Nothing Special   »   [go: up one dir, main page]

WO2021192231A1 - 回転子、電動機、圧縮機、冷凍サイクル装置及び空気調和装置 - Google Patents

回転子、電動機、圧縮機、冷凍サイクル装置及び空気調和装置 Download PDF

Info

Publication number
WO2021192231A1
WO2021192231A1 PCT/JP2020/014046 JP2020014046W WO2021192231A1 WO 2021192231 A1 WO2021192231 A1 WO 2021192231A1 JP 2020014046 W JP2020014046 W JP 2020014046W WO 2021192231 A1 WO2021192231 A1 WO 2021192231A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
rotor core
permanent magnet
core
area
Prior art date
Application number
PCT/JP2020/014046
Other languages
English (en)
French (fr)
Inventor
勇二 廣澤
昌弘 仁吾
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP20927565.0A priority Critical patent/EP4131729A4/en
Priority to PCT/JP2020/014046 priority patent/WO2021192231A1/ja
Priority to AU2020438588A priority patent/AU2020438588B2/en
Priority to US17/908,171 priority patent/US20230118265A1/en
Priority to JP2022510333A priority patent/JP7345633B2/ja
Priority to CN202080098786.9A priority patent/CN115298929A/zh
Publication of WO2021192231A1 publication Critical patent/WO2021192231A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • This disclosure relates to rotors, motors, compressors, refrigeration cycle devices and air conditioners.
  • Patent Document 1 Motors having a rotor core, a rotor having a permanent magnet attached to the rotor core, and a stator are widespread. See, for example, Patent Document 1.
  • the permanent magnet contains disprosium in order to prevent the permanent magnet from being demagnetized by the demagnetizing field caused by the rotating magnetic field of the stator.
  • dysprosium is expensive because it is a rare earth resource. Therefore, in order to reduce the cost, it is necessary to reduce the content of dysprosium, and there are cases where the demagnetization of the permanent magnet cannot be sufficiently suppressed.
  • a technique for suppressing demagnetization of a permanent magnet while reducing the content of dysprosium is desired.
  • the purpose of this disclosure is to suppress demagnetization of permanent magnets while suppressing costs.
  • the rotor has a rotation shaft extending in the axial direction, a first iron core portion arranged in the axial direction, and a second iron core portion, and is supported by the rotation shaft.
  • the area of the portion where the second rotor core exists is wider than the area of the portion where the first rotor core exists.
  • demagnetization of permanent magnets can be suppressed while suppressing costs.
  • FIG. It is sectional drawing which shows the structure of the electric motor which concerns on Embodiment 1.
  • FIG. It is sectional drawing which shows the structure of the rotor of the electric motor which concerns on Embodiment 1.
  • FIG. It is a top view which shows the structure of the 1st iron core part of the 1st rotor core shown in FIG.
  • FIG. It is a top view which shows the structure of the 2nd rotor core shown in FIG. (A) is an enlarged plan view showing the structure around the magnet insertion hole of the first rotor core shown in FIG.
  • (B) is an enlarged plan view showing the configuration around the through hole of the second rotor core shown in FIG.
  • FIG. (A) is an enlarged plan view showing the configuration around the magnet insertion hole of the first rotor core of the rotor according to the fourth modification of the first embodiment.
  • (B) is an enlarged plan view showing the configuration around the through hole of the second rotor core of the rotor according to the fourth modification of the first embodiment.
  • FIG. It is an enlarged plan view which shows the structure around the through hole of the 2nd rotor core of the rotor which concerns on the modification 5 of Embodiment 1.
  • FIG. It is a top view which shows the structure of the 2nd rotor core of the rotor which concerns on the modification 6 of Embodiment 1.
  • FIG. It is sectional drawing which shows the structure of the rotor which concerns on Embodiment 2.
  • FIG. It is a figure which shows the structure of the refrigerating cycle apparatus which concerns on Embodiment 5.
  • the drawing shows the xyz Cartesian coordinate system for easy understanding of the description.
  • the z-axis is a coordinate axis parallel to the axis of the rotor.
  • the x-axis is a coordinate axis orthogonal to the z-axis.
  • the y-axis is a coordinate axis orthogonal to both the x-axis and the z-axis.
  • FIG. 1 is a cross-sectional view showing the configuration of the motor 100 according to the first embodiment.
  • the electric motor 100 has a rotor 1 having a shaft 3 as a rotation shaft and a stator 5.
  • the rotor 1 is arranged inside the stator 5. That is, the electric motor 100 is an inner rotor type electric motor.
  • An air gap G is formed between the rotor 1 and the stator 5.
  • the air gap G is, for example, a gap of 0.5 mm.
  • the shaft 3 extends in the z-axis direction. In the following description, the z-axis direction is also referred to as "axial direction”.
  • the direction along the circumference of the circle centered on the axis C1 of the shaft 3 is the "circumferential direction", and the direction of the straight line passing through the axis C1 orthogonal to the z-axis direction. Is called "radial direction”.
  • the stator 5 has a stator core 50 and a coil 55 wound around the stator core 50.
  • the stator core 50 is formed by fixing a plurality of electromagnetic steel sheets laminated in the z-axis direction by caulking or the like.
  • the thickness of the electromagnetic steel sheet is, for example, a determined value included in the range of 0.1 mm to 0.7 mm.
  • the stator core 50 has an annular yoke 51 centered on the axis C1 and a plurality of teeth 52 extending radially inward from the yoke 51.
  • the plurality of teeth 52 are arranged at equal intervals in the circumferential direction R1.
  • the radial inner tip of the teeth 52 faces the outer peripheral surface of the rotor 1 via the air gap G.
  • the number of teeth 52 is 9, but the number is not limited to 9, and may be set to any number.
  • a coil 55 that generates a rotating magnetic field is wound around each of the plurality of teeth 52.
  • the coil 55 is formed, for example, by a centralized winding in which a magnet wire is wound directly around a tooth 52 via an insulating portion 54.
  • the number of turns and the wire diameter of the coil 55 are determined based on the required characteristics (rotation speed, torque, etc.), voltage specifications, and cross-sectional area of the slot.
  • the yoke 51 is developed in a strip shape so as to be easily wound, and a magnet wire having a wire diameter of about 1.0 mm is wound around each tooth 52 for about 80 turns. After the magnet wire is wound around each tooth 52, the strip-shaped yoke 51 is rolled into an annular shape, and both ends of the yoke 51 are welded to form an annular stator 5.
  • FIG. 2 is a cross-sectional view showing the configuration of the rotor 1 according to the first embodiment.
  • the rotor 1 includes a shaft 3, a first rotor core 10 supported by the shaft 3, and a permanent magnet 2 attached to the first rotor core 10.
  • the first rotor core 10 is fitted to the shaft 3 by shrink fitting or the like.
  • the shaft 3 is not shown.
  • the first rotor core 10 has a first iron core portion 10a and a second iron core portion 10b arranged in the z-axis direction.
  • the first iron core portion 10a and the second iron core portion 10b have a cylindrical shape.
  • the first iron core portion 10a and the second iron core portion 10b are formed of, for example, a plurality of electromagnetic steel sheets laminated in the z-axis direction.
  • the first iron core portion 10a and the second iron core portion 10b are formed by, for example, fixing a plurality of electromagnetic steel sheets laminated in the z-axis direction by caulking or the like.
  • the thickness of one electromagnetic steel sheet constituting the first iron core portion 10a and the second iron core portion 10b is a determined value included in the range of 0.1 mm to 0.7 mm. In the first embodiment, the thickness of one electromagnetic steel sheet constituting the first iron core portion 10a and the second iron core portion 10b is, for example, 0.35 mm.
  • FIG. 3 is a plan view showing the configuration of the first iron core portion 10a of the first rotor core 10 shown in FIG.
  • the configuration of the first iron core portion 10a is the same as the configuration of the second iron core portion 10b. Therefore, in the following description, the first iron core portion 10a will be described as an example.
  • the first iron core portion 10a has a first hollow portion 15 into which the shaft 3 shown in FIG. 1 is inserted.
  • the first iron core portion 10a has a plurality of magnet insertion holes 11 arranged at intervals in the circumferential direction R1.
  • the number of magnet insertion holes 11 corresponds to the number of poles of the rotor 1.
  • the first iron core portion 10a has six magnet insertion holes 11.
  • the number of magnet insertion holes 11 is not limited to six, and may be an even number of two or more. Further, in the following description, a straight line extending in the radial direction through the center of the circumferential direction R1 of the magnet insertion hole 11 is referred to as a "first center line M1".
  • the magnet insertion hole 11 penetrates the first iron core portion 10a in the z-axis direction.
  • the shape of the magnet insertion hole 11 when viewed in the z-axis direction is, for example, a straight line.
  • one permanent magnet 2 is inserted into one magnet insertion hole 11.
  • the shape of the magnet insertion hole 11 when viewed in the z-axis direction may be a V-shape with a convex shape inward in the radial direction, and is convex outward in the radial direction. It may have a V-shape with the face facing.
  • two or more permanent magnets 2 may be inserted into one magnet insertion hole 11.
  • the permanent magnet 2 includes a plurality of first magnet portions 2a attached to the first iron core portion 10a and a plurality of second magnet portions attached to the second iron core portion 10b. It has 2b and. The first magnet portion 2a and the second magnet portion 2b are inserted into the magnet insertion holes 11. That is, the rotor 1 has an IPM (Interior Permanent Magnet) structure.
  • the rotor 1 is not limited to the IPM structure, and may have an SPM (Surface Permanent Magnet) structure.
  • the permanent magnet 2 is, for example, a rare earth magnet.
  • the permanent magnet 2 is a neodymium rare earth magnet containing neodymium (Nd) -iron (Fe) -boron (B).
  • the magnetic energy of neodium rare earth magnets is higher than that of other magnets such as ferrite magnets. Thereby, the efficiency and output of the electric motor 100 can be improved.
  • the permanent magnet 2 contains dysprosium (Dy). As a result, the coercive force of the permanent magnet 2 is improved.
  • the Dy content in the permanent magnet hereinafter, also referred to as “Dy weight ratio” will be described later.
  • the rotor 1 has a second rotor core 20 arranged between the first iron core portion 10a and the second iron core portion 10b.
  • the second rotor core 20 has a cylindrical shape.
  • the second rotor core 20 is fixed to the first iron core portion 10a and the second iron core portion 10b.
  • the second rotor core 20 is fixed to the first iron core portion 10a and the second iron core portion 10b by caulking.
  • the rotor core body 4 composed of the first rotor core 10 and the second rotor core 20 is formed.
  • the second rotor core 20 is not limited to caulking, and may be fixed to the first iron core portion 10a and the second iron core portion 10b by other methods such as welding.
  • the second rotor core 20 is formed of a magnetic material such as iron.
  • the second rotor core 20 is formed of, for example, an electromagnetic steel plate.
  • the second rotor core 20 is formed by fixing a plurality of electromagnetic steel sheets laminated in the z-axis direction by caulking or the like.
  • the second rotor core 20 may be formed of a single electromagnetic steel plate.
  • FIG. 4 is a plan view showing the configuration of the second rotor core 20 shown in FIG.
  • the second rotor core 20 has a second hollow portion 25 into which the shaft 3 shown in FIG. 1 is inserted.
  • the second rotor core 20 has a plurality of through holes 21 that penetrate the second rotor core 20 in the z-axis direction.
  • the plurality of through holes 21 are arranged at intervals in the circumferential direction R1.
  • the number of through holes 21 is six, which is the same as the number of magnet insertion holes 11.
  • the number of through holes 21 is not limited to six, and may be other values. Further, as shown in FIG. 14 described later, the second rotor core 20 does not have to have the through hole 21.
  • the plurality of through holes 21 are formed in regions 29 that overlap with the plurality of permanent magnets 2 (that is, magnet insertion holes 11) in the z-axis direction.
  • the permanent magnet 2 is not inserted in the through hole 21. That is, the permanent magnet 2 is not attached to the second rotor core 20.
  • a straight line extending in the radial direction through the center of the circumferential direction R1 of the through hole 21 is referred to as a "second center line M2".
  • the reluctance of the second rotor core 20 is smaller than the reluctance of the first rotor core 10.
  • the permeance per unit length of the second rotor core 20 in the z-axis direction is higher than the permeance per unit length of the first rotor core 10 in the z-axis direction.
  • the magnetic field of the demagnetizing field due to the rotating magnetic field of the stator 5 is transferred to the second rotor core 20 having the smaller magnetic resistance among the first rotor core 10 and the second rotor core 20. Easy to flow. Therefore, the magnetic flux of the demagnetizing field is suppressed from flowing through the permanent magnet 2 attached to the first rotor core 10, and the demagnetization of the permanent magnet 2 can be suppressed.
  • the area of the portion where the second rotor core 20 exists is larger than the area of the portion where the first rotor core 10 exists when viewed in the z-axis direction.
  • the area of the metal portion 26 of the second rotor core 20 is larger than the area of the metal portion 16 of the first rotor core 10 when viewed in the z-axis direction.
  • the reluctance of the second rotor core 20 becomes smaller than the reluctance of the first rotor core 10.
  • the metal portion 26 of the second rotor core 20 provides the through hole 21, the second flux barrier 22, the second slit 23, and the second hollow portion 25 in the second rotor core 20. This is the excluded part.
  • the metal portion 16 of the first rotor core 10 is a portion excluding the magnet insertion hole 11, the first flux barrier 12, the first slit 13, and the first hollow portion 15.
  • metal materials have higher magnetic permeability than air layers.
  • the magnetic permeability of the electromagnetic steel plate for example, a silicon steel plate
  • the permeance which is the reciprocal of the reluctance, is proportional to the magnetic permeability, the permeance of the second rotor core 20 can be increased by forming the second rotor core 20 from an electromagnetic steel plate.
  • the outer diameter of the second rotor core 20 is the same as the outer diameter of the first rotor core 10.
  • the electromagnetic steel is used. Since the steel plate is easily held by the squeeze ring, the manufacturability is improved.
  • the outer diameter of the second rotor core 20 may be smaller than the outer diameter of the first rotor core 10. That is, the outer diameter of the second rotor core 20 may be equal to or less than the outer diameter of the first rotor core 10.
  • the length of the first iron core portion 10a in the z-axis direction is the same length L1 as the length of the second iron core portion 10b in the z-axis direction.
  • the magnetic flux of the demagnetizing field due to the rotating magnetic field of the stator 5 bypasses the first iron core portion 10a and the second iron core portion 10b and flows to the second rotor core 20.
  • the second rotor core portion 10a is bypassed and the second rotor core portion 10a is bypassed.
  • the amount of magnetic flux flowing through the second rotor core 20 is less likely to vary from the amount of magnetic flux flowing through the second rotor core 20 by bypassing the second iron core portion 10b.
  • the length of the first iron core portion 10a in the z-axis direction may be different from the length of the second iron core portion 10b in the z-axis direction.
  • FIG. 5A is an enlarged plan view showing the configuration around the magnet insertion hole 11 of the first iron core portion 10a shown in FIG.
  • FIG. 5B is an enlarged plan view showing the configuration around the through hole 21 of the second rotor core 20 shown in FIG.
  • the radial length t2 of the through hole 21 is smaller than the radial length t1 of the magnet insertion hole 11. Therefore, the area of the through hole 21 is smaller than the area of the magnet insertion hole 11 when viewed in the z-axis direction.
  • the metal portion 26 of the second rotor core 20 can be made larger than the area of the metal portion 16 of the first rotor core 10. Therefore, the permeance of the second rotor core 20 can be made higher than the permeance of the first rotor core 10.
  • the magnetic permeability of the permanent magnet is 1 to 1.05 times the magnetic permeability of the air layer, which is almost the same. Therefore, the permeance is high in the through hole 21 (that is, the air layer) in which the magnetic flux passes through the permanent magnet 2 arranged in the magnet insertion hole 11 and the distance through which the magnetic flux passes is shorter. Therefore, the flow of the magnetic flux of the demagnetizing field due to the rotating magnetic field of the stator 5 can be easily concentrated on the second rotor core 20.
  • the first iron core portion 10a has a plurality of first flux barriers 12.
  • the plurality of first flux barriers 12 are formed on both sides of the magnet insertion hole 11 in the circumferential direction R1. Since the portion (hereinafter, also referred to as “thin wall portion”) 18 between the first flux barrier 12 and the outer circumference 17 of the first iron core portion 10a is thin, the magnetic flux is short-circuited between the magnetic poles adjacent to each other in the circumferential direction R1. Can be prevented.
