Nothing Special   »   [go: up one dir, main page]

WO2021171636A1 - Method for manufacturing heat exchanger - Google Patents

Method for manufacturing heat exchanger Download PDF

Info

Publication number
WO2021171636A1
WO2021171636A1 PCT/JP2020/018568 JP2020018568W WO2021171636A1 WO 2021171636 A1 WO2021171636 A1 WO 2021171636A1 JP 2020018568 W JP2020018568 W JP 2020018568W WO 2021171636 A1 WO2021171636 A1 WO 2021171636A1
Authority
WO
WIPO (PCT)
Prior art keywords
perforated pipe
extruded perforated
lid
outer peripheral
side pin
Prior art date
Application number
PCT/JP2020/018568
Other languages
French (fr)
Japanese (ja)
Inventor
堀 久司
伸城 瀬尾
宏介 山中
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Publication of WO2021171636A1 publication Critical patent/WO2021171636A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal

Definitions

  • the present invention relates to a method for manufacturing a heat exchanger.
  • Patent Document 1 describes a method for manufacturing a heat exchanger in which an extruded perforated pipe in which a plurality of holes are arranged side by side and a sealing body for sealing the openings of the extruded perforated pipe are joined by friction stir welding. It is disclosed.
  • the present invention is composed of an extruded perforated pipe having fins inside and two lids for sealing the openings of the extruded perforated pipe, and the extruded perforated pipe and the lid.
  • This is a method for manufacturing a heat exchanger in which the lids are joined by frictional stirring.
  • the lid has a bottom portion and a peripheral wall portion that rises from the peripheral edge of the bottom portion.
  • the extruded perforated pipe has a fitting portion in which the fins are not formed at both ends and the peripheral wall portion is fitted.
  • the rotary tool used for friction stirring includes a base end side pin and a tip end side pin, and the taper angle of the base end side pin is larger than the taper angle of the tip end side pin, and the outer peripheral surface of the base end side pin.
  • a stepped step portion is formed in the pipe, and the peripheral wall portion of one lid is inserted into one of the fitting portions of the extruded perforated pipe, and the other fitting portion of the extruded perforated pipe is inserted.
  • the peripheral wall portion of the other lid body By inserting the peripheral wall portion of the other lid body, the inner peripheral surfaces of both end portions of the extruded perforated pipe and the stepped side surfaces of the respective lids are overlapped, and one end surface of the extruded perforated pipe is overlapped.
  • the tip end side pin of the tool is inserted into at least one of the butt portions, and the outer peripheral surface of the base end side pin is at least the outer peripheral surface of the extruded porous tube while the tip end side pin is in contact with the extruded porous tube and the lid.
  • the main joining step includes a main joining step of circling around the outer peripheral surface of the extruded porous pipe at a predetermined depth along the butt portion and rubbing and stirring the butt portion in a state of being in contact with the butt portion.
  • the extruded perforated pipe and the lid are rotated by using the holding portions.
  • the extruded perforated tube and at least one of the lids are frictionally agitated by moving in parallel.
  • the holding portion and the rotating tool do not interfere with each other during the main joining process. That is, the extruded perforated pipe and the jig for positioning the lid do not hinder the movement of the rotating tool. As a result, the insertion position and the like can be easily adjusted, and the cost of ancillary equipment can be suppressed. Therefore, the heat exchanger can be manufactured at low cost.
  • the stepped surface is a stepped inclined surface that inclines so as to approach the bottom side from the step side surface toward the outside
  • the extruded perforated pipe is formed of a second aluminum alloy
  • the lid body is formed of a second aluminum alloy. It is made of a first aluminum alloy, and the first aluminum alloy is a grade having a higher hardness than the second aluminum alloy.
  • the step inclination of the end face of the extruded perforated pipe and the lid body.
  • a gap having a V-shaped cross section is formed in the abutting portion by abutting the surfaces, and in the main joining step, the tip side pin of the rotating tool is inserted into the outer peripheral surface of the extruded perforated pipe, and the tip side pin is inserted.
  • the second aluminum alloy With the outer peripheral surface of the lid slightly in contact with the stepped inclined surface of the lid, the second aluminum alloy is allowed to flow into the gap by the outer peripheral surface of the base end side pin, and is determined along the abutting portion. It is preferable to circulate around the outer peripheral surface of the extruded perforated pipe at the depth of the above and frictionally stir the butt portion.
  • the frictional heat between the lid and the extruded perforated pipe stirs and plastically fluidizes the second aluminum alloy mainly on the extruded perforated pipe side of the butt portion, and the lid and the extruded perforated pipe are formed at the butt portion. Can be joined. Further, since the outer peripheral surface of the tip side pin is kept in contact with the lid body slightly, it is possible to minimize the mixing of the first aluminum alloy from the lid body into the extruded perforated pipe. As a result, the second aluminum alloy on the extruded perforated pipe side is mainly frictionally agitated at the butt portion, so that a decrease in joint strength can be suppressed.
  • the extruded perforated pipe and the lid so that the outer peripheral surface of the extruded perforated pipe is on the outer side of the outer peripheral surface of the lid.
  • the tip of the tip-side pin penetrates the stepped side surface of the lid and circulates around the outer peripheral surface of the extruded perforated pipe to frictionally stir the butt portion.
  • the joint strength between the lid and the extruded perforated pipe can be increased.
  • the first aluminum alloy is made of a cast material and the second aluminum alloy is made of a wrought material.
  • the heat exchanger manufacturing method according to the present invention it is possible to provide a heat exchanger manufacturing method capable of manufacturing the heat exchanger at low cost.
  • the rotary tool is a tool used for friction stir welding.
  • the rotary tool F is made of, for example, tool steel, and is mainly composed of a base shaft portion F1, a base end side pin F2, and a tip end side pin F3.
  • the base shaft portion F1 has a columnar shape and is a portion connected to the main shaft of the friction stir welder.
  • the base end side pin F2 is continuous with the base shaft portion F1 and is tapered toward the tip end.
  • the proximal end side pin F2 has a truncated cone shape.
  • the taper angle A of the base end side pin F2 may be appropriately set, but is, for example, 135 to 160 °. If the taper angle A is less than 135 ° or exceeds 160 °, the joint surface roughness after friction stir welding becomes large.
  • the taper angle A is larger than the taper angle B of the tip side pin F3, which will be described later.
  • a stepped pin step portion F21 is formed on the outer peripheral surface of the base end side pin F2 over the entire height direction.
  • the pin step portion F21 is formed in a spiral shape in a clockwise or counterclockwise direction. That is, the pin step portion F21 has a spiral shape when viewed in a plane and a step shape when viewed from a side surface. In the first embodiment, in order to rotate the rotation tool F clockwise, the pin step portion F21 is set counterclockwise from the base end side to the tip end side.
  • the pin step portion F21 is composed of a step bottom surface F21a and a step side surface F21b.
  • the distance X1 (horizontal distance) between the vertices F21c and F21c of the adjacent pin step portions F21 is appropriately set according to the step angle C and the height Y1 of the step side surface F21b described later.
  • the height Y1 of the step side surface F21b may be appropriately set, but is set to, for example, 0.1 to 0.4 mm. If the height Y1 is less than 0.1 mm, the joint surface roughness becomes large. On the other hand, when the height Y1 exceeds 0.4 mm, the joint surface roughness tends to increase, and the number of effective step portions (the number of pin step portions F21 in contact with the metal member to be joined) also decreases.
  • the step angle C formed by the step bottom surface F21a and the step side surface F21b may be appropriately set, but is set to, for example, 85 to 120 °.
  • the step bottom surface F21a is parallel to the horizontal plane in this embodiment.
  • the step bottom surface F21a may be inclined in the range of -5 ° to 15 ° with respect to the horizontal plane from the rotation axis of the tool toward the outer peripheral direction (minus is downward with respect to the horizontal plane, plus is with respect to the horizontal plane).
  • the distance X1, the height Y1 of the step side surface F21b, the step angle C, and the angle of the step bottom surface F21a with respect to the horizontal plane are such that the plastic fluid does not stay inside the pin step portion F21 and adhere to the outside during friction stir welding.
  • the surface roughness of the joint is appropriately set so that the plastic fluid material can be pressed by the step bottom surface F21a to reduce the roughness of the joint surface.
  • the distal end side pin F3 is continuously formed on the proximal end side pin F2.
  • the tip side pin F3 has a truncated cone shape.
  • the tip of the tip side pin F3 is a flat surface F4 perpendicular to the rotation axis.
  • the taper angle B of the tip end side pin F3 is smaller than the taper angle A of the base end side pin F2.
  • a spiral groove F31 is engraved on the outer peripheral surface of the tip end side pin F3.
  • the spiral groove F31 may be clockwise or counterclockwise, but in the first embodiment, the spiral groove F31 is carved counterclockwise from the base end side to the tip end side in order to rotate the rotation tool F clockwise.
  • the spiral groove F31 is composed of a spiral bottom surface F31a and a spiral side surface F31b.
  • the distance (horizontal distance) between the vertices F31c and F31c of the adjacent spiral grooves F31 is defined as the length X2.
  • the height of the spiral side surface F31b is defined as the height Y2.
  • the spiral angle D composed of the spiral bottom surface F31a and the spiral side surface F31b is formed at, for example, 45 to 90 °.
  • the spiral groove F31 has a role of increasing frictional heat by coming into contact with the metal member to be joined and guiding the plastic fluid material to the tip side.
  • the rotation tool F may be attached to a robot arm having a rotation driving means such as a spindle unit at the tip thereof.
  • FIG. 3 is a side view showing a first modification of the rotation tool of the present invention.
  • the step angle C formed by the step bottom surface F21a of the pin step portion F21 and the step side surface F21b is 85 °.
  • the step bottom surface F21a is parallel to the horizontal plane.
  • the step bottom surface F21a is parallel to the horizontal plane, and the step angle C may be an acute angle within a range in which the plastic fluid material stays in the pin step portion F21 during friction stir welding and escapes to the outside without adhering. ..
  • FIG. 4 is a side view showing a second modification of the rotation tool of the present invention.
  • the step angle C of the pin step portion F21 is 115 °.
  • the step bottom surface F21a is parallel to the horizontal plane.
  • the step bottom surface F21a may be parallel to the horizontal plane, and the step angle C may be obtuse within the range in which the step bottom surface F21a functions as the pin step portion F21.
  • FIG. 5 is a side view showing a third modification of the rotation tool of the present invention.
  • the step bottom surface F21a is inclined 10 ° upward with respect to the horizontal plane from the rotation axis of the tool toward the outer peripheral direction.
  • the step side surface F21b is parallel to the vertical surface.
  • the step bottom surface F21a may be formed so as to be inclined upward from the horizontal plane from the rotation axis of the tool toward the outer peripheral direction within a range in which the plastic fluid material can be pressed during friction stir welding. The same effect as that of the following embodiment can be obtained by the first to third modifications of the rotation tool described above.
  • the rotation tool F is attached to a friction stir device that can move in the horizontal direction and the vertical direction.
  • the rotation tool F may be attached to a robot arm having a rotation driving means such as a spindle unit at its tip.
  • the heat exchanger 1 is composed of an extruded perforated pipe 2 and lids 3 (3A, 3B) arranged at both ends of the extruded perforated pipe 2.
  • the heat exchanger 1 is a device that circulates a fluid inside to cool an arranged heating element.
  • the extruded perforated pipe 2 and each lid 3 are integrated by friction stir welding.
  • the lid body 3 is referred to as a lid body 3A and 3B as necessary to distinguish them.
  • the extruded perforated pipe 2 is mainly composed of a main body 11 and a plurality of fins 12.
  • the extruded perforated pipe 2 is formed mainly containing a second aluminum alloy.
  • the second aluminum alloy is formed of, for example, an aluminum alloy wrought material such as JIS A1050, A1100, A6063.
  • the extruded perforated pipe 2 is an extruded shape member made of a second aluminum alloy.
  • the main body 11 has a tubular shape.
  • the side portions 11a and 11b of the main body portion 11 are curved so as to be convex outward (outside in the width direction of the main body portion 11).
  • the substrate portions 11c and 11d of the main body portion 11 are flat and face each other in parallel. That is, the cross section of the main body 11 has an oblong shape.
  • the fins 12 are perpendicular to the substrate portions 11c and 11d.
  • the fins 12 extend in the extrusion direction of the main body 11, and are formed in parallel with each other.
  • a hole 13 having a rectangular cross section through which a fluid flows is formed between adjacent fins 12.
  • Fitting portions 14 having no fins 12 formed are formed in the openings at both ends of the extruded perforated pipe 2.
  • the fitting portion 14 is a portion into which the peripheral wall portion 22 of the lid body 3, which will be described later, is inserted.
  • the fitting portion 14 is formed by cutting both ends of the fin 12.
  • the shape of the extruded perforated pipe 2 is not limited to the above-mentioned shape.
  • the cross section of the extruded perforated pipe 2 may be circular, elliptical, or square.
  • the lids 3A and 3B are members that seal the openings at both ends of the extruded perforated pipe 2.
  • the lid bodies 3A and 3B have the same shape, respectively.
  • the lid 3 has a bottom portion 21 and a peripheral wall portion 22.
  • the bottom portion 21 is a plate-shaped member having an oval shape.
  • the outer shape of the bottom portion 21 is substantially the same as the outer shape of the main body portion 11 of the extruded perforated pipe 2 so as to seal the opening of the extruded perforated pipe 2.
  • the peripheral wall portion 22 is a portion that rises vertically from the peripheral edge portion of the bottom portion 21.
  • the peripheral wall portion 22 is formed in an oval frame shape along the shape of the bottom portion 21.
  • a concave header flow path 24 is formed by the bottom portion 21 and the peripheral wall portion 22.
  • the material of the lid 3 is not particularly limited as long as it is a metal capable of friction stir welding, but in the present embodiment, it is formed mainly containing a first aluminum alloy.
  • the first aluminum alloy is a material having a higher hardness than the second aluminum alloy.
  • an aluminum alloy casting material such as JISH5302 ADC12 (Al—Si—Cu system) is used.
  • the hardness refers to Brinell hardness, which can be measured by a method according to JIS Z 2243.
  • a peripheral wall step portion 23 composed of a step side surface 23a and a step inclined surface 23b rising from the step side surface 23a is formed on the outer peripheral edge of the peripheral wall portion 22.
  • the peripheral wall step portion 23 is formed over the entire peripheral direction.
  • the step side surface 23a is parallel to the extrusion direction.
  • the step inclined surface (step surface) 23b is inclined so as to approach the bottom portion 21 from the step side surface 23a toward the outside (outside in the width direction of the main body portion 11).
  • the step inclined surface 23b is inclined so as to be separated from the main body portion 11 toward the outside.
  • the inclination angle ⁇ of the step inclined surface 23b is a constant inclination angle.
  • the stepped surface is a stepped inclined surface 23b that is inclined with respect to the stepped side surface 23a, but it may be perpendicular to the stepped side surface 23a.
  • the outer peripheral surface 11f of the extruded perforated pipe 2 and the outer peripheral surface 22b of the peripheral wall portion 22 may be flush with each other, but in the present embodiment, the extruded perforated pipe 2 and the lid 3 are subjected to the butt step described later, and then the peripheral wall portion
  • the outer peripheral surface 11f of the extruded perforated pipe 2 is set to be outside the outer peripheral surface 22b of 22.
  • the height (thickness) dimension of the end surface 11e of the extruded perforated pipe 2 is set to be larger than the height dimension of the stepped inclined surface 23b.
  • the preparation step is a step of preparing the extruded perforated pipe 2 and the lid 3.
