Nothing Special   »   [go: up one dir, main page]

WO2021005798A1 - フレキシブル発光デバイスの製造方法及び支持基板 - Google Patents

フレキシブル発光デバイスの製造方法及び支持基板 Download PDF

Info

Publication number
WO2021005798A1
WO2021005798A1 PCT/JP2019/027580 JP2019027580W WO2021005798A1 WO 2021005798 A1 WO2021005798 A1 WO 2021005798A1 JP 2019027580 W JP2019027580 W JP 2019027580W WO 2021005798 A1 WO2021005798 A1 WO 2021005798A1
Authority
WO
WIPO (PCT)
Prior art keywords
release layer
light emitting
light
base
layer
Prior art date
Application number
PCT/JP2019/027580
Other languages
English (en)
French (fr)
Inventor
克彦 岸本
Original Assignee
堺ディスプレイプロダクト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺ディスプレイプロダクト株式会社 filed Critical 堺ディスプレイプロダクト株式会社
Priority to PCT/JP2019/027580 priority Critical patent/WO2021005798A1/ja
Publication of WO2021005798A1 publication Critical patent/WO2021005798A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • the present disclosure relates to a method for manufacturing a flexible light emitting device and a support substrate.
  • Typical examples of flexible displays are films formed from synthetic resins such as polyimide (hereinafter referred to as "resin films"), TFTs (Thin Film Transistors) and OLEDs (Organic Light Emitting Diodes) supported by the resin films. It is equipped with the element of.
  • the resin film functions as a flexible substrate. Since the organic semiconductor layer constituting the OLED is easily deteriorated by water vapor, the flexible display is sealed with a gas barrier film (sealing film).
  • the flexible display can be manufactured using a glass base having a resin film formed on the upper surface.
  • the glass base functions as a support (carrier) that maintains the shape of the resin film flat during the manufacturing process.
  • a light emitting element such as a TFT element and an OLED, a gas barrier film, and the like
  • a flexible display structure is realized while being supported by a glass base.
  • the flexible display is then stripped from the glass base to gain flexibility.
  • the portion where the light emitting elements such as the TFT element and the OLED are arranged can be referred to as a "functional layer region" as a whole.
  • Patent Document 1 discloses a method of irradiating the interface between the flexible substrate and the glass base with an ultraviolet laser beam in order to peel off the flexible substrate on which the light emitting device is placed from the glass base.
  • an amorphous silicon layer is arranged between the flexible substrate and the glass base. Irradiation with ultraviolet laser light generates hydrogen from the amorphous silicon layer and peels the flexible substrate from the glass base.
  • the resin film used for the flexible substrate absorbs ultraviolet rays
  • the influence of the peeling light irradiation on the TFT element and the light emitting element has not been particularly investigated.
  • the strong peeling light used in the peeling step may deteriorate the TFT element and the light emitting element.
  • Such a problem is not limited to the flexible display having an OLED as a light emitting element, and may occur in the manufacture of a flexible light emitting device having a micro LED ( ⁇ LED) formed from an inorganic semiconductor material as a light emitting element.
  • ⁇ LED micro LED
  • the present disclosure provides a new manufacturing method and a support substrate for a flexible light emitting device that can solve the above problems.
  • the method of manufacturing a flexible light emitting device of the present disclosure is located between a base, a functional layer region including a TFT layer and a light emitting element layer, and the base and the functional layer region.
  • the step of irradiating the release layer with the release light to peel the flexible film from the release layer is included.
  • the release layer is formed of an alloy of aluminum and silicon.
  • the ultraviolet exfoliation light is non-coherent light.
  • the light emitting element layer includes a plurality of arranged micro LEDs, and the ultraviolet exfoliation light is laser light.
  • the weight ratio of silicon contained in the alloy is 4% or more and 20% or less.
  • the coefficient of linear expansion of the release layer is 30% or more and 500% or less of the coefficient of linear expansion of the flexible film.
  • the thickness of the release layer is 100 nm or more and 5000 nm or less.
  • the wavelength of the ultraviolet exfoliation light is 300 nm or more and 360 nm or less.
  • the thickness of the flexible film is 5 ⁇ m or more and 20 ⁇ m or less.
  • the steps of preparing the laminated structure include a step of forming the release layer on the base by sputtering an aluminum target containing silicon, and a step of forming the flexible film on the release layer. Including the process.
  • the step of peeling the flexible film from the release layer and then removing the release layer from the base and recovering the film is included.
  • the support substrate of the present disclosure is, in an exemplary embodiment, a support substrate for a flexible light emitting device, a base formed of a release layer made of an alloy of aluminum and silicon and a material that transmits ultraviolet light. , With a base supporting the release layer.
  • a flexible film that covers the release layer and is formed of a material that transmits the ultraviolet rays is further provided.
  • the weight ratio of silicon contained in the alloy is 4% or more and 20% or less.
  • the coefficient of linear expansion of the release layer is 30% or more and 500% or less of the coefficient of linear expansion of the flexible film.
  • the thickness of the release layer is 100 nm or more and 5000 nm or less.
  • a new manufacturing method and a support substrate of a flexible light emitting device that solves the above-mentioned problems are provided.
  • FIG. 3 is a sectional view taken along line BB of the laminated structure shown in FIG. 1A. It is a process sectional view which shows the manufacturing method of the support substrate in embodiment of this disclosure. It is a process sectional view which shows the manufacturing method of the support substrate in embodiment of this disclosure. It is a process sectional view which shows the manufacturing method of the flexible light emitting device in embodiment of this disclosure. It is a process sectional view which shows the manufacturing method of the flexible light emitting device in embodiment of this disclosure. It is a process sectional view which shows the manufacturing method of the flexible light emitting device in embodiment of this disclosure. It is a process sectional view which shows the manufacturing method of the flexible light emitting device in embodiment of this disclosure. It is a process sectional view which shows the manufacturing method of the flexible light emitting device in embodiment of this disclosure.
  • FIG. 13A It is sectional drawing which shows typically the surface light source 215 including a plurality of light emitting diode elements arranged two-dimensionally. It is sectional drawing which shows the surface light source 215 which increased the in-plane number density of the light emitting diode element as compared with the example shown in FIG. It is a figure which shows the array of light emitting diode elements arranged in a row and a column. It is a figure which shows typically the upper surface of the line beam light source 214 which includes one row of light emitting diode elements arranged in the Y-axis direction. It is a BB line sectional view of the laminated structure shown in FIG. 13A.
  • FIG. 14 is a sectional view taken along line BB of the line beam light source shown in FIG. 14A. It is a figure which shows the moving direction of a line beam light source with respect to a laminated structure. It is a top view schematically showing an example of a surface light source in which a large number of light emitting diode elements are arranged in a matrix.
  • a release layer may or may not be provided between the glass base and the flexible substrate.
  • the release layer is not provided, the manufacturing cost is reduced, but the peeling yield is reduced. More specifically, there is a problem that soot-like residues called ash, which are very difficult to remove, are formed on the surfaces of both the glass base and the flexible substrate when irradiated with strong light for peeling (peeling light). is there. This reduces the adhesion of the support film or the like attached to the flexible substrate after the laser lift-off process, and also prevents the glass base from being reused. Further, there is a problem that the irradiation condition range of the peeling light (for example, laser light) that can be appropriately peeled off is narrow.
  • the peeling light for example, laser light
  • the release layer is typically formed from amorphous silicon, but can also be formed from refractory metals (Mo, Cr, W, Ti, etc.).
  • flexible substrates have been formed from resin materials typified by polyimide. Since such a resin material absorbs ultraviolet rays, it has been considered that it is not necessary to particularly study the influence of the peeling light irradiation on the TFT element and the light emitting element.
  • the thickness of the flexible substrate becomes very thin, about 5 ⁇ m to 15 ⁇ m, the ultraviolet rays may not be sufficiently absorbed, and the strong ultraviolet rays used in the peeling step may cause the TFT element and the light emitting element. It was found that it could deteriorate. This problem also occurred when a release layer made of amorphous silicon was provided. This is because amorphous silicon can transmit ultraviolet rays.
  • the release layer when the release layer is formed from the refractory metal, the refractory metal absorbs or reflects ultraviolet rays and does not transmit them, so that the influence of the separation light irradiation on the TFT element and the light emitting element can be prevented.
  • forming a release layer using a refractory metal leads to a significant increase in manufacturing costs.
  • amorphous silicon or refractory metal is used as the material of the release layer. That is, it has been considered that the release layer should be formed from a high melting point material in order to prevent the release layer from being melted by heat generated by irradiation with peeling light.
  • the release layer is formed from an alloy of aluminum and silicon having a low melting point, the release layer is not melted by irradiation with peeling light.
  • aluminum which is the main component, has a large specific heat and latent heat of melting, and is excellent in heat conduction.
  • the alloy of aluminum and silicon has a feature that the coefficient of linear expansion is lower than that of pure aluminum due to the presence of silicon. Generally, the coefficient of linear expansion of metal is larger than the coefficient of linear expansion of glass.
  • aluminum has a larger coefficient of linear expansion than molybdenum, which is a refractory metal. If the difference in the coefficient of thermal expansion between the release layer and the glass base is too large, there may be a problem that a part of the release layer is separated from the glass base due to internal stress or strain.
  • the coefficient of thermal expansion of the alloy of aluminum and silicon can be adjusted in a wide range depending on the silicon content ratio. Further, by adjusting the deposition conditions of the aluminum alloy, the internal stress of the deposited film can be significantly reduced as compared with the internal stress of the refractory metal film (for example, 400 GPa). Therefore, by using an alloy of aluminum and silicon, the problem of peeling of the release layer can be solved.
  • the ability to use an alloy of aluminum and silicon, which is cheaper than refractory metals, as the release layer offers various advantages.
  • refractory metal materials are difficult to recycle, and each glass base to which the release layer is attached must be landfilled and disposed of as industrial waste.
  • the alloy of aluminum and silicon can be easily dissolved and removed by a chemical solution such as acid, so that the recyclability is improved. Therefore, even if the release layer is used, the manufacturing cost can be reduced as a whole.
  • FIGS. 1A and 1B See FIGS. 1A and 1B.
  • the laminated structure 100 exemplified in FIGS. 1A and 1B is prepared.
