B1) and the particles (B2) as described above, the total amount of aluminum, tin, and zirconium contained in the resin composition can be adjusted.
- the total content of the particles (B1) and the particles (B2) is preferably 35 to 70% by weight with respect to the solid content in the resin composition. Within the above range, high refractive index, crack resistance and transparency can be achieved at the same time. As a lower limit, the total content of the particles (B1) and the particles (B2) is more preferably 40% by weight or more, still more preferably 45% by weight or more, based on the solid content in the resin composition. As an upper limit, the total content of the particles (B1) and the particles (B2) is more preferably 65% by weight or less, still more preferably 60% by weight or less, based on the solid content in the resin composition.
- the resin composition of another aspect of the present invention contains particles (B) which are composite oxides of titanium and one or more selected from the group consisting of aluminum, tin, zirconium and silicon.
- the above-mentioned particles (B1) and particles (B2) are also assumed to be a kind of particles (B).
- Particle (B) has a high refractive index and stability, and is preferably used. Among them, particles which are a composite oxide of tin and / or zirconium and titanium have a high refractive index and are more preferable.
- the particles (B) are one or more selected from the group consisting of aluminum, tin and zirconium, the particles (B3) which are composite oxides of titanium, and the particles (B4) which are composite oxides of silicon and titanium. ), It is more preferable to contain two types of particles. Etching property is improved by containing two kinds of particles, the particles (B3) and the particles (B4).
- One or more kinds selected from the group consisting of aluminum, tin and zirconium, and particles (B3) which are composite oxides of titanium may be hereinafter referred to as particles (B3).
- Particles (B4) which are composite oxides of silicon and titanium may be hereinafter referred to as particles (B4). It is assumed that the particle (B3) and the particle (B4) are a kind of the particle (B).
- the number average particle size of the particles (B) is preferably 1 to 200 nm. In order to obtain a cured film having high transmittance, the number average particle diameter of the particles (B) is more preferably 1 nm to 70 nm.
- the number average particle diameter of the particles (B) can be measured by a gas adsorption method, a dynamic light scattering method, a small-angle X-ray scattering method, a transmission electron microscope, or a scanning electron microscope.
- the content of the particles (B) is preferably 35 to 70% by weight with respect to the solid content in the resin composition. Within the above range, high refractive index, crack resistance and transparency can be achieved at the same time.
- the content of the particles (B) is more preferably 40% by weight or more, still more preferably 45% by weight or more, based on the solid content in the resin composition.
- the content of the particles (B) is more preferably 65% by weight or less, still more preferably 60% by weight or less, based on the solid content in the resin composition.
- the total content of the particles (B3) and the particles (B4) is preferably 35 to 70% by weight with respect to the solid content in the resin composition.
- the total content of the particles (B3) and the particles (B4) is more preferably 40% by weight or more, still more preferably 45% by weight or more, based on the solid content in the resin composition.
- the total content of the particles (B3) and the particles (B4) is more preferably 65% by weight or less, still more preferably 60% by weight or less, based on the solid content in the resin composition.
- the content of aluminum, tin, zirconium and silicon in the composite oxide is not particularly limited, but the total amount of aluminum, tin, zirconium contained in the resin composition is 100% by weight based on the total amount of the resin composition. , 0.01% by weight or more and less than 1% by weight. Within this range, the etching property is improved and it becomes easier to form a lens.
- Titanium oxide includes those having different crystal structures, such as anatase-type titanium oxide and rutile-type titanium oxide, but the crystal structure of the particles (B) is not particularly limited, and particles (B) having an appropriate structure depending on the application are not particularly limited. ) Can be used.
- the surface of the particles (B) may be coated with a polymer, a dispersant, or the like.
- the dispersed state of the surface-coated particles (B) is stabilized, and aggregation and precipitation tend to be suppressed even if the content of the particles (B) in the resin composition is increased.
- the polysiloxane (A1) in the resin composition also contributes to the dispersion stabilization of the particles (B).
- the polysiloxane (A1) and the particles (B) easily interact with each other, and the dispersion stability can be improved by simply mixing them.
- the polysiloxane (A1) and the particles (B) are bonded by mixing the particles (B) in the process of hydrolysis / condensation reaction of the alkoxysilane compound as a raw material.
- a complex (E) of polysiloxane and particles can be formed.
- particles (B1) or particles (B2) are mixed in the process of hydrolysis / condensation reaction of the alkoxysilane compound as a raw material to obtain polysiloxane (A1).
- a composite (E) of a polysiloxane and a particle in which the particle (B1) or the particle (B2) is bonded can be formed.
- the resin composition of the present invention preferably contains a polysiloxane (A1) and a composite (E) of the polysiloxane and the particles in which the particles (B1) or the particles (B2) are bonded.
- a complex (E1) of the polysiloxane and the particles in which the polysiloxane (a1) and the particles (B) are bonded is formed.
- the resin composition of the present invention preferably contains a polysiloxane (a1) and a complex (E1) of the polysiloxane and the particles to which the particles (B) are bonded.
- the dispersion stability of the particles (B1) or the particles (B2) or the particles (B) is further improved. be able to.
- Examples of commercially available particles (B) are “Optrake®” TR-502, “Optrake” TR-503, “Optrake” TR-504, “Optrake®” TR-502, “Optrake” TR-504, “Optrake®” TR-502, “Optrake” TR-504, which are silicon oxide-titanium oxide composite particles.
- Examples of particles (B1) include the above-mentioned "Optrake” TR-550 (trade name, manufactured by Catalysis Chemical Industry Co., Ltd.), zirconium oxide particles (manufactured by High Purity Chemical Laboratory Co., Ltd.), tin oxide-oxidation. Zirconium composite particles (manufactured by Catalysis Chemical Industry Co., Ltd.), etc. can be mentioned.
- Examples of particles (B3) include the above-mentioned "Optrake” TR-550 (trade name, manufactured by Catalysis Chemical Industry Co., Ltd.), zirconium oxide particles (manufactured by High Purity Chemical Laboratory Co., Ltd.), tin oxide-oxidation. Zirconium composite particles (manufactured by Catalysis Chemical Industry Co., Ltd.), etc. are mentioned, and examples of the particles (B4) include the above-mentioned "Optrake (registered trademark)" TR-502, “Optrake” TR-503, ".
- ⁇ Chinone diazide compound (D)> In order to impart positive photosensitivity to the resin composition of the present invention, it is preferable to further contain the quinone diazide compound (D).
- the quinone diazide compound (D) By containing the quinonediazide compound, a positive relief pattern can be obtained by improving the solubility of the exposed portion in the aqueous solution of tetramethylammonium hydroxide.
- the quinone diazide compound (D) the compound represented by any of the formula (6) is preferable. It is a compound in which a sulfonic acid of naphthoquinonediazide is ester-bonded to a compound having a phenolic hydroxyl group.
- R 7 indicates the residue after esterification of the compound having a phenolic hydroxyl group.
- Examples of the compound having a phenolic hydroxyl group used here include 4,4'-Cyclohexylidenobis phenol, 4,4'-Cyclohexylidenebis [2-methylphenol], 5,5'-(1,1'-Cyclohexylidene) bis-.
- compounds having a particularly preferable phenolic hydroxyl group include, for example, 4,4'-Cyclohexylidobis phenol, 4,4,4', 4'Tetracis [(1-methylthylide) bis (1,4-cyclohexylide)].
- a compound obtained by introducing 4-naphthoquinonediazide sulfonic acid or 5-naphthoquinone diazidosulfonic acid into the compound having a phenolic hydroxyl group described above by an ester bond can be exemplified as a preferable compound.
- Other compounds can also be used.
- the content of the quinone diazide compound (D) is 1 to 50 parts by weight, more preferably 2 to 10 parts by weight, based on the resin (A) and / or the polysiloxane (A1).
- the content of the quinone diazide compound (D) is preferably 1 to 50 parts by weight, more preferably 2 to 10 parts by weight, based on the polysiloxane (a1). By setting the amount to 1 part by weight or more, pattern formation can be performed with practical sensitivity. Further, when the content is 50 parts by weight or less, a resin composition having excellent transmittance and pattern resolution can be obtained.
- the preferable molecular weight of the quinonediazide compound (D) is 300 or more, more preferably 350 or more. Further, it is 1000 or less, more preferably 800 or less. By setting the molecular weight to 300 or more, the effect of suppressing dissolution of the unexposed portion can be obtained. Further, by setting the molecular weight to 1000 or less, a relief pattern without scum can be obtained in a portion developed after exposure and from which the photosensitive resin composition has been removed.
- the resin composition of the present invention contains a solvent (C).
- the solvent (C) include the following.
- Ethylene glycol monomethyl ether ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol mono-t-butyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, Ether-based compounds such as ethylene glycol dibutyl ether.
- Lactate SL such as methyl lactate, ethyl lactate, and butyl lactate.
- Ketone compounds such as acetylacetone, methylpropylketone, methylbutylketone, methylisobutylketone, cyclopentanone, 2-heptanone, and mesityl oxide.
- Alcohols such as methanol, ethanol, propanol, butanol, isobutyl alcohol, pentanol, 4-methyl-2-pentanol, 3-methyl-2-butanol, 3-methyl-3-methoxy-1-butanol, diacetone alcohol, etc.
- Compound. Aromatic hydrocarbon compounds such as toluene and xylene.
- ⁇ -butyrolactone, N-methylpyrrolidinone, etc. may be contained alone or in two or more kinds.
- examples of particularly preferable solvents are propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol mono-t-butyl ether, and diacetone alcohol. , Gamma-butylollactone. These may be contained alone or in two or more kinds.
- the content of the solvent (C) in the resin composition is preferably in the range of 100 parts by weight to 9900 parts by weight, more preferably in the range of 100 parts by weight to 5000 parts by weight, based on 100 parts by weight of the total polysiloxane compound. be.
- the resin composition of the present invention may contain various surfactants in order to improve the flowability and the uniformity of the film thickness at the time of coating.
- the type of surfactant is not particularly limited, and for example, a fluorine-based surfactant, a silicone-based surfactant, a polyalkylene oxide-based surfactant, a poly (meth) acrylate-based surfactant, or the like can be used. Of these, a fluorine-based surfactant is particularly preferably used from the viewpoint of flowability and film thickness uniformity.
- fluorine-based surfactant examples include 1,1,2,2-tetrafluorooctyl (1,1,2,2-tetrafluoropropyl) ether and 1,1,2,2-tetrafluorooctyl.
- silicone-based surfactants include SH28PA, SH7PA, SH21PA, SH30PA, and ST94PA (all manufactured by Toray Dow Corning Silicone Co., Ltd.), BYK-333, and BYK-352 (manufactured by Big Chemie Japan Co., Ltd.). ), KL-700, LE-302, LE-303, LE-304 (Kyoeisha Chemical Co., Ltd.) and the like.
- surfactants include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene nonylphenyl ether, polyoxyethylene distearate and the like.
- the content of the surfactant is usually 0.001 to 10 parts by weight with respect to 100 parts by weight of the total polysiloxane compound content in the resin composition. These may be used alone or in combination of two or more at the same time.
- the resin composition may contain a polymerization inhibitor for the purpose of suppressing thermal polymerization at the time of prebaking for vaporizing the solvent, for example.
- a polymerization inhibitor for the purpose of suppressing thermal polymerization at the time of prebaking for vaporizing the solvent, for example.
- the polymerization inhibitor include catechols such as phenol, hydroquinone, p-methoxyphenol, benzoquinone, methoxybenzoquinone, 1,2-naphthoquinone, cresol, and pt-butylcatechol, alkylphenols, alkylbisphenols, phenothiazine, and the like.
- the content of the polymerization inhibitor in the resin composition of the present invention is preferably 0.000005 to 0.2% by weight, preferably 0.00005 to 0.1% by weight, based on the entire resin composition. More preferred. Further, 0.0001 to 0.5% by weight is preferable, and 0.001 to 0.2% by weight is more preferable with respect to all the components other than the organic solvent.
- the resin composition of the present invention can contain a viscosity regulator, a stabilizer, a colorant, an ultraviolet absorber and the like, if necessary.
- the resin composition of the present invention is applied onto a substrate to obtain a coating film.
- a cured film can be formed by drying and curing this by heating.
- microgravure coating spin coating, dip coating, curtain flow coating, roll coating, spray coating, slit coating, sink coating method and the like can be preferably used.
- the heat-drying and curing conditions are appropriately selected depending on the substrate to be applied and the resin composition, but usually, the treatment is carried out at a temperature of room temperature or higher and 400 ° C. or lower for 0.5 to 240 minutes. Is preferable.
- a particularly preferable curing temperature is 100 to 400 ° C, more preferably 150 to 400 ° C.
- the film thickness of the coating film and the cured film is not particularly limited, but both are generally in the range of 0.001 to 100 ⁇ m.
- the method for producing a cured film preferably includes the following steps.
- the above resin composition is applied to the substrate by a known method such as spin coating or slit coating, and heated in a hot plate, oven or the like. Heat using the device. This is called prebake.
- Prebaking is preferably carried out in a temperature range of 50 to 150 ° C. for 30 seconds to 30 minutes.
- the film thickness after prebaking is preferably 0.1 to 15 ⁇ m.
- an ultraviolet-visible exposure machine such as a stepper, a mirror projection mask aligner (MPA), or a parallel light mask aligner (PLA) is used to expose about 10 to 4000 J / m 2 (wavelength 365 nm exposure). The entire surface of the coating film is exposed with an exposure amount of (quantity conversion).
- the coating film that has undergone the step (I) of heating and curing the coating film, or the coating film that has undergone (I) and (II) is heated at 150 to 450 ° C. using a heating device such as a hot plate or an oven.
- a cured film is obtained by heating (curing) for about 30 seconds to 2 hours in the temperature range of.
- the above resin composition has photosensitive property and a patterned cured film is produced, it is preferable to include the following steps.
- Step of applying the resin composition on the substrate to form a coating film The above resin composition is applied on the substrate by a known method such as spin coating or slit coating, and heated in a hot plate, an oven, or the like. Heat using the device. This is called prebake. Prebaking is preferably carried out in a temperature range of 50 to 150 ° C. for 30 seconds to 30 minutes. The film thickness after prebaking is preferably 0.1 to 15 ⁇ m.
- a step of removing an exposed portion of the coating film by developing the coating film with a developing solution after a pattern exposure step After prebaking, a stepper, a mirror projection mask aligner (MPA), and a parallel light mask aligner (pla).
- a pattern exposure is performed with an exposure amount of about 10 to 4000 J / m 2 (equivalent to an exposure amount of 365 nm wavelength) through a desired mask using an ultraviolet visible exposure machine such as the above.
- the film in the exposed area is dissolved and removed by development to obtain a positive pattern.
- the resolution of the pattern is preferably 15 ⁇ m or less.
- the developing method include methods such as showering, dipping, and paddle, and it is preferable to immerse the film in a developing solution for 5 seconds to 10 minutes.
- a known alkaline developing solution can be used, and examples thereof include an aqueous solution of the following alkaline components.
- Inorganic alkaline components such as alkali metal hydroxides, carbonates, phosphates, silicates and borates, amines such as 2-diethylaminoethanol, monoethanolamine and diethanolamine, tetramethylammonium hydroxide (TMAH) , Colin and other quaternary ammonium salts. Two or more of these may be used as the alkaline developer.
- TMAH tetramethylammonium hydroxide
- dehydration drying baking may be performed in a temperature range of 50 to 150 ° C. with a heating device such as a hot plate or an oven. Further, if necessary, heating is performed in a heating device such as a hot plate or an oven in a temperature range of 50 to 300 ° C. for 30 seconds to 30 minutes. This is called soft bake.
- Step of exposing the coating film remaining after the development an ultraviolet visible exposure machine such as a stepper, a mirror projection mask aligner (mpa), a parallel light mask aligner (pla) is used, and the coating film remains through a desired mask. Pattern exposure is performed at an exposure amount of about 10 to 4000 J / m 2 (wavelength 365 nm exposure amount conversion).
- a cured film is obtained by heating (curing) the coating film that has undergone (iii) in a heating device such as a hot plate or an oven in a temperature range of 150 to 450 ° C. for about 30 seconds to 2 hours.
- a heating device such as a hot plate or an oven in a temperature range of 150 to 450 ° C. for about 30 seconds to 2 hours.
- the resin composition of the present invention preferably has a sensitivity of 1500 J / m 2 or less, preferably 1000 J / m 2 or less, from the viewpoint of productivity in pattern formation. Is more preferable.
- the sensitivity at the time of exposure is obtained by the following method.
- the photosensitive resin composition is spin-coated on a silicon wafer at an arbitrary rotation speed using a spin coater.
- the coating film is prebaked at 120 ° C. for 3 minutes using a hot plate to prepare a prebaked film having a film thickness of 1 ⁇ m.
- PLA PLA-501F manufactured by Canon Inc.
- an ultra-high pressure mercury lamp is used, and a grayscale mask having a line and space pattern of 1 to 10 ⁇ m, which is a mask for sensitivity measurement, is used.
- the pre-baked film is exposed.
- the sensitivity is defined as the sensitivity. ..
- thermosetting step a cured film is prepared by curing at 220 ° C. for 5 minutes using a hot plate, and the minimum pattern dimension in sensitivity is obtained as the post-cure resolution.
- the cured film of the present invention is a cured film obtained by curing the resin composition of the present invention.
- the resin composition of the present invention and its cured film are suitably used as index matching materials for optical devices such as solid-state image sensors, optical filters, and displays, and touch panels. More specifically, a light-collecting microlens and an optical waveguide formed on a solid-state image sensor such as a back-illuminated CMOS image sensor, an antireflection film installed as an optical filter, and a flattening material for a TFT substrate for a display. Examples thereof include a color filter such as a liquid crystal display, a protective film thereof, and a phase shifter.
- the resin composition of the present invention and the cured film thereof can also be used as a buffer coat of a semiconductor device, an interlayer insulating film, and various protective films.
- the solid-state image sensor of the present invention comprises the cured film of the present invention.
- a transparent resin layer such as a color filter, a microlens (array), and an antireflection film is sequentially provided on a substrate having a semiconductor light receiving element from the substrate side.
- Light from the outside passes through the transparent resin layer, the microlens, and the color filter in this order, reaches the light receiving element, and is detected.
- the cured film formed from the resin composition of the present invention as a microlens, efficient light collection to the light receiving element becomes possible. It functions over the pixels of the light receiving element that detects light corresponding to each of RGB, and obtains an extremely clear image even when the pixels of the light receiving element and the individual lenses of the microlens are arranged at high density. Can be done.
- a resin layer that functions as an optical waveguide, a color filter, a microlens (array), and a resin layer such as an antireflection film are sequentially formed on a substrate having a light receiving element.
- the cured film formed from the resin composition of the present invention can be suitably used as a microlens or an optical waveguide.
- the microlens of the present invention comprises the cured product of the present invention.
- the microlens forming method an example of the microlens array forming step will be described.
- the unevenness of the element is embedded and flattened by spin coating with a transparent resin.
- the lens material is uniformly applied to the flattened surface to form a cured film by the method described above.
- the resist is uniformly applied on it.
- the resist is irradiated with ultraviolet rays using a reticle as a mask to expose a portion of the space between lenses.
- the exposed part is decomposed and removed with a developing solution to form a pattern. Obtained by heating a hemispherical pattern.
- the resist melts into a liquid phase, becomes a hemispherical state, and then changes to a solid phase. Then, the hemispherical pattern layer of the resist material and the layer of the lens material are etched by dry etching. In this way, a lens array in which hemispherical lenses are arranged can be formed. Since the cured film of the present invention has excellent dry etching properties, patterning in the dry etching step is easy.
- Etching gases used for dry etching include fluorogas such as CF 4, C 4 F 6, C 4 F 8, C 4 F 8, CHF 3, SF 6 , and NF 3 gas, O 2 gas, Ar gas, and N. 2 Gas or the like can be used.
- the microlens there is a method of omitting the use of the resist material described above and directly patterning the lens material by exposure.
- the patterned lens material is melted by a heating step to obtain a hemispherical lens.
- the resin composition of the present invention has positive photosensitivity, it can be suitably used for such an embodiment.
- the work can be simplified and deterioration of the wiring portion due to the etching chemical solution or plasma can be avoided.
- the touch panel of the present invention comprises the cured film of the present invention. Further, the cured film of the present invention is suitably used for an on-cell type or film type touch panel.
- the touch panel referred to here is a capacitive touch panel.
- the sensor layer of the capacitive touch panel has wiring in which ITO (Indium Tin Oxide) and metal (silver, molybdenum, aluminum, etc.) are patterned on a base material such as glass or film, and other wiring intersections.
- ITO Indium Tin Oxide
- metal silver, molybdenum, aluminum, etc.
- a structure having an insulating film and a protective film for protecting ITO and metal is common.
- the touch panel method is an on-cell method in which a sensor layer is formed on a liquid crystal panel, an OGS (One Glass Solution) method in which a touch panel layer is directly laminated on a cover glass, and a sensor layer is provided between the cover glass and the liquid crystal panel.
- OGS One Glass Solution
- Examples include an out-cell method of forming, and a film method using a sensor layer having a film as a support layer.
- One form of these touch panels includes a form in which an index matching layer is provided below or above the ITO or metal wiring pattern layer in order to suppress the phenomenon in which the ITO or metal wiring is visually recognized (bone visibility phenomenon).
- the cured film formed from the resin composition of the present invention can be suitably used as an index matching layer (or a high refractive index layer in the layer).
- the on-cell method forms the touch panel layer directly on the liquid crystal panel
- the wiring, the protective film, the insulating film material, and the index matching layer need to be processed and formed at a low temperature equal to or lower than the heat resistant temperature of the liquid crystal.
- the film method it is necessary to process and form the wiring, the protective film, the insulating film material, and the index matching layer at a low temperature below the heat resistant temperature of the film. In these cases, it is difficult to apply an inorganic material formed by high-temperature film formation by CVD (Chemical Vapor Deposition), and the cured film of the present invention can be preferably used.
- MTMS Methyltrimethoxysilane
- BPTMS Biphenyltrimethoxysilane
- BPDMS Biphenylmethyldimethoxysilane
- TMS 3-Trimethoxysilylpropyl succinic acid anhydride
- NaPTMS 1-naphthyltrimethoxysilane.
- the measurement method performed in this example is as follows.
- Solid content concentration of the polysiloxane solution was determined by the following method. 1.5 g of the polysiloxane solution was weighed in an aluminum cup and heated at 250 ° C. for 30 minutes using a hot plate to evaporate the liquid content. The solid content remaining in the aluminum cup after heating was weighed to determine the solid content concentration of the polysiloxane solution.
- ⁇ Creation of cured film> A resin composition was applied onto an 8-inch silicon wafer substrate using a spin coater (model name: Clean Track Mark 7 manufactured by Tokyo Electron Limited). After coating, the film was prebaked at 100 ° C. for 3 minutes, exposed to the entire surface with an I-line stepper exposure machine at an exposure amount of 400 mJ / cm 2 , and finally heated and cured at 230 ° C. for 5 minutes to obtain a cured film of about 1 ⁇ m.
- a spin coater model name: Clean Track Mark 7 manufactured by Tokyo Electron Limited
- ⁇ Dry etching evaluation> The obtained cured film was evaluated by dry etching under the following equipment and conditions, and the film surface roughness Ra after etching was measured with a surfcom stylus film thickness measuring device.
- the obtained surface roughness Ra was determined as follows. Dry etching equipment: RIE-10N Dry etching conditions: Output 200W Pressure 15Pa Gas CF 4 Flow rate 30ccm Time 3 minutes Surface roughness Ra (nm): AA: Ra ⁇ 5 nm A: 5 nm ⁇ Ra ⁇ 8 nm B: 8 nm ⁇ Ra ⁇ 14 nm C: 14 ⁇ Ra ⁇ 20 nm. D: Ra> 20 nm.
- a resin composition was applied onto an 8-inch silicon wafer substrate using a spin coater (model name: Clean Track Mark 7 manufactured by Tokyo Electron Limited). After coating, it was prebaked at 80 ° C. for 1 minute and exposed with an I-line stepper exposure machine at an exposure amount of 400 mJ / cm 2 through a photomask. As the photomask, a light-shielding mask having 50 ⁇ m, 30 ⁇ m, and 10 ⁇ m line & space openings was used. The exposed substrate was then immersed in 2.38% TMAH for 90 seconds and then rinsed with water for 30 seconds.
- the residual film portion was entirely exposed with an I-line stepper at an exposure amount of 400 mJ / cm 2 , and then heated at 230 ° C. for 5 minutes to obtain a pattern film of about 1 ⁇ m.
- the square pattern of the obtained pattern film was observed, and the smallest pattern dimension (the size of the side of the square) in which the missing pattern was observed was taken as the resolution.
- the evaluation criteria were set as follows. resolution: A: Resolution ⁇ 10 ⁇ m B: 10 ⁇ m ⁇ resolution ⁇ 30 ⁇ m C: 30 ⁇ m ⁇ resolution ⁇ 50 ⁇ m D: Resolution> 50 ⁇ m.
- the polymer synthesis method used in the examples is as follows.
- methanol sol TR-527 solid content concentration 20.5% by weight, manufactured by JGC Catalysts and Chemicals, which is a composite oxide particle of silicon and titanium, was charged, and 11.16 g of water and 0 phosphoric acid were charged while stirring at room temperature. .22 g of the mixture was added over 30 minutes. Then, the flask was immersed in an oil bath at 70 ° C. and stirred for 1 hour, and then the temperature of the oil bath was raised to 120 ° C. Thirty minutes after the start of temperature rise, the internal temperature of the solution reached 100 ° C., and the mixture was heated and stirred for 2 hours. The temperature inside the flask was 100 to 110 ° C.
- methanol sol TR-527 solid content concentration 20.5% by weight, manufactured by JGC Catalysts and Chemicals, which is a composite oxide particle of silicon and titanium, was charged, and 80.09 g was charged. .23 g of the mixture was added over 30 minutes. Then, the flask was immersed in an oil bath at 70 ° C. and stirred for 1 hour, and then the temperature of the oil bath was raised to 120 ° C. Thirty minutes after the start of temperature rise, the internal temperature of the solution reached 100 ° C., and the mixture was heated and stirred for 2 hours. The temperature inside the flask was 100 to 110 ° C.
- the polymer used in the comparative example was synthesized as follows.
- the resin composition was prepared and evaluated as follows.
- X-1 solid content concentration 34.9% by weight
- TR-550 solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals
- DAA 0. 44 g and 0.26 g of MeOH were mixed under a yellow lamp, stirred with shaking, and then filtered through a filter having a diameter of 0.45 ⁇ m to obtain Composition 1.
- the metal content in the obtained resin composition was 1.03% by weight.
- a cured film was formed according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation and dry etching evaluation were performed.
- the composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3. Since it does not have photosensitivity, patterning evaluation was not performed, and the patterning evaluation was set to "-".
- X-2 solid content concentration 34.6% by weight
- TR-550 solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals
- DAA is 0.38 g
- MeOH is 0. .26 g
- the metal content in the obtained resin composition was 1.03% by weight.
- a cured film was formed according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation and dry etching evaluation were performed.
- the composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3. Since it does not have photosensitivity, patterning evaluation was not performed, and the patterning evaluation was set to "-".
- X-1 solid content concentration 34.9% by weight
- TR-550 solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals
- TR-527 solid content concentration 20. 11.06 g (5% by weight, manufactured by JGC Catalysts and Chemicals)
- 0.42 g of DAA, 0.26 g of MeOH mixed under a yellow light, stirred with shaking, and filtered through a filter having a diameter of 0.45 ⁇ m to form a composition.
- the metal content in the obtained resin composition was 0.11% by weight.
- a cured film was formed according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation and dry etching evaluation were performed.
- the composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3. Since it does not have photosensitivity, patterning evaluation was not performed, and the patterning evaluation was set to "-".
- X-1 solid content concentration 34.9% by weight
- TR-550 solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals
- TR-527 solid content concentration 20. (5% by weight, manufactured by JGC Catalysts and Chemicals)
- 6.07 g solid content concentration 20. (5% by weight, manufactured by JGC Catalysts and Chemicals)
- DAA 0.44 g
- MeOH 0.26 g
- a cured film was formed according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation and dry etching evaluation were performed.
- the composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3. Since it does not have photosensitivity, patterning evaluation was not performed, and the patterning evaluation was set to "-".
- X-1 solid content concentration 34.9% by weight
- TR-550 solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals
- TR-527 solid content concentration 20. 1.72 g (5% by weight, manufactured by JGC Catalysts and Chemicals)
- 0.44 g of DAA, 0.26 g of MeOH mixed under a yellow light, stirred with shaking, and filtered through a filter having a diameter of 0.45 ⁇ m to form a composition.
- the metal content in the obtained resin composition was 0.86% by weight.
- a cured film was formed according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation and dry etching evaluation were performed.
- the composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3. Since it does not have photosensitivity, patterning evaluation was not performed, and the patterning evaluation was set to "-".
- a cured film was formed according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation and dry etching evaluation were performed.
- the composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3. Since it does not have photosensitivity, patterning evaluation was not performed, and the patterning evaluation was set to "-".
- Example 7 7.18 g of X-3 (solid content concentration 34.8% by weight), 6.07 g of TR-550 (solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals), TR-527 (solid content concentration 20. (5% by weight, manufactured by JGC Catalysts and Chemicals) was mixed at 6.07 g, DAA at 0.28, THP-17 at 0.40 g under a yellow light, stirred with shaking, and then filtered through a filter having a diameter of 0.45 ⁇ m. Composition 7 was obtained. The metal content in the obtained resin composition was 0.51% by weight.
