Nothing Special   »   [go: up one dir, main page]

WO2021020349A1 - Polarizing film and method for producing same - Google Patents

Polarizing film and method for producing same Download PDF

Info

Publication number
WO2021020349A1
WO2021020349A1 PCT/JP2020/028729 JP2020028729W WO2021020349A1 WO 2021020349 A1 WO2021020349 A1 WO 2021020349A1 JP 2020028729 W JP2020028729 W JP 2020028729W WO 2021020349 A1 WO2021020349 A1 WO 2021020349A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing film
acid
boron
film
pva
Prior art date
Application number
PCT/JP2020/028729
Other languages
French (fr)
Japanese (ja)
Inventor
璃生 岡田
亘 大橋
孝徳 磯崎
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to KR1020227002746A priority Critical patent/KR20220041093A/en
Priority to CN202080054928.1A priority patent/CN114174875B/en
Priority to JP2021535331A priority patent/JPWO2021020349A1/ja
Publication of WO2021020349A1 publication Critical patent/WO2021020349A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/14Chemical modification with acids, their salts or anhydrides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids

Definitions

  • the present invention relates to a polarizing film and a method for producing the same.
  • a polarizing plate having a function of transmitting and shielding light is a basic component of a liquid crystal display (LCD) together with a liquid crystal that changes the polarization state of light.
  • LCD liquid crystal display
  • Many polarizing plates have a structure in which a protective film such as a cellulose triacetate (TAC) film is bonded to the surface of the polarizing film in order to prevent fading of the polarizing film and to prevent shrinkage of the polarizing film.
  • TAC cellulose triacetate
  • an iodine-based dye I 3- , I 5-, etc.
  • PVA polyvinyl alcohol film
  • LCDs are widely used in small devices such as calculators and wristwatches, smartphones, laptop computers, LCD monitors, LCD color projectors, LCD TVs, in-vehicle navigation systems, and measuring devices used indoors and outdoors.
  • Electronic devices are required to be thin and have high definition.
  • the thickness of the glass used for the LCD has been reduced and the magnification of the polarizing film has been increased, and as a result, the occurrence of warpage of the LCD panel has become a problem.
  • the main cause of warpage of an LCD panel is that the polarizing film shrinks at a high temperature, and there is a demand for a polarizing film having high optical performance and a small shrinking force at a high temperature.
  • Patent Document 1 describes polarized light having excellent moisture and heat resistance by immersing the uniaxially stretched polarizing film in an aqueous solution (fixing treatment bath) containing 1,4-butaniboronic acid and potassium iodide. It is stated that the film was obtained.
  • Patent Document 2 describes that a polarizing film having excellent water resistance and adhesive strength was obtained by adding a boronic acid inducing group to the washing step.
  • Patent Document 3 describes that a polarizing film having excellent heat resistance and moist heat resistance was obtained by using a cross-linking solution containing a hydrocarbon compound having an aldehyde group.
  • Patent Documents 1 to 3 have a large shrinkage force at high temperatures or have insufficient optical performance. Therefore, it has not been possible to meet the recent demand for thinner and higher definition electronic devices.
  • an object of the present invention is to provide a polarizing film having a small shrinkage force at a high temperature and excellent optical performance, and a method for producing the same.
  • the boric acid crossing the PVA molecular chain in the polarizing film is replaced with boronic acid. It has been found that it is important to allow the substitution reaction to proceed not only to the surface portion of the polarizing film but also to the central portion in the thickness direction of the polarizing film. Further, the more the substitution reaction proceeds to the central portion in the thickness direction of the polarizing film, that is, the more the boric acid in the central portion in the thickness direction of the polarizing film is replaced with boronic acid, the more the shrinkage force of the polarizing film becomes stronger. It was found to be reduced. Therefore, the present inventors have completed the present invention by setting the ratio of the concentration of boron elements derived from boronic acid (boron-containing compound) and boric acid at the center in the thickness direction of the polarizing film within a specific range. ..
  • the boric acid-crosslinked polarizing film is immersed in a relatively low concentration boronic acid aqueous solution. It is important to process. Normally, when a boric acid-crosslinked polarizing film is immersed in an aqueous solution of boronic acid, a substitution reaction in which boric acid in the polarizing film is replaced with boronic acid proceeds from the surface portion of the polarizing film.
  • the substitution reaction can be allowed to proceed to the central portion in the thickness direction of the polarizing film by immersing the boric acid-crosslinked polarizing film in a relatively low-concentration boronic acid aqueous solution.
  • the boron element concentration ( ⁇ ) derived from boric acid (C) is 0.1 to 8 atomic% in the range from the center to the outside in the thickness direction to 1 ⁇ m, and the concentration ( ⁇ ) with respect to the concentration ( ⁇ ). ) Ratio ( ⁇ / ⁇ ) is 0.1 or more;
  • R 1 is a monovalent aliphatic group having 1 to 20 carbon atoms, and R 1 and a boronic acid group are connected by a boron-carbon bond.
  • the concentration of the boron-containing compound (B) is 0.2.
  • the present invention it is possible to provide a polarizing film having a small shrinkage force at a high temperature and excellent optical performance, and a method for producing the same.
  • the polarizing film of the present invention contains at least one boron selected from the group consisting of polyvinyl alcohol (A), monoboric acid represented by the following formula (I), and a compound capable of converting to monoboric acid in the presence of water.
  • Boric acid (C) -derived boron element concentration ( ⁇ ) is 0.1 to 8 atomic% and the concentration ( ⁇ ) is in the range of up to 1 ⁇ m from the center in the thickness direction to 3 atomic%.
  • the ratio ( ⁇ / ⁇ ) of the concentration ( ⁇ ) to to is 0.1 or more.
  • R 1 is a monovalent aliphatic group having 1 to 20 carbon atoms, and R 1 and a boronic acid group are connected by a boron-carbon bond.
  • FIG. 1 is a cross-sectional view of the polarizing film of the present invention cut in the vertical direction.
  • the central portion 3 in the thickness direction of the polarizing film is a range from the center 1 in the thickness direction of the polarizing film to 1 ⁇ m in both directions on the surface portion 2 side of the polarizing film, and is in the range shown by diagonal lines in FIG. is there.
  • the boron element concentration ( ⁇ ) derived from the boron-containing compound (B) in the range of 1 ⁇ m outward from the center in the thickness direction of the polarizing film, and from the center in the thickness direction of the polarizing film to the outside.
  • the ratio ( ⁇ / ⁇ ) of the boron element concentration ( ⁇ ) derived from boric acid (C) and the concentration ( ⁇ ) to the concentration ( ⁇ ) in the range up to 1 ⁇ m is in a specific range.
  • the substitution reaction between the boron-containing compound (B) and boric acid (C) proceeds from the surface portion of the polarizing film.
  • the fact that the above ⁇ , ⁇ and their ratio ⁇ / ⁇ are within a specific range means that the substitution reaction between the boron-containing compound (B) and boric acid (C) has proceeded to the center in the thickness direction of the polarizing film.
  • a polarizing film having a small shrinkage force at a high temperature and excellent optical performance can be obtained.
  • the boron element concentration ( ⁇ ) derived from the boron-containing compound (B) in the range from the center in the thickness direction of the polarizing film to the outside of 1 ⁇ m needs to be 0.1 to 3 atomic%.
  • a sufficient amount of the boron-containing compound (B) does not exist up to the center in the thickness direction of the polarizing film, and the effect of reducing the shrinkage force is low.
  • the boron element concentration ( ⁇ ) exceeds 3 atomic%, it is considered that the optical performance and shrinkage force of the polarizing film are not affected, but the fixing treatment of immersing in an aqueous solution of the boron-containing compound (B) described later The time may increase and the productivity of the polarizing film may decrease.
  • the concentration of boric acid (C) -derived boron element ( ⁇ ) in the range from the center of the polarizing film in the thickness direction to the outside of 1 ⁇ m needs to be 0.1 to 8 atomic%.
  • the boron element concentration ( ⁇ ) is less than 0.1 atomic%, the amount of boric acid (C) at the center in the thickness direction of the polarizing film is not sufficient, and the orientation state of the PVA molecular chain in the polarizing film is changed. Disturbance and reduced optical performance.
  • the PVA molecular chain oriented by boric acid cross-linking is excessively present at the center in the thickness direction of the polarizing film, so that the shrinkage force is reduced. It may not be enough.
  • the ratio of boron element concentration ( ⁇ / ⁇ ) is less than 0.1, the amount of boric acid (C) in the central portion in the thickness direction of the polarizing film is large and the amount of the boron-containing compound (B) is small. Presumed.
  • the shrinkage force may not decrease.
  • the ratio of boron element concentration ( ⁇ / ⁇ ) exceeds 3, it is considered that the optical performance and shrinkage force of the polarizing film are not affected, but in an aqueous solution of the boron-containing compound (B) described later.
  • the ratio of the boron element concentration ( ⁇ / ⁇ ) is preferably 3 or less because the time for the fixing treatment for immersion becomes long and the productivity of the polarizing film may decrease.
  • the boron element concentration ( ⁇ ) and the boron element concentration ( ⁇ ) in the polarizing film can be determined by using an X-ray photoelectron spectrometer (GCIB XPS) equipped with a gas cluster ion beam gun. Specifically, it can be obtained by the method described in Examples described later.
  • GCIB XPS X-ray photoelectron spectrometer
  • the thickness of the polarizing film is preferably 5 to 30 ⁇ m. If the thickness is too thin, stretch breakage tends to occur easily during the uniaxial stretching process for producing a polarizing film.
  • the thickness is preferably 10 ⁇ m or more. On the other hand, if the thickness is too thick, stretching spots tend to occur during the uniaxial stretching process for producing the polarizing film, and the shrinkage force of the produced polarizing film tends to increase.
  • the boron-containing compound (B) in the present invention is at least one selected from the group consisting of monoboronic acid represented by the following formula (I) and a compound capable of converting to monoboronic acid in the presence of water.
  • R 1 is a monovalent aliphatic group having 1 to 20 carbon atoms, and R 1 and a boronic acid group are connected by a boron-carbon bond.
  • R 1 is a monovalent aliphatic group having 1 to 20 carbon atoms, and R 1 and a boronic acid group are connected by a boron-carbon bond.
  • Monoboronic acid is a compound represented by the above formula (I) and has one boronic acid group [-B (OH) 2 ] in one molecule.
  • the boronic acid group, the boron atom to which two hydroxyl groups are bonded have a structure bonded to a carbon atom in the compound represented by the formula (I), R 1 and boronic acid group and boron - It is connected by a carbon bond.
  • boric acid [B (OH) 3 ] the boron atom is bonded to three hydroxyl groups, whereas the boronic acid group is different in that it has a boron-carbon bond.
  • Typical examples of the boron-containing group that can be converted into a boronic acid group in the presence of water include, but are not limited to, the boronic acid ester group described below.
  • the hydroxyl group in the boronic acid group contained in monoboronic acid can form an ester with alcohol in the same manner as the hydroxyl group in boric acid.
  • Formula (II) is an alcohol of 1 molecule with respect to boronic acid (R 2 -OH) is reacted Monoboron acid monoester.
  • R 2 in the formula (II) is a PVA chain, and a carbon-containing group is bonded to the PVA chain via a boron atom.
  • Formula (III) is, two molecules alcohol (R 2 -OH) are examples of Monoboron acid diester react to Monoboron acid.
  • R 2 -OH Monoboron acid diester react to Monoboron acid.
  • the boronic acid group is bound to the hydroxyl group of PVA, any two R 2 in formula (III) is a PVA chain.
  • Monobolonic acid has two hydroxyl groups capable of reacting with the hydroxyl groups of PVA to form an ester, and the PVA chain is appropriately crosslinked. Since this cross-linking is heat-stable, the shrinkage force of the polarizing film at high temperature is reduced. As a result, the warpage of the LCD panel using the polarizing film under high temperature is suppressed. Further, it is considered that the PVA chain is appropriately crosslinked to improve the orientation state of the PVA chain and improve the optical performance of the polarizing film.
  • R 1 is a monovalent aliphatic group having 1 to 20 carbon atoms.
  • the carbon number of R 1 is preferably 10 or less, more preferably 6 or less, and further preferably 5 or less.
  • the carbon number of R 1 is preferably 2 or more, and more preferably 3 or more.
  • R 1 is a monovalent aliphatic group, and it is sufficient that R 1 and a boronic acid group are connected by a boron-carbon bond.
  • R 1 may be a saturated aliphatic group or an unsaturated aliphatic group, but the former is preferable. Since R 1 is a saturated aliphatic group, coloring of the obtained polarizing film is suppressed and durability is improved. Further, since R 1 is a saturated aliphatic group, the orientation of the dichroic dye is improved and the optical performance is further improved.
  • the unsaturated aliphatic group is a carbon-carbon double bond, a carbon-carbon triple bond, a carbon-oxygen double bond, a carbon-nitrogen double bond, a nitrogen-nitrogen double bond, a carbon-sulfur double bond, etc. It is an aliphatic group having a structure including a double bond having a bond order of 2 or more, and a saturated aliphatic group is an aliphatic group having only a single bond structure.
  • the Monoboron acid R 1 is a saturated aliphatic group, methyl boronic acid, ethylboronic acid, propyl acid, butyl boronic acid, Penchiruboron acid, hexyl acid, to Puchiruboron acid, octyl boronic acid, Noniruboron acid, Dekaniruboron acid, undecyl Decanylboronic acid, dodecanylboronic acid, tridecanylboronic acid, tetradecanylboronic acid, pentadecanylboronic acid, hexadecanylboronic acid, heptadecanylboronic acid, octadecanylboronic acid, nonadecanylboronic acid Acids, icosanylboronic acid and their isomers, cyclopropylboronic acid, cyclobutylboronic acid, cyclopentylboronic acid, cyclohexylboronic acid, cyclohept
  • R 1 may be an aliphatic hydrocarbon group or may contain heteroatoms such as oxygen, nitrogen, sulfur and halogen. Considering availability, it is preferable that R 1 is an aliphatic hydrocarbon group containing no heteroatom.
  • the aliphatic hydrocarbon group is preferably a straight chain aliphatic hydrocarbon group having no branch.
  • boronic acid in which R 1 is a linear aliphatic hydrocarbon group examples include methylboronic acid, ethylboronic acid, n-propylboronic acid, n-butylboronic acid, n-pentylboronic acid, and n-hexylboronic acid.
  • ethylboronic acid, n-propylboronic acid, n-butylboronic acid, and n-pentylboronic acid are particularly preferable.
  • examples of the compound that can be converted into these exemplified boronic acids in the presence of water include salts of the boronic acid.
  • PVA (A) in the present invention is a polymer having a vinyl alcohol unit (-CH 2- CH (OH)-) as a main structural unit.
  • the degree of polymerization of PVA (A) contained in the polarizing film of the present invention is preferably in the range of 1,500 to 6,000, more preferably in the range of 1,800 to 5,000. It is more preferably in the range of 2,000 to 4,000.
  • the degree of polymerization of PVA (A) in the present specification means the average degree of polymerization measured according to the description of JIS K6726-1994.
  • the saponification degree of PVA (A) contained in the polarizing film of the present invention is preferably 95 mol% or more, preferably 96 mol% or more, from the viewpoint of water resistance of the polarizing film obtained by uniaxially stretching the film. More preferably, it is more preferably 98 mol% or more.
  • a degree of saponification of PVA herein, PVA having a vinyl alcohol unit by saponification (-CH 2 -CH (OH) -) vinyl the converted may structural units (typically vinyl ester units) and The ratio (mol%) of the number of moles of the vinyl alcohol unit to the total number of moles with the alcohol unit.
  • the saponification degree can be measured according to the description of JIS K6726-1994.
  • the method for producing PVA (A) used in the present invention is not particularly limited.
  • a method of converting the vinyl ester unit of the polyvinyl ester obtained by polymerizing the vinyl ester monomer into the vinyl alcohol unit can be mentioned.
  • the vinyl ester monomer used in the production of PVA (A) is not particularly limited, and is, for example, vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl versatic acid, vinyl caproate. , Vinyl caprylate, vinyl caproate, vinyl laurate, vinyl palmitate, vinyl stearate, vinyl oleate, vinyl benzoate and the like. Vinyl acetate is preferable from an economic point of view.
  • the vinyl ester unit of the vinyl ester copolymer obtained by copolymerizing the vinyl ester monomer and another monomer copolymerizable therewith is a vinyl alcohol unit. It may be converted to.
  • ⁇ -olefins having 2 to 30 carbon atoms such as ethylene, propylene, 1-butyl, and isobutene
  • (meth) acrylic acid or a salt thereof Methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate
  • (Meta) acrylic acid esters such as t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, dodecyl (meth) acrylate, octadecyl (meth) acrylate
  • the vinyl ester copolymer described above can have a structural unit derived from one or more of the other monomers described above.
  • the other monomer may be present in the reaction vessel in advance when the vinyl ester monomer is subjected to the polymerization reaction, or it may be added to the reaction vessel during the polymerization reaction. It can be used by doing so.
  • the content of units derived from other monomers is preferably 10 mol% or less, preferably 5 mol% or less, based on the number of moles of all structural units constituting PVA (A). It is more preferably% or less, and further preferably 2 mol% or less.
  • the stretchability is improved and the film can be stretched at a higher temperature, so that troubles such as stretch breakage are reduced during the production of the polarizing film, and the polarized light is polarized.
  • Ethylene is preferred because it further improves film productivity.
  • PVA (A) contains ethylene units
  • the content of ethylene units is based on the number of moles of all structural units constituting PVA (A) from the viewpoints of stretchability and stretchable temperature as described above. 1 to 10 mol% is preferable, and 2 to 6 mol% is more preferable.
  • the PVA film used for producing the polarizing film of the present invention may contain a plasticizer in addition to the above PVA (A).
  • Preferred plasticizers include polyhydric alcohols, and specific examples include ethylene glycol, glycerin, propylene glycol, diethylene glycol, diglycerin, triethylene glycol, tetraethylene glycol, trimethylolpropane and the like. Furthermore, one or more of these plasticizers can be included. Among these, glycerin is preferable from the viewpoint of improving stretchability.
  • the content of the plasticizer in the PVA film used for producing the polarizing film of the present invention is preferably in the range of 1 to 20 parts by mass with respect to 100 parts by mass of PVA (A), and is preferably 3 to 17 parts by mass. It is more preferably in the range of 5 to 15 parts by mass, and further preferably in the range of 5 to 15 parts by mass.
  • the content is 1 part by mass or more, the stretchability of the film is improved.
  • the content is 20 parts by mass or less, it is possible to prevent the film from becoming too flexible and the handleability from being lowered.
  • the PVA film used in the production of the polarizing film of the present invention further includes a filler, a processing stabilizer such as a copper compound, a weather resistance stabilizer, a colorant, an ultraviolet absorber, a light stabilizer, an antioxidant, and an antistatic agent.
  • a processing stabilizer such as a copper compound, a weather resistance stabilizer, a colorant, an ultraviolet absorber, a light stabilizer, an antioxidant, and an antistatic agent.
  • Additives other than PVA (A) and the plasticizer, such as a retarder can be added as needed.
  • the content of the other additive in the PVA film is usually 10% by mass or less, preferably 5% by mass or less.
  • the degree of swelling of the PVA film used in the production of the polarizing film of the present invention is preferably in the range of 160 to 240%, more preferably in the range of 170 to 230%, and in the range of 180 to 220%. It is particularly preferable to be inside.
  • the degree of swelling is 160% or more, it is possible to suppress the extremely progress of crystallization, and it is possible to stably stretch to a high magnification.
  • the degree of swelling is 240% or less, dissolution during stretching is suppressed, and stretching can be performed even under higher temperature conditions.
  • the degree of swelling of the PVA film is measured by the method described in the examples.
  • the thickness of the PVA film used for producing the polarizing film of the present invention is not particularly limited, but is generally 1 to 100 ⁇ m, preferably 5 to 60 ⁇ m, and particularly preferably 10 to 45 ⁇ m. If the PVA film is too thin, stretch breakage tends to occur easily during the uniaxial stretching process for producing a polarizing film. Further, if the PVA film is too thick, stretching spots tend to occur during the uniaxial stretching process for producing the polarizing film, and the shrinkage force of the produced polarizing film tends to increase.
  • the width of the PVA film used for producing the polarizing film of the present invention is not particularly limited, and can be determined according to the intended use of the polarizing film to be produced. In recent years, since the screen size of liquid crystal televisions and liquid crystal monitors has been increasing, it is suitable for these applications if the width of the PVA film used for manufacturing the polarizing film is 3 m or more. On the other hand, if the width of the PVA film used for producing the polarizing film is too large, it tends to be difficult to uniformly perform uniaxial stretching when producing the polarizing film with a practical device, so that the polarizing film is produced.
  • the width of the PVA film used in the above is preferably 10 m or less.
  • the production method of the PVA film used for producing the polarizing film of the present invention is not particularly limited, and a production method in which the thickness and width of the film after film formation are uniform is preferably adopted.
  • a film-forming stock solution in which one or more of PVA (A) and, if necessary, the plasticizer, the other additive, and a surfactant described later are dissolved in a liquid medium.
  • PVA (A) and if necessary, one or more of plasticizers, other additives, surfactants, liquid media, etc., and PVA (A) melts. It can be manufactured using the existing film-forming stock solution.
  • the film-forming stock solution contains at least one of a plasticizer, other additives, and a surfactant, it is preferable that these components are uniformly mixed.
  • liquid medium used for preparing the membrane-forming stock solution examples include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethylene glycol, glycerin, propylene glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol. , Trimethylolpropane, ethylenediamine, diethylenetriamine and the like, and one or more of these can be used. Of these, water is preferable from the viewpoint of environmental load and recoverability.
  • the volatile content of the film-forming stock solution (the content ratio of volatile components such as liquid media removed by volatilization or evaporation during film-forming in the film-forming stock solution) varies depending on the film-forming method, film-forming conditions, etc., but is generally used. It is preferably in the range of 50 to 95% by mass, and more preferably in the range of 55 to 90% by mass.
  • the volatile content of the membrane-forming stock solution is 50% by mass or more, the viscosity of the membrane-forming stock solution does not become too high, filtration and defoaming during preparation of the membrane-forming stock solution are smoothly performed, and a film with few foreign substances and defects. Is easy to manufacture.
  • the volatile fraction of the film-forming stock solution is 95% by mass or less, the concentration of the film-forming stock solution does not become too low, and industrial film production becomes easy.
  • the membrane-forming stock solution preferably contains a surfactant.
  • a surfactant By containing the surfactant, the film-forming property is improved, the occurrence of thickness unevenness of the film is suppressed, and the film can be easily peeled off from the metal roll or belt used for the film-forming.
  • the film When a PVA film is produced from a film-forming stock solution containing a surfactant, the film may contain a surfactant.
  • the type of the above-mentioned surfactant is not particularly limited, but an anionic surfactant or a nonionic surfactant is preferable from the viewpoint of peelability from a metal roll or a belt.
  • anionic surfactant for example, a carboxylic acid type such as potassium laurate; a sulfate ester type such as polyoxyethylene lauryl ether sulfate and octyl sulfate; and a sulfonic acid type such as dodecylbenzene sulfonate are suitable.
  • a carboxylic acid type such as potassium laurate
  • a sulfate ester type such as polyoxyethylene lauryl ether sulfate and octyl sulfate
  • a sulfonic acid type such as dodecylbenzene sulfonate
  • nonionic surfactant examples include an alkyl ether type such as polyoxyethylene oleyl ether; an alkylphenyl ether type such as polyoxyethylene octylphenyl ether; an alkyl ester type such as polyoxyethylene laurate; and polyoxyethylene laurylamino.
  • Alkylamine type such as ether
  • Alkylamide type such as polyoxyethylene lauric acid amide
  • Polypropylene glycol ether type such as polyoxyethylene polyoxypropylene ether
  • Alkanolamide type such as lauric acid diethanolamide and oleic acid diethanolamide
  • Polyoxy An allylphenyl ether type such as alkylene allylphenyl ether is suitable.
  • surfactants can be used alone or in combination of two or more.
  • the content thereof is preferably in the range of 0.01 to 0.5 parts by mass with respect to 100 parts by mass of PVA (A) contained in the membrane-forming stock solution. It is more preferably in the range of 0.02 to 0.3 parts by mass, and particularly preferably in the range of 0.05 to 0.2 parts by mass.
  • the content is 0.01 parts by mass or more, the film-forming property and the peelability are further improved.
  • the content is 0.5 parts by mass or less, it is possible to prevent the surfactant from bleeding out to the surface of the PVA film and causing blocking, resulting in deterioration of handleability.
  • Examples of the film-forming method for forming a PVA film using the above-mentioned film-forming stock solution include a cast film-forming method, an extrusion film-forming method, a wet film-forming method, and a gel film-forming method. These film forming methods may adopt only one kind or a combination of two or more kinds. Among these film-forming methods, the cast film-forming method and the extrusion film-forming method are preferable because a PVA film used for producing a polarizing film having a uniform thickness and width and good physical characteristics can be obtained. The formed PVA film can be dried or heat-treated as needed.
  • a T-type slit die, a hopper plate, an I-die, a lip coater die, or the like is used to prepare the above-mentioned film-forming stock solution.
  • the volatile components are evaporated from one surface to dry and then further dried on the peripheral surface of one or more rotating heated rolls placed downstream thereof, or in a hot air drying device.
  • a multilayer PVA film may be formed by forming a layer made of PVA (A) on one surface of a base film made of a single resin layer.
  • a suitable production method is a method for producing a polarizing film including a dyeing treatment for dyeing a PVA film with a dichroic dye and a stretching treatment for uniaxially stretching the film, in which the film is immersed in an aqueous solution of a boron-containing compound (B). It is a method of manufacturing a polarizing film having a process of processing. At this time, in addition to the dyeing treatment and the uniaxial stretching treatment, a method of further subjecting the PVA film to a swelling treatment, a boric acid cross-linking treatment, a fixing treatment, a washing treatment, a drying treatment, a heat treatment, or the like can be mentioned. ..
  • each treatment such as swelling treatment, dyeing treatment, boric acid cross-linking treatment, uniaxial stretching treatment, and fixing treatment is not particularly limited, and two or more treatments can be performed at the same time. Moreover, each process can be performed twice or more.
  • the swelling treatment can be performed by immersing the PVA film in water.
  • the temperature of the water for immersing the film is preferably in the range of 20 to 40 ° C, more preferably in the range of 22 to 38 ° C, and further preferably in the range of 25 to 35 ° C. ..
  • the time for immersion in water is, for example, preferably in the range of 0.1 to 5 minutes, and more preferably in the range of 0.2 to 3 minutes.
  • the water in which the film is immersed is not limited to pure water, and may be an aqueous solution in which various components are dissolved, or a mixture of water and a hydrophilic medium.
  • the dyeing process can be performed by bringing the dichroic dye into contact with the PVA film.
  • the dichroic dye an iodine dye or a dichroic dye is generally used.
  • the timing of the dyeing treatment may be any stage before the uniaxial stretching treatment, during the uniaxial stretching treatment, and after the uniaxial stretching treatment.
  • the dyeing treatment is generally performed by immersing the PVA film in a solution containing iodine-potassium iodide (particularly an aqueous solution) or a solution containing a plurality of bicolor dyes (particularly an aqueous solution) using a PVA film as a dyeing bath. is there.
  • the concentration of iodine in the dyeing bath is preferably in the range of 0.01 to 0.5% by mass, and the concentration of potassium iodide is preferably in the range of 0.01 to 10% by mass.
  • the temperature of the dyeing bath is preferably 20 to 50 ° C, particularly preferably 25 to 40 ° C.
  • a suitable staining time is 0.2-5 minutes.
  • the dichroic dye is preferably an aqueous dye.
  • the dye concentration in the dyeing bath is preferably 0.001 to 10% by mass.
  • a dyeing aid may be used, or an inorganic salt such as sodium sulfate or a surfactant may be used.
  • dichroic dyes include C.I. Ai. Direct Yellow 28, Sea. Ai. Direct Orange 39, Sea. Ai. Direct Yellow 12, Sea. Ai. Direct Yellow 44, Sea. Ai. Direct Orange 26, Sea. Ai. Direct Orange 71, Sea. Ai. direct. Orange 107, Sea. Ai. Direct Red 2, Sea. Ai. Direct Red 31, Sea. Ai. direct. Red 79, Sea. Ai. Direct Red 81, Sea. Ai. Direct Red 247, Sea. Ai. Direct Green 80, Sea. Ai. Examples thereof include Direct Green 59, and a dichroic dye developed for manufacturing a polarizing plate is preferable.
  • the PVA molecular chains in the PVA film are cross-linked and the orientation of the PVA molecular chains is improved.
  • the orientation of the dichroic dye adsorbed on the PVA film is improved, so that the optical performance of the obtained polarizing film is improved.
  • the boric acid cross-linking treatment is carried out after the dyeing treatment and before the stretching treatment.
  • the boric acid cross-linking treatment can be performed by immersing the PVA film in an aqueous solution containing a boric acid cross-linking agent.
  • boric acid cross-linking agent one or more boron-containing inorganic compounds such as borate such as boric acid and borax can be used, and the boric acid cross-linking agent is easy to handle. It is preferably boric acid.
  • concentration of the boric acid cross-linking agent in the aqueous solution containing the boric acid cross-linking agent is preferably 1 to 10% by mass, more preferably 2 to 7% by mass. When the concentration of the boric acid cross-linking agent is 1 to 10% by mass, sufficient stretchability can be maintained.
  • the aqueous solution containing the boric acid cross-linking agent may contain an auxiliary agent such as potassium iodide.
  • the temperature of the aqueous solution containing the boric acid cross-linking agent is preferably 20 to 50 ° C, particularly preferably 25 to 40 ° C. Boric acid cross-linking can be performed efficiently by setting the temperature to 20 to 50 ° C.
  • the PVA film may be stretched (pre-stretched) during or between the above-mentioned treatments.
  • the total stretching ratio of the pre-stretching performed before the uniaxial stretching treatment is the raw material before stretching from the viewpoint of the optical performance of the obtained polarizing film.
  • the total draw ratio is preferably 4.0 times or less, more preferably 3.5 times or less.
  • the draw ratio in the swelling treatment is preferably 1.05 to 2.5 times.
  • the draw ratio in the dyeing treatment is preferably 1.1 to 2.5 times.
  • the draw ratio in the boric acid cross-linking treatment is preferably 1.1 to 2.5.
  • the uniaxial stretching treatment may be performed by either a wet stretching method or a dry stretching method.
  • the PVA film is stretched in an aqueous solution.
  • the PVA film can also be stretched in the above-mentioned dyeing bath or boric acid aqueous solution.
  • the uniaxial stretching treatment may be performed at room temperature, the uniaxial stretching treatment may be performed while heating, or the uniaxial stretching treatment may be performed in the air using a PVA film after water absorption. You can also do it.
  • the wet stretching method is preferable, and the uniaxial stretching treatment is more preferable in an aqueous solution containing boric acid.
  • the concentration of boric acid in the boric acid aqueous solution is preferably in the range of 0.5 to 6% by mass, and more preferably in the range of 1 to 5% by mass. Further, the boric acid aqueous solution may contain potassium iodide, and the concentration thereof is preferably in the range of 0.01 to 10% by mass.
  • the stretching temperature in the uniaxial stretching treatment is preferably 30 ° C. or higher, more preferably 40 ° C. or higher, and even more preferably 50 ° C. or higher. On the other hand, the stretching temperature is preferably 90 ° C. or lower, more preferably 80 ° C. or lower, and even more preferably 70 ° C. or lower.
  • the stretching ratio in the uniaxial stretching treatment is preferably 2.0 to 4.0 times.
  • the draw ratio is more preferably 2.2 times or more.
  • the draw ratio is more preferably 3.5 times or less.
  • the total draw ratio up to the fixing treatment described later is preferably 5 times or more based on the original length of the raw material PVA film before stretching from the viewpoint of the optical performance of the obtained polarizing film. More preferably, it is 5 times or more.
  • the upper limit of the draw ratio is not particularly limited, but the draw ratio is preferably 8 times or less.
  • the direction of the uniaxial stretching treatment when the long PVA film is subjected to the uniaxial stretching treatment there is no particular limitation on the direction of the uniaxial stretching treatment when the long PVA film is subjected to the uniaxial stretching treatment, and the uniaxial stretching treatment in the long direction, the lateral uniaxial stretching treatment, the so-called diagonal stretching treatment can be adopted. Since a polarizing film having excellent optical performance can be obtained, uniaxial stretching treatment in the long direction is preferable.
  • the uniaxial stretching process in the long direction can be performed by using a stretching device including a plurality of rolls parallel to each other and changing the peripheral speed between the rolls.
  • the horizontal uniaxial stretching treatment can be performed using a tenter type stretching machine.
  • the fixing treatment bath used for the fixing treatment an aqueous solution containing the boron-containing compound (B) is preferably used. Further, if necessary, boric acid, an iodine compound, a metal compound and the like may be further added to the fixing treatment bath. From the viewpoint of accelerating the substitution reaction between the boron-containing compound (B) and boric acid (C) in the central portion of the polarizing film in the thickness direction, it is preferable that the fixing treatment bath is substantially free of boric acid.
  • the temperature of the fixing treatment bath is preferably 10 to 80 ° C.
  • the draw ratio in the fixing treatment is preferably 1.3 times or less, more preferably 1.2 times or less, and even more preferably less than 1.1 times.
  • the boron-containing compound (B) may be adsorbed on the polarizing film in any of the steps of dyeing treatment, boric acid cross-linking treatment, uniaxial stretching treatment, and fixing treatment, but it is uniaxially adsorbed during the fixing treatment after the uniaxial stretching treatment. It is particularly preferable because the cutting of the PVA film during the stretching treatment is suppressed. Further, the boron-containing compound (B) is not limited to one type, and two or more types may be mixed and used.
  • the concentration of the aqueous solution of the boron-containing compound (B) is 0.2 to 5% by mass. Must be.
  • the concentration of the boron-containing compound (B) in the aqueous solution is lower than 0.2% by mass, the adsorption of the boron-containing compound (B) on the surface of the polarizing film is delayed, which is 0.4% by mass or more. More preferably, it is more preferably 0.6% by mass or more.
  • the concentration of the boron-containing compound (B) in the aqueous solution is higher than 5.0% by mass, the boron-containing compound (B) is excessively adsorbed on the surface of the polarizing film, and the boron-containing compound (B) The substitution reaction between boron and boric acid (C) becomes difficult to proceed.
  • a precipitate of the boron-containing compound (B) may be formed on the surface of the polarizing film.
  • the concentration of the boron-containing compound (B) is more preferably 4.0% by mass or less, further preferably 2.0% by mass or less, and particularly preferably 1.0% by mass or less.
  • the aqueous solution containing the boron-containing compound (B) preferably contains an iodide auxiliary such as potassium iodide from the viewpoint of improving optical performance, and the concentration of iodide is 0.5 to 15% by mass. Is preferable.
  • the temperature of the aqueous solution containing the boron-containing compound (B) needs to be 20 to 70 ° C. If the temperature of the aqueous solution containing the boron-containing compound (B) is less than 20 ° C., it becomes difficult to proceed the substitution reaction for replacing boric acid in the polarizing film with boronic acid to the central portion in the thickness direction of the polarizing film.
  • the boron-containing compound (B) may precipitate in an aqueous solution containing the boron-containing compound (B).
  • the temperature of the aqueous solution containing the boron-containing compound (B) is preferably 23 ° C. or higher, more preferably 25 ° C. or higher.
  • the temperature of the aqueous solution containing the boron-containing compound (B) is preferably 60 ° C. or lower, more preferably 40 ° C. or lower.
  • the time for immersing in the aqueous solution containing the boron-containing compound (B) is preferably 5 to 400 seconds.
  • Examples of a method for producing a polarizing film by adsorbing a boron-containing compound (B) on a polarizing film during the fixing treatment include swelling treatment, uniaxial stretching treatment, and fixing treatment in this order, swelling treatment, and boric acid cross-linking treatment. It is preferable that the uniaxial stretching treatment and the fixing treatment are performed in this order, and the swelling treatment, the uniaxial stretching treatment, the fixing treatment and the boric acid cross-linking treatment are performed in this order. After performing these treatments, one or more treatments selected from a cleaning treatment, a drying treatment, and a heat treatment may be further performed, if necessary.
  • the cleaning treatment is generally performed by immersing the PVA film in distilled water, pure water, an aqueous solution, or the like.
  • an aqueous solution containing iodide such as potassium iodide
  • concentration of the iodide is preferably 0.5 to 10% by mass.
  • the temperature of the aqueous solution in the cleaning treatment is generally 5 to 50 ° C, preferably 10 to 45 ° C, and even more preferably 15 to 40 ° C. From an economic point of view, it is not preferable that the temperature of the aqueous solution is too low, and if the temperature of the aqueous solution is too high, the optical performance may deteriorate.
  • the conditions of the drying treatment are not particularly limited, but it is preferable to perform drying at a temperature within the range of 30 to 150 ° C., particularly within the range of 50 to 130 ° C. By drying at a temperature in the range of 30 to 150 ° C., a polarizing film having excellent dimensional stability can be easily obtained.
  • the heat treatment is a process of further heating a polarizing film having a moisture content of 5% or less after the drying treatment to improve the dimensional stability of the polarizing film.
  • the conditions of the heat treatment are not particularly limited, but the heat treatment is preferably performed in the range of 60 ° C. to 150 ° C., particularly in the range of 70 ° C. to 150 ° C. If the temperature is lower than 60 ° C., the dimensional stabilization effect of the heat treatment is insufficient, and if the temperature is higher than 150 ° C., the polarizing film may be severely reddish.
  • the transmittance of the polarizing film of the present invention is 42.0% or more and the degree of polarization is 99.85% or more. If the transmittance of the polarizing film is less than 42.0%, the brightness of the obtained LCD may be insufficient.
  • the transmittance is more preferably 43.0% or more, further preferably 43.5% or more. On the other hand, the transmittance is usually 45% or less. Further, when the degree of polarization of the polarizing film is 99.85% or more, an LCD panel having high image quality can be obtained.
  • the transmittance and the degree of polarization of the polarizing film are measured by the methods described in Examples described later.
  • the polarizing film of the present invention thus obtained has a shrinkage force of less than 12 N in the absorption axis direction per width of 1.5 cm and thickness of 13 ⁇ m when held at 80 ° C. for 4 hours. If the shrinkage force of the polarizing film is 12 N or more, when the LCD is enlarged, the LCD tends to warp due to heat generated by the screen, and light leakage may occur from the end portion.
  • the shrinkage force of the polarizing film is measured by the method described in the examples.
  • the polarizing film of the present invention is usually used as a polarizing plate by laminating a protective film that is optically transparent and has mechanical strength on both sides or one side thereof.
  • a protective film a cellulose triacetate (TAC) film, a cellulose acetate / butyrate (CAB) film, an acrylic film, a polyester film, or the like is used.
  • TAC cellulose triacetate
  • CAB cellulose acetate / butyrate
  • acrylic film a polyester film, or the like
  • examples of the adhesive for bonding include a PVA-based adhesive and a UV-curable adhesive.
  • the polarizing plate obtained as described above may be bonded to a retardation film, a viewing angle improving film, a brightness improving film, or the like. Further, after coating a polarizing plate with an adhesive such as acrylic, it can be bonded to a glass substrate and used as an LCD component.
  • ⁇ Optical performance of polarizing film> A rectangular sample of 4 cm in length x 2 cm in width was taken from the center of the polarizing film in the width and length directions, and a spectrophotometer with an integrating sphere V-7100 (manufactured by JASCO Corporation) was used. The parallel transmittance and the cross Nicol transmittance of the polarizing film were measured using an automatic polarizing film measuring device VAP-7070S (manufactured by JASCO Corporation) equipped with a Grantera polarizer.
  • the measurement wavelength range is set to 380 nm to 780 nm
  • the transmittance when the vibration direction of the polarized light incident on the polarizing film through the Grantera polarizer is parallel to the transmission axis of the polarizing film is the parallel transmittance, and the transmittance of the polarizing film.
  • the case perpendicular to the transmission axis was defined as the cross Nicol transmittance.
  • a polarizing film (length direction (stretching axis direction) 15 cm, width direction 1.5 cm) adjusted at 20 ° C./20% RH for 18 hours was attached to the chuck (chuck interval 5 cm), and at the same time as the tension was started, 80 The temperature rise of the constant temperature bath to °C was started. The polarizing film was pulled at a speed of 1 mm / min, the tension was stopped when the tension reached 2N, and the tension was measured up to 4 hours later in that state.
  • ⁇ Boron element concentration ( ⁇ ) and boron element concentration ( ⁇ )> The concentration of boron element derived from the boron-containing compound (B) in the polarizing film was measured using an X-ray photoelectron spectrometer with a gas cluster ion beam gun (manufactured by ULVAC PHI Co., Ltd .: PHI5000 VersaProbe II) (GCIB-XPS). For the measurement, a polarizing film adjusted at about 23 ° C./40% RH for 16 hours or more was used.
  • sputtering was performed in a range of 1 mm ⁇ 1 mm while neutralizing, and X-ray photoelectron spectroscopy measurement (XPS measurement) was performed.
  • XPS measurement is performed using monochromatic Al as the X-ray source, the X-ray spot diameter is set to 200 ⁇ m, the X-ray output is set to 15 kV, and 50 W, and the detection elements are carbon, boron, oxygen, iodine, and potassium. Selected.
  • dichroic dye When a dichroic dye is used as the dichroic dye, it is necessary to appropriately select elements such as nitrogen and sulfur contained in the dichroic dye as detection elements. Next, using the analysis software "MultiPak” (manufactured by ULVAC PHI Co., Ltd.), at each depth in the thickness direction of the polarizing film, based on 284.8 eV, which is the binding energy of the CC and CH bonds. The boron element concentration (a, atomic%) was calculated.
  • the binding energy caused by boron of boric acid (C) and the binding energy caused by boron of the boron-containing compound (B) are appropriately set, and the spreadsheet software "Microsoft Excel 2010" ( Peak separation was performed by the minimum square method using a pseudo-Bort function using (manufactured by Microsoft Corporation). A linear function calculated from the average value of the intensity of the XPS spectrum of 187 to 189 eV and the average value of the XPS spectrum of 195 to 197 was used as the baseline.
  • the peak area (b,%) of boron derived from the boron-containing compound (B) is calculated with respect to the total of boron derived from boric acid (C) and boron derived from the boron-containing compound (B), and the following formula is used.
  • concentration of boron element derived from the boron-containing compound (B) at each depth was calculated.
  • Boron element concentration (atomic%) derived from boron-containing compound (B) A ⁇ b ⁇ 10 -2 (2)
  • the binding energy of the boron-containing compound (B) due to boron changes depending on the structure of the compound. Therefore, it is necessary to appropriately set the binding energy according to the type of the boron-containing compound (B). For example, when the boron-containing compound (B) is n-propylboronic acid, it is around 191.5 eV. Further, when peak separation was performed by the least squares method using the pseudo Voigt function, the Lorentz function ratio of boric acid was set to 0.241, and 2 1/2 ⁇ ⁇ was set to 0.916. The Lorentz function ratio and full width at half maximum of the boron-containing compound (B) also change depending on the structure of the compound.
  • the boron element concentration ( ⁇ , atomic%) derived from the boron-containing compound (B) from the center in the thickness direction of the polarizing film to the outside 1 ⁇ m was determined.
  • the concentration of boric acid-derived boron element ( ⁇ , atomic%) from the center of the polarizing film in the thickness direction to 1 ⁇ m outside was determined.
  • Example 1 It contains 100 parts by mass of PVA (saponification degree 99.9%, degree of polymerization 2400), 10 parts by mass of glycerin as a plasticizer, and 0.1 parts by mass of polyoxyethylene lauryl ether sodium sulfate as a surfactant, and has a PVA content.
  • a 10% by mass PVA aqueous solution was prepared.
  • the film obtained by drying the PVA aqueous solution on a metal roll at 80 ° C. was heat-treated in a hot air dryer (120 ° C.) for 10 minutes to obtain a PVA film having a thickness of 30 ⁇ m and a swelling degree of 200%.
  • a sample having a width of 5 cm and a length of 9 cm was cut so that a range of 5 cm in width ⁇ 5 cm in length could be uniaxially stretched from the central portion in the width direction of the obtained PVA film.
  • This sample was uniaxially stretched 1.1 times in the length direction while being immersed in pure water at 30 ° C. for 30 seconds for swelling treatment. Subsequently, the length was 2.2 times (2.4 times in total) while being immersed in an aqueous solution (dyeing treatment bath) at 30 ° C. containing 0.035% by mass of iodine and 3.5% by mass of potassium iodide for 60 seconds. Iodine was adsorbed by uniaxially stretching in the direction.
  • the boron element concentration ( ⁇ ) derived from the boron-containing compound (B) in the range of 1 ⁇ m from the center in the thickness direction of the polarizing film was 1.4 atomic%, and the polarized light was polarized.
  • the boron element concentration ( ⁇ ) derived from boric acid in the range of 1 ⁇ m from the center in the thickness direction of the film was 1.5 atomic%.
  • Examples 2 to 4> A polarizing film was prepared in the same manner as in Example 1 except that the time of immersion in the fixing treatment bath and the concentration of the aqueous solution were changed as shown in Table 1, and each measurement and evaluation was performed.
  • ⁇ Comparative example 1> This is an example of a polarizing film that does not contain the boron-containing compound (B). Same as Example 1 except that an aqueous solution (temperature 30 ° C.) containing potassium iodide in a proportion of 2% by mass was used as the fixing treatment bath and the time of immersion in the fixing treatment bath was changed to 20 seconds. To prepare a polarizing film, each measurement and evaluation was performed. The concentration of boron element ( ⁇ ) derived from boric acid (C) was low, and the shrinkage force of the polarizing film was as low as 6.4 N, but the degree of polarization was less than 99.85%, which was insufficient.
  • boron element derived from boric acid
  • ⁇ Comparative example 2> This is an example of a polarizing film that does not contain the boron-containing compound (B). Same as Example 1 except that an aqueous solution (temperature 30 ° C.) containing potassium iodide at a ratio of 2% by mass was used as the fixing treatment bath and the time of immersion in the fixing treatment bath was changed to 5 seconds. To prepare a polarizing film, each measurement and evaluation was performed. At this time, the shrinkage force of the polarizing film exceeded 12N, and the shrinkage force was not sufficiently reduced.
  • Example 2 In Examples 2 to 4 and Comparative Example 1, as in Example 1, an aqueous solution (dyeing treatment bath) (temperature 30 ° C.) containing 100 parts by mass of potassium iodide with respect to 1 part by mass of iodine was prepared. Iodine was adsorbed by uniaxially stretching in the length direction 2.2 times (2.4 times in total) while immersing for 60 seconds. At this time, the iodine and potassium iodide concentrations in the dyeing bath were adjusted so that the transmittance of the polarizing film after drying was 43.8 to 44.2%.
  • the polarizing film of the present invention has high optical performance but low shrinkage force. Therefore, it is possible to meet the recent demand for thinner and higher definition electronic devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