  • the thickness of the thin portion 18 is, for example, 0.35 mm, which is the same as the thickness of one electromagnetic steel plate constituting the first iron core portion 10a. As a result, it is possible to prevent a short circuit of the magnetic flux while ensuring the strength of the first iron core portion 10a.
  • the first iron core portion 10a has first slits 13a, 13b, 13c, 13d formed radially outward from the magnet insertion hole 11.
  • the first slits 13a, 13b, 13c, 13d are long in the radial direction.
  • the first slit 13a is formed at a position overlapping the first center line M1 in the circumferential direction R1.
  • the first slit 13b, the first slit 13c, and the first slit 13d are formed in the order of distance from the first slit 13a in the circumferential direction R1.
  • the radial length of the first slit 13a is W11
  • the radial length of the first slit 13b is W12
  • the radial length of the first slit 13c is W13
  • the first When the radial length of the slit 13d is W14, the relationship of W11> W12> W13> W14 is established.
  • the length W11, the length W12, the length W13, and the length W14 may be the same as each other. Further, in the following description, when it is not necessary to distinguish the first slits 13a, 13b, 13c and 13d, the first slits 13a, 13b, 13c and 13d are collectively referred to as "the first slit 13". Called.
  • the second rotor core 20 has a plurality of second flux barriers 22.
  • the plurality of second flux barriers 22 are formed on both sides of the through hole 21 in the circumferential direction R1. Since the portion 28 between the second rotor core 20 and the outer circumference 27 is thin, it is possible to prevent the magnetic flux from being short-circuited between the magnetic poles adjacent to each other in the circumferential direction R1.
  • the second flux barrier 22 communicates with the first flux barrier 12 in the z-axis direction.
  • the second rotor core 20 has second slits 23a, 23b, 23c, 23d formed radially outward from the through hole 21.
  • the second slit 23a is formed at a position overlapping the second center line M2 in the circumferential direction R1.
  • the second slit 23b, the second slit 23c, and the second slit 23d are formed in the order of moving away from the second slit 23a in the circumferential direction R1.
  • the radial length of the second slit 23a is W21
  • the radial length of the second slit 23b is W22
  • the radial length of the second slit 23c is W23
  • the radial length of the second slit 23d is W21, the radial length of the second slit 23b is W22, the radial length of the second slit 23c is W23, and the radial length of the second slit 23d.
  • the length is W24
  • the relationship of W21> W22> W23> W24 is satisfied.
  • the length W21, the length W22, the length W23, and the length W24 may be the same as each other. Further, in the following description, when it is not necessary to distinguish the second slits 23a, 23b, 23c, 23d, the second slits 23a, 23b, 23c, 23d are collectively referred to as "the second slit 23". Called.
  • the second slit 23 overlaps the first slit 13.
  • the radial length of the second slit 23 is shorter than the radial length of the first slit 13.
  • FIG. 6 shows the ratio L2 / t0 of the length L2 of the second rotor core 20 to the thickness t0 of the permanent magnet 2 and the effective magnetic flux per unit volume (hereinafter referred to as “magnet volume”) of the permanent magnet 2. It is a graph which shows the relationship of.
  • the horizontal axis represents the ratio L2 / t0
  • the vertical axis represents the effective magnetic flux [%] per unit volume of the permanent magnet 2.
  • the effective magnetic flux per magnet volume increases in proportion to the ratio L2 / t0.
  • the axial length L2 of the second rotor core 20 is smaller than the thickness t0 of the permanent magnet 2, the amount of change in the effective magnetic flux per magnet volume is large.
  • the change in the effective magnetic flux per magnet volume is saturated. That is, if the axial length L2 of the second rotor core 20 is equal to or greater than the thickness t0 of the permanent magnet 2, the amount of change in the effective magnetic flux per magnet volume is small.
  • the axial length L2 of the second rotor core 20 is the same as the thickness t0 of the permanent magnet 2. As shown in FIG. 15, which will be described later, the axial length L2 of the second rotor core 20 may be larger than the thickness t0 of the permanent magnet 2. That is, the axial length L2 of the second rotor core 20 may be the thickness t0 or more of the permanent magnet 2.
  • FIG. 7 is a cross-sectional view showing the configuration of the rotor 101 of the motor according to the comparative example.
  • the rotor 101 of the comparative example has only the rotor core 110 to which the permanent magnet 102 is attached. That is, the motor 100 according to the first embodiment does not have a portion corresponding to the second rotor core 20 (see FIG. 2) to which the permanent magnet 2 is not attached, that is, the rotor 101 of the comparative example. It is different from the rotor 1 of.
  • the comparative example is the same as that of the first embodiment. Therefore, in the following description, FIG. 1 will be referred to.
  • the maximum rotation speed can be increased by using field weakening operation.
  • the magnetic flux of the stator is generated in the direction opposite to the magnetic flux of the permanent magnet, so that the permanent magnet is demagnetized and the line voltage of the motor can be lowered.
  • the magnetic flux of the stator generated in the direction opposite to the magnetic flux of the permanent magnet is called "weak magnetic flux". As a result, it is possible to secure a margin of voltage for further increasing the rotation speed of the motor.
  • the operating limit of field weakening operation is when the amount of magnetic flux of the weakening magnetic flux becomes equal to the amount of magnetic flux of the permanent magnet, that is, when the magnetic flux of the permanent magnet is canceled by the weakening magnetic flux. At this time, since the demagnetizing field from the stator is maximized, demagnetization of the permanent magnet is likely to occur. Therefore, the permanent magnet needs to have a demagnetizing strength to withstand the maximum demagnetizing field of the stator.
  • the permanent magnet 102 In order not to generate demagnetization in the permanent magnet 102, the permanent magnet 102 needs to have a demagnetization strength equal to or higher than the value on the right side of the approximate expression (2).
  • the knick point is an inflection point in which the decrease in the magnitude of magnetization increases sharply in the fourth quadrant of the JH demagnetization curve.
  • the permanent magnet is a neodymium rare earth magnet
  • the knick point of the neodymium rare earth magnet is, for example, 300,000 A / m. That is, when the maximum demagnetizing field Hm exceeds 300,000 A / m, the neodymium rare earth magnet is demagnetized.
  • the permanent magnet 102 is not demagnetized. That is, when the knick point iH k satisfies the equation (3) shown below, the permanent magnet 102 is not demagnetized.
  • knick point iHk is reduced to within a range of about 50000A / m ⁇ 100000A / m.
  • the Dy weight ratio W D1 in the permanent magnet 102 is increased, the value of knicks point iH k increases. For example, each time the Dy weight ratio 1% increase, the value of knicks point iH k is increased 20% to 30%.
  • the maximum temperature of the permanent magnet 102 is 140 ° C.
  • the reduction rate of the knick point iH k per 1 ° C. of the temperature of the permanent magnet 102 is 0.6%
  • the improvement rate of the knick point iH k per 1% of the Dy weight ratio is set. assuming 25%, the relationship between the knick point iH k and Dy weight ratio W D1 is expressed by the following equation (4).
  • Dy weight ratio W D1 in the permanent magnet 102 is desirably satisfies the equation (5).
  • the current flowing momentarily in the stator or the local demagnetization in the permanent magnet is not taken into consideration when an abnormality occurs in the operation of the electric motor. Therefore, in the motor having the rotor 101 according to the comparative example, a Dy weight ratio equal to or higher than the value shown on the right side of the equation (5) may be required depending on the operating conditions and the like.
  • the magnetic flux of the demagnetizing field from the stator 5 is passed through the second rotor core 20 so that the motor 100 is attached to the first rotor core 10 and is permanently attached.
  • the demagnetization of the magnet 2 is suppressed. Therefore, in the first embodiment, the Dy weight ratio in the permanent magnet 2 can be reduced in suppressing the demagnetization of the permanent magnet 2.
  • the Dy weight ratio in the permanent magnet 2 of the rotor 1 according to the first embodiment has a W D
  • Dy weight ratio W D has only to satisfy the following equation (6).
  • Figure 8 is a demagnetizing field generated in the permanent magnet 2 is a graph showing the relationship between the Dy weight ratio W D in the permanent magnet 2.
  • the horizontal axis represents the demagnetizing field strength generated in the permanent magnet 2 [A / m]
  • the vertical axis represents the Dy weight ratio W D [wt%] in the permanent magnet 2.
  • the area represented by hatching in the graph of FIG. 8 is within the range satisfying the equation (6).
  • the straight line S1 shown in FIG. 8 is a straight line satisfying the following equation (7).
  • the rotor 1 when viewed in the z-axis direction, the area of the portion where the second rotor core 20 exists (that is, the metal portion 26) is the first rotor core 10. Is larger than the area of the portion where is present (that is, the metal portion 16).
  • the permeance of the second rotor core 20 is higher than the permeance of the first rotor core 10. Therefore, the magnetic flux of the demagnetizing field from the stator 5 is concentrated in the second rotor core 20 and flows. Therefore, demagnetization of the permanent magnet 2 attached to the first rotor core 10 can be suppressed. That is, it is possible to provide the rotor 1 having excellent demagnetization characteristics.
  • the magnetic flux of the demagnetizing field from the stator 5 is passed through the second rotor core 20, so that the permanent magnet is attached to the first rotor core 10.
  • the demagnetization of 2 is suppressed. Therefore, in the first embodiment, the Dy weight ratio in the permanent magnet 2 can be reduced in suppressing the demagnetization of the permanent magnet 2. Therefore, it is possible to suppress the demagnetization of the permanent magnet 2 while reducing the content of dysprosium in the permanent magnet 2.
  • the second rotor core 20 has a through hole 21 penetrating in the z-axis direction.
  • the through hole 21 of the second rotor core 20 is formed in a region overlapping the permanent magnet 2 when viewed in the z-axis direction. As a result, it is possible to further suppress the magnetic flux of the permanent magnet 2 from flowing to the metal portion 26 of the second rotor core 20.
  • the outer diameter of the second rotor core 20 is the same as the outer diameter of the first rotor core 10.
  • the gap between the second rotor core 20 and the stator 5 becomes narrower, so that the magnetic flux of the demagnetizing field due to the rotating magnetic field of the stator 5 easily flows to the second rotor core 20.
  • the squeeze ring easily holds the electromagnetic steel sheet (for example, a plurality of electromagnetic steel sheets laminated in the z-axis direction), so that the manufacturability is improved. improves.
  • the length of the first iron core portion 10a in the z-axis direction is the same as the length of the second iron core portion 10b in the z-axis direction.
  • the second rotor core 20 is formed of a magnetic material. This makes it easier for the magnetic flux of the demagnetizing field from the stator 5 to flow through the second rotor core 20.
  • the second rotor core 20 is formed of a plurality of electromagnetic steel sheets laminated in the z-axis direction. As a result, the iron loss in the second rotor core 20 can be reduced, and the efficiency of the motor can be improved.
  • the first rotor core 10 and the second rotor core 20 are formed of an electromagnetic steel plate.
  • the electromagnetic steel sheet constituting the first rotor core 10 and the electromagnetic steel sheet constituting the second rotor core 20 can be manufactured only by exchanging the dies. Can be done. Therefore, the manufacturability can be improved. Further, if the first rotor core 10 and the second rotor core 20 are formed of electromagnetic steel sheets having the same material composition, the manufacturability is further improved.
  • FIG. 9 is an enlarged plan view showing the configuration around the through holes 21a and 21b of the second rotor core 120 of the rotor according to the first modification of the first embodiment.
  • the rotor according to the first modification of the first embodiment is the embodiment in terms of the shapes of the through holes 21a and 21b of the second rotor core 20 and the shapes of the second slits 23a, 23b, 23c and 23d. It is different from the rotor 1 according to 1. Except for this point, the first modification of the first embodiment is the same as that of the first embodiment. Therefore, in the following description, reference is made to FIGS. 1 and 5 (A).
  • the second rotor core 120 has a through hole 21a formed in a region overlapping the permanent magnet 2 when viewed from the z-axis direction. It has 21b.
  • a bridge portion 20e which is a metal portion, is formed between the through hole 21a and the through hole 21b.
  • the through hole 21a and the through hole 21b have symmetrical shapes with the bridge portion 20e interposed therebetween.
  • the radial length t2 of each of the through hole 21a and the through hole 21b is, for example, the same as the radial length t1 of the magnet insertion hole 11.
  • the radial length t2 of the through hole 21a and the through hole 21b may be shorter than the radial length t1 of the magnet insertion hole 11.
  • the second rotor core 120 has the bridge portion 20e that divides the through hole into two, so that the through hole 21a is viewed in the z-axis direction.
  • the total value of the area of the hole 21b and the area of the through hole 21b is smaller than the area of the magnet insertion hole 11. Therefore, the area of the metal portion in the second rotor core 120 can be increased. Therefore, the permeance of the second rotor core 120 can be increased. Therefore, the magnetic flux of the demagnetizing field from the stator 5 can be concentrated and flowed to the second rotor core 120, and the demagnetization of the permanent magnet 2 can be suppressed.
  • a bridge portion 20d is formed between the through hole 21a and the second flux barrier 22a
  • a bridge portion 20f is formed between the through hole 21b and the second flux barrier 22b.
  • the through holes 21a and 21b and the second flux barriers 22a and 22b are discontinuous.
  • the second rotor core 120 has the bridge portions 20d and 20f that divide the through holes 21a and 21b and the second flux barriers 22a and 22b, so that the second rotation is performed.
  • the permeance of the child core 120 can be further increased. Therefore, the magnetic flux of the demagnetizing field from the stator 5 is more likely to flow to the second rotor core 120, and demagnetization is less likely to occur in the permanent magnet 2.
  • the second rotor core 120 has second slits 23a, 23b, 23c, 23d formed radially outward from the through holes 21a, 21b.
  • the radial lengths W11, W12, W13, and W14 of the second slit 23 are the same as the radial lengths of the first slits 13a, 13b, 13c, and 13d shown in FIG. 5 (A). ..
  • the modification 1 of the first embodiment is the same as that of the first embodiment.
  • FIG. 10 is an enlarged plan view showing the configuration around the through hole 21 of the second rotor core 120a of the rotor according to the second modification of the first embodiment.
  • the same or corresponding components as those shown in FIG. 5 (B) are designated by the same reference numerals as those shown in FIG. 5 (B).
  • the rotor according to the second modification of the first embodiment is different from the rotor according to the first embodiment or the first modification of the first embodiment in the shape of the through hole 21.
  • the second modification of the first embodiment is the same as that of the first embodiment. Therefore, in the following description, reference is made to FIGS. 1 and 5 (A).
  • the through hole 21 of the second rotor core 120a has a plurality of convex portions formed on both sides of the radial inner end portion 211 in the circumferential direction. It has 21c.
  • the convex portion 21c projects radially outward from the radially inner end portion 211 of the through hole 21.
  • the minimum radial length t2 of the through hole 21 is the length between the portion 211a where the convex portion 21c is formed in the radial inner end portion 211 and the radial outer end portion 212. be.
  • the minimum radial length t2 of the through hole 21 is smaller than the radial length t1 of the magnet insertion hole 11 shown in FIG.
  • the area of the metal portion in the second rotor core 120a can be increased. Therefore, the permeance of the second rotor core 120a can be increased. Therefore, the magnetic flux of the demagnetizing field from the stator 5 can be concentrated and flowed to the second rotor core 120a, and the demagnetization of the permanent magnet 2 can be suppressed.
  • the modified example 2 of the first embodiment is the same as the modified example 1 of the first embodiment or the first embodiment.
  • FIG. 11 is an enlarged plan view showing the configuration around the through hole 21 of the second rotor core 120b of the rotor according to the third modification of the first embodiment.
  • the same or corresponding components as those shown in FIG. 5 (B) are designated by the same reference numerals as those shown in FIG. 5 (B).
  • the rotor according to the third modification of the first embodiment is different from the rotor according to the first embodiment or the first modification of the first embodiment in the shape of the through hole 21. Except for this point, the third modification of the first embodiment is the same as that of the first embodiment. Therefore, in the following description, reference is made to FIGS. 1 and 5 (A).