- a cured film was formed on the obtained resin composition according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation, dry etching evaluation and patterning evaluation were performed.
- the composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3.
- Example 8> After mixing 14.41 g of X-4 (solid content concentration 34.7% by weight), 1.59 g of DAA, 3.60 g of PGMEA, 0.40 g of THP-17 under a yellow light, and shaking and stirring.
- the composition 8 was obtained by filtering with a filter having a diameter of 0.45 ⁇ m.
- the metal content in the obtained resin composition was 0.53% by weight.
- a cured film was formed on the obtained resin composition according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation, dry etching evaluation and patterning evaluation were performed.
- the composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3.
- Example 9 After mixing 14.33 g of X-5 (solid content concentration 34.7% by weight), 1.67 g of DAA, 3.60 g of PGMEA, 0.40 g of THP-17 under a yellow light, and shaking and stirring.
- the composition 9 was obtained by filtering with a filter having a diameter of 0.45 ⁇ m.
- the metal content in the obtained resin composition was 0.52% by weight.
- a cured film was formed on the obtained resin composition according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation, dry etching evaluation and patterning evaluation were performed.
- the composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3.
- the resin composition of the present invention is a composition having excellent heat resistance and dry etching properties. Further, it can be seen that Examples 3 to 9 are excellent in etching properties, and Examples 8 and 9 are particularly excellent. Further, it was found that Examples 6 to 9 were excellent in chemical resistance. Photosensitivity patterning was possible for Examples 7-9.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
The present invention provides a high refractive index resin composition that exhibits excellent heat resistance and dry etching properties by not containing a fused polycyclic aromatic compound and lowering the quantity of a metal compound that is difficult to etch. This resin composition contains: a polysiloxane (A) having a structure represented by formula (1); particles (B) of a composite oxide of titanium and one or more elements selected from the group consisting of aluminum, tin, zirconium and silicon; and a solvent (C). R1 denotes an alkyl group having 1-4 carbon atoms or an alkoxy group having 1-4 carbon atoms. n is 0 or 1, and * denotes a direct bond to a silicon atom.
Description
本発明は、樹脂組成物、硬化膜、マイクロレンズの製造方法、固体撮像素子、マイクロレンズ、タッチパネルに関する。
The present invention relates to a resin composition, a cured film, a method for manufacturing a microlens, a solid-state image sensor, a microlens, and a touch panel.
近年、デジタルカメラやカメラ付携帯電話等の急速な発展に伴って、固体撮像素子の小型化、高画素化が要求されている。固体撮像素子の小型化は、光の利用効率の減少による感度低下を招くため、光取り込み口のカラーフィルタ上にマイクロレンズを各画素上に作製することで、光を効率的に集光し、感度の低下を防いでいる。
In recent years, with the rapid development of digital cameras, camera-equipped mobile phones, etc., there is a demand for smaller size and higher pixel count of solid-state image sensors. Since the miniaturization of the solid-state image sensor causes a decrease in sensitivity due to a decrease in light utilization efficiency, a microlens is formed on each pixel on the color filter of the light intake port to efficiently collect light. It prevents the decrease in sensitivity.
マイクロレンズの一般的な作製方法としては、マイクロレンズ形成用材料を塗布し、硬化した後、上部にフォトレジストを塗布後、露光、現像して、マイクロレンズの大きさにパターン加工後、フォトレジストをマスクとして、マイクロレンズ形成用材料をドライエッチングにより、マイクロレンズ形状に加工している。
As a general method for manufacturing a microlens, a material for forming a microlens is applied, cured, a photoresist is applied on the upper part, exposed and developed, a pattern is processed to the size of the microlens, and then the photoresist is used. Is used as a mask, and the material for forming a microlens is processed into a microlens shape by dry etching.
マイクロレンズ形成用材料には、光を効率的に集光するため高い屈折率が求められ、それと同時に、高い透過率を維持しつつ、耐湿性、耐薬品性、等に優れることが要求される。このような要求を満たす樹脂として、ポリシロキサン樹脂が用いられている。
The material for forming a microlens is required to have a high refractive index in order to efficiently collect light, and at the same time, it is required to have excellent moisture resistance, chemical resistance, etc. while maintaining high transmittance. .. A polysiloxane resin is used as a resin that satisfies such a requirement.
例えば、特許文献1には、縮合多環芳香族基を有するシロキサン樹脂とアルミニウム、チタン、スズ又はジルコニウム等の複合酸化物を含有するマイクロレンズ形成用シロキサン樹脂組成物が報告されている。
For example, Patent Document 1 reports a siloxane resin composition for forming a microlens, which contains a siloxane resin having a condensed polycyclic aromatic group and a composite oxide such as aluminum, titanium, tin or zirconium.
特許文献1に記載の、縮合多環芳香族基を有するシロキサン樹脂と金属化合物粒子を含有するマイクロレンズ形成用シロキサン樹脂組成物は、アルミニウム、チタン、スズ又はジルコニウム等の複合酸化物を含有しているため、難ドライエッチング性であり、マイクロレンズ形成のプロセス適合性に課題があった。また、高温での縮合多環芳香族基の熱分解のため、耐熱性が不十分である、硬化膜の耐薬品性が不十分であるという課題があった。
The siloxane resin composition for forming a microlens containing a siloxane resin having a condensed polycyclic aromatic group and metal compound particles described in Patent Document 1 contains a composite oxide such as aluminum, titanium, tin or zirconium. Therefore, it is difficult to dry etch, and there is a problem in the process compatibility of microlens formation. Further, there are problems that the heat resistance is insufficient and the chemical resistance of the cured film is insufficient due to the thermal decomposition of the condensed polycyclic aromatic group at a high temperature.
上記課題を解決するために本発明は以下の構成からなる。
(1)樹脂(A)、アルミニウム、スズ及びジルコニウムからなる群より選択される1種類以上の元素総含有量が2重量%以上15重量%以下であるチタン複合酸化物粒子(B1)と、アルミニウム、スズ及びジルコニウムからなる群より選択される1種類以上の元素総含有量が2重量%未満であるチタン複合酸化物粒子(B2)、の2種類の粒子、及び溶媒(C)、を含有する樹脂組成物。
(2)式(1)で示される構造を有するポリシロキサン(a1)、アルミニウム、スズ、ジルコニウム及びケイ素からなる群より選択される1種類以上とチタンの複合酸化物である粒子(B)、並びに溶媒(C)、を含有する樹脂組成物。 In order to solve the above problems, the present invention has the following configurations.
(1) Titanium composite oxide particles (B1) having a total content of one or more elements selected from the group consisting of resin (A), aluminum, tin and zirconium of 2% by weight or more and 15% by weight or less, and aluminum. , Two types of particles of titanium composite oxide particles (B2) having a total content of one or more elements selected from the group consisting of tin and zirconium of less than 2% by weight, and a solvent (C). Resin composition.
(2) Particles (B) which are a composite oxide of one or more types of polysiloxane (a1) having a structure represented by the formula (1), aluminum, tin, zirconium and silicon selected from the group and titanium, and A resin composition containing the solvent (C).
(1)樹脂(A)、アルミニウム、スズ及びジルコニウムからなる群より選択される1種類以上の元素総含有量が2重量%以上15重量%以下であるチタン複合酸化物粒子(B1)と、アルミニウム、スズ及びジルコニウムからなる群より選択される1種類以上の元素総含有量が2重量%未満であるチタン複合酸化物粒子(B2)、の2種類の粒子、及び溶媒(C)、を含有する樹脂組成物。
(2)式(1)で示される構造を有するポリシロキサン(a1)、アルミニウム、スズ、ジルコニウム及びケイ素からなる群より選択される1種類以上とチタンの複合酸化物である粒子(B)、並びに溶媒(C)、を含有する樹脂組成物。 In order to solve the above problems, the present invention has the following configurations.
(1) Titanium composite oxide particles (B1) having a total content of one or more elements selected from the group consisting of resin (A), aluminum, tin and zirconium of 2% by weight or more and 15% by weight or less, and aluminum. , Two types of particles of titanium composite oxide particles (B2) having a total content of one or more elements selected from the group consisting of tin and zirconium of less than 2% by weight, and a solvent (C). Resin composition.
(2) Particles (B) which are a composite oxide of one or more types of polysiloxane (a1) having a structure represented by the formula (1), aluminum, tin, zirconium and silicon selected from the group and titanium, and A resin composition containing the solvent (C).
R1は炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示す。nは0又は1であって、*はケイ素原子に直結する結合を意味する。
R 1 represents an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms. n is 0 or 1, and * means a bond directly connected to a silicon atom.
本発明の樹脂組成物は、高耐熱性、エッチング性及び耐薬品性に優れる。
The resin composition of the present invention is excellent in high heat resistance, etching property and chemical resistance.
本発明の樹脂組成物は、樹脂(A)、アルミニウム、スズ及びジルコニウムからなる群より選択される1種類以上の元素総含有量が2重量%以上15重量%以下であるチタン複合酸化物粒子(B1)と、アルミニウム、スズ及びジルコニウムからなる群より選択される1種類以上の元素総含有量が2重量%未満であるチタン複合酸化物粒子(B2)、の2種類の粒子、及び溶媒(C)、を含有する。
The resin composition of the present invention is a titanium composite oxide particle having a total content of one or more elements selected from the group consisting of resin (A), aluminum, tin and zirconium of 2% by weight or more and 15% by weight or less. Two types of particles, B1), titanium composite oxide particles (B2) having a total content of one or more elements selected from the group consisting of aluminum, tin and zirconium of less than 2% by weight, and a solvent (C). ), Contains.
また、本発明の別の様態の樹脂組成物は、式(1)で示される構造を有するポリシロキサン(a1)、アルミニウム、スズ、ジルコニウム及びケイ素からなる群より選択される1種類以上とチタンの複合酸化物である粒子(B)、並びに溶媒(C)、を含有する。式(1)で示される構造を有するポリシロキサン(a1)は、以下、ポリシロキサン(a1)と呼ぶ場合がある。アルミニウム、スズ、ジルコニウム及びケイ素からなる群より選択される1種類以上とチタンの複合酸化物である粒子(B)は、以下、粒子(B)と呼ぶ場合がある。
Further, the resin composition of another aspect of the present invention is one or more selected from the group consisting of polysiloxane (a1) having a structure represented by the formula (1), aluminum, tin, zirconium and silicon, and titanium. It contains particles (B) which are composite oxides and a solvent (C). The polysiloxane (a1) having the structure represented by the formula (1) may be hereinafter referred to as polysiloxane (a1). Particles (B) which are a composite oxide of one or more kinds and titanium selected from the group consisting of aluminum, tin, zirconium and silicon may be hereinafter referred to as particles (B).
R1は炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示す。nは0又は1であって、*はケイ素原子に直結する結合を意味する。
R 1 represents an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms. n is 0 or 1, and * means a bond directly connected to a silicon atom.
<樹脂(A)>
本発明における樹脂(A)としては、一般的な樹脂(繰り返し単位構造を有するもの)、例えばアクリル樹脂、エポキシ樹脂、ポリエチレン、ポリイミド、ポリシロキサン等が挙げられるが、後述の粒子(B)との相溶性、形成した硬化膜の耐熱性及び耐薬品性の観点から、樹脂(A)がポリシロキサン(A1)であることが特に望ましい。さらに、その硬化膜が高屈折率かつ耐薬品性良好となるため、ポリシロキサン(A1)の波長633nmにおける屈折率が1.60以上1.80未満であることが好ましい。 <Resin (A)>
Examples of the resin (A) in the present invention include general resins (those having a repeating unit structure) such as acrylic resins, epoxy resins, polyethylenes, polyimides, and polysiloxanes, but with the particles (B) described later. It is particularly desirable that the resin (A) is polysiloxane (A1) from the viewpoint of compatibility, heat resistance of the formed cured film, and chemical resistance. Further, since the cured film has a high refractive index and good chemical resistance, the refractive index of the polysiloxane (A1) at a wavelength of 633 nm is preferably 1.60 or more and less than 1.80.
本発明における樹脂(A)としては、一般的な樹脂(繰り返し単位構造を有するもの)、例えばアクリル樹脂、エポキシ樹脂、ポリエチレン、ポリイミド、ポリシロキサン等が挙げられるが、後述の粒子(B)との相溶性、形成した硬化膜の耐熱性及び耐薬品性の観点から、樹脂(A)がポリシロキサン(A1)であることが特に望ましい。さらに、その硬化膜が高屈折率かつ耐薬品性良好となるため、ポリシロキサン(A1)の波長633nmにおける屈折率が1.60以上1.80未満であることが好ましい。 <Resin (A)>
Examples of the resin (A) in the present invention include general resins (those having a repeating unit structure) such as acrylic resins, epoxy resins, polyethylenes, polyimides, and polysiloxanes, but with the particles (B) described later. It is particularly desirable that the resin (A) is polysiloxane (A1) from the viewpoint of compatibility, heat resistance of the formed cured film, and chemical resistance. Further, since the cured film has a high refractive index and good chemical resistance, the refractive index of the polysiloxane (A1) at a wavelength of 633 nm is preferably 1.60 or more and less than 1.80.
さらに、ポリシロキサン(A1)は、式(1)で示される構造を有するポリシロキサン(a1)であることが望ましい。
Further, it is desirable that the polysiloxane (A1) is a polysiloxane (a1) having a structure represented by the formula (1).
R1は炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示す。nは0又は1であって、*はケイ素原子に直結する結合を意味する。
R 1 represents an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms. n is 0 or 1, and * means a bond directly connected to a silicon atom.
ポリシロキサン(a1)が式(1)の構造を有することで、硬化膜に高屈折率かつ高耐熱性及び良好なエッチング性を付与できる。
Since the polysiloxane (a1) has the structure of the formula (1), it is possible to impart high refractive index, high heat resistance and good etching property to the cured film.
ポリシロキサン(a1)中に含まれる全Si原子100mol%に対し、ポリシロキサン(a1)中の式(1)で示される構造のmol比率は、10~90mol%であることが好ましい。上記範囲であると、硬化膜の屈折率、耐熱性及びエッチング性をより向上させることができる。下限としては、ポリシロキサン(a1)中に含まれる全Si原子100mol%に対し、ポリシロキサン(a1)中の式(1)で示される構造のmol比率は、より好ましくは20mol%以上であり、さらに好ましくは30mol%以上である。上限としては、ポリシロキサン(a1)中に含まれる全Si原子100mol%に対し、ポリシロキサン(a1)中の式(1)で示される構造のmol比率は、より好ましくは85mol以下であり、さらに好ましくは80mol以下である。
The mol ratio of the structure represented by the formula (1) in the polysiloxane (a1) is preferably 10 to 90 mol% with respect to 100 mol% of all Si atoms contained in the polysiloxane (a1). Within the above range, the refractive index, heat resistance and etching property of the cured film can be further improved. As the lower limit, the mol ratio of the structure represented by the formula (1) in the polysiloxane (a1) is more preferably 20 mol% or more with respect to 100 mol% of all Si atoms contained in the polysiloxane (a1). More preferably, it is 30 mol% or more. As an upper limit, the mol ratio of the structure represented by the formula (1) in the polysiloxane (a1) is more preferably 85 mol or less with respect to 100 mol% of all Si atoms contained in the polysiloxane (a1), and further. It is preferably 80 mol or less.
さらに、硬化膜の耐薬品性の観点から、ポリシロキサン(A1)又はポリシロキサン(a1)は、式(2)で示される構造及び/又は式(3)で示される構造を有することが好ましい。
Further, from the viewpoint of chemical resistance of the cured film, the polysiloxane (A1) or polysiloxane (a1) preferably has a structure represented by the formula (2) and / or a structure represented by the formula (3).
R2は炭素数1~4のアルキレン基又は炭素数1~8の2価の芳香族基を示す。*はケイ素原子に直結する結合を意味する。
R 2 represents an alkylene group having 1 to 4 carbon atoms or a divalent aromatic group having 1 to 8 carbon atoms. * Means a bond that is directly linked to a silicon atom.
ポリシロキサン(A1)又はポリシロキサン(a1)中に含まれる全Si原子の100mol%に対し、ポリシロキサン(A1)又はポリシロキサン(a1)中の式(2)及び式(3)のmol比率の合計は、1~30mol%であることが好ましく、より好ましくは5~20mol%である。この範囲にあることで硬化膜の耐薬品性を向上することができる。
The mol ratio of the formulas (2) and (3) in the polysiloxane (A1) or polysiloxane (a1) to 100 mol% of all Si atoms contained in the polysiloxane (A1) or polysiloxane (a1). The total is preferably 1 to 30 mol%, more preferably 5 to 20 mol%. Within this range, the chemical resistance of the cured film can be improved.
ポリシロキサン(A1)又はポリシロキサン(a1)は、原料となるアルコキシシラン化合物を有機溶媒中で加水分解し、部分縮合する公知の方法で得られる。このとき、原料のアルコキシシランの種類を選択することによって、ポリシロキサン中に任意の置換基を導入することができる。
Polysiloxane (A1) or polysiloxane (a1) can be obtained by a known method of hydrolyzing an alkoxysilane compound as a raw material in an organic solvent and partially condensing it. At this time, an arbitrary substituent can be introduced into the polysiloxane by selecting the type of the raw material alkoxysilane.
式(1)の構造は、式(4)で示されるアルコキシシラン化合物を用いることで導入することができる。
The structure of the formula (1) can be introduced by using the alkoxysilane compound represented by the formula (4).
R1は炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示す。nは0又は1であって、R3は炭素数1~4のアルキル基である。R4は炭素数1~10の炭化水素基である。mは0又は1である。
R 1 represents an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms. n is 0 or 1, and R 3 is an alkyl group having 1 to 4 carbon atoms. R 4 is a hydrocarbon group having 1 to 10 carbon atoms. m is 0 or 1.
式(4)で示されるアルコキシシラン化合物としては、ビフェニルトリメトキシシラン、ビフェニルトリエトキシシラン、ビフェニルメチルジメトキシシラン、ビフェニルメチルジエトキシシラン、4-メチルビフェニルトリメトキシシラン、4-メチルビフェニルトリエトキシシラン、4-メトキシビフェニルトリメトキシシラン、4-メトキシビフェニルトリエトキシシラン等が挙げられる。これらのアルコキシシラン化合物は単独で使用しても、2種以上を組み合わせて使用してもよい。
Examples of the alkoxysilane compound represented by the formula (4) include biphenyltrimethoxysilane, biphenyltriethoxysilane, biphenylmethyldimethoxysilane, biphenylmethyldiethoxysilane, 4-methylbiphenyltrimethoxysilane, and 4-methylbiphenyltriethoxysilane. Examples thereof include 4-methoxybiphenyltrimethoxysilane and 4-methoxybiphenyltriethoxysilane. These alkoxysilane compounds may be used alone or in combination of two or more.
式(2)で示される構造及び/又は式(3)で示される構造は、式(5)で示されるアルコキシシラン化合物を用いることで導入することができる。
The structure represented by the formula (2) and / or the structure represented by the formula (3) can be introduced by using the alkoxysilane compound represented by the formula (5).
R2は炭素数1~4のアルキレン基又は炭素数1~8の2価の芳香族基を示す。R5は炭素数1~4のアルキル基である。R6は炭素数1~10の炭化水素基である。lは0又は1である。
R 2 represents an alkylene group having 1 to 4 carbon atoms or a divalent aromatic group having 1 to 8 carbon atoms. R 5 is an alkyl group having 1 to 4 carbon atoms. R 6 is a hydrocarbon group having 1 to 10 carbon atoms. l is 0 or 1.
式(5)で示されるアルコキシシラン化合物としては、3-トリメトキシシリルプロピルコハク酸無水物、3-トリエトキシシシリルプロピルコハク酸無水物、3-トリフェノキシシリルプロピルコハク酸無水物、3-トリメトキシシシリルプロピルフタル酸無水物、3-トリメトキシシシリルプロピルシクロヘキシルジカルボン酸無水物など、が挙げられる。これらのアルコキシシラン化合物は単独で使用しても、2種以上を組み合わせて使用してもよい。
Examples of the alkoxysilane compound represented by the formula (5) include 3-trimethoxysilylpropyl succinic anhydride, 3-triethoxysilylpropyl succinic anhydride, 3-triphenyloxysilylpropyl succinic anhydride, and 3-tri. Examples thereof include methoxycisilylpropylphthalic anhydride, 3-trimethoxycyclylpropylcyclohexyldicarboxylic anhydride, and the like. These alkoxysilane compounds may be used alone or in combination of two or more.
さらにポリシロキサン(A1)又はポリシロキサン(a1)は、上記以外のアルコキシシラン化合物を原料として含有してもよい。上記以外のアルコキシシラン化合物としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリイソプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ヘキシルトリメトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリイソプロポキシシラン、1-ナフチルトリメトキシシラン、1-ナフチルトリエトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-クロロプロピルトリメトキシシラン、3-(N,N-ジグリシジル)アミノプロピルトリメトキシシラン、3-グリシドキシシプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-メタクリルオキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、β-シアノエチルトリエトキシシラン、トリフルオロメチルトリメトキシシラン、トリフルオロメチルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、パーフルオロプロピルエチルトリメトキシシラン、パーフルオロプロピルエチルトリエトキシシラン、パーフルオロペンチルエチルトリメトキシシラン、パーフルオロペンチルエチルトリエトキシシラン、トリデカフルオロオクチルトリメトキシシラン、トリデカフルオロオクチルトリエトキシシラン、トリデカフルオロオクチルトリプロポキシシラン、トリデカフルオロオクチルトリイソプロポキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ヘプタデカフルオロデシルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、メチルフェニルジメトキシシラン、メチルビニルジメトキシシラン、メチルビニルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、γ-メタクリルオキシプロピルメチルジメトキシシラン、γ-メタクリルオキシプロピルメチルジエトキシシラン、トリフルオロプロピルメチルジメトキシシラン、トリフルオロプロピルメチルジエトキシシラン、トリフルオロプロピルエチルジメトキシシラン、トリフルオロプロピルエチルジエトキシシラン、トリフルオロプロピルビニルジメトキシシラン、トリフルオロプロピルビニルジエトキシシラン、ヘプタデカフルオロデシルメチルジメトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルメチルジエトキシシラン、シクロヘキシルメチルジメトキシシラン、オクタデシルメチルジメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン等が挙げられる。
Further, the polysiloxane (A1) or the polysiloxane (a1) may contain an alkoxysilane compound other than the above as a raw material. Examples of alkoxysilane compounds other than the above include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltriisopropoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, and hexyltrimethoxysilane. Octadecyltrimethoxysilane, octadecyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriisopropoxysilane, 1-naphthyltrimethoxysilane, 1-naphthyltriethoxysilane, 3-aminopropyltriethoxysilane, N- (2-Aminoethyl) -3-aminopropyltrimethoxysilane, 3-chloropropyltrimethoxysilane, 3- (N, N-diglycidyl) aminopropyltrimethoxysilane, 3-glycidoxysipropyltrimethoxysilane, vinyltri Methoxysilane, vinyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -Γ-Aminopropyltrimethoxysilane, β-cyanoethyltriethoxysilane, trifluoromethyltrimethoxysilane, trifluoromethyltriethoxysilane, trifluoropropyltrimethoxysilane, trifluoropropyltriethoxysilane, perfluoropropylethyltrimethoxy Silane, Perfluoropropylethyltriethoxysilane, Perfluoropentylethyltrimethoxysilane, Perfluoropentylethyltriethoxysilane, Tridecafluorooctyltrimethoxysilane, Tridecafluorooctyltriethoxysilane, Tridecafluorooctyllippropoxysilane, Tridecafluorooctyl triisopropoxysilane, heptadecafluorodecyltrimethoxysilane, heptadecafluorodecyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, methylphenyldimethoxysilane, methylvinyl Dimethoxysilane, methylvinyldiethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldiethoxysilane, N- (2) -Aminoethyl) -3-aminopropylmethyldimethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, trifluoropropylmethyldimethoxysilane, trifluoropropylmethyldiethoxysilane, trifluoropropyl Ethyldimethoxysilane, trifluoropropylethyldiethoxysilane, trifluoropropylvinyldimethoxysilane, trifluoropropylvinyldiethoxysilane, heptadecafluorodecylmethyldimethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloropropylmethyldiethoxy Examples thereof include silane, cyclohexylmethyldimethoxysilane, octadecylmethyldimethoxysilane, tetramethoxysilane, tetraethoxysilane, and tetrapropoxysilane.
前記アルコキシシラン化合物のうち、得られる硬化膜の耐薬品性の観点から、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、及びフェニルトリエトキシシランが好ましい。これらアルコキシシラン化合物は、単独で用いても、2種以上を組み合わせて用いてもよい。
Among the alkoxysilane compounds, methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, and phenyltriethoxysilane are preferable from the viewpoint of chemical resistance of the obtained cured film. These alkoxysilane compounds may be used alone or in combination of two or more.
ポリシロキサン(A1)及び/又はポリシロキサン(a1)の含有量は、硬化膜の光の透過率とクラック耐性とをより高める観点から、樹脂組成物の溶剤(C)を除く固形分全量に対して10重量%以上が好ましく、20重量%以上がより好ましい。また、ポリシロキサン(A1)及び/又はポリシロキサン(a1)の含有量は、硬化膜の光の透過率とクラック耐性とをより高める観点から、樹脂組成物の溶剤(C)を除く固形分全量に対して80重量%以下がより好ましい。
The content of the polysiloxane (A1) and / or the polysiloxane (a1) is based on the total amount of the solid content of the resin composition excluding the solvent (C) from the viewpoint of further enhancing the light transmittance and crack resistance of the cured film. 10% by weight or more is preferable, and 20% by weight or more is more preferable. The content of polysiloxane (A1) and / or polysiloxane (a1) is the total amount of solids excluding the solvent (C) of the resin composition from the viewpoint of further enhancing the light transmittance and crack resistance of the cured film. 80% by weight or less is more preferable.
次に、ポリシロキサン(A1)又はポリシロキサン(a1)の製造方法について説明する。
Next, a method for producing polysiloxane (A1) or polysiloxane (a1) will be described.
ポリシロキサン(A1)又はポリシロキサン(a1)は原料となるアルコキシシラン化合物を加水分解・縮合反応させることにより得ることができる。
Polysiloxane (A1) or polysiloxane (a1) can be obtained by hydrolyzing and condensing an alkoxysilane compound as a raw material.
加水分解反応は、溶剤中、上記したアルコキシシラン化合物に酸触媒及び水を添加してシラノール基を生じさせる。アルコキシシラン化合物に酸触媒及び水を1~180分かけて添加した後、室温~110℃で1~180分反応させることが好ましい。このような条件で加水分解反応を行うことにより、急激な反応を抑制することができる。より好ましい反応温度は40~105℃である。
In the hydrolysis reaction, an acid catalyst and water are added to the above-mentioned alkoxysilane compound in a solvent to generate a silanol group. It is preferable to add an acid catalyst and water to the alkoxysilane compound over 1 to 180 minutes, and then react at room temperature to 110 ° C. for 1 to 180 minutes. By carrying out the hydrolysis reaction under such conditions, a rapid reaction can be suppressed. A more preferable reaction temperature is 40 to 105 ° C.
また、加水分解反応の後、縮合反応を行いポリシロキサンを得る。縮合反応は反応液を50℃以上溶剤の沸点以下で1~100時間加熱し行うことが好ましい。また、縮合反応により得られるポリシロキサン化合物の重合度を上げるために、再加熱もしくは塩基触媒の添加を行うことも有効である。
Further, after the hydrolysis reaction, a condensation reaction is carried out to obtain polysiloxane. The condensation reaction is preferably carried out by heating the reaction solution at 50 ° C. or higher and below the boiling point of the solvent for 1 to 100 hours. It is also effective to reheat or add a base catalyst in order to increase the degree of polymerization of the polysiloxane compound obtained by the condensation reaction.
加水分解・縮合反応における各種条件は、反応スケール、反応容器の大きさ、形状などを考慮して、たとえば酸濃度、反応温度、反応時間などを設定することによって、目的とする用途に適した物性を得ることができる。
Various conditions in the hydrolysis / condensation reaction are suitable for the intended use by setting, for example, the acid concentration, reaction temperature, reaction time, etc. in consideration of the reaction scale, size, shape, etc. of the reaction vessel. Can be obtained.
加水分解反応に用いる酸触媒としては、塩酸、酢酸、蟻酸、硝酸、蓚酸、塩酸、硫酸、リン酸、ポリリン酸、多価カルボン酸あるいはその無水物、イオン交換樹脂などの酸触媒が挙げられる。特に蟻酸、酢酸又はリン酸を用いた酸性水溶液が好ましい。
Examples of the acid catalyst used in the hydrolysis reaction include acid catalysts such as hydrochloric acid, acetic acid, formic acid, nitrate, oxalic acid, hydrochloric acid, sulfuric acid, phosphoric acid, polyphosphoric acid, polyvalent carboxylic acid or its anhydride, and ion exchange resin. In particular, an acidic aqueous solution using formic acid, acetic acid or phosphoric acid is preferable.
