Nothing Special   »   [go: up one dir, main page]

WO2021010357A1 - Spun-bonded nonwoven fabric and laminated nonwoven fabric - Google Patents

Spun-bonded nonwoven fabric and laminated nonwoven fabric Download PDF

Info

Publication number
WO2021010357A1
WO2021010357A1 PCT/JP2020/027160 JP2020027160W WO2021010357A1 WO 2021010357 A1 WO2021010357 A1 WO 2021010357A1 JP 2020027160 W JP2020027160 W JP 2020027160W WO 2021010357 A1 WO2021010357 A1 WO 2021010357A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
woven fabric
nonwoven fabric
spunbonded
long fibers
Prior art date
Application number
PCT/JP2020/027160
Other languages
French (fr)
Japanese (ja)
Inventor
健太郎 梶原
大士 勝田
結香 西口
義嗣 船津
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020227001064A priority Critical patent/KR20220034111A/en
Priority to JP2020540357A priority patent/JP7567478B2/en
Publication of WO2021010357A1 publication Critical patent/WO2021010357A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • D04H3/147Composite yarns or filaments

Definitions

  • the present invention relates to a spunbonded non-woven fabric which is excellent in touch and is particularly suitable for use as a sanitary material.
  • non-woven fabrics for sanitary materials such as disposable diapers and sanitary napkins are required to have excellent bulkiness and flexibility due to the texture when worn.
  • a surface member that comes into direct contact with the skin is required to be bulky.
  • a so-called air-through non-woven fabric which is obtained by forming a sheet of short fibers by carding and then self-bonding by hot air treatment, is preferably used.
  • the air-through non-woven fabric has a feature of being excellent in softness because it is excellent in bulkiness and flexibility, and is widely used, but it has a drawback that the manufacturing process is complicated and the production speed is slow.
  • spunbonded non-woven fabric is characterized by high productivity and low cost due to its manufacturing process.
  • the manufacturing process of the spunbonded nonwoven fabric is a manufacturing process in which the constituent long fibers tend to have a structure in which the constituent long fibers are oriented in the plane direction, it is difficult to obtain a spunbonded nonwoven fabric having excellent bulkiness and flexibility.
  • Patent Document 1 proposes a crimped composite fiber composed of two-component polymers having different melting temperatures of 10 ° C. or more.
  • Patent Document 2 proposes a technique in which a web composed of a two-component polymer is heated, crimped, cooled, and then fused by hot air treatment.
  • Patent Document 3 proposes a technique in which a web composed of a two-component polymer is first compacted and embossed, and then fused by hot air treatment.
  • Patent Document 1 the effect of improving the bulkiness can be obtained by crimping during spinning.
  • sufficient bulk could not be obtained in order to fix the shape by embossing by heat fusion while compressing.
  • an object of the present invention has been made in view of the above circumstances, and is a spunbond having excellent productivity and stability, and having a high level of bulkiness that is satisfactory for use as a sanitary material. It is to provide a non-woven fabric.
  • the present inventors have sufficient long fibers in the step of developing crimps and fusing long fibers with each other by adopting a specific polymer combination. Since the rigidity can be maintained, it has been found that a spunbonded non-woven fabric having high bulkiness can be obtained by a simple process as compared with the conventional manufacturing method.
  • the long fibers contain polymer A and polymer B and contain The melting temperature of the polymer B is 30 ° C. or higher higher than the melting temperature of the polymer A.
  • a spunbonded non-woven fabric having an apparent density of 0.050 g / cm 3 or less.
  • a plurality of connecting portions for connecting any two long fibers of the long fibers are provided.
  • ⁇ 6> A laminated non-woven fabric in which at least the surface layer is the spunbonded non-woven fabric according to any one of ⁇ 1> to ⁇ 5>.
  • the spunbonded non-woven fabric of the present invention is characterized by having excellent productivity and an excellent soft feeling obtained from high bulkiness, and therefore, paper diapers, sanitary napkins, etc., which are strongly required to have both high productivity and feel. It can be suitably used for sanitary materials of.
  • FIG. 1 is a cross-sectional view of an embodiment of a long fiber used in the spunbonded nonwoven fabric of the present invention.
  • the long fibers of FIG. 1 are side-by-side fibers having a dumbbell-shaped cross section.
  • the spunbonded nonwoven fabric of the present invention contains long fibers containing polymer A and polymer B, the melting temperature of polymer B is 30 ° C. or higher higher than the melting temperature of polymer A, and the apparent density of the spunbonded nonwoven fabric is 0. It is 05 g / cm 3 or less. The details will be described below.
  • thermoplastic resin examples include aromatic polyester-based polymers such as "polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate” and their copolymers, "polylactic acid, polyethylene succinate, polybutylene succinate".
  • Aliper polyester polymers such as "Nate, polybutylene succinate adipate, polyhydroxybutyrate-polyhydroxyvariate copolymer, polycaprolactone” and their copolymers, "Polymer 6, Polyamide 66, Polyamide 610, Polyamide 10, Aliper polyamide polymers such as polyamide 12, polyamide 6-12 and their copolymers, polyolefin polymers such as "polypropylene, polyethylene, polybutene, polymethylpentene” and their copolymers, ethylene units from 25 mol% Examples thereof include water-insoluble ethylene-vinyl alcohol copolymer-based polymers containing 70 mol%, polystyrene-based, polydiene-based, chlorine-based, polyolefin-based, polyester-based, polyurethane-based, polyamide-based, and fluorine-based elastomer-based polymers. At least two types can be selected from these and used as the polymer A and the polymer B.
  • the polymer A to be a low melting temperature component, it is preferable to select a polymer having a relatively low melting temperature among the above-mentioned thermoplastic resins, and a polyolefin-based polymer such as "polypropylene, polyethylene, polybutene, polymethylpentene” is used. It is preferable to use a polymer and a copolymer thereof.
  • aromatic polyester-based polymers such as "polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate” and their copolymers, "polylactic acid, polyethylene succi” It is preferable to use an aliphatic polyester polymer such as "Nate, polybutylene succinate, polybutylene succinate adipate, polyhydroxybutyrate-polyhydroxyvariate copolymer, polycaprolactone" and its copolymer.
  • the polymer B is an aromatic polyester such as "polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate". It is more preferable to use a system.
  • the melting temperature of the polymer B is 30 ° C. or more higher than the melting temperature of the polymer A.
  • the difference between the melting temperature of the polymer B and the melting temperature of the polymer A is preferably 60 ° C. or higher, more preferably 80 ° C. or higher.
  • the melting temperature of the polymer A and the melting temperature of the polymer B used in the present invention are preferably 100 ° C. or higher and 300 ° C. or lower, more preferably 120 ° C. or higher and 280 ° C. or lower. By setting the melting temperature to 100 ° C. or higher, it becomes easy to obtain heat resistance that can withstand practical use.
  • the melting temperature of the polymer A and the melting temperature of the polymer B are preferably 300 ° C. or lower, more preferably 280 ° C. or lower.
  • the melting temperature By setting the melting temperature to 300 ° C. or lower, it becomes easier to cool the threads discharged from the mouthpiece, fusion of fibers is suppressed, and the obtained spunbonded non-woven fabric has few defects.
  • the melting temperature in the present invention is the peak top of the endothermic peak measured at a heating rate of 16 ° C./min under a nitrogen atmosphere using a differential scanning calorimeter (for example, "DSCQ2000" manufactured by TA Instruments). Refers to temperature.
  • the polymers A and B include antioxidants, weather stabilizers, light stabilizers, antistatic agents, antifoaming agents, antiblocking agents, nucleating agents, pigments and the like, as long as the effects of the present invention are not impaired. Additives or other polymers can be added as needed.
  • the long fibers contained in the spunbonded nonwoven fabric of the present invention preferably contain the above-mentioned polymer A and polymer B, and are long fibers composed of the polymer A and the polymer B.
  • the polymer A and the polymer B form a region respectively, and the polymer A and the polymer B are adhered with an interface.
  • the long fibers can be selected from composite fibers in the form of side-by-side fibers, eccentric core sheath fibers and the like.
  • side-by-side fibers as the long fibers because it is easy to control the positions and amounts of both polymers.
  • dumbbell-shaped side-by-side fibers as shown in FIG. 1 because it is easy to impart fine crimps.
  • the eccentric core sheath fiber as the long fiber from the viewpoint of spinnability.
  • the difference in melt viscosity referred to in the present invention means that the shear rate is zero from the viscosity curve measured at the spinning temperature using a dynamic viscoelasticity evaluation device (for example, "Rheosol-G3000" manufactured by UBM). It means that one is 10% or more larger than the other in the viscosity extrapolated to.
  • the spunbonded non-woven fabric of the present invention has a tensile strength per unit basis weight of 0.3 (N / 5 cm) / (g / m 2 ) or more and 10.0 (N / 5 cm) / (g / m 2 ) or less. Is preferable.
  • the tensile strength per unit basis weight is 0.3 (N / 5 cm) / (g / m 2 ) or more, it can withstand the process passability when manufacturing disposable diapers and the use as a product. ..
  • the tensile strength per unit basis weight is more preferably 0.4 (N / 5 cm) / (g / m 2 ) or more, and further preferably 0.5 (N / 5 cm) / (g / m 2 ) or more.
  • the tensile strength per unit basis weight is 10.0 (N / 5 cm) / (g / m 2 ) or less
  • the tensile strength per unit basis weight is more preferably 8.0 (N / 5 cm) / (g / m 2 ) or less, and further preferably 6.0 (N / 5 cm) / (g / m 2 ) or less.
  • the tensile strength per unit basis weight can be controlled by the above-mentioned thermoplastic resin, additives, fiber diameter, and / or the spinning speed, basis weight, apparent density, and bonding method described later.
  • the tensile strength per unit of the spunbonded non-woven fabric in the present invention is "6.3. Tensile strength and elongation (ISO method)" of JIS L1913: 2010 "General non-woven fabric test method", "6.3.1 Standard time”. In a tensile test with a gripping interval of at least 5 cm, the average tensile strength (strength when the sample broke) in two orthogonal directions was divided by the scale measured by the method described later. The value.
  • the spunbonded nonwoven fabric of the present invention preferably has a thickness of 0.05 mm or more and 1.50 mm or less.
  • the spunbonded non-woven fabric has an appropriate cushioning property.
  • the thickness is more preferably 0.07 mm or more, still more preferably 0.09 mm or more.
  • the spunbonded non-woven fabric has excellent bending flexibility.
  • the thickness is more preferably 0.14 mm or less, still more preferably 0.13 mm or less.
  • the thickness of the spunbonded nonwoven fabric in the present invention is not particularly limited, but refers to, for example, the thickness under no load measured by a shape measuring machine (for example, "VR3050" manufactured by KEYENCE CORPORATION).
  • the spunbonded nonwoven fabric of the present invention preferably has a basis weight of 10 g / m 2 or more and 100 g / m 2 or less.
  • the spunbonded nonwoven fabric When the basis weight of the spunbonded nonwoven fabric is 10 g / m 2 or more, the spunbonded nonwoven fabric can be easily made into a thickness suitable for sanitary material use, and can be a spunbonded nonwoven fabric having mechanical strength that can be put into practical use.
  • the basis weight of the spunbonded non-woven fabric is 100 g / m 2 or less, the spunbonded non-woven fabric having excellent breathability and flexibility can be obtained.
  • the basis weight of the spunbonded non-woven fabric is more preferably 80 g / m 2 or less, still more preferably 60 g / m 2 or less.
  • the texture (g / m 2 ) of the spunbonded non-woven fabric in the present invention is based on "6.2 Mass per unit area" of JIS L1913: 2010, and a 20 cm ⁇ 25 cm test piece is used per 1 m of sample width. Three sheets are collected, each mass (g) in the standard state is weighed, and the mass per 1 m 2 calculated from the average value is used.
  • the spunbonded nonwoven fabric of the present invention has an apparent density of 0.050 g / cm 3 or less.
  • the apparent density of the spunbonded non-woven fabric is 0.050 g / cm 3 or less, it is easy to obtain the spunbonded non-woven fabric having excellent breathability and flexibility, and it is easy to feel the high bulkiness.
  • the apparent density of the spunbonded non-woven fabric is preferably 0.045 g / cm 3 or less, more preferably 0.040 g / cm 3 or less.
  • the lower limit of the apparent density of the spunbonded non-woven fabric is not particularly limited, but for example, when it is 0.01 g / cm 3 or more, it is easy to obtain morphological stability that can be put into practical use.
  • the apparent density of the spunbonded nonwoven fabric in the present invention is a value obtained by dividing the basis weight by the thickness.
  • the spunbonded nonwoven fabric of the present invention has a plurality of connecting portions for connecting any two long fibers of the long fibers, and at least one of the connecting portions contains the polymer A, resulting in high morphological stability. It is preferable because it can be obtained.
  • the state in which the connecting portion contains the polymer A means a state in which a certain long fiber and a long fiber adjacent thereto are partially fused by the polymer A, and the long fibers are continuously fused to each other. It refers to a state in which there is substantially no portion that is fused to form a film having a certain width.
  • the shape of the spinneret and ejector used various shapes such as a round shape and a rectangular shape can be adopted. Among them, it is preferable to use a combination of a rectangular base and a rectangular ejector from the viewpoint that the amount of compressed air used is relatively small and the yarns are less likely to be fused or scratched.
  • polymer A and polymer B are melted and weighed in different extruders and supplied to a side-by-side or eccentric core-sheath type composite spinneret to supply long fibers.
  • the polymer A which is a low melting temperature component, is exposed on the surface, it is preferable because the long fibers are easily bonded to each other in the heat bonding step described later.
  • the spinning temperature is preferably (melting temperature of the raw material thermoplastic resin + 10 ° C.) or more (melting temperature of the raw material thermoplastic resin + 100 ° C.) or less. This is because by setting the spinning temperature within the above range, a stable molten state can be obtained and excellent spinning stability can be obtained.
  • the spun long fiber yarn is cooled next, and as a method of cooling the spun yarn, for example, a method of forcibly blowing cold air onto the yarn, an atmospheric temperature around the yarn, etc.
  • a method of naturally cooling the yarn, a method of adjusting the distance between the spinneret and the ejector, and the like, or a method in which these methods are combined can be adopted. Further, the cooling conditions can be appropriately adjusted in consideration of the discharge amount per single hole of the spinneret, the spinning temperature, the atmospheric temperature and the like.
  • the cooled and solidified yarn is towed and stretched by the compressed air injected from the ejector.
  • the spinning speed is preferably 2000 m / min or more, more preferably 3000 m / min or more, and further preferably 4000 m / min or more.
  • the obtained long fibers are collected on a moving net and made into a non-woven fiber web.
  • the fibers are drawn at a high spinning speed, the fibers emitted from the ejector are collected in the net in a state controlled by a high-speed air flow, and the fibers are less entangled and highly uniform non-woven fibers. You can get the web.
  • Such a non-woven fiber web can be made into a spunbonded non-woven fabric by using only one non-woven fiber web, but a plurality of spinning facilities are arranged in the process direction and a plurality of webs are stacked to obtain a spunbonded non-woven fabric. This is also a preferable embodiment in that the productivity can be increased.
  • non-woven fiber web the raw materials and process conditions can be changed for each non-woven fiber web.
  • laminated nonwoven fabric it is also one of the preferable embodiments to laminate layers of the melt blow nonwoven fabric.
  • these laminates are also collectively referred to as "non-woven fiber web”.
  • the intended non-woven fabric or laminated non-woven fabric can be obtained by integrating the obtained non-woven fiber webs by heat bonding.
  • Examples of the method of integrating the non-woven fiber webs by heat bonding include a method of heat bonding with heated air, a method of heat bonding with a roll, and the like.
  • the rolls used for heat bonding include a heat embossed roll with engraving (unevenness) on the upper and lower roll surfaces, one roll with a flat (smooth) roll surface, and engraving (unevenness) on the roll surface.
  • a thermal embossing roll composed of a combination with the other roll
  • a thermal calendar roll composed of a combination of a pair of upper and lower flat (smooth) rolls.
  • a method of heat-bonding with heated air without pressurization by the roll is preferable.
  • the laminated nonwoven fabric of the present invention has at least a surface layer of the spunbonded nonwoven fabric of the present invention.
  • the laminated non-woven fabric of the present invention is preferably a laminated non-woven fabric in which the spunbonded non-woven fabric of the present invention is used as a surface layer and melt-blown non-woven fabric is laminated as an inner layer.
  • the spunbonded non-woven fabric of the present invention is used as a surface layer and melt-blown non-woven fabric is laminated as an inner layer.
  • the spunbonded non-woven fabric layer (S) is arranged on the surface layer and the melt-blown non-woven fabric layer (M) is arranged on the inner layer.
  • S spunbonded non-woven fabric layer
  • M melt-blown non-woven fabric layer
  • the basis weight of the laminated non-woven fabric of the present invention is preferably 10 g / m 2 or more and 100 g / m 2 or less.
  • the basis weight of the laminated nonwoven fabric is more preferably 13 g / m 2 or more, still more preferably 15 g / m 2 or more.
  • the basis weight of the laminated non-woven fabric is more preferably 50 g / m 2 or less, still more preferably 35 g / m 2 or less.
  • the texture (g / m 2 ) of the laminated non-woven fabric in the present invention is based on "6.2 Mass per unit area" of JIS L1913: 2010, and a test piece of 20 cm x 25 cm is used as a sample width of 3 per 1 m. Sheets are taken, each mass (g) in the standard state is weighed, and the mass per 1 m 2 calculated from the average value is used.
  • the spunbonded non-woven fabric and the laminated non-woven fabric of the present invention are characterized by having excellent productivity and an excellent soft feeling obtained from high bulkiness, and therefore, paper diapers that are strongly required to have both high productivity and touch comfort. It can be suitably used for sanitary materials such as sanitary napkins and sanitary napkins.
  • the soft feeling referred to in the present invention is a feeling of touch that is smooth when the surface is patted and that an appropriate elasticity is felt in the thickness direction.
  • the present invention will be specifically described based on Examples. However, the present invention is not limited to these examples. In addition, in the measurement of each physical property, if there is no particular description, the measurement is performed based on the above method. However, the present invention is not limited to the description of these examples.
  • Example 1 Polyethylene (PE) as polymer A and polyethylene terephthalate (PET) as polymer B were melted by an extruder and molded into side-by-side composite fibers (mass ratio 1: 1) at a spinning temperature of 290 ° C. A single-hole discharge rate of 0.6 g / min was spun from a rectangular base having a hole having a hole diameter of 0.30 mm.
  • PE polyethylene
  • PET polyethylene terephthalate
  • the spun yarn was cooled and solidified, and then towed and stretched by compressed air having a pressure at the ejector of 0.10 MPa in a rectangular ejector, and collected on a moving net to obtain long fibers. Subsequently, the obtained long fibers were heated with hot air at 150 ° C. and heat-bonded to obtain a spunbonded nonwoven fabric having a basis weight of 20 g / m 2 .
  • Example 2 A spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that the eccentric core sheath type composite fiber was molded instead of molding the side-by-side type composite fiber.
  • Example 3 A spunbonded non-woven fabric was obtained in the same manner as in Example 1 except that the spinning was carried out under the following conditions.
  • Hole shape in the rectangular base Circles arranged on both sides of the rectangle Diameter of circles arranged on both sides of the rectangle ⁇ : 0.30 mm Center distance between two circles placed on both sides of the rectangle: 0.8 mm
  • Single hole discharge rate 0.6 g / min
  • the spun yarn was cooled and solidified, and then towed and stretched by compressed air having a pressure at the ejector of 0.10 MPa in a rectangular ejector, and collected on a moving net to obtain long fibers. Subsequently, the obtained long fibers are heat-bonded (linear pressure: 50 N / cm, heat-bonding temperature: 130 ° C.) with a pair of upper and lower thermal embossing rolls composed of an upper roll and a lower roll, and have a basis weight of 20 g / m 2 . A spunbonded non-woven fabric was obtained.
  • an embossed roll made of metal and having a polka dot pattern engraved at a depth of 0.5 mm was used with an adhesive area ratio of 16%.
  • a metal flat roll was used as the lower roll.
  • Comparative Example 2 Copolymerized PP as polymer A and PP as polymer B are melted by an extruder and formed into side-by-side composite fibers (mass ratio 1: 1) at a spinning temperature of 230 ° C., and the pore diameter ⁇ is 0.
  • a spunbonded non-woven fabric was obtained in the same manner as in Comparative Example 1 except that a single-hole discharge rate of 0.6 g / min was spun from a rectangular base having a hole of .30 mm.
  • Comparative Example 3 A spunbonded nonwoven fabric was obtained in the same manner as in Comparative Example 2 except that PE was used as the polymer A.
  • Comparative Example 4 A spunbonded nonwoven fabric was obtained in the same manner as in Comparative Example 1 except that the obtained long fibers were heated with hot air at 150 ° C. and heat-bonded.
  • the spunbonded non-woven fabrics of Examples 1 to 3 had a sensory evaluation result of 4.0 to 5.0, which was an excellent result of a soft feeling. Therefore, it was found that the spunbonded nonwoven fabrics of Examples 1 to 3 have a high level of bulkiness that is satisfactory for use as a sanitary material.
  • spunbonded non-woven fabrics of Examples 1 to 3 are superior in productivity as compared with the air-through non-woven fabric. Further, the spunbonded nonwoven fabrics of Examples 1 to 3 are fused and have a high level of bulkiness, and thus are excellent in morphological stability.
  • Comparative Examples 1 to 4 showed that the sensory evaluation result was 2.0 or less, which was inferior to the soft feeling.
  • a polymer B polymer

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

The present invention relates to a spun-bonded nonwoven fabric that contains a long fiber. The long fiber contains a polymer A and a polymer B. The melting temperature of polymer B is higher than the melting temperature of polymer A by at least 30°C. The apparent density of the span-bonded nonwoven fabric is 0.050 g/cm3 or less.