  • the through hole 21 of the second rotor core 120b has a plurality of stepped portions 21e and 21f formed at the radial inner end portion 211. It has 21 g.
  • the stepped portions 21e, 21f, and 21g project radially outward from the radially inner end portion 211 of the through hole 21.
  • the circumferential positions of the step portions 21e, 21f, and 21g are the same as the circumferential positions of the second slits 23a, 23b, and 23c, respectively.
  • the stepped portions 21e, 21f, 21g are adjacent to the second slits 23a, 23b, 23c in the radial direction.
  • the stepped portions 21e, 21f, and 21g are formed inside the second slits 23a, 23b, and 23c in the radial direction.
  • the minimum length t2 in the radial direction of the through hole 21 is the stepped portion 21e (or the stepped portion 21f) at the end portion 211 on the inner side in the radial direction.
  • 21g) is the length between the portion 211a on which the portion 211a is formed and the end portion 212 on the outer side in the radial direction.
  • the permeance of the second rotor core 120b can be increased, the magnetic flux of the demagnetizing field from the stator 5 can be concentrated on the second rotor core 120b, and the permanent magnet 2 can be demagnetized. It can be suppressed.
  • the permanent magnet 2 demagnetization is likely to occur at a portion where the circumferential position overlaps with the first slits 13a, 13b, 13c (see FIG. 5A). This is because when the magnetic flux of the demagnetizing field from the stator 5 flows on both sides of the first slits 13a, 13b, and 13c in the circumferential direction, the amount of magnetic flux varies, and the permanent magnet 2 has a large amount locally. This is because the magnetic flux of the demagnetic field of the above flows.
  • the stepped portions 21e, 21f, and 21g are formed in the through holes 21 on the radial inside of the second slits 23a, 23b, and 23c.
  • the minimum length t2 in the radial direction of the through hole 21 is the minimum at the position where the step portions 21e, 21f, and 21g are formed. Therefore, it is possible to increase the area of the portion of the metal portion of the second rotor core 120b that is radially inner of the stepped portions 21e, 21f, and 21g.
  • the magnetic flux of the demagnetizing field from the stator 5 is suppressed from flowing to the portion where demagnetization is likely to occur (that is, the portion where the circumferential position overlaps with the first slits 13a, 13b, 13c).
  • the modified example 3 of the first embodiment is the same as the modified example 1 of the first embodiment or the first embodiment.
  • FIG. 12A is an enlarged plan view showing the configuration around the magnet insertion hole 11 of the first rotor core 110c of the rotor according to the fourth modification of the first embodiment.
  • FIG. 12B is an enlarged plan view showing the configuration around the through hole 21 of the second rotor core 120c of the rotor according to the fourth modification of the first embodiment.
  • the same or corresponding components as those shown in FIGS. 5 (A) and 5 (B) have the same reference numerals as those shown in FIGS. 5 (A) and 5 (B). It is signed.
  • the rotor according to the fourth modification of the first embodiment is different from the rotor 1 according to the first embodiment in the shape of the magnet insertion hole 11 and the through hole 21. Except for these points, the modified example 4 of the first embodiment is the same as that of the first embodiment. Therefore, in the following description, reference is made to FIGS. 1 and 5 (A).
  • the magnet insertion hole 11 of the first rotor core 110c has a V shape with a convex shape inward in the radial direction when viewed in the z-axis direction.
  • the magnet insertion hole 11 has a first hole portion 11a and a second hole portion 11b located on both sides of a central portion (that is, a portion forming a V-shaped apex) 11c in the circumferential direction.
  • Permanent magnets 2 are inserted into the first hole portion 11a and the second hole portion 11b, respectively. That is, in the modified example 4 of the first embodiment, two permanent magnets 2 are inserted into one magnet insertion hole 11.
  • the through hole 21 of the second rotor core 120c has a V that is convex inward in the radial direction when viewed in the z-axis direction, similarly to the magnet insertion hole 11. It has a character shape.
  • the through hole 21 has a first through portion 121a and a second through portion 121b located on both sides of a central portion (that is, a portion forming a V-shaped apex) 21c in the circumferential direction.
  • the first penetrating portion 121a overlaps with the first hole portion 11a
  • the second penetrating portion 121b overlaps with the second hole portion 11b.
  • the first penetrating portion 121a communicates with the first hole portion 11a
  • the second penetrating portion 121b communicates with the second hole portion 11b.
  • the length t2 in the direction orthogonal to the axial direction (that is, the radial direction) of the first penetration portion 121a is smaller than the length t1 in the direction orthogonal to the axial direction of the first hole portion 11a, and the second penetration portion
  • the width of 121b in the direction orthogonal to the axial direction is smaller than the width of the second hole portion 11b in the direction orthogonal to the axial direction.
  • the area of the through hole 21 is smaller than the area of the magnet insertion hole 11 when viewed in the z-axis direction. Therefore, the permeance of the second rotor core 120c can be increased. Therefore, the magnetic flux of the demagnetizing field from the stator 5 can be concentrated and flowed to the second rotor core 120c, and the demagnetization of the permanent magnet 2 can be suppressed.
  • the modified example 4 of the first embodiment is the same as that of the first embodiment.
  • FIG. 13 is an enlarged plan view showing the configuration around the through hole 21 of the second rotor core 120d of the rotor according to the fifth modification of the first embodiment.
  • the same or corresponding components as those shown in FIG. 12 (B) are designated by the same reference numerals as those shown in FIG. 12 (B).
  • the rotor according to the fifth modification of the first embodiment is different from the rotor according to the fourth modification of the first embodiment in that the second rotor core 120d is configured.
  • the second rotor core 120d has a bridge portion 21d that divides the through hole 21 and the second flux barrier 22. That is, the modified example 5 of the first embodiment is different from the modified example 4 of the first embodiment in that the through hole 21 and the second flux barrier 22 are discontinuous. Since the second rotor core 120d has the bridge portion 21d, the area of the metal portion in the second rotor core 120d increases, so that the permeance of the second rotor core 120d can be further increased. can. As a result, the magnetic flux of the demagnetizing field from the stator 5 easily flows to the second rotor core 120c, so that the demagnetization of the permanent magnet 2 is further suppressed.
  • the modified example 5 of the first embodiment is the same as the modified example 4 of the first embodiment.
  • FIG. 14 is a plan view showing the configuration of the second rotor core 120e of the rotor according to the sixth modification of the first embodiment.
  • components that are the same as or correspond to the components shown in FIG. 4 are designated by the same reference numerals as those shown in FIG.
  • the rotor according to the sixth modification of the first embodiment is different from the rotor 1 according to the first embodiment in that the second rotor core 120e is configured. Except for this point, the modification 6 of the first embodiment is the same as that of the first embodiment. Therefore, in the following description, reference will be made to FIGS. 1 and 3.
  • the second rotor core 120e has a second hollow portion 25 into which the shaft 3 shown in FIG. 1 is inserted.
  • all the portions except the second hollow portion 25 are metal portions 126. That is, in the modified example 6 of the first embodiment, the second rotor core 120e has a portion corresponding to the through hole 21 and the second slits 23a, 23b, 23c, 23d shown in FIG. 5 (B). Not formed.
  • the area of the portion where the second rotor core 120e exists that is, the metal portion 126) is the portion where the first rotor core 10 (see FIG. 3) exists. It can be made even larger than the area of.
  • the permeance of the second rotor core 120e can be further increased.
  • the magnetic flux of the demagnetizing field from the stator 5 becomes easier to flow to the second rotor core 120e, and the demagnetization of the permanent magnet 2 becomes more difficult to occur.
  • FIG. 15 is a cross-sectional view showing the configuration of the rotor 201 according to the second embodiment.
  • components that are the same as or correspond to the components shown in FIG. 2 are designated by the same reference numerals as those shown in FIG.
  • the rotor 201 according to the second embodiment is different from the rotor 1 according to the first embodiment in the shape of the second rotor core 220. Except for this point, the second embodiment is the same as the first embodiment. Therefore, in the following description, FIG. 1 will be referred to.
  • the rotor 201 has a second rotor core 220 arranged between the first iron core portion 10a and the second iron core portion 10b.
  • the outer diameter D2 of the second rotor core 220 is smaller than the outer diameter D1 of the first iron core portion 10a (or the second iron core portion 10b).
  • the second rotor The iron core 220 does not have to have a portion corresponding to the through hole 21 shown in FIG. 5 (B).
  • the area of the metal portion of the second rotor core 220 when viewed in the z-axis direction is the second.
  • the area of the metal portion of the rotor core 10 of 1 can be made larger, and the permeance of the second rotor core 220 can be increased. Therefore, it is possible to suppress the occurrence of demagnetization of the permanent magnet 2 while improving the manufacturability of the rotor 201.
  • the second embodiment is the same as the first embodiment.
  • FIG. 16 is a cross-sectional view showing the configuration of the rotor 301 according to the third embodiment.
  • components that are the same as or correspond to the components shown in FIG. 2 are designated by the same reference numerals as those shown in FIG.
  • the rotor 301 according to the third embodiment is different from the rotor 1 according to the first embodiment in the shape of the second rotor core 320.
  • the rotor 301 has a second rotor core 320 arranged between the first iron core portion 10a and the second iron core portion 10b.
  • the axial length L32 of the second rotor core 320 is larger than the radial thickness t0 of the permanent magnet 2.
  • the distance between the first magnet portion 2a and the second magnet portion 2b in the z-axis direction is larger than that in the first embodiment, so that the magnet portions are adjacent to each other in the z-axis direction.
  • a short circuit of magnetic flux between the first magnet portion 2a and the second magnet portion 2b is less likely to occur.
  • the third embodiment is the same as the first embodiment.
  • Embodiment 4 the compressor 400 according to the fourth embodiment including the electric motor 100 shown in FIG. 1 will be described. It is sectional drawing which shows the structure of the compressor 400 shown in FIG.
  • the compressor 400 is, for example, a rotary compressor.
  • the compressor 400 is not limited to the rotary compressor, and may be another compressor such as a scroll compressor.
  • the compressor 400 includes a compression mechanism unit 401, an electric motor 100, a closed container 407, and an accumulator 410.
  • the compression mechanism unit 401 includes a cylinder 402, a rotary piston 404, an upper frame 405, and a lower frame 406.
  • the electric motor 100 drives the compression mechanism unit 401.
  • the compression mechanism unit 401 and the electric motor 100 are connected by a shaft 3.
  • a cylinder chamber 403 is provided inside the cylinder 402.
  • the rotary piston 404 is fitted in the eccentric shaft portion of the shaft 3 and rotates in the cylinder chamber 403.
  • the rotation of the rotary piston 404 compresses the refrigerant.
  • the upper frame 405 is fixed to the end face of the cylinder chamber 403 on the + z axis side.
  • the lower frame 406 is fixed to the end face of the cylinder chamber 403 on the ⁇ z axis side.
  • the upper discharge muffler 408 is mounted on the upper frame 405, and the lower discharge muffler 409 is mounted on the lower frame 406.
  • the closed container 407 has a cylindrical shape. Refrigerating machine oil (not shown) that lubricates each sliding portion of the compression mechanism portion 401 is stored in the bottom of the closed container 407.
  • the stator 5 of the motor 100 is fixed to the inside of the closed container 407 by a method such as shrink fitting, press fitting, or welding. Power is supplied to the coil 55 of the stator 5 from the terminal 411 fixed to the closed container 407. A discharge pipe 412 for discharging the compressed refrigerant to the outside is provided on the upper part of the closed container 407.
  • the accumulator 410 stores a refrigerant gas (not shown).
  • the accumulator 410 is fixed to the cylinder 402 via a suction pipe 413.
  • the refrigerant gas stored in the accumulator 410 is supplied to the cylinder 402 via the suction pipe 413.
  • the shaft 3 of the rotor 1 of the motor 100 rotates.
  • the rotary piston 404 also rotates.
  • the rotary piston 404 fitted to the shaft 3 rotates in the cylinder chamber 403, and the refrigerant is compressed in the cylinder chamber 403.
  • the refrigerant compressed in the cylinder chamber 403 passes through the upper discharge muffler 408 and the lower discharge muffler 409, and further rises in the closed container 407 through the air hole (not shown) of the rotor 1.
  • the refrigerant rising in the closed container 407 is discharged from the discharge pipe 412 and supplied to the high pressure side of the refrigeration cycle device 500.
  • the efficiency is improved by suppressing the demagnetization of the permanent magnet 2. Therefore, by applying the electric motor 100 to the compressor 400, the operating efficiency of the compressor 400 can be improved.
  • FIG. 18 is a diagram showing the configuration of the refrigeration cycle apparatus 500 according to the fifth embodiment.
  • the refrigeration cycle device 500 includes a compressor 400, a four-way valve 501, a condenser 502, an expansion valve 503 as a decompression device, an evaporator 504, a refrigerant pipe 505, and a control unit. It has 506 and.
  • the compressor 400, the condenser 502, the expansion valve 503, and the evaporator 504 are connected by the refrigerant pipe 505 to form the refrigerant circuit 510.
  • the compressor 400 compresses the sucked refrigerant and sends it out as a high-temperature and high-pressure gas refrigerant.
  • the four-way valve 501 is a valve that switches the flow direction of the refrigerant.
  • the refrigerant sent out from the compressor 400 flows through the condenser 502.
  • the condenser 502 exchanges heat between the high-temperature and high-pressure gas refrigerant sent from the compressor 400 and a medium (for example, air), and sends the gas refrigerant as a condensed liquid refrigerant.
  • the expansion valve 503 expands the liquid refrigerant sent out from the condenser 502 and sends it out as a low-temperature low-pressure liquid refrigerant.
  • the evaporator 504 exchanges heat with a low-temperature low-pressure medium (for example, air) sent out from the expansion valve 503, expands the liquid refrigerant, and sends it out as a refrigerant gas.
  • the refrigerant gas sent out from the evaporator 504 returns to the compressor 400 and is compressed.
  • the operations of the four-way valve 501 and the compressor 400 are controlled by the control unit 506.
  • the operating efficiency of the compressor 400 according to the fourth embodiment described above has been improved. Therefore, by applying the compressor 400 to the refrigeration cycle device 500, the energy efficiency of the refrigeration cycle device 500 can be improved.
  • FIG. 19 is a diagram showing the configuration of the air conditioner 600 according to the sixth embodiment.
  • the air conditioner 600 includes an outdoor unit 601, an indoor unit 602, and a refrigerant pipe 603.
  • the outdoor unit 601 and the indoor unit 602 are connected by a refrigerant pipe 603 to form a refrigerant circuit 510.
  • the air conditioner 600 can perform, for example, a cooling operation in which cold air is blown from the indoor unit 602, a heating operation in which warm air is blown, and the like.
  • the outdoor unit 601 has an outdoor blower 605, a compressor 400, and a housing 606 for accommodating the outdoor blower 605 and the compressor 400.
  • the outdoor blower 605 has an impeller 604 and an electric motor 607 that drives the impeller 604.
  • the impeller 604 is, for example, a propeller fan.
  • the electric motor 607 drives the impeller 604
  • the impeller 604 rotates and an air flow is generated.
  • the outdoor blower 605 can blow air.
  • the heat released when the refrigerant compressed by the compressor 400 is condensed by the condenser (not shown) is released to the outside by the blower of the outdoor blower 605.
  • the outdoor unit 601 further has a four-way valve (for example, the four-way valve 501 shown in FIG. 18) that switches the flow direction of the refrigerant.
  • the four-way valve of the outdoor unit 601 allows the high-temperature and high-pressure refrigerant gas sent from the compressor 400 to flow through the heat exchanger of the outdoor unit 601 during the cooling operation and through the heat exchanger of the indoor unit 602 during the heating operation.
  • the air conditioner 600 can include the refrigeration cycle device 500 shown in FIG.
  • the refrigeration cycle device 500 according to the fifth embodiment may be provided in other home electric appliances such as a refrigerator or a freezer in addition to the air conditioner 600.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Control Of Multiple Motors (AREA)
  • Compressor (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