  • 1A is a plan view of the laminated structure 100
  • FIG. 1B is a sectional view taken along line BB of the laminated structure 100 shown in FIG. 1A.
  • FIGS. 1A and 1B show an XYZ coordinate system having an X-axis, a Y-axis, and a Z-axis that are orthogonal to each other.
  • the laminated structure 100 in the present embodiment is located between the base (mother substrate or carrier) 10, the functional layer region 20 including the TFT layer 20A and the light emitting element layer 20B, and the base 10 and the functional layer region 20.
  • a flexible film 30 that supports the functional layer region 20 and a release layer 12 that is located between the flexible film 30 and the base 10 and is fixed to the base 10 are provided.
  • the release layer 12 is formed of an alloy of aluminum and silicon.
  • the laminated structure 100 further includes a protective sheet 50 that covers the plurality of functional layer regions 20, and a gas barrier film 40 that covers the entire functional layer region 20 between the plurality of functional layer regions 20 and the protective sheet 50. I have.
  • the laminated structure 100 may have other layers (not shown) such as a buffer layer.
  • the light emitting element layer 20B in the present embodiment has, for example, a plurality of OLED elements arranged two-dimensionally.
  • the "light emitting element layer” in the present disclosure means a two-dimensional array of light emitting elements.
  • the individual light emitting element is not limited to the OLED element, and may be a micro LED element.
  • a typical example of the flexible light emitting device in the present embodiment is a "flexible display", but it may be a "flexible lighting device”.
  • a typical example of the base 10 is a glass base having rigidity.
  • a typical example of the flexible film 30 is a synthetic resin film having flexibility.
  • the "flexible film” is simply referred to as a "resin film”.
  • the structure including the release layer 12 and the base 10 supporting the release layer 12 is referred to as a "support substrate" of the flexible light emitting device as a whole.
  • the support substrate may further include another film (eg, a flexible film) that covers the release layer 12.
  • the first surface 100a of the laminated structure 100 in the present embodiment is defined by the base 10, and the second surface 100b is defined by the protective sheet 50.
  • the base 10 and the protective sheet 50 are members that are temporarily used during the manufacturing process, and are not elements that constitute the final flexible light emitting device.
  • the illustrated resin film 30 includes a plurality of flexible substrate regions 30d each supporting the plurality of functional layer regions 20, and an intermediate region 30i surrounding the individual flexible substrate regions 30d.
  • the flexible substrate region 30d and the intermediate region 30i are merely different portions of one continuous resin film 30, and do not need to be physically distinguished.
  • the portion located directly below each functional layer region 20 is the flexible substrate region 30d, and the other portion is the intermediate region 30i.
  • Each of the plurality of functional layer areas 20 finally constitutes a panel of a flexible light emitting device (for example, a "display panel").
  • the laminated structure 100 has a structure in which one base 10 supports a plurality of flexible light emitting devices before division.
  • Each functional layer region 20 has a shape having a thickness (Z-axis direction size) of several tens of ⁇ m, a length (X-axis direction size) of about 12 cm, and a width (Y-axis direction size) of about 7 cm, for example. doing. These sizes can be set to any size depending on the size of the required display screen.
  • the shape of each functional layer region 20 in the XY plane is rectangular in the illustrated example, but is not limited thereto.
  • the shape of each functional layer region 20 in the XY plane may be a square, a polygon, or a shape including a curved line in the contour.
  • the flexible substrate region 30d is two-dimensionally arranged in rows and columns corresponding to the arrangement of the flexible light emitting devices.
  • the intermediate region 30i is composed of a plurality of orthogonal stripes and forms a lattice pattern.
  • the width of the stripe is, for example, about 1 to 4 mm.
  • the flexible substrate region 30d of the resin film 30 functions as a “flexible substrate” for each flexible light emitting device in the form of a final product.
  • the intermediate region 30i of the resin film 30 is not an element constituting the final product.
  • the configuration of the laminated structure 100 is not limited to the illustrated example.
  • the number of functional layer regions 20 (the number of light emitting devices) supported by one base 10 does not have to be plural, and may be singular.
  • the intermediate region 30i of the resin film 30 forms a simple frame pattern that surrounds one functional layer region 20.
  • FIGS. 2A and 2B are process cross-sectional views showing a method of manufacturing the support substrate 200 according to the embodiment of the present disclosure.
  • the base 10 is a carrier substrate for a process, and its thickness can be, for example, about 0.3 to 0.7 mm.
  • the base 10 is typically made of glass.
  • the base 10 is required to transmit the peeling light to be irradiated in a later step.
  • the release layer 12 is formed on the base 10.
  • the release layer 12 is formed of an alloy of aluminum and silicon.
  • the weight ratio of silicon contained in the alloy is 4% or more and 20% or less.
  • the coefficient of linear expansion of the release layer 12 is lower than the coefficient of linear expansion of pure aluminum (23.6 ppm / K).
  • the absolute value of the internal stress of the release layer 12 is reduced to 10 MPa or less, and the linear expansion coefficient of the release layer 12 is reduced to the resin film 30. It can be put in the range of 30% or more and 500% or less of the coefficient of linear expansion of.
  • the weight ratio of silicon contained in the alloy is 10% or more and 15% or less, the coefficient of linear expansion is the smallest among the alloys of aluminum and silicon, and the heat resistance and abrasion resistance are excellent. Therefore, there is an advantage that the base 10 on which the release layer 12 is formed can be easily reused. Thermal distortion may occur at the interface between the resin film 30 and the release layer 12 due to the release layer 12 that absorbs the release light (ultraviolet laser light) and generates heat.
  • the coefficient of linear expansion of the release layer 12 does not necessarily have to be close to the coefficient of linear expansion of the base 10. It can be said that the alloy of aluminum and silicon has a coefficient of linear expansion in an appropriate range for both the resin film 30 and the base 10.
  • the linear expansion coefficients (room temperature) of the TFT layer 20A, the resin film 30, the release layer 12, and the base 10 are, for example, 2 to 5 ppm / K, several tens of ppm / K, and 19 to 23 ppm / K, respectively. , And 3-5 ppm / K.
  • the coefficient of linear expansion of the lower gas barrier film is, for example, about 2 to 5 ppm / K.
  • the coefficient of linear expansion of transparent polyimide which is the material of the resin film 30, is about 25 ppm / K, and the coefficient of linear expansion of polyethylene terephthalate (PET) is about 60 ppm / K.
  • PET polyethylene terephthalate
  • the coefficient of linear expansion of the release layer is between the coefficient of linear expansion of the base 10 and the coefficient of linear expansion of the resin film 30, or equal to or greater than the coefficient of linear expansion of the base 10, and the coefficient of linear expansion of the resin film 30. It is desirable that the coefficient is 5 times or less (for example, 15 to 23 ppm / K, in a more specific example, 15 to 20 ppm / K).
  • the thickness of the release layer 12 can be 100 nm or more and 5000 nm or less.
  • a typical example of the method for forming the release layer 12 is a sputtering method, but the release layer 12 can be formed by a plating method. By using the plating method, a release layer 12 having a thickness on the order of ⁇ m can be realized. Further, since the main component of the alloy constituting the release layer 12 is aluminum, the thermal conductivity of the alloy is sufficiently high, and even a thick film of about several ⁇ m can be peeled off.
  • an alloy is deposited on the base 10 by sputtering an aluminum target containing silicon.
  • the resin film 30 may be peeled from the release layer 12 by a laser lift-off step described later, and then the release layer 12 may be removed from the base 10 and recovered.
  • the main component of the aluminum alloy used for the release layer 12 is aluminum having a low melting point. However, since this material has a large specific heat and latent heat of melting and good heat conduction, local heating is unlikely to occur. In other words, although the aluminum alloy is a material having a lower melting point than the refractory metal, the release layer 12 does not melt when the release layer 12 is irradiated with strong peeling light. Further, when heat is generated by irradiation with peeling light, even if the spatial distribution of the peeling light intensity becomes non-uniform, heat is easily conducted to the surroundings, so that peeling failure is unlikely to occur.
  • FIG. 3A is a cross-sectional view showing a support substrate 200 having a resin film 30 formed on its surface.
  • the resin film 30 in the present embodiment is, for example, a polyimide film having a thickness of 5 ⁇ m or more and 20 ⁇ m or less, for example, about 10 ⁇ m.
  • the polyimide film can be formed from a precursor polyamic acid or a polyimide solution.
  • a film of polyamic acid may be formed on the surface of the release layer 12 of the support substrate 200 and then thermally imidized, or a film may be formed on the surface of the release layer 12 from a polyimide solution in which polyimide is melted or dissolved in an organic solvent. You may.
  • the polyimide solution can be obtained by dissolving a known polyimide in an arbitrary organic solvent.
  • a polyimide film can be formed by applying a polyimide solution to the surface of the base 10 and then drying it.
  • the polyimide film preferably realizes high transmittance in the entire visible light region.
  • the transparency of the polyimide film can be expressed by, for example, the total light transmittance according to JIS K7105-1981.
  • the total light transmittance can be set to 80% or more, or 85% or more.
  • it is not affected by the transmittance.
  • the resin film 30 may be a film formed of a synthetic resin other than polyimide. However, in the embodiment of the present disclosure, since heat treatment at, for example, 350 ° C. or higher is performed in the step of forming the thin film transistor, the resin film 30 is formed from a material that is not deteriorated by this heat treatment.
  • the resin film 30 may be a laminate of a plurality of synthetic resin films.
  • LLO is performed to irradiate the resin film 30 with an ultraviolet laser beam (wavelength: 300 to 360 nm) transmitted through the base 10. Since the release layer 12 that absorbs ultraviolet rays and generates heat is arranged between the base 10 and the resin film 30, a part of the resin film 30 is formed at the interface between the release layer 12 and the resin film 30 by irradiation with ultraviolet laser light.
  • the (layered portion) is vaporized and the resin film 30 can be easily peeled off from the release layer 12, that is, the support substrate 200.
  • the presence of the release layer 12 also has the effect of suppressing the formation of ash.
  • the release layer 12 in the embodiment of the present disclosure has the property of a metal containing aluminum as a main component, the transmittance of the release layer 12 to ultraviolet rays is extremely low. Therefore, the release layer 12 functions as an ultraviolet shielding layer in the lift-off process. As a result, it is avoided or suppressed that strong ultraviolet laser light is incident on the functional layer region 20 from the base 10 and deteriorates the characteristics of the TFT layer 20A and the light emitting element layer 20B.