これら酸触媒の好ましい含有量としては、加水分解反応前の全ポリシロキサン化合物100重量部に対して、好ましくは、0.05重量部以上、より好ましくは0.1重量部以上である。また、好ましくは10重量部以下、より好ましくは5重量部以下である。ここで、全ポリシロキサン化合物量とは、ケイ素原子を有する化合物であって、ポリシロキサンの原料であるアルコキシシラン化合物、その加水分解物及びその縮合物であるポリシロキサン全てを含んだ量のことを言う。その定義は以下同じとする。酸触媒の量を0.05重量部以上とすることでスムーズに加水分解が進行し、また10重量部以下とすることで加水分解反応の制御が容易となる。
The preferable content of these acid catalysts is preferably 0.05 parts by weight or more, more preferably 0.1 parts by weight or more, based on 100 parts by weight of the total polysiloxane compound before the hydrolysis reaction. Further, it is preferably 10 parts by weight or less, more preferably 5 parts by weight or less. Here, the total amount of the polysiloxane compound is a compound having a silicon atom and includes all of the alkoxysilane compound which is a raw material of the polysiloxane, its hydrolyzate, and the polysiloxane which is a condensate thereof. To tell. The definition is the same below. When the amount of the acid catalyst is 0.05 parts by weight or more, the hydrolysis proceeds smoothly, and when the amount is 10 parts by weight or less, the hydrolysis reaction can be easily controlled.
加水分解・縮合反応に用いる溶剤は特に限定されないが、樹脂組成物の安定性、濡れ性、揮発性などを考慮して適宜選択する。溶剤は1種類のみならず2種類以上用いることも可能である。加水分解・縮合反応に用いた溶剤をそのまま樹脂組成物の溶剤(C)として含有させてもよい。
The solvent used for the hydrolysis / condensation reaction is not particularly limited, but is appropriately selected in consideration of the stability, wettability, volatility, etc. of the resin composition. Not only one type of solvent but also two or more types can be used. The solvent used for the hydrolysis / condensation reaction may be contained as it is as the solvent (C) of the resin composition.
溶剤の具体例としては以下のものが例示される。メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、t-ブタノール、ペンタノール、4-メチル-2-ペンタノール、3-メチル-2-ブタノール、3-メチル-3-メトキシ-1-ブタノール、ジアセトンアルコールなどのアルコール類。
Specific examples of the solvent include the following. Methanol, ethanol, propanol, isopropanol, butanol, isobutanol, t-butanol, pentanol, 4-methyl-2-pentanol, 3-methyl-2-butanol, 3-methyl-3-methoxy-1-butanol, di Alcohols such as acetone alcohol.
エチレングリコール、プロピレングリコールなどのグリコール類。
エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノ-t-ブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチルエーテルなどのエーテル類。 Glycols such as ethylene glycol and propylene glycol.
Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol mono-t-butyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, Ethers such as ethylene glycol dibutyl ether and diethyl ether.
エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノ-t-ブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチルエーテルなどのエーテル類。 Glycols such as ethylene glycol and propylene glycol.
Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol mono-t-butyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, Ethers such as ethylene glycol dibutyl ether and diethyl ether.
メチルエチルケトン、アセチルアセトン、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、2-ヘプタノンなどのケトン類。
Ketones such as methyl ethyl ketone, acetylacetone, methyl propyl ketone, methyl butyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclopentanone, and 2-heptanone.
ジメチルホルムアミド、ジメチルアセトアミドなどのアミド類。
エチルアセテート、プロピルアセテート、ブチルアセテート、イソブチルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、乳酸メチル、乳酸エチル、乳酸ブチルなどのアセテート類;トルエン、キシレン、ヘキサン、シクロヘキサンなどの芳香族あるいは脂肪族炭化水素。 Amides such as dimethylformamide and dimethylacetamide.
Ethyl acetate, propyl acetate, butyl acetate, isobutyl acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, methyl lactate, ethyl lactate, butyl lactate, etc. Acetic acids; aromatic or aliphatic hydrocarbons such as toluene, xylene, hexane, cyclohexane.
エチルアセテート、プロピルアセテート、ブチルアセテート、イソブチルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、乳酸メチル、乳酸エチル、乳酸ブチルなどのアセテート類;トルエン、キシレン、ヘキサン、シクロヘキサンなどの芳香族あるいは脂肪族炭化水素。 Amides such as dimethylformamide and dimethylacetamide.
Ethyl acetate, propyl acetate, butyl acetate, isobutyl acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, methyl lactate, ethyl lactate, butyl lactate, etc. Acetic acids; aromatic or aliphatic hydrocarbons such as toluene, xylene, hexane, cyclohexane.
その他にγ-ブチロラクトン、N-メチル-2-ピロリドン、ジメチルスルホキシドなど。
In addition, γ-butyrolactone, N-methyl-2-pyrrolidone, dimethyl sulfoxide, etc.
これらのうち、硬化膜の透過率、クラック耐性等の点で、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノ-t-ブチルエーテル、γ-ブチロラクトン等が好ましく用いられる。
Of these, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, and propylene glycol mono-t are considered in terms of the permeability of the cured film and crack resistance. -Butyl ether, γ-butylollactone and the like are preferably used.
また、加水分解・縮合反応終了後に、さらに溶剤を添加することにより、樹脂組成物として適切な濃度又は粘度に調整することも好ましい。また、加水分解後に加熱及び/又は減圧下により生成したアルコール等の気化性の加水分解生成物を全量あるいは一部を留出、除去し、その後好適な溶剤を添加することもできる。
It is also preferable to adjust the concentration or viscosity of the resin composition to an appropriate level by further adding a solvent after the completion of the hydrolysis / condensation reaction. It is also possible to distill and remove all or part of vaporizable hydrolysis products such as alcohol produced by heating and / or under reduced pressure after hydrolysis, and then add a suitable solvent.
加水分解反応時に使用される溶剤の量は、全ポリシロキサン化合物100重量部に対して、好ましくは50重量部以上、より好ましくは80重量部以上であり、また、好ましくは500重量部以下、より好ましくは、200重量部以下である。溶剤の量を50重量部以上とすることでゲルの生成を抑制できる。また500重量部以下とすることで加水分解反応が速やかに進行する。
The amount of the solvent used in the hydrolysis reaction is preferably 50 parts by weight or more, more preferably 80 parts by weight or more, and preferably 500 parts by weight or less, based on 100 parts by weight of the total polysiloxane compound. Preferably, it is 200 parts by weight or less. Gel formation can be suppressed by setting the amount of the solvent to 50 parts by weight or more. Further, when the content is 500 parts by weight or less, the hydrolysis reaction proceeds rapidly.
また、加水分解反応に用いる水としては、イオン交換水が好ましい。水の量は任意に選択可能であるが、アルコキシシラン化合物1molに対して、1.0~4.0molの範囲で用いることが好ましい。
Further, as the water used for the hydrolysis reaction, ion-exchanged water is preferable. The amount of water can be arbitrarily selected, but it is preferably used in the range of 1.0 to 4.0 mol with respect to 1 mol of the alkoxysilane compound.
<粒子(B)>
本発明の樹脂組成物は、アルミニウム、スズ及びジルコニウムからなる群より選択される1種類以上の元素総含有量が2重量%以上15重量%以下であるチタン複合酸化物粒子(B1)(以下、粒子(B1)と呼ぶ場合がある)と、アルミニウム、スズ及びジルコニウムからなる群より選択される1種類以上の元素層含有量が2重量%未満であるチタン複合酸化物粒子(B2)(以下、粒子(B2)と呼ぶ場合がある)、の2種類の粒子を含有する。これら2種類の粒子を含有することにより、屈折率及びエッチング加工性の向上が可能となる。 <Particle (B)>
The resin composition of the present invention contains titanium composite oxide particles (B1) having a total content of one or more elements selected from the group consisting of aluminum, tin and zirconium of 2% by weight or more and 15% by weight or less (hereinafter, (Sometimes referred to as particles (B1)) and titanium composite oxide particles (B2) having an elemental layer content of less than 2% by weight selected from the group consisting of aluminum, tin and zirconium (hereinafter, referred to as “B1)”. It contains two types of particles (sometimes referred to as particles (B2)). By containing these two types of particles, the refractive index and etching processability can be improved.
本発明の樹脂組成物は、アルミニウム、スズ及びジルコニウムからなる群より選択される1種類以上の元素総含有量が2重量%以上15重量%以下であるチタン複合酸化物粒子(B1)(以下、粒子(B1)と呼ぶ場合がある)と、アルミニウム、スズ及びジルコニウムからなる群より選択される1種類以上の元素層含有量が2重量%未満であるチタン複合酸化物粒子(B2)(以下、粒子(B2)と呼ぶ場合がある)、の2種類の粒子を含有する。これら2種類の粒子を含有することにより、屈折率及びエッチング加工性の向上が可能となる。 <Particle (B)>
The resin composition of the present invention contains titanium composite oxide particles (B1) having a total content of one or more elements selected from the group consisting of aluminum, tin and zirconium of 2% by weight or more and 15% by weight or less (hereinafter, (Sometimes referred to as particles (B1)) and titanium composite oxide particles (B2) having an elemental layer content of less than 2% by weight selected from the group consisting of aluminum, tin and zirconium (hereinafter, referred to as “B1)”. It contains two types of particles (sometimes referred to as particles (B2)). By containing these two types of particles, the refractive index and etching processability can be improved.
元素総含有量とは、該当する粒子の全重量に対する該当する元素の含有量総量の割合(重量%)を指し、粒子(B1)又は(B2)を含有する分散剤を使用する場合は、その固形分全量を粒子の重量として、該当する元素総含有量の比率を算出するものとする。
The total element content refers to the ratio (% by weight) of the total content of the relevant element to the total weight of the relevant particle, and when a dispersant containing the particles (B1) or (B2) is used, the ratio thereof is used. The ratio of the total content of the corresponding elements shall be calculated with the total amount of solids as the weight of the particles.
粒子(B2)のアルミニウム、スズ及びジルコニウムからなる群より選択される1種類以上の元素総含有量は、エッチング性の観点から、0.5重量%未満であることが好ましく、さらに0.1重量%未満であることが、より好ましい。さらには、できるだけ少ないことが望ましく、理想的には0重量%であることがより望ましい。
The total content of one or more elements selected from the group consisting of aluminum, tin and zirconium of the particles (B2) is preferably less than 0.5% by weight, more preferably 0.1% by weight, from the viewpoint of etchability. More preferably, it is less than%. Furthermore, it is desirable that the amount is as small as possible, and ideally 0% by weight.
これら粒子(B1)と粒子(B2)の混合重量比率(B1/B2)が、0.25~4であることが好ましい。この範囲にあることでエッチング性が向上する。
The mixed weight ratio (B1 / B2) of these particles (B1) and the particles (B2) is preferably 0.25 to 4. Being in this range improves the etching property.
なお、粒子(B1)又は粒子(B2)の該当する元素の含有量は、蛍光X線分析法、ICP発光分光分析法、ICP重量分析法、原子吸光分析法により測定することができる。樹脂組成物中に含まれるアルミニウム、スズ及びジルコニウムの全量が、樹脂組成物の全量100重量%に対して、0.01重量%以上1重量%未満であることが好ましい。例えば、前述のように粒子(B1)と粒子(B2)の混合比率を調整することで、樹脂組成物中に含まれるアルミニウム、スズ及びジルコニウムの全量は調整可能である。
The content of the corresponding element of the particle (B1) or the particle (B2) can be measured by a fluorescent X-ray analysis method, an ICP emission spectroscopic analysis method, an ICP weight analysis method, or an atomic absorption spectrometry method. The total amount of aluminum, tin and zirconium contained in the resin composition is preferably 0.01% by weight or more and less than 1% by weight with respect to 100% by weight of the total amount of the resin composition. For example, by adjusting the mixing ratio of the particles (B1) and the particles (B2) as described above, the total amount of aluminum, tin, and zirconium contained in the resin composition can be adjusted.
粒子(B1)及び粒子(B2)の総含有量としては、樹脂組成物中の固形分に対して、35~70重量%であることが好ましい。上記範囲であると、高屈折率とクラック耐性と透明性を両立することができる。下限としては、粒子(B1)及び粒子(B2)の総含有量は、樹脂組成物中の固形分に対して、より好ましくは40重量%以上であり、さらに好ましくは45重量%以上である。上限としては、粒子(B1)及び粒子(B2)の総含有量は、樹脂組成物中の固形分に対して、より好ましくは65重量%以下であり、さらに好ましくは60重量%以下である。
The total content of the particles (B1) and the particles (B2) is preferably 35 to 70% by weight with respect to the solid content in the resin composition. Within the above range, high refractive index, crack resistance and transparency can be achieved at the same time. As a lower limit, the total content of the particles (B1) and the particles (B2) is more preferably 40% by weight or more, still more preferably 45% by weight or more, based on the solid content in the resin composition. As an upper limit, the total content of the particles (B1) and the particles (B2) is more preferably 65% by weight or less, still more preferably 60% by weight or less, based on the solid content in the resin composition.
また、本発明の別の様態の樹脂組成物は、アルミニウム、スズ、ジルコニウム及びケイ素からなる群より選択される1種類以上とチタンの複合酸化物である粒子(B)を含有する。前述の粒子(B1)及び粒子(B2)も、粒子(B)の一種であるとする。
Further, the resin composition of another aspect of the present invention contains particles (B) which are composite oxides of titanium and one or more selected from the group consisting of aluminum, tin, zirconium and silicon. The above-mentioned particles (B1) and particles (B2) are also assumed to be a kind of particles (B).
粒子(B)は屈折率及び安定性が高く、好適に用いられる。中でも、スズ及び/又はジルコニウムとチタンの複合酸化物である粒子は屈折率が高く、より好ましい。
Particle (B) has a high refractive index and stability, and is preferably used. Among them, particles which are a composite oxide of tin and / or zirconium and titanium have a high refractive index and are more preferable.
さらに、粒子(B)が、アルミニウム、スズ及びジルコニウムからなる群より選択される1種類以上と、チタンの複合酸化物である粒子(B3)と、ケイ素とチタンの複合酸化物である粒子(B4)、の2種類の粒子を含有することがより好ましい。前記粒子(B3)と粒子(B4)の2種類の粒子を含有することでエッチング性が向上する。アルミニウム、スズ及びジルコニウムからなる群より選択される1種類以上と、チタンの複合酸化物である粒子(B3)を、以下、粒子(B3)と呼ぶ場合がある。ケイ素とチタンの複合酸化物である粒子(B4)を、以下、粒子(B4)と呼ぶ場合がある。粒子(B3)及び粒子(B4)は、粒子(B)の一種であるとする。
Further, the particles (B) are one or more selected from the group consisting of aluminum, tin and zirconium, the particles (B3) which are composite oxides of titanium, and the particles (B4) which are composite oxides of silicon and titanium. ), It is more preferable to contain two types of particles. Etching property is improved by containing two kinds of particles, the particles (B3) and the particles (B4). One or more kinds selected from the group consisting of aluminum, tin and zirconium, and particles (B3) which are composite oxides of titanium may be hereinafter referred to as particles (B3). Particles (B4) which are composite oxides of silicon and titanium may be hereinafter referred to as particles (B4). It is assumed that the particle (B3) and the particle (B4) are a kind of the particle (B).
粒子(B)の数平均粒子径は1~200nmが好ましい。透過率の高い硬化膜を得るためには、粒子(B)の数平均粒子径は1nm~70nmであることがより好ましい。ここで、粒子(B)の数平均粒子径は、ガス吸着法や動的光散乱法、X線小角散乱法、透過型電子顕微鏡や走査型電子顕微鏡により測定することができる。
The number average particle size of the particles (B) is preferably 1 to 200 nm. In order to obtain a cured film having high transmittance, the number average particle diameter of the particles (B) is more preferably 1 nm to 70 nm. Here, the number average particle diameter of the particles (B) can be measured by a gas adsorption method, a dynamic light scattering method, a small-angle X-ray scattering method, a transmission electron microscope, or a scanning electron microscope.
粒子(B)の含有量としては、樹脂組成物中の固形分に対して、35~70重量%であることが好ましい。上記範囲であると、高屈折率とクラック耐性と透明性を両立することができる。下限としては、粒子(B)の含有量は、樹脂組成物中の固形分に対して、より好ましくは40重量%以上であり、さらに好ましくは45重量%以上である。上限としては、粒子(B)の含有量は、樹脂組成物中の固形分に対して、より好ましくは65重量%以下であり、さらに好ましくは60重量%以下である。また、粒子(B3)及び粒子(B4)の総含有量としては、樹脂組成物中の固形分に対して、35~70重量%であることが好ましい。下限としては、粒子(B3)及び粒子(B4)の総含有量は、樹脂組成物中の固形分に対して、より好ましくは40重量%以上であり、さらに好ましくは45重量%以上である。上限としては、粒子(B3)及び粒子(B4)の総含有量は、樹脂組成物中の固形分に対して、より好ましくは65重量%以下であり、さらに好ましくは60重量%以下である。
The content of the particles (B) is preferably 35 to 70% by weight with respect to the solid content in the resin composition. Within the above range, high refractive index, crack resistance and transparency can be achieved at the same time. As a lower limit, the content of the particles (B) is more preferably 40% by weight or more, still more preferably 45% by weight or more, based on the solid content in the resin composition. As an upper limit, the content of the particles (B) is more preferably 65% by weight or less, still more preferably 60% by weight or less, based on the solid content in the resin composition. The total content of the particles (B3) and the particles (B4) is preferably 35 to 70% by weight with respect to the solid content in the resin composition. As a lower limit, the total content of the particles (B3) and the particles (B4) is more preferably 40% by weight or more, still more preferably 45% by weight or more, based on the solid content in the resin composition. As an upper limit, the total content of the particles (B3) and the particles (B4) is more preferably 65% by weight or less, still more preferably 60% by weight or less, based on the solid content in the resin composition.
複合酸化物中のアルミニウム、スズ、ジルコニウム及びケイ素の含有量については特に制限はないが、樹脂組成物中に含まれるアルミニウム、スズ及びジルコニウムの全量は、樹脂組成物の全量100重量%に対して、0.01重量%以上1重量%未満であることが好ましい。この範囲にあることでエッチング性が向上しよりレンズ形成がしやすくなる。
The content of aluminum, tin, zirconium and silicon in the composite oxide is not particularly limited, but the total amount of aluminum, tin and zirconium contained in the resin composition is 100% by weight based on the total amount of the resin composition. , 0.01% by weight or more and less than 1% by weight. Within this range, the etching property is improved and it becomes easier to form a lens.
酸化チタンには、アナタース型酸化チタンとルチル型酸化チタンのように、結晶構造の異なるものが存在するが、粒子(B)の結晶構造に特に制限はなく、用途によって適当な構造の粒子(B)を用いることができる。
Titanium oxide includes those having different crystal structures, such as anatase-type titanium oxide and rutile-type titanium oxide, but the crystal structure of the particles (B) is not particularly limited, and particles (B) having an appropriate structure depending on the application are not particularly limited. ) Can be used.
また、粒子(B)はポリマーや分散剤などで表面が被覆されていてもよい。表面が被覆された粒子(B)は分散状態が安定化し、樹脂組成物中の粒子(B)の含有量を増やしても凝集や析出が抑制できる傾向にある。
Further, the surface of the particles (B) may be coated with a polymer, a dispersant, or the like. The dispersed state of the surface-coated particles (B) is stabilized, and aggregation and precipitation tend to be suppressed even if the content of the particles (B) in the resin composition is increased.
粒子(B)の表面を被覆するポリマーや分散剤に特に制限はない。一方、樹脂組成物中のポリシロキサン(A1)は粒子(B)の分散安定化にも寄与する。ポリシロキサン(A1)と粒子(B)は相互作用しやすく、単に混合することで分散安定性を向上させることができる。
There are no particular restrictions on the polymer or dispersant that coats the surface of the particles (B). On the other hand, the polysiloxane (A1) in the resin composition also contributes to the dispersion stabilization of the particles (B). The polysiloxane (A1) and the particles (B) easily interact with each other, and the dispersion stability can be improved by simply mixing them.
ポリシロキサン(A1)を重合する際、原料であるアルコキシシラン化合物の加水分解・縮合反応の過程で粒子(B)を混合することで、ポリシロキサン(A1)と、粒子(B)とが結合したポリシロキサンと粒子の複合体(E)を形成することができる。同様に、ポリシロキサン(A1)を重合する際、原料であるアルコキシシラン化合物の加水分解・縮合反応の過程で粒子(B1)又は粒子(B2)を混合することで、ポリシロキサン(A1)と、粒子(B1)又は粒子(B2)とが結合したポリシロキサンと粒子の複合体(E)を形成することができる。本発明の樹脂組成物は、ポリシロキサン(A1)と、粒子(B1)又は粒子(B2)とが結合しているポリシロキサンと粒子の複合体(E)を含有することが好ましい。
When the polysiloxane (A1) is polymerized, the polysiloxane (A1) and the particles (B) are bonded by mixing the particles (B) in the process of hydrolysis / condensation reaction of the alkoxysilane compound as a raw material. A complex (E) of polysiloxane and particles can be formed. Similarly, when polymerizing polysiloxane (A1), particles (B1) or particles (B2) are mixed in the process of hydrolysis / condensation reaction of the alkoxysilane compound as a raw material to obtain polysiloxane (A1). A composite (E) of a polysiloxane and a particle in which the particle (B1) or the particle (B2) is bonded can be formed. The resin composition of the present invention preferably contains a polysiloxane (A1) and a composite (E) of the polysiloxane and the particles in which the particles (B1) or the particles (B2) are bonded.
式(1)で示される構造を有するポリシロキサン(a1)についても、同様にポリシロキサン(a1)と粒子(B)とが結合しているポリシロキサンと粒子の複合体(E1)を形成することが好ましい。本発明の樹脂組成物は、ポリシロキサン(a1)と、粒子(B)とが結合しているポリシロキサンと粒子の複合体(E1)を含有することが好ましい。
Similarly, for the polysiloxane (a1) having the structure represented by the formula (1), a complex (E1) of the polysiloxane and the particles in which the polysiloxane (a1) and the particles (B) are bonded is formed. Is preferable. The resin composition of the present invention preferably contains a polysiloxane (a1) and a complex (E1) of the polysiloxane and the particles to which the particles (B) are bonded.
本発明の樹脂組成物中に、複合体(E)、又は、(E1)を含有させることにより、粒子(B1)又は粒子(B2)、又は、粒子(B)の分散安定性をより向上させることができる。
By containing the complex (E) or (E1) in the resin composition of the present invention, the dispersion stability of the particles (B1) or the particles (B2) or the particles (B) is further improved. be able to.
市販されている粒子(B)の例としては、酸化ケイ素-酸化チタン複合粒子の“オプトレイク(登録商標)”TR-502、“オプトレイク”TR-503、“オプトレイク”TR-504、“オプトレイク”TR-513、“オプトレイク”TR-520、“オプトレイク”TR-527、“オプトレイク”TR-528、“オプトレイク”TR-529、酸化ジルコニウム-酸化スズ-酸化ケイ素-酸化チタン複合粒子の“オプトレイク”TR-550、酸化チタン粒子の“オプトレイク”TR-505(以上、商品名、触媒化成工業(株)製)、酸化ジルコニウム粒子((株)高純度化学研究所製)、酸化スズ-酸化ジルコニウム複合粒子(触媒化成工業(株)製)、などが挙げられる。
Examples of commercially available particles (B) are "Optrake®" TR-502, "Optrake" TR-503, "Optrake" TR-504, "Optrake®" TR-502, "Optrake" TR-504, "Optrake®" TR-502, "Optrake" TR-504, which are silicon oxide-titanium oxide composite particles. Optrake "TR-513", "Optrake" TR-520, "Optrake" TR-527, "Optrake" TR-528, "Optrake" TR-529, Zirconium oxide-tin oxide-silicon oxide-titanium oxide Composite particle "Optrake" TR-550, titanium oxide particle "Optrake" TR-505 (trade name, manufactured by Catalysis Chemical Industry Co., Ltd.), zirconium oxide particle (manufactured by High Purity Chemical Laboratory Co., Ltd.) ), Tin oxide-zinc oxide composite particles (manufactured by Catalysis Chemical Industry Co., Ltd.), and the like.
粒子(B1)の例としては、前述の“オプトレイク”TR-550(商品名、触媒化成工業(株)製)、酸化ジルコニウム粒子((株)高純度化学研究所製)、酸化スズ-酸化ジルコニウム複合粒子(触媒化成工業(株)製)、などが挙げられる。
Examples of particles (B1) include the above-mentioned "Optrake" TR-550 (trade name, manufactured by Catalysis Chemical Industry Co., Ltd.), zirconium oxide particles (manufactured by High Purity Chemical Laboratory Co., Ltd.), tin oxide-oxidation. Zirconium composite particles (manufactured by Catalysis Chemical Industry Co., Ltd.), etc. can be mentioned.
また、粒子(B2)の例としては、前述の“オプトレイク(登録商標)”TR-502、“オプトレイク”TR-503、“オプトレイク”TR-504、“オプトレイク”TR-513、“オプトレイク”TR-520、“オプトレイク”TR-527、“オプトレイク”TR-528、“オプトレイク”TR-529、“オプトレイク”TR-505(以上、商品名、触媒化成工業(株)製)、などが挙げられる。
Further, as an example of the particle (B2), the above-mentioned "Optrake (registered trademark)" TR-502, "Optrake" TR-503, "Optrake" TR-504, "Optrake" TR-513, " "Optrake" TR-520, "Optrake" TR-527, "Optrake" TR-528, "Optrake" TR-529, "Optrake" TR-505 (above, trade name, Catalytic Chemical Industry Co., Ltd.) Made), etc.
粒子(B3)の例としては、前述の“オプトレイク”TR-550(商品名、触媒化成工業(株)製)、酸化ジルコニウム粒子((株)高純度化学研究所製)、酸化スズ-酸化ジルコニウム複合粒子(触媒化成工業(株)製)、などが挙げられ、粒子(B4)の例としては、前述の“オプトレイク(登録商標)”TR-502、“オプトレイク”TR-503、“オプトレイク”TR-504、“オプトレイク”TR-513、“オプトレイク”TR-520、“オプトレイク”TR-527、“オプトレイク”TR-528、“オプトレイク”TR-529、“オプトレイク”TR-505(以上、商品名、触媒化成工業(株)製)、などが挙げられる。
Examples of particles (B3) include the above-mentioned "Optrake" TR-550 (trade name, manufactured by Catalysis Chemical Industry Co., Ltd.), zirconium oxide particles (manufactured by High Purity Chemical Laboratory Co., Ltd.), tin oxide-oxidation. Zirconium composite particles (manufactured by Catalysis Chemical Industry Co., Ltd.), etc. are mentioned, and examples of the particles (B4) include the above-mentioned "Optrake (registered trademark)" TR-502, "Optrake" TR-503, ". "Optrake" TR-504, "Optrake" TR-513, "Optrake" TR-520, "Optrake" TR-527, "Optrake" TR-528, "Optrake" TR-529, "Optrake" "TR-505 (above, trade name, manufactured by Catalysis Chemical Industry Co., Ltd.), etc. can be mentioned.
<キノンジアジド化合物(D)>
本発明の樹脂組成物にポジ型感光性を付与するため、さらにキノンジアジド化合物(D)を含有することが好ましい。キノンジアジド化合物を含有することにより、露光部のテトラメチルアンモニウムヒドロキシド水溶液に対する溶解性を向上させることにより、ポジのレリーフパターンを得ることができる。 <Chinone diazide compound (D)>
In order to impart positive photosensitivity to the resin composition of the present invention, it is preferable to further contain the quinone diazide compound (D). By containing the quinonediazide compound, a positive relief pattern can be obtained by improving the solubility of the exposed portion in the aqueous solution of tetramethylammonium hydroxide.
本発明の樹脂組成物にポジ型感光性を付与するため、さらにキノンジアジド化合物(D)を含有することが好ましい。キノンジアジド化合物を含有することにより、露光部のテトラメチルアンモニウムヒドロキシド水溶液に対する溶解性を向上させることにより、ポジのレリーフパターンを得ることができる。 <Chinone diazide compound (D)>
In order to impart positive photosensitivity to the resin composition of the present invention, it is preferable to further contain the quinone diazide compound (D). By containing the quinonediazide compound, a positive relief pattern can be obtained by improving the solubility of the exposed portion in the aqueous solution of tetramethylammonium hydroxide.
キノンジアジド化合物(D)としては、式(6)のいずれかで示される化合物が好ましい。フェノール性水酸基を有する化合物にナフトキノンジアジドのスルホン酸がエステルで結合した化合物である。
As the quinone diazide compound (D), the compound represented by any of the formula (6) is preferable. It is a compound in which a sulfonic acid of naphthoquinonediazide is ester-bonded to a compound having a phenolic hydroxyl group.
R7はフェノール性水酸基を有する化合物のエステル化後の残基を示す。
R 7 indicates the residue after esterification of the compound having a phenolic hydroxyl group.