  • the extruded perforated pipe 2 and the lid 3 are not particularly limited in terms of manufacturing method, but the extruded perforated pipe 2 is molded by, for example, extrusion molding.
  • the lid 3 is molded by die casting, for example.
  • the butt step is a step of butt-butting the lid 3 against the extruded perforated pipe 2 as shown in FIG.
  • the fitting portion 14 of the extruded perforated pipe 2 is fitted to the peripheral wall portion 22 of the lid body 3.
  • the stepped inclined surface 23b of the lid 3 and the end surface 11e of the extruded perforated pipe 2 are abutted to form the butt portion J1
  • the stepped side surface 23a of the lid 3 and the inner peripheral surface 11g of the extruded perforated pipe 2 are formed. And are overlapped to form the butt portion J2.
  • the end surface 22a of the peripheral wall portion 22 and the end surface 12a of the fin 12 are in contact with each other or face each other with a slight gap.
  • the butt portions J1 and J2 are formed over the circumferential direction.
  • a gap having a V-shaped cross section is formed in the butt portion J1.
  • This joining step is a step of friction stir welding of the butt portion J1 using the rotary tool F.
  • a holding step and a friction stir welding step are performed.
  • the lids 3A and 3B are pressed from both outer sides by a holding device (jig) provided with a pair of holding portions 32 to hold the lids 3A and 3B.
  • an intermediate plate 31 is interposed between the holding portion 32 and the lid 3A, and between the holding portion 32 and the lid 3B, respectively.
  • the holding portion 32 has a columnar shape, and its end faces come into surface contact with the intermediate plates 31 and 31, respectively. By providing the intermediate plate 31, the pressing force of the holding portion 32 can be dispersed, and the extruded perforated pipe 2 and the lids 3A and 3B can be reliably held.
  • the intermediate plate 31 may be omitted.
  • the holding portion 32 of the holding device, the extruded perforated pipe 2, and the lids 3A and 3B rotate or move in parallel in synchronization with each other. That is, in the holding device, the extruded perforated pipe 2 and the lids 3A and 3B are rotated in the circumferential direction while the lids 3A and the lids 3B are pressed and held by the holding portions 32 and 32, respectively, and up and down, left and right. And it can be moved linearly in the front-back direction.
  • the "set movement route L1" (dashed line) is set at a position away from the lid 3 with respect to the butt portion J1.
  • the set movement route L1 is a movement route of the rotation tool F necessary for joining the butt portion J1 in the friction stir step described later.
  • the set movement route L1 will be described in detail later.
  • Three sections of the detachment section from to the end position EP1 are continuously friction-stir welded.
  • the intermediate points S1 and S2 are set on the set movement route L1.
  • the start position SP1 is set at a position in the main body 11 of the extruded perforated pipe 2 so as to be separated from the lid 3 with respect to the set movement route L1.
  • the start position SP1 is set at a position where the angle formed by the line segment connecting the start position SP1 and the intermediate point S1 and the set movement route L1 is an obtuse angle.
  • the tip side pin F3 rotated clockwise is inserted into the start position SP1 while the rotation center axis Z is perpendicular to the outer peripheral surface 11f of the main body 11, and is relatively moved to the intermediate point S1.
  • the tip side pin F3 is gradually pushed in so as to reach a preset "predetermined depth" by at least reaching the intermediate point S1. That is, instead of keeping the rotation tool F in one place, the rotation tool F is gradually lowered while being moved to the set movement route L1.
  • the predetermined depth means the depth at which the tip end side pin F3 is inserted in this section from the intermediate point S1 to the intermediate point S2 on the butt portion J1.
  • the rotation tool F is made to go around along the set movement route L1.
  • the outer peripheral surface of the tip side pin F3 and the step inclined surface 23b are set to be parallel.
  • the outer peripheral surface of the tip side pin F3 and the stepped inclined surface 23b are set to slightly contact each other.
  • the insertion depth is set so that the flat surface F4 of the tip end side pin F3 penetrates the step side surface 23a while the outer peripheral surface of the base end side pin F2 and the outer peripheral surface 11f of the extruded perforated pipe 2 are in contact with each other.
  • the rotation center axis Z of the rotation tool F and the outer peripheral surface 11f of the main body 11 are set to be vertical, and while maintaining these, the rotation tool F is relatively moved along the butt portion J1.
  • the contact allowance (offset amount) N between the outer peripheral surface of the tip side pin F3 and the stepped inclined surface 23b is set, for example, between 0 ⁇ N ⁇ 1.0 mm, and preferably between 0 ⁇ N ⁇ 0.85 mm. It is set, and more preferably set between 0 ⁇ N ⁇ 0.65 mm.
  • the set movement route L1 shows a locus through which the center of the flat surface F4 passes. That is, the set movement route L1 is set so that the stepped inclined surface 23b and the outer peripheral surface of the tip end side pin F3 are made parallel to each other and slightly contact each other in the circumferential direction of the butt portion J1.
  • the rotation tool F is moved so that the center of the flat surface F4 overlaps with the set movement route L1.
  • the "predetermined depth" of the tip side pin F3 may be appropriately set, but in the present embodiment, the flat surface F4 of the rotation tool F is inserted to a position where it penetrates the step side surface 23a. As a result, the butt portion J2 can also be reliably joined.
  • the joint strength of the butt portion J1 becomes low.
  • the contact allowance N of the stepped inclined surface 23b of the tip side pin F3 exceeds 1.0 mm, a large amount of the first aluminum alloy of the lid 3 may be mixed into the extruded perforated pipe 2 side, resulting in poor joining. ..
  • the process shifts to the detachment section as it is.
  • the tip side pin F3 is gradually pulled out (raised) from the intermediate point S2 toward the end position EP1, and the tip side pin F3 is detached from the extruded perforated pipe 2 at the end position EP1. That is, the rotation tool F is gradually pulled out while being moved to the end position EP1 without staying in one place.
  • the end position EP1 is set at a position where the angle formed by the line segment connecting the end position EP1 and the intermediate point S2 and the set movement route L1 is an obtuse angle.
  • a plasticized region W1 is formed in the movement locus of the rotation tool F.
  • the extruded perforated pipes 2 and the lids 3A and 3B are rotated or moved while the lids 3A and 3B are held from both outer sides by a pair of holding portions 32. Therefore, the holding portion 32 and the rotating tool F do not interfere with each other during the main joining process. That is, since the jig for positioning the extruded perforated pipe 2 and the lids 3A and 3B is not on the movement route of the rotation tool F, the movement of the rotation tool F is not hindered. As a result, the insertion position and the like can be easily adjusted, and the cost of ancillary equipment can be suppressed. Therefore, the heat exchanger can be manufactured at low cost.
  • the frictional heat between the extruded perforated pipe 2 and the tip side pin F3 stirs and plastically fluidizes the second aluminum alloy mainly on the extruded perforated pipe 2 side of the butt portion J1, and the end face of the extruded perforated pipe 2 at the butt portion J1.
  • the step 11e and the stepped inclined surface 23b of the lid 3 can be joined.
  • the outer peripheral surface of the tip side pin F3 is kept slightly in contact with the stepped inclined surface 23b, it is possible to minimize the mixing of the first aluminum alloy from the lid 3 into the extruded perforated pipe 2.
  • the second aluminum alloy on the extruded perforated pipe 2 side is mainly frictionally agitated, so that a decrease in joint strength can be suppressed. That is, in this joining step, the imbalance of the material resistance received by the tip side pin F3 on one side and the other side with respect to the rotation center axis Z of the tip side pin F3 can be minimized.
  • the plastic fluid material is frictionally agitated in a well-balanced manner, and a decrease in joint strength can be suppressed.
  • the generation of burrs can be suppressed by bringing the outer peripheral surface of the base end side pin F2 into contact with the outer peripheral surface 11f of the extruded perforated pipe 2 to hold down the plastic fluid material. Further, since the plastic fluid material can be pressed on the outer peripheral surface of the base end side pin F2, the stepped concave groove formed on the joint surface (the outer peripheral surface 22b of the peripheral wall portion 22 and the outer peripheral surface 11f of the extruded perforated pipe 2) is reduced. At the same time, the bulging portion formed on the side of the stepped groove can be eliminated or reduced.
  • the stepped pin step portion F21 of the base end side pin F2 is shallow and the outlet is wide, the plastic fluid material is easily pulled out of the pin step portion F21 while being pressed by the step bottom surface F21a. There is. Therefore, even if the plastic fluid material is pressed by the base end side pin F2, the plastic fluid material is unlikely to adhere to the outer peripheral surface of the base end side pin F2. Therefore, the roughness of the joint surface can be reduced, and the joint quality can be suitably stabilized.
  • the rotary tool F is moved from the start position SP1 to a position overlapping the set movement route L1 and the tip side pin F3 is gradually pushed in until it reaches a predetermined depth to move the set movement. It is possible to prevent the rotation tool F from stopping on the route L1 and causing the frictional heat to become excessive.
  • the set movement route L1 is separated by gradually pulling out the tip side pin F3 from a predetermined depth while moving the rotation tool F from the set movement route L1 to the end position EP1. It is possible to prevent the rotating tool F from stopping and excessive frictional heat.
  • the positions of the start position SP1 and the end position EP1 may be appropriately set, but the angle formed by the start position SP1 and the set movement route L1 and the angle formed by the end position EP1 and the set movement route L1 are different.
  • the angle By setting the angle to be obtuse, it is possible to smoothly shift to the main section or the departure section at the intermediate points S1 and S2 without reducing the moving speed of the rotation tool F. As a result, it is possible to prevent the frictional heat from becoming excessive due to the rotation tool F stopping or the moving speed decreasing on the set movement route L1.
  • the locus of the rotation tool F may be moved so as to draw a curve when viewed from above, or may be moved in a straight line. good.
  • the rotation tool F may be moved so that the locus of the rotation tool F draws a curve when viewed from above, or moves in a straight line. You may let me.
  • the rotation direction and the traveling direction of the rotation tool F may be appropriately set, but the lid 3 side (of the plasticized region W1 formed in the movement locus of the rotation tool F) ( The rotation direction and the traveling direction of the rotation tool F were set so that the butt portion J1 side) was on the shear side and the extruded perforated pipe 2 side was on the flow side.
  • the lid 3 side By setting the lid 3 side to be the shear side, the stirring action by the tip side pin F3 around the butt portion J1 is enhanced, and the temperature rise in the butt portion J1 can be expected.
  • the lid 3 can be joined more reliably.
  • the shear side means the side where the relative speed of the outer circumference of the rotating tool with respect to the jointed portion is the value obtained by adding the magnitude of the moving speed to the magnitude of the tangential velocity on the outer circumference of the rotating tool. ..
  • the flow side refers to the side where the relative speed of the rotating tool with respect to the jointed portion becomes low due to the rotation of the rotating tool in the direction opposite to the moving direction of the rotating tool.
  • the first aluminum alloy of the lid 3 is a material having a higher hardness than the second aluminum alloy of the extruded perforated pipe 2. Thereby, the durability of the heat exchanger 1 can be enhanced. Further, it is preferable that the first aluminum alloy of the lid 3 is an aluminum alloy casting material and the second aluminum alloy of the extruded perforated pipe 2 is an aluminum alloy wrought material.
  • an Al—Si—Cu based aluminum alloy casting material such as JIS H5302 ADC12
  • JIS H5302 ADC12 the first aluminum alloy
  • the castability, strength, machinability, etc. of the lid 3 can be improved.
  • JIS A1000 series or A6000 series the processability and thermal conductivity of the extruded perforated pipe 2 can be improved.
  • the airtightness and watertightness of the heat exchanger can be improved.
  • the rotation tool F is made to move toward the end position EP1 after completely passing through the intermediate point S1. That is, the airtightness and watertightness can be further improved by overlapping the ends of the plasticized region W1 formed by this joining step with each other.
  • the outer peripheral surface of the base end side pin F2 of the rotary tool F is slightly brought into contact with the outer peripheral surface 11f of the extruded perforated pipe 2 to perform friction stir while pressing the plastic fluid material, so that burrs are generated. It can be suppressed.
  • the outer peripheral surface 11f of the extruded perforated pipe 2 is set to be outside the outer peripheral surface 22b of the peripheral wall portion 22. Thereby, when friction stir welding is performed, it is possible to further prevent the metal shortage of the butt portion J1.
  • the header flow path 24 in the lid 3 the fluid flowing in or out of the hole 13 can be collected.
  • the rotation speed of the rotation tool F may be constant, but may be variable.
  • V1 the rotation speed of the rotation tool F at the start position SP1
  • V2 the rotation speed of the rotation tool F in this section
  • V1> V2 may be satisfied.
  • the rotation speed V2 is a preset constant rotation speed in the set movement route L1. That is, at the start position SP1, the rotation speed may be set high, and the rotation speed may be gradually reduced in the closet section to shift to the main section.
  • the rotation speed of the rotation tool F in this section is V2 and the rotation speed of the rotation tool F when detached at the end position EP1 is V3, V3> V2 may be satisfied. That is, after shifting to the detachment section, the rotation tool F may be detached from the extruded perforated pipe 2 while gradually increasing the rotation speed toward the end position EP1.
  • the rotary tool F is pushed into the extruded perforated pipe 2 or separated from the extruded perforated pipe 2, by setting as described above, it is possible to supplement the small pressing pressure in the indentation section or the detachment section with the rotation speed. Therefore, friction stir welding can be preferably performed.
  • the first embodiment is set in that the positions of the start position SP1, the intermediate points S1 and S2, and the end position EP1 in the main joining process are all set on the set movement route L1. Different from the form.
  • the parts different from the first embodiment will be mainly described.
  • the preparation step, the butt step, and the main joining step are performed.
  • the preparation step and the butt step are the same as those in the first embodiment.
  • the start position SP1 is set on the set movement route L1.
  • the intrusion section from the start position SP1 to the intermediate point S1 the main section from the intermediate point S1 on the set movement route L1 to the intermediate point S2, and the departure from the intermediate point S2 to the end position EP1. Friction stir welding is performed continuously for three sections.
  • the tip side pin is set so that the outer peripheral surface of the tip side pin F3 and the step inclined surface 23b are parallel to each other when the intermediate point S1 is reached while moving the rotation tool F.
  • the outer peripheral surface of F3 and the stepped inclined surface 23b are set so as to be in slight contact with each other. Then, while maintaining that state, the process shifts to friction stir welding in this section.
  • the contact allowance (offset amount) N between the outer peripheral surface of the tip end side pin F3 and the stepped inclined surface 23b and the setting of the set movement route L1 are the same as those in the first embodiment.
  • the heat exchanger manufacturing method according to the second embodiment described above can also achieve substantially the same effect as that of the first embodiment.
  • the start position SP1 and the end position EP1 in the main joining step may be set on the set movement route L1.
  • the rotary tool F is moved on the set movement route and the tip side pin F3 is gradually pushed in until the depth reaches a predetermined depth, thereby on the set movement route L1. It is possible to prevent the rotation tool F from stopping at one point and excessive frictional heat.
  • the rotation tool F is moved on the set movement route and the tip side pin F3 is gradually detached, so that the rotation tool can be moved at one point on the set movement route L1. It is possible to prevent F from stopping and excessive frictional heat.
  • the extruded perforated pipe 2 and the lid 3 may be made of the same type of metal or may be made of a metal having the same hardness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