Description

スパンボンド不織布及び積層不織布Spun-bonded non-woven fabric and laminated non-woven fabric
 本発明は、触り心地に優れ、特に衛生材料用途に好適なスパンボンド不織布に関するものである。 The present invention relates to a spunbonded non-woven fabric which is excellent in touch and is particularly suitable for use as a sanitary material.
 一般に紙おむつや生理用ナプキン等の衛生材料用の不織布には、着用時の風合いのため、嵩高性及び柔軟性に優れるという性能が求められている。特に、肌に直接触れる表面部材においては、嵩高性が要求される。 In general, non-woven fabrics for sanitary materials such as disposable diapers and sanitary napkins are required to have excellent bulkiness and flexibility due to the texture when worn. In particular, a surface member that comes into direct contact with the skin is required to be bulky.
 従来、衛生材料の表面部材としては、短繊維をカーディングによりシート化した後、熱風処理により自己融着した、いわゆるエアスルー不織布が好適に使用されている。エアスルー不織布は、嵩高性及び柔軟性に優れるため、ソフト感が優れるという特徴を有しており、幅広く採用されているが、製造プロセスが複雑であり、生産速度が遅いといった欠点がある。 Conventionally, as a surface member of a sanitary material, a so-called air-through non-woven fabric, which is obtained by forming a sheet of short fibers by carding and then self-bonding by hot air treatment, is preferably used. The air-through non-woven fabric has a feature of being excellent in softness because it is excellent in bulkiness and flexibility, and is widely used, but it has a drawback that the manufacturing process is complicated and the production speed is slow.
 一方、スパンボンド不織布は、その製造プロセスから生産性が高く、低コストを特徴としている。しかしながら、スパンボンド不織布の製造プロセスは、構成する長繊維が面方向に配向する構造になりやすい製造プロセスであることから、嵩高性及び柔軟性に優れるスパンボンド不織布を得ることが困難である。 On the other hand, spunbonded non-woven fabric is characterized by high productivity and low cost due to its manufacturing process. However, since the manufacturing process of the spunbonded nonwoven fabric is a manufacturing process in which the constituent long fibers tend to have a structure in which the constituent long fibers are oriented in the plane direction, it is difficult to obtain a spunbonded nonwoven fabric having excellent bulkiness and flexibility.
 そこで、長繊維に捲縮を付与して高い嵩高性を得ることで、ソフト感の向上を図る検討が行われている。 Therefore, studies are being conducted to improve the softness by imparting crimp to the long fibers to obtain high bulkiness.
 例えば、特許文献1には、融解温度が10℃以上異なる2成分のポリマーから構成される捲縮複合繊維が提案されている。 For example, Patent Document 1 proposes a crimped composite fiber composed of two-component polymers having different melting temperatures of 10 ° C. or more.
 また、特許文献2には、2成分のポリマーから構成されるウェブを加熱して捲縮付与した後、冷却し、続いて熱風処理により融着させる技術が提案されている。 Further, Patent Document 2 proposes a technique in which a web composed of a two-component polymer is heated, crimped, cooled, and then fused by hot air treatment.
 さらに、特許文献3には、2成分のポリマーから構成されるウェブを先行的に圧密、エンボスした後、熱風処理により融着させる技術が提案されている。 Further, Patent Document 3 proposes a technique in which a web composed of a two-component polymer is first compacted and embossed, and then fused by hot air treatment.
日本国特許第5484564号公報Japanese Patent No. 5484564 日本国特表2005-514528号公報Japan Special Table 2005-514528 日本国特開2018-024965号公報Japanese Patent Application Laid-Open No. 2018-024965
 特許文献1で開示されている技術によると、紡糸時の捲縮によって嵩高さを向上する効果が得られる。しかし、圧縮しながら熱融着させるエンボスで形態固定するために、十分な嵩高さを得ることはできなかった。 According to the technique disclosed in Patent Document 1, the effect of improving the bulkiness can be obtained by crimping during spinning. However, sufficient bulk could not be obtained in order to fix the shape by embossing by heat fusion while compressing.
 特許文献2で開示されている技術によると、紡糸後の熱処理による捲縮の発現と、その後の熱風での融着を採用することによって、嵩高さが向上する。しかし、熱処理を2度行う必要があるため、生産性が劣るとともに、嵩高さが十分でない問題があった。 According to the technique disclosed in Patent Document 2, the bulkiness is improved by adopting the occurrence of crimping by heat treatment after spinning and the subsequent fusion with hot air. However, since it is necessary to perform the heat treatment twice, there is a problem that the productivity is inferior and the bulkiness is not sufficient.
 特許文献3で開示されている技術によると、紡糸時の捲縮によって嵩高さを向上している。しかし、その後、圧密処理を行った後に、更にエンボス加工や熱風処理によって融着するという複雑なプロセスであり、圧密処理による嵩高さの低下があるとともに、やはり、生産性に問題があった。 According to the technique disclosed in Patent Document 3, the bulkiness is improved by crimping during spinning. However, after that, it is a complicated process in which consolidation treatment is performed and then fusion is performed by embossing or hot air treatment, and the bulkiness is reduced by the consolidation treatment, and there is also a problem in productivity.
 このように、従来、生産性、安定性に優れ、かつ、衛生材料として使用するのに満足のいくレベルの高い嵩高性を有するスパンボンド不織布が得られていなかった。 As described above, conventionally, a spunbonded non-woven fabric having excellent productivity and stability and having a high bulkiness that is satisfactory for use as a sanitary material has not been obtained.
 そこで、本発明の目的は、上記の事情に鑑みてなされたものであって、生産性、安定性に優れ、かつ、衛生材料として使用するのに満足のいくレベルの高い嵩高性を有するスパンボンド不織布を提供することである。 Therefore, an object of the present invention has been made in view of the above circumstances, and is a spunbond having excellent productivity and stability, and having a high level of bulkiness that is satisfactory for use as a sanitary material. It is to provide a non-woven fabric.
 本発明者らは、上記目的を達成するべく鋭意検討を重ねた結果、特定のポリマーの組合せを採用することによって、捲縮の発現や長繊維同士を融着させる工程において、長繊維が十分な剛性を維持することができるため、従来技術の製法に比べてシンプルなプロセスで、高い嵩高性を有するスパンボンド不織布が得られるという知見を得た。 As a result of diligent studies to achieve the above object, the present inventors have sufficient long fibers in the step of developing crimps and fusing long fibers with each other by adopting a specific polymer combination. Since the rigidity can be maintained, it has been found that a spunbonded non-woven fabric having high bulkiness can be obtained by a simple process as compared with the conventional manufacturing method.
 本発明は、これら知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。 The present invention has been completed based on these findings, and the following inventions are provided according to the present invention.
<1>長繊維を含有するスパンボンド不織布であって、
 前記長繊維は、ポリマーA及びポリマーBを含有し、
 前記ポリマーBの融解温度が前記ポリマーAの融解温度よりも30℃以上高く、
 前記スパンボンド不織布の見掛け密度が0.050g/cm以下である、スパンボンド不織布。
<2>前記ポリマーAがポリオレフィン系ポリマーであり、前記ポリマーBがポリエステル系ポリマーである、<1>に記載のスパンボンド不織布。
<3>前記長繊維がサイドバイサイド繊維である、<1>又は<2>に記載のスパンボンド不織布。
<4>前記長繊維のうちの任意の2本の長繊維を接続する接続部を複数有し、
 前記接続部のうちの少なくとも1つが前記ポリマーAを含む、<1>~<3>のいずれか1つに記載のスパンボンド不織布。
<5>前記長繊維の断面形状がダンベル形である、<1>~<4>のいずれか1つに記載のスパンボンド不織布。
<6>少なくとも表層が、<1>~<5>のいずれか1つに記載のスパンボンド不織布である、積層不織布。
<1> A spunbonded non-woven fabric containing long fibers.
The long fibers contain polymer A and polymer B and contain
The melting temperature of the polymer B is 30 ° C. or higher higher than the melting temperature of the polymer A.
A spunbonded non-woven fabric having an apparent density of 0.050 g / cm 3 or less.
<2> The spunbonded nonwoven fabric according to <1>, wherein the polymer A is a polyolefin-based polymer and the polymer B is a polyester-based polymer.
<3> The spunbonded nonwoven fabric according to <1> or <2>, wherein the long fibers are side-by-side fibers.
<4> A plurality of connecting portions for connecting any two long fibers of the long fibers are provided.
The spunbonded nonwoven fabric according to any one of <1> to <3>, wherein at least one of the connecting portions contains the polymer A.
<5> The spunbonded nonwoven fabric according to any one of <1> to <4>, wherein the long fibers have a dumbbell-shaped cross section.
<6> A laminated non-woven fabric in which at least the surface layer is the spunbonded non-woven fabric according to any one of <1> to <5>.
 本発明によれば、生産性、安定性に優れ、かつ、高い嵩高性を有するスパンボンド不織布を得ることができる。特に、本発明のスパンボンド不織布は、優れた生産性と、高い嵩高性から得られる優れたソフト感を有するという特徴から、高い生産性と触り心地の両立を強く求められる紙おむつや生理用ナプキン等の衛生材料に対し、好適に用いることができる。 According to the present invention, it is possible to obtain a spunbonded nonwoven fabric having excellent productivity and stability and high bulkiness. In particular, the spunbonded non-woven fabric of the present invention is characterized by having excellent productivity and an excellent soft feeling obtained from high bulkiness, and therefore, paper diapers, sanitary napkins, etc., which are strongly required to have both high productivity and feel. It can be suitably used for sanitary materials of.
図1は、本発明のスパンボンド不織布に用いられる長繊維の一実施形態の断面図である。図1の長繊維は、断面形状がダンベル形のサイドバイサイド繊維である。FIG. 1 is a cross-sectional view of an embodiment of a long fiber used in the spunbonded nonwoven fabric of the present invention. The long fibers of FIG. 1 are side-by-side fibers having a dumbbell-shaped cross section.
 本発明のスパンボンド不織布は、ポリマーA及びポリマーBを含有する長繊維を含有し、ポリマーBの融解温度がポリマーAの融解温度よりも30℃以上高く、該スパンボンド不織布の見掛け密度が0.05g/cm以下である。
 以下に、この詳細について説明する。
The spunbonded nonwoven fabric of the present invention contains long fibers containing polymer A and polymer B, the melting temperature of polymer B is 30 ° C. or higher higher than the melting temperature of polymer A, and the apparent density of the spunbonded nonwoven fabric is 0. It is 05 g / cm 3 or less.
The details will be described below.
 [ポリマーA及びポリマーB]
 ポリマーA及びポリマーBとしては、例えば、熱可塑性樹脂を用いることができる。