回転子(1)は、軸方向に伸びる回転軸と、第1の回転子鉄心(10)と、永久磁石(2)と、第2の回転子鉄心(20)とを有する。第1の回転子鉄心(10)は、軸方向に配列された第1の鉄心部(10a)及び第2の鉄心部(10b)を有し、回転軸に支持されている。永久磁石(2)は、第1の回転子鉄心(10)に取り付けられている。第2の回転子鉄心(20)は、第1の鉄心部(10a)と第2の鉄心部(10b)との間に配置されている。軸方向に見たときに、第2の回転子鉄心(20)が存在する部分の面積は、第1の回転子鉄心(10)が存在する部分の面積より広い。

Description

回転子、電動機、圧縮機、冷凍サイクル装置及び空気調和装置
 本開示は、回転子、電動機、圧縮機、冷凍サイクル装置及び空気調和装置に関する。
 回転子鉄心と回転子鉄心に取り付けられた永久磁石とを有する回転子と、固定子とを有する電動機が普及している。例えば、特許文献1を参照。特許文献1では、固定子の回転磁界による反磁界によって、永久磁石が減磁することを防止するために、永久磁石にディスプロシウムが含有されている。
特許5931213号公報
 しかしながら、ディスプロシウムは、レアアース資源であるため、高価である。よって、コストを抑えるためにはディスプロシウムの含有量を減らす必要があり、永久磁石の減磁を十分に抑制できない場合があった。ディスプロシウムの含有量を減らしつつ、永久磁石の減磁を抑制する技術が望まれている。
 本開示は、コストを抑えつつ、永久磁石の減磁を抑制することを目的とする。
 本開示の一態様に係る回転子は、軸方向に伸びる回転軸と、前記軸方向に配列された第1の鉄心部及び前記第2の鉄心部を有し、前記回転軸に支持された第1の回転子鉄心と、前記第1の回転子鉄心に取り付けられた永久磁石と、前記第1の鉄心部と前記第2の鉄心部との間に配置された第2の回転子鉄心とを有し、前記軸方向に見たときに、前記第2の回転子鉄心が存在する部分の面積は、前記第1の回転子鉄心が存在する部分の面積より広い。
 本開示によれば、コストを抑えつつ、永久磁石の減磁を抑制することができる。
実施の形態1に係る電動機の構成を示す断面図である。 実施の形態1に係る電動機の回転子の構成を示す断面図である。 図2に示される第1の回転子鉄心の第1の鉄心部の構成を示す平面図である。 図2に示される第2の回転子鉄心の構成を示す平面図である。 (A)は、図3に示される第1の回転子鉄心の磁石挿入孔周辺の構成を示す拡大平面図である。(B)は、図4に示される第2の回転子鉄心の貫通孔周辺の構成を示す拡大平面図である。 実施の形態1に係る回転子の永久磁石の厚みに対する第2の回転子鉄心の軸方向長さの比(L/t)と、永久磁石の単位体積当たりの有効磁束との関係を示すグラフである。 比較例に係る電動機の回転子の構成を示す断面図である。 永久磁石において発生する反磁界の強度と、永久磁石におけるディスプロシウムの重量比率との関係を示すグラフである。 実施の形態1の変形例1に係る回転子の第2の回転子鉄心の貫通孔周辺の構成を示す拡大平面図である。 実施の形態1の変形例2に係る回転子の第2の回転子鉄心の貫通孔周辺の構成を示す拡大平面図である。 実施の形態1の変形例3に係る回転子の第2の回転子鉄心の貫通孔周辺の構成を示す拡大平面図である。 (A)は、実施の形態1の変形例4に係る回転子の第1の回転子鉄心の磁石挿入孔周辺の構成を示す拡大平面図である。(B)は、実施の形態1の変形例4に係る回転子の第2の回転子鉄心の貫通孔周辺の構成を示す拡大平面図である。 実施の形態1の変形例5に係る回転子の第2の回転子鉄心の貫通孔周辺の構成を示す拡大平面図である。 実施の形態1の変形例6に係る回転子の第2の回転子鉄心の構成を示す平面図である。 実施の形態2に係る回転子の構成を示す断面図である。 実施の形態3に係る回転子の構成を示す断面図である。 実施の形態4に係る圧縮機の構成を示す断面図である。 実施の形態5に係る冷凍サイクル装置の構成を示す図である。 実施の形態6に係る空気調和装置の構成を示す図である。
 以下に、本開示の実施の形態に係る回転子、電動機、圧縮機、冷凍サイクル装置及び空気調和装置を、図面を参照しながら説明する。以下の実施の形態は、例にすぎず、実施の形態を適宜組み合わせること及び各実施の形態を適宜変更することが可能である。
 図面には、説明の理解を容易にするために、xyz直交座標系が示されている。z軸は、回転子の軸線に平行な座標軸である。x軸は、z軸に直交する座標軸である。y軸は、x軸及びz軸の両方に直交する座標軸である。
 《実施の形態1》
 〈電動機〉
 図1は、実施の形態1に係る電動機100の構成を示す断面図である。図1に示されるように、電動機100は、回転軸としてのシャフト3を有する回転子1と、固定子5とを有している。回転子1は、固定子5の内側に配置されている。つまり、電動機100は、インナロータ型の電動機である。回転子1と固定子5との間には、エアギャップGが形成されている。エアギャップGは、例えば、0.5mmの空隙である。シャフト3は、z軸方向に伸びている。以下の説明では、z軸方向を「軸方向」とも呼ぶ。また、シャフト3の軸線C1を中心とする円の円周に沿った方向(例えば、図1に示される矢印R1)を「周方向」、z軸方向に直交して軸線C1を通る直線の方向を「径方向」と呼ぶ。
 〈固定子〉
 固定子5は、固定子鉄心50と、固定子鉄心50に巻き付けられたコイル55とを有している。固定子鉄心50は、z軸方向に積層された複数の電磁鋼板をカシメ等により固定することで形成されている。電磁鋼板の板厚は、例えば、0.1mm~0.7mmの範囲内に含まれた決められた値である。
 固定子鉄心50は、軸線C1を中心とする環状のヨーク51と、ヨーク51から径方向内側に延びる複数のティース52とを有している。複数のティース52は、周方向R1に等角度の間隔で配置されている。ティース52の径方向内側の先端部は、エアギャップGを介して回転子1の外周面に対向している。図1では、ティース52の個数は9個であるが、9個に限らず、任意の個数に設定されてもよい。
 複数のティース52にはそれぞれ、回転磁界を発生させるコイル55が巻き付けられている。コイル55は、例えば、マグネットワイヤを、絶縁部54を介してティース52に直接巻き付けられる集中巻で形成される。コイル55の巻数及び線径は、要求される特性(回転数及びトルク等)、電圧仕様、スロットの断面積に基づいて定められる。ここでは、巻線しやすいようにヨーク51が帯状に展開され、線径1.0mm程度のマグネットワイヤが各ティース52に80ターン程度巻き付けられる。マグネットワイヤが各ティース52に巻き付けられた後に、帯状のヨーク51を環状に丸め、ヨーク51の両端が溶接されることにより環状の固定子5が形成される。
 〈回転子〉
 図2は、実施の形態1に係る回転子1の構成を示す断面図である。図1及び2に示されるように、回転子1は、シャフト3と、シャフト3に支持された第1の回転子鉄心10と、第1の回転子鉄心10に取り付けられた永久磁石2とを有している。第1の回転子鉄心10は、シャフト3に焼き嵌め等によって嵌合されている。なお、図2では、シャフト3の図示が省略されている。
 第1の回転子鉄心10は、z軸方向に配列された第1の鉄心部10a及び第2の鉄心部10bを有している。第1の鉄心部10a及び第2の鉄心部10bは、円筒状である。第1の鉄心部10a及び第2の鉄心部10bは、例えば、z軸方向に積層された複数の電磁鋼板から形成されている。第1の鉄心部10a及び第2の鉄心部10bは、例えば、z軸方向に積層された複数の電磁鋼板をカシメ等によって固定することで形成されている。第1の鉄心部10a及び第2の鉄心部10bを構成する1枚の電磁鋼板の板厚は、0.1mm~0.7mmの範囲内に含まれた決められた値である。実施の形態1では、第1の鉄心部10a及び第2の鉄心部10bを構成する1枚の電磁鋼板の板厚は、例えば、0.35mmである。
 次に、図3も用いて、第1の鉄心部10a及び第2の鉄心部10bの他の構成について、説明する。図3は、図2に示される第1の回転子鉄心10の第1の鉄心部10aの構成を示す平面図である。なお、実施の形態1では、第1の鉄心部10aの構成は、第2の鉄心部10bの構成と同様である。そのため、以下の説明では、第1の鉄心部10aを例に説明する。
 図2及び3に示されるように、第1の鉄心部10aは、図1に示されるシャフト3が挿入される第1の中空部15を有している。第1の鉄心部10aは、周方向R1に間隔をあけて配置された複数の磁石挿入孔11を有している。磁石挿入孔11の数は、回転子1の極数に対応している。実施の形態1では、回転子1の極数は6であるため、第1の鉄心部10aは、6つの磁石挿入孔11を有している。なお、磁石挿入孔11の数は6つに限られず、2つ以上の偶数であればよい。また、以下の説明において、磁石挿入孔11の周方向R1の中心を通って径方向に伸びる直線を「第1の中心線M1」と呼ぶ。
 磁石挿入孔11は、第1の鉄心部10aをz軸方向に貫通している。z軸方向に見たときの磁石挿入孔11の形状は、例えば、直線状である。1つの磁石挿入孔11には、例えば、1つの永久磁石2が挿入されている。なお、後述する図12に示されるように、z軸方向に見たときの磁石挿入孔11の形状は、径方向内側に凸を向けたV字形状であってもよく、径方向外側に凸を向けたV字形状であってもよい。また、1つの磁石挿入孔11には、2つ以上の永久磁石2が挿入されていてもよい。
 図2に示されるように、永久磁石2は、第1の鉄心部10aに取り付けられた複数の第1の磁石部2aと、第2の鉄心部10bに取り付けられた複数の第2の磁石部2bとを有している。第1の磁石部2a及び第2の磁石部2bは磁石挿入孔11に挿入されている。つまり、回転子1は、IPM(Interior Permanent Magnet)構造である。なお、回転子1は、IPM構造に限らず、SPM(Surface Permanent Magnet)構造であってもよい。
 永久磁石2は、例えば、希土類磁石である。実施の形態1では、永久磁石2は、ネオジウム(Nd)-鉄(Fe)-ホウ素(B)を含むネオジウム希土類磁石である。ネオジウム希土類磁石の磁気エネルギは、フェライト磁石などの他の磁石の磁気エネルギより高い。これにより、電動機100の効率及び出力を向上させることができる。永久磁石2は、ディスプロシウム(Dy)を含む。これにより、永久磁石2の保磁力が向上する。なお、永久磁石におけるDyの含有率(以下、「Dy重量比率」ともいう)については、後述する。
 回転子1は、第1の鉄心部10aと第2の鉄心部10bとの間に配置された第2の回転子鉄心20を有している。第2の回転子鉄心20は、円筒状である。第2の回転子鉄心20は、第1の鉄心部10a及び第2の鉄心部10bに固定されている。実施の形態1では、第2の回転子鉄心20は、カシメによって、第1の鉄心部10a及び第2の鉄心部10bに固定されている。これにより、第1の回転子鉄心10及び第2の回転子鉄心20で構成された回転子鉄心本体4が形成される。なお、第2の回転子鉄心20は、カシメに限らず、溶接等の他の方法によって、第1の鉄心部10a及び第2の鉄心部10bに固定されていてもよい。
 第2の回転子鉄心20は、鉄などの磁性材料から形成されている。第2の回転子鉄心20は、例えば、電磁鋼板から形成されている。実施の形態1では、第2の回転子鉄心20は、z軸方向に積層された複数の電磁鋼板をカシメ等によって固定することで形成されている。なお、第2の回転子鉄心20は、1枚の電磁鋼板から形成されていてもよい。
 図4は、図2に示される第2の回転子鉄心20の構成を示す平面図である。図2及び4に示されるように、第2の回転子鉄心20は、図1に示されるシャフト3が挿入される第2の中空部25を有している。第2の回転子鉄心20は、第2の回転子鉄心20をz軸方向に貫通する複数の貫通孔21を有している。複数の貫通孔21は、周方向R1に間隔をあけて配置されている。実施の形態1では、貫通孔21の数は、磁石挿入孔11の数と同じ6つである。なお、貫通孔21の数は、6つに限らず、他の値であってもよい。また、後述する図14に示されるように、第2の回転子鉄心20は、貫通孔21を有していなくてもよい。
 複数の貫通孔21は、z軸方向において、複数の永久磁石2(つまり、磁石挿入孔11)とそれぞれ重なる領域29に形成されている。貫通孔21には、永久磁石2が挿入されていない。つまり、第2の回転子鉄心20には、永久磁石2は取り付けられていない。また、以下の説明において、貫通孔21の周方向R1の中心を通って径方向に伸びる直線を「第2の中心線M2」と呼ぶ。
 第2の回転子鉄心20の磁気抵抗は、第1の回転子鉄心10の磁気抵抗より小さい。言い換えれば、第2の回転子鉄心20のz軸方向の単位長さ当たりのパーミアンスは、第1の回転子鉄心10のz軸方向の単位長さあたりのパーミアンスより高い。これにより、固定子5(図1参照)の回転磁界による反磁界の磁束は、第1の回転子鉄心10及び第2の回転子鉄心20のうち磁気抵抗の小さい第2の回転子鉄心20に流れ易い。よって、第1の回転子鉄心10に取り付けられた永久磁石2に反磁界の磁束が流れることが抑制され、永久磁石2の減磁を抑制することができる。
 実施の形態1では、z軸方向に見たときに、第2の回転子鉄心20が存在する部分の面積が、第1の回転子鉄心10が存在する部分の面積より大きい。具体的には、z軸方向に見たときに、第2の回転子鉄心20の金属部26の面積が、第1の回転子鉄心10の金属部16の面積より大きい。これにより、第2の回転子鉄心20の磁気抵抗は、第1の回転子鉄心10の磁気抵抗より小さくなる。ここで、第2の回転子鉄心20の金属部26は、第2の回転子鉄心20において、貫通孔21、第2のフラックスバリア22、第2のスリット23、及び第2の中空部25を除いた部分である。また、第1の回転子鉄心10の金属部16は、磁石挿入孔11、第1のフラックスバリア12、第1のスリット13、及び第1の中空部15を除いた部分である。