The present invention is characterized by including a main joining step in which one pass around the outer circumferential surface (11f) of an extruded porous tube (2) is made at a prescribed depth along a set movement route (L1) that is set closer to the extruded porous tube (2) than to an abutting part (J1), while pouring a second aluminum alloy into a gap, so as to perform friction stir welding of the abutting part (J1), in a state in which a tip-side pin (F3) of a rotating tool (F) is inserted into the outer circumferential surface (11f) of the extruded porous tube (2) and the outer circumferential surface of the tip-side pin (F3) is lightly brought into contact with a stepped inclined surface (23b) of a lid (3) while the outer circumferential surface of the tip-side pin (F2) is brought into contact with the outer circumferential surface (11f) of the extruded porous tube (2). The present invention is further characterized in that, in the main joining step, lids (3A, 3B) are held by being pressed by a pair of holding parts (32) from the outside on both sides while the extruded porous tube (2) and the lid (3) are rotated or moved in parallel using the holding parts (32), and friction stir welding of the extruded porous tube (2) and the lids (3) is performed.

Description

熱交換器の製造方法How to make a heat exchanger
 本発明は、熱交換器の製造方法に関する。 The present invention relates to a method for manufacturing a heat exchanger.
 摩擦攪拌を利用した熱交換器の製造方法が行われている。例えば、特許文献1には、複数の孔部が並設された押出多孔管と、当該押出多孔管の開口部を封止する封止体とを摩擦攪拌で接合する熱交換器の製造方法が開示されている。 A method of manufacturing a heat exchanger using friction stir welding is being carried out. For example, Patent Document 1 describes a method for manufacturing a heat exchanger in which an extruded perforated pipe in which a plurality of holes are arranged side by side and a sealing body for sealing the openings of the extruded perforated pipe are joined by friction stir welding. It is disclosed.
特開2016-74016号公報Japanese Unexamined Patent Publication No. 2016-74016
 特許文献1に係る発明では、回転ツールと押出多孔管の外周面とを垂直にした状態で回転ツールを押出多孔管廻りに一周させるため、回転ツールを、例えば、先端にスピンドルユニット等の回転駆動手段を備えたアームロボットに取り付けるなどして、回転ツールの回転中心軸の角度や挿入位置を変更・調整する必要がある。このため回転ツールを駆動させるための装置等の付帯設備に費用がかかり、結果的に製造コストが高くなるという問題がある。 In the invention according to Patent Document 1, in order to rotate the rotating tool around the extruded perforated pipe with the rotating tool and the outer peripheral surface of the extruded perforated pipe perpendicular to each other, the rotating tool is driven to rotate, for example, a spindle unit or the like at the tip. It is necessary to change / adjust the angle and insertion position of the rotation center axis of the rotation tool by attaching it to an arm robot equipped with means. Therefore, there is a problem that ancillary equipment such as a device for driving the rotary tool is costly, and as a result, the manufacturing cost is high.
 このような観点から、本発明は、熱交換器を低コストで製造することができる熱交換器の製造方法を提供することを課題とする。 From this point of view, it is an object of the present invention to provide a method for manufacturing a heat exchanger, which can manufacture a heat exchanger at low cost.
 前記課題を解決するため、本発明は、内部にフィンを有する押出多孔管と、前記押出多孔管の開口部を封止する二つの蓋体とで構成され、前記押出多孔管と前記蓋体とを摩擦攪拌で接合する熱交換器の製造方法であって、前記蓋体は、底部及び前記底部の周縁から立ち上がる周壁部を有し、前記周壁部の外周縁に、段差側面と、当該段差側面から外側に向かって立ち上がる段差面と、を有する周壁段差部を形成し、前記押出多孔管は、両端部に前記フィンが形成されておらず前記周壁部が嵌め合わされる嵌合部を有し、摩擦攪拌で用いる回転ツールは、基端側ピンと、先端側ピンとを備え、前記基端側ピンのテーパー角度は、先端側ピンのテーパー角度よりも大きくなっており、前記基端側ピンの外周面には階段状の段差部が形成されており、前記押出多孔管の一方の前記嵌合部に一の前記蓋体の前記周壁部を挿入し、前記押出多孔管の他方の前記嵌合部に他の前記蓋体の前記周壁部を挿入することにより、前記押出多孔管の両端部の内周面とそれぞれの前記蓋体の段差側面とを重ね合わせるとともに、前記押出多孔管の一方の端面と一の前記蓋体の前記段差面、及び、前記押出多孔管の他方の端面と他の前記蓋体の前記段差面とをそれぞれ突き合わせて二つの突合せ部を形成する突合せ工程と、回転する前記回転ツールの先端側ピンを少なくとも一方の前記突合せ部に挿入し、前記先端側ピンを前記押出多孔管及び前記蓋体に接触させつつ前記基端側ピンの外周面を少なくとも前記押出多孔管の外周面に接触させた状態で、前記突合せ部に沿って所定の深さで前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、前記本接合工程において、二つの前記蓋体と前記押出多孔管とを各前記蓋体の両外側から一対の保持部で押圧して保持しつつ、前記保持部を用いて前記押出多孔管及び前記蓋体を回転又は平行移動させて前記押出多孔管と少なくとも一つの前記蓋体とを摩擦攪拌することを特徴とする。 In order to solve the above problems, the present invention is composed of an extruded perforated pipe having fins inside and two lids for sealing the openings of the extruded perforated pipe, and the extruded perforated pipe and the lid. This is a method for manufacturing a heat exchanger in which the lids are joined by frictional stirring. The lid has a bottom portion and a peripheral wall portion that rises from the peripheral edge of the bottom portion. The extruded perforated pipe has a fitting portion in which the fins are not formed at both ends and the peripheral wall portion is fitted. The rotary tool used for friction stirring includes a base end side pin and a tip end side pin, and the taper angle of the base end side pin is larger than the taper angle of the tip end side pin, and the outer peripheral surface of the base end side pin. A stepped step portion is formed in the pipe, and the peripheral wall portion of one lid is inserted into one of the fitting portions of the extruded perforated pipe, and the other fitting portion of the extruded perforated pipe is inserted. By inserting the peripheral wall portion of the other lid body, the inner peripheral surfaces of both end portions of the extruded perforated pipe and the stepped side surfaces of the respective lids are overlapped, and one end surface of the extruded perforated pipe is overlapped. A butt step of forming two butt portions by abutting the stepped surface of one of the lids and the other end surface of the extruded perforated pipe with the stepped surface of the other lid, and the rotating rotation. The tip end side pin of the tool is inserted into at least one of the butt portions, and the outer peripheral surface of the base end side pin is at least the outer peripheral surface of the extruded porous tube while the tip end side pin is in contact with the extruded porous tube and the lid. The main joining step includes a main joining step of circling around the outer peripheral surface of the extruded porous pipe at a predetermined depth along the butt portion and rubbing and stirring the butt portion in a state of being in contact with the butt portion. In, while pressing and holding the two lids and the extruded perforated pipe from both outer sides of each of the lids with a pair of holding portions, the extruded perforated pipe and the lid are rotated by using the holding portions. Alternatively, the extruded perforated tube and at least one of the lids are frictionally agitated by moving in parallel.
 かかる製造方法によれば、蓋体の表面を一対の保持部で保持した状態で押出多孔管及び蓋体を回転又は平行移動させるため、本接合工程中に保持部と回転ツールとが干渉しない。つまり、押出多孔管及び蓋体を位置決めするための治具が回転ツールの移動の妨げにならない。これにより、挿入位置等の調整が容易になるとともに、付帯設備の費用も抑えることができる。よって、熱交換器を低コストで製造することができる。 According to such a manufacturing method, since the extruded perforated pipe and the lid are rotated or translated while the surface of the lid is held by the pair of holding portions, the holding portion and the rotating tool do not interfere with each other during the main joining process. That is, the extruded perforated pipe and the jig for positioning the lid do not hinder the movement of the rotating tool. As a result, the insertion position and the like can be easily adjusted, and the cost of ancillary equipment can be suppressed. Therefore, the heat exchanger can be manufactured at low cost.
 また、前記段差面は、前記段差側面から外側に向かうにつれて前記底部側に近接するように傾斜する段差傾斜面であり、前記押出多孔管は第二アルミニウム合金で形成されており、前記蓋体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、前記突合せ工程において、前記押出多孔管の端面と前記蓋体の前記段差傾斜面とを突き合わせて突合せ部に断面V字状の隙間を形成し、前記本接合工程において、回転する前記回転ツールの前記先端側ピンを前記押出多孔管の外周面に挿入し、前記先端側ピンの外周面を前記蓋体の前記段差傾斜面にわずかに接触させた状態で、前記基端側ピンの外周面によって前記隙間に前記第二アルミニウム合金を流入させながら、前記突合せ部に沿って所定の深さで前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌することが好ましい。 Further, the stepped surface is a stepped inclined surface that inclines so as to approach the bottom side from the step side surface toward the outside, the extruded perforated pipe is formed of a second aluminum alloy, and the lid body is formed of a second aluminum alloy. It is made of a first aluminum alloy, and the first aluminum alloy is a grade having a higher hardness than the second aluminum alloy. In the butt step, the step inclination of the end face of the extruded perforated pipe and the lid body. A gap having a V-shaped cross section is formed in the abutting portion by abutting the surfaces, and in the main joining step, the tip side pin of the rotating tool is inserted into the outer peripheral surface of the extruded perforated pipe, and the tip side pin is inserted. With the outer peripheral surface of the lid slightly in contact with the stepped inclined surface of the lid, the second aluminum alloy is allowed to flow into the gap by the outer peripheral surface of the base end side pin, and is determined along the abutting portion. It is preferable to circulate around the outer peripheral surface of the extruded perforated pipe at the depth of the above and frictionally stir the butt portion.
 かかる製造方法によれば、蓋体と押出多孔管との摩擦熱によって突合せ部の主として押出多孔管側の第二アルミニウム合金が攪拌されて塑性流動化され、突合せ部において蓋体と押出多孔管とを接合することができる。また、先端側ピンの外周面を蓋体にわずかに接触させるに留めるため、蓋体から押出多孔管への第一アルミニウム合金の混入を極力少なくすることができる。これにより、突合せ部においては主として押出多孔管側の第二アルミニウム合金が摩擦攪拌されるため、接合強度の低下を抑制することができる。 According to such a manufacturing method, the frictional heat between the lid and the extruded perforated pipe stirs and plastically fluidizes the second aluminum alloy mainly on the extruded perforated pipe side of the butt portion, and the lid and the extruded perforated pipe are formed at the butt portion. Can be joined. Further, since the outer peripheral surface of the tip side pin is kept in contact with the lid body slightly, it is possible to minimize the mixing of the first aluminum alloy from the lid body into the extruded perforated pipe. As a result, the second aluminum alloy on the extruded perforated pipe side is mainly frictionally agitated at the butt portion, so that a decrease in joint strength can be suppressed.
 また、前記突合せ工程では、前記蓋体の外周面よりも前記押出多孔管の外周面の方が外側となるように、前記押出多孔管と前記蓋体とを形成することが好ましい。 Further, in the butt step, it is preferable to form the extruded perforated pipe and the lid so that the outer peripheral surface of the extruded perforated pipe is on the outer side of the outer peripheral surface of the lid.
 かかる製造方法によれば、接合部の金属不足を防ぐことができる。 According to such a manufacturing method, it is possible to prevent a metal shortage at the joint.
 また、前記回転ツールの回転方向及び進行方向を前記突合せ部側がアドバンシング側となるように設定することが好ましい。 Further, it is preferable to set the rotation direction and the traveling direction of the rotation tool so that the butt portion side is the advancing side.
 かかる製造方法によれば、突合せ部側の摩擦攪拌が促進され、より好適に接合することができる。 According to such a manufacturing method, friction stir welding on the butt portion side is promoted, and more suitable joining can be performed.
 また、前記本接合工程では、前記先端側ピンの先端が前記蓋体の段差側面を突き抜けた状態で前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌することが好ましい。 Further, in the main joining step, it is preferable that the tip of the tip-side pin penetrates the stepped side surface of the lid and circulates around the outer peripheral surface of the extruded perforated pipe to frictionally stir the butt portion.
 かかる製造方法によれば、蓋体と押出多孔管との接合強度を高めることができる。 According to such a manufacturing method, the joint strength between the lid and the extruded perforated pipe can be increased.
 前記第一アルミニウム合金は鋳造材からなり、前記第二アルミニウム合金は展伸材からなることが好ましい。 It is preferable that the first aluminum alloy is made of a cast material and the second aluminum alloy is made of a wrought material.
 本発明に係る熱交換器の製造方法によれば、熱交換器を低コストで製造することができる熱交換器の製造方法を提供することができる。 According to the heat exchanger manufacturing method according to the present invention, it is possible to provide a heat exchanger manufacturing method capable of manufacturing the heat exchanger at low cost.
本発明の実施形態に係る回転ツールを示す側面図である。It is a side view which shows the rotation tool which concerns on embodiment of this invention. 回転ツールの拡大断面図である。It is an enlarged sectional view of the rotation tool. 回転ツールの第一変形例を示す断面図である。It is sectional drawing which shows the 1st modification of a rotation tool. 回転ツールの第二変形例を示す断面図である。It is sectional drawing which shows the 2nd modification of the rotation tool. 回転ツールの第三変形例を示す断面図である。It is sectional drawing which shows the 3rd modification of the rotation tool. 本発明の第一実施形態に係る熱交換器を示す分解斜視図である。It is an exploded perspective view which shows the heat exchanger which concerns on 1st Embodiment of this invention. 第一実施形態に係る熱交換器の製造方法の突合せ工程を示す断面図である。It is sectional drawing which shows the butt process of the manufacturing method of the heat exchanger which concerns on 1st Embodiment. 第一実施形態に係る熱交換器の製造方法の本接合工程を示す斜視図である。It is a perspective view which shows the main joining process of the manufacturing method of the heat exchanger which concerns on 1st Embodiment. 第一実施形態に係る熱交換器の製造方法の本接合工程の開始位置を示す模式図である。It is a schematic diagram which shows the start position of the main joining process of the manufacturing method of the heat exchanger which concerns on 1st Embodiment. 第一実施形態に係る熱交換器の製造方法の本接合工程を示す断面図である。It is sectional drawing which shows the main joining process of the manufacturing method of the heat exchanger which concerns on 1st Embodiment. 第一実施形態に係る熱交換器の製造方法の本接合工程の終了位置を示す模式図である。It is a schematic diagram which shows the end position of this joining process of the manufacturing method of the heat exchanger which concerns on 1st Embodiment. 本発明の第二実施形態に係る熱交換器の製造方法の本接合工程の開始位置を示す模式図である。It is a schematic diagram which shows the start position of this joining process of the manufacturing method of the heat exchanger which concerns on 2nd Embodiment of this invention. 本発明の第二実施形態に係る熱交換器の製造方法の本接合工程の終了位置を示す模式図である。It is a schematic diagram which shows the end position of this joining process of the manufacturing method of the heat exchanger which concerns on 2nd Embodiment of this invention.
 本発明の実施形態について、適宜図面を参照しながら説明する。まずは、本実施形態に係る熱交換器の製造方法で用いる回転ツールについて説明する。回転ツールは、摩擦攪拌接合に用いられるツールである。図1に示すように、回転ツールFは、例えば工具鋼で形成されており、基軸部F1と、基端側ピンF2と、先端側ピンF3とで主に構成されている。基軸部F1は、円柱状を呈し、摩擦攪拌装置の主軸に接続される部位である。 An embodiment of the present invention will be described with reference to the drawings as appropriate. First, the rotation tool used in the method for manufacturing the heat exchanger according to the present embodiment will be described. The rotary tool is a tool used for friction stir welding. As shown in FIG. 1, the rotary tool F is made of, for example, tool steel, and is mainly composed of a base shaft portion F1, a base end side pin F2, and a tip end side pin F3. The base shaft portion F1 has a columnar shape and is a portion connected to the main shaft of the friction stir welder.
 基端側ピンF2は、基軸部F1に連続し、先端に向けて先細りになっている。基端側ピンF2は、円錐台形状を呈する。基端側ピンF2のテーパー角度Aは適宜設定すればよいが、例えば、135~160°になっている。テーパー角度Aが135°未満であるか、又は、160°を超えると摩擦攪拌後の接合表面粗さが大きくなる。テーパー角度Aは、後記する先端側ピンF3のテーパー角度Bよりも大きくなっている。図2に示すように、基端側ピンF2の外周面には、階段状のピン段差部F21が高さ方向の全体に亘って形成されている。ピン段差部F21は、右回り又は左回りで螺旋状に形成されている。つまり、ピン段差部F21は、平面視して螺旋状であり、側面視すると階段状になっている。本第一実施形態では、回転ツールFを右回転させるため、ピン段差部F21は基端側から先端側に向けて左回りに設定している。 The base end side pin F2 is continuous with the base shaft portion F1 and is tapered toward the tip end. The proximal end side pin F2 has a truncated cone shape. The taper angle A of the base end side pin F2 may be appropriately set, but is, for example, 135 to 160 °. If the taper angle A is less than 135 ° or exceeds 160 °, the joint surface roughness after friction stir welding becomes large. The taper angle A is larger than the taper angle B of the tip side pin F3, which will be described later. As shown in FIG. 2, a stepped pin step portion F21 is formed on the outer peripheral surface of the base end side pin F2 over the entire height direction. The pin step portion F21 is formed in a spiral shape in a clockwise or counterclockwise direction. That is, the pin step portion F21 has a spiral shape when viewed in a plane and a step shape when viewed from a side surface. In the first embodiment, in order to rotate the rotation tool F clockwise, the pin step portion F21 is set counterclockwise from the base end side to the tip end side.