  • the method according to the embodiment of the present disclosure includes not only a light emitting device provided with a resin film (flexible substrate) formed of a material having high transparency and easily transmitting ultraviolet rays, but also a thin resin film 30 (thickness) having low transparency. It is suitably used for manufacturing a light emitting device having (about 5 to 20 ⁇ m).
  • the release layer 12 formed of an alloy made of aluminum and silicon has a large specific heat / molten latent heat and good heat conduction, so that heat generated by ultraviolet irradiation causes the release layer 12 to generate heat. It was found that heat is quickly transferred through the film, and even a resin film having low heat resistance such as highly transparent polyimide and PET can be satisfactorily peeled off without damaging it. In other words, it was found that the release layer 12 does not have to be formed of a refractory metal, and LLO is possible even if it is formed of a non-melting point metal material such as aluminum as a main component.
  • Forming the release layer 12 can lead to an increase in manufacturing cost, but unlike refractory metals, aluminum alloys can be easily dissolved by a chemical solution, so that they can be recovered and recycled. Therefore, even if the release layer is adopted, the increase in manufacturing cost can be suppressed to a low level.
  • a polishing target such as particles or convex portions exists on the surface 30x of the resin film 30
  • the target may be polished and flattened by a polishing device.
  • Foreign matter such as particles can be detected, for example, by processing an image acquired by an image sensor.
  • the surface 30x of the resin film 30 may be flattened.
  • the flattening treatment includes a step of forming a film (flattening film) for improving flatness on the surface 30x of the resin film 30.
  • the flattening film does not have to be made of resin.
  • a gas barrier film (not shown) may be formed on the resin film 30.
  • the gas barrier membrane can have various structures. Examples of gas barrier membranes are films such as silicon oxide films or silicon nitride films. Another example of a gas barrier membrane may be a multilayer membrane in which an organic material layer and an inorganic material layer are laminated. This gas barrier membrane may be referred to as a "lower gas barrier membrane” in order to distinguish it from the gas barrier membrane described later that covers the functional layer region 20. Further, the gas barrier membrane covering the functional layer region 20 can be called an "upper layer gas barrier membrane".
  • the underlayer gas barrier membrane can be formed from, for example, Si 3 N 4 .
  • the coefficient of linear expansion of Si 3 N 4 is about 3 ppm / K. According to an embodiment of the present disclosure, since the coefficient of thermal expansion of the release layer 12 is between the coefficient of linear expansion of the base 10 and the coefficient of linear expansion of the resin film 30, the lower gas barrier layer formed from Si 3 N 4 The problem of cracking can be avoided.
  • a plurality of functional layer regions 20 are formed on the base 10.
  • the release layer 12 and the resin film 30 fixed to the base 10 are located between the base 10 and the functional layer region 20.
  • the functional layer region 20 includes a TFT layer 20A located in the lower layer and a light emitting element layer 20B located in the upper layer.
  • the TFT layer 20A and the light emitting element layer 20B are sequentially formed by a known method.
  • the TFT layer 20A includes a circuit of a TFT array that realizes an active matrix.
  • the light emitting element layer 20B includes an array of light emitting elements (OLED elements and / or micro LED elements), each of which can be driven independently.
  • the chip size of the micro LED element is smaller than, for example, 100 ⁇ m ⁇ 100 ⁇ m.
  • the micro LED element can be formed from different inorganic semiconductor materials depending on the color or wavelength of the emitted light.
  • the same semiconductor chip may include a plurality of semiconductor laminated structures having different compositions, and different R, G, and B lights may be emitted from the respective semiconductor laminated structures.
  • the thickness of the TFT layer 20A may be, for example, 4 ⁇ m, and the thickness of the light emitting element layer 20B including the OLED element may be, for example, 10 ⁇ m or more.
  • FIG. 4 is a basic equivalent circuit diagram of sub-pixels in an organic EL (Electro Luminescence) display which is an example of a light emitting device.
  • One pixel of the display may be composed of sub-pixels of different colors such as R (red), G (green), B (blue).
  • the example shown in FIG. 4 has a selection TFT element Tr1, a driving TFT element Tr2, a holding capacity CH, and a light emitting element EL.
  • the selection TFT element Tr1 is connected to the data line DL and the selection line SL.
  • the data line DL is a wiring that carries a data signal that defines an image to be displayed.
  • the data line DL is electrically connected to the gate of the driving TFT element Tr2 via the selection TFT element Tr1.
  • the selection line SL is a wiring that carries a signal for controlling on / off of the selection TFT element Tr1.
  • the driving TFT element Tr2 controls the conduction state between the power line PL and the light emitting element EL.
  • a current flows from the power line PL to the ground line GL via the light emitting element EL. This current causes the light emitting element EL to emit light.
  • the driving TFT element Tr2 is maintained in the ON state due to the holding capacitance CH.
  • the TFT layer 20A includes a selection TFT element Tr1, a driving TFT element Tr2, a data line DL, a selection line SL, and the like.
  • the light emitting element layer 20B includes a light emitting element EL. Before the light emitting element layer 20B is formed, the upper surface of the TFT layer 20A is flattened by an interlayer insulating film covering the TFT array and various wirings. A structure that supports the light emitting element layer 20B and realizes active matrix driving of the light emitting element layer 20B is referred to as a "backplane".
  • a part of the circuit element and the wiring shown in FIG. 4 may be included in either the TFT layer 20A or the light emitting element layer 20B. Further, the wiring shown in FIG. 4 is connected to a driver circuit (not shown).
  • the specific configurations of the TFT layer 20A and the light emitting element layer 20B can be various. These configurations do not limit the content of this disclosure.
  • the structure of the TFT element included in the TFT layer 20A may be a bottom gate type or a top gate type.
  • the light emission of the light emitting element included in the light emitting element layer 20B may be a bottom emission type or a top emission type.
  • the specific configuration of the light emitting element is also arbitrary.
  • the material of the semiconductor layer constituting the TFT element includes, for example, crystalline silicon, amorphous silicon, and an oxide semiconductor.
  • a part of the steps of forming the TFT layer 20A includes a heat treatment step of 350 ° C. or higher.
  • the entire functional layer region 20 is covered with the gas barrier film (upper layer gas barrier film) 40.
  • the upper gas barrier film 40 is a multilayer film in which an inorganic material layer and an organic material layer are laminated. Elements such as an adhesive film, another functional layer constituting the touch screen, and a polarizing film may be arranged between the upper gas barrier film 40 and the functional layer region 20 or further above the upper gas barrier film 40. ..
  • the upper gas barrier film 40 can be formed by a thin film encapsulation (TFE) technique.
  • the WVTR Water Vapor Transmission Rate
  • the WVTR Water Vapor Transmission Rate of the thin film sealing structure is typically required to be 1 ⁇ 10 -4 g / m 2 / day or less. According to the embodiments of the present disclosure, this criterion is achieved.
  • the thickness of the upper gas barrier film 40 is, for example, 1.5 ⁇ m or less.
  • FIG. 5 is a perspective view schematically showing the upper surface side of the laminated structure 100 at the stage where the upper gas barrier film 40 is formed.
  • One laminated structure 100 includes a plurality of light emitting devices 1000 supported by the base 10.
  • one laminated structure 100 includes more functional layer regions 20 than in the example shown in FIG. 1A. As described above, the number of functional layer regions 20 supported by one base 10 is arbitrary.
  • the protective sheet 50 is attached to the upper surface of the laminated structure 100.
  • the protective sheet 50 can be formed from a material such as polyethylene terephthalate (PET) or polyvinyl chloride (PVC).
  • PET polyethylene terephthalate
  • PVC polyvinyl chloride
  • a typical example of the protective sheet 50 has a laminated structure having a coating layer of a release agent on the surface.
  • the thickness of the protective sheet 50 can be, for example, 50 ⁇ m or more and 150 ⁇ m or less.
  • the production method according to the present disclosure can be executed using the above-mentioned production apparatus (peeling apparatus 220).
  • the laminated structure 100 that can be used in the manufacturing method of the present disclosure is not limited to the examples shown in FIGS. 1A and 1B.
  • the protective sheet 50 may cover the entire resin film 30 and may extend outward from the resin film 30.
  • the protective sheet 50 may cover the entire resin film 30 and may extend outward from the base 10.
  • the laminated structure 100 becomes a flexible thin sheet-like structure having no rigidity.
  • the protective sheet 50 impacts the functional layer region 20 when the functional layer region 20 collides with or comes into contact with an external device or instrument in the step of peeling the base 10 and the step after the peeling. It plays a role of protecting from friction.
  • a typical example of the protective sheet 50 has a laminated structure having an adhesive layer (coating layer of a release agent) having a relatively small adhesive force on the surface. doing. A more detailed description of the laminated structure 100 will be described later.
  • ⁇ Division of light emitting device> In the method for manufacturing a flexible light emitting device of the present embodiment, after executing the step of preparing the laminated structure 100, the step of dividing each of the intermediate region 30i of the resin film 30 and the plurality of flexible substrate regions 30d is performed. The step of performing the division does not have to be performed before the LLO step, and may be performed after the LLO step.
  • the division can be performed by cutting the central part of the adjacent light emitting device with a laser beam or a dicing saw.
  • the portion of the laminated structure other than the base 10 is cut, and the base 10 is not cut.
  • the base 10 may be cut and divided into a partially laminated structure including individual light emitting devices and a base portion supporting each light emitting device.
  • the irradiation position of the laser beam for cutting is along the outer circumference of each flexible substrate region 30d.
  • FIGS. 6A and 6B are cross-sectional views and plan views schematically showing positions for dividing the intermediate region 30i of the resin film 30 and each of the plurality of flexible substrate regions 30d, respectively.
  • the irradiation position of the laser beam for cutting is along the outer circumference of each flexible substrate region 30d.
  • the irradiation position (cutting position) CT indicated by the arrow or the broken line is irradiated with a laser beam for cutting, and the portion of the laminated structure 100 other than the base 10 is subjected to a plurality of light emitting devices 1000 and others. Cut into unnecessary parts.