 一般的に、金属材料は、空気層と比較して透磁率が高い。例えば、実施の形態1のように、第2の回転子鉄心20が電磁鋼板から形成されている場合、電磁鋼板(例えば、ケイ素鋼板)の透磁率は、空気層の透磁率の4000倍~5000倍である。磁気抵抗の逆数であるパーミアンスは、透磁率に比例するため、第2の回転子鉄心20が電磁鋼板から形成されていることによって、第2の回転子鉄心20のパーミアンスを高めることができる。
 実施の形態1では、第2の回転子鉄心20の外径は第1の回転子鉄心10の外径と同じである。これにより、第2の回転子鉄心20の外径が第1の回転子鉄心10の外径より大きい場合と比べて、回転子鉄心本体4を製造する工程のうち電磁鋼板の打ち抜き加工時に、電磁鋼板がスクイーズリングに保持され易くなるため、製造性が向上する。なお、後述する図14に示されるように、第2の回転子鉄心20の外径は、第1の回転子鉄心10の外径より小さくてもよい。つまり、第2の回転子鉄心20の外径は、第1の回転子鉄心10の外径以下であればよい。
 また、実施の形態1では、第1の鉄心部10aのz軸方向の長さは、第2の鉄心部10bのz軸方向の長さと同じ長さL1である。固定子5の回転磁界による反磁界の磁束は、第1の鉄心部10a及び第2の鉄心部10bを迂回して第2の回転子鉄心20に流れる。第1の鉄心部10aのz軸方向の長さ及び第2の鉄心部10bのz軸方向の長さを同じにすることによって、第1の鉄心部10aを迂回して第2の回転子鉄心20に流れる磁束の磁束量と第2の鉄心部10bを迂回して第2の回転子鉄心20に流れる磁束の磁束量との間にばらつきが生じ難くなる。なお、第1の鉄心部10aのz軸方向の長さは、第2の鉄心部10bのz軸方向の長さと異なっていてもよい。
 図5(A)は、図3に示される第1の鉄心部10aの磁石挿入孔11周辺の構成を示す拡大平面図である。図5(B)は、図4に示される第2の回転子鉄心20の貫通孔21周辺の構成を示す拡大平面図である。
 図5(A)及び(B)に示されるように、貫通孔21の径方向の長さt2は、磁石挿入孔11の径方向の長さt1より小さい。そのため、z軸方向に見たときに、貫通孔21の面積は、磁石挿入孔11の面積より狭い。これにより、実施の形態1のように、第2の回転子鉄心20の外径と第1の回転子鉄心10の外径とが同じである場合、第2の回転子鉄心20の金属部26の面積を第1の回転子鉄心10の金属部16の面積より広くすることができる。そのため、第2の回転子鉄心20のパーミアンスを第1の回転子鉄心10のパーミアンスより高めることができる。また、一般的に、永久磁石の透磁率は、空気層の透磁率の1倍~1.05倍であり、ほぼ同じである。そのため、磁石挿入孔11に配置された永久磁石2よりも磁束が通る距離が短い貫通孔21(つまり、空気層)において、パーミアンスが高くなる。よって、固定子5の回転磁界による反磁界の磁束の流れを第2の回転子鉄心20に集中させ易くなる。
 図5(A)に示されるように、第1の鉄心部10aは、複数の第1のフラックスバリア12を有している。複数の第1のフラックスバリア12は、磁石挿入孔11の周方向R1の両側に形成されている。第1のフラックスバリア12と第1の鉄心部10aの外周17との間の部分(以下、「薄肉部」ともいう)18が薄肉であるため、周方向R1に隣り合う磁極間で磁束が短絡することを防止できる。薄肉部18の厚みは、例えば、第1の鉄心部10aを構成する1枚の電磁鋼板の板厚と同じ0.35mmである。これにより、第1の鉄心部10aの強度を確保しつつ、磁束の短絡を防止することができる。
 第1の鉄心部10aは、磁石挿入孔11より径方向外側に形成された第1のスリット13a、13b、13c、13dを有している。第1のスリット13a、13b、13c、13dは、径方向に長い。
 第1のスリット13aは、周方向R1において、第1の中心線M1と重なる位置に形成されている。第1のスリット13b、第1のスリット13c、及び第1のスリット13dは、第1のスリット13aから周方向R1に遠ざかる順に形成されている。また、実施の形態1では、第1のスリット13aの径方向長さをW11、第1のスリット13bの径方向長さをW12、第1のスリット13cの径方向長さをW13、及び第1のスリット13dの径方向長さをW14としたとき、W11>W12>W13>W14の関係が成り立つ。なお、長さW11、長さW12、長さW13及び長さW14は、互いに同じであってもよい。また、以下の説明において、第1のスリット13a、13b、13c、13dを区別する必要が無い場合には、第1のスリット13a、13b、13c、13dをまとめて、「第1のスリット13」と呼ぶ。
 図5(B)に示されるように、第2の回転子鉄心20は、複数の第2のフラックスバリア22を有している。複数の第2のフラックスバリア22は、貫通孔21の周方向R1の両側に形成されている。第2の回転子鉄心20の外周27との間の部分28が薄肉であるため、周方向R1に隣り合う磁極間で磁束が短絡することを防止できる。第2のフラックスバリア22は、第1のフラックスバリア12とz軸方向に連通している。
 第2の回転子鉄心20は、貫通孔21より径方向外側に形成された第2のスリット23a、23b、23c、23dを有している。第2のスリット23aは、周方向R1において、第2の中心線M2と重なる位置に形成されている。第2のスリット23b、第2のスリット23c、及び第2のスリット23dは、第2のスリット23aから周方向R1に遠ざかる順に形成されている。また、第2のスリット23aの径方向長さをW21、第2のスリット23bの径方向長さをW22、第2のスリット23cの径方向長さをW23、及び第2のスリット23dの径方向長さをW24としたとき、W21>W22>W23>W24の関係を満たしている。なお、長さW21、長さW22、長さW23及び長さW24は、互いに同じであってもよい。また、以下の説明において、第2のスリット23a、23b、23c、23dを区別する必要が無い場合には、第2のスリット23a、23b、23c、23dをまとめて、「第2のスリット23」と呼ぶ。
 z軸方向に見たときに、第2のスリット23は、第1のスリット13に重なっている。第2のスリット23の径方向の長さは、第1のスリット13の径方向の長さより短い。これにより、実施の形態1のように、第2の回転子鉄心20の外径と第1の回転子鉄心10の外径とが同じである場合、第2の回転子鉄心20における金属部26の面積は、第1の回転子鉄心10における金属部16の面積よりも大きくなるため、第2の回転子鉄心20の磁気抵抗が更に低くなる。そのため、固定子5の回転磁界による反磁界の磁束が、第2の回転子鉄心20に更に流れ易くなる。よって、第1の回転子鉄心10に取り付けられた永久磁石2の減磁を一層抑制することができる。
 次に、図6を用いて、第2の回転子鉄心20のz軸方向の長さL2と永久磁石2の径方向の厚みt0との関係について説明する。図6は、永久磁石2の厚みt0に対する第2の回転子鉄心20の長さL2との比L2/t0と、永久磁石2の単位体積(以下、「磁石体積」という)当たりの有効磁束との関係を示すグラフである。図6において、横軸は、比L2/t0を示し、縦軸は、永久磁石2の単位体積当たりの有効磁束[%]を示す。
 図6に示されるように、比L2/t0<1の範囲では、磁石体積当たりの有効磁束は比L2/t0に比例して増加する。言い換えれば、第2の回転子鉄心20の軸方向長さL2が永久磁石2の厚みt0より小さければ、磁石体積当たりの有効磁束の変化量は大きい。比L2/t0≧1の範囲では、磁石体積当たりの有効磁束の変化が飽和している。つまり、第2の回転子鉄心20の軸方向長さL2が永久磁石2の厚みt0以上であれば、磁石体積当たりの有効磁束の変化量は小さい。これにより、比L2/t0≧1であれば、永久磁石2の磁束が、第2の回転子鉄心20に流れて短絡することを防止できる。具体的には、z軸方向に隣り合う第1の磁石部2a及び第2の磁石部2b間で磁束が短絡することを防止できる。実施の形態1では、第2の回転子鉄心20の軸方向長さL2は、永久磁石2の厚みt0と同じである。なお、後述する図15に示されるように、第2の回転子鉄心20の軸方向長さL2は、永久磁石2の厚みt0より大きくてもよい。つまり、第2の回転子鉄心20の軸方向長さL2は、永久磁石2の厚みt0以上であればよい。
 〈永久磁石におけるDy重量比率〉
 次に、実施の形態1に係る回転子1の永久磁石2におけるDy重量比率について、比較例と対比しながら説明する。図7は、比較例に係る電動機の回転子101の構成を示す断面図である。図7に示されるように、比較例の回転子101は、永久磁石102が取り付けられた回転子鉄心110のみを有している。つまり、比較例の回転子101は、永久磁石2が取り付けられていない第2の回転子鉄心20(図2参照)に対応する部分を有していない点で、実施の形態1に係る電動機100の回転子1と相違する。この点以外に関し、比較例は、実施の形態1と同じである。したがって、以下の説明では、図1を参照する。
 ここで、IPM構造の回転子を有する電動機では、弱め界磁運転の利用によって最大回転数を上昇させることができる。弱め界磁運転では、永久磁石の磁束と対向する向きに、固定子の磁束を発生させるため、永久磁石が減磁して電動機の線間電圧を低下させることができる。永久磁石の磁束と対向する向きに発生した固定子の磁束は、「弱め磁束」と呼ばれる。これにより、電動機の回転数を更に高めるための電圧の裕度を確保することができる。
 弱め界磁運転の運転限界は、弱め磁束の磁束量が永久磁石の磁束量と等しくなるとき、つまり、弱め磁束によって永久磁石の磁束を打ち消したときである。このとき、固定子からの反磁界が最大となるため、永久磁石の減磁が発生し易い。したがって、永久磁石は、固定子の最大反磁界に耐える減磁耐力を有する必要がある。
 まず、比較例に係る回転子101の永久磁石102におけるDy重量比率WD1について、説明する。永久磁石102における磁束量をΦ、固定子5と永久磁石102との間の磁気抵抗をR、永久磁石102の径方向の厚みをLとしたとき、永久磁石102において発生する最大反磁界Hは、以下の式(1)で示される。
 H=φ・R/L                 (1)
 回転子101と固定子5との間のエアギャップ長をLa、永久磁石102の残留磁束密度をB、真空の透磁率をμとしたとき、式(1)の右辺は、以下の近似式(2)で示される。固定子5と永久磁石102との間の磁気抵抗Rは、エアギャップGの磁気抵抗及び永久磁石102の磁気抵抗の影響が支配的だからである。
 φ・R/L≒B/μ・(L/(L+L))  (2)
 永久磁石102において減磁を発生させないためには、永久磁石102は、近似式(2)の右辺の値以上の減磁耐力を有する必要がある。ここで、一般的に、永久磁石は、クニック点を超えて使用されると、不可逆減磁を起こすことが知られている。クニック点は、J-H減磁曲線の第4象限において、磁化の大きさの減少が急激に大きくなる変曲点である。永久磁石がネオジウム希土類磁石である場合、ネオジウム希土類磁石のクニック点は、例えば、300000A/mである。つまり、最大反磁界Hmが、300000A/mを超えると、ネオジウム希土類磁石は減磁する。
 クニック点をiHとしたとき、クニック点iHが式(2)で示される右辺の値以上の大きさであれば、永久磁石102の減磁が発生しない。つまり、クニック点iHが以下に示される式(3)を満たしているとき、永久磁石102の減磁が発生しない。
Figure JPOXMLDOC01-appb-M000002
 ただし、永久磁石102の温度が高温になるほど、クニック点iHkの値は小さくなる。例えば、ネオジウム希土類磁石の温度が140℃である場合、クニック点iHは、50000A/m~100000A/m程度の範囲内まで低下する。
 一方、永久磁石102におけるDy重量比率WD1が増加するほど、クニック点iHの値は大きくなる。例えば、Dy重量比率が1%増加するごとに、クニック点iHの値は20%~30%増加する。
 ここで、永久磁石102の最大温度を140℃、永久磁石102の温度1℃あたりのクニック点iHの低下率を0.6%、Dy重量比率1%あたりのクニック点iHの向上率を25%と仮定すると、クニック点iHとDy重量比率WD1との関係は、以下の式(4)で示される。
Figure JPOXMLDOC01-appb-M000003
 式(4)を式(3)に代入すると、以下の式(5)が算出される。
Figure JPOXMLDOC01-appb-M000004
 このように、比較例に係る回転子101では、永久磁石102におけるDy重量比率WD1は、式(5)を満たしていることが望ましい。しかし、式(5)を算出するにあたっては、電動機の運転に異常が生じた場合に、固定子に瞬間的に流れる電流、又は永久磁石における局所的な減磁を考慮していない。そのため、比較例に係る回転子101を有する電動機では、運転状況などに応じて、式(5)の右辺に示される値以上のDy重量比率が必要な場合もある。
 一方、実施の形態1に係る電動機100では、上述した通り、固定子5からの反磁界の磁束を第2の回転子鉄心20に流すことによって、第1の回転子鉄心10に取り付けられて永久磁石2の減磁を抑制している。そのため、実施の形態1では、永久磁石2の減磁を抑制するにあたって、永久磁石2におけるDy重量比率を低減することができる。具体的には、実施の形態1に係る回転子1の永久磁石2におけるDy重量比率をWとしたとき、Dy重量比率Wは、以下の式(6)を満たしていればよい。
Figure JPOXMLDOC01-appb-M000005