A polarizing film which contains a polyvinyl alcohol (A), at least one boron-containing compound (B) that is selected from the group consisting of a specific monoboronic acid and a compound that is able to be converted into the monoboronic acid in the presence of water, and boric acid (C), wherein: the concentration (α) of elemental boron derived from the boron-containing compound (B) in a range of 1 µm from the center toward the outside in the thickness direction is from 0.1% by atom to 3% by atom; the concentration (β) of elemental boron derived from boric acid (C) in a range of 1 µm from the center toward the outside in the thickness direction is from 0.1% by atom to 8% by atom; and the ratio of the concentration (α) to the concentration (β), namely, α/β is 0.1 or more. This polarizing film has a low contractile force at high temperatures, while having excellent optical performance.

Description

偏光フィルム及びその製造方法Polarizing film and its manufacturing method
 本発明は、偏光フィルム及びその製造方法に関する。 The present invention relates to a polarizing film and a method for producing the same.
 光の透過及び遮蔽機能を有する偏光板は、光の偏光状態を変化させる液晶と共に液晶ディスプレイ(LCD)の基本的な構成要素である。多くの偏光板は偏光フィルムの退色を防止したり、偏光フィルムの収縮を防いだりするため、偏光フィルムの表面に三酢酸セルロース(TAC)フィルムなどの保護膜が貼り合わされた構造を有しており、偏光板を構成する偏光フィルムとしてはポリビニルアルコールフィルム(以下、「ポリビニルアルコール」を「PVA」と称することがある)を一軸延伸してなるマトリックスにヨウ素系色素(I3‐やI5‐等)が吸着しているものが主流となっている。 A polarizing plate having a function of transmitting and shielding light is a basic component of a liquid crystal display (LCD) together with a liquid crystal that changes the polarization state of light. Many polarizing plates have a structure in which a protective film such as a cellulose triacetate (TAC) film is bonded to the surface of the polarizing film in order to prevent fading of the polarizing film and to prevent shrinkage of the polarizing film. As the polarizing film constituting the polarizing plate, an iodine-based dye (I 3- , I 5-, etc.) is formed on a matrix formed by uniaxially stretching a polyvinyl alcohol film (hereinafter, "polyvinyl alcohol" may be referred to as "PVA"). ) Is adsorbed in the mainstream.
 LCDは、電卓及び腕時計などの小型機器、スマートフォン、ノートパソコン、液晶モニター、液晶カラープロジェクター、液晶テレビ、車載用ナビゲーションシステム、屋内外で用いられる計測機器などの広範囲で用いられており、近年、これらの電子機器は薄型、高精細化が要求されている。これに伴い、近年、LCDに用いられるガラスの薄型化や、偏光フィルムの高延伸倍率化が進んでおり、その結果、LCDパネルの反りの発生が問題となっている。LCDパネルの反りの主な要因は高温下で偏光フィルムが収縮することであるといわれており、高い光学性能を有しつつ、高温下での収縮力が小さい偏光フィルムが求められている。 LCDs are widely used in small devices such as calculators and wristwatches, smartphones, laptop computers, LCD monitors, LCD color projectors, LCD TVs, in-vehicle navigation systems, and measuring devices used indoors and outdoors. Electronic devices are required to be thin and have high definition. Along with this, in recent years, the thickness of the glass used for the LCD has been reduced and the magnification of the polarizing film has been increased, and as a result, the occurrence of warpage of the LCD panel has become a problem. It is said that the main cause of warpage of an LCD panel is that the polarizing film shrinks at a high temperature, and there is a demand for a polarizing film having high optical performance and a small shrinking force at a high temperature.
 ところで、近年の偏光フィルムの製造方法においては、偏光フィルム中のPVA分子鎖を架橋させるために、ボロン酸の水溶液を用いることが知られている。具体的には、特許文献1には、一軸延伸後の偏光フィルムを、1,4-ブタンジボロン酸及びヨウ化カリウムを含有する水溶液(固定処理浴)に浸漬することで、耐湿熱性に優れた偏光フィルムが得られたことが記載されている。また、特許文献2には、ボロン酸誘導基を水洗段階に投入することで耐水性および接着力に優れた偏光フィルムが得られたことが記載されている。また、特許文献3には、アルデヒド基を有する炭化水素化合物を含む架橋液を使用することで耐熱性および耐湿熱性が優れた偏光フィルムが得られたことが記載されている。 By the way, in a recent method for producing a polarizing film, it is known to use an aqueous solution of boronic acid in order to crosslink the PVA molecular chains in the polarizing film. Specifically, Patent Document 1 describes polarized light having excellent moisture and heat resistance by immersing the uniaxially stretched polarizing film in an aqueous solution (fixing treatment bath) containing 1,4-butaniboronic acid and potassium iodide. It is stated that the film was obtained. Further, Patent Document 2 describes that a polarizing film having excellent water resistance and adhesive strength was obtained by adding a boronic acid inducing group to the washing step. Further, Patent Document 3 describes that a polarizing film having excellent heat resistance and moist heat resistance was obtained by using a cross-linking solution containing a hydrocarbon compound having an aldehyde group.
WO2018/021274WO2018 / 021274 KR10-2016-0054229号公報KR10-2016-0054229 KR10-2015-0001276号公報KR10-2015-0001276 Publication
 しかしながら、特許文献1~3に記載の偏光フィルムは、高温下での収縮力が大きいか、光学性能が不十分であった。そのため、近年の電子機器の薄型化、高精細化要求に応えることができなかった。 However, the polarizing films described in Patent Documents 1 to 3 have a large shrinkage force at high temperatures or have insufficient optical performance. Therefore, it has not been possible to meet the recent demand for thinner and higher definition electronic devices.
 そこで、本発明は、高温下での収縮力が小さく、光学性能にも優れた偏光フィルム、及びその製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a polarizing film having a small shrinkage force at a high temperature and excellent optical performance, and a method for producing the same.
 本発明者らが鋭意検討したところ、偏光フィルムの優れた光学性能を維持しつつ、収縮力を低減させるには、偏光フィルム中のPVA分子鎖を架橋しているホウ酸をボロン酸に置換する置換反応を、偏光フィルムの表面部だけでなく、その厚さ方向の中心部まで進行させることが重要であることが見いだされた。また、当該置換反応が偏光フィルムの厚さ方向の中心部まで進行するほど、すなわち、偏光フィルムの厚さ方向の中心部のホウ酸がボロン酸に置換されるほど、偏光フィルムの収縮力が一層低減されることが見いだされた。そこで、本発明者らは、偏光フィルムの厚さ方向の中心部のボロン酸(ホウ素含有化合物)及びホウ酸に由来するホウ素元素濃度の割合を特定範囲とすることで、本発明を完成させた。 As a result of diligent studies by the present inventors, in order to reduce the shrinkage force while maintaining the excellent optical performance of the polarizing film, the boric acid crossing the PVA molecular chain in the polarizing film is replaced with boronic acid. It has been found that it is important to allow the substitution reaction to proceed not only to the surface portion of the polarizing film but also to the central portion in the thickness direction of the polarizing film. Further, the more the substitution reaction proceeds to the central portion in the thickness direction of the polarizing film, that is, the more the boric acid in the central portion in the thickness direction of the polarizing film is replaced with boronic acid, the more the shrinkage force of the polarizing film becomes stronger. It was found to be reduced. Therefore, the present inventors have completed the present invention by setting the ratio of the concentration of boron elements derived from boronic acid (boron-containing compound) and boric acid at the center in the thickness direction of the polarizing film within a specific range. ..
 また、偏光フィルム中のホウ酸をボロン酸に置換する置換反応を偏光フィルムの厚さ方向の中心部まで進行させるには、ホウ酸架橋された偏光フィルムを比較的低濃度のボロン酸水溶液に浸漬処理することが重要である。通常、ホウ酸架橋された偏光フィルムをボロン酸水溶液に浸漬した際、偏光フィルム中のホウ酸がボロン酸に置換される置換反応は偏光フィルムの表面部から進行する。ここで、ボロン酸水溶液の濃度が比較的高濃度の場合には、偏光フィルムの表面部にボロン酸が過剰に吸着する結果、当該置換反応が偏光フィルムの厚さ方向の中心部まで進行し難くなる。また、そのような場合には、偏光フィルムの表面部にボロン酸の析出物が生じるおそれもある。一方、本発明においては、ホウ酸架橋された偏光フィルムを比較的低濃度のボロン酸水溶液に浸漬処理することで、当該置換反応を偏光フィルムの厚さ方向の中心部まで進行させることができる。 Further, in order to allow the substitution reaction of substituting boric acid in the polarizing film with boronic acid to proceed to the center in the thickness direction of the polarizing film, the boric acid-crosslinked polarizing film is immersed in a relatively low concentration boronic acid aqueous solution. It is important to process. Normally, when a boric acid-crosslinked polarizing film is immersed in an aqueous solution of boronic acid, a substitution reaction in which boric acid in the polarizing film is replaced with boronic acid proceeds from the surface portion of the polarizing film. Here, when the concentration of the boronic acid aqueous solution is relatively high, as a result of excessive adsorption of boronic acid on the surface portion of the polarizing film, it is difficult for the substitution reaction to proceed to the central portion in the thickness direction of the polarizing film. Become. Further, in such a case, a precipitate of boronic acid may be formed on the surface portion of the polarizing film. On the other hand, in the present invention, the substitution reaction can be allowed to proceed to the central portion in the thickness direction of the polarizing film by immersing the boric acid-crosslinked polarizing film in a relatively low-concentration boronic acid aqueous solution.
 本発明は、下記[1]~[7]の通りである。
[1]ポリビニルアルコール(A)、下記式(I)で表されるモノボロン酸及び水の存在下で該モノボロン酸に転化し得る化合物からなる群より選ばれる少なくとも1種のホウ素含有化合物(B)及びホウ酸(C)を含む偏光フィルムであって、厚さ方向の中心から外側に1μmまでの範囲における、ホウ素含有化合物(B)由来のホウ素元素濃度(α)が0.1~3原子%であり、厚さ方向の中心から外側に1μmまでの範囲における、ホウ酸(C)由来のホウ素元素濃度(β)が0.1~8原子%であり、かつ濃度(β)に対する濃度(α)の比(α/β)が0.1以上である偏光フィルム;
The present invention is as described in [1] to [7] below.
[1] At least one boron-containing compound (B) selected from the group consisting of polyvinyl alcohol (A), monoboric acid represented by the following formula (I), and a compound capable of converting to monoboric acid in the presence of water. A polarizing film containing boric acid (C) and a boron element concentration (α) derived from the boron-containing compound (B) in the range from the center to the outside in the thickness direction of 0.1 to 3 atomic%. The boron element concentration (β) derived from boric acid (C) is 0.1 to 8 atomic% in the range from the center to the outside in the thickness direction to 1 μm, and the concentration (α) with respect to the concentration (β). ) Ratio (α / β) is 0.1 or more;
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
[式(I)中、Rは炭素数が1~20の1価の脂肪族基であり、Rとボロン酸基とがホウ素-炭素結合で繋がっている。]
[2]Rが飽和脂肪族基である、[1]に記載の偏光フィルム;
[3]Rが直鎖脂肪族炭化水素基である、[1]又は[2]に記載の偏光フィルム;
[4]Rの炭素数が2~5である、[1]~[3]のいずれかに記載の偏光フィルム;[5]透過率が42.0%以上であり、かつ偏光度が99.85%以上である、[1]~[4]のいずれかに記載の偏光フィルム;
[6]80℃で4時間保持したときにおける幅1.5cm、厚み13μmあたりの吸収軸方向の収縮力が12N未満である、[1]~[5]のいずれかに記載の偏光フィルム;
[7]ポリビニルアルコールフィルムを二色性色素で染色する染色処理、及び該フィルムを一軸延伸する延伸処理を含む偏光フィルムの製造方法において、該フィルムをホウ素含有化合物(B)の濃度が0.2~5質量%で温度が20~70℃の水溶液に浸漬する処理を有する、[1]~[6]のいずれかに記載の偏光フィルムの製造方法。
[In formula (I), R 1 is a monovalent aliphatic group having 1 to 20 carbon atoms, and R 1 and a boronic acid group are connected by a boron-carbon bond. ]
[2] The polarizing film according to [1], wherein R 1 is a saturated aliphatic group;
[3] The polarizing film according to [1] or [2], wherein R 1 is a linear aliphatic hydrocarbon group;
[4] The polarizing film according to any one of [1] to [3], wherein R 1 has 2 to 5 carbon atoms; [5] the transmittance is 42.0% or more, and the degree of polarization is 99. The polarizing film according to any one of [1] to [4], which is 85% or more;
[6] The polarizing film according to any one of [1] to [5], wherein the shrinkage force in the absorption axis direction per 1.5 cm in width and 13 μm in thickness when held at 80 ° C. for 4 hours is less than 12 N;
[7] In a method for producing a polarizing film including a dyeing treatment for dyeing a polyvinyl alcohol film with a dichroic dye and a stretching treatment for uniaxially stretching the film, the concentration of the boron-containing compound (B) is 0.2. The method for producing a polarizing film according to any one of [1] to [6], which comprises a treatment of immersing in an aqueous solution of about 5% by mass and a temperature of 20 to 70 ° C.
 本発明によれば、高温下での収縮力が小さく、光学性能にも優れた偏光フィルム、及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a polarizing film having a small shrinkage force at a high temperature and excellent optical performance, and a method for producing the same.
本発明の偏光フィルムを鉛直方向に切断したときの断面図である。It is sectional drawing when the polarizing film of this invention is cut in the vertical direction.
<偏光フィルム>
本発明の偏光フィルムは、ポリビニルアルコール(A)、下記式(I)で表されるモノボロン酸及び水の存在下で該モノボロン酸に転化し得る化合物からなる群より選ばれる少なくとも1種のホウ素含有化合物(B)及びホウ酸(C)を含む偏光フィルムであって、厚さ方向の中心から外側に1μmまでの範囲における、ホウ素含有化合物(B)由来のホウ素元素濃度(α)が0.1~3原子%であり、厚さ方向の中心から外側に1μmまでの範囲における、ホウ酸(C)由来のホウ素元素濃度(β)が0.1~8原子%であり、かつ濃度(β)に対する濃度(α)の比(α/β)が0.1以上であるものである。
<Polarizing film>
The polarizing film of the present invention contains at least one boron selected from the group consisting of polyvinyl alcohol (A), monoboric acid represented by the following formula (I), and a compound capable of converting to monoboric acid in the presence of water. A polarizing film containing compound (B) and boric acid (C), wherein the boron element concentration (α) derived from the boron-containing compound (B) is 0.1 in the range from the center in the thickness direction to 1 μm outward. Boric acid (C) -derived boron element concentration (β) is 0.1 to 8 atomic% and the concentration (β) is in the range of up to 1 μm from the center in the thickness direction to 3 atomic%. The ratio (α / β) of the concentration (α) to to is 0.1 or more.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
[式(I)中、Rは炭素数が1~20の1価の脂肪族基であり、Rとボロン酸基とがホウ素-炭素結合で繋がっている。] [In formula (I), R 1 is a monovalent aliphatic group having 1 to 20 carbon atoms, and R 1 and a boronic acid group are connected by a boron-carbon bond. ]
 図1は、本発明の偏光フィルムを鉛直方向に切断したときの断面図である。偏光フィルムの厚さ方向の中心部3とは、偏光フィルムの厚さ方向の中心1から偏光フィルムの表面部2側の両方向に1μmまでの範囲であり、図1中の斜線で示した範囲である。本発明の偏光フィルムにおいては、偏光フィルムの厚さ方向の中心から外側に1μmまでの範囲におけるホウ素含有化合物(B)由来のホウ素元素濃度(α)、偏光フィルムの厚さ方向の中心から外側に1μmまでの範囲におけるホウ酸(C)由来のホウ素元素濃度(β)、濃度(β)に対する濃度(α)の比(α/β)が特定範囲にある。ホウ酸(C)で架橋された偏光フィルムをホウ素含有化合物(B)の水溶液に浸漬した際、ホウ素含有化合物(B)とホウ酸(C)の置換反応は偏光フィルムの表面部から進行する。上記のα、β及びその比α/βが特定範囲内であることは、偏光フィルムの厚さ方向の中心部までホウ素含有化合物(B)とホウ酸(C)との置換反応が進行したことを示し、これにより、高温下での収縮力が小さく、光学性能にも優れた偏光フィルムが得られる。 FIG. 1 is a cross-sectional view of the polarizing film of the present invention cut in the vertical direction. The central portion 3 in the thickness direction of the polarizing film is a range from the center 1 in the thickness direction of the polarizing film to 1 μm in both directions on the surface portion 2 side of the polarizing film, and is in the range shown by diagonal lines in FIG. is there. In the polarizing film of the present invention, the boron element concentration (α) derived from the boron-containing compound (B) in the range of 1 μm outward from the center in the thickness direction of the polarizing film, and from the center in the thickness direction of the polarizing film to the outside. The ratio (α / β) of the boron element concentration (β) derived from boric acid (C) and the concentration (α) to the concentration (β) in the range up to 1 μm is in a specific range. When the polarizing film crosslinked with boric acid (C) is immersed in an aqueous solution of the boron-containing compound (B), the substitution reaction between the boron-containing compound (B) and boric acid (C) proceeds from the surface portion of the polarizing film. The fact that the above α, β and their ratio α / β are within a specific range means that the substitution reaction between the boron-containing compound (B) and boric acid (C) has proceeded to the center in the thickness direction of the polarizing film. As a result, a polarizing film having a small shrinkage force at a high temperature and excellent optical performance can be obtained.
 偏光フィルムの厚さ方向の中心から外側に1μmまでの範囲における、ホウ素含有化合物(B)由来のホウ素元素濃度(α)は0.1~3原子%である必要がある。ホウ素元素濃度(α)が0.1原子%未満の場合、偏光フィルムの厚さ方向の中心部まで十分な量のホウ素含有化合物(B)が存在しておらず、収縮力の低下効果が低くなる。一方で、ホウ素元素濃度(α)が3原子%を超える場合、偏光フィルムの光学性能及び収縮力に影響はないと考えられるが、後述するホウ素含有化合物(B)の水溶液に浸漬する固定処理の時間が長くなり、偏光フィルムの生産性が低下するおそれがある。 The boron element concentration (α) derived from the boron-containing compound (B) in the range from the center in the thickness direction of the polarizing film to the outside of 1 μm needs to be 0.1 to 3 atomic%. When the boron element concentration (α) is less than 0.1 atomic%, a sufficient amount of the boron-containing compound (B) does not exist up to the center in the thickness direction of the polarizing film, and the effect of reducing the shrinkage force is low. Become. On the other hand, when the boron element concentration (α) exceeds 3 atomic%, it is considered that the optical performance and shrinkage force of the polarizing film are not affected, but the fixing treatment of immersing in an aqueous solution of the boron-containing compound (B) described later The time may increase and the productivity of the polarizing film may decrease.
 偏光フィルムの厚さ方向の中心から外側に1μmまでの範囲における、ホウ酸(C)由来のホウ素元素濃度(β)は0.1~8原子%である必要がある。ホウ素元素濃度(β)が0.1原子%未満である場合、偏光フィルムの厚さ方向の中心部のホウ酸(C)の量が十分でなく、偏光フィルム中のPVA分子鎖の配向状態が乱れ、光学性能が低下する。一方で、ホウ素元素濃度(β)が8原子%を超える場合、偏光フィルムの厚さ方向の中心部に、ホウ酸架橋により配向したPVA分子鎖が過剰に存在するため、収縮力の低下効果が十分でないおそれがある。 The concentration of boric acid (C) -derived boron element (β) in the range from the center of the polarizing film in the thickness direction to the outside of 1 μm needs to be 0.1 to 8 atomic%. When the boron element concentration (β) is less than 0.1 atomic%, the amount of boric acid (C) at the center in the thickness direction of the polarizing film is not sufficient, and the orientation state of the PVA molecular chain in the polarizing film is changed. Disturbance and reduced optical performance. On the other hand, when the boron element concentration (β) exceeds 8 atomic%, the PVA molecular chain oriented by boric acid cross-linking is excessively present at the center in the thickness direction of the polarizing film, so that the shrinkage force is reduced. It may not be enough.
 偏光フィルムの厚さ方向の中心から外側に1μmまでの範囲における、ホウ酸(C)由来のホウ素元素濃度(β)に対するホウ素含有化合物(B)由来のホウ素元素濃度(α)の比(α/β)は0.1以上である必要がある。ホウ素元素濃度の比(α/β)が0.1未満である場合、偏光フィルムの厚さ方向の中心部のホウ酸(C)の量が多くホウ素含有化合物(B)の量が少ないことが推定される。この場合、偏光フィルムの厚さ方向の中心部に、ホウ酸架橋により配向したPVA分子鎖が過剰に存在するため、収縮力が低下しないおそれがある。一方で、ホウ素元素濃度の比(α/β)が3を超える場合であっても偏光フィルムの光学性能及び収縮力に影響はないと考えられるが、後述するホウ素含有化合物(B)の水溶液に浸漬する固定処理の時間が長くなり、偏光フィルムの生産性が低下するおそれがあるため、ホウ素元素濃度の比(α/β)は3以下であることが好ましい。 The ratio (α /) of the boron element concentration (α) derived from the boron-containing compound (B) to the boron element concentration (β) derived from boric acid (C) in the range from the center in the thickness direction of the polarizing film to 1 μm outward. β) needs to be 0.1 or more. When the ratio of boron element concentration (α / β) is less than 0.1, the amount of boric acid (C) in the central portion in the thickness direction of the polarizing film is large and the amount of the boron-containing compound (B) is small. Presumed. In this case, since the PVA molecular chains oriented by boric acid cross-linking are excessively present in the central portion in the thickness direction of the polarizing film, the shrinkage force may not decrease. On the other hand, even if the ratio of boron element concentration (α / β) exceeds 3, it is considered that the optical performance and shrinkage force of the polarizing film are not affected, but in an aqueous solution of the boron-containing compound (B) described later. The ratio of the boron element concentration (α / β) is preferably 3 or less because the time for the fixing treatment for immersion becomes long and the productivity of the polarizing film may decrease.
 前記偏光フィルムにおける、ホウ素元素濃度(α)及びホウ素元素濃度(β)は、ガスクラスターイオンビーム銃付きX線光電子分光器(GCIB XPS)を用いて求めることができる。具体的には、後述する実施例に記載された方法により求めることができる。 The boron element concentration (α) and the boron element concentration (β) in the polarizing film can be determined by using an X-ray photoelectron spectrometer (GCIB XPS) equipped with a gas cluster ion beam gun. Specifically, it can be obtained by the method described in Examples described later.
 前記偏光フィルムの厚みは、5~30μmが好ましい。当該厚みが薄すぎると、偏光フィルムを製造するための一軸延伸処理時に、延伸切れが発生しやすくなる傾向がある。当該厚みは10μm以上が好ましい。一方、当該厚みが厚すぎると、偏光フィルムを製造するための一軸延伸処理時に延伸斑が発生しやすくなる傾向や、製造した偏光フィルムの収縮力が大きくなりやすくなる傾向がある。 The thickness of the polarizing film is preferably 5 to 30 μm. If the thickness is too thin, stretch breakage tends to occur easily during the uniaxial stretching process for producing a polarizing film. The thickness is preferably 10 μm or more. On the other hand, if the thickness is too thick, stretching spots tend to occur during the uniaxial stretching process for producing the polarizing film, and the shrinkage force of the produced polarizing film tends to increase.