 なお、回転ツールFを左回転させる場合は、ピン段差部F21を基端側から先端側に向けて右回りに設定することが好ましい。これにより、ピン段差部F21によって塑性流動材が先端側に導かれるため、被接合金属部材の外部に溢れ出る金属を低減することができる。ピン段差部F21は、段差底面F21aと、段差側面F21bとで構成されている。隣り合うピン段差部F21の各頂点F21c,F21cの距離X1(水平方向距離)は、後記する段差角度C及び段差側面F21bの高さY1に応じて適宜設定される。 When rotating the rotation tool F counterclockwise, it is preferable to set the pin step portion F21 clockwise from the base end side to the tip end side. As a result, the plastic fluid material is guided to the tip side by the pin step portion F21, so that the metal overflowing to the outside of the metal member to be joined can be reduced. The pin step portion F21 is composed of a step bottom surface F21a and a step side surface F21b. The distance X1 (horizontal distance) between the vertices F21c and F21c of the adjacent pin step portions F21 is appropriately set according to the step angle C and the height Y1 of the step side surface F21b described later.
 段差側面F21bの高さY1は適宜設定すればよいが、例えば、0.1~0.4mmで設定されている。高さY1が0.1mm未満であると接合表面粗さが大きくなる。一方、高さY1が0.4mmを超えると接合表面粗さが大きくなる傾向があるとともに、有効段差部数(被接合金属部材と接触しているピン段差部F21の数)も減少する。 The height Y1 of the step side surface F21b may be appropriately set, but is set to, for example, 0.1 to 0.4 mm. If the height Y1 is less than 0.1 mm, the joint surface roughness becomes large. On the other hand, when the height Y1 exceeds 0.4 mm, the joint surface roughness tends to increase, and the number of effective step portions (the number of pin step portions F21 in contact with the metal member to be joined) also decreases.
 段差底面F21aと段差側面F21bとでなす段差角度Cは適宜設定すればよいが、例えば、85~120°で設定されている。段差底面F21aは、本実施形態では水平面と平行になっている。段差底面F21aは、ツールの回転軸から外周方向に向かって水平面に対して-5°~15°内の範囲で傾斜していてもよい(マイナスは水平面に対して下方、プラスは水平面に対して上方)。距離X1、段差側面F21bの高さY1、段差角度C及び水平面に対する段差底面F21aの角度は、摩擦攪拌を行う際に、塑性流動材がピン段差部F21の内部に滞留して付着することなく外部に抜けるとともに、段差底面F21aで塑性流動材を押えて接合表面粗さを小さくすることができるように適宜設定する。 The step angle C formed by the step bottom surface F21a and the step side surface F21b may be appropriately set, but is set to, for example, 85 to 120 °. The step bottom surface F21a is parallel to the horizontal plane in this embodiment. The step bottom surface F21a may be inclined in the range of -5 ° to 15 ° with respect to the horizontal plane from the rotation axis of the tool toward the outer peripheral direction (minus is downward with respect to the horizontal plane, plus is with respect to the horizontal plane). Above). The distance X1, the height Y1 of the step side surface F21b, the step angle C, and the angle of the step bottom surface F21a with respect to the horizontal plane are such that the plastic fluid does not stay inside the pin step portion F21 and adhere to the outside during friction stir welding. The surface roughness of the joint is appropriately set so that the plastic fluid material can be pressed by the step bottom surface F21a to reduce the roughness of the joint surface.
 図1に示すように、先端側ピンF3は、基端側ピンF2に連続して形成されている。先端側ピンF3は円錐台形状を呈する。先端側ピンF3の先端は回転軸に対して垂直な平坦面F4になっている。先端側ピンF3のテーパー角度Bは、基端側ピンF2のテーパー角度Aよりも小さくなっている。図2に示すように、先端側ピンF3の外周面には、螺旋溝F31が刻設されている。螺旋溝F31は、右回り、左回りのどちらでもよいが、本第一実施形態では回転ツールFを右回転させるため、基端側から先端側に向けて左回りに刻設されている。 As shown in FIG. 1, the distal end side pin F3 is continuously formed on the proximal end side pin F2. The tip side pin F3 has a truncated cone shape. The tip of the tip side pin F3 is a flat surface F4 perpendicular to the rotation axis. The taper angle B of the tip end side pin F3 is smaller than the taper angle A of the base end side pin F2. As shown in FIG. 2, a spiral groove F31 is engraved on the outer peripheral surface of the tip end side pin F3. The spiral groove F31 may be clockwise or counterclockwise, but in the first embodiment, the spiral groove F31 is carved counterclockwise from the base end side to the tip end side in order to rotate the rotation tool F clockwise.
 なお、回転ツールFを左回転させる場合は、螺旋溝F31を基端側から先端側に向けて右回りに設定することが好ましい。これにより、螺旋溝F31によって塑性流動材が先端側に導かれるため、被接合金属部材の外部に溢れ出る金属を低減することができる。螺旋溝F31は、螺旋底面F31aと、螺旋側面F31bとで構成されている。隣り合う螺旋溝F31の頂点F31c,F31cの距離(水平方向距離)を長さX2とする。螺旋側面F31bの高さを高さY2とする。螺旋底面F31aと、螺旋側面F31bとで構成される螺旋角度Dは例えば、45~90°で形成されている。螺旋溝F31は、被接合金属部材と接触することにより摩擦熱を上昇させるとともに、塑性流動材を先端側に導く役割を備えている。また、回転ツールFは、先端にスピンドルユニット等の回転駆動手段を備えたロボットアームに取り付けてもよい。 When rotating the rotation tool F counterclockwise, it is preferable to set the spiral groove F31 clockwise from the base end side to the tip end side. As a result, the plastic fluid material is guided to the tip side by the spiral groove F31, so that the metal overflowing to the outside of the metal member to be joined can be reduced. The spiral groove F31 is composed of a spiral bottom surface F31a and a spiral side surface F31b. The distance (horizontal distance) between the vertices F31c and F31c of the adjacent spiral grooves F31 is defined as the length X2. The height of the spiral side surface F31b is defined as the height Y2. The spiral angle D composed of the spiral bottom surface F31a and the spiral side surface F31b is formed at, for example, 45 to 90 °. The spiral groove F31 has a role of increasing frictional heat by coming into contact with the metal member to be joined and guiding the plastic fluid material to the tip side. Further, the rotation tool F may be attached to a robot arm having a rotation driving means such as a spindle unit at the tip thereof.
 回転ツールFは、適宜設計変更が可能である。図3は、本発明の回転ツールの第一変形例を示す側面図である。図3に示すように、第一変形例に係る回転ツールFAでは、ピン段差部F21の段差底面F21aと段差側面F21bとのなす段差角度Cが85°になっている。段差底面F21aは、水平面と平行である。このように、段差底面F21aは水平面と平行であるとともに、段差角度Cは、摩擦攪拌中にピン段差部F21内に塑性流動材が滞留して付着することなく外部に抜ける範囲で鋭角としてもよい。 The design of the rotation tool F can be changed as appropriate. FIG. 3 is a side view showing a first modification of the rotation tool of the present invention. As shown in FIG. 3, in the rotation tool FA according to the first modification, the step angle C formed by the step bottom surface F21a of the pin step portion F21 and the step side surface F21b is 85 °. The step bottom surface F21a is parallel to the horizontal plane. As described above, the step bottom surface F21a is parallel to the horizontal plane, and the step angle C may be an acute angle within a range in which the plastic fluid material stays in the pin step portion F21 during friction stir welding and escapes to the outside without adhering. ..
 図4は、本発明の回転ツールの第二変形例を示す側面図である。図4に示すように、第二変形例に係る回転ツールFBでは、ピン段差部F21の段差角度Cが115°になっている。段差底面F21aは水平面と平行になっている。このように、段差底面F21aは水平面と平行であるとともに、ピン段差部F21として機能する範囲で段差角度Cが鈍角となってもよい。 FIG. 4 is a side view showing a second modification of the rotation tool of the present invention. As shown in FIG. 4, in the rotation tool FB according to the second modification, the step angle C of the pin step portion F21 is 115 °. The step bottom surface F21a is parallel to the horizontal plane. As described above, the step bottom surface F21a may be parallel to the horizontal plane, and the step angle C may be obtuse within the range in which the step bottom surface F21a functions as the pin step portion F21.
 図5は、本発明の回転ツールの第三変形例を示す側面図である。図5に示すように、第三変形例に係る回転ツールFCでは、段差底面F21aがツールの回転軸から外周方向に向かって水平面に対して10°上方に傾斜している。段差側面F21bは、鉛直面と平行になっている。このように、摩擦攪拌中に塑性流動材を押さえることができる範囲で、段差底面F21aがツールの回転軸から外周方向に向かって水平面よりも上方に傾斜するように形成されていてもよい。上記の回転ツールの第一~第三変形例によっても、下記の実施形態と同等の効果を奏することができる。 FIG. 5 is a side view showing a third modification of the rotation tool of the present invention. As shown in FIG. 5, in the rotation tool FC according to the third modification, the step bottom surface F21a is inclined 10 ° upward with respect to the horizontal plane from the rotation axis of the tool toward the outer peripheral direction. The step side surface F21b is parallel to the vertical surface. As described above, the step bottom surface F21a may be formed so as to be inclined upward from the horizontal plane from the rotation axis of the tool toward the outer peripheral direction within a range in which the plastic fluid material can be pressed during friction stir welding. The same effect as that of the following embodiment can be obtained by the first to third modifications of the rotation tool described above.
 回転ツールFは、本実施形態では、水平方向及び上下方向に移動可能な摩擦攪拌装置に取り付けられている。なお、回転ツールFは、先端にスピンドルユニット等の回転駆動手段を備えたロボットアームに取り付けてもよい。 In this embodiment, the rotation tool F is attached to a friction stir device that can move in the horizontal direction and the vertical direction. The rotation tool F may be attached to a robot arm having a rotation driving means such as a spindle unit at its tip.
[第一実施形態]
 本発明の実施形態について、適宜図面を参照しながら説明する。本発明は以下の実施形態のみに限定されるものではない。また、各実施形態における構成要素は一部又は全部を適宜組み合わせることができる。第一実施形態に係る熱交換器1は、図6に示すように、押出多孔管2と、押出多孔管2の両端に配置された蓋体3(3A,3B)とで構成されている。熱交換器1は、内部に流体を流通させて、配置される発熱体を冷却する機器である。押出多孔管2と各蓋体3とは摩擦攪拌接合で一体化される。なお、蓋体3は、必要に応じて蓋体3A,3Bと称して区別する。
[First Embodiment]
Embodiments of the present invention will be described with reference to the drawings as appropriate. The present invention is not limited to the following embodiments. In addition, some or all of the components in each embodiment can be combined as appropriate. As shown in FIG. 6, the heat exchanger 1 according to the first embodiment is composed of an extruded perforated pipe 2 and lids 3 (3A, 3B) arranged at both ends of the extruded perforated pipe 2. The heat exchanger 1 is a device that circulates a fluid inside to cool an arranged heating element. The extruded perforated pipe 2 and each lid 3 are integrated by friction stir welding. The lid body 3 is referred to as a lid body 3A and 3B as necessary to distinguish them.
 押出多孔管2は、本体部11と、複数のフィン12とで主に構成されている。押出多孔管2は、本実施形態では第二アルミニウム合金を主に含んで形成されている。第二アルミニウム合金は、例えば、JIS A1050,A1100,A6063等のアルミニウム合金展伸材で形成されている。押出多孔管2は、第二アルミニウム合金で形成された押出形材である。 The extruded perforated pipe 2 is mainly composed of a main body 11 and a plurality of fins 12. In the present embodiment, the extruded perforated pipe 2 is formed mainly containing a second aluminum alloy. The second aluminum alloy is formed of, for example, an aluminum alloy wrought material such as JIS A1050, A1100, A6063. The extruded perforated pipe 2 is an extruded shape member made of a second aluminum alloy.
 本体部11は、筒状を呈する。本体部11の側部11a,11bは外側(本体部11の幅方向外側)に凸となるように湾曲している。本体部11の基板部11c,11dは平坦になっており、平行に対向している。つまり、本体部11の断面は長丸形状になっている。フィン12は、基板部11c,11dに対して垂直になっている。フィン12は、本体部11の押し出し方向に延設され、それぞれ平行に形成されている。隣り合うフィン12の間には、流体が流通する断面矩形の孔部13が形成されている。 The main body 11 has a tubular shape. The side portions 11a and 11b of the main body portion 11 are curved so as to be convex outward (outside in the width direction of the main body portion 11). The substrate portions 11c and 11d of the main body portion 11 are flat and face each other in parallel. That is, the cross section of the main body 11 has an oblong shape. The fins 12 are perpendicular to the substrate portions 11c and 11d. The fins 12 extend in the extrusion direction of the main body 11, and are formed in parallel with each other. A hole 13 having a rectangular cross section through which a fluid flows is formed between adjacent fins 12.
 押出多孔管2の両端の開口部には、フィン12が形成されていない嵌合部14が形成されている。嵌合部14は、後記する蓋体3の周壁部22が挿入される部位である。嵌合部14は、フィン12の両端を切削することにより形成されている。押出多孔管2の形状は、上記した形状に限定されるものではない。例えば、押出多孔管2の断面(押出方向に対して垂直な断面)が、円形、楕円形又は角形であってもよい。 Fitting portions 14 having no fins 12 formed are formed in the openings at both ends of the extruded perforated pipe 2. The fitting portion 14 is a portion into which the peripheral wall portion 22 of the lid body 3, which will be described later, is inserted. The fitting portion 14 is formed by cutting both ends of the fin 12. The shape of the extruded perforated pipe 2 is not limited to the above-mentioned shape. For example, the cross section of the extruded perforated pipe 2 (cross section perpendicular to the extrusion direction) may be circular, elliptical, or square.
 蓋体3A,3Bは、押出多孔管2の両端の開口部を封止する部材である。蓋体3A,3Bは、それぞれ同形状になっている。蓋体3は、底部21と、周壁部22とを有する。底部21は、長丸形状を呈する板状部材である。底部21の外形は、押出多孔管2の開口部を封止するように、押出多孔管2の本体部11の外形と概ね同形状になっている。周壁部22は、底部21の周縁部から垂直に立ち上がる部位である。周壁部22は、底部21の形状に沿って長丸の枠状に形成されている。底部21と周壁部22とで凹状のヘッダー流路24が形成されている。 The lids 3A and 3B are members that seal the openings at both ends of the extruded perforated pipe 2. The lid bodies 3A and 3B have the same shape, respectively. The lid 3 has a bottom portion 21 and a peripheral wall portion 22. The bottom portion 21 is a plate-shaped member having an oval shape. The outer shape of the bottom portion 21 is substantially the same as the outer shape of the main body portion 11 of the extruded perforated pipe 2 so as to seal the opening of the extruded perforated pipe 2. The peripheral wall portion 22 is a portion that rises vertically from the peripheral edge portion of the bottom portion 21. The peripheral wall portion 22 is formed in an oval frame shape along the shape of the bottom portion 21. A concave header flow path 24 is formed by the bottom portion 21 and the peripheral wall portion 22.
 蓋体3の材料は、摩擦攪拌可能な金属であれば特に制限されないが、本実施形態では第一アルミニウム合金を主に含んで形成されている。第一アルミニウム合金は、第二アルミニウム合金よりも硬度の高い材料である。第一アルミニウム合金は、例えば、JISH5302 ADC12(Al-Si-Cu系)等のアルミニウム合金鋳造材を用いている。なお、本明細書において硬度はブリネル硬さをいい、JIS Z 2243に準じた方法によって測定することができる。 The material of the lid 3 is not particularly limited as long as it is a metal capable of friction stir welding, but in the present embodiment, it is formed mainly containing a first aluminum alloy. The first aluminum alloy is a material having a higher hardness than the second aluminum alloy. As the first aluminum alloy, for example, an aluminum alloy casting material such as JISH5302 ADC12 (Al—Si—Cu system) is used. In the present specification, the hardness refers to Brinell hardness, which can be measured by a method according to JIS Z 2243.
 図7にも示すように、周壁部22の外周縁には、段差側面23aと、段差側面23aから立ち上がる段差傾斜面23bとで構成された周壁段差部23が形成されている。周壁段差部23は、周方向全体にわたって形成されている。段差側面23aは、押し出し方向と平行になっている。段差傾斜面(段差面)23bは、段差側面23aから外側(本体部11の幅方向外側)に向かうにつれて底部21に近接するように傾斜している。換言すると、段差傾斜面23bは、外側に向かうにつれて本体部11から離間するように傾斜している。段差傾斜面23bの傾斜角度βは、一定の傾斜角度になっている。なお、本実施形態では段差面を段差側面23aに対して傾斜する段差傾斜面23bとしたが、段差側面23aに対して垂直としてもよい。 As shown in FIG. 7, a peripheral wall step portion 23 composed of a step side surface 23a and a step inclined surface 23b rising from the step side surface 23a is formed on the outer peripheral edge of the peripheral wall portion 22. The peripheral wall step portion 23 is formed over the entire peripheral direction. The step side surface 23a is parallel to the extrusion direction. The step inclined surface (step surface) 23b is inclined so as to approach the bottom portion 21 from the step side surface 23a toward the outside (outside in the width direction of the main body portion 11). In other words, the step inclined surface 23b is inclined so as to be separated from the main body portion 11 toward the outside. The inclination angle β of the step inclined surface 23b is a constant inclination angle. In the present embodiment, the stepped surface is a stepped inclined surface 23b that is inclined with respect to the stepped side surface 23a, but it may be perpendicular to the stepped side surface 23a.
 押出多孔管2の外周面11fと周壁部22の外周面22bとは面一でもよいが、本実施形態では、押出多孔管2及び蓋体3は、後記する突合せ工程を行った後、周壁部22の外周面22bよりも、押出多孔管2の外周面11fが外側となるように設定している。換言すると、段差傾斜面23bの高さ寸法よりも、押出多孔管2の端面11eの高さ(厚さ)寸法の方が大きくなるように設定している。 The outer peripheral surface 11f of the extruded perforated pipe 2 and the outer peripheral surface 22b of the peripheral wall portion 22 may be flush with each other, but in the present embodiment, the extruded perforated pipe 2 and the lid 3 are subjected to the butt step described later, and then the peripheral wall portion The outer peripheral surface 11f of the extruded perforated pipe 2 is set to be outside the outer peripheral surface 22b of 22. In other words, the height (thickness) dimension of the end surface 11e of the extruded perforated pipe 2 is set to be larger than the height dimension of the stepped inclined surface 23b.