 図8は、永久磁石2において発生する反磁界と、永久磁石2におけるDy重量比率Wとの関係を示すグラフである。図8において、横軸は、永久磁石2において発生する反磁界の強度[A/m]を示し、縦軸は、永久磁石2におけるDy重量比率W[wt%]を示す。図8のグラフにおいてハッチングで示される領域は、式(6)を満たす範囲内である。なお、図8に示される直線S1は、以下の式(7)を満たす直線である。
Figure JPOXMLDOC01-appb-M000006
 〈実施の形態1の効果〉
 以上に説明した実施の形態1に係る回転子1によれば、以下に示す効果が得られる。
 実施の形態1に係る回転子1によれば、z軸方向に見たときに、第2の回転子鉄心20が存在する部分(つまり、金属部26)の面積が第1の回転子鉄心10が存在する部分(つまり、金属部16)の面積より大きい。これにより、第2の回転子鉄心20のパーミアンスが第1の回転子鉄心10のパーミアンスより高い。そのため、固定子5からの反磁界の磁束が第2の回転子鉄心20に集中して流れる。よって、第1の回転子鉄心10に取り付けられた永久磁石2の減磁を抑制することができる。つまり、減磁特性の優れた回転子1を提供することができる。
 また、実施の形態1に係る回転子1によれば、固定子5からの反磁界の磁束を第2の回転子鉄心20に流すことによって、第1の回転子鉄心10に取り付けられて永久磁石2の減磁を抑制している。そのため、実施の形態1では、永久磁石2の減磁を抑制するにあたって、永久磁石2におけるDy重量比率を低減することができる。よって、永久磁石2におけるディスプロシウムの含有量を減らしつつ、永久磁石2の減磁を抑制することができる。
 また、実施の形態1に係る回転子1によれば、第2の回転子鉄心20は、z軸方向に貫通する貫通孔21を有している。これにより、第2の回転子鉄心20が貫通孔21を有していない構成と比べて、永久磁石2の磁束が第2の回転子鉄心20の金属部26に流れることを抑制できる。そのため、永久磁石2から固定子5に流れる磁束の磁束量を良好に確保することができ、永久磁石2の磁気エネルギを有効に利用することができる。よって、電動機100の効率及び出力の低下を防止できる。
 また、実施の形態1に係る回転子1によれば、z軸方向に見たときに、第2の回転子鉄心20の貫通孔21は、永久磁石2と重なる領域に形成されている。これにより、永久磁石2の磁束が第2の回転子鉄心20の金属部26に流れることを一層抑制できる。
 また、実施の形態1に係る回転子1によれば、第2の回転子鉄心20の外径が、第1の回転子鉄心10の外径と同じである。これにより、第2の回転子鉄心20と固定子5との間の隙間が狭くなるため、固定子5の回転磁界による反磁界の磁束が第2の回転子鉄心20に流れ易くなる。また、回転子鉄心本体4を製造する工程のうち電磁鋼板の打ち抜き加工時に、スクイーズリングが電磁鋼板(例えば、z軸方向に積層された複数の電磁鋼板)を保持し易くなるため、製造性が向上する。
 また、実施の形態1に係る回転子1によれば、第1の鉄心部10aのz軸方向の長さは、第2の鉄心部10bのz軸方向の長さと同じである。これにより、第1の鉄心部10aを迂回して第2の回転子鉄心20に流れる磁束の磁束量と第1の鉄心部10aを迂回して第2の回転子鉄心20に流れる磁束の磁束量との間のばらつきを低減することができる。
 また、実施の形態1に係る回転子1によれば、第2の回転子鉄心20は、磁性材料から形成されている。これにより、固定子5からの反磁界の磁束を第2の回転子鉄心20に流し易くなる。
 回転子鉄心では、磁束の時間変化に伴い、鉄損が発生する場合がある。鉄損はヒステリシス損、渦電流損に分類されるが、渦電流損は1枚の電磁鋼板の板厚の2乗に比例する。実施の形態1に係る回転子1によれば、第2の回転子鉄心20は、z軸方向に積層された複数の電磁鋼板から形成されている。これにより、第2の回転子鉄心20における鉄損を低減することができ、電動機の効率を向上させることができる。
 また、実施の形態1に係る回転子1によれば、第1の回転子鉄心10及び第2の回転子鉄心20は、電磁鋼板から形成されている。これにより、電磁鋼板の打ち抜き加工時に、金型を交換する作業を行うだけで、第1の回転子鉄心10を構成する電磁鋼板及び第2の回転子鉄心20を構成する電磁鋼板を製造することができる。そのため、製造性を向上させることができる。また、第1の回転子鉄心10及び第2の回転子鉄心20が同じ材料組成の電磁鋼板から形成されていれば、更に製造性が向上する。
 《実施の形態1の変形例1》
 図9は、実施の形態1の変形例1に係る回転子の第2の回転子鉄心120の貫通孔21a、21b周辺の構成を示す拡大平面図である。図9において、図5(B)に示される構成要素と同一又は対応する構成要素には、図5(B)に示される符号と同じ符号が付されている。実施の形態1の変形例1に係る回転子は、第2の回転子鉄心20の貫通孔21a、21bの形状及び第2のスリット23a、23b、23c、23dの形状の点で、実施の形態1に係る回転子1と相違する。この点以外に関し、実施の形態1の変形例1は、実施の形態1と同じである。したがって、以下の説明では、図1及び図5(A)を参照する。
 図9に示されるように、実施の形態1の変形例1では、第2の回転子鉄心120は、z軸方向から見たときに、永久磁石2と重なる領域に形成された貫通孔21a、21bを有している。貫通孔21aと貫通孔21bとの間には、金属部であるブリッジ部20eが形成されている。貫通孔21aと貫通孔21bは、ブリッジ部20eを挟んで互いに対称な形状を有している。貫通孔21a及び貫通孔21bのそれぞれの径方向の長さt2は、例えば、磁石挿入孔11の径方向の長さt1と同じである。なお、貫通孔21a及び貫通孔21bのそれぞれの径方向の長さt2は、磁石挿入孔11の径方向の長さt1より短くてもよい。
 実施の形態1の変形例1では、第2の回転子鉄心120は、貫通孔を2つに分割するブリッジ部20eを有していることにより、z軸方向に見たときに、貫通孔21aの面積と貫通孔21bの面積の合計値が、磁石挿入孔11の面積より狭くなる。そのため、第2の回転子鉄心120における金属部の面積を増加させることができる。よって、第2の回転子鉄心120のパーミアンスを高めることができる。そのため、固定子5からの反磁界の磁束を第2の回転子鉄心120に集中して流すことができ、永久磁石2の減磁を抑制することができる。
 また、貫通孔21aと第2のフラックスバリア22aとの間には、ブリッジ部20dが形成されており、貫通孔21bと第2のフラックスバリア22bとの間には、ブリッジ部20fが形成されている。つまり、実施の形態1の変形例1では、貫通孔21a、21bと第2のフラックスバリア22a、22bとは非連続である。このように、第2の回転子鉄心120は、貫通孔21a、21bと第2のフラックスバリア22a、22bとの間を分割するブリッジ部20d、20fを有していることにより、第2の回転子鉄心120のパーミアンスを更に高めることができる。そのため、固定子5からの反磁界の磁束が第2の回転子鉄心120に一層流れ易くなり、永久磁石2において減磁が一層発生し難くなる。
 第2の回転子鉄心120は、貫通孔21a、21bより径方向外側に形成された第2のスリット23a、23b、23c、23dを有している。第2のスリット23の径方向の長さW11、W12、W13、W14は、図5(A)に示される第1のスリット13a、13b、13c、13dのそれぞれの径方向の長さと同じである。
 上記以外の点について、実施の形態1の変形例1は、実施の形態1と同じである。
 《実施の形態1の変形例2》
 図10は、実施の形態1の変形例2に係る回転子の第2の回転子鉄心120aの貫通孔21周辺の構成を示す拡大平面図である。図10において、図5(B)に示される構成要素と同一又は対応する構成要素には、図5(B)に示される符号と同じ符号が付されている。実施の形態1の変形例2に係る回転子は、貫通孔21の形状の点で、実施の形態1又は実施の形態1の変形例1に係る回転子と相違する。この点以外に関し、実施の形態1の変形例2は、実施の形態1と同じである。したがって、以下の説明では、図1及び図5(A)を参照する。
 図10に示されるように、実施の形態1の変形例2では、第2の回転子鉄心120aの貫通孔21は、径方向内側の端部211の周方向両側に形成された複数の凸部21cを有している。凸部21cは、貫通孔21の径方向内側の端部211から径方向外側に突出している。これにより、貫通孔21の径方向の最小の長さt2は、径方向内側の端部211における凸部21cが形成されている部分211aと径方向外側の端部212との間の長さである。貫通孔21の径方向の最小の長さt2は、図5(A)に示される磁石挿入孔11の径方向の長さt1より小さい。そのため、第2の回転子鉄心120aにおける金属部の面積を増加させることができる。よって、第2の回転子鉄心120aのパーミアンスを高めることができる。そのため、固定子5からの反磁界の磁束を第2の回転子鉄心120aに集中して流すことができ、永久磁石2の減磁を抑制することができる。
 上記以外の点について、実施の形態1の変形例2は、実施の形態1又は実施の形態1の変形例1と同じである。
 《実施の形態1の変形例3》
 図11は、実施の形態1の変形例3に係る回転子の第2の回転子鉄心120bの貫通孔21周辺の構成を示す拡大平面図である。図11において、図5(B)に示される構成要素と同一又は対応する構成要素には、図5(B)に示される符号と同じ符号が付されている。実施の形態1の変形例3に係る回転子は、貫通孔21の形状の点で、実施の形態1又は実施の形態1の変形例1に係る回転子と相違する。この点以外に関し、実施の形態1の変形例3は、実施の形態1と同じである。したがって、以下の説明では、図1及び図5(A)を参照する。
 図11に示されるように、実施の形態1の変形例3では、第2の回転子鉄心120bの貫通孔21は、径方向内側の端部211に形成された複数の段差部21e、21f、21gを有している。段差部21e、21f、21gは、貫通孔21の径方向内側の端部211から径方向外側に突出している。段差部21e、21f、21gの周方向位置は、第2のスリット23a、23b、23cの周方向位置とそれぞれ同じである。言い換えれば、段差部21e、21f、21gは、径方向において、第2のスリット23a、23b、23cと隣接している。段差部21e、21f、21gは、第2のスリット23a、23b、23cの径方向内側に形成されている。
 貫通孔21に段差部21e、21f、21gが形成されていることにより、貫通孔21の径方向の最小の長さt2は、径方向内側の端部211における段差部21e(又は、段差部21f、21g)が形成されている部分211aと径方向外側の端部212との間の長さである。これにより、z軸方向に見たときに、貫通孔21の面積は、磁石挿入孔11の面積より狭くなる。そのため、第2の回転子鉄心120bにおける金属部の面積を増加させることができる。よって、第2の回転子鉄心120bのパーミアンスを高めることができ、固定子5からの反磁界の磁束を第2の回転子鉄心120bに集中して流すことができ、永久磁石2の減磁を抑制することができる。
 ここで、永久磁石2では、第1のスリット13a、13b、13c(図5(A)参照)と周方向位置が重なる部分において減磁が発生し易い。これは、固定子5からの反磁界の磁束が、第1のスリット13a、13b、13cのそれぞれの周方向両側を流れるときに、磁束量にばらつきが生じて、永久磁石2に局所的に多くの反磁界の磁束が流れるためである。
 実施の形態1の変形例3では、上述した通り、貫通孔21において、第2のスリット23a、23b、23cの径方向内側に段差部21e、21f、21gが形成されている。これにより、貫通孔21の径方向の最小の長さt2は、段差部21e、21f、21gが形成されている位置で最少となる。そのため、第2の回転子鉄心120bにおける金属部のうち段差部21e、21f、21gより径方向内側の部分の面積を増加させることができる。これにより、永久磁石2において、減磁が発生し易い部分(つまり、第1のスリット13a、13b、13cと周方向位置が重なる部分)に固定子5からの反磁界の磁束が流れることを抑制できる。
 上記以外の点について、実施の形態1の変形例3は、実施の形態1又は実施の形態1の変形例1と同じである。
 《実施の形態1の変形例4》
 図12(A)は、実施の形態1の変形例4に係る回転子の第1の回転子鉄心110cの磁石挿入孔11周辺の構成を示す拡大平面図である。図12(B)は、実施の形態1の変形例4に係る回転子の第2の回転子鉄心120cの貫通孔21周辺の構成を示す拡大平面図である。図12(A)及び(B)において、図5(A)及び(B)に示される構成要素と同一又は対応する構成要素には、図5(A)及び(B)に示される符号と同じ符号が付されている。実施の形態1の変形例4に係る回転子は、磁石挿入孔11及び貫通孔21の形状の点で、実施の形態1に係る回転子1と相違する。これらの点以外に関し、実施の形態1の変形例4は、実施の形態1と同じである。したがって、以下の説明では、図1及び図5(A)を参照する。
 図12(A)に示されるように、第1の回転子鉄心110cの磁石挿入孔11は、z軸方向に見たときに、径方向内側に凸を向けたV字形状である。磁石挿入孔11は、周方向中央部(つまり、V字形状の頂点をなす部分)11cを挟んで両側に位置する第1の孔部11aと第2の孔部11bとを有している。第1の孔部11a及び第2の孔部11bには、それぞれ永久磁石2が挿入されている。つまり、実施の形態1の変形例4では、1つの磁石挿入孔11に2つの永久磁石2が挿入されている。