ここで用いられるフェノール性水酸基を有する化合物としては、例えば、4,4‘-Cyclohexylidenobis phenol、4,4’-Cyclohexylidenebis[2-methylphenol]、5,5‘-(1,1’-Cyclohexylidene)bis-[1,1‘-(biphenyl)-2-ol]、4,4’-Cyclopentylidenebis phenol、4,4‘-Cyclohexylidenebis[2,6-dimethyl phenol]、4,4’-Cyclohexylidenebis[2-(1,1-dimethylethyl)phenol]、4,4‘-Cyclohexylidenebis[2-cyclohexyl phenol]、4,4’-Cyclopentylidenebis[2-methylphenol]、4,4’-(4-Methylcyclohexylidene)bis phenol4,4’-Cyclopentylidenebis[2,6-dimethylphenol]、4,4‘-[4-(1-Methylethyl)cyclohexylidene]bisphenol、4,4’-[4-(1-methylethyl)cyclohexylidene]bis[2-methylphenol]、4,4‘-[4-(1-Methylethyl)cycrohexylidene]bis[2-cycrohexyl phenol]、4,4‘-Cyclopentylidenebis[2-(1-methylethyl phenol)、4,4’-[4-(1-Methylethyl)cyclohexylidene」bis[2,6-dimethyl phenol]、4,4‘-Cyclopentylidenebis [2-(1,1-dimethylethyl)phenol]、4,4,4’、4‘Tetrakis[(1-methylethylidene)bis(1,4-cyclohexylidene)]phenol)、4,4’、4‘’-Ethylidenetris phenol、4,4‘-[1-[4-[1-(4-Hydroxyphenyl)-1-methylethyl]phenyl]ethylidene]bisphenol、Cyclohexylidenebis[2-fluoro phenol]、4,6-Bis[(4-hydroxyphenyl)methyl]-1,3-benzenediol、4,6-Bis[(3,5-dimethyl-4-hydroxyphenyl)methyl]-1,2,3-benzenetriol、2,4,6-Tris(4-hydroxyphenylmethyl)-1,3-benzenediol、2,4-Bis[(3-methyl-4-hydroxyphenyl)methyl]-6-cyclohexylphenol、2,4-Bis[(5-methyl-2-hydoxyphenyl)methyl]-6-cyclohexylphenol、2,4-Bis[(2,5-dimethyl-4-hydroxyphenyl)methyl]-6-cyclohexyl phenol、2,4-Bis[(3,5-dimethyl-4-hydroxyphenyl)methyl]-6-cyclohexyl phenol、2,4-Bis[(4-hydroxy-3-cyclohexylphenyl)methyl]-6-methylphenol、2,4-Bis[(2,3,6-trimethyl-4-hydroxyphenyl)methyl]-6-cycrohexyl phenol、4,6-Bis[3,5-dimethyl-4-hydroxyphenyl]methyl]-1,3-benzenediol、2,4-Bis[(2,4-dihydroxyphenyl)methyl]-6-cyclohexyl phenol、4-[1-(4-Hydroxyphenyl)-1-phenylethyl]-1,2-benzenediol、BIR-OC、BIP-PC、2,6-Bis(2,4-dihydroxybenzyl)-4-methylphenol、BIR-PTBP、BIR-PCHP、BIP-BIOC-F、4PC、BIR-BIPC-F、TEP-BIP-A(以上、商品名、旭有機材工業(株)製)、4,4’-スルホニルジフェノール(和光純薬(株)社製)、9,9-Bis(4-hydroxyphenyl)fluorene(商品名、JFEケミカル(株)製)などが挙げられる。
Examples of the compound having a phenolic hydroxyl group used here include 4,4'-Cyclohexylidenobis phenol, 4,4'-Cyclohexylidenebis [2-methylphenol], 5,5'-(1,1'-Cyclohexylidene) bis-. [1,1'-(biphenyl) -2-ol], 4,4'-Cyclopendylidephenol, 4,4'-Cyclohexylphenol [2,6-dimethylphenol], 4,4'-Cyclohexylridebis [2- (1,1,) 1-dimethylphenol], 4,4'-Cyclohexylphenol [2-cyclohexylphenol], 4,4'-Cyclopentylphenol [2-methylphenol], 4,4'-(4-Methylcylide4 2,6-dimethylphenol], 4,4'-[4- (1-Methylphenol) cyclohexylphenol] bisphenol, 4,4'-[4- (1-methylphenol) cyclohexylphenol] bis [2-methylphenol], 4,4' -[4- (1-Methylly) cyclohexylphenol] bis [2-cyclohexylphenol], 4,4'-Cyclopentylylenebis [2- (1-methyltyl) phenol), 4,4'-[4- (1-Methylly") bis [2,6-dimethylphenol], 4,4'-Cyclopentylidenebis [2- (1,1-dimethyl) phenol], 4,4,4', 4'Tetracis [(1-methylylide) bis (1,4) -Cyclohexylidene)] phenol), 4,4', 4''-Ethylidenetris phenol, 4,4'-[1- [4- [4- [4-Hydroxyphenyl) -1-methylyl] phenol] ethylylene] phenol, Cyclohy [2-fl uoro phenol], 4,6-Bis [(4-hydroxyphenyl) methyl] -1,3-benzenediol, 4,6-Bis [(3,5-dimethyl-4-hydroxyphenyl) methyl] -1,2,3- phenol, 2,4,6-Tris (4-hydroxyphenylphenol) -1,3-benzenediol, 2,4-Bis [(3-methyl-4-hydroxyphenyl) methyl] -6-cyclohexylphenol, 2,4-Bis [( 5-methyl-2-hydoxyphenyl) methyl] -6-cyclohexylphenol, 2,4-Bis [(2,5-dimethyl-4-hydroxyphenyl) methyl] -6-cyclohexylphenol, 2,4-Bis [(3,5) -Dimethyl-4-hydroxyphenol] methyl] -6-cyclohexylphenol, 2,4-Bis [(4-hydroxy-3-cyclohexylphenyl) methyl] -6-methylphenol, 2,4-Bis [(2,3,6-) Trimethyl-4-hydroxyphenyl) methyl] -6-cycrohexyl phenol, 4,6-Bis [3,5-dimethyl-4-hydroxyphenyl] methyl] -1,3-benzenediol, 2,4-Biz [(2,4-2,4-) dihydroxyphenyl) methyl] -6-cyclohexyl phenol, 4- [1- (4-Hydroxyphenyl) -1-phenyl] -1,2-benzenedol, BIR-OC, BIP-PC, 2,6-Bis (2,4-Bis) dihydroxybenzal) -4-methylphenol, BIR-PTBP, BIR-PCHP, BIP-BIOC-F, 4PC, BIR-BIPC-F, TEP-BIP-A (trade name, manufactured by Asahi Organic Materials Industry Co., Ltd.), Examples thereof include 4,4'-sulfonyldiphenol (manufactured by Wako Pure Chemical Industries, Ltd.) and 9,9-Biz (4-hydroxyphenyl) fluorolene (trade name, manufactured by JFE Chemical Co., Ltd.).
これらのうち、好ましいフェノール性水酸基を有する化合物としては以下のものがあげられる。
Among these, the following are examples of compounds having a preferable phenolic hydroxyl group.
4,4‘-Cyclohexylidenobis phenol、4,4,4’,4‘Tetrakis[(1-methylethylidene)bis(1,4-cyclohexylidene)]phenol、4,4’、4‘’-Ethylidenetris phenol、4,4‘-[1-[4-[1-(4-Hydroxyphenyl)-1-methylethyl]phenyl]ethylidene]bisphenol、4,4‘-Cyclohexylidenebis[2-cyclohexyl phenol]、4,4’-(4-Methylcyclohexylidene)bis phenol、4,4‘-[4-(1-Methylethyl)cyclohexylidene]bis phenol、4,4‘-[4-(1-Methylethyl)cycrohexylidene]bis[2-cycrohexyl phenol]、4,4’-Cyclopentylidenebis phenol、4,6-Bis[(4-hydroxyphenyl)methyl]-1,3-benzenediol、2,4,6-Tris(4-hydroxyphenylmethyl)-1,3-benzenediol、2,4-Bis[(5-methyl-2-hydoxyphenyl)methyl]-6-cyclohexylphenol、4,6-Bis[3,5-dimethyl-4-hydroxyphenyl]methyl]-1,3-benzenediol、4-[1-(4-Hydroxyphenyl)-1-phenylethyl]-1,2-benzenediol、BIP-PC、2,6-Bis(2,4-dihydroxybenzyl)-4-methylphenol、BIR-PTBP、BIR-BIPC-F、9,9-Bis(4-hydroxyphenyl)fluorene。
4,4'-Cyclohexylidobis phenol, 4,4,4', 4'Tetracis [(1-methylthylide) bis (1,4-cyclohexylidene)] phenol, 4,4', 4''-Ethylidenellis phenol, 4,4 '-[1- [4- [1- (4-Hydroxyphenyl) -1-methylly] phenyl] ethylide] bisphenol, 4,4'-Cyclohexylphenol [2-cyclohexylphenol], 4,4'-(4-Methyllic) bis phenol, 4,4'-[4- (1-Methyrethyl) cyclohexylphenol] bis phenol, 4,4'-[4- (1-Methyl thyll) cyclohexylphenol] bis [2-cyclohexylphenol], 4,4'-C phenol, 4,6-Bis [(4-hydroxyphenyl) methyl] -1,3-benzenediol, 2,4,6-Tris (4-hydroxyphenylmethyl) -1,3-benzenediol, 2,4-Bis [(5-5-bisphenol)] methyl-2-hydroxyphenyl) methyl] -6-cyclohexylphenol, 4,6-Bis [3,5-dimethyl-4-hydroxyphenyl] methyl] -1,3-benzenediol, 4- [1- (4-Hydroxyphenol) -Phenylphenol] -1,2-phenendiol, BIP-PC, 2,6-Bis (2,4-dihydroxybenzyl) -4-methylphenol, BIR-PTBP, BIR-BIPC-F, 9,9-Biz (4-hydroxyphenyl) ) Phenol.
これらのうち、特に好ましいフェノール性水酸基を有する化合物としては、たとえば、4,4‘-Cyclohexylidenobis phenol、4,4,4’、4‘Tetrakis[(1-methylethylidene)bis(1,4-cyclohexylidene)]phenol、4,4’、4‘’-Ethylidenetris phenol、4,4‘-[1-[4-[1-(4-Hydroxyphenyl)-1-methylethyl]phenyl]ethylidene]bisphenol、4,6-Bis[(4-hydroxyphenyl)methyl]-1,3-benzenediol、2,4,6-Tris(4-hydroxyphenylmethyl)-1,3-benzenediol、4-[1-(4-Hydroxyphenyl)-1-phenylethyl]-1,2-benzenediol、2,6-Bis(2,4-dihydroxybenzyl)-4-methylphenol、BIR-PTBP、BIR-BIPC-F、4,4’-スルホニルジフェノール、9,9-Bis(4-hydroxyphenyl)fluoreneなどが挙げられる。
Among these, compounds having a particularly preferable phenolic hydroxyl group include, for example, 4,4'-Cyclohexylidobis phenol, 4,4,4', 4'Tetracis [(1-methylthylide) bis (1,4-cyclohexylide)]. phenol, 4,4', 4''-Ethylidephenol, 4,4'-[1- [4- [1- (4-Hydroxyphenyl) -1-methylly] phenyl] etheridene] phenol, 4,6-Bis [ (4-Hydroxyphenyl) methyl] -1,3-benzenediol, 2,4,6-Tris (4-hydroxyphenylmethyl) -1,3-benzenedil, 4- [1- (4-Hydroxyphenyl) -1-phenyl] -1 , 2-benzenediol, 2,6-Bis (2,4-dihydroxybenzyl) -4-methylphenol, BIR-PTBP, BIR-BIPC-F, 4,4'-sulfonyldiphenol, 9,9-Biz (4-hydroxyphenyl) ) Phenol and the like.
上で説明したフェノール性水酸基を有する化合物に4-ナフトキノンジアジドスルホン酸又は5-ナフトキノンジアジドスルホン酸をエステル結合で導入したものが好ましいものとして例示することができる。これ以外の化合物を使用することもできる。
A compound obtained by introducing 4-naphthoquinonediazide sulfonic acid or 5-naphthoquinone diazidosulfonic acid into the compound having a phenolic hydroxyl group described above by an ester bond can be exemplified as a preferable compound. Other compounds can also be used.
キノンジアジド化合物(D)の含有量は、樹脂(A)及び/又はポリシロキサン(A1)に対して、1~50重量部、より好ましくは2~10重量部である。また、キノンジアジド化合物(D)の含有量は、ポリシロキサン(a1)に対して、1~50重量部であることが好ましく、2~10重量部であることがより好ましい。1重量部以上とすることで、実用的な感度でパターン形成を行うことができる。また、50重量部以下とすることで、透過率やパターン解像性に優れた樹脂組成物が得られる。
The content of the quinone diazide compound (D) is 1 to 50 parts by weight, more preferably 2 to 10 parts by weight, based on the resin (A) and / or the polysiloxane (A1). The content of the quinone diazide compound (D) is preferably 1 to 50 parts by weight, more preferably 2 to 10 parts by weight, based on the polysiloxane (a1). By setting the amount to 1 part by weight or more, pattern formation can be performed with practical sensitivity. Further, when the content is 50 parts by weight or less, a resin composition having excellent transmittance and pattern resolution can be obtained.
キノンジアジド化合物(D)の好ましい分子量は300以上、より好ましくは350以上である。また1000以下、より好ましくは800以下である。分子量を300以上とすることで、未露光部の溶解抑止効果が得られる。また分子量を1000以下とすることで、露光後、現像し、感光性樹脂組成物を除去した部分においてスカムがないレリーフパターンが得られる。
The preferable molecular weight of the quinonediazide compound (D) is 300 or more, more preferably 350 or more. Further, it is 1000 or less, more preferably 800 or less. By setting the molecular weight to 300 or more, the effect of suppressing dissolution of the unexposed portion can be obtained. Further, by setting the molecular weight to 1000 or less, a relief pattern without scum can be obtained in a portion developed after exposure and from which the photosensitive resin composition has been removed.
キノンジアジド化合物(D)を添加しているので、未露光部の塗膜の中にはナフトキノンジアジド基が残留し、それが原因で加熱硬化後に膜の着色が生じることがある。透明な硬化膜を得るためには、現像後の膜の全面に紫外線を照射して、ナフトキノンジアジド化合物を分解し、その後に加熱硬化を行うことが好ましい。
Since the quinone diazide compound (D) is added, naphthoquinone diazide groups remain in the coating film in the unexposed area, which may cause coloration of the film after heat curing. In order to obtain a transparent cured film, it is preferable to irradiate the entire surface of the developed film with ultraviolet rays to decompose the naphthoquinone diazide compound, and then perform heat curing.
<溶剤(C)>
本発明の樹脂組成物は溶剤(C)を含む。溶剤(C)としては、以下のものがあげられる。 <Solvent (C)>
The resin composition of the present invention contains a solvent (C). Examples of the solvent (C) include the following.
本発明の樹脂組成物は溶剤(C)を含む。溶剤(C)としては、以下のものがあげられる。 <Solvent (C)>
The resin composition of the present invention contains a solvent (C). Examples of the solvent (C) include the following.
エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノ-t-ブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル等のエーテル系化合物。
エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピルアセテート、ブチルアセテート、イソブチルアセテート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート等のアセテート系化合物。
乳酸メチル、乳酸エチル、乳酸ブチル等の乳酸エスエル。アセチルアセトン、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、シクロペンタノン、2-ヘプタノン、メシチルオキシド等のケトン化合物。メタノール、エタノール、プロパノール、ブタノール、イソブチルアルコール、ペンタノール、4-メチル-2-ペンタノール、3-メチル-2-ブタノール、3-メチル-3-メトキシ-1-ブタノール、ジアセトンアルコール等のアルコール系化合物。トルエン、キシレン等の芳香族炭化水素系化合物。そのほかγ-ブチロラクトン、N-メチルピロリジノン等。これらは単独あるいは2種以上含有しても構わない。 Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol mono-t-butyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, Ether-based compounds such as ethylene glycol dibutyl ether.
Ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, propyl acetate, butyl acetate, isobutyl acetate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate and other acetate compounds.
Lactate SL such as methyl lactate, ethyl lactate, and butyl lactate. Ketone compounds such as acetylacetone, methylpropylketone, methylbutylketone, methylisobutylketone, cyclopentanone, 2-heptanone, and mesityl oxide. Alcohols such as methanol, ethanol, propanol, butanol, isobutyl alcohol, pentanol, 4-methyl-2-pentanol, 3-methyl-2-butanol, 3-methyl-3-methoxy-1-butanol, diacetone alcohol, etc. Compound. Aromatic hydrocarbon compounds such as toluene and xylene. In addition, γ-butyrolactone, N-methylpyrrolidinone, etc. These may be contained alone or in two or more kinds.
エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピルアセテート、ブチルアセテート、イソブチルアセテート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート等のアセテート系化合物。
乳酸メチル、乳酸エチル、乳酸ブチル等の乳酸エスエル。アセチルアセトン、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、シクロペンタノン、2-ヘプタノン、メシチルオキシド等のケトン化合物。メタノール、エタノール、プロパノール、ブタノール、イソブチルアルコール、ペンタノール、4-メチル-2-ペンタノール、3-メチル-2-ブタノール、3-メチル-3-メトキシ-1-ブタノール、ジアセトンアルコール等のアルコール系化合物。トルエン、キシレン等の芳香族炭化水素系化合物。そのほかγ-ブチロラクトン、N-メチルピロリジノン等。これらは単独あるいは2種以上含有しても構わない。 Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol mono-t-butyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, Ether-based compounds such as ethylene glycol dibutyl ether.
Ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, propyl acetate, butyl acetate, isobutyl acetate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate and other acetate compounds.
Lactate SL such as methyl lactate, ethyl lactate, and butyl lactate. Ketone compounds such as acetylacetone, methylpropylketone, methylbutylketone, methylisobutylketone, cyclopentanone, 2-heptanone, and mesityl oxide. Alcohols such as methanol, ethanol, propanol, butanol, isobutyl alcohol, pentanol, 4-methyl-2-pentanol, 3-methyl-2-butanol, 3-methyl-3-methoxy-1-butanol, diacetone alcohol, etc. Compound. Aromatic hydrocarbon compounds such as toluene and xylene. In addition, γ-butyrolactone, N-methylpyrrolidinone, etc. These may be contained alone or in two or more kinds.
これらのうち、特に好ましい溶剤の例は、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノ-t-ブチルエーテル、ジアセトンアルコール、γ-ブチロラクトンである。これらは単独あるいは2種以上含有してもかまわない。
Among these, examples of particularly preferable solvents are propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol mono-t-butyl ether, and diacetone alcohol. , Gamma-butylollactone. These may be contained alone or in two or more kinds.
樹脂組成物における溶剤(C)の含有量は、全ポリシロキサン化合物100重量部に対して、100重量部~9900重量部の範囲が好ましく、より好ましくは、100重量部~5000重量部の範囲である。
The content of the solvent (C) in the resin composition is preferably in the range of 100 parts by weight to 9900 parts by weight, more preferably in the range of 100 parts by weight to 5000 parts by weight, based on 100 parts by weight of the total polysiloxane compound. be.
<その他の成分>
本発明の樹脂組成物は、塗布時におけるフロー性や膜厚の均一性向上のために、各種界面活性剤を含有してもよい。界面活性剤の種類に特に制限はなく、例えば、フッ素系界面活性剤、シリコーン系界面活性剤、ポリアルキレンオキシド系界面活性剤、ポリ(メタ)アクリレート系界面活性剤などを用いることができる。これらのうち、フロー性や膜厚均一性の観点から、フッ素系界面活性剤が特に好ましく用いられる。 <Other ingredients>
The resin composition of the present invention may contain various surfactants in order to improve the flowability and the uniformity of the film thickness at the time of coating. The type of surfactant is not particularly limited, and for example, a fluorine-based surfactant, a silicone-based surfactant, a polyalkylene oxide-based surfactant, a poly (meth) acrylate-based surfactant, or the like can be used. Of these, a fluorine-based surfactant is particularly preferably used from the viewpoint of flowability and film thickness uniformity.
本発明の樹脂組成物は、塗布時におけるフロー性や膜厚の均一性向上のために、各種界面活性剤を含有してもよい。界面活性剤の種類に特に制限はなく、例えば、フッ素系界面活性剤、シリコーン系界面活性剤、ポリアルキレンオキシド系界面活性剤、ポリ(メタ)アクリレート系界面活性剤などを用いることができる。これらのうち、フロー性や膜厚均一性の観点から、フッ素系界面活性剤が特に好ましく用いられる。 <Other ingredients>
The resin composition of the present invention may contain various surfactants in order to improve the flowability and the uniformity of the film thickness at the time of coating. The type of surfactant is not particularly limited, and for example, a fluorine-based surfactant, a silicone-based surfactant, a polyalkylene oxide-based surfactant, a poly (meth) acrylate-based surfactant, or the like can be used. Of these, a fluorine-based surfactant is particularly preferably used from the viewpoint of flowability and film thickness uniformity.
フッ素系界面活性剤の具体的な例としては、1,1,2,2-テトラフロロオクチル(1,1,2,2-テトラフロロプロピル)エーテル、1,1,2,2-テトラフロロオクチルヘキシルエーテル、オクタエチレングリコールジ(1,1,2,2-テトラフロロブチル)エーテル、ヘキサエチレングリコール(1,1,2,2,3,3-ヘキサフロロペンチル)エーテル、オクタプロピレングリコールジ(1,1,2,2-テトラフロロブチル)エーテル、ヘキサプロピレングリコールジ(1,1,2,2,3,3-ヘキサフロロペンチル)エーテル、パーフロロドデシルスルホン酸ナトリウム、1,1,2,2,8,8,9,9,10,10-デカフロロドデカン、1,1,2,2,3,3-ヘキサフロロデカン、N-[3-(パーフルオロオクタンスルホンアミド)プロピル]-N,N′-ジメチル-N-カルボキシメチレンアンモニウムベタイン、パーフルオロアルキルスルホンアミドプロピルトリメチルアンモニウム塩、パーフルオロアルキル-N-エチルスルホニルグリシン塩、リン酸ビス(N-パーフルオロオクチルスルホニル-N-エチルアミノエチル)、モノパーフルオロアルキルエチルリン酸エステルなどの末端、主鎖及び側鎖の少なくとも何れかの部位にフルオロアルキル又はフルオロアルキレン基を有する化合物からなるフッ素系界面活性剤を挙げることができる。
Specific examples of the fluorine-based surfactant include 1,1,2,2-tetrafluorooctyl (1,1,2,2-tetrafluoropropyl) ether and 1,1,2,2-tetrafluorooctyl. Hexyl ether, octaethylene glycol di (1,1,2,2-tetrafluorobutyl) ether, hexaethylene glycol (1,1,2,2,3,3-hexafluoropentyl) ether, octapropylene glycol di (1) , 1,2,2-tetrafluorobutyl) ether, hexapropylene glycol di (1,1,2,2,3,3-hexafluoropentyl) ether, sodium perfluorododecylsulfonate, 1,1,2,2 , 8,8,9,9,10,10-decafluorodecan, 1,1,2,2,3,3-hexafluorodecane, N- [3- (perfluorooctane sulfonamide) propyl] -N, N'-dimethyl-N-carboxymethyleneammonium betaine, perfluoroalkylsulfonamide propyltrimethylammonium salt, perfluoroalkyl-N-ethylsulfonylglycine salt, bis phosphate (N-perfluorooctylsulfonyl-N-ethylaminoethyl) , Monoperfluoroalkylethyl phosphate, etc. Fluorescent surfactants comprising compounds having a fluoroalkyl or fluoroalkylene group at at least any of the terminal, main chain and side chains can be mentioned.
また、市販品としては、“メガファック”(登録商標)F142D、同F172、同F173、同F183、同F410、同F477、同F553、同F554、同F556、同F557、同F559、同F560、同F563、RS-72-K、DS-21、R-41(以上、大日本インキ化学工業(株)製)、“エフトップ”(登録商標)EF301、同303、同352(新秋田化成(株)製)、“フロラード”FC-430、同FC-431(住友スリーエム(株)製)、“アサヒガード”(登録商標)AG710、“サーフロン”(登録商標)S-382、同SC-101、同SC-102、同SC-103、同SC-104、同SC-105、同SC-106(旭硝子(株)製)、BM-1000、BM-1100(裕商(株)製)、NBX-15、FTX-218((株)ネオス製)などのフッ素系界面活性剤を挙げることができる。これらの中でも、上記“メガファック”(登録商標)F477、同F556、同F563、BM-1000、BM-1100、NBX-15、FTX-218がフロー性や膜厚均一性の観点から特に好ましい。
As commercially available products, "Megafuck" (registered trademark) F142D, F172, F173, F183, F410, F477, F553, F554, F556, F557, F559, F560, etc. F563, RS-72-K, DS-21, R-41 (all manufactured by Dainippon Ink and Chemicals Co., Ltd.), "Ftop" (registered trademark) EF301, 303, 352 (Shin-Akita Kasei (Shin-Akita Kasei) (Manufactured by Sumitomo Co., Ltd.), "Florard" FC-430, FC-431 (manufactured by Sumitomo 3M Co., Ltd.), "Asahi Guard" (registered trademark) AG710, "Surfron" (registered trademark) S-382, SC-101 , SC-102, SC-103, SC-104, SC-105, SC-106 (manufactured by Asahi Glass Co., Ltd.), BM-1000, BM-1100 (manufactured by Yusho Co., Ltd.), NBX -15, FTX-218 (manufactured by Neos Co., Ltd.) and other fluorosurfactants can be mentioned. Among these, the above-mentioned "Mega Fvck" (registered trademark) F477, F556, F563, BM-1000, BM-1100, NBX-15, and FTX-218 are particularly preferable from the viewpoint of flowability and film thickness uniformity.
シリコーン系界面活性剤の市販品としては、SH28PA、SH7PA、SH21PA、SH30PA、ST94PA(いずれも東レ・ダウコーニング・シリコーン(株)製)、BYK-333、BYK-352(ビックケミー・ジャパン(株)製)、KL-700、LE-302、LE-303、LE-304(共栄社化学(株))などが挙げられる。その他の界面活性剤の例としては、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンジステアレートなどが挙げられる。
Commercially available silicone-based surfactants include SH28PA, SH7PA, SH21PA, SH30PA, and ST94PA (all manufactured by Toray Dow Corning Silicone Co., Ltd.), BYK-333, and BYK-352 (manufactured by Big Chemie Japan Co., Ltd.). ), KL-700, LE-302, LE-303, LE-304 (Kyoeisha Chemical Co., Ltd.) and the like. Examples of other surfactants include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene nonylphenyl ether, polyoxyethylene distearate and the like.
界面活性剤の含有量は、樹脂組成物中の全ポリシロキサン化合物含有量100重量部に対して、通常、0.001~10重量部である。これらは、1種あるいは2種以上を同時に使用してもよい。
The content of the surfactant is usually 0.001 to 10 parts by weight with respect to 100 parts by weight of the total polysiloxane compound content in the resin composition. These may be used alone or in combination of two or more at the same time.
さらに、樹脂組成物は、例えば溶剤を気化させるためのプリベーク時の熱重合を抑制する目的で、重合禁止剤を含有しても構わない。重合禁止剤としては、例えば、フェノール、ハイドロキノン、p-メトキシフェノール、ベンゾキノン、メトキシベンゾキノン、1,2-ナフトキノン、クレゾール、p-t-ブチルカテコール等のカテコール類、アルキルフェノール類、アルキルビスフェノール類、フェノチアジン、2,5-ジ-t-ブチルハイドロキノン、2,6-ジ-t-ブチルフェノール、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマイド)、2,2’メチレンビス(4-メチル-6-t-ブチルフェノール)、4,4’メチレンビス(2,6-ジ-t-ブチルフェノール)、4,4’ブチリデンビス(3-メチル-6-t-ブチルフェノール)、2,6-ビス(2’-ヒドロキシ-3’-t-ブチル-5’-メチルベンジル)4-メチルフェノール、1,1,3-トリス(2’-メチル-5’-t-ブチル-4’-ヒドロキシフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3’-5’-ジ-t-ブチル-4’-ヒドロキシベンジル)ベンゼン、トリエチレングリコールビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、ペンタエリスリチルテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2,4-ジメチル-6-t-ブチルフェノール、2-t-ブチル-4-メトキシフェノール等のフェノール類、6-t-ブチル-m-クレゾール、2,6-ジ-t-ブチル-p-クレゾール、2-t-ブチルハイドロキノン、メチレンブルー、ジメチルジチオカルバミン酸銅塩、ジエチルジチオカルバミン酸銅塩、ジプロピルジチオカルバミン酸銅塩、ジブチルジチオカルバミン酸銅塩、ジブチルジチオカルバミン酸銅、サリチル酸銅、チオジプロピオン酸エステル類、メルカプトベンズイミダゾール若しくはホスファイト類これら化合物と空気等の酸素含有ガスとの併用が挙げられる。本発明の樹脂組成物中の重合禁止剤含有量は、樹脂組成物全体に対して0.000005~0.2重量%であることが好ましく、0.00005~0.1重量%であることがより好ましい。また、有機溶媒以外の全成分に対して0.0001~0.5重量%が好ましく、0.001~0.2重量%がより好ましい。
Further, the resin composition may contain a polymerization inhibitor for the purpose of suppressing thermal polymerization at the time of prebaking for vaporizing the solvent, for example. Examples of the polymerization inhibitor include catechols such as phenol, hydroquinone, p-methoxyphenol, benzoquinone, methoxybenzoquinone, 1,2-naphthoquinone, cresol, and pt-butylcatechol, alkylphenols, alkylbisphenols, phenothiazine, and the like. 2,5-di-t-butylhydroquinone, 2,6-di-t-butylphenol, octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, N, N'-hexamethylene Bis (3,5-di-t-butyl-4-hydroxy-hydrocinnamide), 2,2'methylenebis (4-methyl-6-t-butylphenol), 4,4'methylenebis (2,6-di- t-Butylphenol), 4,4'butylidenebis (3-methyl-6-t-butylphenol), 2,6-bis (2'-hydroxy-3'-t-butyl-5'-methylbenzyl) 4-methylphenol , 1,1,3-Tris (2'-methyl-5'-t-butyl-4'-hydroxyphenyl) butane, 1,3,5-trimethyl-2,4,6-Tris (3'-5') -Di-t-butyl-4'-hydroxybenzyl) benzene, triethylene glycol bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate], pentaerythrityltetrax [3- (3) , 5-di-t-butyl-4-hydroxyphenyl) propionate], 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate, 2, Phenols such as 4-dimethyl-6-t-butylphenol and 2-t-butyl-4-methoxyphenol, 6-t-butyl-m-cresol, 2,6-di-t-butyl-p-cresol, 2 -T-Butyl hydroquinone, methylene blue, dimethyl dithiocarbamic acid copper salt, diethyl dithiocarbamic acid copper salt, dipropyl dithiocarbamic acid copper salt, dibutyl dithiocarbamic acid copper salt, dibutyl dithiocarbamate copper, dibutyl dithiocarbamate copper, salicylate copper, thiodipropionic acid esters, mercaptobenz Imidazole or phosphites Examples thereof include the combined use of these compounds with an oxygen-containing gas such as air. The content of the polymerization inhibitor in the resin composition of the present invention is preferably 0.000005 to 0.2% by weight, preferably 0.00005 to 0.1% by weight, based on the entire resin composition. More preferred. Further, 0.0001 to 0.5% by weight is preferable, and 0.001 to 0.2% by weight is more preferable with respect to all the components other than the organic solvent.