 熱可塑性樹脂の例としては、「ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリヘキサメチレンテレフタレート」等の芳香族ポリエステル系ポリマー及びその共重合体、「ポリ乳酸、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、ポリヒドロキシブチレート-ポリヒドロキシバリレート共重合体、ポリカプロラクトン」等の脂肪族ポリエステル系ポリマー及びその共重合体、「ポリアミド6、ポリアミド66、ポリアミド610、ポリアミド10、ポリアミド12、ポリアミド6-12」等の脂肪族ポリアミド系ポリマー及びその共重合体、「ポリプロピレン、ポリエチレン、ポリブテン、ポリメチルペンテン」等のポリオレフィン系ポリマー及びその共重合体、エチレン単位を25モル%から70モル%含有する水不溶性のエチレン-ビニルアルコール共重合体系ポリマー、ポリスチレン系、ポリジエン系、塩素系、ポリオレフィン系、ポリエステル系、ポリウレタン系、ポリアミド系、フッ素系のエラストマー系ポリマー等が挙げられる。これらの中から少なくとも2種類を選んでポリマーA及びポリマーBとして用いることができる。
[Polymer A and Polymer B]
As the polymer A and the polymer B, for example, a thermoplastic resin can be used.
Examples of thermoplastic resins include aromatic polyester-based polymers such as "polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate" and their copolymers, "polylactic acid, polyethylene succinate, polybutylene succinate". Aliper polyester polymers such as "Nate, polybutylene succinate adipate, polyhydroxybutyrate-polyhydroxyvariate copolymer, polycaprolactone" and their copolymers, "Polymer 6, Polyamide 66, Polyamide 610, Polyamide 10, Aliper polyamide polymers such as polyamide 12, polyamide 6-12 and their copolymers, polyolefin polymers such as "polypropylene, polyethylene, polybutene, polymethylpentene" and their copolymers, ethylene units from 25 mol% Examples thereof include water-insoluble ethylene-vinyl alcohol copolymer-based polymers containing 70 mol%, polystyrene-based, polydiene-based, chlorine-based, polyolefin-based, polyester-based, polyurethane-based, polyamide-based, and fluorine-based elastomer-based polymers. At least two types can be selected from these and used as the polymer A and the polymer B.
 ここで、低融解温度成分となるポリマーAとしては、前記の熱可塑性樹脂の中でも比較的融解温度が低いポリマーを選択することが好ましく、「ポリプロピレン、ポリエチレン、ポリブテン、ポリメチルペンテン」等のポリオレフィン系ポリマー及びその共重合体を用いることが好ましい。 Here, as the polymer A to be a low melting temperature component, it is preferable to select a polymer having a relatively low melting temperature among the above-mentioned thermoplastic resins, and a polyolefin-based polymer such as "polypropylene, polyethylene, polybutene, polymethylpentene" is used. It is preferable to use a polymer and a copolymer thereof.
 一方、高融解温度成分となるポリマーBとしては、「ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリヘキサメチレンテレフタレート」等の芳香族ポリエステル系ポリマー及びその共重合体、「ポリ乳酸、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、ポリヒドロキシブチレート-ポリヒドロキシバリレート共重合体、ポリカプロラクトン」等の脂肪族ポリエステル系ポリマー及びその共重合体を用いることが好ましい。 On the other hand, as the polymer B having a high melting temperature component, aromatic polyester-based polymers such as "polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate" and their copolymers, "polylactic acid, polyethylene succi" It is preferable to use an aliphatic polyester polymer such as "Nate, polybutylene succinate, polybutylene succinate adipate, polyhydroxybutyrate-polyhydroxyvariate copolymer, polycaprolactone" and its copolymer.
 特に、優れた強度と、優れた耐毛羽立ち性のスパンボンド不織布を得やすいことから、ポリマーBとしては、「ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリヘキサメチレンテレフタレート」等の芳香族ポリエステル系を用いることがより好ましい。 In particular, since it is easy to obtain a spunbonded non-woven fabric having excellent strength and excellent fluff resistance, the polymer B is an aromatic polyester such as "polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate". It is more preferable to use a system.
 ここで、前記のとおりポリマーBの融解温度がポリマーAの融解温度よりも30℃以上高い。ポリマーBの融解温度とポリマーAの融解温度との差は、60℃以上が好ましく、80℃以上がより好ましい。このようにすることで、衛生材料用途に好適な嵩高性を有するスパンボンド不織布を得ることができる。 Here, as described above, the melting temperature of the polymer B is 30 ° C. or more higher than the melting temperature of the polymer A. The difference between the melting temperature of the polymer B and the melting temperature of the polymer A is preferably 60 ° C. or higher, more preferably 80 ° C. or higher. By doing so, it is possible to obtain a spunbonded nonwoven fabric having bulkiness suitable for use as a sanitary material.
 本発明で用いられるポリマーAの融解温度及びポリマーBの融解温度は、100℃以上300℃以下であることが好ましく、より好ましくは120℃以上280℃以下である。融解温度を100℃以上とすることにより、実用に耐え得る耐熱性が得られやすくなる。 The melting temperature of the polymer A and the melting temperature of the polymer B used in the present invention are preferably 100 ° C. or higher and 300 ° C. or lower, more preferably 120 ° C. or higher and 280 ° C. or lower. By setting the melting temperature to 100 ° C. or higher, it becomes easy to obtain heat resistance that can withstand practical use.
 また、ポリマーAの融解温度及びポリマーBの融解温度は、好ましくは300℃以下、より好ましくは280℃以下である。融解温度を300℃以下とすることにより、口金から吐出された糸条を冷却し易くなり、繊維同士の融着を抑制し、得られるスパンボンド不織布は欠点の少ないものとなる。 Further, the melting temperature of the polymer A and the melting temperature of the polymer B are preferably 300 ° C. or lower, more preferably 280 ° C. or lower. By setting the melting temperature to 300 ° C. or lower, it becomes easier to cool the threads discharged from the mouthpiece, fusion of fibers is suppressed, and the obtained spunbonded non-woven fabric has few defects.
 本発明における融解温度とは、示差走査熱量計(例えば、TA Instruments社製「DSCQ2000」など)を用い、窒素雰囲気下において、昇温速度16℃/分の条件で測定された吸熱ピークのピークトップ温度のことを指す。 The melting temperature in the present invention is the peak top of the endothermic peak measured at a heating rate of 16 ° C./min under a nitrogen atmosphere using a differential scanning calorimeter (for example, "DSCQ2000" manufactured by TA Instruments). Refers to temperature.
 また、ポリマーA及びポリマーBには、本発明の効果を損なわない範囲で、酸化防止剤、耐候安定剤、耐光安定剤、帯電防止剤、紡曇剤、ブロッキング防止剤、核剤、及び顔料等の添加物、あるいは他の重合体を必要に応じて添加することができる。 Further, the polymers A and B include antioxidants, weather stabilizers, light stabilizers, antistatic agents, antifoaming agents, antiblocking agents, nucleating agents, pigments and the like, as long as the effects of the present invention are not impaired. Additives or other polymers can be added as needed.
 [長繊維]
 本発明のスパンボンド不織布に含まれる長繊維は、前記のポリマーA及びポリマーBを含有し、ポリマーA及びポリマーBからなる長繊維であることが好ましい。この長繊維では、ポリマーA及びポリマーBがそれぞれに領域を形成していて、かつ、ポリマーA及びポリマーBが界面を持って接着している。長繊維は、サイドバイサイド繊維、偏心芯鞘繊維などといった形態の複合繊維から選択することができる。
[Long fiber]
The long fibers contained in the spunbonded nonwoven fabric of the present invention preferably contain the above-mentioned polymer A and polymer B, and are long fibers composed of the polymer A and the polymer B. In this long fiber, the polymer A and the polymer B form a region respectively, and the polymer A and the polymer B are adhered with an interface. The long fibers can be selected from composite fibers in the form of side-by-side fibers, eccentric core sheath fibers and the like.
 中でも、高度な捲縮を得るという観点では、両ポリマーのポジションや量を制御しやすいことから、長繊維としてはサイドバイサイド繊維を用いることが好ましい。特に、図1に示されるようなダンベル形のサイドバイサイド繊維とすることが、微細な捲縮を付与しやすいことからより好ましい。 Above all, from the viewpoint of obtaining a high degree of crimping, it is preferable to use side-by-side fibers as the long fibers because it is easy to control the positions and amounts of both polymers. In particular, it is more preferable to use dumbbell-shaped side-by-side fibers as shown in FIG. 1 because it is easy to impart fine crimps.
 一方、ポリマーAの溶融粘度とポリマーBの溶融粘度とに差がある場合は、紡糸性の観点から長繊維としては偏心芯鞘繊維を用いることも好ましい態様である。本発明でいう溶融粘度に差があるとは、動的粘弾性評価装置(例えば、UBM社製「Rheosol-G3000」)を用いて紡糸温度にて測定した際の粘度カーブから、せん断速度をゼロに外挿した粘度において、一方が他方よりも10%以上大きいことを指す。 On the other hand, when there is a difference between the melt viscosity of the polymer A and the melt viscosity of the polymer B, it is also a preferable embodiment to use the eccentric core sheath fiber as the long fiber from the viewpoint of spinnability. The difference in melt viscosity referred to in the present invention means that the shear rate is zero from the viscosity curve measured at the spinning temperature using a dynamic viscoelasticity evaluation device (for example, "Rheosol-G3000" manufactured by UBM). It means that one is 10% or more larger than the other in the viscosity extrapolated to.
 [スパンボンド不織布]
 本発明のスパンボンド不織布は、単位目付当たりの引張強度が、0.3(N/5cm)/(g/m)以上10.0(N/5cm)/(g/m)以下であることが好ましい。
[Spanbond non-woven fabric]
The spunbonded non-woven fabric of the present invention has a tensile strength per unit basis weight of 0.3 (N / 5 cm) / (g / m 2 ) or more and 10.0 (N / 5 cm) / (g / m 2 ) or less. Is preferable.
 単位目付当たりの引張強度が、0.3(N/5cm)/(g/m)以上であることによって、紙おむつ等を製造する際の工程通過性や製品としての使用に耐え得るものとなる。単位目付当たりの引張強度は、より好ましくは0.4(N/5cm)/(g/m)以上、さらに好ましくは0.5(N/5cm)/(g/m)以上である。 When the tensile strength per unit basis weight is 0.3 (N / 5 cm) / (g / m 2 ) or more, it can withstand the process passability when manufacturing disposable diapers and the use as a product. .. The tensile strength per unit basis weight is more preferably 0.4 (N / 5 cm) / (g / m 2 ) or more, and further preferably 0.5 (N / 5 cm) / (g / m 2 ) or more.
 一方、単位目付当たりの引張強度が、10.0(N/5cm)/(g/m)以下であることによって、スパンボンド不織布の柔軟性をより兼ね備えさせることができる。単位目付当たりの引張強度は、より好ましくは8.0(N/5cm)/(g/m)以下、さらに好ましくは6.0(N/5cm)/(g/m)以下である。 On the other hand, when the tensile strength per unit basis weight is 10.0 (N / 5 cm) / (g / m 2 ) or less, the flexibility of the spunbonded non-woven fabric can be further combined. The tensile strength per unit basis weight is more preferably 8.0 (N / 5 cm) / (g / m 2 ) or less, and further preferably 6.0 (N / 5 cm) / (g / m 2 ) or less.