  • a gap of several tens of ⁇ m to several hundreds of ⁇ m is formed between each light emitting device 1000 and its surroundings. As described above, such cutting can be performed by a dicing saw instead of irradiating the laser beam. Even after cutting, the light emitting device (for example, the display panel) 1000 and other unnecessary parts are fixed to the base 10.
  • the planar layout of the "unnecessary portion" in the laminated structure 100 is consistent with the planar layout of the intermediate region 30i of the resin film 30.
  • this "unwanted portion” is a single continuous sheet-like structure with an opening.
  • the irradiation position CT of the cutting laser beam may be set so as to divide the "unnecessary portion" into a plurality of portions.
  • the sheet-like structure which is an "unnecessary portion” includes not only the intermediate region 30i of the resin film 30 but also the cut portion of the laminate (for example, the gas barrier film 40 and the protective sheet 50) existing on the intermediate region 30i. Includes.
  • the wavelength of the laser beam may be in any region of infrared, visible light, and ultraviolet. From the viewpoint of reducing the influence of cutting over the base 10, a laser beam having a wavelength in the green to ultraviolet region is desirable.
  • cutting can be performed using a second harmonic (wavelength 532 nm) or a third harmonic (wavelength 343 nm or 355 nm). In that case, if the laser output is adjusted to 1 to 3 watts and scanning is performed at a speed of about 500 mm per second, the laminate supported by the base 10 can be used as a light emitting device and an unnecessary part without damaging the base 10. It can be cut (divided).
  • the timing of performing the above cutting is earlier than that of the prior art. Since the cutting is performed with the resin film 30 fixed to the base 10, even if the distance between the adjacent light emitting devices 1000 is narrow, the cutting can be aligned with high accuracy and accuracy. Therefore, the interval between the adjacent light emitting devices 1000 can be shortened, and the wasteful portion that is finally unnecessary can be reduced.
  • FIG. 7A is a diagram schematically showing a state immediately before the stage 212 supports the laminated structure 100 in a manufacturing apparatus (peeling apparatus) (not shown).
  • the stage 212 in this embodiment is an adsorption stage having a large number of holes for adsorption on the surface.
  • the configuration of the suction stage is not limited to this example, and may include an electrostatic chuck or other fixing device that supports the laminated structure.
  • the laminated structure 100 is arranged so that the second surface 100b of the laminated structure 100 faces the surface 212S of the stage 212, and is in close contact with the stage 212.
  • FIG. 7B is a diagram schematically showing a state in which the stage 212 supports the laminated structure 100.
  • the arrangement relationship between the stage 212 and the laminated structure 100 is not limited to the illustrated example.
  • the laminated structure 100 may be turned upside down and the stage 212 may be located below the laminated structure 100.
  • the laminated structure 100 is in contact with the surface 212S of the stage 212, and the stage 212 is adsorbing the laminated structure 100.
  • FIG. 7C is a diagram schematically showing a state in which the release layer 12 is irradiated from the side of the base 10 by the peeling light 216 formed in a line shape extending in the direction perpendicular to the paper surface of the figure.
  • the release layer 12 absorbs the peeling light 216 and is heated in a short time.
  • a part of the resin film 30 is vaporized or decomposed (disappeared) by heat from the release layer 12 at the interface between the release layer 12 and the resin film 30.
  • the wavelength of the delamination light 216 is typically in the ultraviolet region.
  • the light absorption rate of the base 10 is, for example, about 10% in the region where the wavelength is 343 to 355 nm, but can increase to 30 to 60% in the region of 308 nm.
  • the peeling device in the present embodiment includes a line beam light source that emits peeling light 216.
  • the line beam light source includes a laser device and an optical system that forms a laser beam emitted from the laser device into a line beam shape.
  • FIG. 8A is a perspective view schematically showing how the laminated structure 100 is irradiated with the line beam (peeling light 216) emitted from the line beam light source 214 of the peeling device 220.
  • the stage 212, the laminated structure 100, and the line beam light source 214 are shown apart from each other in the Z-axis direction in the figure.
  • the peeling light 216 is irradiated, the second surface 100b of the laminated structure 100 is in contact with the stage 212.
  • FIG. 8B schematically shows the position of the stage 212 when the peeling light 216 is irradiated. Although not shown in FIG. 8B, the laminated structure 100 is supported by the stage 212.
  • Examples of laser devices that emit the separation light 216 include gas laser devices such as excimer lasers, solid-state laser devices such as YAG lasers, semiconductor laser devices, and other laser devices. According to the XeCl excimer laser apparatus, a laser beam having a wavelength of 308 nm can be obtained.
  • gas laser devices such as excimer lasers
  • solid-state laser devices such as YAG lasers
  • semiconductor laser devices and other laser devices.
  • a laser beam having a wavelength of 308 nm can be obtained.
  • YVO 4 neodymium
  • Yb itterbium
  • the laser beam having a wavelength of 308 nm by the excimer laser device it is more effective to use the laser beam having a wavelength of 308 nm by the excimer laser device than the laser beam having a wavelength of 340 to 360 nm.
  • the presence of the release layer 12 exerts a remarkable effect on suppressing ash formation.
  • Irradiation of the peeling light 216 can be performed with an energy irradiation density of, for example, 50 to 400 mJ / cm 2 .
  • the line beam-shaped peeling light 216 has a size that crosses the base 10, that is, a line length that exceeds the length of one side of the base (major axis dimension, Y-axis direction size in FIG. 8B).
  • the line length can be, for example, 750 mm or more.
  • the line width of the peeling light 216 short axis dimension, X-axis direction size in FIG.
  • the separation light 216 can be irradiated as a pulse or a continuous wave.
  • the pulsed irradiation can be performed at a frequency of, for example, about 200 times per second.
  • the irradiation position of the peeling light 216 moves relative to the base 10, and the scanning of the peeling light 216 is executed.
  • the peeling device 220 the light source 214 and the optical device (not shown) that emit the peeling light are fixed, and the laminated structure 100 may move or vice versa.
  • the peeling light 216 is irradiated while the stage 212 moves from the position shown in FIG. 8B to the position shown in FIG. 8C. That is, the movement of the stage 212 along the X-axis direction executes scanning of the peeling light 216.
  • the light source included in the peeling light irradiation device in the above embodiment is a laser light source, but the peeling light irradiation device of the present disclosure is not limited to this example.
  • the exfoliated light may be emitted from a non-coherent light source instead of a coherent light source such as a laser light source.
  • a coherent light source such as a laser light source.
  • FIG. 9A is a cross-sectional view schematically showing a configuration example of a surface light source 215 that emits separation light 216.
  • FIG. 9B is a top view showing a configuration example of the surface light source 215.
  • the surface light source 215 shown in the figure includes a plurality of ultraviolet lamps 380 arranged in a region facing the laminated structure 100, and a reflector 390 that reflects the ultraviolet light emitted from each ultraviolet lamp 380.
  • the ultraviolet lamp 380 can be, for example, a high-pressure mercury lamp that emits i-rays having a wavelength of 365 nm.
  • the reflector 390 in the illustrated example can reflect the ultraviolet light radiated from the ultraviolet lamp 380 to the surroundings to make it substantially parallel light.
  • the reflector 390 is formed of a cold mirror, it is possible to prevent an infrared component contained in the light emitted from the high-pressure mercury lamp from incident on the laminated structure 100.
  • An infrared cut filter may be arranged between the ultraviolet lamp 380 and the laminated structure 100. By reducing or cutting the infrared component that can be contained in the peeling light 216, it is possible to suppress or prevent the temperature rise of the laminated structure 100 due to infrared irradiation.
  • the irradiation energy of the peeling light required for peeling the resin film 30 is, for example, in the range of 100 mJ / cm 2 or more and 300 mJ / cm 2 or less.
  • a light source (non-coherent light source) such as the ultraviolet lamp 380 generally has a smaller irradiation intensity per unit area than the above-mentioned laser light source. Therefore, in order to achieve sufficient irradiation energy, the separation light irradiation time may be longer than when a laser light source is used.
  • the surface light source 215 shown in FIGS. 9A and 9B can form the separation light 216 spreading in a plane shape, it is easy to lengthen the irradiation time at each position as compared with the case of scanning the line beam. ..
  • the peeling light 216 parallelized by the reflector 390 is formed, but the embodiment of the present disclosure is not limited to this example.
  • the light emitted from each ultraviolet lamp 380 may be focused in a line having a width of about 1 to 3 mm by using a reflector 390 and a lens (not shown).
  • the laminated structure 100 is irradiated with such striped peeling light 216, the entire surface of the laminated structure 100 is irradiated with the peeling light 216 by shifting the relative position of the surface light source 215 with respect to the laminated structure 100. be able to.
  • the irradiation intensity of the ultraviolet light emitted from the ultraviolet lamp 380 is high, it is possible to irradiate the entire surface of the laminated structure 100 with the peeling light 216 by scanning with one or several ultraviolet lamps 380. Even if the irradiation intensity of the ultraviolet light emitted from the ultraviolet lamp 380 is not high, if the scanning speed is reduced, the entire surface of the laminated structure 100 can be exposed to the peeling light 216 by scanning one or several ultraviolet lamps 380. It is possible to irradiate.
  • UV-LED light emitting diode
  • Each of such light emitting diode elements has a size of, for example, 3.5 mm in length ⁇ 3.5 mm in width ⁇ 1.2 mm in thickness.
  • a plurality of light emitting diode elements may be used in one row or in a plurality of rows.
  • FIG. 10 is a cross-sectional view schematically showing a surface light source 215 including a plurality of light emitting diode elements 400 arranged two-dimensionally.
  • the light emitted from the individual light emitting diode elements 400 spreads around the Z-axis direction.
  • This light shows the distribution (directivity) of the relative radiant intensity depending on the radiation angle ⁇ which is the inclination from the Z axis.
  • the directivity of the light emitting diode element can be adjusted by arranging a lens and / or a reflector.
  • ultraviolet light having a wavelength of 365 nm can be emitted at an output of 1450 milliwatts under a driving condition of a voltage of 3.85 volts and a current of 1000 milliamperes.
  • FIG. 11 is a cross-sectional view showing a surface light source 215 in which the in-plane number density of the light emitting diode element 400 is increased as compared with the example shown in FIG. The higher the in-plane number density of the light emitting diode element 400, the higher the irradiation intensity.