さらに本発明の樹脂組成物には、必要に応じて、粘度調整剤、安定化剤、着色剤、紫外線吸収剤等を含有することができる。
Further, the resin composition of the present invention can contain a viscosity regulator, a stabilizer, a colorant, an ultraviolet absorber and the like, if necessary.
<硬化膜>
本発明の樹脂組成物を基板上に塗布して塗布膜を得る。これを加熱により乾燥、硬化させることにより硬化膜を形成することができる。 <Cured film>
The resin composition of the present invention is applied onto a substrate to obtain a coating film. A cured film can be formed by drying and curing this by heating.
本発明の樹脂組成物を基板上に塗布して塗布膜を得る。これを加熱により乾燥、硬化させることにより硬化膜を形成することができる。 <Cured film>
The resin composition of the present invention is applied onto a substrate to obtain a coating film. A cured film can be formed by drying and curing this by heating.
本発明の樹脂組成物の塗布方法としては、マイクログラビアコーティング、スピンコーティング、ディップコーティング、カーテンフローコーティング、ロールコーティング、スプレーコーティング、スリットコーティング、流し塗り法などを好ましく用いることができる。
As the coating method of the resin composition of the present invention, microgravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating, slit coating, sink coating method and the like can be preferably used.
加熱乾燥及び硬化条件としては、適用される基板、及び樹脂組成物に応じて適宜選択されるが、通常は室温以上、400℃以下の温度で、0.5分間から240分間の処理を行うことが好ましい。特に好ましい硬化温度としては、100~400℃が好ましく、さらに好ましくは、150~400℃である。
The heat-drying and curing conditions are appropriately selected depending on the substrate to be applied and the resin composition, but usually, the treatment is carried out at a temperature of room temperature or higher and 400 ° C. or lower for 0.5 to 240 minutes. Is preferable. A particularly preferable curing temperature is 100 to 400 ° C, more preferably 150 to 400 ° C.
塗布膜及び硬化膜の膜厚に特に制限はないが、ともに0.001~100μmの範囲にあるのが一般的である。
The film thickness of the coating film and the cured film is not particularly limited, but both are generally in the range of 0.001 to 100 μm.
上記の樹脂組成物が感光性を有する場合の硬化膜の製造方法は、以下の工程を含むことが好ましい。
(I)樹脂組成物を基板上に塗布して塗膜を形成する工程、
(II)前記塗膜を露光する工程
(III)前記露光後の塗膜を加熱する工程。 When the above resin composition has photosensitivity, the method for producing a cured film preferably includes the following steps.
(I) A step of applying a resin composition onto a substrate to form a coating film,
(II) Step of exposing the coating film (III) Step of heating the coating film after the exposure.
(I)樹脂組成物を基板上に塗布して塗膜を形成する工程、
(II)前記塗膜を露光する工程
(III)前記露光後の塗膜を加熱する工程。 When the above resin composition has photosensitivity, the method for producing a cured film preferably includes the following steps.
(I) A step of applying a resin composition onto a substrate to form a coating film,
(II) Step of exposing the coating film (III) Step of heating the coating film after the exposure.
上記各工程を順に説明する。
Each of the above steps will be described in order.
(I)樹脂組成物を基板上に塗布して塗膜を形成する工程
上記の樹脂組成物を、スピン塗布やスリット塗布等の公知の方法によって基板上に塗布し、ホットプレート、オーブン等の加熱装置を用いて加熱する。これをプリベークという。プリベークは、50~150℃の温度範囲で30秒~30分間行うことが好ましい。プリベーク後の膜厚は0.1~15μmが好ましい。 (I) Step of Applying Resin Composition to Substrate to Form Coating Film The above resin composition is applied to the substrate by a known method such as spin coating or slit coating, and heated in a hot plate, oven or the like. Heat using the device. This is called prebake. Prebaking is preferably carried out in a temperature range of 50 to 150 ° C. for 30 seconds to 30 minutes. The film thickness after prebaking is preferably 0.1 to 15 μm.
上記の樹脂組成物を、スピン塗布やスリット塗布等の公知の方法によって基板上に塗布し、ホットプレート、オーブン等の加熱装置を用いて加熱する。これをプリベークという。プリベークは、50~150℃の温度範囲で30秒~30分間行うことが好ましい。プリベーク後の膜厚は0.1~15μmが好ましい。 (I) Step of Applying Resin Composition to Substrate to Form Coating Film The above resin composition is applied to the substrate by a known method such as spin coating or slit coating, and heated in a hot plate, oven or the like. Heat using the device. This is called prebake. Prebaking is preferably carried out in a temperature range of 50 to 150 ° C. for 30 seconds to 30 minutes. The film thickness after prebaking is preferably 0.1 to 15 μm.
(II)前記塗膜を露光する工程
プリベーク後、ステッパー、ミラープロジェクションマスクアライナー(MPA)、パラレルライトマスクアライナー(PLA)等の紫外可視露光機を用い、10~4000J/m2程度(波長365nm露光量換算)の露光量にて、塗膜全面を露光する。 (II) Step of exposing the coating film After prebaking, an ultraviolet-visible exposure machine such as a stepper, a mirror projection mask aligner (MPA), or a parallel light mask aligner (PLA) is used to expose about 10 to 4000 J / m 2 (wavelength 365 nm exposure). The entire surface of the coating film is exposed with an exposure amount of (quantity conversion).
プリベーク後、ステッパー、ミラープロジェクションマスクアライナー(MPA)、パラレルライトマスクアライナー(PLA)等の紫外可視露光機を用い、10~4000J/m2程度(波長365nm露光量換算)の露光量にて、塗膜全面を露光する。 (II) Step of exposing the coating film After prebaking, an ultraviolet-visible exposure machine such as a stepper, a mirror projection mask aligner (MPA), or a parallel light mask aligner (PLA) is used to expose about 10 to 4000 J / m 2 (wavelength 365 nm exposure). The entire surface of the coating film is exposed with an exposure amount of (quantity conversion).
(III)前記塗膜を加熱して硬化する工程
(I)を経た塗膜、又は、(I)及び(II)を経た塗膜を、ホットプレート、オーブン等の加熱装置で、150~450℃の温度範囲で30秒~2時間程度加熱(キュア)することで、硬化膜を得る。 (III) The coating film that has undergone the step (I) of heating and curing the coating film, or the coating film that has undergone (I) and (II) is heated at 150 to 450 ° C. using a heating device such as a hot plate or an oven. A cured film is obtained by heating (curing) for about 30 seconds to 2 hours in the temperature range of.
(I)を経た塗膜、又は、(I)及び(II)を経た塗膜を、ホットプレート、オーブン等の加熱装置で、150~450℃の温度範囲で30秒~2時間程度加熱(キュア)することで、硬化膜を得る。 (III) The coating film that has undergone the step (I) of heating and curing the coating film, or the coating film that has undergone (I) and (II) is heated at 150 to 450 ° C. using a heating device such as a hot plate or an oven. A cured film is obtained by heating (curing) for about 30 seconds to 2 hours in the temperature range of.
また、上記の樹脂組成物が感光性を有する場合でパターン加工した硬化膜を製造する場合には、以下の工程を含むことが好ましい。
(i)樹脂組成物を基板上に塗布して塗膜を形成する工程、
(ii)前記塗膜をパターン露光工程の後、現像液で現像することにより、塗膜の露光部分を除去する工程、
(iii)前記現像後残った塗膜を露光する工程、
(iv)前記露光後の塗膜を加熱する工程。 Further, when the above resin composition has photosensitive property and a patterned cured film is produced, it is preferable to include the following steps.
(I) A step of applying a resin composition onto a substrate to form a coating film,
(Ii) A step of removing an exposed portion of the coating film by developing the coating film with a developing solution after a pattern exposure step.
(Iii) A step of exposing the coating film remaining after development,
(Iv) A step of heating the coating film after the exposure.
(i)樹脂組成物を基板上に塗布して塗膜を形成する工程、
(ii)前記塗膜をパターン露光工程の後、現像液で現像することにより、塗膜の露光部分を除去する工程、
(iii)前記現像後残った塗膜を露光する工程、
(iv)前記露光後の塗膜を加熱する工程。 Further, when the above resin composition has photosensitive property and a patterned cured film is produced, it is preferable to include the following steps.
(I) A step of applying a resin composition onto a substrate to form a coating film,
(Ii) A step of removing an exposed portion of the coating film by developing the coating film with a developing solution after a pattern exposure step.
(Iii) A step of exposing the coating film remaining after development,
(Iv) A step of heating the coating film after the exposure.
上記各工程を順に説明する。
Each of the above processes will be explained in order.
(i)樹脂組成物を基板上に塗布して塗膜を形成する工程
上記の樹脂組成物を、スピン塗布やスリット塗布等の公知の方法によって基板上に塗布し、ホットプレート、オーブン等の加熱装置を用いて加熱する。これをプリベークという。プリベークは、50~150℃の温度範囲で30秒~30分間行うことが好ましい。プリベーク後の膜厚は0.1~15μmが好ましい。 (I) Step of applying the resin composition on the substrate to form a coating film The above resin composition is applied on the substrate by a known method such as spin coating or slit coating, and heated in a hot plate, an oven, or the like. Heat using the device. This is called prebake. Prebaking is preferably carried out in a temperature range of 50 to 150 ° C. for 30 seconds to 30 minutes. The film thickness after prebaking is preferably 0.1 to 15 μm.
上記の樹脂組成物を、スピン塗布やスリット塗布等の公知の方法によって基板上に塗布し、ホットプレート、オーブン等の加熱装置を用いて加熱する。これをプリベークという。プリベークは、50~150℃の温度範囲で30秒~30分間行うことが好ましい。プリベーク後の膜厚は0.1~15μmが好ましい。 (I) Step of applying the resin composition on the substrate to form a coating film The above resin composition is applied on the substrate by a known method such as spin coating or slit coating, and heated in a hot plate, an oven, or the like. Heat using the device. This is called prebake. Prebaking is preferably carried out in a temperature range of 50 to 150 ° C. for 30 seconds to 30 minutes. The film thickness after prebaking is preferably 0.1 to 15 μm.
(ii)該塗膜をパターン露光工程の後、現像液で現像することにより、塗膜の露光部分を除去する工程
プリベーク後、ステッパー、ミラープロジェクションマスクアライナー(MPA)、パラレルライトマスクアライナー(pla)等の紫外可視露光機を用い、所望のマスクを介して、10~4000J/m2程度(波長365nm露光量換算)の露光量にて、パターン露光する。 (Ii) A step of removing an exposed portion of the coating film by developing the coating film with a developing solution after a pattern exposure step. After prebaking, a stepper, a mirror projection mask aligner (MPA), and a parallel light mask aligner (pla). A pattern exposure is performed with an exposure amount of about 10 to 4000 J / m 2 (equivalent to an exposure amount of 365 nm wavelength) through a desired mask using an ultraviolet visible exposure machine such as the above.
プリベーク後、ステッパー、ミラープロジェクションマスクアライナー(MPA)、パラレルライトマスクアライナー(pla)等の紫外可視露光機を用い、所望のマスクを介して、10~4000J/m2程度(波長365nm露光量換算)の露光量にて、パターン露光する。 (Ii) A step of removing an exposed portion of the coating film by developing the coating film with a developing solution after a pattern exposure step. After prebaking, a stepper, a mirror projection mask aligner (MPA), and a parallel light mask aligner (pla). A pattern exposure is performed with an exposure amount of about 10 to 4000 J / m 2 (equivalent to an exposure amount of 365 nm wavelength) through a desired mask using an ultraviolet visible exposure machine such as the above.
露光後、現像により露光部の膜を溶解除去し、ポジパターンを得る。パターンの解像度は、好ましくは15μm以下である。現像方法としては、シャワー、ディップ、パドル等の方法が挙げられ、現像液に5秒~10分間、膜を浸漬することが好ましい。現像液としては、公知のアルカリ現像液を用いることができ、例えば、以下のアルカリ成分の水溶液等が挙げられる。アルカリ金属の水酸化物、炭酸塩、リン酸塩、ケイ酸塩、ホウ酸塩等の無機アルカリ成分、2-ジエチルアミノエタノール、モノエタノールアミン、ジエタノールアミン等のアミン類、水酸化テトラメチルアンモニウム(TMAH)、コリン等の4級アンモニウム塩。アルカリ現像液として、これらを2種以上用いてもよい。
After exposure, the film in the exposed area is dissolved and removed by development to obtain a positive pattern. The resolution of the pattern is preferably 15 μm or less. Examples of the developing method include methods such as showering, dipping, and paddle, and it is preferable to immerse the film in a developing solution for 5 seconds to 10 minutes. As the developing solution, a known alkaline developing solution can be used, and examples thereof include an aqueous solution of the following alkaline components. Inorganic alkaline components such as alkali metal hydroxides, carbonates, phosphates, silicates and borates, amines such as 2-diethylaminoethanol, monoethanolamine and diethanolamine, tetramethylammonium hydroxide (TMAH) , Colin and other quaternary ammonium salts. Two or more of these may be used as the alkaline developer.
また、現像後は水でリンスすることが好ましく、必要であれば、ホットプレート、オーブン等の加熱装置で50~150℃の温度範囲で脱水乾燥ベークを行ってもよい。さらに、必要であれば、ホットプレート、オーブン等の加熱装置で、50~300℃の温度範囲で30秒~30分間加熱を行う。これをソフトベークという。
Further, it is preferable to rinse with water after development, and if necessary, dehydration drying baking may be performed in a temperature range of 50 to 150 ° C. with a heating device such as a hot plate or an oven. Further, if necessary, heating is performed in a heating device such as a hot plate or an oven in a temperature range of 50 to 300 ° C. for 30 seconds to 30 minutes. This is called soft bake.
(iii)該現像後残った塗膜を露光する工程
現像後、ステッパー、ミラープロジェクションマスクアライナー(mpa)、パラレルライトマスクアライナー(pla)等の紫外可視露光機を用い、所望のマスクを介して、10~4000J/m2程度(波長365nm露光量換算)の露光量にて、パターン露光する。 (Iii) Step of exposing the coating film remaining after the development After the development, an ultraviolet visible exposure machine such as a stepper, a mirror projection mask aligner (mpa), a parallel light mask aligner (pla) is used, and the coating film remains through a desired mask. Pattern exposure is performed at an exposure amount of about 10 to 4000 J / m 2 (wavelength 365 nm exposure amount conversion).
現像後、ステッパー、ミラープロジェクションマスクアライナー(mpa)、パラレルライトマスクアライナー(pla)等の紫外可視露光機を用い、所望のマスクを介して、10~4000J/m2程度(波長365nm露光量換算)の露光量にて、パターン露光する。 (Iii) Step of exposing the coating film remaining after the development After the development, an ultraviolet visible exposure machine such as a stepper, a mirror projection mask aligner (mpa), a parallel light mask aligner (pla) is used, and the coating film remains through a desired mask. Pattern exposure is performed at an exposure amount of about 10 to 4000 J / m 2 (wavelength 365 nm exposure amount conversion).
(iv)前記露光後の塗膜を加熱する工程。
(Iv) A step of heating the coating film after the exposure.
(iii)を経た塗膜を、ホットプレート、オーブン等の加熱装置で、150~450℃の温度範囲で30秒~2時間程度加熱(キュア)することで、硬化膜を得る。
A cured film is obtained by heating (curing) the coating film that has undergone (iii) in a heating device such as a hot plate or an oven in a temperature range of 150 to 450 ° C. for about 30 seconds to 2 hours.
本発明の樹脂組成物は、(ii)露光及び現像する工程において、パターン形成における生産性の観点から、露光時の感度が1500J/m2以下であることが好ましく、1000J/m2以下であることがより好ましい。
In the steps of (ii) exposure and development, the resin composition of the present invention preferably has a sensitivity of 1500 J / m 2 or less, preferably 1000 J / m 2 or less, from the viewpoint of productivity in pattern formation. Is more preferable.
露光時の感度は、以下の方法により求められる。感光性樹脂組成物を、シリコンウェハ上に、スピンコーターを用いて任意の回転数でスピン塗布する。ホットプレートを用いて120℃で3分間、塗膜をプリベークし、膜厚1μmのプリベーク膜を作製する。マスクアライナであるPLA(キヤノン(株)製PLA-501F)を用いて、超高圧水銀灯により、感度測定用のマスクである、1~10μmのライン・アンド・スペースパターンを有するグレースケールマスクを介してプリベーク膜を露光する。その後、自動現像装置(滝沢産業(株)製AD-2000)を用いて、2.38重量%TMAH水溶液で90秒間シャワー現像し、次いで水で30秒間リンスする。形成されたパターンにおいて、設計寸法100μmの正方形パターンが現像後に剥がれず、基板上に残って形成される露光量のうちもっとも露光量が低いもの(以下、これを最適露光量という)を感度とする。
The sensitivity at the time of exposure is obtained by the following method. The photosensitive resin composition is spin-coated on a silicon wafer at an arbitrary rotation speed using a spin coater. The coating film is prebaked at 120 ° C. for 3 minutes using a hot plate to prepare a prebaked film having a film thickness of 1 μm. Using PLA (PLA-501F manufactured by Canon Inc.), which is a mask aligner, an ultra-high pressure mercury lamp is used, and a grayscale mask having a line and space pattern of 1 to 10 μm, which is a mask for sensitivity measurement, is used. The pre-baked film is exposed. Then, using an automatic developing device (AD-2000 manufactured by Takizawa Sangyo Co., Ltd.), shower development is performed with a 2.38 wt% TMAH aqueous solution for 90 seconds, and then rinse with water for 30 seconds. Among the formed patterns, the one with the lowest exposure amount (hereinafter referred to as the optimum exposure amount) among the exposure amounts formed on the substrate without peeling off after development of a square pattern having a design dimension of 100 μm is defined as the sensitivity. ..
その後、熱硬化工程として、ホットプレートを用いて220℃で5分間キュアして硬化膜を作製し、感度における最小パターン寸法をキュア後解像度として求める。
Then, as a thermosetting step, a cured film is prepared by curing at 220 ° C. for 5 minutes using a hot plate, and the minimum pattern dimension in sensitivity is obtained as the post-cure resolution.
本発明の硬化膜は、本発明の樹脂組成物を硬化させてなる硬化膜である。
The cured film of the present invention is a cured film obtained by curing the resin composition of the present invention.
本発明の樹脂組成物及びその硬化膜は、固体撮像素子、光学フィルタ、ディスプレイ等の光学デバイスやタッチパネルのインデックスマッチング材料に好適に用いられる。より具体的には、裏面照射型CMOSイメージセンサなどの固体撮像素子等に形成される集光用マイクロレンズや光導波路、光学フィルタとして設置される反射防止膜、ディスプレイ用TFT基板の平坦化材、液晶ディスプレイ等のカラーフィルタ及びその保護膜、位相シフター等が挙げられる。これらの中でも、高い透明性と高い屈折率を両立できることから、固体撮像素子上に形成される集光用マイクロレンズや、集光用マイクロレンズと光センサー部を繋ぐ光導波路として特に好適に用いられる。また、本発明の樹脂組成物及びその硬化膜は、半導体装置のバッファコート、層間絶縁膜や、各種保護膜として用いることもできる。
The resin composition of the present invention and its cured film are suitably used as index matching materials for optical devices such as solid-state image sensors, optical filters, and displays, and touch panels. More specifically, a light-collecting microlens and an optical waveguide formed on a solid-state image sensor such as a back-illuminated CMOS image sensor, an antireflection film installed as an optical filter, and a flattening material for a TFT substrate for a display. Examples thereof include a color filter such as a liquid crystal display, a protective film thereof, and a phase shifter. Among these, since it is possible to achieve both high transparency and high refractive index, it is particularly preferably used as a condensing microlens formed on a solid-state image sensor or an optical waveguide connecting a condensing microlens and an optical sensor unit. .. Further, the resin composition of the present invention and the cured film thereof can also be used as a buffer coat of a semiconductor device, an interlayer insulating film, and various protective films.
<固体撮像素子>
本発明の固体撮像素子は、本発明の硬化膜を具備する。一例として、半導体受光素子を有する基板上に、基板側からカラーフィルタ、マイクロレンズ(アレイ)、さらに反射防止膜等の透明樹脂層を順に具備する形態が挙げられる。外部からの光は、透明樹脂層、マイクロレンズ、及びカラーフィルタの順に透過して受光素子へと到達し、検知される。この際、本発明の樹脂組成物から形成した硬化膜をマイクロレンズとして適用することで、受光素子への効率的な集光が可能となる。RGBそれぞれに対応する光を検知する受光素子の画素の全般に渡って機能し、受光素子の画素とマイクロレンズの個々のレンズが高密度に配列されている場合でも、きわめて鮮明な画像を得ることができる。 <Solid image sensor>
The solid-state image sensor of the present invention comprises the cured film of the present invention. As an example, there is a form in which a transparent resin layer such as a color filter, a microlens (array), and an antireflection film is sequentially provided on a substrate having a semiconductor light receiving element from the substrate side. Light from the outside passes through the transparent resin layer, the microlens, and the color filter in this order, reaches the light receiving element, and is detected. At this time, by applying the cured film formed from the resin composition of the present invention as a microlens, efficient light collection to the light receiving element becomes possible. It functions over the pixels of the light receiving element that detects light corresponding to each of RGB, and obtains an extremely clear image even when the pixels of the light receiving element and the individual lenses of the microlens are arranged at high density. Can be done.
本発明の固体撮像素子は、本発明の硬化膜を具備する。一例として、半導体受光素子を有する基板上に、基板側からカラーフィルタ、マイクロレンズ(アレイ)、さらに反射防止膜等の透明樹脂層を順に具備する形態が挙げられる。外部からの光は、透明樹脂層、マイクロレンズ、及びカラーフィルタの順に透過して受光素子へと到達し、検知される。この際、本発明の樹脂組成物から形成した硬化膜をマイクロレンズとして適用することで、受光素子への効率的な集光が可能となる。RGBそれぞれに対応する光を検知する受光素子の画素の全般に渡って機能し、受光素子の画素とマイクロレンズの個々のレンズが高密度に配列されている場合でも、きわめて鮮明な画像を得ることができる。 <Solid image sensor>
The solid-state image sensor of the present invention comprises the cured film of the present invention. As an example, there is a form in which a transparent resin layer such as a color filter, a microlens (array), and an antireflection film is sequentially provided on a substrate having a semiconductor light receiving element from the substrate side. Light from the outside passes through the transparent resin layer, the microlens, and the color filter in this order, reaches the light receiving element, and is detected. At this time, by applying the cured film formed from the resin composition of the present invention as a microlens, efficient light collection to the light receiving element becomes possible. It functions over the pixels of the light receiving element that detects light corresponding to each of RGB, and obtains an extremely clear image even when the pixels of the light receiving element and the individual lenses of the microlens are arranged at high density. Can be done.
また、別の形態として、受光素子を有する基板上に、光導波路として機能する樹脂層、カラーフィルタ、マイクロレンズ(アレイ)、さらに反射防止膜等の樹脂層を順に形成されたものが挙げられる。この際、本発明の樹脂組成物から形成した硬化膜をマイクロレンズ、もしくは光導波路として好適に利用することができる。
Further, as another form, a resin layer that functions as an optical waveguide, a color filter, a microlens (array), and a resin layer such as an antireflection film are sequentially formed on a substrate having a light receiving element. At this time, the cured film formed from the resin composition of the present invention can be suitably used as a microlens or an optical waveguide.
<マイクロレンズ>
本発明のマイクロレンズは本発明の硬化物からなる。マイクロレンズ形成方法の一形態として、マイクロレンズアレイの形成工程の一例について説明する。必要により、素子の凹凸を、透明樹脂をスピンコートすることで埋め込み、平坦化しておく。平坦化した表面にレンズ材料を均一に塗布し、前述の方法にて硬化膜を形成する。さらにその上に、レジストを均一に塗布する。ステッパー装置を用いて、レチクルをマスクとしてレジストに紫外線を照射し、レンズ間スペースの部分を露光する。感光した部分を現像液で分解除去しパターン形成する。半球状のパターンを加熱することで得る。このときレジストは溶融し液相となり、半球状態になった後、固相に変化する。その後、ドライエッチングによりレジスト材料の半球状パターン層およびレンズ材料の層をエッチングする。このようにして半球状のレンズが配列されたレンズアレイを形成することができる。本発明の硬化膜はドライエッチング性に優れるため、前記ドライエッチング工程でのパターン化が容易である。ドライエッチングに用いるエッチングガスとしては、CF4、C4F6、C4F8、C4F8、CHF3、SF6、NF3ガス等のフッ素系ガス、O2ガス、Arガス、N2ガスなどを用いることができる。 <Micro lens>
The microlens of the present invention comprises the cured product of the present invention. As one form of the microlens forming method, an example of the microlens array forming step will be described. If necessary, the unevenness of the element is embedded and flattened by spin coating with a transparent resin. The lens material is uniformly applied to the flattened surface to form a cured film by the method described above. Further, the resist is uniformly applied on it. Using a stepper device, the resist is irradiated with ultraviolet rays using a reticle as a mask to expose a portion of the space between lenses. The exposed part is decomposed and removed with a developing solution to form a pattern. Obtained by heating a hemispherical pattern. At this time, the resist melts into a liquid phase, becomes a hemispherical state, and then changes to a solid phase. Then, the hemispherical pattern layer of the resist material and the layer of the lens material are etched by dry etching. In this way, a lens array in which hemispherical lenses are arranged can be formed. Since the cured film of the present invention has excellent dry etching properties, patterning in the dry etching step is easy. Etching gases used for dry etching include fluorogas such as CF 4, C 4 F 6, C 4 F 8, C 4 F 8, CHF 3, SF 6 , and NF 3 gas, O 2 gas, Ar gas, and N. 2 Gas or the like can be used.
本発明のマイクロレンズは本発明の硬化物からなる。マイクロレンズ形成方法の一形態として、マイクロレンズアレイの形成工程の一例について説明する。必要により、素子の凹凸を、透明樹脂をスピンコートすることで埋め込み、平坦化しておく。平坦化した表面にレンズ材料を均一に塗布し、前述の方法にて硬化膜を形成する。さらにその上に、レジストを均一に塗布する。ステッパー装置を用いて、レチクルをマスクとしてレジストに紫外線を照射し、レンズ間スペースの部分を露光する。感光した部分を現像液で分解除去しパターン形成する。半球状のパターンを加熱することで得る。このときレジストは溶融し液相となり、半球状態になった後、固相に変化する。その後、ドライエッチングによりレジスト材料の半球状パターン層およびレンズ材料の層をエッチングする。このようにして半球状のレンズが配列されたレンズアレイを形成することができる。本発明の硬化膜はドライエッチング性に優れるため、前記ドライエッチング工程でのパターン化が容易である。ドライエッチングに用いるエッチングガスとしては、CF4、C4F6、C4F8、C4F8、CHF3、SF6、NF3ガス等のフッ素系ガス、O2ガス、Arガス、N2ガスなどを用いることができる。 <Micro lens>
The microlens of the present invention comprises the cured product of the present invention. As one form of the microlens forming method, an example of the microlens array forming step will be described. If necessary, the unevenness of the element is embedded and flattened by spin coating with a transparent resin. The lens material is uniformly applied to the flattened surface to form a cured film by the method described above. Further, the resist is uniformly applied on it. Using a stepper device, the resist is irradiated with ultraviolet rays using a reticle as a mask to expose a portion of the space between lenses. The exposed part is decomposed and removed with a developing solution to form a pattern. Obtained by heating a hemispherical pattern. At this time, the resist melts into a liquid phase, becomes a hemispherical state, and then changes to a solid phase. Then, the hemispherical pattern layer of the resist material and the layer of the lens material are etched by dry etching. In this way, a lens array in which hemispherical lenses are arranged can be formed. Since the cured film of the present invention has excellent dry etching properties, patterning in the dry etching step is easy. Etching gases used for dry etching include fluorogas such as CF 4, C 4 F 6, C 4 F 8, C 4 F 8, CHF 3, SF 6 , and NF 3 gas, O 2 gas, Ar gas, and N. 2 Gas or the like can be used.