 次に、本実施形態に係る熱交換器の製造方法について説明する。本実施形態に係る熱交換器の製造方法では、準備工程と、突合せ工程と、本接合工程とを行う。 Next, the method of manufacturing the heat exchanger according to the present embodiment will be described. In the method for manufacturing a heat exchanger according to the present embodiment, a preparation step, a butt step, and a main joining step are performed.
 準備工程は、押出多孔管2及び蓋体3を準備する工程である。押出多孔管2及び蓋体3は、製造方法については特に制限されないが、押出多孔管2は、例えば、押出成形で成形する。蓋体3は、例えば、ダイキャストにより成形する。 The preparation step is a step of preparing the extruded perforated pipe 2 and the lid 3. The extruded perforated pipe 2 and the lid 3 are not particularly limited in terms of manufacturing method, but the extruded perforated pipe 2 is molded by, for example, extrusion molding. The lid 3 is molded by die casting, for example.
 突合せ工程は、図7に示すように、押出多孔管2に蓋体3を突き合わせる工程である。突合せ工程では、蓋体3の周壁部22に、押出多孔管2の嵌合部14を嵌め合わせる。これにより、蓋体3の段差傾斜面23bと押出多孔管2の端面11eとが突き合わされて突合せ部J1が形成されるとともに、蓋体3の段差側面23aと押出多孔管2の内周面11gとが重ね合わされて突合せ部J2が形成される。周壁部22の端面22aと、フィン12の端面12aとは接触するか、わずかな隙間をあけて対向する。突合せ部J1,J2は、周方向にわたって形成される。突合せ部J1には断面V字状の隙間が形成される。 The butt step is a step of butt-butting the lid 3 against the extruded perforated pipe 2 as shown in FIG. In the butt step, the fitting portion 14 of the extruded perforated pipe 2 is fitted to the peripheral wall portion 22 of the lid body 3. As a result, the stepped inclined surface 23b of the lid 3 and the end surface 11e of the extruded perforated pipe 2 are abutted to form the butt portion J1, and the stepped side surface 23a of the lid 3 and the inner peripheral surface 11g of the extruded perforated pipe 2 are formed. And are overlapped to form the butt portion J2. The end surface 22a of the peripheral wall portion 22 and the end surface 12a of the fin 12 are in contact with each other or face each other with a slight gap. The butt portions J1 and J2 are formed over the circumferential direction. A gap having a V-shaped cross section is formed in the butt portion J1.
 本接合工程は、回転ツールFを用いて突合せ部J1を摩擦攪拌接合する工程である。本接合工程では、保持工程と、摩擦攪拌工程とを行う。保持工程は、図8に示すように、一対の保持部32を備える挟持装置(治具)で蓋体3A,3Bを両外側から押圧して挟持する。本実施形態では、保持部32と蓋体3Aとの間、保持部32と蓋体3Bとの間にそれぞれ中間プレート31を介設している。保持部32は円柱状を呈し、その端面が中間プレート31,31にそれぞれ面接触する。中間プレート31を設けることで、保持部32の押圧力を分散させて、押出多孔管2及び蓋体3A,3Bを確実に保持することができる。なお、中間プレート31は省略してもよい。 This joining step is a step of friction stir welding of the butt portion J1 using the rotary tool F. In this joining step, a holding step and a friction stir welding step are performed. In the holding step, as shown in FIG. 8, the lids 3A and 3B are pressed from both outer sides by a holding device (jig) provided with a pair of holding portions 32 to hold the lids 3A and 3B. In the present embodiment, an intermediate plate 31 is interposed between the holding portion 32 and the lid 3A, and between the holding portion 32 and the lid 3B, respectively. The holding portion 32 has a columnar shape, and its end faces come into surface contact with the intermediate plates 31 and 31, respectively. By providing the intermediate plate 31, the pressing force of the holding portion 32 can be dispersed, and the extruded perforated pipe 2 and the lids 3A and 3B can be reliably held. The intermediate plate 31 may be omitted.
 挟持装置の保持部32と押出多孔管2及び蓋体3A,3Bとは同期して回転又は平行移動する。つまり、当該挟持装置は、蓋体3A及び蓋体3Bを保持部32,32でそれぞれ押圧し挟持した状態で、押出多孔管2及び蓋体3A,3Bを周方向に回転させるとともに、上下、左右及び前後方向に直線移動させることができる。 The holding portion 32 of the holding device, the extruded perforated pipe 2, and the lids 3A and 3B rotate or move in parallel in synchronization with each other. That is, in the holding device, the extruded perforated pipe 2 and the lids 3A and 3B are rotated in the circumferential direction while the lids 3A and the lids 3B are pressed and held by the holding portions 32 and 32, respectively, and up and down, left and right. And it can be moved linearly in the front-back direction.
 摩擦攪拌工程は、図9及び図10に示すように、まず、突合せ部J1に対して蓋体3から離間する位置に「設定移動ルートL1」(一点鎖線)を設定する。設定移動ルートL1は、後記する摩擦攪拌工程において、突合せ部J1を接合するために必要な回転ツールFの移動ルートである。設定移動ルートL1については追って詳述する。 In the friction stir welding step, as shown in FIGS. 9 and 10, first, the "set movement route L1" (dashed line) is set at a position away from the lid 3 with respect to the butt portion J1. The set movement route L1 is a movement route of the rotation tool F necessary for joining the butt portion J1 in the friction stir step described later. The set movement route L1 will be described in detail later.
 図9に示すように、摩擦攪拌工程では、開始位置SP1から中間点S1までの押入区間と、設定移動ルートL1上の中間点S1から一周廻って中間点S2までの本区間と、中間点S2から終了位置EP1までの離脱区間の三つの区間を連続して摩擦攪拌接合する。中間点S1,S2は、設定移動ルートL1上に設定されている。開始位置SP1は、押出多孔管2の本体部11において、設定移動ルートL1に対して蓋体3から離間する位置に設定されている。本実施形態では、開始位置SP1と中間点S1とを結ぶ線分と、設定移動ルートL1とのなす角度が鈍角となる位置に開始位置SP1を設定している。 As shown in FIG. 9, in the friction stir welding step, the intrusion section from the start position SP1 to the intermediate point S1, the main section from the intermediate point S1 on the set movement route L1 to the intermediate point S2, and the intermediate point S2. Three sections of the detachment section from to the end position EP1 are continuously friction-stir welded. The intermediate points S1 and S2 are set on the set movement route L1. The start position SP1 is set at a position in the main body 11 of the extruded perforated pipe 2 so as to be separated from the lid 3 with respect to the set movement route L1. In the present embodiment, the start position SP1 is set at a position where the angle formed by the line segment connecting the start position SP1 and the intermediate point S1 and the set movement route L1 is an obtuse angle.
 押入区間では、開始位置SP1から中間点S1までの摩擦攪拌を行う。押入区間では、本体部11の外周面11fに対して回転中心軸線Zを垂直にしつつ、右回転させた先端側ピンF3を開始位置SP1に挿入し、中間点S1まで相対移動させる。この際、少なくとも中間点S1に到達するまでに予め設定された「所定の深さ」に達するように先端側ピンF3を徐々に押し入れていく。つまり、回転ツールFを一ヶ所に留まらせることなく、回転ツールFを設定移動ルートL1に移動させながら徐々に下降させていく。回転ツールFが中間点S1に達したら、そのまま本区間に移行する。所定の深さとは、突合せ部J1上の中間点S1から中間点S2までの本区間において、先端側ピンF3を差し込む深さを言う。 In the closet section, friction stir welding is performed from the start position SP1 to the intermediate point S1. In the closet section, the tip side pin F3 rotated clockwise is inserted into the start position SP1 while the rotation center axis Z is perpendicular to the outer peripheral surface 11f of the main body 11, and is relatively moved to the intermediate point S1. At this time, the tip side pin F3 is gradually pushed in so as to reach a preset "predetermined depth" by at least reaching the intermediate point S1. That is, instead of keeping the rotation tool F in one place, the rotation tool F is gradually lowered while being moved to the set movement route L1. When the rotation tool F reaches the intermediate point S1, the section shifts to this section as it is. The predetermined depth means the depth at which the tip end side pin F3 is inserted in this section from the intermediate point S1 to the intermediate point S2 on the butt portion J1.
 本区間では、図10に示すように回転ツールFを設定移動ルートL1に沿って一周させる。本区間においては、中間点S1に達した際に、先端側ピンF3の外周面と段差傾斜面23bとが平行となるように設定する。また、中間点S1に達した際に、先端側ピンF3の外周面と段差傾斜面23bとがわずかに接触するように設定する。このとき基端側ピンF2の外周面と押出多孔管2の外周面11fとが接触しつつ、先端側ピンF3の平坦面F4が段差側面23aを突き抜けるように挿入深さを設定する。回転ツールFの回転中心軸線Zと、本体部11の外周面11fとが垂直となるように設定し、これらを維持した状態で、突合せ部J1に沿って回転ツールFを相対移動させる。 In this section, as shown in FIG. 10, the rotation tool F is made to go around along the set movement route L1. In this section, when the intermediate point S1 is reached, the outer peripheral surface of the tip side pin F3 and the step inclined surface 23b are set to be parallel. Further, when the intermediate point S1 is reached, the outer peripheral surface of the tip side pin F3 and the stepped inclined surface 23b are set to slightly contact each other. At this time, the insertion depth is set so that the flat surface F4 of the tip end side pin F3 penetrates the step side surface 23a while the outer peripheral surface of the base end side pin F2 and the outer peripheral surface 11f of the extruded perforated pipe 2 are in contact with each other. The rotation center axis Z of the rotation tool F and the outer peripheral surface 11f of the main body 11 are set to be vertical, and while maintaining these, the rotation tool F is relatively moved along the butt portion J1.
 先端側ピンF3の外周面と段差傾斜面23bとの接触代(オフセット量)Nは、例えば、0<N≦1.0mmの間で設定し、好ましくは0<N≦0.85mmの間で設定し、より好ましくは0<N≦0.65mmの間で設定する。 The contact allowance (offset amount) N between the outer peripheral surface of the tip side pin F3 and the stepped inclined surface 23b is set, for example, between 0 <N ≦ 1.0 mm, and preferably between 0 <N ≦ 0.85 mm. It is set, and more preferably set between 0 <N ≦ 0.65 mm.
 設定移動ルートL1は、図11に示すように、平坦面F4の中心が通過する軌跡を示している。つまり、設定移動ルートL1は、突合せ部J1の周方向において、段差傾斜面23bと先端側ピンF3の外周面とを平行にしつつ両者がわずかに接触するように設定されている。本区間においては、回転ツールFを上方から見た場合に、平坦面F4の中心が、設定移動ルートL1と重なるように回転ツールFを移動させる。なお、先端側ピンF3の「所定の深さ」は、適宜設定すればよいが、本実施形態では回転ツールFの平坦面F4が、段差側面23aを突き抜ける位置まで挿入する。これにより、突合せ部J2も確実に接合することができる。 As shown in FIG. 11, the set movement route L1 shows a locus through which the center of the flat surface F4 passes. That is, the set movement route L1 is set so that the stepped inclined surface 23b and the outer peripheral surface of the tip end side pin F3 are made parallel to each other and slightly contact each other in the circumferential direction of the butt portion J1. In this section, when the rotation tool F is viewed from above, the rotation tool F is moved so that the center of the flat surface F4 overlaps with the set movement route L1. The "predetermined depth" of the tip side pin F3 may be appropriately set, but in the present embodiment, the flat surface F4 of the rotation tool F is inserted to a position where it penetrates the step side surface 23a. As a result, the butt portion J2 can also be reliably joined.
 先端側ピンF3の外周面と段差傾斜面23bとが接触しないように設定すると、突合せ部J1の接合強度が低くなる。一方、先端側ピンF3の段差傾斜面23bの接触代Nが1.0mmを超えると蓋体3の第一アルミニウム合金が、押出多孔管2側に大量に混入して接合不良となるおそれがある。 If the outer peripheral surface of the tip side pin F3 and the stepped inclined surface 23b are set so as not to come into contact with each other, the joint strength of the butt portion J1 becomes low. On the other hand, if the contact allowance N of the stepped inclined surface 23b of the tip side pin F3 exceeds 1.0 mm, a large amount of the first aluminum alloy of the lid 3 may be mixed into the extruded perforated pipe 2 side, resulting in poor joining. ..
 図11に示すように、回転ツールFを一周させて先端側ピンF3が中間点S2に到達したら、そのまま離脱区間に移行する。離脱区間では、中間点S2から終了位置EP1に向かうまでの間に先端側ピンF3を徐々に引き抜いて(上昇させて)、終了位置EP1で押出多孔管2から先端側ピンF3を離脱させる。つまり、回転ツールFを一ヶ所に留まらせることなく、回転ツールFを終了位置EP1に移動させながら徐々に引抜いていく。終了位置EP1は、終了位置EP1と中間点S2とが結ぶ線分と設定移動ルートL1とでなす角度が鈍角となる位置に設定する。回転ツールFの移動軌跡には塑性化領域W1が形成される。なお、前記したように押出多孔管2と一端側の蓋体3Aとの摩擦攪拌接合が終了したら、同じ要領で押出多孔管2と他端側の蓋体3Bとの摩擦攪拌接合を行う。押出多孔管2と他端側の蓋体3Bとの摩擦攪拌は省略してもよい。つまり、押出多孔管2と少なくとも一つの蓋体3が摩擦攪拌されていればよい。 As shown in FIG. 11, when the rotation tool F goes around and the tip side pin F3 reaches the intermediate point S2, the process shifts to the detachment section as it is. In the detachment section, the tip side pin F3 is gradually pulled out (raised) from the intermediate point S2 toward the end position EP1, and the tip side pin F3 is detached from the extruded perforated pipe 2 at the end position EP1. That is, the rotation tool F is gradually pulled out while being moved to the end position EP1 without staying in one place. The end position EP1 is set at a position where the angle formed by the line segment connecting the end position EP1 and the intermediate point S2 and the set movement route L1 is an obtuse angle. A plasticized region W1 is formed in the movement locus of the rotation tool F. When the friction stir welding between the extruded perforated pipe 2 and the lid 3A on one end side is completed as described above, the extruded perforated pipe 2 and the lid 3B on the other end side are subjected to friction stir welding in the same manner. Friction stir welding between the extruded perforated pipe 2 and the lid 3B on the other end side may be omitted. That is, it suffices that the extruded perforated pipe 2 and at least one lid 3 are frictionally agitated.
 以上説明した本実施形態における熱交換器の製造方法によれば、蓋体3A,3Bを一対の保持部32で両外側から保持した状態で押出多孔管2及び蓋体3A,3Bを回転又は移動させるため、本接合工程中に保持部32と回転ツールFとが干渉しない。つまり押出多孔管2と蓋体3A,3Bとを位置決めするための治具が、回転ツールFの移動ルート上に無いため回転ツールFの移動の妨げにならない。これにより、挿入位置等の調整が容易になるとともに、付帯設備の費用も抑えることができる。よって、熱交換器を低コストで製造することができる。 According to the method for manufacturing a heat exchanger in the present embodiment described above, the extruded perforated pipes 2 and the lids 3A and 3B are rotated or moved while the lids 3A and 3B are held from both outer sides by a pair of holding portions 32. Therefore, the holding portion 32 and the rotating tool F do not interfere with each other during the main joining process. That is, since the jig for positioning the extruded perforated pipe 2 and the lids 3A and 3B is not on the movement route of the rotation tool F, the movement of the rotation tool F is not hindered. As a result, the insertion position and the like can be easily adjusted, and the cost of ancillary equipment can be suppressed. Therefore, the heat exchanger can be manufactured at low cost.
 また、押出多孔管2と先端側ピンF3との摩擦熱によって突合せ部J1の主として押出多孔管2側の第二アルミニウム合金が攪拌されて塑性流動化され、突合せ部J1において押出多孔管2の端面11eと蓋体3の段差傾斜面23bとを接合することができる。 Further, the frictional heat between the extruded perforated pipe 2 and the tip side pin F3 stirs and plastically fluidizes the second aluminum alloy mainly on the extruded perforated pipe 2 side of the butt portion J1, and the end face of the extruded perforated pipe 2 at the butt portion J1. The step 11e and the stepped inclined surface 23b of the lid 3 can be joined.
 また、先端側ピンF3の外周面を段差傾斜面23bにわずかに接触させるに留めるため、蓋体3から押出多孔管2への第一アルミニウム合金の混入を極力少なくすることができる。これにより、突合せ部J1においては主として押出多孔管2側の第二アルミニウム合金が摩擦攪拌されるため、接合強度の低下を抑制することができる。つまり、本接合工程では、先端側ピンF3の回転中心軸線Zに対して一方側と他方側で、先端側ピンF3が受ける材料抵抗の不均衡を極力少なくすることができる。また、先端側ピンF3の外周面と蓋体3の段差傾斜面23bとを平行に設定しているため、塑性流動材がバランス良く摩擦攪拌され、接合強度の低下を抑制することができる。 Further, since the outer peripheral surface of the tip side pin F3 is kept slightly in contact with the stepped inclined surface 23b, it is possible to minimize the mixing of the first aluminum alloy from the lid 3 into the extruded perforated pipe 2. As a result, in the butt portion J1, the second aluminum alloy on the extruded perforated pipe 2 side is mainly frictionally agitated, so that a decrease in joint strength can be suppressed. That is, in this joining step, the imbalance of the material resistance received by the tip side pin F3 on one side and the other side with respect to the rotation center axis Z of the tip side pin F3 can be minimized. Further, since the outer peripheral surface of the tip side pin F3 and the stepped inclined surface 23b of the lid 3 are set in parallel, the plastic fluid material is frictionally agitated in a well-balanced manner, and a decrease in joint strength can be suppressed.
 また、基端側ピンF2の外周面を押出多孔管2の外周面11fに接触させて塑性流動材を押さえることにより、バリの発生を抑制することができる。また、基端側ピンF2の外周面で塑性流動材を押えることができるため、接合表面(周壁部22の外周面22b及び押出多孔管2の外周面11f)に形成される段差凹溝を小さくすることができるとともに、段差凹溝の脇に形成される膨出部を無くすか若しくは小さくすることができる。また、基端側ピンF2の階段状のピン段差部F21は浅く、かつ、出口が広いため、塑性流動材を段差底面F21aで押えつつ塑性流動材がピン段差部F21の外部に抜けやすくなっている。そのため、基端側ピンF2で塑性流動材を押えても基端側ピンF2の外周面に塑性流動材が付着し難い。よって、接合表面粗さを小さくすることができるとともに、接合品質を好適に安定させることができる。 Further, the generation of burrs can be suppressed by bringing the outer peripheral surface of the base end side pin F2 into contact with the outer peripheral surface 11f of the extruded perforated pipe 2 to hold down the plastic fluid material. Further, since the plastic fluid material can be pressed on the outer peripheral surface of the base end side pin F2, the stepped concave groove formed on the joint surface (the outer peripheral surface 22b of the peripheral wall portion 22 and the outer peripheral surface 11f of the extruded perforated pipe 2) is reduced. At the same time, the bulging portion formed on the side of the stepped groove can be eliminated or reduced. Further, since the stepped pin step portion F21 of the base end side pin F2 is shallow and the outlet is wide, the plastic fluid material is easily pulled out of the pin step portion F21 while being pressed by the step bottom surface F21a. There is. Therefore, even if the plastic fluid material is pressed by the base end side pin F2, the plastic fluid material is unlikely to adhere to the outer peripheral surface of the base end side pin F2. Therefore, the roughness of the joint surface can be reduced, and the joint quality can be suitably stabilized.