  • FIG. 12 is a diagram showing an array of light emitting diode elements 400 arranged in rows and columns.
  • the spacing (arrangement pitch) P of the adjacent light emitting diode elements 400 is selected so that the irradiation intensity exceeds the level required for peeling at the entire interface between the resin film and the glass base.
  • ⁇ Peeling light irradiation device 4> The light emitting intensity of the light emitting diode element is controlled by adjusting the magnitude of the drive current. Therefore, in a state where a plurality of light emitting diode elements are arranged one-dimensionally or two-dimensionally, the irradiation intensity of the separation light is modulated temporally and / or spatially by modulating the drive current flowing through each light emitting diode element. You can also do it.
  • the arrangement pitch of the light emitting diode elements is, for example, in the range of 3 mm or more and 10 mm or less.
  • the light emitted from the light emitting diode element is incoherent (non-coherent) light, unlike laser light.
  • the wavelength of the light emitted from the light emitting diode element is, for example, in the range of 300 nm or more and 380 nm or less.
  • FIGS. 13A, 13B, and 13C An example of a line beam light source in which a plurality of light emitting diode elements are arranged will be described with reference to FIGS. 13A, 13B, and 13C.
  • FIG. 13A schematically shows the upper surface of a line beam light source 214 including a plurality of light emitting diode elements 400 arranged in the Y-axis direction.
  • FIG. 13B is a sectional view taken along line BB of the line beam light source 214 shown in FIG. 13A.
  • FIG. 13B also shows the laminated structure 100.
  • FIG. 13C is a diagram showing the moving direction of the line beam light source 214 with respect to the laminated structure 100.
  • the ultraviolet light emitted from the light emitting diode element 400 passes through the cylindrical lens 410 and the glass of the laminated structure 100 in order to increase the irradiation energy per unit area (irradiation intensity: unit is joule / cm 2 ). It is incident on the base 10. Since the ultraviolet light is focused in the X-axis direction, the width (X-axis direction size) of the irradiation region at the interface (peeling surface) where peeling occurs can be narrowed to, for example, about 0.2 mm or less. Since the cylindrical lens 410 does not focus in the X-axis direction, the size of the irradiation region in the Y-axis direction is not shortened.
  • the arrangement pitch of the light emitting diode elements 400 may be reduced to increase the number density of the light emitting diode elements 400.
  • the number of light emitting diodes is tens or 100 or more at intervals of 3.5 mm to 10 mm (arrangement pitch: distance between centers of adjacent light sources).
  • the elements 400 may be arranged. When a smaller light emitting diode element 400 is used, it can be arranged at intervals of 2.0 mm to 10 mm, for example.
  • the arrangement pitch of the light emitting diode element 400 is preferably 5 mm or less.
  • the entire surface of the laminated structure 100 can be irradiated with the peeling light.
  • the light emitting diode elements 400 may be arranged in a plurality of rows.
  • FIG. 14A schematically shows the upper surface of a line beam light source 214 including a plurality of rows of light emitting diode elements 400 arranged in the Y-axis direction.
  • FIG. 14B is a sectional view taken along line BB of the line beam light source 214 shown in FIG. 14A.
  • FIG. 14B also shows the laminated structure 100.
  • FIG. 14C is a diagram showing the moving direction of the line beam light source 214 with respect to the laminated structure 100.
  • the line beam light source 214 of this example each includes five rows of light emitting diode elements 400 extending in the Y-axis direction. The positions of the five rows of light emitting diode elements 400 in the Y-axis direction are different from each other. When the array pitch is P, the positions of the light emitting diode rows are shifted by P / 5 in the Y-axis direction between the adjacent rows. By moving the line beam light source 214 with respect to the laminated structure 100 as shown in FIG. 14C, the entire surface of the laminated structure 100 can be irradiated with the separation light.
  • the peeling light may be irradiated in a state where a plurality of light sources are stationary with respect to the laminated structure 100.
  • FIG. 15 is a top view schematically showing an example of a surface light source 215 in which a large number of light emitting diode elements 400 are arranged in a matrix.
  • the in-plane to be peeled may be divided into a plurality of regions, and each region may be irradiated with a flash of peeling light in the same manner as in the sequential exposure with a stepper.
  • the laminated structure 100 and the surface light source 215 are both stationary and the peeling light is irradiated, a precise driving device for optical scanning becomes unnecessary. Further, when the peeling light is irradiated to the fixed line beam light source while moving the laminated structure 100 (FIGS. 13A-13C or 14A-14C), the laminated structure 100 is laminated for movement. An area with twice the area of the structure 100 is required. However, if the surface light source 215 is used, an extra area required for moving the laminated structure 100 becomes unnecessary, and there is an advantage that the installation area of the device is halved.
  • the light emitting diode element By using the light emitting diode element in this way, it becomes possible to execute the detached light irradiation using a large number of light sources at a lower cost than using a relatively expensive semiconductor laser element. Further, since it is easy to lengthen the time for emitting the peeling light from each light emitting diode element, even if the light output of each light emitting diode element is small, the irradiation energy required for peeling can be adjusted by adjusting the irradiation time. Can be achieved. Furthermore, since laser light is not used, it is advantageous in terms of safety for the human eye (eye safety), and easier device design and operation becomes possible.
  • FIG. 16A shows a state in which the laminated structure 100 is in contact with the stage 212 after irradiation with the peeling light. While maintaining this state, the distance from the stage 212 to the base 10 is increased. At this time, the stage 212 in the present embodiment is adsorbing the light emitting device portion of the laminated structure 100.
  • a drive device holds the base 10 and moves the entire base 10 in the direction of the arrow to perform peeling (lift-off).
  • the base 10 can move together with the suction stage in a state of being sucked by a suction stage (not shown).
  • the direction of movement of the base 10 does not have to be perpendicular to the first surface 100a of the laminated structure 100, and may be inclined.
  • the movement of the base 10 does not have to be a linear motion, but may be a rotary motion.
  • the base 10 may be fixed by a holding device (not shown) or another stage, and the stage 212 may move to the upper side of the drawing.
  • FIG. 16B is a cross-sectional view showing a first portion 110 and a second portion 120 of the laminated structure 100 thus separated.
  • the first portion 110 of the laminated structure 100 includes a plurality of light emitting devices 1000 in contact with the stage 212. Each light emitting device 1000 has a functional layer region 20 and a plurality of flexible substrate regions 30d of the resin film 30.
  • the second portion 120 of the laminated structure 100 has a base 10 and a release layer 12.
  • the individual light emitting devices 1000 supported by the stage 212 are disconnected from each other, they can be easily removed from the stage 212 simultaneously or sequentially.
  • each light emitting device 1000 is cut and separated before the LLO step, but each light emitting device 1000 may be cut and separated after the LLO step. Further, the cutting separation of each light emitting device 1000 may include dividing the base 10 into corresponding portions.
  • the present disclosure when a flexible film formed of polyimide and PET having high transparency that transmits ultraviolet rays is used, or a flexible film having low transparency but thin (thickness 5 to 20 ⁇ m) capable of transmitting ultraviolet rays. Even when the above is used, deterioration of the characteristics of the functional layer region and deterioration of the performance of the gas barrier layer due to ultraviolet rays can be suppressed. Further, unlike the refractory metal, the aluminum alloy can be easily recovered and recycled, so that the increase in manufacturing cost due to the adoption of the release layer can be suppressed to a low level.
  • An embodiment of the present invention provides a method for manufacturing a new flexible light emitting device.
  • Flexible light emitting devices can be widely applied to smartphones, tablet terminals, in-vehicle displays, and small to medium to large television devices.