また、マイクロレンズの別の実施形態としては、上記のレジスト材料の使用を省略し、レンズ材料を露光により直接パターン化する方法が挙げられる。この実施形態では、パターン化したレンズ材料を加熱工程により溶融し、半球状のレンズを得る。本発明の樹脂組成物がポジ型感光性を有する際、このような実施形態に好適に用いることができる。この際、エッチング法によるパターン形成が不要であるため作業の簡略化が可能であり、エッチング薬液やプラズマによる配線部の劣化を回避することができる。
Further, as another embodiment of the microlens, there is a method of omitting the use of the resist material described above and directly patterning the lens material by exposure. In this embodiment, the patterned lens material is melted by a heating step to obtain a hemispherical lens. When the resin composition of the present invention has positive photosensitivity, it can be suitably used for such an embodiment. At this time, since it is not necessary to form a pattern by the etching method, the work can be simplified and deterioration of the wiring portion due to the etching chemical solution or plasma can be avoided.
<タッチパネル>
本発明のタッチパネルは、本発明の硬化膜を具備する。さらに、本発明の硬化膜はオンセル方式又はフイルム方式のタッチパネルに好適に用いられる。ここでいうタッチパネルとは、静電容量式タッチパネルである。静電容量式タッチパネルのセンサー層は、ガラスやフイルム等の基材上に、ITO(Indium Tin Oxide)や金属(銀、モリブデン、アルミニウムなど)がパターニングされた配線を有し、そのほか、配線の交差部に絶縁膜、ITOや金属を保護する保護膜を有する構造が一般的である。タッチパネルの方式は、液晶パネル上にセンサー層を形成するオンセル方式、カバーガラス上にタッチパネル層を直接積層して形成するOGS(One Glass Solution)方式、カバーガラスと液晶パネルとの間にセンサー層を形成するアウトセル方式、その中でもフイルムを支持層とするセンサー層を使用するフイルム方式、などが挙げられる。これらタッチパネルの一形態として、ITOや金属配線が視認される現象(骨見え現象)を抑制するため、ITOや金属配線パターン層の下又は上に、インデックスマッチング層を具備する形態が挙げられる。本発明の樹脂組成物から形成した硬化膜は、インデックスマッチング層(もしくは層内の高屈折率層)として好適に用いることができる。さらに、オンセル方式は液晶パネル上に直接タッチパネル層を形成するため、配線や保護膜、絶縁膜材料、インデックスマッチング層は液晶の耐熱温度以下の低温で加工・形成する必要がある。また、フイルム方式の場合、フイルムの耐熱温度以下での低温にて、配線や保護膜、絶縁膜材料、インデックスマッチング層を加工・形成する必要がある。これらでは、CVD(Chemial Vapor Deposition)により高温製膜して形成される無機系材料の適用が困難であり、本発明の硬化膜を好適に用いることができる。 <Touch panel>
The touch panel of the present invention comprises the cured film of the present invention. Further, the cured film of the present invention is suitably used for an on-cell type or film type touch panel. The touch panel referred to here is a capacitive touch panel. The sensor layer of the capacitive touch panel has wiring in which ITO (Indium Tin Oxide) and metal (silver, molybdenum, aluminum, etc.) are patterned on a base material such as glass or film, and other wiring intersections. A structure having an insulating film and a protective film for protecting ITO and metal is common. The touch panel method is an on-cell method in which a sensor layer is formed on a liquid crystal panel, an OGS (One Glass Solution) method in which a touch panel layer is directly laminated on a cover glass, and a sensor layer is provided between the cover glass and the liquid crystal panel. Examples include an out-cell method of forming, and a film method using a sensor layer having a film as a support layer. One form of these touch panels includes a form in which an index matching layer is provided below or above the ITO or metal wiring pattern layer in order to suppress the phenomenon in which the ITO or metal wiring is visually recognized (bone visibility phenomenon). The cured film formed from the resin composition of the present invention can be suitably used as an index matching layer (or a high refractive index layer in the layer). Further, since the on-cell method forms the touch panel layer directly on the liquid crystal panel, the wiring, the protective film, the insulating film material, and the index matching layer need to be processed and formed at a low temperature equal to or lower than the heat resistant temperature of the liquid crystal. Further, in the case of the film method, it is necessary to process and form the wiring, the protective film, the insulating film material, and the index matching layer at a low temperature below the heat resistant temperature of the film. In these cases, it is difficult to apply an inorganic material formed by high-temperature film formation by CVD (Chemical Vapor Deposition), and the cured film of the present invention can be preferably used.
本発明のタッチパネルは、本発明の硬化膜を具備する。さらに、本発明の硬化膜はオンセル方式又はフイルム方式のタッチパネルに好適に用いられる。ここでいうタッチパネルとは、静電容量式タッチパネルである。静電容量式タッチパネルのセンサー層は、ガラスやフイルム等の基材上に、ITO(Indium Tin Oxide)や金属(銀、モリブデン、アルミニウムなど)がパターニングされた配線を有し、そのほか、配線の交差部に絶縁膜、ITOや金属を保護する保護膜を有する構造が一般的である。タッチパネルの方式は、液晶パネル上にセンサー層を形成するオンセル方式、カバーガラス上にタッチパネル層を直接積層して形成するOGS(One Glass Solution)方式、カバーガラスと液晶パネルとの間にセンサー層を形成するアウトセル方式、その中でもフイルムを支持層とするセンサー層を使用するフイルム方式、などが挙げられる。これらタッチパネルの一形態として、ITOや金属配線が視認される現象(骨見え現象)を抑制するため、ITOや金属配線パターン層の下又は上に、インデックスマッチング層を具備する形態が挙げられる。本発明の樹脂組成物から形成した硬化膜は、インデックスマッチング層(もしくは層内の高屈折率層)として好適に用いることができる。さらに、オンセル方式は液晶パネル上に直接タッチパネル層を形成するため、配線や保護膜、絶縁膜材料、インデックスマッチング層は液晶の耐熱温度以下の低温で加工・形成する必要がある。また、フイルム方式の場合、フイルムの耐熱温度以下での低温にて、配線や保護膜、絶縁膜材料、インデックスマッチング層を加工・形成する必要がある。これらでは、CVD(Chemial Vapor Deposition)により高温製膜して形成される無機系材料の適用が困難であり、本発明の硬化膜を好適に用いることができる。 <Touch panel>
The touch panel of the present invention comprises the cured film of the present invention. Further, the cured film of the present invention is suitably used for an on-cell type or film type touch panel. The touch panel referred to here is a capacitive touch panel. The sensor layer of the capacitive touch panel has wiring in which ITO (Indium Tin Oxide) and metal (silver, molybdenum, aluminum, etc.) are patterned on a base material such as glass or film, and other wiring intersections. A structure having an insulating film and a protective film for protecting ITO and metal is common. The touch panel method is an on-cell method in which a sensor layer is formed on a liquid crystal panel, an OGS (One Glass Solution) method in which a touch panel layer is directly laminated on a cover glass, and a sensor layer is provided between the cover glass and the liquid crystal panel. Examples include an out-cell method of forming, and a film method using a sensor layer having a film as a support layer. One form of these touch panels includes a form in which an index matching layer is provided below or above the ITO or metal wiring pattern layer in order to suppress the phenomenon in which the ITO or metal wiring is visually recognized (bone visibility phenomenon). The cured film formed from the resin composition of the present invention can be suitably used as an index matching layer (or a high refractive index layer in the layer). Further, since the on-cell method forms the touch panel layer directly on the liquid crystal panel, the wiring, the protective film, the insulating film material, and the index matching layer need to be processed and formed at a low temperature equal to or lower than the heat resistant temperature of the liquid crystal. Further, in the case of the film method, it is necessary to process and form the wiring, the protective film, the insulating film material, and the index matching layer at a low temperature below the heat resistant temperature of the film. In these cases, it is difficult to apply an inorganic material formed by high-temperature film formation by CVD (Chemical Vapor Deposition), and the cured film of the present invention can be preferably used.
以下、実施例を挙げて、本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されない。合成例及び実施例に用いた化合物のうち、略語を使用しているものは以下のとおりである。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. Among the compounds used in the synthesis examples and examples, those using abbreviations are as follows.
<アルコキシシラン化合物>
MTMS:メチルトリメトキシシラン
BPTMS:ビフェニルトリメトキシシラン
BPDMS:ビフェニルメチルジメトキシシラン
SuTMS:3-トリメトキシシリルプロピルコハク酸無水物
NaPTMS:1-ナフチルトリメトキシシラン。 <Alkoxysilane compound>
MTMS: Methyltrimethoxysilane BPTMS: Biphenyltrimethoxysilane BPDMS: Biphenylmethyldimethoxysilane SuTMS: 3-Trimethoxysilylpropyl succinic acid anhydride NaPTMS: 1-naphthyltrimethoxysilane.
MTMS:メチルトリメトキシシラン
BPTMS:ビフェニルトリメトキシシラン
BPDMS:ビフェニルメチルジメトキシシラン
SuTMS:3-トリメトキシシリルプロピルコハク酸無水物
NaPTMS:1-ナフチルトリメトキシシラン。 <Alkoxysilane compound>
MTMS: Methyltrimethoxysilane BPTMS: Biphenyltrimethoxysilane BPDMS: Biphenylmethyldimethoxysilane SuTMS: 3-Trimethoxysilylpropyl succinic acid anhydride NaPTMS: 1-naphthyltrimethoxysilane.
<溶媒>
PGMEA:プロピレングリコールモノメチルエーテルアセテート
DAA:ジアセトンアルコール
MeOH:メタノール。 <Solvent>
PGMEA: Propylene glycol monomethyl ether acetate DAA: Diacetone alcohol MeOH: Methanol.
PGMEA:プロピレングリコールモノメチルエーテルアセテート
DAA:ジアセトンアルコール
MeOH:メタノール。 <Solvent>
PGMEA: Propylene glycol monomethyl ether acetate DAA: Diacetone alcohol MeOH: Methanol.
<キノンジアジド化合物>
THP-17:(4,4’,4”-Ethylidyne-tris phenolと1,2-ナフトキノン―2-ジアジド―5-スルホン酸とのスルホン酸エステル)(ダイトーケミックス(株)製)。 <Chinone diazide compound>
THP-17: (Sulfonic acid ester of 4,4', 4 "-Ethylidine-tris phenol and 1,2-naphthoquinone-2-diazide-5-sulfonic acid) (manufactured by Daito Chemix Co., Ltd.).
THP-17:(4,4’,4”-Ethylidyne-tris phenolと1,2-ナフトキノン―2-ジアジド―5-スルホン酸とのスルホン酸エステル)(ダイトーケミックス(株)製)。 <Chinone diazide compound>
THP-17: (Sulfonic acid ester of 4,4', 4 "-Ethylidine-tris phenol and 1,2-naphthoquinone-2-diazide-5-sulfonic acid) (manufactured by Daito Chemix Co., Ltd.).
本実施例で行った測定方法は以下のとおりである。
The measurement method performed in this example is as follows.
<固形分濃度>
ポリシロキサン溶液の固形分濃度は、以下の方法により求めた。アルミカップにポリシロキサン溶液を1.5g秤取し、ホットプレートを用いて250℃で30分間加熱して液分を蒸発させた。加熱後のアルミカップに残った固形分を秤量して、ポリシロキサン溶液の固形分濃度を求めた。 <Solid content concentration>
The solid content concentration of the polysiloxane solution was determined by the following method. 1.5 g of the polysiloxane solution was weighed in an aluminum cup and heated at 250 ° C. for 30 minutes using a hot plate to evaporate the liquid content. The solid content remaining in the aluminum cup after heating was weighed to determine the solid content concentration of the polysiloxane solution.
ポリシロキサン溶液の固形分濃度は、以下の方法により求めた。アルミカップにポリシロキサン溶液を1.5g秤取し、ホットプレートを用いて250℃で30分間加熱して液分を蒸発させた。加熱後のアルミカップに残った固形分を秤量して、ポリシロキサン溶液の固形分濃度を求めた。 <Solid content concentration>
The solid content concentration of the polysiloxane solution was determined by the following method. 1.5 g of the polysiloxane solution was weighed in an aluminum cup and heated at 250 ° C. for 30 minutes using a hot plate to evaporate the liquid content. The solid content remaining in the aluminum cup after heating was weighed to determine the solid content concentration of the polysiloxane solution.
<硬化膜の作成>
8インチシリコンウェハ基板上に、スピンコーター(東京エレクトロン製 型式名クリーントラックマーク7)を用いて樹脂組成物を塗布した。塗布後、100℃で3分間プリベークし、I線ステッパー露光機により、露光量400mJ/cm2で全面露光し、最後に230℃で5分間加熱、硬化し、約1μmの硬化膜を得た。 <Creation of cured film>
A resin composition was applied onto an 8-inch silicon wafer substrate using a spin coater (model name: Clean Track Mark 7 manufactured by Tokyo Electron Limited). After coating, the film was prebaked at 100 ° C. for 3 minutes, exposed to the entire surface with an I-line stepper exposure machine at an exposure amount of 400 mJ / cm 2 , and finally heated and cured at 230 ° C. for 5 minutes to obtain a cured film of about 1 μm.
8インチシリコンウェハ基板上に、スピンコーター(東京エレクトロン製 型式名クリーントラックマーク7)を用いて樹脂組成物を塗布した。塗布後、100℃で3分間プリベークし、I線ステッパー露光機により、露光量400mJ/cm2で全面露光し、最後に230℃で5分間加熱、硬化し、約1μmの硬化膜を得た。 <Creation of cured film>
A resin composition was applied onto an 8-inch silicon wafer substrate using a spin coater (model name: Clean Track Mark 7 manufactured by Tokyo Electron Limited). After coating, the film was prebaked at 100 ° C. for 3 minutes, exposed to the entire surface with an I-line stepper exposure machine at an exposure amount of 400 mJ / cm 2 , and finally heated and cured at 230 ° C. for 5 minutes to obtain a cured film of about 1 μm.
<金属含有量の分析>
樹脂組成物中に含まれるアルミニウム、スズ及びジルコニウムの量を蛍光X線分析法にて定量した。試料をろ紙上の30mmΦ面内に採取し、測定用試料セルを用いて測定を行った。
装置:ZSX PrimusII(理学電機工業製)
測定条件:管球 Rh
測定雰囲気 真空中
測定面 30mmΦ
測定範囲 5B~92U。 <Analysis of metal content>
The amounts of aluminum, tin and zirconium contained in the resin composition were quantified by fluorescent X-ray analysis. A sample was collected in a 30 mmΦ plane on a filter paper, and measurement was performed using a sample cell for measurement.
Equipment: ZSX PrimusII (manufactured by Rigaku Denki Kogyo)
Measurement conditions: Tube Rh
Measurement atmosphere Measurement surface in vacuum 30 mmΦ
Measuring range 5B-92U.
樹脂組成物中に含まれるアルミニウム、スズ及びジルコニウムの量を蛍光X線分析法にて定量した。試料をろ紙上の30mmΦ面内に採取し、測定用試料セルを用いて測定を行った。
装置:ZSX PrimusII(理学電機工業製)
測定条件:管球 Rh
測定雰囲気 真空中
測定面 30mmΦ
測定範囲 5B~92U。 <Analysis of metal content>
The amounts of aluminum, tin and zirconium contained in the resin composition were quantified by fluorescent X-ray analysis. A sample was collected in a 30 mmΦ plane on a filter paper, and measurement was performed using a sample cell for measurement.
Equipment: ZSX PrimusII (manufactured by Rigaku Denki Kogyo)
Measurement conditions: Tube Rh
Measurement atmosphere Measurement surface in vacuum 30 mmΦ
Measuring range 5B-92U.
<硬化膜の屈折率の測定>
得られた硬化膜について、大塚電子(株)製分光エリプソメータFE5000を用いて、22℃での633nmにおける屈折率を測定した。 <Measurement of refractive index of cured film>
The refractive index of the obtained cured film at 633 nm at 22 ° C. was measured using a spectroscopic ellipsometer FE5000 manufactured by Otsuka Electronics Co., Ltd.
得られた硬化膜について、大塚電子(株)製分光エリプソメータFE5000を用いて、22℃での633nmにおける屈折率を測定した。 <Measurement of refractive index of cured film>
The refractive index of the obtained cured film at 633 nm at 22 ° C. was measured using a spectroscopic ellipsometer FE5000 manufactured by Otsuka Electronics Co., Ltd.
<硬化膜の耐熱性評価>
得られた硬化膜の膜厚(T1)を測定した。次いで、この硬化膜付き基板をホットプレート上にて、280℃10分間追加キュアした後、硬化膜の膜厚(T2)を測定した。追加キュア前後の膜厚変化率を下記式より算出して、下記式で膜厚変化率を算出し、合否判定を行った。
膜厚変化率(%)=(T1-T2)/T1×100
A:膜厚変化率(%)≦3%
B:3%<膜厚変化率(%)≦5%。
C:膜厚変化率(%)>5%。 <Evaluation of heat resistance of cured film>
The film thickness (T1) of the obtained cured film was measured. Next, the substrate with the cured film was additionally cured at 280 ° C. for 10 minutes on a hot plate, and then the film thickness (T2) of the cured film was measured. The film thickness change rate before and after the additional cure was calculated from the following formula, the film thickness change rate was calculated by the following formula, and a pass / fail judgment was made.
Film thickness change rate (%) = (T1-T2) / T1 × 100
A: Film thickness change rate (%) ≤ 3%
B: 3% <Film thickness change rate (%) ≤ 5%.
C: Film thickness change rate (%)> 5%.
得られた硬化膜の膜厚(T1)を測定した。次いで、この硬化膜付き基板をホットプレート上にて、280℃10分間追加キュアした後、硬化膜の膜厚(T2)を測定した。追加キュア前後の膜厚変化率を下記式より算出して、下記式で膜厚変化率を算出し、合否判定を行った。
膜厚変化率(%)=(T1-T2)/T1×100
A:膜厚変化率(%)≦3%
B:3%<膜厚変化率(%)≦5%。
C:膜厚変化率(%)>5%。 <Evaluation of heat resistance of cured film>
The film thickness (T1) of the obtained cured film was measured. Next, the substrate with the cured film was additionally cured at 280 ° C. for 10 minutes on a hot plate, and then the film thickness (T2) of the cured film was measured. The film thickness change rate before and after the additional cure was calculated from the following formula, the film thickness change rate was calculated by the following formula, and a pass / fail judgment was made.
Film thickness change rate (%) = (T1-T2) / T1 × 100
A: Film thickness change rate (%) ≤ 3%
B: 3% <Film thickness change rate (%) ≤ 5%.
C: Film thickness change rate (%)> 5%.
<硬化膜の耐薬品性評価>
得られた硬化膜の膜厚(T1)を測定した。次いで、この硬化膜付き基板を室温でN-メチルピロリドンに5分間浸漬し、次いで、ホットプレート上にて、100℃1分間乾燥した後、硬化膜の膜厚(T3)を測定した。追加キュア前後の膜厚変化率を下記式より算出して、下記式で膜厚変化率を算出し、合否判定を行った。
膜厚変化率(%)=(T1-T3)/T1×100
A:膜厚変化率(%)≦5%
B:5%<膜厚変化率(%)≦10%
C:膜厚変化率(%)>10%。 <Chemical resistance evaluation of cured film>
The film thickness (T1) of the obtained cured film was measured. Next, the substrate with the cured film was immersed in N-methylpyrrolidone at room temperature for 5 minutes, then dried on a hot plate at 100 ° C. for 1 minute, and then the film thickness (T3) of the cured film was measured. The film thickness change rate before and after the additional cure was calculated from the following formula, the film thickness change rate was calculated by the following formula, and a pass / fail judgment was made.
Film thickness change rate (%) = (T1-T3) / T1 × 100
A: Film thickness change rate (%) ≤ 5%
B: 5% <Film thickness change rate (%) ≤ 10%
C: Film thickness change rate (%)> 10%.
得られた硬化膜の膜厚(T1)を測定した。次いで、この硬化膜付き基板を室温でN-メチルピロリドンに5分間浸漬し、次いで、ホットプレート上にて、100℃1分間乾燥した後、硬化膜の膜厚(T3)を測定した。追加キュア前後の膜厚変化率を下記式より算出して、下記式で膜厚変化率を算出し、合否判定を行った。
膜厚変化率(%)=(T1-T3)/T1×100
A:膜厚変化率(%)≦5%
B:5%<膜厚変化率(%)≦10%
C:膜厚変化率(%)>10%。 <Chemical resistance evaluation of cured film>
The film thickness (T1) of the obtained cured film was measured. Next, the substrate with the cured film was immersed in N-methylpyrrolidone at room temperature for 5 minutes, then dried on a hot plate at 100 ° C. for 1 minute, and then the film thickness (T3) of the cured film was measured. The film thickness change rate before and after the additional cure was calculated from the following formula, the film thickness change rate was calculated by the following formula, and a pass / fail judgment was made.
Film thickness change rate (%) = (T1-T3) / T1 × 100
A: Film thickness change rate (%) ≤ 5%
B: 5% <Film thickness change rate (%) ≤ 10%
C: Film thickness change rate (%)> 10%.
<ドライエッチング評価>
得られた硬化膜について下記の装置及び条件でドライエッチング評価を行い、エッチング後の膜表面ラフネスRaをサーフコム触針式膜厚測定装置にて測定した。得られた表面ラフネスRaについて、下記のように判定した。
ドライエッチング装置:RIE-10N
ドライエッチング条件:出力 200W
圧力 15Pa
ガス CF4
流量 30ccm
時間 3分
表面ラフネスRa(nm):
AA:Ra<5nm
A:5nm≦Ra<8nm
B:8nm≦Ra<14nm
C:14≦Ra<20nm。
D:Ra>20nm。 <Dry etching evaluation>
The obtained cured film was evaluated by dry etching under the following equipment and conditions, and the film surface roughness Ra after etching was measured with a surfcom stylus film thickness measuring device. The obtained surface roughness Ra was determined as follows.
Dry etching equipment: RIE-10N
Dry etching conditions: Output 200W
Pressure 15Pa
Gas CF 4
Flow rate 30ccm
Time 3 minutes Surface roughness Ra (nm):
AA: Ra <5 nm
A: 5 nm ≤ Ra <8 nm
B: 8 nm ≤ Ra <14 nm
C: 14 ≦ Ra <20 nm.
D: Ra> 20 nm.
得られた硬化膜について下記の装置及び条件でドライエッチング評価を行い、エッチング後の膜表面ラフネスRaをサーフコム触針式膜厚測定装置にて測定した。得られた表面ラフネスRaについて、下記のように判定した。
ドライエッチング装置:RIE-10N
ドライエッチング条件:出力 200W
圧力 15Pa
ガス CF4
流量 30ccm
時間 3分
表面ラフネスRa(nm):
AA:Ra<5nm
A:5nm≦Ra<8nm
B:8nm≦Ra<14nm
C:14≦Ra<20nm。
D:Ra>20nm。 <Dry etching evaluation>
The obtained cured film was evaluated by dry etching under the following equipment and conditions, and the film surface roughness Ra after etching was measured with a surfcom stylus film thickness measuring device. The obtained surface roughness Ra was determined as follows.
Dry etching equipment: RIE-10N
Dry etching conditions: Output 200W
Pressure 15Pa
Gas CF 4
Flow rate 30ccm
Time 3 minutes Surface roughness Ra (nm):
AA: Ra <5 nm
A: 5 nm ≤ Ra <8 nm
B: 8 nm ≤ Ra <14 nm
C: 14 ≦ Ra <20 nm.
D: Ra> 20 nm.
<パターニング評価>
8インチシリコンウェハ基板上に、スピンコーター(東京エレクトロン製 型式名クリーントラックマーク7)を用いて樹脂組成物を塗布した。塗布後、80℃で1分間プリベークし、I線ステッパー露光機により、フォトマスクを介して露光量400mJ/cm2で露光した。フォトマスクは50μm、30μm及び10μmのライン&スペースの開口部を有する遮光マスクを使用した。次いで、露光した基板を2.38%TMAHで90秒間浸漬した後、水で30秒間洗い流した。さらにI線ステッパーにより残膜部を露光量400mJ/cm2で全面露光した後、230℃で5分間加熱し、約1μmのパターン膜を得た。得られたパターン膜の正方形パターンを観察し、抜けパターンが認められた最小のパターン寸法(正方形の辺の大きさ)を解像度とした。評価基準を以下のように定めた。
解像度:
A:解像度≦10μm
B:10μm<解像度≦30μm
C:30μm<解像度≦50μm
D: 解像度>50μm。 <Patterning evaluation>
A resin composition was applied onto an 8-inch silicon wafer substrate using a spin coater (model name: Clean Track Mark 7 manufactured by Tokyo Electron Limited). After coating, it was prebaked at 80 ° C. for 1 minute and exposed with an I-line stepper exposure machine at an exposure amount of 400 mJ / cm 2 through a photomask. As the photomask, a light-shielding mask having 50 μm, 30 μm, and 10 μm line & space openings was used. The exposed substrate was then immersed in 2.38% TMAH for 90 seconds and then rinsed with water for 30 seconds. Further, the residual film portion was entirely exposed with an I-line stepper at an exposure amount of 400 mJ / cm 2 , and then heated at 230 ° C. for 5 minutes to obtain a pattern film of about 1 μm. The square pattern of the obtained pattern film was observed, and the smallest pattern dimension (the size of the side of the square) in which the missing pattern was observed was taken as the resolution. The evaluation criteria were set as follows.
resolution:
A: Resolution ≤ 10 μm
B: 10 μm <resolution ≤ 30 μm
C: 30 μm <resolution ≤ 50 μm
D: Resolution> 50 μm.
8インチシリコンウェハ基板上に、スピンコーター(東京エレクトロン製 型式名クリーントラックマーク7)を用いて樹脂組成物を塗布した。塗布後、80℃で1分間プリベークし、I線ステッパー露光機により、フォトマスクを介して露光量400mJ/cm2で露光した。フォトマスクは50μm、30μm及び10μmのライン&スペースの開口部を有する遮光マスクを使用した。次いで、露光した基板を2.38%TMAHで90秒間浸漬した後、水で30秒間洗い流した。さらにI線ステッパーにより残膜部を露光量400mJ/cm2で全面露光した後、230℃で5分間加熱し、約1μmのパターン膜を得た。得られたパターン膜の正方形パターンを観察し、抜けパターンが認められた最小のパターン寸法(正方形の辺の大きさ)を解像度とした。評価基準を以下のように定めた。
解像度:
A:解像度≦10μm
B:10μm<解像度≦30μm
C:30μm<解像度≦50μm
D: 解像度>50μm。 <Patterning evaluation>
A resin composition was applied onto an 8-inch silicon wafer substrate using a spin coater (model name: Clean Track Mark 7 manufactured by Tokyo Electron Limited). After coating, it was prebaked at 80 ° C. for 1 minute and exposed with an I-line stepper exposure machine at an exposure amount of 400 mJ / cm 2 through a photomask. As the photomask, a light-shielding mask having 50 μm, 30 μm, and 10 μm line & space openings was used. The exposed substrate was then immersed in 2.38% TMAH for 90 seconds and then rinsed with water for 30 seconds. Further, the residual film portion was entirely exposed with an I-line stepper at an exposure amount of 400 mJ / cm 2 , and then heated at 230 ° C. for 5 minutes to obtain a pattern film of about 1 μm. The square pattern of the obtained pattern film was observed, and the smallest pattern dimension (the size of the side of the square) in which the missing pattern was observed was taken as the resolution. The evaluation criteria were set as follows.
resolution:
A: Resolution ≤ 10 μm
B: 10 μm <resolution ≤ 30 μm
C: 30 μm <resolution ≤ 50 μm
D: Resolution> 50 μm.
実施例に使用したポリマーの合成方法は以下のとおりである。
The polymer synthesis method used in the examples is as follows.
<合成例1>ポリシロキサン溶液X-1の作製
500mLの三口フラスコにMTMSを27.24g(0.20mol)、BPTMSを54.82g(0.20mol)、DAAを101.14g仕込み、室温で攪拌しながら水21.6gとリン酸0.41gの混合液を30分かけて添加した。その後、フラスコを70℃のオイルバスに浸けて1時間攪拌した後、オイルバスを120℃まで昇温した。昇温開始から30分後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌した。フラスコ内の温度は100~110℃とした。反応中に副生成物であるメタノール、水が合計49g留出した。フラスコ内に残留したポリシロキサンと複合酸化物粒子の溶液を混合溶液X-1とした。これの固形分濃度は34.9重量%であった。 <Synthesis Example 1> Preparation of Polysiloxane Solution X-1 27.24 g (0.20 mol) of MTMS, 54.82 g (0.20 mol) of BPTMS, and 101.14 g of DAA were placed in a 500 mL three-necked flask and stirred at room temperature. While doing so, a mixed solution of 21.6 g of water and 0.41 g of phosphoric acid was added over 30 minutes. Then, the flask was immersed in an oil bath at 70 ° C. and stirred for 1 hour, and then the temperature of the oil bath was raised to 120 ° C. Thirty minutes after the start of temperature rise, the internal temperature of the solution reached 100 ° C., and the mixture was heated and stirred for 2 hours. The temperature inside the flask was 100 to 110 ° C. During the reaction, a total of 49 g of methanol and water, which are by-products, were distilled off. The solution of the polysiloxane and the composite oxide particles remaining in the flask was used as a mixed solution X-1. The solid content concentration of this was 34.9% by weight.