 本発明におけるホウ素含有化合物(B)は、下記式(I)で表されるモノボロン酸及び水の存在下で該モノボロン酸に転化し得る化合物からなる群より選ばれる少なくとも1種である。ここで、式(I)中、Rは炭素数が1~20の1価の脂肪族基であり、Rとボロン酸基とがホウ素-炭素結合で繋がっている。 The boron-containing compound (B) in the present invention is at least one selected from the group consisting of monoboronic acid represented by the following formula (I) and a compound capable of converting to monoboronic acid in the presence of water. Here, in the formula (I), R 1 is a monovalent aliphatic group having 1 to 20 carbon atoms, and R 1 and a boronic acid group are connected by a boron-carbon bond.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
[式(I)中、Rは炭素数が1~20の1価の脂肪族基であり、Rとボロン酸基とがホウ素-炭素結合で繋がっている。] [In formula (I), R 1 is a monovalent aliphatic group having 1 to 20 carbon atoms, and R 1 and a boronic acid group are connected by a boron-carbon bond. ]
 モノボロン酸は、上記式(I)で表される化合物であり、1分子中にボロン酸基[-B(OH)]を1個有する。当該ボロン酸基は、2つの水酸基が結合したホウ素原子が、炭素原子に結合した構造を有していて、式(I)で表される化合物においては、Rとボロン酸基とがホウ素-炭素結合で繋がっている。ホウ酸[B(OH)]においてはホウ素原子が3つの水酸基と結合しているのに対し、ボロン酸基はホウ素-炭素結合を有する点で相違する。水の存在下でボロン酸基に転化し得るホウ素含有基としては、以下に説明するボロン酸エステル基が代表的なものとして挙げられるが、これに限定されるものではない。 Monoboronic acid is a compound represented by the above formula (I) and has one boronic acid group [-B (OH) 2 ] in one molecule. The boronic acid group, the boron atom to which two hydroxyl groups are bonded, have a structure bonded to a carbon atom in the compound represented by the formula (I), R 1 and boronic acid group and boron - It is connected by a carbon bond. In boric acid [B (OH) 3 ], the boron atom is bonded to three hydroxyl groups, whereas the boronic acid group is different in that it has a boron-carbon bond. Typical examples of the boron-containing group that can be converted into a boronic acid group in the presence of water include, but are not limited to, the boronic acid ester group described below.
 モノボロン酸に含まれるボロン酸基中の水酸基は、ホウ酸中の水酸基と同様に、アルコールとエステルを形成することができる。下記式(II)が、ボロン酸に対して1分子のアルコール(R-OH)が反応したモノボロン酸モノエステルである。ここで、ボロン酸基がPVA(A)の水酸基と結合する場合には、式(II)中のRはPVA鎖であり、PVA鎖にホウ素原子を介して炭素含有基が結合することになる。 The hydroxyl group in the boronic acid group contained in monoboronic acid can form an ester with alcohol in the same manner as the hydroxyl group in boric acid. Formula (II) is an alcohol of 1 molecule with respect to boronic acid (R 2 -OH) is reacted Monoboron acid monoester. Here, when the phenylboronic acid group is bonded to the hydroxyl group of PVA (A), R 2 in the formula (II) is a PVA chain, and a carbon-containing group is bonded to the PVA chain via a boron atom. Become.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 下記式(III)が、モノボロン酸に対して2分子のアルコール(R-OH)が反応したモノボロン酸ジエステルの例である。ここで、ボロン酸基がPVAの水酸基と結合する場合には、式(III)中の2つのRはいずれもPVA鎖である。 Formula (III) is, two molecules alcohol (R 2 -OH) are examples of Monoboron acid diester react to Monoboron acid. Here, if the boronic acid group is bound to the hydroxyl group of PVA, any two R 2 in formula (III) is a PVA chain.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 モノボロン酸はPVAの水酸基と反応してエステルを形成することが可能な水酸基を2つ有しており、PVA鎖が適度に架橋されることになる。この架橋は熱に安定なため、偏光フィルムの高温下での収縮力が小さくなる。これにより、偏光フィルムを用いたLCDパネルの高温下での反りが抑制される。また、PVA鎖が適度に架橋されることにより、PVA鎖の配向状態が良好となり、偏光フィルムの光学性能が向上するものと考えられる。 Monobolonic acid has two hydroxyl groups capable of reacting with the hydroxyl groups of PVA to form an ester, and the PVA chain is appropriately crosslinked. Since this cross-linking is heat-stable, the shrinkage force of the polarizing film at high temperature is reduced. As a result, the warpage of the LCD panel using the polarizing film under high temperature is suppressed. Further, it is considered that the PVA chain is appropriately crosslinked to improve the orientation state of the PVA chain and improve the optical performance of the polarizing film.
 式(I)中、Rは炭素数が1~20の1価の脂肪族基である。Rが適当な長さであることによって、ホウ素含有化合物(B)の水への溶解性や、PVAの水酸基との反応性を制御することができる。Rの炭素数は、10以下であることが好ましく、6以下であることがより好ましく、5以下であることがさらに好ましい。一方、偏光フィルムの光学性能と収縮力のバランスに特に優れる観点から、Rの炭素数は、2以上であることが好ましく、3以上であることがより好ましい。 In formula (I), R 1 is a monovalent aliphatic group having 1 to 20 carbon atoms. When R 1 has an appropriate length, the solubility of the boron-containing compound (B) in water and the reactivity of PVA with the hydroxyl group can be controlled. The carbon number of R 1 is preferably 10 or less, more preferably 6 or less, and further preferably 5 or less. On the other hand, from the viewpoint of particularly excellent balance between the optical performance and the shrinkage force of the polarizing film, the carbon number of R 1 is preferably 2 or more, and more preferably 3 or more.
 式(I)中、Rは1価の脂肪族基であって、Rとボロン酸基とがホウ素-炭素結合で繋がっていればよい。Rは飽和脂肪族基であってもよいし、不飽和脂肪族基であってもよいが、前者が好ましい。Rが飽和脂肪族基であることにより、得られる偏光フィルムの着色が抑制されるとともに、耐久性が向上する。また、Rが飽和脂肪族基であることにより、二色性色素の配向性が向上して光学性能がさらに向上する。なお、不飽和脂肪族基とは炭素-炭素二重結合や炭素-炭素三重結合、炭素-酸素二重結合、炭素-窒素二重結合、窒素-窒素二重結合、炭素-硫黄二重結合などの結合次数が2以上の多重結合を含む構造を有した脂肪族基のことであり、飽和脂肪族基とは単結合の構造のみを有する脂肪族基のことである。Rが飽和脂肪族基であるモノボロン酸としては、メチルボロン酸、エチルボロン酸、プロピルボロン酸、ブチルボロン酸、ペンチルボロン酸、ヘキシルボロン酸、へプチルボロン酸、オクチルボロン酸、ノニルボロン酸、デカニルボロン酸、ウンデカニルボロン酸、ドデカニルボロン酸、トリデカニルボロン酸、テトラデカニルボロン酸、ペンタデカニルボロン酸、ヘキサデカニルボロン酸、ヘプタデカニルボロン酸、オクタデカニルボロン酸、ノナデカニルボロン酸、イコサニルボロン酸及びそれらの異性体、シクロプロピルボロン酸、シクロブチルボロン酸、シクロペンチルボロン酸、シクロヘキシルボロン酸、シクロヘプチルボロン酸、シクロオクチルボロン酸、シクロノニルボロン酸、シクロデカニルボロン酸、シクロウンデカニルボロン酸、シクロドデカニルボロン酸、シクロトリデカニルボロン酸、シクロテトラデカニルボロン酸、シクロペンタデカニルボロン酸、シクロヘキサデカニルボロン酸、シクロヘプタデカニルボロン酸、シクロオクタデカニルボロン酸、シクロノナデカニルボロン酸、シクロイコサニルボロン酸及びそれらの異性体、2-オキサ-プロピルボロン酸、2-オキサ―ブチルボロン酸、2-オキサ-ヘキシルボロン酸、2-オキサ-ヘプチルボロン酸、2-オキサ-オクチルボロン酸、2-オキサ-ノニルボロン酸、2-オキサ-デカニルボロン酸、2-オキサ-ウンデカニルボロン酸、2-オキサ-ドデカニルボロン酸、2-オキサ-トリデカニルボロン酸、2-オキサ-テトラデカニルボロン酸、2-オキサ-ペンタデカニルボロン酸、2-オキサ-ヘキサデカニルボロン酸、2-オキサ-ヘプタデカニルボロン酸、2-オキサ-オクタデカニルボロン酸、2-オキサ-ノナデカニルボロン酸、2-オキサ-イコサニルボロン酸及びそれらの異性体、2-アザ-プロピルボロン酸、2-アザ-ブチルボロン酸、2-アザ-ヘキシルボロン酸、2-アザ-ヘプチルボロン酸、2-アザ-オクチルボロン酸、2-アザ-ノニルボロン酸、2-アザ-デカニルボロン酸、2-アザ-ウンデカニルボロン酸、2-アザ-ドデカニルボロン酸、2-アザ-トリデカニルボロン酸、2-アザ-テトラデカニルボロン酸、2-アザ-ペンタデカニルボロン酸、2-アザ-ヘキサデカニルボロン酸、2-アザ-ヘプタデカニルボロン酸、2-アザ-オクタデカニルボロン酸、2-アザ-ノナデカニルボロン酸、2-アザ-イコサニルボロン酸及びそれらの異性体、2-ホスファ-プロピルボロン酸、2-ホスファ-ブチルボロン酸、2-ホスファ-ヘキシルボロン酸、2-ホスファ-ヘプチルボロン酸、2-ホスファ-オクチルボロン酸、2-ホスファ-ノニルボロン酸、2-ホスファ-デカニルボロン酸、2-ホスファ-ウンデカニルボロン酸、2-ホスファ-ドデカニルボロン酸、2-ホスファ-トリデカニルボロン酸、2-ホスファ-テトラデカニルボロン酸、2-ホスファ-ペンタデカニルボロン酸、2-ホスファ-ヘキサデカニルボロン酸、2-ホスファ-ヘプタデカニルボロン酸、2-ホスファ-オクタデカニルボロン酸、2-ホスファ-ノナデカニルボロン酸、2-ホスファ-イコサニルボロン酸及びそれらの異性体、2-チア-プロピルボロン酸、2-チア-ブチルボロン酸、2-チア-ヘキシルボロン酸、2-チア-ヘプチルボロン酸、2-チア-オクチルボロン酸、2-チア-ノニルボロン酸、2-チア-デカニルボロン酸、2-チア-ウンデカニルボロン酸、2-チア-ドデカニルボロン酸、2-チア-トリデカニルボロン酸、2-チア-テトラデカニルボロン酸、2-チア-ペンタデカニルボロン酸、2-チア-ヘキサデカニルボロン酸、2-チア-ヘプタデカニルボロン酸、2-チア-オクタデカニルボロン酸、2-チア-ノナデカニルボロン酸、2-チア-イコサニルボロン酸及びそれらの異性体、などが例示される。また、水の存在下で例示されたモノボロン酸に転化し得る化合物として、当該モノボロン酸の塩等が挙げられる。 In formula (I), R 1 is a monovalent aliphatic group, and it is sufficient that R 1 and a boronic acid group are connected by a boron-carbon bond. R 1 may be a saturated aliphatic group or an unsaturated aliphatic group, but the former is preferable. Since R 1 is a saturated aliphatic group, coloring of the obtained polarizing film is suppressed and durability is improved. Further, since R 1 is a saturated aliphatic group, the orientation of the dichroic dye is improved and the optical performance is further improved. The unsaturated aliphatic group is a carbon-carbon double bond, a carbon-carbon triple bond, a carbon-oxygen double bond, a carbon-nitrogen double bond, a nitrogen-nitrogen double bond, a carbon-sulfur double bond, etc. It is an aliphatic group having a structure including a double bond having a bond order of 2 or more, and a saturated aliphatic group is an aliphatic group having only a single bond structure. The Monoboron acid R 1 is a saturated aliphatic group, methyl boronic acid, ethylboronic acid, propyl acid, butyl boronic acid, Penchiruboron acid, hexyl acid, to Puchiruboron acid, octyl boronic acid, Noniruboron acid, Dekaniruboron acid, undecyl Decanylboronic acid, dodecanylboronic acid, tridecanylboronic acid, tetradecanylboronic acid, pentadecanylboronic acid, hexadecanylboronic acid, heptadecanylboronic acid, octadecanylboronic acid, nonadecanylboronic acid Acids, icosanylboronic acid and their isomers, cyclopropylboronic acid, cyclobutylboronic acid, cyclopentylboronic acid, cyclohexylboronic acid, cycloheptylboronic acid, cyclooctylboronic acid, cyclononylboronic acid, cyclodecanylboronic acid, cyclo Undecanylboronic acid, cyclododecanylboronic acid, cyclotridecanylboronic acid, cyclotetradecanylboronic acid, cyclopentadecanylboronic acid, cyclohexadecanylboronic acid, cycloheptadecanylboronic acid, cyclooctadeca Nylboronic acid, cyclononadecanylboronic acid, cycloicosanylboronic acid and their isomers, 2-oxa-propylboronic acid, 2-oxa-butylboronic acid, 2-oxa-hexylboronic acid, 2-oxa- Heptylboronic acid, 2-oxa-octylboronic acid, 2-oxa-nonylboronic acid, 2-oxa-decanylboronic acid, 2-oxa-undecanylboronic acid, 2-oxadodecanylboronic acid, 2-oxatri Decanylboronic acid, 2-oxa-tetradecanylboronic acid, 2-oxa-pentadecanylboronic acid, 2-oxa-hexadecanylboronic acid, 2-oxa-heptadecanylboronic acid, 2-oxa-octa Decanylboronic acid, 2-oxa-nonadecanylboronic acid, 2-oxa-icosanylboronic acid and their isomers, 2-aza-propylboronic acid, 2-aza-butylboronic acid, 2-aza-hexylboronic acid, 2-aza-heptylboronic acid, 2-aza-octylboronic acid, 2-aza-nonylboronic acid, 2-aza-decanylboronic acid, 2-aza-undecanylboronic acid, 2-azaddecanylboronic acid, 2 -Aza-tridecanylboronic acid, 2-aza-tetradecanylboronic acid, 2-aza-pentadecanylboronic acid, 2-aza-hexadecanylboronic acid, 2-aza-heptadecanylboronic acid, 2 -Aza-octadecanylboronic acid, 2-aza-nonadeca Nylboronic acid, 2-aza-icosanylboronic acid and their isomers, 2-phospha-propylboronic acid, 2-phospha-butylboronic acid, 2-phospha-hexylboronic acid, 2-phosphat-heptylboronic acid, 2-phosphar- Octylboronic acid, 2-phospha-nonylboronic acid, 2-phospha-decanylboronic acid, 2-phospha-undecanylboronic acid, 2-phosparddecanylboronic acid, 2-phosphatridecanylboronic acid, 2-phospha -Tetradecanylboronic acid, 2-phosphat-pentadecanylboronic acid, 2-phosphat-hexadecanylboronic acid, 2-phosphat-heptadecanylboronic acid, 2-phosphat-octadecanylboronic acid, 2-phosphata -Nonadecanylboronic acid, 2-phospha-icosanylboronic acid and their isomers, 2-thia-propylboronic acid, 2-thia-butylboronic acid, 2-thia-hexylboronic acid, 2-thia-heptylboronic acid, 2-Thia-octylboronic acid, 2-thia-nonylboronic acid, 2-thia-decanylboronic acid, 2-thia-undecanylboronic acid, 2-thia-dodecanylboronic acid, 2-thia-tridecanylboronic acid , 2-Thia-tetradecanylboronic acid, 2-thia-pentadecanylboronic acid, 2-thia-hexadecanylboronic acid, 2-thia-heptadecanylboronic acid, 2-thia-octadecanylboronic acid , 2-Thia-nonadecanylboronic acid, 2-thia-icosanylboronic acid and isomers thereof, and the like are exemplified. Moreover, as a compound which can be converted into the monobolonic acid exemplified in the presence of water, the salt of the monobolonic acid and the like can be mentioned.
 Rは、脂肪族炭化水素基であってもよいし、酸素、窒素、硫黄、ハロゲンなどのヘテロ原子を含んでいても構わない。入手のしやすさなどを考慮すれば、Rがヘテロ原子を含まない脂肪族炭化水素基であることが好ましい。脂肪族炭化水素基としては、分岐を有さない直鎖脂肪族炭化水素基であることが好ましい。これにより、偏光フィルムへの吸着性が良好となって、光学性能を向上する効果が高くなる。なお、Rが直鎖脂肪族炭化水素基であるボロン酸として具体的には、メチルボロン酸、エチルボロン酸、n-プロピルボロン酸、n-ブチルボロン酸、n-ペンチルボロン酸、n-ヘキシルボロン酸、n-ヘプチルボロン酸、n-オクチルボロン酸、n-ノニルボロン酸、n-デカニルボロン酸、n-ウンデカニルボロン酸、n-ドデカニルボロン酸、n-トリデカニルボロン酸、n-テトラデカニルボロン酸、n-ペンタデカニルボロン酸、n-ヘキサデカニルボロン酸、n-ヘプタデカニルボロン酸、n-オクタデカニルボロン酸、n-ノナデカニルボロン酸、n-イコサニルボロン酸などが例示される。また、水の存在下で例示されたボロン酸に転化し得る化合物として、当該ボロン酸の塩等が挙げられる。 R 1 may be an aliphatic hydrocarbon group or may contain heteroatoms such as oxygen, nitrogen, sulfur and halogen. Considering availability, it is preferable that R 1 is an aliphatic hydrocarbon group containing no heteroatom. The aliphatic hydrocarbon group is preferably a straight chain aliphatic hydrocarbon group having no branch. As a result, the adsorptivity to the polarizing film is improved, and the effect of improving the optical performance is enhanced. Specific examples of the boronic acid in which R 1 is a linear aliphatic hydrocarbon group include methylboronic acid, ethylboronic acid, n-propylboronic acid, n-butylboronic acid, n-pentylboronic acid, and n-hexylboronic acid. , N-heptylboronic acid, n-octylboronic acid, n-nonylboronic acid, n-decanylboronic acid, n-undecanylboronic acid, n-dodecanylboronic acid, n-tridecanylboronic acid, n-tetradeca Nylboronic acid, n-pentadecanylboronic acid, n-hexadecanylboronic acid, n-heptadecanylboronic acid, n-octadecanylboronic acid, n-nonadecanylboronic acid, n-icosanylboronic acid, etc. Illustrated. Moreover, as a compound which can be converted into the boronic acid exemplified in the presence of water, the salt of the boronic acid and the like can be mentioned.
 具体的には、上記式(I)で表されるモノボロン酸として、エチルボロン酸、n-プロピルボロン酸、n-ブチルボロン酸、n-ペンチルボロン酸が特に好ましい。また、水の存在下で、これらの例示されたボロン酸に転化し得る化合物として、当該ボロン酸の塩等が挙げられる。 Specifically, as the monoboronic acid represented by the above formula (I), ethylboronic acid, n-propylboronic acid, n-butylboronic acid, and n-pentylboronic acid are particularly preferable. In addition, examples of the compound that can be converted into these exemplified boronic acids in the presence of water include salts of the boronic acid.
<PVA(A)>
 本発明におけるPVA(A)は、ビニルアルコール単位(-CH-CH(OH)-)を主の構造単位として有する重合体である。
<PVA (A)>
PVA (A) in the present invention is a polymer having a vinyl alcohol unit (-CH 2- CH (OH)-) as a main structural unit.
 本発明の偏光フィルムに含まれるPVA(A)の重合度は、1,500~6,000の範囲内であることが好ましく、1,800~5,000の範囲内であることがより好ましく、2,000~4,000の範囲内であることがさらに好ましい。当該重合度が1,500以上であることにより、フィルムを一軸延伸して得られる偏光フィルムの耐久性を向上させることができる。一方、当該重合度が6,000以下であることにより、製造コストの上昇や、製膜時における工程通過性の不良などを抑制することができる。なお、本明細書におけるPVA(A)の重合度は、JIS K6726-1994の記載に準じて測定した平均重合度を意味する。 The degree of polymerization of PVA (A) contained in the polarizing film of the present invention is preferably in the range of 1,500 to 6,000, more preferably in the range of 1,800 to 5,000. It is more preferably in the range of 2,000 to 4,000. When the degree of polymerization is 1,500 or more, the durability of the polarizing film obtained by uniaxially stretching the film can be improved. On the other hand, when the degree of polymerization is 6,000 or less, it is possible to suppress an increase in manufacturing cost and a defect in process passability during film formation. The degree of polymerization of PVA (A) in the present specification means the average degree of polymerization measured according to the description of JIS K6726-1994.
 本発明の偏光フィルムに含まれるPVA(A)のけん化度は、フィルムを一軸延伸して得られる偏光フィルムの耐水性の点から、95モル%以上であることが好ましく、96モル%以上であることがより好ましく、98モル%以上であることがさらに好ましい。なお、本明細書におけるPVAのけん化度とは、PVAが有する、けん化によってビニルアルコール単位(-CH-CH(OH)-)に変換され得る構造単位(典型的にはビニルエステル単位)とビニルアルコール単位との合計モル数に対して、当該ビニルアルコール単位のモル数が占める割合(モル%)をいう。当該けん化度は、JIS K6726-1994の記載に準じて測定することができる。 The saponification degree of PVA (A) contained in the polarizing film of the present invention is preferably 95 mol% or more, preferably 96 mol% or more, from the viewpoint of water resistance of the polarizing film obtained by uniaxially stretching the film. More preferably, it is more preferably 98 mol% or more. Incidentally, a degree of saponification of PVA herein, PVA having a vinyl alcohol unit by saponification (-CH 2 -CH (OH) -) vinyl the converted may structural units (typically vinyl ester units) and The ratio (mol%) of the number of moles of the vinyl alcohol unit to the total number of moles with the alcohol unit. The saponification degree can be measured according to the description of JIS K6726-1994.
 本発明で用いられるPVA(A)の製造方法は特に限定されない。例えば、ビニルエステル単量体を重合して得られるポリビニルエステルのビニルエステル単位をビニルアルコール単位に変換する方法が挙げられる。PVA(A)の製造に用いられるビニルエステル単量体は特に限定されないが、例えば、蟻酸ビニル、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、バーサチック酸ビニル、カプロン酸ビニル、カプリル酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、オレイン酸ビニル、安息香酸ビニルなどが挙げられる。経済的観点からは酢酸ビニルが好ましい。 The method for producing PVA (A) used in the present invention is not particularly limited. For example, a method of converting the vinyl ester unit of the polyvinyl ester obtained by polymerizing the vinyl ester monomer into the vinyl alcohol unit can be mentioned. The vinyl ester monomer used in the production of PVA (A) is not particularly limited, and is, for example, vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl versatic acid, vinyl caproate. , Vinyl caprylate, vinyl caproate, vinyl laurate, vinyl palmitate, vinyl stearate, vinyl oleate, vinyl benzoate and the like. Vinyl acetate is preferable from an economic point of view.
 また、本発明で用いられるPVA(A)は、ビニルエステル単量体とそれと共重合可能な他の単量体とを共重合して得られるビニルエステル共重合体のビニルエステル単位をビニルアルコール単位に変換したものであってもよい。ビニルエステル単量体と共重合可能な他の単量体としては、例えば、エチレン、プロピレン、1-ブテン、イソブテン等の炭素数2~30のα-オレフィン;(メタ)アクリル酸またはその塩;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸i-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸i-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸2-エチルへキシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸オクタデシル等の(メタ)アクリル酸エステル;(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド、(メタ)アクリルアミドプロパンスルホン酸またはその塩、(メタ)アクリルアミドプロピルジメチルアミンまたはその塩、N-メチロール(メタ)アクリルアミドまたはその誘導体等の(メタ)アクリルアミド誘導体;N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニルピロリドン等のN-ビニルアミド;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル等のビニルエーテル;(メタ)アクリロニトリル等のシアン化ビニル;塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン等のハロゲン化ビニル;酢酸アリル、塩化アリル等のアリル化合物;マレイン酸またはその塩、エステルもしくは酸無水物;イタコン酸またはその塩、エステルもしくは酸無水物;ビニルトリメトキシシラン等のビニルシリル化合物;不飽和スルホン酸などを挙げることができる。上記のビニルエステル共重合体は、前記した他の単量体の1種または2種以上に由来する構造単位を有することができる。当該他の単量体は、ビニルエステル単量体を重合反応に供する際にこれを反応容器内に予め存在させておいたり、あるいは、重合反応の進行中に反応容器内にこれを添加したりするなどして使用することができる。光学性能の観点からは、他の単量体に由来する単位の含有量は、PVA(A)を構成する全構造単位のモル数に対して、10モル%以下であることが好ましく、5モル%以下であることがより好ましく、2モル%以下であることがさらに好ましい。 Further, in PVA (A) used in the present invention, the vinyl ester unit of the vinyl ester copolymer obtained by copolymerizing the vinyl ester monomer and another monomer copolymerizable therewith is a vinyl alcohol unit. It may be converted to. Other monomers copolymerizable with the vinyl ester monomer include, for example, α-olefins having 2 to 30 carbon atoms such as ethylene, propylene, 1-butyl, and isobutene; (meth) acrylic acid or a salt thereof; Methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, (Meta) acrylic acid esters such as t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, dodecyl (meth) acrylate, octadecyl (meth) acrylate; (meth) acrylamide, N-methyl (Meta) acrylamide, N-ethyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, diacetone (meth) acrylamide, (meth) acrylamide propanesulfonic acid or a salt thereof, (meth) acrylamide propyldimethylamine or a salt thereof , (Meta) acrylamide derivatives such as N-methylol (meth) acrylamide or derivatives thereof; N-vinylamides such as N-vinylformamide, N-vinylacetamide, N-vinylpyrrolidone; methylvinyl ether, ethylvinyl ether, n-propylvinyl ether, Vinyl ethers such as i-propyl vinyl ether, n-butyl vinyl ether, i-butyl vinyl ether, t-butyl vinyl ether, dodecyl vinyl ether, stearyl vinyl ether; vinyl cyanide such as (meth) acrylonitrile; vinyl chloride, vinylidene chloride, vinyl fluoride, foot Vinyl halides such as vinylidene hydride; allyl compounds such as allyl acetate and allyl chloride; maleic acid or salts thereof, esters or acid anhydrides; itaconic acid or salts thereof, esters or acid anhydrides; vinylsilyl compounds such as vinyltrimethoxysilane ; Unsaturated sulfonic acid and the like can be mentioned. The vinyl ester copolymer described above can have a structural unit derived from one or more of the other monomers described above. The other monomer may be present in the reaction vessel in advance when the vinyl ester monomer is subjected to the polymerization reaction, or it may be added to the reaction vessel during the polymerization reaction. It can be used by doing so. From the viewpoint of optical performance, the content of units derived from other monomers is preferably 10 mol% or less, preferably 5 mol% or less, based on the number of moles of all structural units constituting PVA (A). It is more preferably% or less, and further preferably 2 mol% or less.