 単位目付当たりの引張強度は、前記の熱可塑性樹脂、添加物、繊維径、及び/又は、後述する紡糸速度、目付、見掛け密度、ボンディングの方法によって制御することができる。 The tensile strength per unit basis weight can be controlled by the above-mentioned thermoplastic resin, additives, fiber diameter, and / or the spinning speed, basis weight, apparent density, and bonding method described later.
 本発明でいうスパンボンド不織布の単位目付当たりの引張強度は、JIS L1913:2010「一般不織布試験方法」の「6.3 引張強さ及び伸び率(ISO法)」の「6.3.1 標準時」に準じて実施する、つかみ間隔が少なくとも5cmの引張試験により、直交する2つの方向の、引張強度(サンプルが破断したときの強度)の平均を、後述する方法によって測定される目付で除した値である。 The tensile strength per unit of the spunbonded non-woven fabric in the present invention is "6.3. Tensile strength and elongation (ISO method)" of JIS L1913: 2010 "General non-woven fabric test method", "6.3.1 Standard time". In a tensile test with a gripping interval of at least 5 cm, the average tensile strength (strength when the sample broke) in two orthogonal directions was divided by the scale measured by the method described later. The value.
 本発明のスパンボンド不織布は、厚みが0.05mm以上1.50mm以下であることが好ましい。 The spunbonded nonwoven fabric of the present invention preferably has a thickness of 0.05 mm or more and 1.50 mm or less.
 厚みが0.05mm以上であることによって、スパンボンド不織布が適度なクッション性を有するものとなる。厚みは、より好ましくは0.07mm以上、さらに好ましくは0.09mm以上である。 When the thickness is 0.05 mm or more, the spunbonded non-woven fabric has an appropriate cushioning property. The thickness is more preferably 0.07 mm or more, still more preferably 0.09 mm or more.
 一方、厚みが1.50mm以下であることによって、スパンボンド不織布が曲げ柔軟性に優れたものとなる。厚みは、より好ましくは0.14mm以下、さらに好ましくは0.13mm以下である。 On the other hand, when the thickness is 1.50 mm or less, the spunbonded non-woven fabric has excellent bending flexibility. The thickness is more preferably 0.14 mm or less, still more preferably 0.13 mm or less.
 本発明におけるスパンボンド不織布の厚みとは、特に限定するものではないが、例えば、形状測定機(例えば、キーエンス社製「VR3050」)で測定した、無荷重での厚みをいう。 The thickness of the spunbonded nonwoven fabric in the present invention is not particularly limited, but refers to, for example, the thickness under no load measured by a shape measuring machine (for example, "VR3050" manufactured by KEYENCE CORPORATION).
 本発明のスパンボンド不織布は、目付が10g/m以上100g/m以下であることが好ましい。 The spunbonded nonwoven fabric of the present invention preferably has a basis weight of 10 g / m 2 or more and 100 g / m 2 or less.
 スパンボンド不織布の目付が10g/m以上であることによって、スパンボンド不織布を衛生材料用途に適した厚みとしやすく、実用に供し得る機械強度を有するスパンボンド不織布とすることができる。 When the basis weight of the spunbonded nonwoven fabric is 10 g / m 2 or more, the spunbonded nonwoven fabric can be easily made into a thickness suitable for sanitary material use, and can be a spunbonded nonwoven fabric having mechanical strength that can be put into practical use.
 一方、スパンボンド不織布の目付が100g/m以下であることによって、通気性や柔軟性に優れたスパンボンド不織布とすることができる。スパンボンド不織布の目付は、より好ましくは80g/m以下、さらに好ましくは60g/m以下である。 On the other hand, when the basis weight of the spunbonded non-woven fabric is 100 g / m 2 or less, the spunbonded non-woven fabric having excellent breathability and flexibility can be obtained. The basis weight of the spunbonded non-woven fabric is more preferably 80 g / m 2 or less, still more preferably 60 g / m 2 or less.
 なお、本発明におけるスパンボンド不織布の目付(g/m)とは、JIS L1913:2010の「6.2 単位面積当たりの質量」に基づき、20cm×25cmの試験片を、試料の幅1m当たり3枚採取し、標準状態におけるそれぞれの質量(g)を量り、その平均値から算出する1m当たりの質量を指すこととする。 The texture (g / m 2 ) of the spunbonded non-woven fabric in the present invention is based on "6.2 Mass per unit area" of JIS L1913: 2010, and a 20 cm × 25 cm test piece is used per 1 m of sample width. Three sheets are collected, each mass (g) in the standard state is weighed, and the mass per 1 m 2 calculated from the average value is used.
 本発明のスパンボンド不織布は、見掛け密度が0.050g/cm以下である。 The spunbonded nonwoven fabric of the present invention has an apparent density of 0.050 g / cm 3 or less.
 スパンボンド不織布の見掛け密度が0.050g/cm以下であることで、通気性や柔軟性に優れたスパンボンド不織布を得やすく、高い嵩高性を感じ取り易くなる。スパンボンド不織布の見掛け密度は、好ましくは0.045g/cm以下、より好ましくは0.040g/cm以下である。 When the apparent density of the spunbonded non-woven fabric is 0.050 g / cm 3 or less, it is easy to obtain the spunbonded non-woven fabric having excellent breathability and flexibility, and it is easy to feel the high bulkiness. The apparent density of the spunbonded non-woven fabric is preferably 0.045 g / cm 3 or less, more preferably 0.040 g / cm 3 or less.
 スパンボンド不織布の見掛け密度の下限は特に限定するものではないが、例えば、0.01g/cm以上であることで実用に供し得る形態安定性が得やすい。 The lower limit of the apparent density of the spunbonded non-woven fabric is not particularly limited, but for example, when it is 0.01 g / cm 3 or more, it is easy to obtain morphological stability that can be put into practical use.
 なお、本発明でいうスパンボンド不織布の見掛け密度とは、前記の目付を前記の厚みで除した値である。 The apparent density of the spunbonded nonwoven fabric in the present invention is a value obtained by dividing the basis weight by the thickness.
 本発明のスパンボンド不織布は、長繊維のうちの任意の2本の長繊維を接続する接続部を複数有し、接続部のうちの少なくとも1つが前記ポリマーAを含むことが、高い形態安定性を得られるため、好ましい。 The spunbonded nonwoven fabric of the present invention has a plurality of connecting portions for connecting any two long fibers of the long fibers, and at least one of the connecting portions contains the polymer A, resulting in high morphological stability. It is preferable because it can be obtained.
 なお、上記接続部がポリマーAを含む状態とは、ある長繊維とそれに隣接する長繊維とが、ポリマーAによって部分的に融着している状態のことをいい、長繊維同士が連続して融着して一定の幅を有するフィルム状になっている箇所を実質的に有さない状態のことをいう。 The state in which the connecting portion contains the polymer A means a state in which a certain long fiber and a long fiber adjacent thereto are partially fused by the polymer A, and the long fibers are continuously fused to each other. It refers to a state in which there is substantially no portion that is fused to form a film having a certain width.
 [スパンボンド不織布の製造方法]
 次に、本発明のスパンボンド不織布の製造方法の好ましい態様を、具体的に説明する。
 スパンボンド不織布を製造するためのスパンボンド法では、原料である熱可塑性樹脂(ポリマーA、ポリマーB)を溶融し、紡糸口金から紡糸して、冷却固化して糸条を得る。そして、得られた糸条に対し、エジェクターで牽引し延伸して、長繊維を得る。そして、得られた長繊維を移動するネット上に捕集して不織繊維ウェブ化した後、不織繊維ウェブを熱接着する工程を経てスパンボンド不織布が得られる。
[Manufacturing method of spunbonded non-woven fabric]
Next, a preferred embodiment of the method for producing a spunbonded nonwoven fabric of the present invention will be specifically described.
In the spunbond method for producing a spunbonded non-woven fabric, a thermoplastic resin (polymer A, polymer B) as a raw material is melted, spun from a spinneret, and cooled and solidified to obtain a yarn. Then, the obtained yarn is towed and stretched by an ejector to obtain long fibers. Then, the obtained long fibers are collected on a moving net to form a non-woven fiber web, and then a spunbonded non-woven fabric is obtained through a step of heat-bonding the non-woven fiber web.
 用いられる紡糸口金やエジェクターの形状としては、丸形や矩形等種々のものを採用することができる。なかでも、圧縮エアの使用量が比較的少なく、糸条同士の融着や擦過が起こりにくいという観点から、矩形口金と矩形エジェクターの組み合わせを用いることが好ましい態様である。 As the shape of the spinneret and ejector used, various shapes such as a round shape and a rectangular shape can be adopted. Among them, it is preferable to use a combination of a rectangular base and a rectangular ejector from the viewpoint that the amount of compressed air used is relatively small and the yarns are less likely to be fused or scratched.
 本発明で用いられる長繊維の好ましい製造方法を例示すると、ポリマーAとポリマーBをそれぞれ別の押出機において溶融し計量して、サイドバイサイドや偏心芯鞘型の複合紡糸口金へと供給し、長繊維として紡出する。このとき、低融解温度成分となるポリマーAが表面に露出していると、後述の熱接着工程で長繊維同士を接着させやすいため、好ましい。 To exemplify a preferable method for producing long fibers used in the present invention, polymer A and polymer B are melted and weighed in different extruders and supplied to a side-by-side or eccentric core-sheath type composite spinneret to supply long fibers. Spin as. At this time, if the polymer A, which is a low melting temperature component, is exposed on the surface, it is preferable because the long fibers are easily bonded to each other in the heat bonding step described later.
 本発明において、紡糸温度は、(原料である熱可塑性樹脂の融解温度+10℃)以上(原料である熱可塑性樹脂の融解温度+100℃)以下とすることが好ましい。紡糸温度を上記範囲内とすることにより、安定した溶融状態とし、優れた紡糸安定性を得ることができるためである。 In the present invention, the spinning temperature is preferably (melting temperature of the raw material thermoplastic resin + 10 ° C.) or more (melting temperature of the raw material thermoplastic resin + 100 ° C.) or less. This is because by setting the spinning temperature within the above range, a stable molten state can be obtained and excellent spinning stability can be obtained.
 紡出された長繊維の糸条は、次に冷却されるが、紡出された糸条を冷却する方法としては、例えば、冷風を強制的に糸条に吹き付ける方法、糸条周りの雰囲気温度で自然冷却する方法、及び紡糸口金とエジェクター間の距離を調整する方法等が挙げられ、またはこれらの方法を組み合わせた方法を採用することができる。また、冷却条件は、紡糸口金の単孔あたりの吐出量、紡糸する温度及び雰囲気温度等を考慮して適宜調整することができる。 The spun long fiber yarn is cooled next, and as a method of cooling the spun yarn, for example, a method of forcibly blowing cold air onto the yarn, an atmospheric temperature around the yarn, etc. A method of naturally cooling the yarn, a method of adjusting the distance between the spinneret and the ejector, and the like, or a method in which these methods are combined can be adopted. Further, the cooling conditions can be appropriately adjusted in consideration of the discharge amount per single hole of the spinneret, the spinning temperature, the atmospheric temperature and the like.