500mLの三口フラスコにMTMSを27.24g(0.20mol)、BPTMSを54.82g(0.20mol)、DAAを101.14g仕込み、室温で攪拌しながら水21.6gとリン酸0.41gの混合液を30分かけて添加した。その後、フラスコを70℃のオイルバスに浸けて1時間攪拌した後、オイルバスを120℃まで昇温した。昇温開始から30分後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌した。フラスコ内の温度は100~110℃とした。反応中に副生成物であるメタノール、水が合計49g留出した。フラスコ内に残留したポリシロキサンと複合酸化物粒子の溶液を混合溶液X-1とした。これの固形分濃度は34.9重量%であった。 <Synthesis Example 1> Preparation of Polysiloxane Solution X-1 27.24 g (0.20 mol) of MTMS, 54.82 g (0.20 mol) of BPTMS, and 101.14 g of DAA were placed in a 500 mL three-necked flask and stirred at room temperature. While doing so, a mixed solution of 21.6 g of water and 0.41 g of phosphoric acid was added over 30 minutes. Then, the flask was immersed in an oil bath at 70 ° C. and stirred for 1 hour, and then the temperature of the oil bath was raised to 120 ° C. Thirty minutes after the start of temperature rise, the internal temperature of the solution reached 100 ° C., and the mixture was heated and stirred for 2 hours. The temperature inside the flask was 100 to 110 ° C. During the reaction, a total of 49 g of methanol and water, which are by-products, were distilled off. The solution of the polysiloxane and the composite oxide particles remaining in the flask was used as a mixed solution X-1. The solid content concentration of this was 34.9% by weight.
<合成例2>ポリシロキサン溶液X-2の作製
500mLの三口フラスコにMTMSを27.24g(0.20mol)、BPDMSを51.68g(0.20mol)、DAAを103.85g仕込み、室温で攪拌しながら水18.00gとリン酸0.39gの混合液を30分かけて添加した。その後、フラスコを70℃のオイルバスに浸けて1時間攪拌した後、オイルバスを120℃まで昇温した。昇温開始から30分後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌した。フラスコ内の温度は100~110℃とした。反応中に副生成物であるメタノール、水が合計40g留出した。フラスコ内に残留したポリシロキサンと複合酸化物粒子の溶液を混合溶液X-2とした。これの固形分濃度は34.6重量%であった。 <Synthesis Example 2> Preparation of Polysiloxane Solution X-2 27.24 g (0.20 mol) of MTMS, 51.68 g (0.20 mol) of BPDMS, and 103.85 g of DAA were placed in a 500 mL three-necked flask and stirred at room temperature. While doing so, a mixed solution of 18.00 g of water and 0.39 g of phosphoric acid was added over 30 minutes. Then, the flask was immersed in an oil bath at 70 ° C. and stirred for 1 hour, and then the temperature of the oil bath was raised to 120 ° C. Thirty minutes after the start of temperature rise, the internal temperature of the solution reached 100 ° C., and the mixture was heated and stirred for 2 hours. The temperature inside the flask was 100 to 110 ° C. During the reaction, a total of 40 g of methanol and water, which are by-products, were distilled off. The solution of the polysiloxane and the composite oxide particles remaining in the flask was used as a mixed solution X-2. The solid content concentration of this was 34.6% by weight.
500mLの三口フラスコにMTMSを27.24g(0.20mol)、BPDMSを51.68g(0.20mol)、DAAを103.85g仕込み、室温で攪拌しながら水18.00gとリン酸0.39gの混合液を30分かけて添加した。その後、フラスコを70℃のオイルバスに浸けて1時間攪拌した後、オイルバスを120℃まで昇温した。昇温開始から30分後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌した。フラスコ内の温度は100~110℃とした。反応中に副生成物であるメタノール、水が合計40g留出した。フラスコ内に残留したポリシロキサンと複合酸化物粒子の溶液を混合溶液X-2とした。これの固形分濃度は34.6重量%であった。 <Synthesis Example 2> Preparation of Polysiloxane Solution X-2 27.24 g (0.20 mol) of MTMS, 51.68 g (0.20 mol) of BPDMS, and 103.85 g of DAA were placed in a 500 mL three-necked flask and stirred at room temperature. While doing so, a mixed solution of 18.00 g of water and 0.39 g of phosphoric acid was added over 30 minutes. Then, the flask was immersed in an oil bath at 70 ° C. and stirred for 1 hour, and then the temperature of the oil bath was raised to 120 ° C. Thirty minutes after the start of temperature rise, the internal temperature of the solution reached 100 ° C., and the mixture was heated and stirred for 2 hours. The temperature inside the flask was 100 to 110 ° C. During the reaction, a total of 40 g of methanol and water, which are by-products, were distilled off. The solution of the polysiloxane and the composite oxide particles remaining in the flask was used as a mixed solution X-2. The solid content concentration of this was 34.6% by weight.
<合成例3>ポリシロキサン溶液X-3の作製
500mLの三口フラスコにMTMSを21.79g(0.16mol)、BPTMSを54.82g(0.20mol)、SuTMSを10.49g(0.04mol)、DAAを111.85g仕込み、室温で攪拌しながら水22.32gとリン酸0.44gの混合液を30分かけて添加した。その後、フラスコを70℃のオイルバスに浸けて1時間攪拌した後、オイルバスを120℃まで昇温した。昇温開始から30分後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌した。フラスコ内の温度は100~110℃とした。反応中に副生成物であるメタノール、水が合計49g留出した。フラスコ内に残留したポリシロキサンと複合酸化物粒子の溶液を混合溶液X-3とした。これの固形分濃度は34.8重量%であった。 <Synthesis Example 3> Preparation of Polysiloxane Solution X-3 21.79 g (0.16 mol) of MTMS, 54.82 g (0.20 mol) of BPTMS, and 10.49 g (0.04 mol) of SuTMS in a 500 mL three-necked flask. , DAA was charged in an amount of 111.85 g, and a mixed solution of 22.32 g of water and 0.44 g of phosphoric acid was added over 30 minutes while stirring at room temperature. Then, the flask was immersed in an oil bath at 70 ° C. and stirred for 1 hour, and then the temperature of the oil bath was raised to 120 ° C. Thirty minutes after the start of temperature rise, the internal temperature of the solution reached 100 ° C., and the mixture was heated and stirred for 2 hours. The temperature inside the flask was 100 to 110 ° C. During the reaction, a total of 49 g of methanol and water, which are by-products, were distilled off. The solution of the polysiloxane and the composite oxide particles remaining in the flask was used as a mixed solution X-3. The solid content concentration of this was 34.8% by weight.
500mLの三口フラスコにMTMSを21.79g(0.16mol)、BPTMSを54.82g(0.20mol)、SuTMSを10.49g(0.04mol)、DAAを111.85g仕込み、室温で攪拌しながら水22.32gとリン酸0.44gの混合液を30分かけて添加した。その後、フラスコを70℃のオイルバスに浸けて1時間攪拌した後、オイルバスを120℃まで昇温した。昇温開始から30分後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌した。フラスコ内の温度は100~110℃とした。反応中に副生成物であるメタノール、水が合計49g留出した。フラスコ内に残留したポリシロキサンと複合酸化物粒子の溶液を混合溶液X-3とした。これの固形分濃度は34.8重量%であった。 <Synthesis Example 3> Preparation of Polysiloxane Solution X-3 21.79 g (0.16 mol) of MTMS, 54.82 g (0.20 mol) of BPTMS, and 10.49 g (0.04 mol) of SuTMS in a 500 mL three-necked flask. , DAA was charged in an amount of 111.85 g, and a mixed solution of 22.32 g of water and 0.44 g of phosphoric acid was added over 30 minutes while stirring at room temperature. Then, the flask was immersed in an oil bath at 70 ° C. and stirred for 1 hour, and then the temperature of the oil bath was raised to 120 ° C. Thirty minutes after the start of temperature rise, the internal temperature of the solution reached 100 ° C., and the mixture was heated and stirred for 2 hours. The temperature inside the flask was 100 to 110 ° C. During the reaction, a total of 49 g of methanol and water, which are by-products, were distilled off. The solution of the polysiloxane and the composite oxide particles remaining in the flask was used as a mixed solution X-3. The solid content concentration of this was 34.8% by weight.
<合成例4>ポリシロキサンと複合酸化物粒子の混合溶液X-4の作製
500mLの三口フラスコにMTMSを10.90g(0.08mol)、BPTMSを27.41g(0.10mol)、SuTMSを5.25g(0.02mol)、DAAを111.85g、スズ、ジルコニウム、ケイ素及びチタンの複合酸化物粒子のメタノールゾルTR-550(固形分濃度20.5重量%、日揮触媒化成製)を73.09g、ケイ素及びチタンの複合酸化物粒子のメタノールゾルTR-527(固形分濃度20.5重量%、日揮触媒化成製)を73.09g仕込み、室温で攪拌しながら水11.16gとリン酸0.22gの混合液を30分かけて添加した。その後、フラスコを70℃のオイルバスに浸けて1時間攪拌した後、オイルバスを120℃まで昇温した。昇温開始から30分後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌した。フラスコ内の温度は100~110℃とした。反応中に副生成物であるメタノール、水が合計139g留出した。フラスコ内に残留したポリシロキサンと複合酸化物粒子の溶液を混合溶液X-4とした。これの固形分濃度は34.7重量%であった。 <Synthesis Example 4> Preparation of mixed solution X-4 of polysiloxane and composite oxide particles 10.90 g (0.08 mol) of MTMS, 27.41 g (0.10 mol) of BPTMS, and 5 of SuTMS in a 500 mL three-necked flask. .25 g (0.02 mol), 111.85 g DAA, methanol sol TR-550 (solid content concentration 20.5% by weight, manufactured by JGC Catalysts and Chemicals) of composite oxide particles of tin, zirconium, silicon and titanium 73. 09.09 g, methanol sol TR-527 (solid content concentration 20.5% by weight, manufactured by JGC Catalysts and Chemicals), which is a composite oxide particle of silicon and titanium, was charged, and 11.16 g of water and 0 phosphoric acid were charged while stirring at room temperature. .22 g of the mixture was added over 30 minutes. Then, the flask was immersed in an oil bath at 70 ° C. and stirred for 1 hour, and then the temperature of the oil bath was raised to 120 ° C. Thirty minutes after the start of temperature rise, the internal temperature of the solution reached 100 ° C., and the mixture was heated and stirred for 2 hours. The temperature inside the flask was 100 to 110 ° C. A total of 139 g of methanol and water, which are by-products, were distilled off during the reaction. The solution of the polysiloxane and the composite oxide particles remaining in the flask was used as a mixed solution X-4. The solid content concentration of this was 34.7% by weight.
500mLの三口フラスコにMTMSを10.90g(0.08mol)、BPTMSを27.41g(0.10mol)、SuTMSを5.25g(0.02mol)、DAAを111.85g、スズ、ジルコニウム、ケイ素及びチタンの複合酸化物粒子のメタノールゾルTR-550(固形分濃度20.5重量%、日揮触媒化成製)を73.09g、ケイ素及びチタンの複合酸化物粒子のメタノールゾルTR-527(固形分濃度20.5重量%、日揮触媒化成製)を73.09g仕込み、室温で攪拌しながら水11.16gとリン酸0.22gの混合液を30分かけて添加した。その後、フラスコを70℃のオイルバスに浸けて1時間攪拌した後、オイルバスを120℃まで昇温した。昇温開始から30分後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌した。フラスコ内の温度は100~110℃とした。反応中に副生成物であるメタノール、水が合計139g留出した。フラスコ内に残留したポリシロキサンと複合酸化物粒子の溶液を混合溶液X-4とした。これの固形分濃度は34.7重量%であった。 <Synthesis Example 4> Preparation of mixed solution X-4 of polysiloxane and composite oxide particles 10.90 g (0.08 mol) of MTMS, 27.41 g (0.10 mol) of BPTMS, and 5 of SuTMS in a 500 mL three-necked flask. .25 g (0.02 mol), 111.85 g DAA, methanol sol TR-550 (solid content concentration 20.5% by weight, manufactured by JGC Catalysts and Chemicals) of composite oxide particles of tin, zirconium, silicon and titanium 73. 09.09 g, methanol sol TR-527 (solid content concentration 20.5% by weight, manufactured by JGC Catalysts and Chemicals), which is a composite oxide particle of silicon and titanium, was charged, and 11.16 g of water and 0 phosphoric acid were charged while stirring at room temperature. .22 g of the mixture was added over 30 minutes. Then, the flask was immersed in an oil bath at 70 ° C. and stirred for 1 hour, and then the temperature of the oil bath was raised to 120 ° C. Thirty minutes after the start of temperature rise, the internal temperature of the solution reached 100 ° C., and the mixture was heated and stirred for 2 hours. The temperature inside the flask was 100 to 110 ° C. A total of 139 g of methanol and water, which are by-products, were distilled off during the reaction. The solution of the polysiloxane and the composite oxide particles remaining in the flask was used as a mixed solution X-4. The solid content concentration of this was 34.7% by weight.
<合成例5>ポリシロキサンと複合酸化物粒子の混合溶液X-5の作製
500mLの三口フラスコにMTMSを8.17g(0.06mol)、BPTMSを27.41g(0.10mol)、SuTMSを10.49g(0.04mol)、DAAを122.55g、スズ、ジルコニウム、ケイ素及びチタンの複合酸化物粒子のメタノールゾルTR-550(固形分濃度20.5重量%、日揮触媒化成製)を80.09g、ケイ素及びチタンの複合酸化物粒子のメタノールゾルTR-527(固形分濃度20.5重量%、日揮触媒化成製)を80.09g仕込み、室温で攪拌しながら水11.52gとリン酸0.23gの混合液を30分かけて添加した。その後、フラスコを70℃のオイルバスに浸けて1時間攪拌した後、オイルバスを120℃まで昇温した。昇温開始から30分後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌した。フラスコ内の温度は100~110℃とした。反応中に副生成物であるメタノール、水が合計150g留出した。フラスコ内に残留したポリシロキサンと複合酸化物粒子の溶液を混合溶液X-5とした。これの固形分濃度は34.7重量%であった。 <Synthesis Example 5> Preparation of mixed solution X-5 of polysiloxane and composite oxide particles 8.17 g (0.06 mol) of MTMS, 27.41 g (0.10 mol) of BPTMS, and 10 SuTMS in a 500 mL three-necked flask. .49 g (0.04 mol), 122.55 g DAA, methanol sol TR-550 (solid content concentration 20.5% by weight, manufactured by JGC Catalysts and Chemicals) of composite oxide particles of tin, zirconium, silicon and titanium was 80. 09.09 g, methanol sol TR-527 (solid content concentration 20.5% by weight, manufactured by JGC Catalysts and Chemicals), which is a composite oxide particle of silicon and titanium, was charged, and 80.09 g was charged. .23 g of the mixture was added over 30 minutes. Then, the flask was immersed in an oil bath at 70 ° C. and stirred for 1 hour, and then the temperature of the oil bath was raised to 120 ° C. Thirty minutes after the start of temperature rise, the internal temperature of the solution reached 100 ° C., and the mixture was heated and stirred for 2 hours. The temperature inside the flask was 100 to 110 ° C. During the reaction, a total of 150 g of methanol and water, which are by-products, were distilled off. The solution of the polysiloxane and the composite oxide particles remaining in the flask was used as a mixed solution X-5. The solid content concentration of this was 34.7% by weight.
500mLの三口フラスコにMTMSを8.17g(0.06mol)、BPTMSを27.41g(0.10mol)、SuTMSを10.49g(0.04mol)、DAAを122.55g、スズ、ジルコニウム、ケイ素及びチタンの複合酸化物粒子のメタノールゾルTR-550(固形分濃度20.5重量%、日揮触媒化成製)を80.09g、ケイ素及びチタンの複合酸化物粒子のメタノールゾルTR-527(固形分濃度20.5重量%、日揮触媒化成製)を80.09g仕込み、室温で攪拌しながら水11.52gとリン酸0.23gの混合液を30分かけて添加した。その後、フラスコを70℃のオイルバスに浸けて1時間攪拌した後、オイルバスを120℃まで昇温した。昇温開始から30分後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌した。フラスコ内の温度は100~110℃とした。反応中に副生成物であるメタノール、水が合計150g留出した。フラスコ内に残留したポリシロキサンと複合酸化物粒子の溶液を混合溶液X-5とした。これの固形分濃度は34.7重量%であった。 <Synthesis Example 5> Preparation of mixed solution X-5 of polysiloxane and composite oxide particles 8.17 g (0.06 mol) of MTMS, 27.41 g (0.10 mol) of BPTMS, and 10 SuTMS in a 500 mL three-necked flask. .49 g (0.04 mol), 122.55 g DAA, methanol sol TR-550 (solid content concentration 20.5% by weight, manufactured by JGC Catalysts and Chemicals) of composite oxide particles of tin, zirconium, silicon and titanium was 80. 09.09 g, methanol sol TR-527 (solid content concentration 20.5% by weight, manufactured by JGC Catalysts and Chemicals), which is a composite oxide particle of silicon and titanium, was charged, and 80.09 g was charged. .23 g of the mixture was added over 30 minutes. Then, the flask was immersed in an oil bath at 70 ° C. and stirred for 1 hour, and then the temperature of the oil bath was raised to 120 ° C. Thirty minutes after the start of temperature rise, the internal temperature of the solution reached 100 ° C., and the mixture was heated and stirred for 2 hours. The temperature inside the flask was 100 to 110 ° C. During the reaction, a total of 150 g of methanol and water, which are by-products, were distilled off. The solution of the polysiloxane and the composite oxide particles remaining in the flask was used as a mixed solution X-5. The solid content concentration of this was 34.7% by weight.
比較例に使用したポリマーは以下のとおり合成した。
The polymer used in the comparative example was synthesized as follows.
<合成例6>ポリシロキサン溶液R-1の作成
500mLの三口フラスコにMTMSを27.24g(0.20mol)、NaPTMSを49.67g(0.20mol)、DAAを91.58g仕込み、室温で攪拌しながら水21.6gとリン酸0.38gの混合液を30分かけて添加した。その後、フラスコを70℃のオイルバスに浸けて1時間攪拌した後、オイルバスを120℃まで昇温した。昇温開始から30分後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌した。フラスコ内の温度は100~110℃とした。反応中に副生成物であるメタノール、水が合計49g留出した。フラスコ内に残留したポリシロキサンと複合酸化物粒子の溶液を混合溶液R-1とした。これの固形分濃度は34.8重量%であった。 <Synthesis Example 6> Preparation of Polysiloxane Solution R-1 27.24 g (0.20 mol) of MTMS, 49.67 g (0.20 mol) of NaPTMS, and 91.58 g of DAA were placed in a 500 mL three-necked flask and stirred at room temperature. While doing so, a mixed solution of 21.6 g of water and 0.38 g of phosphoric acid was added over 30 minutes. Then, the flask was immersed in an oil bath at 70 ° C. and stirred for 1 hour, and then the temperature of the oil bath was raised to 120 ° C. Thirty minutes after the start of temperature rise, the internal temperature of the solution reached 100 ° C., and the mixture was heated and stirred for 2 hours. The temperature inside the flask was 100 to 110 ° C. During the reaction, a total of 49 g of methanol and water, which are by-products, were distilled off. The solution of the polysiloxane and the composite oxide particles remaining in the flask was used as a mixed solution R-1. The solid content concentration of this was 34.8% by weight.
500mLの三口フラスコにMTMSを27.24g(0.20mol)、NaPTMSを49.67g(0.20mol)、DAAを91.58g仕込み、室温で攪拌しながら水21.6gとリン酸0.38gの混合液を30分かけて添加した。その後、フラスコを70℃のオイルバスに浸けて1時間攪拌した後、オイルバスを120℃まで昇温した。昇温開始から30分後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌した。フラスコ内の温度は100~110℃とした。反応中に副生成物であるメタノール、水が合計49g留出した。フラスコ内に残留したポリシロキサンと複合酸化物粒子の溶液を混合溶液R-1とした。これの固形分濃度は34.8重量%であった。 <Synthesis Example 6> Preparation of Polysiloxane Solution R-1 27.24 g (0.20 mol) of MTMS, 49.67 g (0.20 mol) of NaPTMS, and 91.58 g of DAA were placed in a 500 mL three-necked flask and stirred at room temperature. While doing so, a mixed solution of 21.6 g of water and 0.38 g of phosphoric acid was added over 30 minutes. Then, the flask was immersed in an oil bath at 70 ° C. and stirred for 1 hour, and then the temperature of the oil bath was raised to 120 ° C. Thirty minutes after the start of temperature rise, the internal temperature of the solution reached 100 ° C., and the mixture was heated and stirred for 2 hours. The temperature inside the flask was 100 to 110 ° C. During the reaction, a total of 49 g of methanol and water, which are by-products, were distilled off. The solution of the polysiloxane and the composite oxide particles remaining in the flask was used as a mixed solution R-1. The solid content concentration of this was 34.8% by weight.
以下のとおり樹脂組成物を作製し、評価した。
The resin composition was prepared and evaluated as follows.
<実施例1>
X-1(固形分濃度34.9重量%)を7.16g、TR-550(固形分濃度20.6重量%、日揮触媒化成製)を12.14g、溶媒(C)としてDAAを0.44g、MeOHを0.26g、黄色灯下で混合し、振とう撹拌した後0.45μm径のフィルタで濾過して組成物1を得た。得られた樹脂組成物中の金属含有量は1.03重量%であった。また、得られた樹脂組成物について、前述の方法に従って硬化膜を形成し、屈折率測定、耐熱性評価、耐薬品性評価及びドライエッチング評価を行った。樹脂組成物の組成を表2に、評価結果を表3に示す。なお、感光性を有していないためパターニング評価は行っておらず、パターニング評価を「-」とした。 <Example 1>
X-1 (solid content concentration 34.9% by weight) was 7.16 g, TR-550 (solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals) was 12.14 g, and DAA was 0. 44 g and 0.26 g of MeOH were mixed under a yellow lamp, stirred with shaking, and then filtered through a filter having a diameter of 0.45 μm to obtain Composition 1. The metal content in the obtained resin composition was 1.03% by weight. Further, with respect to the obtained resin composition, a cured film was formed according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation and dry etching evaluation were performed. The composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3. Since it does not have photosensitivity, patterning evaluation was not performed, and the patterning evaluation was set to "-".
X-1(固形分濃度34.9重量%)を7.16g、TR-550(固形分濃度20.6重量%、日揮触媒化成製)を12.14g、溶媒(C)としてDAAを0.44g、MeOHを0.26g、黄色灯下で混合し、振とう撹拌した後0.45μm径のフィルタで濾過して組成物1を得た。得られた樹脂組成物中の金属含有量は1.03重量%であった。また、得られた樹脂組成物について、前述の方法に従って硬化膜を形成し、屈折率測定、耐熱性評価、耐薬品性評価及びドライエッチング評価を行った。樹脂組成物の組成を表2に、評価結果を表3に示す。なお、感光性を有していないためパターニング評価は行っておらず、パターニング評価を「-」とした。 <Example 1>
X-1 (solid content concentration 34.9% by weight) was 7.16 g, TR-550 (solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals) was 12.14 g, and DAA was 0. 44 g and 0.26 g of MeOH were mixed under a yellow lamp, stirred with shaking, and then filtered through a filter having a diameter of 0.45 μm to obtain Composition 1. The metal content in the obtained resin composition was 1.03% by weight. Further, with respect to the obtained resin composition, a cured film was formed according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation and dry etching evaluation were performed. The composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3. Since it does not have photosensitivity, patterning evaluation was not performed, and the patterning evaluation was set to "-".
<実施例2>
X-2(固形分濃度34.6重量%)を7.23g、TR-550(固形分濃度20.6重量%、日揮触媒化成製)を12.14g、DAAを0.38g、MeOHを0.26g、黄色灯下で混合し、振とう撹拌した後0.45μm径のフィルタで濾過して組成物2を得た。得られた樹脂組成物中の金属含有量は1.03重量%であった。また、得られた樹脂組成物について、前述の方法に従って硬化膜を形成し、屈折率測定、耐熱性評価、耐薬品性評価及びドライエッチング評価を行った。樹脂組成物の組成を表2に、評価結果を表3に示す。なお、感光性を有していないためパターニング評価は行っておらず、パターニング評価を「-」とした。 <Example 2>
X-2 (solid content concentration 34.6% by weight) is 7.23 g, TR-550 (solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals) is 12.14 g, DAA is 0.38 g, and MeOH is 0. .26 g was mixed under a yellow light, stirred with shaking, and then filtered through a filter having a diameter of 0.45 μm to obtain Composition 2. The metal content in the obtained resin composition was 1.03% by weight. Further, with respect to the obtained resin composition, a cured film was formed according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation and dry etching evaluation were performed. The composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3. Since it does not have photosensitivity, patterning evaluation was not performed, and the patterning evaluation was set to "-".
X-2(固形分濃度34.6重量%)を7.23g、TR-550(固形分濃度20.6重量%、日揮触媒化成製)を12.14g、DAAを0.38g、MeOHを0.26g、黄色灯下で混合し、振とう撹拌した後0.45μm径のフィルタで濾過して組成物2を得た。得られた樹脂組成物中の金属含有量は1.03重量%であった。また、得られた樹脂組成物について、前述の方法に従って硬化膜を形成し、屈折率測定、耐熱性評価、耐薬品性評価及びドライエッチング評価を行った。樹脂組成物の組成を表2に、評価結果を表3に示す。なお、感光性を有していないためパターニング評価は行っておらず、パターニング評価を「-」とした。 <Example 2>
X-2 (solid content concentration 34.6% by weight) is 7.23 g, TR-550 (solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals) is 12.14 g, DAA is 0.38 g, and MeOH is 0. .26 g was mixed under a yellow light, stirred with shaking, and then filtered through a filter having a diameter of 0.45 μm to obtain Composition 2. The metal content in the obtained resin composition was 1.03% by weight. Further, with respect to the obtained resin composition, a cured film was formed according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation and dry etching evaluation were performed. The composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3. Since it does not have photosensitivity, patterning evaluation was not performed, and the patterning evaluation was set to "-".
<実施例3>
X-1(固形分濃度34.9重量%)を7.16g、TR-550(固形分濃度20.6重量%、日揮触媒化成製)を1.10g、TR-527(固形分濃度20.5重量%、日揮触媒化成製)を11.06g、DAAを0.42g、MeOHを0.26g、黄色灯下で混合し、振とう撹拌した後0.45μm径のフィルタで濾過して組成物3を得た。得られた樹脂組成物中の金属含有量は0.11重量%であった。また、得られた樹脂組成物について、前述の方法に従って硬化膜を形成し、屈折率測定、耐熱性評価、耐薬品性評価及びドライエッチング評価を行った。樹脂組成物の組成を表2に、評価結果を表3に示す。なお、感光性を有していないためパターニング評価は行っておらず、パターニング評価を「-」とした。 <Example 3>
X-1 (solid content concentration 34.9% by weight) was 7.16 g, TR-550 (solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals) was 1.10 g, and TR-527 (solid content concentration 20. 11.06 g (5% by weight, manufactured by JGC Catalysts and Chemicals), 0.42 g of DAA, 0.26 g of MeOH, mixed under a yellow light, stirred with shaking, and filtered through a filter having a diameter of 0.45 μm to form a composition. I got 3. The metal content in the obtained resin composition was 0.11% by weight. Further, with respect to the obtained resin composition, a cured film was formed according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation and dry etching evaluation were performed. The composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3. Since it does not have photosensitivity, patterning evaluation was not performed, and the patterning evaluation was set to "-".
X-1(固形分濃度34.9重量%)を7.16g、TR-550(固形分濃度20.6重量%、日揮触媒化成製)を1.10g、TR-527(固形分濃度20.5重量%、日揮触媒化成製)を11.06g、DAAを0.42g、MeOHを0.26g、黄色灯下で混合し、振とう撹拌した後0.45μm径のフィルタで濾過して組成物3を得た。得られた樹脂組成物中の金属含有量は0.11重量%であった。また、得られた樹脂組成物について、前述の方法に従って硬化膜を形成し、屈折率測定、耐熱性評価、耐薬品性評価及びドライエッチング評価を行った。樹脂組成物の組成を表2に、評価結果を表3に示す。なお、感光性を有していないためパターニング評価は行っておらず、パターニング評価を「-」とした。 <Example 3>
X-1 (solid content concentration 34.9% by weight) was 7.16 g, TR-550 (solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals) was 1.10 g, and TR-527 (solid content concentration 20. 11.06 g (5% by weight, manufactured by JGC Catalysts and Chemicals), 0.42 g of DAA, 0.26 g of MeOH, mixed under a yellow light, stirred with shaking, and filtered through a filter having a diameter of 0.45 μm to form a composition. I got 3. The metal content in the obtained resin composition was 0.11% by weight. Further, with respect to the obtained resin composition, a cured film was formed according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation and dry etching evaluation were performed. The composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3. Since it does not have photosensitivity, patterning evaluation was not performed, and the patterning evaluation was set to "-".