 上記のビニルエステル単量体と共重合可能な単量体のうち、延伸性が向上すると共により高い温度で延伸することができ、偏光フィルム製造時に延伸切れ等のトラブルの発生が低減されて偏光フィルムの生産性がより一層向上することから、エチレンが好ましい。PVA(A)がエチレン単位を含む場合、エチレン単位の含有率は、上記のような延伸性や延伸可能な温度などの観点から、PVA(A)を構成する全構造単位のモル数に対して、1~10モル%が好ましく、2~6モル%がより好ましい。 Among the monomers copolymerizable with the above vinyl ester monomer, the stretchability is improved and the film can be stretched at a higher temperature, so that troubles such as stretch breakage are reduced during the production of the polarizing film, and the polarized light is polarized. Ethylene is preferred because it further improves film productivity. When PVA (A) contains ethylene units, the content of ethylene units is based on the number of moles of all structural units constituting PVA (A) from the viewpoints of stretchability and stretchable temperature as described above. 1 to 10 mol% is preferable, and 2 to 6 mol% is more preferable.
 本発明の偏光フィルムの製造に用いられるPVAフィルムは、上記のPVA(A)の他に可塑剤を含むことができる。好ましい可塑剤としては多価アルコールが挙げられ、具体例としては、エチレングリコール、グリセリン、プロピレングリコール、ジエチレングリコール、ジグリセリン、トリエチレングリコール、テトラエチレングリコール、トリメチロールプロパンなどが挙げられる。さらに、これらの可塑剤の1種または2種以上を含むことができる。これらの中でも、延伸性の向上効果の点からグリセリンが好ましい。 The PVA film used for producing the polarizing film of the present invention may contain a plasticizer in addition to the above PVA (A). Preferred plasticizers include polyhydric alcohols, and specific examples include ethylene glycol, glycerin, propylene glycol, diethylene glycol, diglycerin, triethylene glycol, tetraethylene glycol, trimethylolpropane and the like. Furthermore, one or more of these plasticizers can be included. Among these, glycerin is preferable from the viewpoint of improving stretchability.
 本発明の偏光フィルムの製造に用いられるPVAフィルムにおける可塑剤の含有量は、PVA(A)100質量部に対して、1~20質量部の範囲内であることが好ましく、3~17質量部の範囲内であることがより好ましく、5~15質量部の範囲内であることがさらに好ましい。当該含有量が1質量部以上であることによりフィルムの延伸性が向上する。一方、当該含有量が20質量部以下であることにより、フィルムが柔軟になり過ぎて取り扱い性が低下するのを抑制することができる。 The content of the plasticizer in the PVA film used for producing the polarizing film of the present invention is preferably in the range of 1 to 20 parts by mass with respect to 100 parts by mass of PVA (A), and is preferably 3 to 17 parts by mass. It is more preferably in the range of 5 to 15 parts by mass, and further preferably in the range of 5 to 15 parts by mass. When the content is 1 part by mass or more, the stretchability of the film is improved. On the other hand, when the content is 20 parts by mass or less, it is possible to prevent the film from becoming too flexible and the handleability from being lowered.
 本発明の偏光フィルムの製造に用いられるPVAフィルムには、さらに、充填剤、銅化合物などの加工安定剤、耐候性安定剤、着色剤、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、難燃剤、他の熱可塑性樹脂、潤滑剤、香料、消泡剤、消臭剤、増量剤、剥離剤、離型剤、補強剤、架橋剤、防かび剤、防腐剤、結晶化速度遅延剤などの、PVA(A)及び可塑剤以外の他の添加剤を必要に応じて適宜配合できる。前記PVAフィルム中の他の添加剤の含有量は、通常10質量%以下であり、好適には5質量%以下である。 The PVA film used in the production of the polarizing film of the present invention further includes a filler, a processing stabilizer such as a copper compound, a weather resistance stabilizer, a colorant, an ultraviolet absorber, a light stabilizer, an antioxidant, and an antistatic agent. Agents, flame retardants, other thermoplastics, lubricants, fragrances, defoaming agents, deodorants, bulking agents, release agents, mold release agents, reinforcing agents, cross-linking agents, antifungal agents, preservatives, crystallization rate Additives other than PVA (A) and the plasticizer, such as a retarder, can be added as needed. The content of the other additive in the PVA film is usually 10% by mass or less, preferably 5% by mass or less.
 本発明の偏光フィルムの製造に用いられるPVAフィルムの膨潤度は、160~240%の範囲内であることが好ましく、170~230%の範囲内であることがより好ましく、180~220%の範囲内であることが特に好ましい。膨潤度が160%以上であることにより極度に結晶化が進行するのを抑制することができて、安定して高倍率まで延伸することができる。一方、膨潤度が240%以下であることにより、延伸時の溶解が抑制され、より高温の条件下でも延伸することが可能となる。PVAフィルムの膨潤度は実施例に記載された方法により測定される。 The degree of swelling of the PVA film used in the production of the polarizing film of the present invention is preferably in the range of 160 to 240%, more preferably in the range of 170 to 230%, and in the range of 180 to 220%. It is particularly preferable to be inside. When the degree of swelling is 160% or more, it is possible to suppress the extremely progress of crystallization, and it is possible to stably stretch to a high magnification. On the other hand, when the degree of swelling is 240% or less, dissolution during stretching is suppressed, and stretching can be performed even under higher temperature conditions. The degree of swelling of the PVA film is measured by the method described in the examples.
<偏光フィルムの製造方法>
 本発明の偏光フィルムの製造に用いられるPVAフィルムの厚みは特に制限されないが、一般的には1~100μmであり、好適には5~60μmであり、特に好適には10~45μmである。前記PVAフィルムが薄すぎると、偏光フィルムを製造するための一軸延伸処理時に、延伸切れが発生しやすくなる傾向がある。また、前記PVAフィルムが厚すぎると、偏光フィルムを製造するための一軸延伸処理時に延伸斑が発生しやすくなる傾向や、製造した偏光フィルムの収縮力が大きくなりやすくなる傾向がある。
<Manufacturing method of polarizing film>
The thickness of the PVA film used for producing the polarizing film of the present invention is not particularly limited, but is generally 1 to 100 μm, preferably 5 to 60 μm, and particularly preferably 10 to 45 μm. If the PVA film is too thin, stretch breakage tends to occur easily during the uniaxial stretching process for producing a polarizing film. Further, if the PVA film is too thick, stretching spots tend to occur during the uniaxial stretching process for producing the polarizing film, and the shrinkage force of the produced polarizing film tends to increase.
 本発明の偏光フィルムの製造に用いられるPVAフィルムの幅は特に制限されず、製造される偏光フィルムの用途などに応じて決めることができる。近年、液晶テレビや液晶モニターの大画面化が進行している点から偏光フィルムの製造に用いるPVAフィルムの幅を3m以上にすると、これらの用途に好適である。一方、偏光フィルムの製造に用いられるPVAフィルムの幅があまりに大きすぎると実用化されている装置で偏光フィルムを製造する場合に一軸延伸を均一に行うことが困難になりやすいので、偏光フィルムの製造に用いられるPVAフィルムの幅は10m以下であることが好ましい。 The width of the PVA film used for producing the polarizing film of the present invention is not particularly limited, and can be determined according to the intended use of the polarizing film to be produced. In recent years, since the screen size of liquid crystal televisions and liquid crystal monitors has been increasing, it is suitable for these applications if the width of the PVA film used for manufacturing the polarizing film is 3 m or more. On the other hand, if the width of the PVA film used for producing the polarizing film is too large, it tends to be difficult to uniformly perform uniaxial stretching when producing the polarizing film with a practical device, so that the polarizing film is produced. The width of the PVA film used in the above is preferably 10 m or less.
 本発明の偏光フィルムの製造に用いられるPVAフィルムの製造方法は特に限定されず、製膜後のフィルムの厚み及び幅が均一になる製造方法が好ましく採用される。例えば、PVA(A)、及び必要に応じてさらに、前記可塑剤、前記他の添加剤、及び後述する界面活性剤などのうちの1種または2種以上が液体媒体中に溶解した製膜原液や、PVA(A)、及び必要に応じてさらに、可塑剤、他の添加剤、界面活性剤、及び液体媒体などのうちの1種または2種以上を含み、PVA(A)が溶融している製膜原液を用いて製造することができる。当該製膜原液が可塑剤、他の添加剤、及び界面活性剤の少なくとも1種を含有する場合には、それらの成分が均一に混合されていることが好ましい。 The production method of the PVA film used for producing the polarizing film of the present invention is not particularly limited, and a production method in which the thickness and width of the film after film formation are uniform is preferably adopted. For example, a film-forming stock solution in which one or more of PVA (A) and, if necessary, the plasticizer, the other additive, and a surfactant described later are dissolved in a liquid medium. PVA (A), and if necessary, one or more of plasticizers, other additives, surfactants, liquid media, etc., and PVA (A) melts. It can be manufactured using the existing film-forming stock solution. When the film-forming stock solution contains at least one of a plasticizer, other additives, and a surfactant, it is preferable that these components are uniformly mixed.
 製膜原液の調製に使用される上記液体媒体としては、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、エチレングリコール、グリセリン、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、トリメチロールプロパン、エチレンジアミン、ジエチレントリアミンなどを挙げることができ、これらのうちの1種または2種以上を使用することができる。そのうちでも、環境に与える負荷や回収性の点から水が好ましい。 Examples of the liquid medium used for preparing the membrane-forming stock solution include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethylene glycol, glycerin, propylene glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol. , Trimethylolpropane, ethylenediamine, diethylenetriamine and the like, and one or more of these can be used. Of these, water is preferable from the viewpoint of environmental load and recoverability.
 製膜原液の揮発分率(製膜時に揮発や蒸発によって除去される液体媒体などの揮発性成分の製膜原液中における含有割合)は、製膜方法、製膜条件などによっても異なるが、一般的には、50~95質量%の範囲内であることが好ましく、55~90質量%の範囲内であることがより好ましい。製膜原液の揮発分率が50質量%以上であることにより、製膜原液の粘度が高くなり過ぎず、製膜原液調製時の濾過や脱泡が円滑に行われ、異物や欠点の少ないフィルムの製造が容易になる。一方、製膜原液の揮発分率が95質量%以下であることにより、製膜原液の濃度が低くなり過ぎず、工業的なフィルムの製造が容易になる。 The volatile content of the film-forming stock solution (the content ratio of volatile components such as liquid media removed by volatilization or evaporation during film-forming in the film-forming stock solution) varies depending on the film-forming method, film-forming conditions, etc., but is generally used. It is preferably in the range of 50 to 95% by mass, and more preferably in the range of 55 to 90% by mass. When the volatile content of the membrane-forming stock solution is 50% by mass or more, the viscosity of the membrane-forming stock solution does not become too high, filtration and defoaming during preparation of the membrane-forming stock solution are smoothly performed, and a film with few foreign substances and defects. Is easy to manufacture. On the other hand, when the volatile fraction of the film-forming stock solution is 95% by mass or less, the concentration of the film-forming stock solution does not become too low, and industrial film production becomes easy.
 製膜原液は界面活性剤を含むことが好ましい。界面活性剤を含むことにより、製膜性が向上してフィルムの厚み斑の発生が抑制されると共に、製膜に使用する金属ロールやベルトからのフィルムの剥離が容易になる。界面活性剤を含む製膜原液からPVAフィルムを製造した場合には、当該フィルム中には界面活性剤が含有され得る。上記の界面活性剤の種類は特に限定されないが、金属ロールやベルトからの剥離性の観点などから、アニオン性界面活性剤またはノニオン性界面活性剤が好ましい。 The membrane-forming stock solution preferably contains a surfactant. By containing the surfactant, the film-forming property is improved, the occurrence of thickness unevenness of the film is suppressed, and the film can be easily peeled off from the metal roll or belt used for the film-forming. When a PVA film is produced from a film-forming stock solution containing a surfactant, the film may contain a surfactant. The type of the above-mentioned surfactant is not particularly limited, but an anionic surfactant or a nonionic surfactant is preferable from the viewpoint of peelability from a metal roll or a belt.
 アニオン性界面活性剤としては、例えば、ラウリン酸カリウム等のカルボン酸型;ポリオキシエチレンラウリルエーテル硫酸塩、オクチルサルフェート等の硫酸エステル型;ドデシルベンゼンスルホネート等のスルホン酸型などが好適である。 As the anionic surfactant, for example, a carboxylic acid type such as potassium laurate; a sulfate ester type such as polyoxyethylene lauryl ether sulfate and octyl sulfate; and a sulfonic acid type such as dodecylbenzene sulfonate are suitable.
 ノニオン性界面活性剤としては、例えば、ポリオキシエチレンオレイルエーテル等のアルキルエーテル型;ポリオキシエチレンオクチルフェニルエーテル等のアルキルフェニルエーテル型;ポリオキシエチレンラウレート等のアルキルエステル型;ポリオキシエチレンラウリルアミノエーテル等のアルキルアミン型;ポリオキシエチレンラウリン酸アミド等のアルキルアミド型;ポリオキシエチレンポリオキシプロピレンエーテル等のポリプロピレングリコールエーテル型;ラウリン酸ジエタノールアミド、オレイン酸ジエタノールアミド等のアルカノールアミド型;ポリオキシアルキレンアリルフェニルエーテル等のアリルフェニルエーテル型などが好適である。 Examples of the nonionic surfactant include an alkyl ether type such as polyoxyethylene oleyl ether; an alkylphenyl ether type such as polyoxyethylene octylphenyl ether; an alkyl ester type such as polyoxyethylene laurate; and polyoxyethylene laurylamino. Alkylamine type such as ether; Alkylamide type such as polyoxyethylene lauric acid amide; Polypropylene glycol ether type such as polyoxyethylene polyoxypropylene ether; Alkanolamide type such as lauric acid diethanolamide and oleic acid diethanolamide; Polyoxy An allylphenyl ether type such as alkylene allylphenyl ether is suitable.
 これらの界面活性剤は1種を単独で、または2種以上を組み合わせて使用することができる。 These surfactants can be used alone or in combination of two or more.
 製膜原液が界面活性剤を含む場合、その含有量は、製膜原液に含まれるPVA(A)100質量部に対して、0.01~0.5質量部の範囲内であることが好ましく、0.02~0.3質量部の範囲内であることがより好ましく、0.05~0.2質量部の範囲内であることが特に好ましい。当該含有量が0.01質量部以上であることにより製膜性及び剥離性がより向上する。一方、当該含有量が0.5質量部以下であることにより、界面活性剤がPVAフィルムの表面にブリードアウトしてブロッキングが生じ、取り扱い性が低下することを抑制することができる。 When the membrane-forming stock solution contains a surfactant, the content thereof is preferably in the range of 0.01 to 0.5 parts by mass with respect to 100 parts by mass of PVA (A) contained in the membrane-forming stock solution. It is more preferably in the range of 0.02 to 0.3 parts by mass, and particularly preferably in the range of 0.05 to 0.2 parts by mass. When the content is 0.01 parts by mass or more, the film-forming property and the peelability are further improved. On the other hand, when the content is 0.5 parts by mass or less, it is possible to prevent the surfactant from bleeding out to the surface of the PVA film and causing blocking, resulting in deterioration of handleability.
 上記した製膜原液を用いてPVAフィルムを製膜する際の製膜方法としては、例えば、キャスト製膜法、押出製膜法、湿式製膜法、ゲル製膜法などが挙げられる。これらの製膜方法は1種のみを採用しても2種以上を組み合わせて採用してもよい。これらの製膜方法の中でもキャスト製膜法、押出製膜法が、厚み及び幅が均一で物性の良好な偏光フィルムの製造に用いるPVAフィルムが得られることから好ましい。製膜されたPVAフィルムには必要に応じて乾燥や熱処理を行うことができる。 Examples of the film-forming method for forming a PVA film using the above-mentioned film-forming stock solution include a cast film-forming method, an extrusion film-forming method, a wet film-forming method, and a gel film-forming method. These film forming methods may adopt only one kind or a combination of two or more kinds. Among these film-forming methods, the cast film-forming method and the extrusion film-forming method are preferable because a PVA film used for producing a polarizing film having a uniform thickness and width and good physical characteristics can be obtained. The formed PVA film can be dried or heat-treated as needed.
 本発明の偏光フィルムの製造に用いるPVAフィルムの具体的な製造方法の例としては、例えば、T型スリットダイ、ホッパープレート、I-ダイ、リップコーターダイ等を用いて、上記の製膜原液を最上流側に位置する回転する加熱した第1ロール(あるいはベルト)の周面上に均一に吐出または流延し、この第1ロール(あるいはベルト)の周面上に吐出または流延された膜の一方の面から揮発性成分を蒸発させて乾燥し、続いてその下流側に配置した1個または複数個の回転する加熱したロールの周面上でさらに乾燥するか、または熱風乾燥装置の中を通過させてさらに乾燥した後、巻き取り装置により巻き取る方法を工業的に好ましく採用することができる。加熱したロールによる乾燥と熱風乾燥装置による乾燥とは、適宜組み合わせて実施してもよい。また、単一の樹脂層から構成される基材フィルムの一方の面にPVA(A)からなる層を形成することによって、多層のPVAフィルムを製膜してもよい。 As an example of a specific method for producing a PVA film used for producing the polarizing film of the present invention, for example, a T-type slit die, a hopper plate, an I-die, a lip coater die, or the like is used to prepare the above-mentioned film-forming stock solution. A film that is uniformly discharged or spread on the peripheral surface of a rotating heated first roll (or belt) located on the most upstream side, and discharged or spread on the peripheral surface of the first roll (or belt). The volatile components are evaporated from one surface to dry and then further dried on the peripheral surface of one or more rotating heated rolls placed downstream thereof, or in a hot air drying device. An industrially preferable method can be adopted in which the film is further dried and then wound by a winding device. Drying with a heated roll and drying with a hot air drying device may be carried out in an appropriate combination. Further, a multilayer PVA film may be formed by forming a layer made of PVA (A) on one surface of a base film made of a single resin layer.
 本発明の偏光フィルムを製造する際の方法は特に制限されない。好適な製造方法は、PVAフィルムを二色性色素で染色する染色処理、及び該フィルムを一軸延伸する延伸処理を含む偏光フィルムの製造方法において、該フィルムをホウ素含有化合物(B)の水溶液に浸漬する処理を有する偏光フィルムの製造方法である。このとき、染色処理、一軸延伸処理に加えて、必要に応じてさらに、PVAフィルムに対して、膨潤処理、ホウ酸架橋処理、固定処理、洗浄処理、乾燥処理、熱処理などを施す方法も挙げられる。この場合、膨潤処理、染色処理、ホウ酸架橋処理、一軸延伸処理、固定処理などの各処理の順序は特に制限されず、2つ以上の処理を同時に行うこともできる。また、各処理を2回以上行うこともできる。 The method for producing the polarizing film of the present invention is not particularly limited. A suitable production method is a method for producing a polarizing film including a dyeing treatment for dyeing a PVA film with a dichroic dye and a stretching treatment for uniaxially stretching the film, in which the film is immersed in an aqueous solution of a boron-containing compound (B). It is a method of manufacturing a polarizing film having a process of processing. At this time, in addition to the dyeing treatment and the uniaxial stretching treatment, a method of further subjecting the PVA film to a swelling treatment, a boric acid cross-linking treatment, a fixing treatment, a washing treatment, a drying treatment, a heat treatment, or the like can be mentioned. .. In this case, the order of each treatment such as swelling treatment, dyeing treatment, boric acid cross-linking treatment, uniaxial stretching treatment, and fixing treatment is not particularly limited, and two or more treatments can be performed at the same time. Moreover, each process can be performed twice or more.
 膨潤処理は、PVAフィルムを水に浸漬することにより行うことができる。フィルムを浸漬する水の温度としては、20~40℃の範囲内であることが好ましく、22~38℃の範囲内であることがより好ましく、25~35℃の範囲内であることがさらに好ましい。また、水に浸漬する時間としては、例えば、0.1~5分間の範囲内であることが好ましく、0.2~3分間の範囲内であることがより好ましい。なお、フィルムを浸漬する水は純水に限定されず、各種成分が溶解した水溶液であってもよいし、水と親水性媒体との混合物であってもよい。 The swelling treatment can be performed by immersing the PVA film in water. The temperature of the water for immersing the film is preferably in the range of 20 to 40 ° C, more preferably in the range of 22 to 38 ° C, and further preferably in the range of 25 to 35 ° C. .. The time for immersion in water is, for example, preferably in the range of 0.1 to 5 minutes, and more preferably in the range of 0.2 to 3 minutes. The water in which the film is immersed is not limited to pure water, and may be an aqueous solution in which various components are dissolved, or a mixture of water and a hydrophilic medium.
 染色処理は、PVAフィルムに対して二色性色素を接触させることにより行うことができる。二色性色素としてはヨウ素系色素や二色性染料を用いるのが一般的である。染色処理の時期としては、一軸延伸処理前、一軸延伸処理時、一軸延伸処理後のいずれの段階であってもよい。染色処理はPVAフィルムを染色浴としてヨウ素-ヨウ化カリウムを含有する溶液(特に水溶液)中、もしくは複数の二色性染料を含有する溶液(特に水溶液)に浸漬させることによって行うのが一般的である。染色浴におけるヨウ素の濃度は0.01~0.5質量%の範囲内であることが好ましく、ヨウ化カリウムの濃度は0.01~10質量%の範囲内であることが好ましい。また、染色浴の温度は20~50℃、特に25~40℃とすることが好ましい。好適な染色時間は0.2~5分である。二色性染料を用いる場合、二色性染料は水性染料が好ましい。また、染色浴における染料濃度は0.001~10質量%であることが好ましい。また、必要に応じて染色助剤を用いても良く、硫酸ナトリウムなどの無機塩や界面活性剤などを用いても良い。硫酸ナトリウムを用いる場合は0.1~10質量%が好ましい。具体的な二色性染料としては、シー.アイ.ダイレクトイエロー28、シー.アイ.ダイレクトオレンジ39、シー.アイ.ダイレクトイエロー12、シー.アイ.ダイレクトイエロー44、シー.アイ.ダイレクトオレンジ26、シー.アイ.ダイレクトオレンジ71、シー.アイ.ダイレクト.オレンジ107、シー.アイ.ダイレクトレッド2、シー.アイ.ダイレクトレッド31、シー.アイ.ダイレクト.レッド79、シー.アイ.ダイレクトレッド81、シー.アイ.ダイレクトレッド247、シー.アイ.ダイレクトグリーン80、シー.アイ.ダイレクトグリーン59などが挙げられるが、偏光板製造用に開発された二色性染料が好ましい。 The dyeing process can be performed by bringing the dichroic dye into contact with the PVA film. As the dichroic dye, an iodine dye or a dichroic dye is generally used. The timing of the dyeing treatment may be any stage before the uniaxial stretching treatment, during the uniaxial stretching treatment, and after the uniaxial stretching treatment. The dyeing treatment is generally performed by immersing the PVA film in a solution containing iodine-potassium iodide (particularly an aqueous solution) or a solution containing a plurality of bicolor dyes (particularly an aqueous solution) using a PVA film as a dyeing bath. is there. The concentration of iodine in the dyeing bath is preferably in the range of 0.01 to 0.5% by mass, and the concentration of potassium iodide is preferably in the range of 0.01 to 10% by mass. The temperature of the dyeing bath is preferably 20 to 50 ° C, particularly preferably 25 to 40 ° C. A suitable staining time is 0.2-5 minutes. When a dichroic dye is used, the dichroic dye is preferably an aqueous dye. The dye concentration in the dyeing bath is preferably 0.001 to 10% by mass. Further, if necessary, a dyeing aid may be used, or an inorganic salt such as sodium sulfate or a surfactant may be used. When sodium sulfate is used, it is preferably 0.1 to 10% by mass. Specific dichroic dyes include C.I. Ai. Direct Yellow 28, Sea. Ai. Direct Orange 39, Sea. Ai. Direct Yellow 12, Sea. Ai. Direct Yellow 44, Sea. Ai. Direct Orange 26, Sea. Ai. Direct Orange 71, Sea. Ai. direct. Orange 107, Sea. Ai. Direct Red 2, Sea. Ai. Direct Red 31, Sea. Ai. direct. Red 79, Sea. Ai. Direct Red 81, Sea. Ai. Direct Red 247, Sea. Ai. Direct Green 80, Sea. Ai. Examples thereof include Direct Green 59, and a dichroic dye developed for manufacturing a polarizing plate is preferable.