  • the flexible light emitting device can also be used as a lighting device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本開示のフレキシブル発光デバイスの製造方法によれば、ベース(10)と、TFT層及び発光素子層を含む機能層領域(20)とベースと機能層領域との間に位置して機能層領域を支持するフレキシブルフィルム(30)と、フレキシブルフィルムとベースとの間に位置してベースに固着しているリリース層(12)とを備える積層構造体(100)を用意する。ベースを透過する剥離光(216)でリリース層を照射してリリース層からフレキシブルフィルムを剥離する。リリース層はアルミニウム及びシリコンの合金から形成されている。

Description

フレキシブル発光デバイスの製造方法及び支持基板
 本開示は、フレキシブル発光デバイスの製造方法及び支持基板に関する。
 フレキシブルディスプレイの典型例は、ポリイミドなどの合成樹脂から形成されたフィルム(以下、「樹脂膜」と称する)と、樹脂膜に支持されたTFT(Thin Film Transistor)及びOLED(Organic Light Emitting Diode)などの素子を備えている。樹脂膜はフレキシブル基板として機能する。OLEDを構成する有機半導体層は水蒸気によって劣化しやすいため、フレキシブルディスプレイは、ガスバリア膜(封止用フィルム)によって封止されている。
 フレキシブルディスプレイの製造は、樹脂膜が上面に形成されたガラスベースを用いて行われ得る。ガラスベースは、製造工程中、樹脂膜の形状を平面状に維持する支持体(キャリア)として機能する。樹脂膜上にTFT素子及びOLEDなどの発光素子、及びガスバリア膜などが形成されることにより、ガラスベースに支持された状態でフレキシブルディスプレイの構造が実現する。その後、フレキシブルディスプレイはガラスベースから剥離され、柔軟性を獲得する。TFT素子及びOLEDなどの発光素子が配列された部分を全体として「機能層領域」と呼ぶことができる。
 特許文献1には、発光デバイスを乗せたフレキシブル基板をガラスベースから剥離するため、フレキシブル基板とガラスベースとの界面を紫外線レーザ光で照射する方法が開示されている。特許文献1に開示されている方法では、フレキシブル基板とガラスベースとの間にアモルファスシリコン層が配置されている。紫外線レーザ光の照射は、アモルファスシリコン層から水素を発生させ、ガラスベースからフレキシブル基板を剥離させる。
国際公開第2009/037797号
 従来、フレキシブル基板に使用される樹脂膜は紫外線を吸収するため、剥離光照射がTFT素子及び発光素子に及ぼす影響は特に検討されていなかった。しかし、本発明者の検討によると、剥離工程で使用する強い剥離光がTFT素子及び発光素子を劣化させる可能性のあることがわかった。
 このような課題は、発光素子としてOLEDを有するフレキシブルディスプレイに限定されず、発光素子として無機半導体材料から形成されたマイクロLED(μLED)を有するフレキシブル発光デバイスの製造に際しても発生し得る。
 本開示は、上記の課題を解決することができる、フレキシブル発光デバイスの新しい製造方法及び支持基板を提供する。
 本開示のフレキシブル発光デバイスの製造方法は、例示的な実施形態において、ベースと、TFT層及び発光素子層を含む機能層領域と、前記ベースと前記機能層領域との間に位置して前記機能層領域を支持するフレキシブルフィルムと、前記フレキシブルフィルムと前記ベースとの間に位置して前記ベースに固着しているリリース層とを備える積層構造体を用意する工程、及び、前記ベースを透過する紫外剥離光で前記リリース層を照射して前記リリース層から前記フレキシブルフィルムを剥離する工程とを含む。前記リリース層はアルミニウム及びシリコンの合金から形成されている。
 ある実施形態において、前記紫外剥離光は、非コヒーレント光である。
 ある実施形態において、前記発光素子層は、配列された複数のマイクロLEDを含み、前記紫外剥離光は、レーザ光である。
 ある実施形態において、前記合金に含まれるシリコンの重量比率は、4%以上20%以下である。
 ある実施形態において、前記リリース層の線膨張係数は、前記フレキシブルフィルムの線膨張係数の30%以上500%以下である。
 ある実施形態において、前記リリース層の厚さは、100nm以上5000nm以下である。
 ある実施形態において、前記紫外剥離光の波長は、300nm以上360nm以下である。
 ある実施形態において、前記フレキシブルフィルムの厚さは、5μm以上20μm以下である。
 ある実施形態において、前記積層構造体を用意する工程は、シリコンを含有するアルミニウムターゲットをスパッタすることによって前記ベース上に前記リリース層を形成する工程と、前記リリース層上に前記フレキシブルフィルムを形成する工程とを含む。
 ある実施形態において、前記リリース層から前記フレキシブルフィルムを剥離した後、前記ベースから前記リリース層を除去して回収する工程を含む。
 本開示の支持基板は、例示的な実施形態において、フレキシブル発光デバイスの支持基板であって、アルミニウム及びシリコンの合金から形成されたリリース層と、紫外線を透過する材料から形成されたベースであって、前記リリース層を支持しているベースとを備える。
 ある実施形態において、前記リリース層を覆い、前記紫外線を透過する材料から形成されたフレキシブルフィルムを更に備える。
 ある実施形態において、前記合金に含まれるシリコンの重量比率は、4%以上20%以下である。
 ある実施形態において、前記リリース層の線膨張係数は、前記フレキシブルフィルムの線膨張係数の30%以上500%以下である。
 ある実施形態において、前記リリース層の厚さは、100nm以上5000nm以下である。
 本発明の実施形態によれば、前記の課題を解決する、フレキシブル発光デバイスの新しい製造方法及び支持基板が提供される。
本開示によるフレキシブル発光デバイスの製造方法に用いられる積層構造体の構成例を示す平面図である。 図1Aに示される積層構造体のB-B線断面図である。 本開示の実施形態における支持基板の製造方法を示す工程断面図である。 本開示の実施形態における支持基板の製造方法を示す工程断面図である。 本開示の実施形態におけるフレキシブル発光デバイスの製造方法を示す工程断面図である。 本開示の実施形態におけるフレキシブル発光デバイスの製造方法を示す工程断面図である。 本開示の実施形態におけるフレキシブル発光デバイスの製造方法を示す工程断面図である。 本開示の実施形態におけるフレキシブル発光デバイスの製造方法を示す工程断面図である。 フレキシブル発光デバイスにおける1個のサブ画素の等価回路図である。 製造工程の途中段階における積層構造体の斜視図である。 積層構造体の分割位置を模式的に示す断面図である。 積層構造体の分割位置を模式的に示す平面図である。 ステージが積層構造体を支持する直前の状態を模式的に示す図である。 ステージが積層構造体を支持している状態を模式的に示す図である。 ライン状に成形された剥離光によって積層構造体のベースと樹脂膜との界面を照射している状態を模式的に示す図である。 剥離装置のラインビーム光源から出射されたラインビームで積層構造体を照射する様子を模式的に示す斜視図である。 剥離光の照射開始時におけるステージの位置を模式的に示す図である。 剥離光の照射終了時におけるステージの位置を模式的に示す図である。 剥離光を放射する面光源の構成例を模式的に示す断面図である。 面光源の構成例を示す上面図である。 2次元的に配列された複数の発光ダイオード素子を備える面光源215を模式的に示す断面図である。 図23に示される例に比べて発光ダイオード素子の面内個数密度を高めた面光源215を示す断面図である。 行及び列状に配列された発光ダイオード素子のアレイを示す図である。 Y軸方向に配列された1列の発光ダイオード素子を備えるラインビーム光源214の上面を模式的に示す図である。 図13Aに示される積層構造体のB-B線断面図である。 積層構造体に対するラインビーム光源の移動方向を示す図である。 Y軸方向に配列された複数列の発光ダイオード素子を備えるラインビーム光源214の上面を模式的に示す図である。 図14Aに示されるラインビーム光源のB-B線断面図である。 積層構造体に対するラインビーム光源の移動方向を示す図である。 多数の発光ダイオード素子がマトリックス状に配列された面光源の例を模式的に示す上面図である。 剥離光の照射後に積層構造体を第1部分と第2部分とに分離する前の状態を模式的に示す断面図である。 積層構造体を第1部分と第2部分とに分離した状態を模式的に示す断面図である。
 ガラスベースからフレキシブル基板を剥離するレーザリフトオフ(Laser Lift Off: LLO)を行うため、ガラスベースとフレキシブル基板との間にリリース層を設ける場合と設けない場合とがある。
 リリース層を設けない場合、製造コストは低減されるが、剥離の歩留りが低下する。より詳細には、剥離のための強い光(剥離光)を照射したときにアッシュと呼ばれる非常に除去しにくいスス状の残留物がガラスベース及びフレキシブル基板の双方の表面に形成されるという問題がある。このことは、レーザリフトオフ工程後にフレキシブル基板に貼り付けられる支持フィルムなどの密着力を低下させ、また、ガラスベースの再利用を妨げる。また、適切に剥離できる剥離光(例えばレーザ光)の照射条件範囲が狭いという問題がある。これに対して、リリース層を設けた場合は、アッシュの生成が低減され、また、剥離光照射条件範囲も比較的広くなるので、剥離歩留りが向上する。リリース層は、典型的には、アモルファスシリコンから形成されるが、高融点金属(Mo、Cr、W、Ti等)からも形成され得る。
 従来、フレキシブル基板は、ポリイミドに代表される樹脂材料から形成されてきた。このような樹脂材料は紫外線を吸収するため、剥離光照射がTFT素子及び発光素子に及ぼす影響は特に検討する必要がないと考えられてきた。しかしながら、本発明者の検討によると、フレキシブル基板の厚さが5μm~15μm程度と非常に薄くなると、紫外線を十分に吸収しないことがあり、剥離工程で使用する強い紫外線がTFT素子及び発光素子を劣化させる可能性のあることがわかった。この問題は、アモルファスシリコンから形成されたリリース層を設けた場合でも発生した。アモルファスシリコンは紫外線を透過し得るからである。しかし、高融点金属からリリース層を形成した場合、高融点金属は紫外線を吸収、もしくは反射して透過しないため、剥離光照射がTFT素子及び発光素子に及ぼす影響を阻止できる。しかしながら、高融点金属を用いてリリース層を形成することは、製造コストの著しい増加を招く。
 リリース層の材料としてアモルファスシリコンまたは高融点金属が用いられる理由は、その高い融点にある。すなわち、剥離光照射による発熱によってリリース層が溶融されないようにするため、リリース層は、高融点材料から形成するべきであると考えられてきた。