 図12(B)に示されるように、第2の回転子鉄心120cの貫通孔21は、z軸方向に見たときに、磁石挿入孔11と同様に、径方向内側に凸を向けたV字形状である。貫通孔21は、周方向中央部(つまり、V字形状の頂点をなす部分)21cを挟んで両側に位置する第1の貫通部121a及び第2の貫通部121bを有している。z軸方向に見たときに、第1の貫通部121aは第1の孔部11aと重なっており、第2の貫通部121bは第2の孔部11bと重なっている。第1の貫通部121aは第1の孔部11aと連通しており、第2の貫通部121bは第2の孔部11bと連通している。
 第1の貫通部121aの軸方向に直交する方向(つまり、径方向)の長さt2は、第1の孔部11aの軸方向に直交する方向の長さt1より小さく、第2の貫通部121bの軸方向に直交する方向の幅は、第2の孔部11bの軸方向に直交する方向の幅より小さい。これにより、z軸方向に見たときに、貫通孔21の面積は、磁石挿入孔11の面積より狭い。そのため、第2の回転子鉄心120cのパーミアンスを高めることができる。よって、固定子5からの反磁界の磁束を第2の回転子鉄心120cに集中して流すことができ、永久磁石2の減磁を抑制することができる。
 上記以外の点について、実施の形態1の変形例4は、実施の形態1と同じである。
 《実施の形態1の変形例5》
 図13は、実施の形態1の変形例5に係る回転子の第2の回転子鉄心120dの貫通孔21周辺の構成を示す拡大平面図である。図13において、図12(B)に示される構成要素と同一又は対応する構成要素には、図12(B)に示される符号と同じ符号が付されている。実施の形態1の変形例5に係る回転子は、第2の回転子鉄心120dの構成の点で、実施の形態1の変形例4に係る回転子と相違する。
 図13に示されるように、実施の形態1の変形例5では、第2の回転子鉄心120dは、貫通孔21と第2のフラックスバリア22とを分割するブリッジ部21dを有している。つまり、実施の形態1の変形例5では、貫通孔21と第2のフラックスバリア22とが非連続である点で、実施の形態1の変形例4と相違する。第2の回転子鉄心120dがブリッジ部21dを有していることにより、第2の回転子鉄心120dにおける金属部の面積が増加するため、第2の回転子鉄心120dのパーミアンスを更に高めることができる。これにより、固定子5からの反磁界の磁束が第2の回転子鉄心120cに流れ易くなるため、永久磁石2の減磁が一層抑制される。
 上記以外の点について、実施の形態1の変形例5は、実施の形態1の変形例4と同じである。
 《実施の形態1の変形例6》
 図14は、実施の形態1の変形例6に係る回転子の第2の回転子鉄心120eの構成を示す平面図である。図14において、図4に示される構成要素と同一又は対応する構成要素には、図4に示される符号と同じ符号が付されている。実施の形態1の変形例6に係る回転子は、第2の回転子鉄心120eの構成の点で、実施の形態1に係る回転子1と相違する。この点以外に関し、実施の形態1の変形例6は、実施の形態1と同じである。したがって、以下の説明では、図1及び3を参照する。
 図14に示されるように、第2の回転子鉄心120eは、図1に示されるシャフト3が挿入される第2の中空部25を有している。第2の回転子鉄心120eにおいて、第2の中空部25を除く部分は、すべて金属部126である。つまり、実施の形態1の変形例6では、第2の回転子鉄心120eには、図5(B)に示される貫通孔21及び第2のスリット23a、23b、23c、23dに対応する部分が形成されていない。これにより、z軸方向に見たときに、第2の回転子鉄心120eが存在する部分(つまり、金属部126)の面積が、第1の回転子鉄心10(図3参照)が存在する部分の面積よりも更に広くすることができる。そのため、第2の回転子鉄心120eのパーミアンスを更に高めることができる。これにより、固定子5からの反磁界の磁束が第2の回転子鉄心120eに更に流れ易くなり、永久磁石2の減磁が一層発生し難くなる。
 《実施の形態2》
 図15は、実施の形態2に係る回転子201の構成を示す断面図である。図15において、図2に示される構成要素と同一又は対応する構成要素には、図2に示される符号と同じ符号が付されている。実施の形態2に係る回転子201は、第2の回転子鉄心220の形状の点で、実施の形態1に係る回転子1と相違する。この点以外に関し、実施の形態2は、実施の形態1と同じである。したがって、以下の説明では、図1を参照する。
 図15に示されるように、回転子201は、第1の鉄心部10aと第2の鉄心部10bとの間に配置された第2の回転子鉄心220を有している。第2の回転子鉄心220の外径D2は、第1の鉄心部10a(又は、第2の鉄心部10b)の外径D1より小さい。これにより、回転子201の製造工程のうち電磁鋼板の打ち抜き加工時において、スクイーズリングによって電磁鋼板が保持され易い。よって、回転子201の製造性を向上させることができる。
 実施の形態2のように、第2の回転子鉄心220の外径D2を第1の鉄心部10a(又は、第2の鉄心部10b)の外径D1より小さくした場合、第2の回転子鉄心220は、図5(B)に示される貫通孔21に対応する部分を有していなくてもよい。これにより、製造性を向上させるために、第2の回転子鉄心220の外径D2を小さくした場合でも、z軸方向に見たときの第2の回転子鉄心220の金属部の面積を第1の回転子鉄心10の金属部の面積より大きくすることができ、第2の回転子鉄心220のパーミアンスを高めることができる。よって、回転子201の製造性を向上させつつ、永久磁石2の減磁の発生を抑制することができる。
 上記以外の点について、実施の形態2は、実施の形態1と同じである。
 《実施の形態3》
 図16は、実施の形態3に係る回転子301の構成を示す断面図である。図16において、図2に示される構成要素と同一又は対応する構成要素には、図2に示される符号と同じ符号が付されている。実施の形態3に係る回転子301は、第2の回転子鉄心320の形状の点で、実施の形態1に係る回転子1と相違する。
 図16に示されるように、回転子301は、第1の鉄心部10aと第2の鉄心部10bとの間に配置された第2の回転子鉄心320を有している。第2の回転子鉄心320の軸方向長さL32は、永久磁石2の径方向の厚みt0より大きい。これにより、実施の形態3では、実施の形態1と比べて、z軸方向における第1の磁石部2aと第2の磁石部2bとの間の間隔が大きくなるため、z軸方向に隣り合う第1の磁石部2a及び第2の磁石部2b間で磁束の短絡が一層発生し難くなる。
 上記以外の点について、実施の形態3は、実施の形態1と同じである。
 《実施の形態4》
 次に、図1に示される電動機100を備えた実施の形態4に係る圧縮機400について説明する。図17に示される圧縮機400の構成を示す断面図である。圧縮機400は、例えば、ロータリ圧縮機である。なお、圧縮機400は、ロータリ圧縮機に限らず、スクロール圧縮機などの他の圧縮機であってもよい。
 図17に示されるように、圧縮機400は、圧縮機構部401と、電動機100と、密閉容器407と、アキュムレータ410とを有している。
 圧縮機構部401は、シリンダ402と、ロータリピストン404と、上部フレーム405と、下部フレーム406とを有する。電動機100は、圧縮機構部401を駆動する。圧縮機構部401と電動機100とは、シャフト3によって連結されている。
 シリンダ402の内部には、シリンダ室403が備えられている。ロータリピストン404は、シャフト3の偏心軸部に嵌合しており、シリンダ室403内で回転する。ロータリピストン404が回転することによって、冷媒が圧縮される。上部フレーム405は、シリンダ室403の+z軸側の端面に固定されている。下部フレーム406は、シリンダ室403の-z軸側の端面に固定されている。上部フレーム405には上部吐出マフラ408が装着され、下部フレーム406には下部吐出マフラ409が装着されている。
 密閉容器407は、円筒状である。密閉容器407の底部には、圧縮機構部401の各摺動部を潤滑する冷凍機油(図示せず)が貯留されている。
 密閉容器407の内側には、焼き嵌め、圧入または溶接等の方法により、電動機100の固定子5が固定されている。固定子5のコイル55には、密閉容器407に固定された端子411から電力が供給される。密閉容器407の上部には、圧縮された冷媒を外部に吐出する吐出パイプ412が備えられている。
 アキュムレータ410は、図示しない冷媒ガスを貯蔵している。アキュムレータ410は、吸入パイプ413を介してシリンダ402に固定されている。これにより、アキュムレータ410に貯蔵されている冷媒ガスは、吸入パイプ413を介してシリンダ402に供給される。
 端子411から電動機100に駆動電流が供給されることによって、電動機100の回転子1のシャフト3が回転する。シャフト3が回転することで、ロータリピストン404も回転する。そして、シャフト3に嵌合するロータリピストン404がシリンダ室403内で回転し、シリンダ室403内で冷媒が圧縮される。シリンダ室403で圧縮された冷媒は、上部吐出マフラ408及び下部吐出マフラ409を通り、さらに回転子1の風穴(図示しない)を通って密閉容器407内を上昇する。密閉容器407内を上昇した冷媒は、吐出パイプ412から吐出され、冷凍サイクル装置500の高圧側に供給される。
 上述した実施の形態1に係る電動機100では、永久磁石2の減磁が抑制されることで、効率が向上している。そのため、電動機100が圧縮機400に適用されることにより、圧縮機400の運転効率を向上させることができる。
 《実施の形態5》
 次に、図17に示される圧縮機400を備えた実施の形態5に係る冷凍サイクル装置500について説明する。図18は、実施の形態5に係る冷凍サイクル装置500の構成を示す図である。
 図18に示されるように、冷凍サイクル装置500は、圧縮機400と、四方弁501と、凝縮器502と、減圧装置としての膨張弁503と、蒸発器504と、冷媒配管505と、制御部506とを有している。圧縮機400、凝縮器502、膨張弁503及び蒸発器504が、冷媒配管505によって接続されることによって、冷媒回路510が構成される。
 次に、冷凍サイクル装置500の動作について、説明する。圧縮機400は、吸入した冷媒を圧縮して高温高圧のガス冷媒として送り出す。四方弁501は、冷媒の流れ方向を切り換える弁である。図18では、圧縮機400から送り出された冷媒を凝縮器502に流す。凝縮器502は、圧縮機400から送り出された高温高圧のガス冷媒と媒体(例えば、空気)との熱交換を行い、ガス冷媒を凝縮した液冷媒として送り出す。膨張弁503は、凝縮器502から送り出された液冷媒を膨張させて、低温低圧の液冷媒として送り出す。
 蒸発器504は、膨張弁503から送り出された低温低圧の媒体(例えば、空気)との熱交換を行い、液冷媒を膨張させて、冷媒ガスとして送り出す。蒸発器504から送り出された冷媒ガスは、再び圧縮機400に戻って圧縮される。なお、四方弁501および圧縮機400の動作は、制御部506によって制御される。
 上述した実施の形態4に係る圧縮機400の運転効率は、向上している。そのため、圧縮機400が冷凍サイクル装置500に適用されることにより、冷凍サイクル装置500のエネルギ効率を向上させることができる。
 《実施の形態6》
 次に、実施の形態6に係る空気調和装置600について説明する。図19は、実施の形態6に係る空気調和装置600の構成を示す図である。図19に示されるように、空気調和装置600は、室外機601と、室内機602と、冷媒配管603とを有している。室外機601及び室内機602は、冷媒配管603によって接続されることで、冷媒回路510を構成する。空気調和装置600は、例えば、室内機602から冷たい空気を送風する冷房運転、又は温かい空気を送風する暖房運転等の運転を行うことができる。
 室外機601は、室外送風機605と、圧縮機400と、室外送風機605及び圧縮機400を収容するハウジング606とを有している。室外送風機605は、羽根車604と、羽根車604を駆動する電動機607とを有している。羽根車604は、例えば、プロペラファンである。電動機607が羽根車604を駆動すると、羽根車604が回転し、気流が生成される。これにより、室外送風機605は送風することができる。例えば、空気調和装置600の冷房運転時には、圧縮機400で圧縮された冷媒が凝縮器(図示せず)で凝縮する際に放出された熱を、室外送風機605の送風によって室外に放出する。
 室外機601は、冷媒の流れ方向を切り替える四方弁(例えば、図18に示される四方弁501)を更に有している。室外機601の四方弁は、圧縮機400から送り出された高温高圧の冷媒ガスを、冷房運転時には室外機601の熱交換器に流し、暖房運転時には、室内機602の熱交換器に流す。このように、室外機601が四方弁を有することによって、空気調和装置600は、図18に示される冷凍サイクル装置500を備えることができる。
 なお、実施の形態5に係る冷凍サイクル装置500は、空気調和装置600以外に、冷蔵庫又は冷凍庫などの他の家電機器に備えられてもよい。
 1 回転子、 2 永久磁石、 3 シャフト、 5 固定子、 10 第1の回転子鉄心、 10a 第1の鉄心部、 10b 第2の鉄心部、 11 磁石挿入孔、 13a、13b、13c、13d 第1のスリット、 20、120、120a、120b、120c、120d、120e、220、320 第2の回転子鉄心、 21 貫通孔、 23a、23b、23c、23d 第2のスリット、 100 電動機、 400 圧縮機、 401 圧縮機構部、 500 冷凍サイクル装置、 502 凝縮器、 503 膨張弁、 504 熱交換器、 600 空気調和装置。