 PVAフィルムに対してホウ酸架橋処理を施すことで、PVAフィルム中のPVA分子鎖が架橋されPVA分子鎖の配向性が向上する。その結果、PVAフィルムに吸着した二色性色素の配向性が向上するため、得られる偏光フィルムの光学性能が向上する。この観点からホウ酸架橋処理は、染色処理の後かつ延伸処理の前に行うことがより好ましい。ホウ酸架橋処理は、ホウ酸架橋剤を含む水溶液にPVAフィルムを浸漬することにより行うことができる。当該ホウ酸架橋剤としては、ホウ酸、ホウ砂等のホウ酸塩などのホウ素含有無機化合物の1種または2種以上を使用することができ、取扱いのしやすさから、ホウ酸架橋剤はホウ酸であることが好ましい。ホウ酸架橋剤を含む水溶液におけるホウ酸架橋剤の濃度は1~10質量%であることが好ましく、2~7質量%であることがより好ましい。ホウ酸架橋剤の濃度が1~10質量%であることで、十分な延伸性を維持することができる。ホウ酸架橋剤の濃度が10質量%を超えると、過剰に架橋が進行して延伸性が低下するおそれや、過剰にPVA分子鎖が配向し収縮力が高くなるおそれがあるため好ましくない。また、ホウ酸架橋剤の濃度が1質量%未満の場合、PVAフィルムに吸着した二色性色素の配向性が十分に向上せず、得られる偏光フィルムの光学性能が十分に向上しないおそれがあるため好ましくない。ホウ酸架橋剤を含む水溶液はヨウ化カリウム等の助剤を含有してもよい。ホウ酸架橋剤を含む水溶液の温度は20~50℃が好ましく、25~40℃が特に好ましい。当該温度を20~50℃にすることで効率良くホウ酸架橋することができる。 By subjecting the PVA film to a boric acid cross-linking treatment, the PVA molecular chains in the PVA film are cross-linked and the orientation of the PVA molecular chains is improved. As a result, the orientation of the dichroic dye adsorbed on the PVA film is improved, so that the optical performance of the obtained polarizing film is improved. From this viewpoint, it is more preferable that the boric acid cross-linking treatment is carried out after the dyeing treatment and before the stretching treatment. The boric acid cross-linking treatment can be performed by immersing the PVA film in an aqueous solution containing a boric acid cross-linking agent. As the boric acid cross-linking agent, one or more boron-containing inorganic compounds such as borate such as boric acid and borax can be used, and the boric acid cross-linking agent is easy to handle. It is preferably boric acid. The concentration of the boric acid cross-linking agent in the aqueous solution containing the boric acid cross-linking agent is preferably 1 to 10% by mass, more preferably 2 to 7% by mass. When the concentration of the boric acid cross-linking agent is 1 to 10% by mass, sufficient stretchability can be maintained. If the concentration of the boric acid cross-linking agent exceeds 10% by mass, the cross-linking may proceed excessively and the stretchability may decrease, or the PVA molecular chains may be excessively oriented and the contractile force may increase, which is not preferable. Further, when the concentration of the boric acid cross-linking agent is less than 1% by mass, the orientation of the dichroic dye adsorbed on the PVA film may not be sufficiently improved, and the optical performance of the obtained polarizing film may not be sufficiently improved. Therefore, it is not preferable. The aqueous solution containing the boric acid cross-linking agent may contain an auxiliary agent such as potassium iodide. The temperature of the aqueous solution containing the boric acid cross-linking agent is preferably 20 to 50 ° C, particularly preferably 25 to 40 ° C. Boric acid cross-linking can be performed efficiently by setting the temperature to 20 to 50 ° C.
 後述する一軸延伸処理とは別に、上述した各処理中や処理間において、PVAフィルムを延伸(前延伸)してもよい。このように、一軸延伸処理よりも前に行われる前延伸の全延伸倍率(各処理における延伸倍率を掛け合わせた倍率)は、得られる偏光フィルムの光学性能などの観点から、延伸前の原料のPVAフィルムの元長に基づいて、1.5倍以上が好ましく、2.0倍以上がより好ましく、2.5倍以上がさらに好ましい。一方、当該全延伸倍率は、4.0倍以下が好ましく、3.5倍以下がより好ましい。膨潤処理における延伸倍率としては、1.05~2.5倍が好ましい。染色処理における延伸倍率としては、1.1~2.5倍が好ましい。ホウ酸架橋処理における延伸倍率としては、1.1~2.5が好ましい。 Apart from the uniaxial stretching treatment described later, the PVA film may be stretched (pre-stretched) during or between the above-mentioned treatments. As described above, the total stretching ratio of the pre-stretching performed before the uniaxial stretching treatment (magnification obtained by multiplying the stretching ratio in each treatment) is the raw material before stretching from the viewpoint of the optical performance of the obtained polarizing film. Based on the original length of the PVA film, 1.5 times or more is preferable, 2.0 times or more is more preferable, and 2.5 times or more is further preferable. On the other hand, the total draw ratio is preferably 4.0 times or less, more preferably 3.5 times or less. The draw ratio in the swelling treatment is preferably 1.05 to 2.5 times. The draw ratio in the dyeing treatment is preferably 1.1 to 2.5 times. The draw ratio in the boric acid cross-linking treatment is preferably 1.1 to 2.5.
 一軸延伸処理は、湿式延伸法または乾式延伸法のいずれで行ってもよい。湿式延伸法の場合には、水溶液中でPVAフィルムを延伸する。上記した染色浴中やホウ酸水溶液中などでPVAフィルムを延伸することもできる。また乾式延伸法の場合は、室温のまま一軸延伸処理を行ってもよいし、加熱しながら一軸延伸処理を行ってもよいし、吸水後のPVAフィルムを用いて空気中で一軸延伸処理を行うこともできる。これらの中でも、湿式延伸法が好ましく、ホウ酸を含む水溶液中で一軸延伸処理を行うことがより好ましい。ホウ酸水溶液中におけるホウ酸の濃度は0.5~6質量%の範囲内であることが好ましく、1~5質量%の範囲内であることがより好ましい。また、ホウ酸水溶液はヨウ化カリウムを含有してもよく、その濃度は0.01~10質量%の範囲内にすることが好ましい。一軸延伸処理における延伸温度は、30℃以上が好ましく、40℃以上がより好ましく、50℃以上がさらに好ましい。一方、延伸温度は、90℃以下が好ましく、80℃以下がより好ましく、70℃以下がさらに好ましい。また、一軸延伸処理における延伸倍率としては、2.0~4.0倍が好ましい。得られる偏光フィルムの光学性能などの観点から、当該延伸倍率は2.2倍以上がより好ましい。一方、当該延伸倍率は3.5倍以下がより好ましい。また、後述する固定処理前までの全延伸倍率は、得られる偏光フィルムの光学性能の点から、延伸前の原料のPVAフィルムの元長に基づいて、5倍以上であることが好ましく、5.5倍以上であることがより好ましい。延伸倍率の上限は特に制限されないが、延伸倍率は8倍以下であることが好ましい。 The uniaxial stretching treatment may be performed by either a wet stretching method or a dry stretching method. In the case of the wet stretching method, the PVA film is stretched in an aqueous solution. The PVA film can also be stretched in the above-mentioned dyeing bath or boric acid aqueous solution. In the case of the dry stretching method, the uniaxial stretching treatment may be performed at room temperature, the uniaxial stretching treatment may be performed while heating, or the uniaxial stretching treatment may be performed in the air using a PVA film after water absorption. You can also do it. Among these, the wet stretching method is preferable, and the uniaxial stretching treatment is more preferable in an aqueous solution containing boric acid. The concentration of boric acid in the boric acid aqueous solution is preferably in the range of 0.5 to 6% by mass, and more preferably in the range of 1 to 5% by mass. Further, the boric acid aqueous solution may contain potassium iodide, and the concentration thereof is preferably in the range of 0.01 to 10% by mass. The stretching temperature in the uniaxial stretching treatment is preferably 30 ° C. or higher, more preferably 40 ° C. or higher, and even more preferably 50 ° C. or higher. On the other hand, the stretching temperature is preferably 90 ° C. or lower, more preferably 80 ° C. or lower, and even more preferably 70 ° C. or lower. The stretching ratio in the uniaxial stretching treatment is preferably 2.0 to 4.0 times. From the viewpoint of the optical performance of the obtained polarizing film, the draw ratio is more preferably 2.2 times or more. On the other hand, the draw ratio is more preferably 3.5 times or less. Further, the total draw ratio up to the fixing treatment described later is preferably 5 times or more based on the original length of the raw material PVA film before stretching from the viewpoint of the optical performance of the obtained polarizing film. More preferably, it is 5 times or more. The upper limit of the draw ratio is not particularly limited, but the draw ratio is preferably 8 times or less.
 長尺のPVAフィルムに一軸延伸処理を行う場合における一軸延伸処理の方向に特に制限はなく、長尺方向への一軸延伸処理、横一軸延伸処理、いわゆる斜め延伸処理を採用することができるが、光学性能に優れる偏光フィルムが得られることから長尺方向への一軸延伸処理が好ましい。長尺方向への一軸延伸処理は、互いに平行な複数のロールを備える延伸装置を使用して、各ロール間の周速を変えることにより行うことができる。一方、横一軸延伸処理はテンター型延伸機を用いて行うことができる。 There is no particular limitation on the direction of the uniaxial stretching treatment when the long PVA film is subjected to the uniaxial stretching treatment, and the uniaxial stretching treatment in the long direction, the lateral uniaxial stretching treatment, the so-called diagonal stretching treatment can be adopted. Since a polarizing film having excellent optical performance can be obtained, uniaxial stretching treatment in the long direction is preferable. The uniaxial stretching process in the long direction can be performed by using a stretching device including a plurality of rolls parallel to each other and changing the peripheral speed between the rolls. On the other hand, the horizontal uniaxial stretching treatment can be performed using a tenter type stretching machine.
 偏光フィルムの製造にあたっては、PVAフィルムへの二色性色素(ヨウ素系色素等)の吸着を強固にするために一軸延伸処理の後に固定処理を行うことが好ましい。固定処理に使用される固定処理浴としては、好適にはホウ素含有化合物(B)を含む水溶液を使用する。また、必要に応じて、固定処理浴中にホウ酸、ヨウ素化合物、金属化合物などをさらに添加してもよい。偏光フィルムの厚さ方向の中心部におけるホウ素含有化合物(B)とホウ酸(C)の置換反応を速める点からは、固定処理浴が実質的にホウ酸を含まないことが好ましい。固定処理浴の温度は、10~80℃であることが好ましい。固定処理における延伸倍率は、1.3倍以下が好ましく、1.2倍以下がより好ましく、1.1倍未満がさらに好ましい。 In the production of the polarizing film, it is preferable to perform a fixing treatment after the uniaxial stretching treatment in order to strengthen the adsorption of the dichroic dye (iodine dye, etc.) on the PVA film. As the fixing treatment bath used for the fixing treatment, an aqueous solution containing the boron-containing compound (B) is preferably used. Further, if necessary, boric acid, an iodine compound, a metal compound and the like may be further added to the fixing treatment bath. From the viewpoint of accelerating the substitution reaction between the boron-containing compound (B) and boric acid (C) in the central portion of the polarizing film in the thickness direction, it is preferable that the fixing treatment bath is substantially free of boric acid. The temperature of the fixing treatment bath is preferably 10 to 80 ° C. The draw ratio in the fixing treatment is preferably 1.3 times or less, more preferably 1.2 times or less, and even more preferably less than 1.1 times.
 ホウ素含有化合物(B)は、染色処理、ホウ酸架橋処理、一軸延伸処理、固定処理のいずれの工程で偏光フィルムに吸着させてもよいが、一軸延伸処理後の固定処理時に吸着させることが一軸延伸処理時のPVAフィルムの切断が抑制される点から特に好ましい。また、ホウ素含有化合物(B)は一種類だけでなく、二種類以上を混合して用いても良い。ホウ素含有化合物(B)とホウ酸(C)の置換反応を偏光フィルムの厚さ方向の中心部まで進行させるという観点から、ホウ素含有化合物(B)の水溶液濃度は、0.2~5質量%である必要がある。水溶液中のホウ素含有化合物(B)の濃度が0.2質量%よりも低い場合は、ホウ素含有化合物(B)の偏光フィルムの表面部への吸着が遅くなり、0.4質量%以上であることがより好ましく、0.6質量%以上であることがさらに好ましい。一方で、水溶液中のホウ素含有化合物(B)の濃度が5.0質量%よりも高い場合は、偏光フィルムの表面部にホウ素含有化合物(B)が過剰に吸着し、ホウ素含有化合物(B)とホウ酸(C)との置換反応が進行し難くなる。また、偏光フィルムの表面部にホウ素含有化合物(B)の析出物が生じるおそれもある。ホウ素含有化合物(B)の濃度は4.0質量%以下であることがより好ましく、2.0質量%以下であることがさらに好ましく、1.0質量%以下であることが特に好ましい。 The boron-containing compound (B) may be adsorbed on the polarizing film in any of the steps of dyeing treatment, boric acid cross-linking treatment, uniaxial stretching treatment, and fixing treatment, but it is uniaxially adsorbed during the fixing treatment after the uniaxial stretching treatment. It is particularly preferable because the cutting of the PVA film during the stretching treatment is suppressed. Further, the boron-containing compound (B) is not limited to one type, and two or more types may be mixed and used. From the viewpoint of allowing the substitution reaction between the boron-containing compound (B) and boric acid (C) to proceed to the center in the thickness direction of the polarizing film, the concentration of the aqueous solution of the boron-containing compound (B) is 0.2 to 5% by mass. Must be. When the concentration of the boron-containing compound (B) in the aqueous solution is lower than 0.2% by mass, the adsorption of the boron-containing compound (B) on the surface of the polarizing film is delayed, which is 0.4% by mass or more. More preferably, it is more preferably 0.6% by mass or more. On the other hand, when the concentration of the boron-containing compound (B) in the aqueous solution is higher than 5.0% by mass, the boron-containing compound (B) is excessively adsorbed on the surface of the polarizing film, and the boron-containing compound (B) The substitution reaction between boron and boric acid (C) becomes difficult to proceed. In addition, a precipitate of the boron-containing compound (B) may be formed on the surface of the polarizing film. The concentration of the boron-containing compound (B) is more preferably 4.0% by mass or less, further preferably 2.0% by mass or less, and particularly preferably 1.0% by mass or less.
 また、ホウ素含有化合物(B)を含む水溶液は光学性能向上の点からヨウ化カリウム等のヨウ化物の助剤を含有することが好ましく、ヨウ化物の濃度は0.5~15質量%であることが好ましい。また、ホウ素含有化合物(B)を含む水溶液の温度は20~70℃である必要がある。ホウ素含有化合物(B)を含む水溶液の温度が20℃未満であると、偏光フィルム中のホウ酸をボロン酸に置換する置換反応を偏光フィルムの厚さ方向の中心部まで進行させ難くなる。また、ホウ素含有化合物(B)を含む水溶液中でホウ素含有化合物(B)が析出することがある。ホウ素含有化合物(B)を含む水溶液の温度は、23℃以上が好ましく、25℃以上がより好ましい。一方、ホウ素含有化合物(B)を含む水溶液の温度が高すぎると、比較的温和な条件で工業的に偏光フィルムを容易に製造することが困難となる。ホウ素含有化合物(B)を含む水溶液の温度は、60℃以下が好ましく、40℃以下がより好ましい。ホウ素含有化合物(B)を含む水溶液に浸漬する時間は、5~400秒が好ましい。 Further, the aqueous solution containing the boron-containing compound (B) preferably contains an iodide auxiliary such as potassium iodide from the viewpoint of improving optical performance, and the concentration of iodide is 0.5 to 15% by mass. Is preferable. Further, the temperature of the aqueous solution containing the boron-containing compound (B) needs to be 20 to 70 ° C. If the temperature of the aqueous solution containing the boron-containing compound (B) is less than 20 ° C., it becomes difficult to proceed the substitution reaction for replacing boric acid in the polarizing film with boronic acid to the central portion in the thickness direction of the polarizing film. In addition, the boron-containing compound (B) may precipitate in an aqueous solution containing the boron-containing compound (B). The temperature of the aqueous solution containing the boron-containing compound (B) is preferably 23 ° C. or higher, more preferably 25 ° C. or higher. On the other hand, if the temperature of the aqueous solution containing the boron-containing compound (B) is too high, it becomes difficult to easily industrially produce a polarizing film under relatively mild conditions. The temperature of the aqueous solution containing the boron-containing compound (B) is preferably 60 ° C. or lower, more preferably 40 ° C. or lower. The time for immersing in the aqueous solution containing the boron-containing compound (B) is preferably 5 to 400 seconds.
 固定処理時にホウ素含有化合物(B)を偏光フィルムに吸着させることにより偏光フィルムを製造する方法としては、膨潤処理、一軸延伸処理、固定処理をこの順番に施すもの、膨潤処理、ホウ酸架橋処理、一軸延伸処理、固定処理をこの順番に施すもの、及び膨潤処理、一軸延伸処理、固定処理、ホウ酸架橋処理をこの順番に施すものが好ましい。これらの処理を施した後、さらに必要に応じて洗浄処理、乾燥処理及び熱処理から選択される1つ以上の処理を施してもよい。 Examples of a method for producing a polarizing film by adsorbing a boron-containing compound (B) on a polarizing film during the fixing treatment include swelling treatment, uniaxial stretching treatment, and fixing treatment in this order, swelling treatment, and boric acid cross-linking treatment. It is preferable that the uniaxial stretching treatment and the fixing treatment are performed in this order, and the swelling treatment, the uniaxial stretching treatment, the fixing treatment and the boric acid cross-linking treatment are performed in this order. After performing these treatments, one or more treatments selected from a cleaning treatment, a drying treatment, and a heat treatment may be further performed, if necessary.
 洗浄処理は、蒸留水、純水、水溶液等にPVAフィルムを浸漬して行われることが一般的である。このとき、光学性能向上の点からヨウ化カリウム等のヨウ化物を助剤として含有する水溶液を用いることが好ましく、当該ヨウ化物の濃度は0.5~10質量%とすることが好ましい。また、洗浄処理における水溶液の温度は一般的に5~50℃であり、10~45℃が好ましく、15~40℃がさらに好ましい。経済的な観点から水溶液の温度が低すぎることは好ましくなく、水溶液の温度が高すぎると光学性能が低下することがある。 The cleaning treatment is generally performed by immersing the PVA film in distilled water, pure water, an aqueous solution, or the like. At this time, from the viewpoint of improving optical performance, it is preferable to use an aqueous solution containing iodide such as potassium iodide as an auxiliary agent, and the concentration of the iodide is preferably 0.5 to 10% by mass. The temperature of the aqueous solution in the cleaning treatment is generally 5 to 50 ° C, preferably 10 to 45 ° C, and even more preferably 15 to 40 ° C. From an economic point of view, it is not preferable that the temperature of the aqueous solution is too low, and if the temperature of the aqueous solution is too high, the optical performance may deteriorate.
 乾燥処理の条件は特に制限されないが、30~150℃の範囲内、特に50~130℃の範囲内の温度で乾燥を行うことが好ましい。30~150℃の範囲内の温度で乾燥することで寸法安定性に優れる偏光フィルムが得られやすい。 The conditions of the drying treatment are not particularly limited, but it is preferable to perform drying at a temperature within the range of 30 to 150 ° C., particularly within the range of 50 to 130 ° C. By drying at a temperature in the range of 30 to 150 ° C., a polarizing film having excellent dimensional stability can be easily obtained.
 乾燥処理の後に熱処理を行うことで、さらに寸法安定性に優れた偏光フィルムを得ることができる。ここで熱処理とは、乾燥処理後の水分率が5%以下の偏光フィルムをさらに加熱し、偏光フィルムの寸法安定性を向上させる処理のことである。熱処理の条件は特に制限されないが、60℃~150℃の範囲内、特に70℃~150℃の範囲内で熱処理することが好ましい。60℃よりも低い場合、熱処理による寸法安定化効果が不十分であり、150℃よりも高い場合、偏光フィルムに赤変が激しく生じることがある。 By performing heat treatment after the drying process, a polarizing film with even better dimensional stability can be obtained. Here, the heat treatment is a process of further heating a polarizing film having a moisture content of 5% or less after the drying treatment to improve the dimensional stability of the polarizing film. The conditions of the heat treatment are not particularly limited, but the heat treatment is preferably performed in the range of 60 ° C. to 150 ° C., particularly in the range of 70 ° C. to 150 ° C. If the temperature is lower than 60 ° C., the dimensional stabilization effect of the heat treatment is insufficient, and if the temperature is higher than 150 ° C., the polarizing film may be severely reddish.
 こうして得られる本発明の偏光フィルムの透過率が42.0%以上であり、かつ偏光度が99.85%以上であることが好ましい。偏光フィルムの透過率が42.0%未満の場合、得られるLCDの明るさが不十分になるおそれがある。当該透過率は43.0%以上がより好ましく、43.5%以上がさらに好ましい。一方、当該透過率は、通常45%以下である。また、偏光フィルムの偏光度が99.85%以上であることによって、画質の高いLCDパネルが得られる。偏光フィルムの透過率及び偏光度は後述する実施例に記載された方法により測定される。 It is preferable that the transmittance of the polarizing film of the present invention thus obtained is 42.0% or more and the degree of polarization is 99.85% or more. If the transmittance of the polarizing film is less than 42.0%, the brightness of the obtained LCD may be insufficient. The transmittance is more preferably 43.0% or more, further preferably 43.5% or more. On the other hand, the transmittance is usually 45% or less. Further, when the degree of polarization of the polarizing film is 99.85% or more, an LCD panel having high image quality can be obtained. The transmittance and the degree of polarization of the polarizing film are measured by the methods described in Examples described later.