 しかしながら、本発明者の検討によれば、融点が低いアルミニウムとシリコンの合金からリリース層を形成した場合でも、剥離光照射によってリリース層が溶融しないことがわかった。これは、主成分であるアルミニウムの比熱・溶融潜熱が大きく、熱伝導に優れているためである。その結果、剥離光照射によってリリース層が局所的に加熱されても、発生した熱が速やかに周囲に伝導し、リリース層の破壊を避けることができる。後述するように、アルミニウムとシリコンの合金は、シリコンの存在によって線膨張係数が純アルミニウムよりも低下するという特徴を有している。一般に金属の線膨張係数はガラスの線膨張係数よりも大きい。特にアルミニウムは高融点金属であるモリブデンなどに比べて線膨張係数が大きい。リリース層とガラスベースとの間で熱膨張係数の差が大きすぎると、内部応力または歪に起因してリリース層の一部がガラスベースから剥離してしまうという問題が生じ得る。しかし、アルミニウムとシリコンの合金の熱膨張係数は、シリコン含有比率に応じて広い範囲で調整され得る。また、アルミニウム合金の堆積条件を調整することにより、堆積された膜の内部応力を高融点金属膜の内部応力(例えば400GPa)に比べて大幅に低減することができる。このため、アルミニウムとシリコンの合金を用いることにより、リリース層の剥離という問題を解決することができる。更に、高融点金属よりも安価なアルミニウムとシリコンの合金をリリース層として使用できることは、様々な利点をもたらす。例えば、高融点金属材料はリサイクルが困難であり、リリース層が付着したガラスベースごと、産業廃棄物として埋め立て廃棄する必要がある。これに対して、アルミニウムとシリコンの合金は酸などの薬液により容易に溶解・除去することができるため、リサイクル性が向上する。従って、リリース層を用いたとしても、製造コストを全体として低減することが可能になる。
 以下、図面を参照しながら、本開示によるフレキシブル発光デバイスの製造方法及び製造装置の実施形態を説明する。「発光デバイス」の例は、ディスプレイ及び照明装置を含む。以下の説明において、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。本発明者らは、当業者が本開示を十分に理解するために添付図面及び以下の説明を提供する。これらによって請求の範囲に記載の主題を限定することを意図しない。
 <積層構造体>
 図1A及び図1Bを参照する。本実施形態におけるフレキシブル発光デバイスの製造方法では、まず、図1A及び図1Bに例示される積層構造体100を用意する。図1Aは、積層構造体100の平面図であり、図1Bは、図1Aに示される積層構造体100のB-B線断面図である。図1A及び図1Bには、参考のため、互いに直交するX軸、Y軸、及びZ軸を有するXYZ座標系が示されている。
 本実施形態における積層構造体100は、ベース(マザー基板またはキャリア)10と、TFT層20A及び発光素子層20Bを含む機能層領域20と、ベース10と機能層領域20との間に位置して機能層領域20を支持するフレキシブルフィルム30と、フレキシブルフィルム30とベース10との間に位置してベース10に固着しているリリース層12とを備えている。リリース層12はアルミニウム及びシリコンの合金から形成されている。この積層構造体100は、更に、複数の機能層領域20を覆う保護シート50と、複数の機能層領域20と保護シート50との間において、機能層領域20の全体を覆うガスバリア膜40とを備えている。積層構造体100は、バッファ層などの図示されていない他の層を有していてもよい。
 本実施形態における発光素子層20Bは、例えば、2次元的に配列された複数のOLED素子を有している。本開示における「発光素子層」は、発光素子の2次元アレイを意味する。個々の発光素子は、OLED素子に限定されず、マイクロLED素子であってもよい。また、本実施形態におけるフレキシブル発光デバイスの典型例は、「フレキシブルディスプレイ」であるが、「フレキシブル照明装置」であってもよい。
 ベース10の典型例は、剛性を有するガラスベースである。フレキシブルフィルム30の典型例は、可撓性を有する合成樹脂フィルムである。以下、「フレキシブルフィルム」を単に「樹脂膜」と称する。リリース層12と、リリース層12を支持しているベース10とを含む構造物を、全体として、フレキシブル発光デバイスの「支持基板」と称する。支持基板は、リリース層12を覆う他の膜(例えばフレキシブルフィルム)を更に備えていてもよい。
 本実施形態における積層構造体100の第1の表面100aはベース10によって規定され、第2の表面100bは保護シート50によって規定されている。ベース10及び保護シート50は、製造工程中に一時的に用いられる部材であり、最終的なフレキシブル発光デバイスを構成する要素ではない。
 図示されている樹脂膜30は、複数の機能層領域20をそれぞれ支持している複数のフレキシブル基板領域30dと、個々のフレキシブル基板領域30dを囲む中間領域30iとを含む。フレキシブル基板領域30dと中間領域30iは、連続した1枚の樹脂膜30の異なる部分にすぎず、物理的に区別される必要はない。言い換えると、樹脂膜30のうち、各機能層領域20の真下に位置している部分がフレキシブル基板領域30dであり、その他の部分が中間領域30iである。
 複数の機能層領域20のそれぞれは、最終的にフレキシブル発光デバイスのパネル(例えば「ディスプレイパネル」)を構成する。言い換えると、積層構造体100は、分割前の複数のフレキシブル発光デバイスを1枚のベース10が支持している構造を有している。各機能層領域20は、例えば厚さ(Z軸方向サイズ)が数十μm、長さ(X軸方向サイズ)が12cm程度、幅(Y軸方向サイズ)が7cm程度のサイズを持つ形状を有している。これらのサイズは、必要な表示画面の大きさに応じて任意の大きさに設定され得る。各機能層領域20のXY平面内における形状は、図示されている例において、長方形であるが、これに限定されない。各機能層領域20のXY平面内における形状は、正方形、多角形、または、輪郭に曲線を含む形状を有していてもよい。
 図1Aに示されるように、フレキシブル基板領域30dは、フレキシブル発光デバイスの配置に対応して、行及び列状に、二次元的に配列されている。中間領域30iは、直交する複数のストライプから構成され、格子パターンを形成している。ストライプの幅は、例えば1~4mm程度である。樹脂膜30のフレキシブル基板領域30dは、最終製品の形態において、個々のフレキシブル発光デバイスの「フレキシブル基板」として機能する。これに対して、樹脂膜30の中間領域30iは、最終製品を構成する要素ではない。
 本開示の実施形態において、積層構造体100の構成は、図示されている例に限定されない。1枚のベース10に支持されている機能層領域20の個数(発光デバイスの個数)は、複数である必要はなく、単数であってもよい。機能層領域20が単数である場合、樹脂膜30の中間領域30iは、1個の機能層領域20の周りを囲む単純なフレームパターンを形成する。
 なお、各図面に記載されている各要素のサイズまたは比率は、わかりやすさの観点から決定されており、実際のサイズまたは比率を必ずしも反映していない。
 支持基板
 図2A及び図2Bを参照して、本開示の実施形態における支持基板の製造方法を説明する。図2A及び図2Bは、本開示の実施形態における支持基板200の製造方法を示す工程断面図である。
 まず、図2Aに示すように、ベース10を用意する。ベース10は、プロセス用のキャリア基板であり、その厚さは、例えば0.3~0.7mm程度であり得る。ベース10は、典型的にはガラスから形成される。ベース10は、後の工程で照射する剥離光を透過することが求められる。
 次に、図2Bに示すように、ベース10上にリリース層12を形成する。リリース層12は、アルミニウム及びシリコンの合金から形成されている。合金に含まれるシリコンの重量比率は、4%以上20%以下である。このような重量比率でシリコンを含有することにより、リリース層12の線膨張係数は、純アルミニウムの線膨張係数(23.6ppm/K)よりも低下する。また、前述したように、アルミニウム合金のシリコン含有率及び堆積条件を調整することにより、リリース層12の内部応力の絶対値を10MPa以下に低減しつつ、リリース層12の線膨張係数を樹脂膜30の線膨張係数の30%以上500%以下の範囲に入れることができる。合金に含まれるシリコンの重量比率が10%以上15%以下である場合、更にアルミニウム及びシリコンの合金の中で最も線膨張係数が小さくなり、また、耐熱性、耐摩耗性に優れている。このため、リリース層12を形成したベース10の再利用がしやすくなるという利点がある。樹脂膜30とリリース層12との界面には、剥離光(紫外線レーザ光)を吸収して発熱したリリース層12によって熱歪が発生し得る。樹脂膜30とリリース層12との間で線膨張係数の値に大きな差異(例えば10倍以上の差異)があると、樹脂膜30に大きな歪が発生してしまい、樹脂膜30と機能層領域20との間に挿入された下層バリア膜にクラックを発生させる可能性もある。この観点からすると、リリース層12の線膨張係数は、ベース10の線膨張係数に近ければよいというわけではない。アルミニウムとシリコンの合金は、樹脂膜30及びベース10の両方に対して適切な範囲の線膨張係数を有していると言える。
 本実施形態では、TFT層20A、樹脂膜30、リリース層12、及びベース10の線膨張係数(室温)は、それぞれ、例えば、2~5ppm/K、数十ppm/K、19~23ppm/K、及び3~5ppm/Kである。また、TFT層20Aと樹脂膜30との間に後述する下層ガスバリア膜を設ける場合、下層ガスバリア膜の線膨張係数は、例えば、2~5ppm/K程度である。なお、樹脂膜30の材料である透明ポリイミドの線膨張係数は、約25ppm/Kであり、ポリエチレンテレフタレート(PET)の線膨張係数は、約60ppm/Kである。本発明者の検討によると、リリース層の線膨張係数は、ベース10の線膨張係数と樹脂膜30の線膨張係数との間、もしくはベース10の線膨張係数以上、樹脂膜30の線膨張係数の5倍以下(例えば15~23ppm/K、より具体的な例では15~20ppm/K)にあることが望ましい。
 リリース層12の厚さは、100nm以上5000nm以下であり得る。リリース層12の形成方法の典型例はスパッタ法であるが、リリース層12はめっき法によって形成され得る。めっき法を用いると、μmオーダの厚さを有するリリース層12を実現できる。また、リリース層12を構成している合金の主成分はアルミニウムであるため、合金の熱伝導率は十分に高く、数μm程度の厚膜であっても、剥離を行うことが可能になる。
 スパッタ法を用いてリリース層12を形成する場合、シリコンを含有するアルミニウムターゲットをスパッタすることによってベース10上に合金を堆積する。
 なお、後述するレーザリフトオフ工程によってリリース層12から樹脂膜30を剥離した後、ベース10からリリース層12を除去して回収する工程を行ってもよい。
 なお、リリース層12に使用するアルミニウム合金の主成分は、融点が低いアルミニウムである。しかし、この材料は比熱・溶融潜熱が大きく熱伝導が良いため、局所加熱が生じにくい。言い換えると、アルミニウム合金は、高融点金属に比べて融点が低い材料であるにもかかわらず、リリース層12に強い剥離光を照射した際にリリース層12の溶融が発生しない。更に、剥離光の照射によって発熱するとき、剥離光強度の空間的分布に非一様性が生じても、熱が周囲に伝導しやすいために、剥離不良は生じにくい。より具体的には、ベース10の裏面にダストが付着したり、傷が形成されたりしている場合、ベース10の裏面からリリース層12に剥離光を入射させると、ダストの影または傷によって生じる回折・反射などにより、リリース層12上における剥離光強度に局所的な低下が生じる可能性がある。光化学反応による発熱を利用して樹脂膜30の剥離を行うとき、このような剥離光強度の局所的な不足が生じると、その位置で剥離が実現せず、剥離不良の問題が発生する。しかし、本実施形態におけるリリース層12は、剥離光を吸収して発熱及び伝熱を行うため、剥離光強度の局所的な不足による上記の問題が回避され得る。