Claims (20)

  1.  軸方向に伸びる回転軸と、
     前記軸方向に配列された第1の鉄心部及び第2の鉄心部を有し、前記回転軸に支持された第1の回転子鉄心と、
     前記第1の回転子鉄心に取り付けられた永久磁石と、
     前記第1の鉄心部と前記第2の鉄心部との間に配置された第2の回転子鉄心と
     を有し、
     前記軸方向に見たときに、前記第2の回転子鉄心が存在する部分の面積は、前記第1の回転子鉄心が存在する部分の面積より広い
     回転子。
  2.  前記第2の回転子鉄心の磁気抵抗は、前記第1の回転子鉄心の磁気抵抗より小さい
     請求項1に記載の回転子。
  3.  前記軸方向に見たときに、前記第2の回転子鉄心の外径は、前記第1の回転子鉄心の外径以下である
     請求項1又は2に記載の回転子。
  4.  前記第1の鉄心部の前記軸方向の長さと、前記第2の鉄心部の前記軸方向の長さは同じである
     請求項1から3のいずれか1項に記載の回転子。
  5.  前記第1の回転子鉄心は、前記永久磁石が挿入された磁石挿入孔を有し、
     前記第2の回転子鉄心は、前記軸方向において前記磁石挿入孔と重なる位置に形成されて前記第2の回転子鉄心を前記軸方向に貫通する貫通孔を有し、
     前記第2の回転子鉄心が存在する部分の面積は、前記貫通孔を除いた部分の面積であり、
     前記第1の回転子鉄心が存在する部分の面積は、前記磁石挿入孔を除いた部分の面積である
     請求項1から4のいずれか1項に記載の回転子。
  6.  前記軸方向に見たときに、前記貫通孔の面積は、前記磁石挿入孔の面積より狭い
     請求項5に記載の回転子。
  7.  前記貫通孔の前記軸方向に直交する径方向の長さは、前記磁石挿入孔の前記径方向の長さより短い
     請求項5又は6に記載の回転子。
  8.  前記第1の回転子鉄心は、前記磁石挿入孔より前記回転子の径方向の外側に配置された第1のスリットを有し、
     前記第2の回転子鉄心は、前記貫通孔より前記径方向の外側に配置された第2のスリットを有し、
     前記第2の回転子鉄心が存在する部分の面積は、前記第2のスリットを除いた部分の面積であり、
     前記第1の回転子鉄心が存在する部分の面積は、前記第1のスリットを除いた部分の面積である
     請求項5から7のいずれか1項に記載の回転子。
  9.  前記軸方向に見たときに、前記第2のスリットの面積は、前記第1のスリットの面積より狭い
     請求項8に記載の回転子。
  10.  前記貫通孔の前記軸方向に直交する方向の長さは、前記回転子の周方向において、前記第2のスリットと重なる部分で最も小さい
     請求項8又は9に記載の回転子。
  11.  前記第2の回転子鉄心の前記軸方向の長さは、前記永久磁石の前記軸方向に直交する方向の厚み以上である
     請求項1から10のいずれか1項に記載の回転子。
  12.  前記第2の回転子鉄心は、磁性材料から形成されている
     請求項1から11のいずれか1項に記載の回転子。
  13.  前記第2の回転子鉄心は、電磁鋼板から形成されている
     請求項1から12のいずれか1項に記載の回転子。
  14.  前記第1の回転子鉄心及び前記第2の回転子鉄心は、同じ材料から形成されている
     請求項1から13のいずれか1項に記載の回転子。
  15.  前記永久磁石は、ネオジウム希土類磁石である
     請求項1から14のいずれか1項に記載の回転子。
  16.  請求項1から15のいずれか1項に記載の回転子と、
     固定子と
     を有する電動機。
  17.  前記永久磁石は、ディスプロシウムを含み、
     前記永久磁石における前記ディスプロシウムの重量比率をW、前記永久磁石の残留磁束密度をB、真空の透磁率をμ、前記固定子と前記回転子との間の間隔をL、前記永久磁石の前記軸方向に直交する方向の厚みをLとしたとき、
    Figure JPOXMLDOC01-appb-M000001
     を満たす
     請求項16に記載の電動機。
  18.  請求項16又は17に記載の電動機と、
     前記電動機によって駆動される圧縮機構部と
     を有する圧縮機。
  19.  請求項18に記載の圧縮機と、
     前記圧縮機から送り出された冷媒を凝縮する凝縮器と、
     前記凝縮器により凝縮した冷媒を減圧する減圧装置と、
     前記減圧装置で減圧された冷媒を蒸発させる蒸発器と
     を有する冷凍サイクル装置。
  20.  請求項19に記載の冷凍サイクル装置を有する空気調和装置。
PCT/JP2020/014046 2020-03-27 2020-03-27 回転子、電動機、圧縮機、冷凍サイクル装置及び空気調和装置 WO2021192231A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP20927565.0A EP4131729A4 (en) 2020-03-27 2020-03-27 ROTOR, ELECTRIC MOTOR, COMPRESSOR, REFRIGERATION CYCLE DEVICE AND AIR CONDITIONING DEVICE
PCT/JP2020/014046 WO2021192231A1 (ja) 2020-03-27 2020-03-27 回転子、電動機、圧縮機、冷凍サイクル装置及び空気調和装置
AU2020438588A AU2020438588B2 (en) 2020-03-27 2020-03-27 Rotor, electric motor, compressor, refrigeration cycle device, and air conditioning device
US17/908,171 US20230118265A1 (en) 2020-03-27 2020-03-27 Rotor, motor, compressor, refrigeration cycle apparatus, and air conditioner
JP2022510333A JP7345633B2 (ja) 2020-03-27 2020-03-27 回転子、電動機、圧縮機、冷凍サイクル装置及び空気調和装置
CN202080098786.9A CN115298929A (zh) 2020-03-27 2020-03-27 转子、电动机、压缩机、制冷循环装置及空气调节装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/014046 WO2021192231A1 (ja) 2020-03-27 2020-03-27 回転子、電動機、圧縮機、冷凍サイクル装置及び空気調和装置

Publications (1)

Publication Number Publication Date
WO2021192231A1 true WO2021192231A1 (ja) 2021-09-30

Family

ID=77889945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014046 WO2021192231A1 (ja) 2020-03-27 2020-03-27 回転子、電動機、圧縮機、冷凍サイクル装置及び空気調和装置

Country Status (6)

Country Link
US (1) US20230118265A1 (ja)
EP (1) EP4131729A4 (ja)
JP (1) JP7345633B2 (ja)
CN (1) CN115298929A (ja)
AU (1) AU2020438588B2 (ja)
WO (1) WO2021192231A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024224515A1 (ja) * 2023-04-26 2024-10-31 三菱電機株式会社 ロータ、電動機、圧縮機および冷凍サイクル装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002112480A (ja) * 2000-09-28 2002-04-12 Fujitsu General Ltd 永久磁石電動機の回転子
JP2010206882A (ja) * 2009-03-02 2010-09-16 Mitsubishi Electric Corp 電動機及び圧縮機及び空気調和機及び電気掃除機
JP5931213B2 (ja) 2012-10-30 2016-06-08 三菱電機株式会社 永久磁石埋込型電動機及びそれを備えた冷凍空調装置
WO2017009969A1 (ja) * 2015-07-15 2017-01-19 三菱電機株式会社 ロータ、電動機、圧縮機および冷凍空調機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103907267B (zh) * 2011-11-07 2016-12-14 三菱电机株式会社 永久磁铁嵌入型电动机的转子、电动机、压缩机和空调机
JP6289694B2 (ja) * 2017-02-16 2018-03-07 三菱電機株式会社 永久磁石埋込型電動機、圧縮機、冷凍空調装置
JP6956881B2 (ja) * 2018-07-27 2021-11-02 三菱電機株式会社 電動機、圧縮機、及び空気調和機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002112480A (ja) * 2000-09-28 2002-04-12 Fujitsu General Ltd 永久磁石電動機の回転子
JP2010206882A (ja) * 2009-03-02 2010-09-16 Mitsubishi Electric Corp 電動機及び圧縮機及び空気調和機及び電気掃除機
JP5931213B2 (ja) 2012-10-30 2016-06-08 三菱電機株式会社 永久磁石埋込型電動機及びそれを備えた冷凍空調装置
WO2017009969A1 (ja) * 2015-07-15 2017-01-19 三菱電機株式会社 ロータ、電動機、圧縮機および冷凍空調機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024224515A1 (ja) * 2023-04-26 2024-10-31 三菱電機株式会社 ロータ、電動機、圧縮機および冷凍サイクル装置

Also Published As

Publication number Publication date
JPWO2021192231A1 (ja) 2021-09-30
EP4131729A1 (en) 2023-02-08
AU2020438588A1 (en) 2022-10-06
AU2020438588B2 (en) 2023-08-31
JP7345633B2 (ja) 2023-09-15
EP4131729A4 (en) 2023-05-31
US20230118265A1 (en) 2023-04-20
CN115298929A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
JP6667591B2 (ja) 永久磁石埋込型電動機、圧縮機、および冷凍空調装置
EP3079231B1 (en) Permanent magnet-embedded electric motor, compressor, and refrigerating and air-conditioning device
WO2018207277A1 (ja) ステータ、電動機、圧縮機、及び冷凍空調装置、並びにステータの製造方法
WO2018138864A1 (ja) 固定子、電動機、圧縮機、および冷凍空調装置
US11018535B2 (en) Motor, rotor, compressor, and refrigeration and air conditioning apparatus
CN108886276B (zh) 电动机、送风机、压缩机及空气调节装置
EP3605796B1 (en) Rotor, electric motor, compressor, fan, and air conditioning device
WO2017208290A1 (ja) 固定子、電動機、圧縮機、および冷凍空調装置
JP6942246B2 (ja) ロータ、電動機、圧縮機および空気調和装置
WO2018138866A1 (ja) 固定子、電動機、圧縮機、および冷凍空調装置
JP7237178B2 (ja) ロータ、電動機、圧縮機、及び空気調和機
WO2015093598A1 (ja) 永久磁石埋込型電動機、圧縮機及び冷凍空調装置
WO2020194504A1 (ja) ロータ、モータ、圧縮機、及び空気調和機
JP7345633B2 (ja) 回転子、電動機、圧縮機、冷凍サイクル装置及び空気調和装置
JP7150181B2 (ja) モータ、圧縮機、及び空気調和機
JP6961106B2 (ja) 回転子、電動機、圧縮機、空気調和装置および回転子の製造方法
US11962191B2 (en) Rotor, electric motor, compressor, and air conditioner
JP7154373B2 (ja) 電動機、圧縮機、及び空気調和機
JP7286019B2 (ja) 固定子、電動機、圧縮機、冷凍サイクル装置及び空気調和装置
WO2015198444A1 (ja) 永久磁石埋込型電動機、圧縮機、冷凍空調装置
JP7026811B2 (ja) ステータ、電動機、圧縮機および空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927565

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510333

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020438588

Country of ref document: AU

Date of ref document: 20200327

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2020927565

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020927565

Country of ref document: EP

Effective date: 20221027

NENP Non-entry into the national phase

Ref country code: DE