 こうして得られる本発明の偏光フィルムの、80℃で4時間保持したときにおける幅1.5cm、厚み13μmあたりの吸収軸方向の収縮力が12N未満であることが好ましい。偏光フィルムの収縮力が12N以上であると、LCDを大型化した際、画面発熱によってLCDが反りやすくなり端部から光漏れが起こるおそれがある。偏光フィルムの収縮力は実施例に記載された方法により測定される。 It is preferable that the polarizing film of the present invention thus obtained has a shrinkage force of less than 12 N in the absorption axis direction per width of 1.5 cm and thickness of 13 μm when held at 80 ° C. for 4 hours. If the shrinkage force of the polarizing film is 12 N or more, when the LCD is enlarged, the LCD tends to warp due to heat generated by the screen, and light leakage may occur from the end portion. The shrinkage force of the polarizing film is measured by the method described in the examples.
 本発明の偏光フィルムは、通常、その両面または片面に、光学的に透明で且つ機械的強度を有する保護膜を貼り合わせて偏光板にして使用される。保護膜としては、三酢酸セルロース(TAC)フィルム、酢酸・酪酸セルロース(CAB)フィルム、アクリル系フィルム、ポリエステル系フィルムなどが使用される。また、貼り合わせのための接着剤としては、PVA系接着剤やUV硬化接着剤などを挙げることができる。 The polarizing film of the present invention is usually used as a polarizing plate by laminating a protective film that is optically transparent and has mechanical strength on both sides or one side thereof. As the protective film, a cellulose triacetate (TAC) film, a cellulose acetate / butyrate (CAB) film, an acrylic film, a polyester film, or the like is used. In addition, examples of the adhesive for bonding include a PVA-based adhesive and a UV-curable adhesive.
 上記のようにして得られた偏光板を、位相差フィルム、視野角向上フィルム、輝度向上フィルム等と貼り合わせてもよい。また、偏光板にアクリル系等の粘着剤をコートした後、ガラス基板と貼り合わせてLCDの部品として使用することができる。 The polarizing plate obtained as described above may be bonded to a retardation film, a viewing angle improving film, a brightness improving film, or the like. Further, after coating a polarizing plate with an adhesive such as acrylic, it can be bonded to a glass substrate and used as an LCD component.
 本発明を以下の実施例により具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、以下の実施例及び比較例において採用された各評価方法を以下に示す。 The present invention will be specifically described with reference to the following examples, but the present invention is not limited to these examples. The evaluation methods adopted in the following examples and comparative examples are shown below.
<偏光フィルムの光学性能>
 偏光フィルムの幅方向と長さ方向の中央部から、偏光フィルムの長さ方向4cm×幅方向2cmの長方形のサンプルを採取し、積分球付き分光光度計V-7100(日本分光株式会社製)とグランテーラ偏光子を備え付けた自動偏光フィルム測定装置VAP-7070S(日本分光株式会社製)を用いて、偏光フィルムのパラレル透過率およびクロスニコル透過率を測定した。ここで、測定波長範囲は380nm~780nmに設定し、グランテーラ偏光子を通して偏光フィルムに入射される偏光の振動方向が、偏光フィルムの透過軸に平行な場合の透過率をパラレル透過率、偏光フィルムの透過軸に垂直な場合をクロスニコル透過率とした。その後、「偏光フィルム評価プログラム」(日本分光株式会社製)を用いて、JIS Z 8722(物体色の測定方法)に準拠するように、前述のパラレル透過率とクロスニコル透過率を用いて、C光源、2°視野の可視光領域の視感度補正を行って、偏光フィルムの単体透過率、偏光度の算出を行い、これら2つの値を偏光フィルムの光学特性として得た。
<Optical performance of polarizing film>
A rectangular sample of 4 cm in length x 2 cm in width was taken from the center of the polarizing film in the width and length directions, and a spectrophotometer with an integrating sphere V-7100 (manufactured by JASCO Corporation) was used. The parallel transmittance and the cross Nicol transmittance of the polarizing film were measured using an automatic polarizing film measuring device VAP-7070S (manufactured by JASCO Corporation) equipped with a Grantera polarizer. Here, the measurement wavelength range is set to 380 nm to 780 nm, and the transmittance when the vibration direction of the polarized light incident on the polarizing film through the Grantera polarizer is parallel to the transmission axis of the polarizing film is the parallel transmittance, and the transmittance of the polarizing film. The case perpendicular to the transmission axis was defined as the cross Nicol transmittance. After that, using the "Polarizing Film Evaluation Program" (manufactured by Nippon Spectral Co., Ltd.), using the above-mentioned parallel transmittance and cross Nicol transmittance so as to comply with JIS Z 8722 (object color measurement method), C Luminosity correction was performed for the visible light region of the light source and the 2 ° field, and the single transmittance and the degree of polarization of the polarizing film were calculated, and these two values were obtained as the optical characteristics of the polarizing film.
<偏光フィルムの収縮力>
 収縮力は島津製作所製の恒温槽付きオートグラフ「AG-X」とビデオ式伸び計「TRViewX120S」を用いて測定した。偏光フィルムの吸収軸方向と長さ方向(延伸軸方向)とは実質的に同じであるため、長さ方向(延伸軸方向)の張力を測定することにより、偏光フィルムの吸収軸方向の収縮力を求めた。測定には20℃/20%RHで18時間調湿した偏光フィルム(長さ方向(延伸軸方向)15cm、幅方向1.5cm)をチャック(チャック間隔5cm)に取り付け、引張り開始と同時に、80℃へ恒温槽の昇温を開始した。偏光フィルムを1mm/minの速さで引張り、張力が2Nに到達した時点で引張りを停止し、その状態で4時間後までの張力を測定した。このとき、熱膨張によってチャック間の距離が変わるため、チャックに標線シールを貼り、ビデオ式伸び計「TR VieWX120S」を用いてチャックに貼り付けた標線シールが動いた分だけチャック間の距離が一定になるように修正しながら測定を行った。なお、測定初期(測定開始10分以内)に張力の極小値が生じる場合には、4時間後の張力の測定値から張力の極小値を差し引き、その差を偏光フィルムの延伸軸方向の収縮力とした。
<Shrinking force of polarizing film>
The contraction force was measured using an autograph "AG-X" with a constant temperature bath manufactured by Shimadzu Corporation and a video type extensometer "TRViewX120S". Since the absorption axis direction and the length direction (stretch axis direction) of the polarizing film are substantially the same, the contraction force in the absorption axis direction of the polarizing film is measured by measuring the tension in the length direction (stretch axis direction). Asked. For the measurement, a polarizing film (length direction (stretching axis direction) 15 cm, width direction 1.5 cm) adjusted at 20 ° C./20% RH for 18 hours was attached to the chuck (chuck interval 5 cm), and at the same time as the tension was started, 80 The temperature rise of the constant temperature bath to ℃ was started. The polarizing film was pulled at a speed of 1 mm / min, the tension was stopped when the tension reached 2N, and the tension was measured up to 4 hours later in that state. At this time, since the distance between the chucks changes due to thermal expansion, a marked line sticker is attached to the chuck, and the distance between the chucks is increased by the amount of movement of the marked line sticker attached to the chuck using the video type extensometer "TR ViewWX120S". The measurement was performed while correcting so that was constant. If the minimum tension value occurs at the initial stage of measurement (within 10 minutes from the start of measurement), the minimum tension value is subtracted from the measured value of tension after 4 hours, and the difference is the contraction force in the stretching axial direction of the polarizing film. And said.
<PVAフィルムの膨潤度>
 PVAフィルムを5cm×10cmにカットし、30℃の蒸留水1000mLに30分間浸漬した。その後、PVAフィルムを取り出し、ろ紙でPVAフィルム表面の水分をふき取り、浸漬後のPVAフィルム質量(質量H)を測定した。その後、105℃の乾燥機にPVAフィルムを入れ、16時間乾燥させた後、乾燥後のPVAフィルム質量(質量I)を測定した。PVAフィルムの膨潤度は下記式(1)に質量Hと質量Iの値を代入して算出した。
膨潤度(%)=(質量H/質量I)×100 (1)
<Swelling degree of PVA film>
The PVA film was cut into 5 cm × 10 cm and immersed in 1000 mL of distilled water at 30 ° C. for 30 minutes. Then, the PVA film was taken out, the water on the surface of the PVA film was wiped off with a filter paper, and the mass (mass H) of the PVA film after immersion was measured. Then, the PVA film was put in a dryer at 105 ° C., dried for 16 hours, and then the mass (mass I) of the dried PVA film was measured. The degree of swelling of the PVA film was calculated by substituting the values of mass H and mass I into the following formula (1).
Swelling degree (%) = (mass H / mass I) x 100 (1)
<ホウ素元素濃度(α)及びホウ素元素濃度(β)>
 ガスクラスターイオンビーム銃付きX線光電子分光器(アルバック・ファイ株式会社製:PHI5000 VersaProbe II)(GCIB-XPS)を用いて偏光フィルム中のホウ素含有化合物(B)由来のホウ素元素濃度を測定した。測定にはおよそ23℃/40%RHで16時間以上調湿した偏光フィルムを使用した。スパッタイオン源Ar2500+、加速電圧10keV、電流値30nAの条件で、中和しながら1mm×1mmの範囲でスパッタを行い、X線光電子分光測定(XPS測定)を行った。XPS測定は、X線源に単色化Alを用いて、X線スポット径は200μm、X線出力は15kV、50Wの設定で行い、検出元素は炭素、ホウ素、酸素、ヨウ素、カリウムの5種を選択した。なお、二色性色素に二色性染料を用いる場合は、二色性染料に含まれる窒素、硫黄などの元素も検出元素に適宜選択する必要がある。次に解析ソフト「MultiPak」(アルバック・ファイ株式会社製)を用いて、C-C、C-H結合の結合エネルギーである284.8eVを基準にし、偏光フィルムの厚さ方向の各深さにおけるホウ素元素濃度(a、原子%)を算出した。その後、各深さにおけるXPSスペクトルについて、ホウ酸(C)のホウ素に起因する結合エネルギーとホウ素含有化合物(B)のホウ素に起因する結合エネルギーを適宜設定し、表計算ソフト「Microsoft Excel 2010」(マイクロソフト株式会社製)を用いて、擬フォークト関数を用いて最小二乗法でピーク分離を行った。なお、187から189eVのXPSスペクトルの強度の平均値と195から197のXPSスペクトルの平均値から算出した一次関数をベースラインとして用いた。このようにしてホウ酸(C)由来のホウ素とホウ素含有化合物(B)由来のホウ素の合計に対する、ホウ素含有化合物(B)由来のホウ素のピーク面積(b、%)を算出し、下記計算式(2)に代入することで、各深さにおけるホウ素含有化合物(B)由来のホウ素元素濃度を算出した。
 ホウ素含有化合物(B)由来のホウ素元素濃度(原子%)
=a×b×10-2 (2)
<Boron element concentration (α) and boron element concentration (β)>
The concentration of boron element derived from the boron-containing compound (B) in the polarizing film was measured using an X-ray photoelectron spectrometer with a gas cluster ion beam gun (manufactured by ULVAC PHI Co., Ltd .: PHI5000 VersaProbe II) (GCIB-XPS). For the measurement, a polarizing film adjusted at about 23 ° C./40% RH for 16 hours or more was used. Under the conditions of a sputter ion source Ar2500 +, an acceleration voltage of 10 keV, and a current value of 30 nA, sputtering was performed in a range of 1 mm × 1 mm while neutralizing, and X-ray photoelectron spectroscopy measurement (XPS measurement) was performed. XPS measurement is performed using monochromatic Al as the X-ray source, the X-ray spot diameter is set to 200 μm, the X-ray output is set to 15 kV, and 50 W, and the detection elements are carbon, boron, oxygen, iodine, and potassium. Selected. When a dichroic dye is used as the dichroic dye, it is necessary to appropriately select elements such as nitrogen and sulfur contained in the dichroic dye as detection elements. Next, using the analysis software "MultiPak" (manufactured by ULVAC PHI Co., Ltd.), at each depth in the thickness direction of the polarizing film, based on 284.8 eV, which is the binding energy of the CC and CH bonds. The boron element concentration (a, atomic%) was calculated. After that, for the XPS spectrum at each depth, the binding energy caused by boron of boric acid (C) and the binding energy caused by boron of the boron-containing compound (B) are appropriately set, and the spreadsheet software "Microsoft Excel 2010" ( Peak separation was performed by the minimum square method using a pseudo-Bort function using (manufactured by Microsoft Corporation). A linear function calculated from the average value of the intensity of the XPS spectrum of 187 to 189 eV and the average value of the XPS spectrum of 195 to 197 was used as the baseline. In this way, the peak area (b,%) of boron derived from the boron-containing compound (B) is calculated with respect to the total of boron derived from boric acid (C) and boron derived from the boron-containing compound (B), and the following formula is used. By substituting into (2), the concentration of boron element derived from the boron-containing compound (B) at each depth was calculated.
Boron element concentration (atomic%) derived from boron-containing compound (B)
= A × b × 10 -2 (2)
 なお、ホウ素含有化合物(B)のホウ素に起因する結合エネルギーは、当該化合物の構造によって変化する。したがって、ホウ素含有化合物(B)の種類によって適切に前記結合エネルギーを設定する必要がある。例えば、ホウ素含有化合物(B)がn-プロピルボロン酸の場合は191.5eV付近である。また、擬フォークト関数を用いて最小二乗法でピーク分離を行う際、ホウ酸のローレンツ関数比は0.241に設定し、21/2×σは0.916に設定した。なお、ホウ素含有化合物(B)のローレンツ関数比と半値幅も当該化合物の構造によって変化する。したがって、当該化合物の種類によってローレンツ関数比と21/2×σを適切に設定する必要がある。ホウ素含有化合物(B)がn-プロピルボロン酸の場合、ローレンツ関数比は0.000、21/2×σは0.769に設定した。 The binding energy of the boron-containing compound (B) due to boron changes depending on the structure of the compound. Therefore, it is necessary to appropriately set the binding energy according to the type of the boron-containing compound (B). For example, when the boron-containing compound (B) is n-propylboronic acid, it is around 191.5 eV. Further, when peak separation was performed by the least squares method using the pseudo Voigt function, the Lorentz function ratio of boric acid was set to 0.241, and 2 1/2 × σ was set to 0.916. The Lorentz function ratio and full width at half maximum of the boron-containing compound (B) also change depending on the structure of the compound. Therefore, it is necessary to appropriately set the Lorentz function ratio and 2 1/2 × σ depending on the type of the compound. When the boron-containing compound (B) was n-propylboronic acid, the Lorentz function ratio was set to 0.000, and 2 1/2 × σ was set to 0.769.
 このような方法により、偏光フィルムの厚さ方向の中心から外側1μmまでのホウ素含有化合物(B)由来のホウ素元素濃度(α、原子%)を求めた。また、偏光フィルムの厚さ方向の中心から外側1μmまでのホウ酸由来のホウ素元素濃度(β、原子%)を求めた。 By such a method, the boron element concentration (α, atomic%) derived from the boron-containing compound (B) from the center in the thickness direction of the polarizing film to the outside 1 μm was determined. In addition, the concentration of boric acid-derived boron element (β, atomic%) from the center of the polarizing film in the thickness direction to 1 μm outside was determined.
<実施例1>
 PVA(けん化度99.9%、重合度2400)100質量部、可塑剤としてグリセリン10質量部、及び界面活性剤としてポリオキシエチレンラウリルエーテル硫酸ナトリウム0.1質量部を含み、PVAの含有率が10質量%であるPVA水溶液を作製した。前記PVA水溶液を80℃の金属ロール上で乾燥して得られたフィルムを熱風乾燥機中(120℃)で10分間熱処理し、厚みが30μm、膨潤度が200%のPVAフィルムを得た。
<Example 1>
It contains 100 parts by mass of PVA (saponification degree 99.9%, degree of polymerization 2400), 10 parts by mass of glycerin as a plasticizer, and 0.1 parts by mass of polyoxyethylene lauryl ether sodium sulfate as a surfactant, and has a PVA content. A 10% by mass PVA aqueous solution was prepared. The film obtained by drying the PVA aqueous solution on a metal roll at 80 ° C. was heat-treated in a hot air dryer (120 ° C.) for 10 minutes to obtain a PVA film having a thickness of 30 μm and a swelling degree of 200%.
 得られたPVAフィルムの幅方向中央部から、幅5cm×長さ5cmの範囲が一軸延伸できるように幅5cm×長さ9cmのサンプルをカットした。このサンプルを30℃の純水に30秒間浸漬しつつ1.1倍に長さ方向に一軸延伸して、膨潤処理した。続いてヨウ素0.035質量%及びヨウ化カリウム3.5質量%を含有する30℃の水溶液(染色処理浴)に60秒間浸漬しつつ2.2倍(全体で2.4倍)に長さ方向に一軸延伸してヨウ素を吸着させた。次いで、ホウ酸を3.0質量%及びヨウ化カリウムを3質量%の割合で含有する30℃の水溶液(ホウ酸架橋処理浴)に浸漬しつつ1.1倍(全体で2.7倍)に長さ方向に一軸延伸した。さらにホウ酸を4.0質量%及びヨウ化カリウムを6質量%の割合で含有する60℃の水溶液(延伸処理浴)に浸漬しつつ、全体で6.0倍まで長さ方向に一軸延伸した。一軸延伸処理の後、ホウ素含有化合物(B)としてn-プロピルボロン酸を0.7質量%及びヨウ化カリウムを2~5質量%の割合で含有する30℃の水溶液(固定処理浴)に100秒間浸漬した。固定処理において、PVAフィルムは延伸されなかった(延伸倍率1.0倍)。最後に60℃で240秒間乾燥して偏光フィルム(厚み13μm)を作製した。 A sample having a width of 5 cm and a length of 9 cm was cut so that a range of 5 cm in width × 5 cm in length could be uniaxially stretched from the central portion in the width direction of the obtained PVA film. This sample was uniaxially stretched 1.1 times in the length direction while being immersed in pure water at 30 ° C. for 30 seconds for swelling treatment. Subsequently, the length was 2.2 times (2.4 times in total) while being immersed in an aqueous solution (dyeing treatment bath) at 30 ° C. containing 0.035% by mass of iodine and 3.5% by mass of potassium iodide for 60 seconds. Iodine was adsorbed by uniaxially stretching in the direction. Next, while immersing in an aqueous solution (boric acid cross-linking treatment bath) at 30 ° C. containing 3.0% by mass of boric acid and 3% by mass of potassium iodide, 1.1 times (2.7 times in total). It was uniaxially stretched in the length direction. Further, while immersing in an aqueous solution (stretching treatment bath) at 60 ° C. containing boric acid in a proportion of 4.0% by mass and potassium iodide in a proportion of 6% by mass, the whole was uniaxially stretched up to 6.0 times in the length direction. .. After the uniaxial stretching treatment, 100 in an aqueous solution (fixed treatment bath) at 30 ° C. containing 0.7% by mass of n-propylboronic acid and 2 to 5% by mass of potassium iodide as the boron-containing compound (B). Soaked for seconds. In the fixing treatment, the PVA film was not stretched (stretching ratio 1.0 times). Finally, it was dried at 60 ° C. for 240 seconds to prepare a polarizing film (thickness 13 μm).
 偏光フィルムのXPSスペクトルを測定して解析したところ、偏光フィルムの厚さ方向の中心から1μmの範囲のホウ素含有化合物(B)由来のホウ素元素濃度(α)は1.4原子%であり、偏光フィルムの厚さ方向の中心から1μmの範囲のホウ酸由来のホウ素元素濃度(β)は1.5原子%であった。上記した方法により偏光フィルムの光学特性及び収縮力を評価したところ、透過率44.18%、偏光度99.89%、収縮力0.6Nであった。 When the XPS spectrum of the polarizing film was measured and analyzed, the boron element concentration (α) derived from the boron-containing compound (B) in the range of 1 μm from the center in the thickness direction of the polarizing film was 1.4 atomic%, and the polarized light was polarized. The boron element concentration (β) derived from boric acid in the range of 1 μm from the center in the thickness direction of the film was 1.5 atomic%. When the optical characteristics and shrinkage force of the polarizing film were evaluated by the above method, the transmittance was 44.18%, the degree of polarization was 99.89%, and the shrinkage force was 0.6N.
<実施例2~4>
 固定処理浴に浸漬する時間及び水溶液濃度を表1の通り変更したこと以外は実施例1と同様にして偏光フィルムを作製して、各測定及び評価を行った。
<Examples 2 to 4>
A polarizing film was prepared in the same manner as in Example 1 except that the time of immersion in the fixing treatment bath and the concentration of the aqueous solution were changed as shown in Table 1, and each measurement and evaluation was performed.
<比較例1>
 ホウ素含有化合物(B)を含有していない偏光フィルムの例である。固定処理浴として、ヨウ化カリウムを2質量%の割合で含有する水溶液(温度30℃)を用いたこと、固定処理浴に浸漬する時間を20秒に変更したこと以外は、実施例1と同様にして偏光フィルムを作製して、各測定及び評価を行った。ホウ酸(C)由来のホウ素元素濃度(β)が低く偏光フィルムの収縮力が6.4Nと低くなっているが、偏光度が99.85%未満で不十分であった。
<Comparative example 1>
This is an example of a polarizing film that does not contain the boron-containing compound (B). Same as Example 1 except that an aqueous solution (temperature 30 ° C.) containing potassium iodide in a proportion of 2% by mass was used as the fixing treatment bath and the time of immersion in the fixing treatment bath was changed to 20 seconds. To prepare a polarizing film, each measurement and evaluation was performed. The concentration of boron element (β) derived from boric acid (C) was low, and the shrinkage force of the polarizing film was as low as 6.4 N, but the degree of polarization was less than 99.85%, which was insufficient.
<比較例2>
 ホウ素含有化合物(B)を含有していない偏光フィルムの例である。固定処理浴として、ヨウ化カリウムを2質量%の割合で含有する水溶液(温度30℃)を用いたこと、固定処理浴に浸漬する時間を5秒に変更したこと以外は、実施例1と同様にして偏光フィルムを作製して、各測定及び評価を行った。このとき、偏光フィルムの収縮力は12Nを超えており収縮力が十分に低減されなかった。
<Comparative example 2>
This is an example of a polarizing film that does not contain the boron-containing compound (B). Same as Example 1 except that an aqueous solution (temperature 30 ° C.) containing potassium iodide at a ratio of 2% by mass was used as the fixing treatment bath and the time of immersion in the fixing treatment bath was changed to 5 seconds. To prepare a polarizing film, each measurement and evaluation was performed. At this time, the shrinkage force of the polarizing film exceeded 12N, and the shrinkage force was not sufficiently reduced.
 なお、実施例2~4及び比較例1では実施例1と同様に、ヨウ素1質量部に対してヨウ化カリウムを100質量部の割合で含有する水溶液(染色処理浴)(温度30℃)に60秒間浸漬しつつ2.2倍(全体で2.4倍)に長さ方向に一軸延伸してヨウ素を吸着させた。このとき、染色処理浴のヨウ素やヨウ化カリウム濃度は、乾燥後の偏光フィルムの透過率が43.8~44.2%になるように調整した。 In Examples 2 to 4 and Comparative Example 1, as in Example 1, an aqueous solution (dyeing treatment bath) (temperature 30 ° C.) containing 100 parts by mass of potassium iodide with respect to 1 part by mass of iodine was prepared. Iodine was adsorbed by uniaxially stretching in the length direction 2.2 times (2.4 times in total) while immersing for 60 seconds. At this time, the iodine and potassium iodide concentrations in the dyeing bath were adjusted so that the transmittance of the polarizing film after drying was 43.8 to 44.2%.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1に示されるように、実施例1~4の偏光フィルムは高温下での収縮力が小さく、光学性能にも優れていることがわかる。 As shown in Table 1, it can be seen that the polarizing films of Examples 1 to 4 have a small shrinkage force at high temperatures and are excellent in optical performance.
 本発明の偏光フィルムは、実施例に示されているとおり、高い光学性能を持ちながらも収縮力が低い。したがって、近年の電子機器の薄型化及び高精細化の要求に応えることができる。 As shown in the examples, the polarizing film of the present invention has high optical performance but low shrinkage force. Therefore, it is possible to meet the recent demand for thinner and higher definition electronic devices.
 1 偏光フィルムの厚さ方向の中心
 2 偏光フィルムの表面部
 3 偏光フィルムの厚さ方向の中心部
1 Center in the thickness direction of the polarizing film 2 Surface part of the polarizing film 3 Center in the thickness direction of the polarizing film