 次に、冷却固化された糸条は、エジェクターから噴射される圧縮エアによって牽引され、延伸される。 Next, the cooled and solidified yarn is towed and stretched by the compressed air injected from the ejector.
 紡糸速度は、2000m/分以上であることが好ましく、より好ましくは3000m/分以上であり、さらに好ましくは4000m/分以上である。紡糸速度を2000m/分以上とすることにより、高い生産性を有することになり、また繊維の配向結晶化が進み、高い強度の長繊維を得ることができる。 The spinning speed is preferably 2000 m / min or more, more preferably 3000 m / min or more, and further preferably 4000 m / min or more. By setting the spinning speed to 2000 m / min or more, high productivity can be obtained, orientation and crystallization of fibers can be advanced, and high-strength long fibers can be obtained.
 続いて、得られた長繊維を、移動するネット上に捕集して不織繊維ウェブ化する。本発明においては、高い紡糸速度で延伸するため、エジェクターから出た繊維は、高速の気流で制御された状態でネットに捕集されることとなり、繊維の絡みが少なく均一性の高い不織繊維ウェブを得ることができる。 Subsequently, the obtained long fibers are collected on a moving net and made into a non-woven fiber web. In the present invention, since the fibers are drawn at a high spinning speed, the fibers emitted from the ejector are collected in the net in a state controlled by a high-speed air flow, and the fibers are less entangled and highly uniform non-woven fibers. You can get the web.
 このような不織繊維ウェブは、1枚の不織繊維ウェブだけを用いてスパンボンド不織布とすることもできるが、複数の紡糸設備を工程方向に並べて複数のウェブを重ね、スパンボンド不織布を得ることも、生産性を高めることができる点で好ましい態様である。 Such a non-woven fiber web can be made into a spunbonded non-woven fabric by using only one non-woven fiber web, but a plurality of spinning facilities are arranged in the process direction and a plurality of webs are stacked to obtain a spunbonded non-woven fabric. This is also a preferable embodiment in that the productivity can be increased.
 また、このとき不織繊維ウェブごとに原料や工程条件を変えることができる。さらに、積層不織布を得るために、メルトブロー不織布の層を積層することも好ましい態様の一つである。本発明において、これらの積層体もまとめて「不織繊維ウェブ」と呼称する。 At this time, the raw materials and process conditions can be changed for each non-woven fiber web. Further, in order to obtain a laminated nonwoven fabric, it is also one of the preferable embodiments to laminate layers of the melt blow nonwoven fabric. In the present invention, these laminates are also collectively referred to as "non-woven fiber web".
 続いて、得られた不織繊維ウェブを、熱接着により一体化することにより、意図するスパンボンド不織布、あるいは、積層不織布を得ることができる。 Subsequently, the intended non-woven fabric or laminated non-woven fabric can be obtained by integrating the obtained non-woven fiber webs by heat bonding.
 上記の不織繊維ウェブを熱接着により一体化する方法としては、加熱された空気で熱接着する方法、ロールで熱接着する方法等が挙げられる。 Examples of the method of integrating the non-woven fiber webs by heat bonding include a method of heat bonding with heated air, a method of heat bonding with a roll, and the like.
 熱接着に用いるロールとしては、上下一対のロール表面にそれぞれ彫刻(凹凸部)が施された熱エンボスロール、ロール表面がフラット(平滑)な片方のロールとロール表面に彫刻(凹凸部)が施された他方のロールとの組み合わせからなる熱エンボスロール、及び上下一対のフラット(平滑)ロールの組み合わせからなる熱カレンダーロール等が挙げられる。 The rolls used for heat bonding include a heat embossed roll with engraving (unevenness) on the upper and lower roll surfaces, one roll with a flat (smooth) roll surface, and engraving (unevenness) on the roll surface. Examples thereof include a thermal embossing roll composed of a combination with the other roll, and a thermal calendar roll composed of a combination of a pair of upper and lower flat (smooth) rolls.
 本発明では、高い嵩高さを得るため、前記のロールによる加圧を伴わない、加熱された空気で熱接着する方法が好ましい。加熱された空気によって熱接着する方法では、ポリマーAの融解温度とポリマーBの融解温度との間の温度に空気を加熱することが、厚みを保持したまま形態固定できるため、好ましい。 In the present invention, in order to obtain a high bulkiness, a method of heat-bonding with heated air without pressurization by the roll is preferable. In the method of heat-bonding with heated air, it is preferable to heat the air to a temperature between the melting temperature of the polymer A and the melting temperature of the polymer B because the shape can be fixed while maintaining the thickness.
 [積層不織布]
 本発明の積層不織布は、少なくとも表層が本発明のスパンボンド不織布である。
[Laminated non-woven fabric]
The laminated nonwoven fabric of the present invention has at least a surface layer of the spunbonded nonwoven fabric of the present invention.
 本発明の積層不織布は、好ましくは、本発明のスパンボンド不織布を表層とし、メルトブロー不織布を内層となるように積層させた積層不織布である。このような構成とすることにより、衛生材料用の積層不織布として、特にウエストギャザー用途に要求されるレベルの耐水性を付与することができる。 The laminated non-woven fabric of the present invention is preferably a laminated non-woven fabric in which the spunbonded non-woven fabric of the present invention is used as a surface layer and melt-blown non-woven fabric is laminated as an inner layer. With such a configuration, as a laminated non-woven fabric for sanitary materials, it is possible to impart a level of water resistance particularly required for waist gather applications.
 なお、本発明の積層不織布の好ましい形態においては、表層にスパンボンド不織布の層(S)が配され、かつ内層にメルトブロー不織布の層(M)が配されていればよく、積層不織布の層の数や組み合わせについては、SMS、SMMS、SSMMS、及びSMSMSなどのように、目的に応じて任意の構成を採用することができる。 In a preferred form of the laminated non-woven fabric of the present invention, it is sufficient that the spunbonded non-woven fabric layer (S) is arranged on the surface layer and the melt-blown non-woven fabric layer (M) is arranged on the inner layer. As for the number and combination, any configuration can be adopted depending on the purpose, such as SMS, SMMS, SMSMS, and SMSMS.
 本発明の積層不織布の目付は、10g/m以上100g/m以下とすることが好ましい。 The basis weight of the laminated non-woven fabric of the present invention is preferably 10 g / m 2 or more and 100 g / m 2 or less.
 積層不織布の目付を10g/m以上とすることにより、実用に供し得る機械的強度の積層不織布を得ることができる。積層不織布の目付は、より好ましくは13g/m以上、さらに好ましくは15g/m以上である。 By setting the basis weight of the laminated nonwoven fabric to 10 g / m 2 or more, it is possible to obtain a laminated nonwoven fabric having mechanical strength that can be put into practical use. The basis weight of the laminated non-woven fabric is more preferably 13 g / m 2 or more, still more preferably 15 g / m 2 or more.
 一方、積層不織布の目付を100g/m以下とすることにより、衛生材料用の不織布としての使用に適した適度な柔軟性を有する積層不織布とすることができる。積層不織布の目付は、より好ましくは50g/m以下、さらに好ましくは35g/m以下である。 On the other hand, by setting the basis weight of the laminated non-woven fabric to 100 g / m 2 or less, it is possible to obtain a laminated non-woven fabric having appropriate flexibility suitable for use as a non-woven fabric for sanitary materials. The basis weight of the laminated non-woven fabric is more preferably 50 g / m 2 or less, still more preferably 35 g / m 2 or less.
 なお、本発明における積層不織布の目付(g/m)とは、JIS L1913:2010の「6.2 単位面積当たりの質量」に基づき、20cm×25cmの試験片を、試料の幅1m当たり3枚採取し、標準状態におけるそれぞれの質量(g)を量り、その平均値から算出する1m当たりの質量を指すこととする。 The texture (g / m 2 ) of the laminated non-woven fabric in the present invention is based on "6.2 Mass per unit area" of JIS L1913: 2010, and a test piece of 20 cm x 25 cm is used as a sample width of 3 per 1 m. Sheets are taken, each mass (g) in the standard state is weighed, and the mass per 1 m 2 calculated from the average value is used.
 本発明のスパンボンド不織布、積層不織布は、前記のとおり、優れた生産性と、高い嵩高性から得られる優れたソフト感を有するという特徴から、高い生産性と触り心地の両立を強く求められる紙おむつや生理用ナプキン等の衛生材料に対し、好適に用いることができる。本発明で言うソフト感とは、表面を撫でたときの触り心地がスムーズで、かつ、厚み方向に適度な弾力を感じる触感である。 As described above, the spunbonded non-woven fabric and the laminated non-woven fabric of the present invention are characterized by having excellent productivity and an excellent soft feeling obtained from high bulkiness, and therefore, paper diapers that are strongly required to have both high productivity and touch comfort. It can be suitably used for sanitary materials such as sanitary napkins and sanitary napkins. The soft feeling referred to in the present invention is a feeling of touch that is smooth when the surface is patted and that an appropriate elasticity is felt in the thickness direction.
 次に、実施例に基づき本発明を具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。なお、各物性の測定において、特段の記載がないものは、前記の方法に基づいて測定を行ったものである。ただし、本発明はこれらの実施例の記載のみに限定されるものではない。 Next, the present invention will be specifically described based on Examples. However, the present invention is not limited to these examples. In addition, in the measurement of each physical property, if there is no particular description, the measurement is performed based on the above method. However, the present invention is not limited to the description of these examples.
 (観察、測定)
 長繊維、ポリマー又はスパンボンド不織布について、以下の観察又は測定を行った。結果を表1に示す。
(Observation, measurement)
The following observations or measurements were made on long fibers, polymers or spunbonded non-woven fabrics. The results are shown in Table 1.
 (1)長繊維断面
 得られた長繊維からランダムに小片サンプル10個を採取し、マイクロスコープで断面を観察し、その形状を確認した。
(1) Long fiber cross section Ten small piece samples were randomly collected from the obtained long fibers, and the cross section was observed with a microscope to confirm the shape.
 (2)融解温度
 ポリマーAの融解温度及びポリマーBの融解温度を、示差走査熱量計〔TA Instruments社製「DSCQ2000」〕を用いて測定した。そして、下記式により、融解温度差(℃)を計算した。
  融解温度差(℃)=ポリマーBの融解温度-ポリマーAの融解温度
(2) Melting temperature The melting temperature of polymer A and the melting temperature of polymer B were measured using a differential scanning calorimeter [“DSCQ2000” manufactured by TA Instruments]. Then, the melting temperature difference (° C.) was calculated by the following formula.
Melting temperature difference (° C) = melting temperature of polymer B-melting temperature of polymer A
 (3)目付