<実施例4>
X-1(固形分濃度34.9重量%)を7.16g、TR-550(固形分濃度20.6重量%、日揮触媒化成製)を6.07g、TR-527(固形分濃度20.5重量%、日揮触媒化成製)を6.07g、DAAを0.44g、MeOHを0.26g、黄色灯下で混合し、振とう撹拌した後0.45μm径のフィルタで濾過して組成物4を得た。得られた樹脂組成物中の金属含有量は0.54重量%であった。また、得られた樹脂組成物について、前述の方法に従って硬化膜を形成し、屈折率測定、耐熱性評価、耐薬品性評価及びドライエッチング評価を行った。樹脂組成物の組成を表2に、評価結果を表3に示す。なお、感光性を有していないためパターニング評価は行っておらず、パターニング評価を「-」とした。 <Example 4>
X-1 (solid content concentration 34.9% by weight) was 7.16 g, TR-550 (solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals) was 6.07 g, and TR-527 (solid content concentration 20. (5% by weight, manufactured by JGC Catalysts and Chemicals), 6.07 g, DAA (0.44 g), MeOH (0.26 g), mixed under a yellow light, stirred with shaking, and filtered through a filter having a diameter of 0.45 μm to form a composition. I got 4. The metal content in the obtained resin composition was 0.54% by weight. Further, with respect to the obtained resin composition, a cured film was formed according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation and dry etching evaluation were performed. The composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3. Since it does not have photosensitivity, patterning evaluation was not performed, and the patterning evaluation was set to "-".
X-1(固形分濃度34.9重量%)を7.16g、TR-550(固形分濃度20.6重量%、日揮触媒化成製)を6.07g、TR-527(固形分濃度20.5重量%、日揮触媒化成製)を6.07g、DAAを0.44g、MeOHを0.26g、黄色灯下で混合し、振とう撹拌した後0.45μm径のフィルタで濾過して組成物4を得た。得られた樹脂組成物中の金属含有量は0.54重量%であった。また、得られた樹脂組成物について、前述の方法に従って硬化膜を形成し、屈折率測定、耐熱性評価、耐薬品性評価及びドライエッチング評価を行った。樹脂組成物の組成を表2に、評価結果を表3に示す。なお、感光性を有していないためパターニング評価は行っておらず、パターニング評価を「-」とした。 <Example 4>
X-1 (solid content concentration 34.9% by weight) was 7.16 g, TR-550 (solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals) was 6.07 g, and TR-527 (solid content concentration 20. (5% by weight, manufactured by JGC Catalysts and Chemicals), 6.07 g, DAA (0.44 g), MeOH (0.26 g), mixed under a yellow light, stirred with shaking, and filtered through a filter having a diameter of 0.45 μm to form a composition. I got 4. The metal content in the obtained resin composition was 0.54% by weight. Further, with respect to the obtained resin composition, a cured film was formed according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation and dry etching evaluation were performed. The composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3. Since it does not have photosensitivity, patterning evaluation was not performed, and the patterning evaluation was set to "-".
<実施例5>
X-1(固形分濃度34.9重量%)を7.16g、TR-550(固形分濃度20.6重量%、日揮触媒化成製)を10.42g、TR-527(固形分濃度20.5重量%、日揮触媒化成製)を1.72g、DAAを0.44g、MeOHを0.26g、黄色灯下で混合し、振とう撹拌した後0.45μm径のフィルタで濾過して組成物5を得た。得られた樹脂組成物中の金属含有量は0.86重量%であった。また、得られた樹脂組成物について、前述の方法に従って硬化膜を形成し、屈折率測定、耐熱性評価、耐薬品性評価及びドライエッチング評価を行った。樹脂組成物の組成を表2に、評価結果を表3に示す。なお、感光性を有していないためパターニング評価は行っておらず、パターニング評価を「-」とした。 <Example 5>
X-1 (solid content concentration 34.9% by weight) was 7.16 g, TR-550 (solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals) was 10.42 g, and TR-527 (solid content concentration 20. 1.72 g (5% by weight, manufactured by JGC Catalysts and Chemicals), 0.44 g of DAA, 0.26 g of MeOH, mixed under a yellow light, stirred with shaking, and filtered through a filter having a diameter of 0.45 μm to form a composition. I got 5. The metal content in the obtained resin composition was 0.86% by weight. Further, with respect to the obtained resin composition, a cured film was formed according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation and dry etching evaluation were performed. The composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3. Since it does not have photosensitivity, patterning evaluation was not performed, and the patterning evaluation was set to "-".
X-1(固形分濃度34.9重量%)を7.16g、TR-550(固形分濃度20.6重量%、日揮触媒化成製)を10.42g、TR-527(固形分濃度20.5重量%、日揮触媒化成製)を1.72g、DAAを0.44g、MeOHを0.26g、黄色灯下で混合し、振とう撹拌した後0.45μm径のフィルタで濾過して組成物5を得た。得られた樹脂組成物中の金属含有量は0.86重量%であった。また、得られた樹脂組成物について、前述の方法に従って硬化膜を形成し、屈折率測定、耐熱性評価、耐薬品性評価及びドライエッチング評価を行った。樹脂組成物の組成を表2に、評価結果を表3に示す。なお、感光性を有していないためパターニング評価は行っておらず、パターニング評価を「-」とした。 <Example 5>
X-1 (solid content concentration 34.9% by weight) was 7.16 g, TR-550 (solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals) was 10.42 g, and TR-527 (solid content concentration 20. 1.72 g (5% by weight, manufactured by JGC Catalysts and Chemicals), 0.44 g of DAA, 0.26 g of MeOH, mixed under a yellow light, stirred with shaking, and filtered through a filter having a diameter of 0.45 μm to form a composition. I got 5. The metal content in the obtained resin composition was 0.86% by weight. Further, with respect to the obtained resin composition, a cured film was formed according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation and dry etching evaluation were performed. The composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3. Since it does not have photosensitivity, patterning evaluation was not performed, and the patterning evaluation was set to "-".
<実施例6>
X-3(固形分濃度34.8重量%)を7.18g、TR-550(固形分濃度20.6重量%、日揮触媒化成製)を6.07g、TR-527(固形分濃度20.5重量%、日揮触媒化成製)を6.07g、DAAを0.42g、MeOHを0.26g、黄色灯下で混合し、振とう撹拌した後0.45μm径のフィルタで濾過して組成物6を得た。得られた樹脂組成物中の金属含有量は0.54重量%であった。また、得られた樹脂組成物について、前述の方法に従って硬化膜を形成し、屈折率測定、耐熱性評価、耐薬品性評価及びドライエッチング評価を行った。樹脂組成物の組成を表2に、評価結果を表3に示す。なお、感光性を有していないためパターニング評価は行っておらず、パターニング評価を「-」とした。 <Example 6>
7.18 g of X-3 (solid content concentration 34.8% by weight), 6.07 g of TR-550 (solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals), TR-527 (solid content concentration 20. (5% by weight, manufactured by JGC Catalysts and Chemicals), 6.07 g, DAA (0.42 g), MeOH (0.26 g), mixed under a yellow light, stirred with shaking, and filtered through a filter having a diameter of 0.45 μm to form a composition. I got 6. The metal content in the obtained resin composition was 0.54% by weight. Further, with respect to the obtained resin composition, a cured film was formed according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation and dry etching evaluation were performed. The composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3. Since it does not have photosensitivity, patterning evaluation was not performed, and the patterning evaluation was set to "-".
X-3(固形分濃度34.8重量%)を7.18g、TR-550(固形分濃度20.6重量%、日揮触媒化成製)を6.07g、TR-527(固形分濃度20.5重量%、日揮触媒化成製)を6.07g、DAAを0.42g、MeOHを0.26g、黄色灯下で混合し、振とう撹拌した後0.45μm径のフィルタで濾過して組成物6を得た。得られた樹脂組成物中の金属含有量は0.54重量%であった。また、得られた樹脂組成物について、前述の方法に従って硬化膜を形成し、屈折率測定、耐熱性評価、耐薬品性評価及びドライエッチング評価を行った。樹脂組成物の組成を表2に、評価結果を表3に示す。なお、感光性を有していないためパターニング評価は行っておらず、パターニング評価を「-」とした。 <Example 6>
7.18 g of X-3 (solid content concentration 34.8% by weight), 6.07 g of TR-550 (solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals), TR-527 (solid content concentration 20. (5% by weight, manufactured by JGC Catalysts and Chemicals), 6.07 g, DAA (0.42 g), MeOH (0.26 g), mixed under a yellow light, stirred with shaking, and filtered through a filter having a diameter of 0.45 μm to form a composition. I got 6. The metal content in the obtained resin composition was 0.54% by weight. Further, with respect to the obtained resin composition, a cured film was formed according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation and dry etching evaluation were performed. The composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3. Since it does not have photosensitivity, patterning evaluation was not performed, and the patterning evaluation was set to "-".
<実施例7>
X-3(固形分濃度34.8重量%)を7.18g、TR-550(固形分濃度20.6重量%、日揮触媒化成製)を6.07g、TR-527(固形分濃度20.5重量%、日揮触媒化成製)を6.07g、DAAを0.28、THP-17を0.40g、黄色灯下で混合し、振とう撹拌した後0.45μm径のフィルタで濾過して組成物7を得た。得られた樹脂組成物中の金属含有量は0.51重量%であった。また、得られた樹脂組成物について、前述の方法に従って硬化膜を形成し、屈折率測定、耐熱性評価、耐薬品性評価、ドライエッチング評価及びパターニング評価を行った。樹脂組成物の組成を表2に、評価結果を表3に示す。 <Example 7>
7.18 g of X-3 (solid content concentration 34.8% by weight), 6.07 g of TR-550 (solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals), TR-527 (solid content concentration 20. (5% by weight, manufactured by JGC Catalysts and Chemicals) was mixed at 6.07 g, DAA at 0.28, THP-17 at 0.40 g under a yellow light, stirred with shaking, and then filtered through a filter having a diameter of 0.45 μm. Composition 7 was obtained. The metal content in the obtained resin composition was 0.51% by weight. Further, a cured film was formed on the obtained resin composition according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation, dry etching evaluation and patterning evaluation were performed. The composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3.
X-3(固形分濃度34.8重量%)を7.18g、TR-550(固形分濃度20.6重量%、日揮触媒化成製)を6.07g、TR-527(固形分濃度20.5重量%、日揮触媒化成製)を6.07g、DAAを0.28、THP-17を0.40g、黄色灯下で混合し、振とう撹拌した後0.45μm径のフィルタで濾過して組成物7を得た。得られた樹脂組成物中の金属含有量は0.51重量%であった。また、得られた樹脂組成物について、前述の方法に従って硬化膜を形成し、屈折率測定、耐熱性評価、耐薬品性評価、ドライエッチング評価及びパターニング評価を行った。樹脂組成物の組成を表2に、評価結果を表3に示す。 <Example 7>
7.18 g of X-3 (solid content concentration 34.8% by weight), 6.07 g of TR-550 (solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals), TR-527 (solid content concentration 20. (5% by weight, manufactured by JGC Catalysts and Chemicals) was mixed at 6.07 g, DAA at 0.28, THP-17 at 0.40 g under a yellow light, stirred with shaking, and then filtered through a filter having a diameter of 0.45 μm. Composition 7 was obtained. The metal content in the obtained resin composition was 0.51% by weight. Further, a cured film was formed on the obtained resin composition according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation, dry etching evaluation and patterning evaluation were performed. The composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3.
<実施例8>
X-4(固形分濃度34.7重量%)を14.41g、DAAを1.59g、PGMEAを3.60g、THP-17を0.40g、黄色灯下で混合し、振とう撹拌した後0.45μm径のフィルタで濾過して組成物8を得た。得られた樹脂組成物中の金属含有量は0.53重量%であった。また、得られた樹脂組成物について、前述の方法に従って硬化膜を形成し、屈折率測定、耐熱性評価、耐薬品性評価、ドライエッチング評価及びパターニング評価を行った。樹脂組成物の組成を表2に、評価結果を表3に示す。 <Example 8>
After mixing 14.41 g of X-4 (solid content concentration 34.7% by weight), 1.59 g of DAA, 3.60 g of PGMEA, 0.40 g of THP-17 under a yellow light, and shaking and stirring. The composition 8 was obtained by filtering with a filter having a diameter of 0.45 μm. The metal content in the obtained resin composition was 0.53% by weight. Further, a cured film was formed on the obtained resin composition according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation, dry etching evaluation and patterning evaluation were performed. The composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3.
X-4(固形分濃度34.7重量%)を14.41g、DAAを1.59g、PGMEAを3.60g、THP-17を0.40g、黄色灯下で混合し、振とう撹拌した後0.45μm径のフィルタで濾過して組成物8を得た。得られた樹脂組成物中の金属含有量は0.53重量%であった。また、得られた樹脂組成物について、前述の方法に従って硬化膜を形成し、屈折率測定、耐熱性評価、耐薬品性評価、ドライエッチング評価及びパターニング評価を行った。樹脂組成物の組成を表2に、評価結果を表3に示す。 <Example 8>
After mixing 14.41 g of X-4 (solid content concentration 34.7% by weight), 1.59 g of DAA, 3.60 g of PGMEA, 0.40 g of THP-17 under a yellow light, and shaking and stirring. The composition 8 was obtained by filtering with a filter having a diameter of 0.45 μm. The metal content in the obtained resin composition was 0.53% by weight. Further, a cured film was formed on the obtained resin composition according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation, dry etching evaluation and patterning evaluation were performed. The composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3.
<実施例9>
X-5(固形分濃度34.7重量%)を14.33g、DAAを1.67g、PGMEAを3.60g、THP-17を0.40g、黄色灯下で混合し、振とう撹拌した後0.45μm径のフィルタで濾過して組成物9を得た。得られた樹脂組成物中の金属含有量は0.52重量%であった。また、得られた樹脂組成物について、前述の方法に従って硬化膜を形成し、屈折率測定、耐熱性評価、耐薬品性評価、ドライエッチング評価及びパターニング評価を行った。樹脂組成物の組成を表2に、評価結果を表3に示す。 <Example 9>
After mixing 14.33 g of X-5 (solid content concentration 34.7% by weight), 1.67 g of DAA, 3.60 g of PGMEA, 0.40 g of THP-17 under a yellow light, and shaking and stirring. The composition 9 was obtained by filtering with a filter having a diameter of 0.45 μm. The metal content in the obtained resin composition was 0.52% by weight. Further, a cured film was formed on the obtained resin composition according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation, dry etching evaluation and patterning evaluation were performed. The composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3.
X-5(固形分濃度34.7重量%)を14.33g、DAAを1.67g、PGMEAを3.60g、THP-17を0.40g、黄色灯下で混合し、振とう撹拌した後0.45μm径のフィルタで濾過して組成物9を得た。得られた樹脂組成物中の金属含有量は0.52重量%であった。また、得られた樹脂組成物について、前述の方法に従って硬化膜を形成し、屈折率測定、耐熱性評価、耐薬品性評価、ドライエッチング評価及びパターニング評価を行った。樹脂組成物の組成を表2に、評価結果を表3に示す。 <Example 9>
After mixing 14.33 g of X-5 (solid content concentration 34.7% by weight), 1.67 g of DAA, 3.60 g of PGMEA, 0.40 g of THP-17 under a yellow light, and shaking and stirring. The composition 9 was obtained by filtering with a filter having a diameter of 0.45 μm. The metal content in the obtained resin composition was 0.52% by weight. Further, a cured film was formed on the obtained resin composition according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation, dry etching evaluation and patterning evaluation were performed. The composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3.
<比較例1>
R-1(固形分濃度34.8重量%)を7.23g、TR-550(固形分濃度20.6重量%、日揮触媒化成製)を12.14g、DAAを0.38g、MeOHを0.26g、黄色灯下で混合し、振とう撹拌した後0.45μm径のフィルタで濾過して組成物10を得た。得られた樹脂組成物中の金属含有量は1.03重量%であった。また、得られた樹脂組成物について、前述の方法に従って硬化膜を形成し、屈折率測定、耐熱性評価、耐薬品性評価、ドライエッチング評価を行った。樹脂組成物の組成を表2に、評価結果を表3に示す。 <Comparative example 1>
R-1 (solid content concentration 34.8% by weight) is 7.23 g, TR-550 (solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals) is 12.14 g, DAA is 0.38 g, and MeOH is 0. .26 g was mixed under a yellow light, stirred with shaking, and then filtered through a filter having a diameter of 0.45 μm to obtain composition 10. The metal content in the obtained resin composition was 1.03% by weight. Further, a cured film was formed on the obtained resin composition according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation, and dry etching evaluation were performed. The composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3.
R-1(固形分濃度34.8重量%)を7.23g、TR-550(固形分濃度20.6重量%、日揮触媒化成製)を12.14g、DAAを0.38g、MeOHを0.26g、黄色灯下で混合し、振とう撹拌した後0.45μm径のフィルタで濾過して組成物10を得た。得られた樹脂組成物中の金属含有量は1.03重量%であった。また、得られた樹脂組成物について、前述の方法に従って硬化膜を形成し、屈折率測定、耐熱性評価、耐薬品性評価、ドライエッチング評価を行った。樹脂組成物の組成を表2に、評価結果を表3に示す。 <Comparative example 1>
R-1 (solid content concentration 34.8% by weight) is 7.23 g, TR-550 (solid content concentration 20.6% by weight, manufactured by JGC Catalysts and Chemicals) is 12.14 g, DAA is 0.38 g, and MeOH is 0. .26 g was mixed under a yellow light, stirred with shaking, and then filtered through a filter having a diameter of 0.45 μm to obtain composition 10. The metal content in the obtained resin composition was 1.03% by weight. Further, a cured film was formed on the obtained resin composition according to the above-mentioned method, and refractive index measurement, heat resistance evaluation, chemical resistance evaluation, and dry etching evaluation were performed. The composition of the resin composition is shown in Table 2, and the evaluation results are shown in Table 3.
実施例1~9と比較例1の対比により、本発明の樹脂組成物は耐熱性及びドライエッチング性に優れた組成物であることがわかる。また、実施例3~9はエッチング性に優れ、特に実施例8及び9が優れていることがわかる。さらに、実施例6~9は耐薬品性に優れていることが分かった。実施例7~9については感光性のパターニングが可能であった。
From the comparison between Examples 1 to 9 and Comparative Example 1, it can be seen that the resin composition of the present invention is a composition having excellent heat resistance and dry etching properties. Further, it can be seen that Examples 3 to 9 are excellent in etching properties, and Examples 8 and 9 are particularly excellent. Further, it was found that Examples 6 to 9 were excellent in chemical resistance. Photosensitivity patterning was possible for Examples 7-9.
Claims (21)
- 樹脂(A)、
アルミニウム、スズ及びジルコニウムからなる群より選択される1種類以上の元素総含有量が2重量%以上15重量%以下であるチタン複合酸化物粒子(B1)と、アルミニウム、スズ及びジルコニウムからなる群より選択される1種類以上の元素総含有量が2重量%未満であるチタン複合酸化物粒子(B2)、の2種類の粒子、及び
溶媒(C)、を含有する樹脂組成物。 Resin (A),
From the group consisting of titanium composite oxide particles (B1) having a total content of one or more elements selected from the group consisting of aluminum, tin and zirconium of 2% by weight or more and 15% by weight or less, and the group consisting of aluminum, tin and zirconium. A resin composition containing two types of titanium composite oxide particles (B2) having a total content of one or more selected elements of less than 2% by weight, and a solvent (C). - 粒子(B2)のアルミニウム、スズ及びジルコニウムからなる群より選択される1種類以上の元素総含有量が0.5重量%未満である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the total content of one or more elements selected from the group consisting of aluminum, tin and zirconium of the particles (B2) is less than 0.5% by weight.
- 粒子(B2)のアルミニウム、スズ及びジルコニウムからなる群より選択される1種類以上の元素総含有量が0.1重量%未満である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the total content of one or more elements selected from the group consisting of aluminum, tin and zirconium of the particles (B2) is less than 0.1% by weight.
- 粒子(B1)と粒子(B2)の混合重量比率(B1/B2)が、0.25~4である、請求項1~3のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein the mixed weight ratio (B1 / B2) of the particles (B1) and the particles (B2) is 0.25 to 0.25 to 4. Twice
- 樹脂組成物中に含まれるアルミニウム、スズ及びジルコニウムの全量が、樹脂組成物の全量100重量%に対して、0.01重量%以上1重量%未満である請求項1~4のいずれかに記載の樹脂組成物。 7. Resin composition.
- 前記樹脂(A)がポリシロキサン(A1)である請求項1~5のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 5, wherein the resin (A) is a polysiloxane (A1).
- ポリシロキサン(A1)の波長633nmにおける屈折率が1.60以上1.80未満である請求項6に記載の樹脂組成物。 The resin composition according to claim 6, wherein the polysiloxane (A1) has a refractive index of 1.60 or more and less than 1.80 at a wavelength of 633 nm.
- ポリシロキサン(A1)と、粒子(B1)又は粒子(B2)とが結合しているポリシロキサンと粒子の複合体(E)を含有する請求項6又は7に記載の樹脂組成物。 The resin composition according to claim 6 or 7, which contains the polysiloxane (A1) and the composite (E) of the polysiloxane and the particles in which the particles (B1) or the particles (B2) are bonded.
- ポリシロキサン(A1)が、式(1)で示される構造を有するポリシロキサン(a1)である、請求項6~8のいずれかに記載の樹脂組成物。
- ポリシロキサン(A1)が式(2)で示される構造及び/又は式(3)で示される構造を有する請求項6~9のいずれかに記載の樹脂組成物。
- 式(1)で示される構造を有するポリシロキサン(a1)、
アルミニウム、スズ、ジルコニウム及びケイ素からなる群より選択される1種類以上と、チタンの複合酸化物である粒子(B)、
並びに溶媒(C)、を含有する樹脂組成物。
One or more selected from the group consisting of aluminum, tin, zirconium and silicon, and particles (B) which are composite oxides of titanium,
A resin composition containing the solvent (C).
- 樹脂組成物中に含まれるアルミニウム、スズ及びジルコニウムの全量が、樹脂組成物の全量100重量%に対して、0.01重量%以上1重量%未満である請求項11に記載の樹脂組成物。 The resin composition according to claim 11, wherein the total amount of aluminum, tin and zirconium contained in the resin composition is 0.01% by weight or more and less than 1% by weight with respect to 100% by weight of the total amount of the resin composition.
- 粒子(B)が、アルミニウム、スズ及びジルコニウムからなる群より選択される1種類以上と、チタンの複合酸化物である粒子(B3)と、
ケイ素とチタンの複合酸化物である粒子(B4)、の2種類の粒子を含有する、請求項11又は12に記載の樹脂組成物。 The particles (B) are one or more selected from the group consisting of aluminum, tin and zirconium, and the particles (B3) which are composite oxides of titanium.
The resin composition according to claim 11 or 12, which contains two types of particles, particles (B4) which are composite oxides of silicon and titanium. - ポリシロキサン(a1)が式(2)で示される構造及び/又は式(3)で示される構造を有する請求項11~13のいずれかに記載の樹脂組成物。
- さらにキノンジアジド化合物(D)を含有する請求項1~14のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 14, further containing the quinone diazide compound (D).
- ポリシロキサン(a1)と粒子(B)とが結合しているポリシロキサンと粒子の複合体(E1)を含有する請求項11~15のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 11 to 15, which contains a composite (E1) of polysiloxane and particles in which polysiloxane (a1) and particles (B) are bonded.
- 請求項1~16のいずれかに記載の樹脂組成物を硬化させてなる硬化膜。 A cured film obtained by curing the resin composition according to any one of claims 1 to 16.
- 請求項17に記載の硬化膜をドライエッチングによって加工するマイクロレンズの製造方法。 A method for manufacturing a microlens, wherein the cured film according to claim 17 is processed by dry etching.
- 請求項17に記載の硬化膜を具備する固体撮像素子。 A solid-state image sensor comprising the cured film according to claim 17.
- 請求項17に記載の硬化膜からなるマイクロレンズ。 The microlens made of the cured film according to claim 17.
- 請求項17に記載の硬化膜を具備するオンセル方式又はフイルム方式のタッチパネル。 An on-cell type or film type touch panel provided with the cured film according to claim 17.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021517709A JPWO2021193221A1 (en) | 2020-03-24 | 2021-03-16 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020052294 | 2020-03-24 | ||
JP2020-052294 | 2020-03-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021193221A1 true WO2021193221A1 (en) | 2021-09-30 |
Family
ID=77892098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/010522 WO2021193221A1 (en) | 2020-03-24 | 2021-03-16 | Resin composition, cured film, method for producing microlens, solid state imaging device, microlens, and touch panel |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2021193221A1 (en) |
TW (1) | TW202136421A (en) |
WO (1) | WO2021193221A1 (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0725727A (en) * | 1993-07-12 | 1995-01-27 | Toshiba Silicone Co Ltd | Complex globular powder and cosmetic containing the same |
JPH08505858A (en) * | 1991-08-09 | 1996-06-25 | イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー | Antibacterial composition, production method and use thereof |
JPH08253321A (en) * | 1995-01-12 | 1996-10-01 | Degussa Ag | Surface-modified mixed oxide prepared by highly thermal decomposition and its preparation |
JP2010229191A (en) * | 2009-03-26 | 2010-10-14 | Mitsubishi Engineering Plastics Corp | Aromatic polycarbonate resin composition and molded article |
JP2012087316A (en) * | 2005-10-03 | 2012-05-10 | Toray Ind Inc | Siloxane-based resin composition, cured film, and optical article |
WO2016143895A1 (en) * | 2015-03-12 | 2016-09-15 | 出光興産株式会社 | Polycarbonate-based resin composition and molded article thereof |
JP2016183320A (en) * | 2015-03-26 | 2016-10-20 | 東洋インキScホールディングス株式会社 | Ray-reflecting resin composition and molded article |
JP2017014522A (en) * | 2016-08-29 | 2017-01-19 | 東洋インキScホールディングス株式会社 | Resin composition for color molding |
JP2018012746A (en) * | 2016-07-19 | 2018-01-25 | 三菱ケミカル株式会社 | White resin composition and white molded article and white laminate comprising the same |
JP2019143097A (en) * | 2018-02-23 | 2019-08-29 | 三井化学株式会社 | Polyester resin composition for reflective material, and reflective material |
-
2021
- 2021-03-16 JP JP2021517709A patent/JPWO2021193221A1/ja active Pending
- 2021-03-16 WO PCT/JP2021/010522 patent/WO2021193221A1/en active Application Filing
- 2021-03-17 TW TW110109611A patent/TW202136421A/en unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08505858A (en) * | 1991-08-09 | 1996-06-25 | イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー | Antibacterial composition, production method and use thereof |
JPH0725727A (en) * | 1993-07-12 | 1995-01-27 | Toshiba Silicone Co Ltd | Complex globular powder and cosmetic containing the same |
JPH08253321A (en) * | 1995-01-12 | 1996-10-01 | Degussa Ag | Surface-modified mixed oxide prepared by highly thermal decomposition and its preparation |
JP2012087316A (en) * | 2005-10-03 | 2012-05-10 | Toray Ind Inc | Siloxane-based resin composition, cured film, and optical article |
JP2010229191A (en) * | 2009-03-26 | 2010-10-14 | Mitsubishi Engineering Plastics Corp | Aromatic polycarbonate resin composition and molded article |
WO2016143895A1 (en) * | 2015-03-12 | 2016-09-15 | 出光興産株式会社 | Polycarbonate-based resin composition and molded article thereof |
JP2016183320A (en) * | 2015-03-26 | 2016-10-20 | 東洋インキScホールディングス株式会社 | Ray-reflecting resin composition and molded article |
JP2018012746A (en) * | 2016-07-19 | 2018-01-25 | 三菱ケミカル株式会社 | White resin composition and white molded article and white laminate comprising the same |
JP2017014522A (en) * | 2016-08-29 | 2017-01-19 | 東洋インキScホールディングス株式会社 | Resin composition for color molding |
JP2019143097A (en) * | 2018-02-23 | 2019-08-29 | 三井化学株式会社 | Polyester resin composition for reflective material, and reflective material |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021193221A1 (en) | 2021-09-30 |
TW202136421A (en) | 2021-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101739607B1 (en) | Positive photosensitive resin composition, cured film formed from same, and element having cured film | |
JP5423802B2 (en) | Positive photosensitive resin composition, cured film and optical device using the same | |
JP5764863B2 (en) | Solid-state image sensor | |
JP5765235B2 (en) | Photosensitive composition, cured film formed therefrom, and device having cured film | |
US8936891B2 (en) | Photosensitive polysiloxane composition and uses thereof | |
TWI648346B (en) | Positive photosensitive composition | |
JP5444704B2 (en) | Photosensitive composition, cured film formed therefrom, and device having cured film | |
US9063419B2 (en) | Photo-curing polysiloxane composition and application thereof | |
JP5343649B2 (en) | Photosensitive composition, cured film formed therefrom, and device having cured film | |
JP5540632B2 (en) | Photosensitive composition, cured film formed therefrom, and device having cured film | |
KR102493962B1 (en) | Photosensitive resin composition and cured film prepared therefrom | |
KR102245396B1 (en) | Positive photosensitive resin composition, cured film formed by curing same, and optical device equipped with same | |
JP5233526B2 (en) | Photosensitive composition, cured film formed therefrom, and device having cured film | |
JP2018060191A (en) | Photosensitive resin composition and cured film prepared therefrom | |
WO2021193221A1 (en) | Resin composition, cured film, method for producing microlens, solid state imaging device, microlens, and touch panel | |
US11789363B2 (en) | Positive photosensitive resin composition, cured film therefrom, and solid state image sensor comprising the same | |
JP6186766B2 (en) | Photosensitive siloxane composition, cured film formed therefrom, and device having the cured film | |
JP2010262132A (en) | Method of forming silica-based coating film, and device and member including silica-based coating film | |
CN107179652B (en) | Positive photosensitive polysiloxane composition and application thereof | |
CN111770905A (en) | Organically modified metal oxide or metalloid oxide polymer films |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021517709 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21775761 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21775761 Country of ref document: EP Kind code of ref document: A1 |