Claims (7)

  1.  ポリビニルアルコール(A)、下記式(I)で表されるモノボロン酸及び水の存在下で該モノボロン酸に転化し得る化合物からなる群より選ばれる少なくとも1種のホウ素含有化合物(B)及びホウ酸(C)を含む偏光フィルムであって、厚さ方向の中心から外側に1μmまでの範囲における、ホウ素含有化合物(B)由来のホウ素元素濃度(α)が0.1~3原子%であり、厚さ方向の中心から外側に1μmまでの範囲における、ホウ酸(C)由来のホウ素元素濃度(β)が0.1~8原子%であり、かつ濃度(β)に対する濃度(α)の比(α/β)が0.1以上である、偏光フィルム。
    Figure JPOXMLDOC01-appb-C000001
    [式(I)中、Rは炭素数が1~20の1価の脂肪族基であり、Rとボロン酸基とがホウ素-炭素結合で繋がっている。]
    At least one boron-containing compound (B) and boric acid selected from the group consisting of polyvinyl alcohol (A), monoboronic acid represented by the following formula (I), and a compound capable of converting to monoboronic acid in the presence of water. A polarizing film containing (C), wherein the boron element concentration (α) derived from the boron-containing compound (B) is 0.1 to 3 atomic% in the range from the center in the thickness direction to 1 μm outward. The boron element concentration (β) derived from boric acid (C) is 0.1 to 8 atomic% in the range from the center to the outside in the thickness direction to 1 μm, and the ratio of the concentration (α) to the concentration (β). A polarizing film having (α / β) of 0.1 or more.
    Figure JPOXMLDOC01-appb-C000001
    [In formula (I), R 1 is a monovalent aliphatic group having 1 to 20 carbon atoms, and R 1 and a boronic acid group are connected by a boron-carbon bond. ]
  2.  Rが飽和脂肪族基である、請求項1に記載の偏光フィルム。 The polarizing film according to claim 1, wherein R 1 is a saturated aliphatic group.
  3.  Rが直鎖脂肪族炭化水素基である、請求項1又は2に記載の偏光フィルム。 The polarizing film according to claim 1 or 2, wherein R 1 is a linear aliphatic hydrocarbon group.
  4.  Rの炭素数が2~5である、請求項1~3のいずれかに記載の偏光フィルム。  The polarizing film according to any one of claims 1 to 3, wherein R 1 has 2 to 5 carbon atoms.
  5.  透過率が42.0%以上であり、かつ偏光度が99.85%以上である、請求項1~4のいずれかに記載の偏光フィルム。 The polarizing film according to any one of claims 1 to 4, which has a transmittance of 42.0% or more and a degree of polarization of 99.85% or more.
  6.  80℃で4時間保持したときにおける幅1.5cm、厚み13μmあたりの吸収軸方向の収縮力が12N未満である、請求項1~5のいずれかに記載の偏光フィルム。 The polarizing film according to any one of claims 1 to 5, wherein the shrinkage force in the absorption axis direction per width of 1.5 cm and thickness of 13 μm when held at 80 ° C. for 4 hours is less than 12 N.
  7.  ポリビニルアルコールフィルムを二色性色素で染色する染色処理、及び該フィルムを一軸延伸する延伸処理を含む偏光フィルムの製造方法において、該フィルムをホウ素含有化合物(B)の濃度が0.2~5質量%で温度が20~70℃の水溶液に浸漬する処理を有する、請求項1~6のいずれかに記載の偏光フィルムの製造方法。 In a method for producing a polarizing film including a dyeing treatment for dyeing a polyvinyl alcohol film with a dichroic dye and a stretching treatment for uniaxially stretching the film, the concentration of the boron-containing compound (B) is 0.2 to 5 mass by mass. The method for producing a polarizing film according to any one of claims 1 to 6, which comprises a treatment of immersing in an aqueous solution having a temperature of 20 to 70 ° C. in%.
PCT/JP2020/028729 2019-07-29 2020-07-27 Polarizing film and method for producing same WO2021020349A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227002746A KR20220041093A (en) 2019-07-29 2020-07-27 Polarizing film and its manufacturing method
CN202080054928.1A CN114174875B (en) 2019-07-29 2020-07-27 Polarizing film and method for producing same
JP2021535331A JPWO2021020349A1 (en) 2019-07-29 2020-07-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019138456 2019-07-29
JP2019-138456 2019-07-29