 JIS L1913:2010の「6.2 単位面積当たりの質量」に基づき、20cm×25cmの試験片を、得られたスパンボンド不織布の幅1m当たり3枚採取し、標準状態におけるそれぞれの質量(g)を量り、その平均値から算出する1m当たりの質量を目付とした。
(3) Metsuke Based on "6.2 Mass per unit area" of JIS L1913: 2010, 3 test pieces of 20 cm x 25 cm were collected per 1 m of width of the obtained spunbonded non-woven fabric, and each of them in the standard state. The mass (g) was weighed, and the mass per 1 m 2 calculated from the average value was used as the basis weight.
 (4)厚み
 得られたスパンボンド不織布の無荷重での厚みを、形状測定機(キーエンス社製「VR3050」)で測定した。
(4) Thickness The thickness of the obtained spunbonded non-woven fabric under no load was measured with a shape measuring machine (“VR3050” manufactured by KEYENCE CORPORATION).
 (5)見掛け密度
 JIS L1913:2010の「6.2 単位面積当たりの質量」に基づき、20cm×25cmの試験片を、得られたスパンボンド不織布の幅1m当たり3枚採取し、標準状態におけるそれぞれの質量(g)を量り、その平均値から算出する1m当たりの質量を、形状測定機(キーエンス社製「VR3050」)で測定した。得られた値を、スパンボンド不織布の無荷重での厚みで除した値を見掛け密度とした。
(5) Apparent density Based on "6.2 Mass per unit area" of JIS L1913: 2010, 3 test pieces of 20 cm x 25 cm were collected per 1 m of width of the obtained spunbonded non-woven fabric, and each in the standard state. The mass (g) was measured, and the mass per 1 m 2 calculated from the average value was measured with a shape measuring machine (“VR3050” manufactured by Keyence Co., Ltd.). The value obtained by dividing the obtained value by the thickness of the spunbonded non-woven fabric under no load was taken as the apparent density.
 (6)単位目付当たりの引張強度
 JIS L1913:2010「一般不織布試験方法」の「6.3 引張強さ及び伸び率(ISO法)」の「6.3.1 標準時」に準じて実施した、つかみ間隔が少なくとも5cmの引張試験により、直交する2つの方向の、引張強度(スパンボンド不織布が破断したときの強度)の平均を、目付で除した値を単位目付当たりの引張強度とした。
(6) Tensile strength per unit scale JIS L1913: 2010 "6.3 Tensile strength and elongation (ISO method)" of "General non-woven fabric test method""6.3.1 Standard time" was carried out. By a tensile test with a gripping interval of at least 5 cm, the value obtained by dividing the average of the tensile strengths (strength when the spunbonded non-woven fabric was broken) in two orthogonal directions by the grain was taken as the tensile strength per unit grain.
 (7)ソフト感(級)
 任意に選定した10名が得られたスパンボンド不織布を手で触り、それぞれのスパンボンド不織布に対して、下の基準に従って評価した。各スパンボンド不織布について評価結果の平均点をそのスパンボンド不織布のソフト感とした。
(7) Soft feeling (class)
Ten arbitrarily selected spunbonded non-woven fabrics were touched by hand, and each spunbonded non-woven fabric was evaluated according to the following criteria. The average score of the evaluation results for each spunbonded non-woven fabric was taken as the soft feeling of the spunbonded non-woven fabric.
5:非常に快適で、非常に好きなソフト感であった(表面を撫でたときの触り心地がスムーズで、かつ、厚み方向に適度な弾力を感じる触感であった)。
4:やや快適で、やや好きなソフト感であった。
3:不快ではないが快適でもなく、嫌いではないが好きでもないソフト感であった。
2:やや不快で、やや嫌いなソフト感であった。
1:非常に不快で、非常に嫌いなソフト感であった(表面を撫でたときに引っ掛かりを感じ、押圧した時に強い反発感を感じたか、へたってしまった)。
5: It was very comfortable and I liked it very softly (it was smooth to the touch when stroking the surface, and I felt moderate elasticity in the thickness direction).
4: It was a little comfortable and I liked the soft feeling.
3: It was not unpleasant but not comfortable, and it was a soft feeling that I did not dislike but did not like.
2: It was a little unpleasant and a little disliked soft feeling.
1: It was very unpleasant and I hated it very softly (I felt a catch when stroking the surface, and a strong repulsion when I pressed it, or it was worn out).
 (実施例1)
 ポリマーAとしてポリエチレン(PE)を、ポリマーBとしてポリエチレンテレフタレート(PET)を、それぞれ押出機で溶融し、紡糸温度が290℃で、サイドバイサイド型複合繊維(質量比率は1:1)に成形して、孔径φが0.30mmの孔を有する矩形口金から、単孔吐出量が0.6g/分で紡出した。
(Example 1)
Polyethylene (PE) as polymer A and polyethylene terephthalate (PET) as polymer B were melted by an extruder and molded into side-by-side composite fibers (mass ratio 1: 1) at a spinning temperature of 290 ° C. A single-hole discharge rate of 0.6 g / min was spun from a rectangular base having a hole having a hole diameter of 0.30 mm.
 紡出した糸条を、冷却固化した後、矩形エジェクターにおいてエジェクターでの圧力を0.10MPaとした圧縮エアによって、牽引及び延伸し、移動するネット上に捕集して長繊維を得た。続いて、得られた長繊維を150℃の熱風で加熱して熱接着し目付20g/mのスパンボンド不織布を得た。 The spun yarn was cooled and solidified, and then towed and stretched by compressed air having a pressure at the ejector of 0.10 MPa in a rectangular ejector, and collected on a moving net to obtain long fibers. Subsequently, the obtained long fibers were heated with hot air at 150 ° C. and heat-bonded to obtain a spunbonded nonwoven fabric having a basis weight of 20 g / m 2 .
 (実施例2)
 サイドバイサイド型複合繊維を成形する代わりに、偏心芯鞘型複合繊維を成形した以外は、実施例1と同様にしてスパンボンド不織布を得た。
(Example 2)
A spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that the eccentric core sheath type composite fiber was molded instead of molding the side-by-side type composite fiber.
 (実施例3)
 紡出を以下の条件で行った以外は、実施例1と同様にしてスパンボンド不織布を得た。
  矩形口金における孔の形状:長方形の両側にそれぞれ円が配置されている形状
  長方形の両側に配置された円の直径φ:0.30mm
  長方形の両側に配置された2つの円の中心距離:0.8mm
  単孔吐出量:0.6g/分
(Example 3)
A spunbonded non-woven fabric was obtained in the same manner as in Example 1 except that the spinning was carried out under the following conditions.
Hole shape in the rectangular base: Circles arranged on both sides of the rectangle Diameter of circles arranged on both sides of the rectangle φ: 0.30 mm
Center distance between two circles placed on both sides of the rectangle: 0.8 mm
Single hole discharge rate: 0.6 g / min
 (比較例1)
 ポリプロピレン(PP)を、押出機で溶融し、紡糸温度が230℃で、単成分繊維に成形して、孔径φが0.30mmの孔を有する矩形口金から、単孔吐出量が0.6g/分で紡出した。
(Comparative Example 1)
Polypropylene (PP) is melted by an extruder, molded into a single component fiber at a spinning temperature of 230 ° C., and a single hole discharge rate of 0.6 g / g from a rectangular mouthpiece having a hole with a hole diameter of 0.30 mm. Spinned in minutes.
 紡出した糸条を、冷却固化した後、矩形エジェクターにおいてエジェクターでの圧力を0.10MPaとした圧縮エアによって、牽引及び延伸し、移動するネット上に捕集して長繊維を得た。続いて、得られた長繊維を上ロール及び下ロールで構成される上下一対の熱エンボスロールで熱接着(線圧:50N/cm、熱接着温度:130℃)し、目付20g/mのスパンボンド不織布を得た。 The spun yarn was cooled and solidified, and then towed and stretched by compressed air having a pressure at the ejector of 0.10 MPa in a rectangular ejector, and collected on a moving net to obtain long fibers. Subsequently, the obtained long fibers are heat-bonded (linear pressure: 50 N / cm, heat-bonding temperature: 130 ° C.) with a pair of upper and lower thermal embossing rolls composed of an upper roll and a lower roll, and have a basis weight of 20 g / m 2 . A spunbonded non-woven fabric was obtained.
 このとき、上ロールには、金属製で水玉柄の彫刻が0.5mmの深さでなされた、接着面積率16%のエンボスロールを用いた。また、下ロールには、金属製フラットロールを用いた。 At this time, for the upper roll, an embossed roll made of metal and having a polka dot pattern engraved at a depth of 0.5 mm was used with an adhesive area ratio of 16%. A metal flat roll was used as the lower roll.
 (比較例2)
 ポリマーAとして、共重合PPを、ポリマーBとしてPPを、それぞれ押出機で溶融し、紡糸温度が230℃で、サイドバイサイド型複合繊維(質量比率は1:1)に成形して、孔径φが0.30mmの孔を有する矩形口金から、単孔吐出量が0.6g/分で紡出した以外は比較例1と同様にしてスパンボンド不織布を得た。
(Comparative Example 2)
Copolymerized PP as polymer A and PP as polymer B are melted by an extruder and formed into side-by-side composite fibers (mass ratio 1: 1) at a spinning temperature of 230 ° C., and the pore diameter φ is 0. A spunbonded non-woven fabric was obtained in the same manner as in Comparative Example 1 except that a single-hole discharge rate of 0.6 g / min was spun from a rectangular base having a hole of .30 mm.
 (比較例3)
 ポリマーAとして、PEを用いた以外は比較例2と同様にしてスパンボンド不織布を得た。
(Comparative Example 3)
A spunbonded nonwoven fabric was obtained in the same manner as in Comparative Example 2 except that PE was used as the polymer A.
 (比較例4)
 得られた長繊維を150℃の熱風で加熱して熱接着した以外は比較例1と同様にしてスパンボンド不織布を得た。
(Comparative Example 4)
A spunbonded nonwoven fabric was obtained in the same manner as in Comparative Example 1 except that the obtained long fibers were heated with hot air at 150 ° C. and heat-bonded.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すとおり、実施例1~3のスパンボンド不織布は、官能評価の結果が4.0~5.0であり、ソフト感に優れる結果であった。よって、実施例1~3のスパンボンド不織布は、衛生材料として使用するのに満足のいくレベルの高い嵩高性を有することが分かった。 As shown in Table 1, the spunbonded non-woven fabrics of Examples 1 to 3 had a sensory evaluation result of 4.0 to 5.0, which was an excellent result of a soft feeling. Therefore, it was found that the spunbonded nonwoven fabrics of Examples 1 to 3 have a high level of bulkiness that is satisfactory for use as a sanitary material.
 また、実施例1~3のスパンボンド不織布は、エアスルー不織布に比べて生産性に優れる。さらに、実施例1~3のスパンボンド不織布は、融着していてレベルの高い嵩高性を有するので、形態安定性に優れる。 Further, the spunbonded non-woven fabrics of Examples 1 to 3 are superior in productivity as compared with the air-through non-woven fabric. Further, the spunbonded nonwoven fabrics of Examples 1 to 3 are fused and have a high level of bulkiness, and thus are excellent in morphological stability.
 一方、比較例1~4は、官能評価の結果が2.0以下と、ソフト感に劣ることを示す結果だった。 On the other hand, Comparative Examples 1 to 4 showed that the sensory evaluation result was 2.0 or less, which was inferior to the soft feeling.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2019年7月16日出願の日本特許出願(特願2019-130840)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on July 16, 2019 (Japanese Patent Application No. 2019-130840), the contents of which are incorporated herein by reference.
A ポリマー
B ポリマー
A polymer B polymer