 また、本接合工程の押入区間では、開始位置SP1から設定移動ルートL1と重複する位置まで回転ツールFを移動させつつ所定の深さとなるまで先端側ピンF3を徐々に押入することにより、設定移動ルートL1上で回転ツールFが停止して摩擦熱が過大になるのを防ぐことができる。
 同様に、本接合工程の離脱区間では、設定移動ルートL1から終了位置EP1まで回転ツールFを移動させつつ所定の深さから先端側ピンF3を徐々に引き抜いて離脱させることにより、設定移動ルートL1上で回転ツールFが停止して摩擦熱が過大になるのを防ぐことができる。
Further, in the closet section of the main joining process, the rotary tool F is moved from the start position SP1 to a position overlapping the set movement route L1 and the tip side pin F3 is gradually pushed in until it reaches a predetermined depth to move the set movement. It is possible to prevent the rotation tool F from stopping on the route L1 and causing the frictional heat to become excessive.
Similarly, in the detachment section of the main joining step, the set movement route L1 is separated by gradually pulling out the tip side pin F3 from a predetermined depth while moving the rotation tool F from the set movement route L1 to the end position EP1. It is possible to prevent the rotating tool F from stopping and excessive frictional heat.
 これらにより、設定移動ルートL1上で摩擦熱が過大となり、蓋体3から押出多孔管2へ第一アルミニウム合金が過剰に混入して接合不良となるのを防ぐことができる。 As a result, it is possible to prevent the frictional heat from becoming excessive on the set movement route L1 and excessively mixing the first aluminum alloy from the lid 3 into the extruded perforated pipe 2 resulting in poor joining.
 また、本接合工程において、開始位置SP1及び終了位置EP1の位置は適宜設定すればよいが、開始位置SP1と設定移動ルートL1とのなす角度、終了位置EP1と設定移動ルートL1とのなす角度が鈍角となるように設定することにより、中間点S1,S2で回転ツールFの移動速度が低下することなくスムーズに本区間又は離脱区間に移行することができる。これにより、設定移動ルートL1上で回転ツールFが停止又は移動速度が低下することにより、摩擦熱が過大となることを防ぐことができる。 Further, in the main joining step, the positions of the start position SP1 and the end position EP1 may be appropriately set, but the angle formed by the start position SP1 and the set movement route L1 and the angle formed by the end position EP1 and the set movement route L1 are different. By setting the angle to be obtuse, it is possible to smoothly shift to the main section or the departure section at the intermediate points S1 and S2 without reducing the moving speed of the rotation tool F. As a result, it is possible to prevent the frictional heat from becoming excessive due to the rotation tool F stopping or the moving speed decreasing on the set movement route L1.
 また、開始位置SP1から設定移動ルートL1に回転ツールFを移動させる際には、上方から見て回転ツールFの軌跡が曲線を描くように移動させてもよいし、直線状に移動させてもよい。また、同様に、設定移動ルートL1から終了位置EP1に回転ツールFを移動させる際には、上方から見て回転ツールFの軌跡が曲線を描くように移動させてもよいし、直線状に移動させてもよい。 Further, when moving the rotation tool F from the start position SP1 to the set movement route L1, the locus of the rotation tool F may be moved so as to draw a curve when viewed from above, or may be moved in a straight line. good. Similarly, when moving the rotation tool F from the set movement route L1 to the end position EP1, the rotation tool F may be moved so that the locus of the rotation tool F draws a curve when viewed from above, or moves in a straight line. You may let me.
 また、本実施形態の本接合工程では、回転ツールFの回転方向及び進行方向は適宜設定すればよいが、回転ツールFの移動軌跡に形成される塑性化領域W1のうち、蓋体3側(突合せ部J1側)がシアー側となり、押出多孔管2側がフロー側となるように回転ツールFの回転方向及び進行方向を設定した。蓋体3側がシアー側となるように設定することで、突合せ部J1の周囲における先端側ピンF3による攪拌作用が高まり、突合せ部J1における温度上昇が期待でき、突合せ部J1において押出多孔管2と蓋体3とをより確実に接合することができる。 Further, in the main joining step of the present embodiment, the rotation direction and the traveling direction of the rotation tool F may be appropriately set, but the lid 3 side (of the plasticized region W1 formed in the movement locus of the rotation tool F) ( The rotation direction and the traveling direction of the rotation tool F were set so that the butt portion J1 side) was on the shear side and the extruded perforated pipe 2 side was on the flow side. By setting the lid 3 side to be the shear side, the stirring action by the tip side pin F3 around the butt portion J1 is enhanced, and the temperature rise in the butt portion J1 can be expected. The lid 3 can be joined more reliably.
 なお、シアー側(Advancing side)とは、被接合部に対する回転ツールの外周の相対速度が、回転ツールの外周における接線速度の大きさに移動速度の大きさを加算した値となる側を意味する。一方、フロー側(Retreating side)とは、回転ツールの移動方向の反対方向に回転ツールが回動することで、被接合部に対する回転ツールの相対速度が低速になる側を言う。 The shear side (Advancing side) means the side where the relative speed of the outer circumference of the rotating tool with respect to the jointed portion is the value obtained by adding the magnitude of the moving speed to the magnitude of the tangential velocity on the outer circumference of the rotating tool. .. On the other hand, the flow side (Retreating side) refers to the side where the relative speed of the rotating tool with respect to the jointed portion becomes low due to the rotation of the rotating tool in the direction opposite to the moving direction of the rotating tool.
 また、蓋体3の第一アルミニウム合金は、押出多孔管2の第二アルミニウム合金よりも硬度の高い材料になっている。これにより、熱交換器1の耐久性を高めることができる。また、蓋体3の第一アルミニウム合金をアルミニウム合金鋳造材とし、押出多孔管2の第二アルミニウム合金をアルミニウム合金展伸材とすることが好ましい。第一アルミニウム合金を例えば、JISH5302 ADC12等のAl-Si-Cu系アルミニウム合金鋳造材とすることにより、蓋体3の鋳造性、強度、被削性等を高めることができる。また、第二アルミニウム合金を例えば、JIS A1000系又はA6000系とすることにより、押出多孔管2の加工性、熱伝導性を高めることができる。 Further, the first aluminum alloy of the lid 3 is a material having a higher hardness than the second aluminum alloy of the extruded perforated pipe 2. Thereby, the durability of the heat exchanger 1 can be enhanced. Further, it is preferable that the first aluminum alloy of the lid 3 is an aluminum alloy casting material and the second aluminum alloy of the extruded perforated pipe 2 is an aluminum alloy wrought material. By using an Al—Si—Cu based aluminum alloy casting material such as JIS H5302 ADC12 as the first aluminum alloy, the castability, strength, machinability, etc. of the lid 3 can be improved. Further, by using, for example, JIS A1000 series or A6000 series as the second aluminum alloy, the processability and thermal conductivity of the extruded perforated pipe 2 can be improved.
 また、本接合工程においては、突合せ部J1の全周を摩擦攪拌接合できるため、熱交換器の気密性及び水密性を高めることができる。また、本接合工程の終端部分において、回転ツールFが中間点S1を完全に通過してから終了位置EP1に向かうようにする。つまり、本接合工程によって形成された塑性化領域W1の各端部同士をオーバーラップさせることにより、より気密性及び水密性を高めることができる。 Further, in this joining step, since the entire circumference of the butt portion J1 can be subjected to friction stir welding, the airtightness and watertightness of the heat exchanger can be improved. Further, at the end portion of the main joining step, the rotation tool F is made to move toward the end position EP1 after completely passing through the intermediate point S1. That is, the airtightness and watertightness can be further improved by overlapping the ends of the plasticized region W1 formed by this joining step with each other.
 また、本接合工程では、回転ツールFの基端側ピンF2の外周面を押出多孔管2の外周面11fにわずかに接触させて塑性流動材を押さえながら摩擦攪拌を行うため、バリの発生を抑制することができる。また、本実施形態では、突合せ工程を行った後、周壁部22の外周面22bよりも、押出多孔管2の外周面11fが外側となるように設定している。これにより、摩擦攪拌を行う際に、突合せ部J1の金属不足をより防ぐことができる。 Further, in this joining step, the outer peripheral surface of the base end side pin F2 of the rotary tool F is slightly brought into contact with the outer peripheral surface 11f of the extruded perforated pipe 2 to perform friction stir while pressing the plastic fluid material, so that burrs are generated. It can be suppressed. Further, in the present embodiment, after the butt step is performed, the outer peripheral surface 11f of the extruded perforated pipe 2 is set to be outside the outer peripheral surface 22b of the peripheral wall portion 22. Thereby, when friction stir welding is performed, it is possible to further prevent the metal shortage of the butt portion J1.
 また、蓋体3にヘッダー流路24を備えることにより、孔部13に流入又は流出する流体を集約することができる。 Further, by providing the header flow path 24 in the lid 3, the fluid flowing in or out of the hole 13 can be collected.
 なお、本接合工程では、回転ツールFの回転速度を一定としてもよいが、可変させてもよい。本接合工程の押入区間において、開始位置SP1における回転ツールFの回転速度をV1とし、本区間における回転ツールFの回転速度をV2とすると、V1>V2としてもよい。回転速度のV2は、設定移動ルートL1における予め設定された一定の回転速度である。つまり、開始位置SP1では、回転速度を高く設定しておき、押入区間内で徐々に回転速度を低減させながら本区間に移行してもよい。 In this joining step, the rotation speed of the rotation tool F may be constant, but may be variable. In the indentation section of the main joining step, if the rotation speed of the rotation tool F at the start position SP1 is V1 and the rotation speed of the rotation tool F in this section is V2, V1> V2 may be satisfied. The rotation speed V2 is a preset constant rotation speed in the set movement route L1. That is, at the start position SP1, the rotation speed may be set high, and the rotation speed may be gradually reduced in the closet section to shift to the main section.
 また、第一本接合工程の離脱区間において、本区間における回転ツールFの回転速度をV2、終了位置EP1において離脱させるときの回転ツールFの回転速度をV3とすると、V3>V2としてもよい。つまり、離脱区間に移行したら、終了位置EP1に向けて徐々に回転速度を上げながら押出多孔管2から回転ツールFを離脱させてもよい。回転ツールFを押出多孔管2に押し入れる際又は押出多孔管2から離脱させる際に、前記のように設定することで、押入区間又は離脱区間時における少ない押圧力を、回転速度で補うことができるため、摩擦攪拌を好適に行うことができる。 Further, in the detachment section of the first main joining process, if the rotation speed of the rotation tool F in this section is V2 and the rotation speed of the rotation tool F when detached at the end position EP1 is V3, V3> V2 may be satisfied. That is, after shifting to the detachment section, the rotation tool F may be detached from the extruded perforated pipe 2 while gradually increasing the rotation speed toward the end position EP1. When the rotary tool F is pushed into the extruded perforated pipe 2 or separated from the extruded perforated pipe 2, by setting as described above, it is possible to supplement the small pressing pressure in the indentation section or the detachment section with the rotation speed. Therefore, friction stir welding can be preferably performed.
[第二実施形態]
 次に、本発明の第二実施形態に係る熱交換器の製造方法について説明する。第二実施形態では、図7,8に示すように、本接合工程における開始位置SP1、中間点S1,S2及び終了位置EP1の位置をいずれも設定移動ルートL1上に設定する点で第一実施形態と相違する。第二実施形態では、第一実施形態と相違する部分を中心に説明する。
[Second Embodiment]
Next, a method for manufacturing the heat exchanger according to the second embodiment of the present invention will be described. In the second embodiment, as shown in FIGS. 7 and 8, the first embodiment is set in that the positions of the start position SP1, the intermediate points S1 and S2, and the end position EP1 in the main joining process are all set on the set movement route L1. Different from the form. In the second embodiment, the parts different from the first embodiment will be mainly described.
 第二実施形態に係る熱交換器の製造では、準備工程と、突合せ工程と、本接合工程とを行う。準備工程及び突合せ工程は、第一実施形態と同一である。 In the manufacture of the heat exchanger according to the second embodiment, the preparation step, the butt step, and the main joining step are performed. The preparation step and the butt step are the same as those in the first embodiment.
 本接合工程では、図12に示すように、開始位置SP1を設定移動ルートL1上に設定する。本接合工程では、開始位置SP1から中間点S1までの押入区間と、設定移動ルートL1上の中間点S1から一周廻って中間点S2までの本区間と、中間点S2から終了位置EP1までの離脱区間の三つの区間を連続して摩擦攪拌する。 In this joining process, as shown in FIG. 12, the start position SP1 is set on the set movement route L1. In this joining process, the intrusion section from the start position SP1 to the intermediate point S1, the main section from the intermediate point S1 on the set movement route L1 to the intermediate point S2, and the departure from the intermediate point S2 to the end position EP1. Friction stir welding is performed continuously for three sections.
 押入区間では、図12に示すように、設定移動ルート上の開始位置SP1から中間点S1までの摩擦攪拌を行う。押入区間では、押出多孔管2の外周面11fに対して回転中心軸線Zを垂直となるようにしつつ、右回転させた先端側ピンF3を開始位置SP1に挿入し、中間点S1まで相対移動させる。この際、少なくとも中間点S1に到達するまでに予め設定された「所定の深さ」に達するように先端側ピンF3を徐々に押し入れていく。 In the closet section, as shown in FIG. 12, friction stir welding is performed from the start position SP1 on the set movement route to the intermediate point S1. In the intrusion section, the tip side pin F3 rotated clockwise is inserted into the start position SP1 and relatively moved to the intermediate point S1 while making the rotation center axis Z perpendicular to the outer peripheral surface 11f of the extruded perforated pipe 2. .. At this time, the tip side pin F3 is gradually pushed in so as to reach a preset "predetermined depth" by at least reaching the intermediate point S1.
 また、押入区間においては、回転ツールFを移動させつつ、中間点S1に達した際に、先端側ピンF3の外周面と段差傾斜面23bとが平行となるように設定しつつ、先端側ピンF3の外周面と段差傾斜面23bとがわずかに接触するように設定する。そして、その状態を維持しつつ本区間の摩擦攪拌接合に移行する。先端側ピンF3の外周面と段差傾斜面23bとの接触代(オフセット量)N及び設定移動ルートL1の設定は第一実施形態と同一である。 Further, in the closet section, the tip side pin is set so that the outer peripheral surface of the tip side pin F3 and the step inclined surface 23b are parallel to each other when the intermediate point S1 is reached while moving the rotation tool F. The outer peripheral surface of F3 and the stepped inclined surface 23b are set so as to be in slight contact with each other. Then, while maintaining that state, the process shifts to friction stir welding in this section. The contact allowance (offset amount) N between the outer peripheral surface of the tip end side pin F3 and the stepped inclined surface 23b and the setting of the set movement route L1 are the same as those in the first embodiment.
 図13に示すように、回転ツールFを一周させて先端側ピンF3が中間点S2に到達したら、そのまま離脱区間に移行する。離脱区間では、図13に示すように、中間点S2から終了位置EP1に向かうまでの間に先端側ピンF3を徐々に引き抜いて(上方に移動させて)、設定移動ルートL1上に設定された終了位置EP1で押出多孔管2から先端側ピンF3を離脱させる。 As shown in FIG. 13, when the tip side pin F3 reaches the intermediate point S2 by rotating the rotation tool F around the rotation tool F, the process shifts to the withdrawal section as it is. In the departure section, as shown in FIG. 13, the tip side pin F3 was gradually pulled out (moved upward) from the intermediate point S2 to the end position EP1 and set on the set movement route L1. At the end position EP1, the tip side pin F3 is separated from the extruded perforated pipe 2.
 以上説明した第二実施形態に係る熱交換器の製造方法によっても第一実施形態と略同等の効果を奏することができる。第二実施形態のように本接合工程における開始位置SP1、終了位置EP1は、設定移動ルートL1上に設定してもよい。第二実施形態に係る本接合工程の押入区間では、回転ツールFを設定移動ルート上で移動させつつ所定の深さとなるまで先端側ピンF3を徐々に押入することにより、設定移動ルートL1上の一点で回転ツールFが停止して摩擦熱が過大になるのを防ぐことができる。また、第二実施形態に係る本接合工程の離脱区間では、回転ツールFを設定移動ルート上で移動させつつ先端側ピンF3を徐々に離脱させることにより、設定移動ルートL1上の一点で回転ツールFが停止して摩擦熱が過大になるのを防ぐことができる。 The heat exchanger manufacturing method according to the second embodiment described above can also achieve substantially the same effect as that of the first embodiment. As in the second embodiment, the start position SP1 and the end position EP1 in the main joining step may be set on the set movement route L1. In the closet section of the main joining step according to the second embodiment, the rotary tool F is moved on the set movement route and the tip side pin F3 is gradually pushed in until the depth reaches a predetermined depth, thereby on the set movement route L1. It is possible to prevent the rotation tool F from stopping at one point and excessive frictional heat. Further, in the detachment section of the main joining step according to the second embodiment, the rotation tool F is moved on the set movement route and the tip side pin F3 is gradually detached, so that the rotation tool can be moved at one point on the set movement route L1. It is possible to prevent F from stopping and excessive frictional heat.
 以上本発明の実施形態について説明したが、本発明の趣旨に反しない範囲で適宜設計変更が可能である。例えば、押出多孔管2及び蓋体3は同種の金属としてもよいし、同じ硬度の金属としてもよい。 Although the embodiments of the present invention have been described above, the design can be appropriately changed within a range not contrary to the gist of the present invention. For example, the extruded perforated pipe 2 and the lid 3 may be made of the same type of metal or may be made of a metal having the same hardness.
 1    熱交換器
 2    押出多孔管
 3    蓋体
 23a  段差側面
 23b  段差傾斜面(段差面)
 F    回転ツール
 F2   基端側ピン
 F3   先端側ピン
 J1   突合せ部
 SP1  開始位置
 EP1  終了位置
 W1   塑性化領域
1 Heat exchanger 2 Extruded perforated pipe 3 Lid body 23a Step side surface 23b Step slope surface (step surface)
F Rotation tool F2 Base end side pin F3 Tip side pin J1 Butt part SP1 Start position EP1 End position W1 Plasticization area