Publications (1)

Publication Number Publication Date
WO2021020349A1 true WO2021020349A1 (en) 2021-02-04

Family

ID=74230432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028729 WO2021020349A1 (en) 2019-07-29 2020-07-27 Polarizing film and method for producing same

Country Status (5)

Country Link
JP (1) JPWO2021020349A1 (en)
KR (1) KR20220041093A (en)
CN (1) CN114174875B (en)
TW (1) TW202110987A (en)
WO (1) WO2021020349A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140075154A (en) * 2012-12-11 2014-06-19 동우 화인켐 주식회사 Crosslinking agent for preparing a polarizer and method of preparing a polarizer using the same
KR20150001276A (en) * 2013-06-27 2015-01-06 동우 화인켐 주식회사 Method for preparing polarizer and polarizer
KR20150052777A (en) * 2013-11-06 2015-05-14 동우 화인켐 주식회사 Process for Preparing Polarizer
KR20160054229A (en) * 2014-11-06 2016-05-16 동우 화인켐 주식회사 Process for Preparing Polarizer
WO2018021274A1 (en) * 2016-07-26 2018-02-01 株式会社クラレ Polarizing film and production method therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018091980A (en) * 2016-12-02 2018-06-14 住友化学株式会社 Polarizing film and manufacturing method of polarized laminate film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140075154A (en) * 2012-12-11 2014-06-19 동우 화인켐 주식회사 Crosslinking agent for preparing a polarizer and method of preparing a polarizer using the same
KR20150001276A (en) * 2013-06-27 2015-01-06 동우 화인켐 주식회사 Method for preparing polarizer and polarizer
KR20150052777A (en) * 2013-11-06 2015-05-14 동우 화인켐 주식회사 Process for Preparing Polarizer
KR20160054229A (en) * 2014-11-06 2016-05-16 동우 화인켐 주식회사 Process for Preparing Polarizer
WO2018021274A1 (en) * 2016-07-26 2018-02-01 株式会社クラレ Polarizing film and production method therefor

Also Published As

Publication number Publication date
TW202110987A (en) 2021-03-16
KR20220041093A (en) 2022-03-31
CN114174875B (en) 2024-02-23
JPWO2021020349A1 (en) 2021-02-04
CN114174875A (en) 2022-03-11

Similar Documents

Publication Publication Date Title
JP6788673B2 (en) Polarizing film and its manufacturing method
JP2019015926A (en) Polarization film and method for producing the same
CN111615654B (en) Polarizing film and method for producing same
WO2021182557A1 (en) Polarizing film and method for manufacturing same
WO2021020349A1 (en) Polarizing film and method for producing same
CN111727387B (en) Polarizing film and method for producing same
JP6858499B2 (en) Optical film manufacturing method
WO2021132435A1 (en) Polyvinyl alcohol film and polarizing film
WO2020226153A1 (en) Polarising film and method for producing same
WO2020262516A1 (en) Polarizing film and method for manufacturing same
JP5563331B2 (en) Method for producing polyvinyl alcohol polymer film
JP7583745B2 (en) Polyvinyl alcohol film and polarizing film
JP7561262B2 (en) Polarizing film and method for producing same
WO2022113958A1 (en) Method for producing polarizing film and polarizing film
TWI856093B (en) Polarizing film and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846744

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021535331

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20846744

Country of ref document: EP

Kind code of ref document: A1