Claims (6)

  1.  長繊維を含有するスパンボンド不織布であって、
     前記長繊維は、ポリマーA及びポリマーBを含有し、
     前記ポリマーBの融解温度が前記ポリマーAの融解温度よりも30℃以上高く、
     前記スパンボンド不織布の見掛け密度が0.050g/cm以下である、スパンボンド不織布。
    A spunbonded non-woven fabric containing long fibers.
    The long fibers contain polymer A and polymer B and contain
    The melting temperature of the polymer B is 30 ° C. or higher higher than the melting temperature of the polymer A.
    A spunbonded non-woven fabric having an apparent density of 0.050 g / cm 3 or less.
  2.  前記ポリマーAがポリオレフィン系ポリマーであり、前記ポリマーBがポリエステル系ポリマーである、請求項1に記載のスパンボンド不織布。 The spunbonded nonwoven fabric according to claim 1, wherein the polymer A is a polyolefin-based polymer and the polymer B is a polyester-based polymer.
  3.  前記長繊維がサイドバイサイド繊維である、請求項1又は2に記載のスパンボンド不織布。 The spunbonded nonwoven fabric according to claim 1 or 2, wherein the long fibers are side-by-side fibers.
  4.  前記長繊維のうちの任意の2本の長繊維を接続する接続部を複数有し、
     前記接続部のうちの少なくとも1つが前記ポリマーAを含む、請求項1~3のいずれか1項に記載のスパンボンド不織布。
    It has a plurality of connecting portions for connecting any two long fibers of the long fibers.
    The spunbonded nonwoven fabric according to any one of claims 1 to 3, wherein at least one of the connecting portions contains the polymer A.
  5.  前記長繊維の断面形状がダンベル形である、請求項1~4のいずれか1項に記載のスパンボンド不織布。 The spunbonded nonwoven fabric according to any one of claims 1 to 4, wherein the long fibers have a dumbbell-shaped cross section.
  6.  少なくとも表層が、請求項1~5のいずれか1項に記載のスパンボンド不織布である、積層不織布。 A laminated non-woven fabric in which at least the surface layer is the spunbonded non-woven fabric according to any one of claims 1 to 5.
PCT/JP2020/027160 2019-07-16 2020-07-10 Spun-bonded nonwoven fabric and laminated nonwoven fabric WO2021010357A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227001064A KR20220034111A (en) 2019-07-16 2020-07-10 Spunbond Nonwovens and Laminated Nonwovens
JP2020540357A JP7567478B2 (en) 2019-07-16 2020-07-10 Spunbond nonwoven fabrics and laminated nonwoven fabrics