Claims (6)

  1.  内部にフィンを有する押出多孔管と、前記押出多孔管の開口部を封止する二つの蓋体とで構成され、前記押出多孔管と前記蓋体とを摩擦攪拌で接合する熱交換器の製造方法であって、
     前記蓋体は、底部及び前記底部の周縁から立ち上がる周壁部を有し、前記周壁部の外周縁に、段差側面と、当該段差側面から外側に向かって立ち上がる段差面と、を有する周壁段差部を形成し、
     前記押出多孔管は、両端部に前記フィンが形成されておらず前記周壁部が嵌め合わされる嵌合部を有し、
     摩擦攪拌で用いる回転ツールは、基端側ピンと、先端側ピンとを備え、前記基端側ピンのテーパー角度は、先端側ピンのテーパー角度よりも大きくなっており、前記基端側ピンの外周面には階段状の段差部が形成されており、
     前記押出多孔管の一方の前記嵌合部に一の前記蓋体の前記周壁部を挿入し、前記押出多孔管の他方の前記嵌合部に他の前記蓋体の前記周壁部を挿入することにより、前記押出多孔管の両端部の内周面とそれぞれの前記蓋体の段差側面とを重ね合わせるとともに、前記押出多孔管の一方の端面と一の前記蓋体の前記段差面、及び、前記押出多孔管の他方の端面と他の前記蓋体の前記段差面とをそれぞれ突き合わせて二つの突合せ部を形成する突合せ工程と、
     回転する前記回転ツールの先端側ピンを少なくとも一方の前記突合せ部に挿入し、前記先端側ピンを前記押出多孔管及び前記蓋体に接触させつつ前記基端側ピンの外周面を少なくとも前記押出多孔管の外周面に接触させた状態で、前記突合せ部に沿って所定の深さで前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、
     前記本接合工程において、二つの前記蓋体と前記押出多孔管とを各前記蓋体の両外側から一対の保持部で押圧して保持しつつ、前記保持部を用いて前記押出多孔管及び前記蓋体を回転又は平行移動させて前記押出多孔管と少なくとも一つの前記蓋体とを摩擦攪拌することを特徴とする熱交換器の製造方法。
    Manufacture of a heat exchanger composed of an extruded perforated pipe having fins inside and two lids for sealing the openings of the extruded perforated pipe, and joining the extruded perforated pipe and the lid by frictional stirring. It ’s a method,
    The lid has a peripheral wall portion that rises from the bottom portion and the peripheral edge of the bottom portion, and a peripheral wall step portion having a stepped side surface and a stepped surface that rises outward from the stepped side surface is provided on the outer peripheral edge of the peripheral wall portion. Form and
    The extruded perforated pipe has a fitting portion in which the fins are not formed at both ends and the peripheral wall portion is fitted.
    The rotary tool used for friction stir welding includes a base end side pin and a tip end side pin, and the taper angle of the base end side pin is larger than the taper angle of the tip end side pin, and the outer peripheral surface of the base end side pin. A stepped step is formed in
    Inserting the peripheral wall portion of one lid body into one of the fitting portions of the extruded perforated pipe, and inserting the peripheral wall portion of the other lid body into the other fitting portion of the extruded perforated pipe. As a result, the inner peripheral surfaces of both ends of the extruded perforated pipe and the stepped side surfaces of the respective lids are overlapped, and one end surface of the extruded perforated pipe and the stepped surface of one of the lids and the stepped surface of the lid are described. A butt step of forming two butt portions by abutting the other end surface of the extruded perforated pipe and the stepped surface of the other lid body, respectively.
    The tip end side pin of the rotating tool is inserted into at least one of the abutting portions, and the outer peripheral surface of the base end side pin is at least the extruded perforated portion while the tip end side pin is in contact with the extruded perforated pipe and the lid. Including a main joining step of frictionally agitating the butt portion by making a circumference around the outer peripheral surface of the extruded perforated pipe at a predetermined depth along the butt portion in a state of being in contact with the outer peripheral surface of the pipe.
    In the main joining step, while pressing and holding the two lids and the extruded perforated pipe from both outer sides of each of the lids with a pair of holding portions, the extruded perforated pipe and the extruded perforated pipe are used by using the holding portions. A method for manufacturing a heat exchanger, which comprises rotating or moving a lid in parallel to frictionally stir the extruded perforated tube and at least one of the lids.
  2.  前記段差面は、前記段差側面から外側に向かうにつれて前記底部側に近接するように傾斜する段差傾斜面であり、
     前記押出多孔管は第二アルミニウム合金で形成されており、前記蓋体は第一アルミニウム合金で形成されており、
     前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、
     前記突合せ工程において、前記押出多孔管の端面と前記蓋体の前記段差傾斜面とを突き合わせて突合せ部に断面V字状の隙間を形成し、
     前記本接合工程において、回転する前記回転ツールの前記先端側ピンを前記押出多孔管の外周面に挿入し、前記先端側ピンの外周面を前記蓋体の前記段差傾斜面にわずかに接触させた状態で、前記基端側ピンの外周面によって前記隙間に前記第二アルミニウム合金を流入させながら、前記突合せ部に沿って所定の深さで前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌することを特徴とする請求項1に記載の熱交換器の製造方法。
    The stepped surface is a stepped inclined surface that inclines so as to approach the bottom side from the step side surface toward the outside.
    The extruded perforated pipe is made of a second aluminum alloy, and the lid is made of a first aluminum alloy.
    The first aluminum alloy is a grade having a higher hardness than the second aluminum alloy.
    In the butt step, the end surface of the extruded perforated pipe and the stepped inclined surface of the lid are abutted to form a gap having a V-shaped cross section in the butt portion.
    In the main joining step, the tip-side pin of the rotating tool was inserted into the outer peripheral surface of the extruded perforated pipe, and the outer peripheral surface of the tip-side pin was slightly brought into contact with the stepped inclined surface of the lid. In this state, the second aluminum alloy is allowed to flow into the gap by the outer peripheral surface of the base end side pin, and is made to go around the outer peripheral surface of the extruded perforated pipe at a predetermined depth along the butt portion. The method for manufacturing a heat exchanger according to claim 1, wherein the butt portion is frictionally agitated.
  3.  前記突合せ工程では、前記蓋体の外周面よりも前記押出多孔管の外周面の方が外側となるように、前記押出多孔管と前記蓋体とを形成することを特徴とする請求項1に記載の熱交換器の製造方法。 The first aspect of the butt step is to form the extruded perforated pipe and the lid so that the outer peripheral surface of the extruded perforated pipe is on the outer side of the outer peripheral surface of the lid. The method of manufacturing the heat exchanger described.
  4.  前記回転ツールの回転方向及び進行方向を前記突合せ部側がアドバンシング側となるように設定することを特徴とする請求項1に記載の熱交換器の製造方法。 The method for manufacturing a heat exchanger according to claim 1, wherein the rotation direction and the traveling direction of the rotation tool are set so that the butt portion side is the advancing side.
  5.  前記本接合工程では、前記先端側ピンの先端が前記蓋体の段差側面を突き抜けた状態で前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌することを特徴とする請求項1に記載の熱交換器の製造方法。 The present joining step is characterized in that the tip of the tip side pin penetrates the stepped side surface of the lid body and is made to go around the outer peripheral surface of the extruded perforated pipe to frictionally stir the butt portion. Item 2. The method for manufacturing a heat exchanger according to item 1.
  6.  前記第一アルミニウム合金は鋳造材からなり、前記第二アルミニウム合金は展伸材からなることを特徴とする請求項2に記載の熱交換器の製造方法。 The method for manufacturing a heat exchanger according to claim 2, wherein the first aluminum alloy is made of a cast material, and the second aluminum alloy is made of a wrought material.
PCT/JP2020/018568 2020-02-25 2020-05-07 Method for manufacturing heat exchanger WO2021171636A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020029630A JP2021133381A (en) 2020-02-25 2020-02-25 Heat exchanger manufacturing method
JP2020-029630 2020-02-25