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019130840 2019-07-16
JP2019-130840 2019-07-16

Publications (1)

Publication Number Publication Date
WO2021010357A1 true WO2021010357A1 (en) 2021-01-21

Family

ID=74211008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027160 WO2021010357A1 (en) 2019-07-16 2020-07-10 Spun-bonded nonwoven fabric and laminated nonwoven fabric

Country Status (4)

Country Link
JP (1) JP7567478B2 (en)
KR (1) KR20220034111A (en)
TW (1) TWI843872B (en)
WO (1) WO2021010357A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7439997B1 (en) 2022-09-27 2024-02-28 東レ株式会社 Long fiber nonwoven fabric, its manufacturing method, and sanitary materials
WO2024070158A1 (en) * 2022-09-27 2024-04-04 東レ株式会社 Long-fiber nonwoven fabric, manufacturing method thereof, and sanitary material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04174753A (en) * 1990-11-02 1992-06-22 Teijin Ltd Nonwoven filament cloth
JPH06128855A (en) * 1992-10-05 1994-05-10 Unitika Ltd Nonwoven fabric having three-layer structure and its production
JPH0995847A (en) * 1995-10-03 1997-04-08 Unitika Ltd Nonwoven fabric of polylactate-based filament and its production
JPH09111635A (en) * 1995-10-18 1997-04-28 Oji Paper Co Ltd Laminated nonwoven fabric
KR20140034538A (en) * 2012-09-12 2014-03-20 도레이첨단소재 주식회사 Spunbond nonwoven fabric having breathable and waterproof property and manufacturing method thereof
WO2018092444A1 (en) * 2016-11-17 2018-05-24 東レ株式会社 Spun-bonded nonwoven fabric and method for producing same
JP2018199885A (en) * 2017-05-30 2018-12-20 東レ株式会社 Nonwoven fabric
JP2019094584A (en) * 2017-11-21 2019-06-20 東レ株式会社 Nonwoven fabric

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030118816A1 (en) 2001-12-21 2003-06-26 Polanco Braulio A. High loft low density nonwoven webs of crimped filaments and methods of making same
TW200934897A (en) * 2007-12-14 2009-08-16 Es Fiber Visions Co Ltd Conjugate fiber having low-temperature processability, nonwoven fabric and formed article using the conjugate fiber
JP5484564B2 (en) 2010-04-16 2014-05-07 三井化学株式会社 Crimped composite fiber and nonwoven fabric made of the fiber
PL3246444T3 (en) 2016-05-18 2020-09-07 Fibertex Personal Care A/S Method for making a high loft nonwoven web

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04174753A (en) * 1990-11-02 1992-06-22 Teijin Ltd Nonwoven filament cloth
JPH06128855A (en) * 1992-10-05 1994-05-10 Unitika Ltd Nonwoven fabric having three-layer structure and its production
JPH0995847A (en) * 1995-10-03 1997-04-08 Unitika Ltd Nonwoven fabric of polylactate-based filament and its production
JPH09111635A (en) * 1995-10-18 1997-04-28 Oji Paper Co Ltd Laminated nonwoven fabric
KR20140034538A (en) * 2012-09-12 2014-03-20 도레이첨단소재 주식회사 Spunbond nonwoven fabric having breathable and waterproof property and manufacturing method thereof
WO2018092444A1 (en) * 2016-11-17 2018-05-24 東レ株式会社 Spun-bonded nonwoven fabric and method for producing same
JP2018199885A (en) * 2017-05-30 2018-12-20 東レ株式会社 Nonwoven fabric
JP2019094584A (en) * 2017-11-21 2019-06-20 東レ株式会社 Nonwoven fabric

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7439997B1 (en) 2022-09-27 2024-02-28 東レ株式会社 Long fiber nonwoven fabric, its manufacturing method, and sanitary materials
WO2024070158A1 (en) * 2022-09-27 2024-04-04 東レ株式会社 Long-fiber nonwoven fabric, manufacturing method thereof, and sanitary material

Also Published As

Publication number Publication date
KR20220034111A (en) 2022-03-17
JP7567478B2 (en) 2024-10-16
TW202104707A (en) 2021-02-01
JPWO2021010357A1 (en) 2021-01-21
TWI843872B (en) 2024-06-01

Similar Documents

Publication Publication Date Title
US6740609B1 (en) Soft polypropylene melt spun nonwoven fabric
JP2018145544A (en) Bulky combined filament nonwoven fabric excellent in barrier property
US11124907B2 (en) Spun-bonded nonwoven fabric
WO2021010357A1 (en) Spun-bonded nonwoven fabric and laminated nonwoven fabric
TW201904536A (en) Non-woven fabric and laminated non-woven fabric
WO2021256146A1 (en) Spun-bonded nonwoven fabric and sanitary material
JP7247884B2 (en) spunbond nonwoven fabric
KR101874707B1 (en) Spunbond nonwoven fabric having an improved functionality and manufacturing method thereof
CN114450154A (en) Laminated stretchable nonwoven fabric, sanitary material, and method for producing laminated stretchable nonwoven fabric
JP5276305B2 (en) Mixed fiber non-woven fabric
TWI822865B (en) Spunbond nonwoven fabric
CN115003872B (en) Laminated nonwoven fabric and sanitary material
JP7040122B2 (en) Spunbond non-woven fabric
KR101664544B1 (en) Spunbond nonwoven fabric having three dimensional geometry and manufacturing method thereof
JP5503768B2 (en) Mixed fiber non-woven fabric
JP2019094584A (en) Nonwoven fabric
TWI810398B (en) Spunbond nonwovens, spunbond fibers, and laminated nonwovens
CN115380139B (en) Laminated nonwoven fabric and sanitary material
WO2022113711A1 (en) Spunbond nonwoven fabric, and hygienic material equipped therewith
KR101874733B1 (en) The method for manufacturing nonwoven fabric having an improved strechable property and productivity
TW202417707A (en) Long-fiber nonwoven fabric, manufacturing method thereof, and sanitary material
JP2022183506A (en) Spun-bonded nonwoven fabric and core-sheath type conjugate fiber
WO2023090200A1 (en) Spunbond nonwoven fabric
JP2023132020A (en) Laminated nonwoven fabric and absorbent article
CN115380139A (en) Laminated nonwoven fabric and sanitary material

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020540357

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20840527

Country of ref document: EP

Kind code of ref document: A1