Publications (1)

Publication Number Publication Date
WO2021171636A1 true WO2021171636A1 (en) 2021-09-02

Family

ID=77490867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018568 WO2021171636A1 (en) 2020-02-25 2020-05-07 Method for manufacturing heat exchanger

Country Status (2)

Country Link
JP (1) JP2021133381A (en)
WO (1) WO2021171636A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566073A (en) * 1991-09-05 1993-03-19 Sanden Corp Multilayered heat exchanger
JP2005329463A (en) * 2004-04-19 2005-12-02 Showa Denko Kk Friction stirring and joining apparatus and friction stirring and joining method
JP2006150387A (en) * 2004-11-26 2006-06-15 Mitsubishi Heavy Ind Ltd Friction stir welding equipment and friction stir welding method
JP2010279958A (en) * 2009-06-02 2010-12-16 Nippon Light Metal Co Ltd Method of manufacturing sealed container
WO2013114474A1 (en) * 2012-01-30 2013-08-08 三菱電機株式会社 Stacked heat exchanger, heat pump system equipped therewith, and method for manufacturing stacked heat exchanger
JP2014046353A (en) * 2012-09-03 2014-03-17 Nippon Light Metal Co Ltd Manufacturing method of hollow container
JP2018008294A (en) * 2016-07-13 2018-01-18 麻子 大河内 Manufacturing method of cylindrical work-piece
JP2019141886A (en) * 2018-02-21 2019-08-29 日本軽金属株式会社 Liquid-cooled jacket manufacturing method
JP2019181473A (en) * 2018-04-02 2019-10-24 日本軽金属株式会社 Liquid-cooled jacket manufacturing method
JP2020011271A (en) * 2018-07-19 2020-01-23 日本軽金属株式会社 Liquid-cooled jacket manufacturing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566073A (en) * 1991-09-05 1993-03-19 Sanden Corp Multilayered heat exchanger
JP2005329463A (en) * 2004-04-19 2005-12-02 Showa Denko Kk Friction stirring and joining apparatus and friction stirring and joining method
JP2006150387A (en) * 2004-11-26 2006-06-15 Mitsubishi Heavy Ind Ltd Friction stir welding equipment and friction stir welding method
JP2010279958A (en) * 2009-06-02 2010-12-16 Nippon Light Metal Co Ltd Method of manufacturing sealed container
WO2013114474A1 (en) * 2012-01-30 2013-08-08 三菱電機株式会社 Stacked heat exchanger, heat pump system equipped therewith, and method for manufacturing stacked heat exchanger
JP2014046353A (en) * 2012-09-03 2014-03-17 Nippon Light Metal Co Ltd Manufacturing method of hollow container
JP2018008294A (en) * 2016-07-13 2018-01-18 麻子 大河内 Manufacturing method of cylindrical work-piece
JP2019141886A (en) * 2018-02-21 2019-08-29 日本軽金属株式会社 Liquid-cooled jacket manufacturing method
JP2019181473A (en) * 2018-04-02 2019-10-24 日本軽金属株式会社 Liquid-cooled jacket manufacturing method
JP2020011271A (en) * 2018-07-19 2020-01-23 日本軽金属株式会社 Liquid-cooled jacket manufacturing method

Also Published As

Publication number Publication date
JP2021133381A (en) 2021-09-13

Similar Documents

Publication Publication Date Title
JP6927128B2 (en) How to manufacture a liquid-cooled jacket
WO2019193779A1 (en) Method for manufacturing liquid-cooled jacket
JP6927068B2 (en) How to manufacture a liquid-cooled jacket
WO2021171636A1 (en) Method for manufacturing heat exchanger
JP7020562B2 (en) How to manufacture a liquid-cooled jacket
WO2020261597A1 (en) Method for manufacturing heat exchanger
JP2020175396A (en) Manufacturing method for liquid-cooled jacket
WO2021171637A1 (en) Method for manufacturing heat exchanger
WO2021171635A1 (en) Method for manufacturing heat exchanger
JP2021186862A (en) Heat exchanger manufacturing method
WO2020213197A1 (en) Method for manufacturing liquid-cooled jacket
JP7140061B2 (en) Heat exchanger manufacturing method
JP2021186863A (en) Heat exchanger manufacturing method
JP2021112750A (en) Heat exchanger manufacturing method
WO2020213195A1 (en) Method for manufacturing liquid-cooled jacket
JP7211342B2 (en) Heat exchanger manufacturing method
WO2020188858A1 (en) Method of manufacturing liquid-cooled jacket
JP2020175395A (en) Manufacturing method for liquid-cooled jacket
JP6943140B2 (en) How to manufacture a liquid-cooled jacket
JP2020131263A (en) Liquid-cooled jacket manufacturing method
JP2021186864A (en) Heat exchanger manufacturing method
JP7226254B2 (en) Liquid cooling jacket manufacturing method
JP2020196027A (en) Manufacturing method of liquid-cooled jacket
WO2020213185A1 (en) Method for manufacturing liquid cooling jacket
JP2021074736A (en) Liquid-cooled jacket manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20921420

Country of ref document: EP

Kind code of ref document: A1