 以下、積層構造体100の構成及び製造方法をより詳しく説明する。
 まず、図3Aを参照する。図3Aは、表面に樹脂膜30が形成された支持基板200を示す断面図である。
 本実施形態における樹脂膜30は、例えば厚さ5μm以上20μm以下、例えば10μm程度のポリイミド膜である。ポリイミド膜は、前駆体であるポリアミド酸またはポリイミド溶液から形成され得る。ポリアミド酸の膜を支持基板200におけるリリース層12の表面に形成した後に熱イミド化を行ってもよいし、ポリイミドを溶融または有機溶媒に溶解したポリイミド溶液からリリース層12の表面に膜を形成してもよい。ポリイミド溶液は、公知のポリイミドを任意の有機溶媒に溶解して得ることができる。ポリイミド溶液をベース10の表面に塗布した後、乾燥することによってポリイミド膜が形成され得る。
 ポリイミド膜は、ボトムエミッション型のフレキシブルディスプレイの場合、可視光領域の全体で高い透過率を実現することが好ましい。ポリイミド膜の透明度は、例えばJIS K7105-1981に従った全光線透過率によって表現され得る。全光線透過率は80%以上、または85%以上に設定され得る。一方、トップエミッション型のフレキシブルディスプレイの場合には透過率の影響は受けない。
 樹脂膜30は、ポリイミド以外の合成樹脂から形成された膜であってもよい。ただし、本開示の実施形態では、薄膜トランジスタを形成する工程において、例えば350℃以上の熱処理を行うため、この熱処理によって劣化しない材料から樹脂膜30は形成される。
 樹脂膜30は、複数の合成樹脂膜の積層体であってもよい。本実施形態のある態様では、フレキシブルディスプレイの構造物をベース10から剥離するとき、ベース10を透過する紫外線レーザ光(波長:300~360nm)を樹脂膜30に照射するLLOが行われる。紫外線を吸収して発熱するリリース層12がベース10と樹脂膜30との間に配置されているため、紫外線レーザ光の照射により、リリース層12と樹脂膜30の界面で樹脂膜30の一部(層状部分)が気化して樹脂膜30を、リリース層12、すなわち支持基板200から容易に剥離することができる。リリース層12があると、アッシュの生成が抑制されるという効果も得られる。
 本開示の実施形態におけるリリース層12はアルミニウムを主成分とする金属の性質を有するため、リリース層12の紫外線に対する透過率は極めて低い。このため、リフトオフ工程でリリース層12は紫外線遮蔽層として機能する。その結果、強い紫外線レーザ光がベース10から機能層領域20に入射してTFT層20A及び発光素子層20Bの特性を劣化させることが回避または抑制される。
 一般に、透明度の高い樹脂膜30であっても、紫外線はほとんど吸収されると考えられてきた。しかしながら、フレキシブル発光デバイスに使用される樹脂膜30は極めて薄い層であるため、金属材料から形成されたリリース層12が存在しないと、機能層領域20にまで紫外線レーザ光が入射する。紫外線は、TFT層20A及び発光素子層20Bの特性だけではなく、封止構造を構成する有機膜及び無機膜の封止性能を劣化させる可能性もある。更には、現在、広く利用されている樹脂膜30は黄褐色または茶褐色のポリイミド材料から形成されているため、紫外線の透過が機能層領域の特性劣化を引き起こし得るとは認識されていない。このような透明度の低いポリイミド材料は、紫外線を強く吸収するからである。しかしながら、本発明者の検討によると、透明度の低い樹脂膜30であっても、その厚さが例えば5~20μm程度しかなければ、紫外線は機能層領域20にまで達し得ることがわかった。したがって、本開示の実施形態に係る方法は、透明度が高くて紫外線を透過しやすい材料から形成された樹脂膜(フレキシブル基板)を備える発光デバイスだけではなく、透明度が低くて薄い樹脂膜30(厚さ:5~20μm程度)を備える発光デバイスの製造に好適に用いられる。
 なお、紫外線を透過する透明度の高いポリイミド及びPETは、透明度の低いポリイミドに比べて耐熱性が低い。しかしながら、本発明者の検討によると、アルミニウム及びシリコンからなる合金から形成されたリリース層12は、前述したとおり、比熱・溶融潜熱が大きく熱伝導が良いために紫外線照射による発熱がリリース層12を介して速やかに伝熱し、透明度の高いポリイミド及びPETなどの耐熱性が低い樹脂膜であってもダメージを与えることなく、良好に剥離できることがわかった。言い換えると、リリース層12は高融点金属から形成されている必要はなく、アルミニウムを主成分とするような非高融点金属材料から形成されていても、LLOが可能であることがわかった。
 リリース層12を形成することは、製造コストの上昇を招き得るが、高融点金属と異なり、アルミニウム合金は薬液により容易に溶解させることができるため、回収及びリサイクルが可能である。このため、リリース層を採用しても製造コストの増加は低く抑えることができる。
 <研磨処理>
 樹脂膜30の表面30x上にパーティクルまたは凸部などの研磨対象(ターゲット)が存在する場合、研磨装置によってターゲットを研磨し平坦化してもよい。パーティクルなどの異物の検出は、例えばイメージセンサによって取得した画像を処理することによって可能である。研磨処理後、樹脂膜30の表面30xに対する平坦化処理を行ってもよい。平坦化処理は、平坦性を向上させる膜(平坦化膜)を樹脂膜30の表面30xに形成する工程を含む。平坦化膜は樹脂から形成されている必要はない。
 <下層ガスバリア膜>
 次に、樹脂膜30上にガスバリア膜(不図示)を形成してもよい。ガスバリア膜は、種々の構造を有し得る。ガスバリア膜の例は、シリコン酸化膜またはシリコン窒化膜などの膜である。ガスバリア膜の他の例は、有機材料層及び無機材料層が積層された多層膜であり得る。このガスバリア膜は、機能層領域20を覆う後述のガスバリア膜から区別するため、「下層ガスバリア膜」と呼んでもよい。また、機能層領域20を覆うガスバリア膜は、「上層ガスバリア膜」と呼ぶことができる。下層ガスバリア膜は、例えばSi34から形成され得る。Si34の線膨張係数は約3ppm/Kである。本開示のある実施形態によれば、リリース層12の熱膨張係数がベース10の線膨張係数と樹脂膜30の線膨張係数との間にあるため、Si34から形成された下層ガスバリア層にクラックが生じる問題を回避できる。
 <機能層領域>
 次に、TFT層20A及び発光素子層20Bなどを含む機能層領域20、ならびに上層ガスバリア膜40を形成する工程を説明する。
 まず、図3Bに示されるように、複数の機能層領域20をベース10上に形成する。ベース10と機能層領域20との間には、ベース10に固着しているリリース層12及び樹脂膜30が位置している。
 機能層領域20は、より詳細には、下層に位置するTFT層20Aと、上層に位置する発光素子層20Bとを含んでいる。TFT層20A及び発光素子層20Bは、公知の方法によって順次形成される。TFT層20Aは、アクティブマトリクスを実現するTFTアレイの回路を含む。発光素子層20Bは、各々が独立して駆動され得る発光素子(OLED素子及び/またはマイクロLED素子)のアレイを含む。マイクロLED素子のチップサイズは、例えば、100μm×100μmよりも小さい。マイクロLED素子は、放射する光の色または波長に応じて異なる無機半導体材料から形成され得る。同一の半導体チップが組成の異なる複数の半導体積層構造を含み、それぞれの半導体積層構造から異なるR、G、Bの光が放射されても良い。
 TFT層20Aの厚さは例えば4μmであり、OLED素子を含む発光素子層20Bの厚さは例えば10μm以上であり得る。
 図4は、発光デバイスの一例である有機EL(Electro Luminescence)ディスプレイにおけるサブ画素の基本的な等価回路図である。ディスプレイの1個の画素は、例えばR(レッド)、G(グリーン)、B(ブルー)などの異なる色のサブ画素によって構成され得る。図4に示される例は、選択用TFT素子Tr1、駆動用TFT素子Tr2、保持容量CH、及び発光素子ELを有している。選択用TFT素子Tr1は、データラインDLと選択ラインSLとに接続されている。データラインDLは、表示されるべき映像を規定するデータ信号を運ぶ配線である。データラインDLは選択用TFT素子Tr1を介して駆動用TFT素子Tr2のゲートに電気的に接続される。選択ラインSLは、選択用TFT素子Tr1のオン/オフを制御する信号を運ぶ配線である。駆動用TFT素子Tr2は、パワーラインPLと発光素子ELとの間の導通状態を制御する。駆動用TFT素子Tr2がオンすれば、発光素子ELを介してパワーラインPLから接地ラインGLに電流が流れる。この電流が発光素子ELを発光させる。選択用TFT素子Tr1がオフしても、保持容量CHにより、駆動用TFT素子Tr2のオン状態は維持される。
 TFT層20Aは、選択用TFT素子Tr1、駆動用TFT素子Tr2、データラインDL、及び選択ラインSLなどを含む。発光素子層20Bは発光素子ELを含む。発光素子層20Bが形成される前、TFT層20Aの上面は、TFTアレイ及び各種配線を覆う層間絶縁膜によって平坦化されている。発光素子層20Bを支持し、発光素子層20Bのアクティブマトリクス駆動を実現する構造体は、「バックプレーン」と称される。
 図4に示される回路要素及び配線の一部は、TFT層20A及び発光素子層20Bのいずれかに含まれ得る。また、図4に示されている配線は、不図示のドライバ回路に接続される。
 本開示の実施形態において、TFT層20A及び発光素子層20Bの具体的な構成は多様であり得る。これらの構成は、本開示の内容を制限しない。TFT層20Aに含まれるTFT素子の構成は、ボトムゲート型であってもよいし、トップゲート型であってもよい。また、発光素子層20Bに含まれる発光素子の発光は、ボトムエミション型であってもよいし、トップエミション型であってもよい。発光素子の具体的構成も任意である。
 TFT素子を構成する半導体層の材料は、例えば、結晶質のシリコン、非晶質のシリコン、酸化物半導体を含む。本開示の実施形態では、TFT素子の性能を高めるために、TFT層20Aを形成する工程の一部が350℃以上の熱処理工程を含む。
 <上層ガスバリア膜>
 上記の機能層領域20を形成した後、図3Cに示されるように、機能層領域20の全体をガスバリア膜(上層ガスバリア膜)40によって覆う。上層ガスバリア膜40の典型例は、無機材料層と有機材料層とが積層された多層膜である。なお、上層ガスバリア膜40と機能層領域20との間、または上層ガスバリア膜40の更に上層に、粘着膜、タッチスクリーンを構成する他の機能層、偏光膜などの要素が配置されていてもよい。上層ガスバリア膜40の形成は、薄膜封止(Thin Film Encapsulation:TFE)技術によって行うことができる。封止信頼性の観点から、薄膜封止構造のWVTR(Water Vapor Transmission Rate)は、典型的には1×10-4g/m2/day以下であることが求められている。本開示の実施形態によれば、この基準を達成している。上層ガスバリア膜40の厚さは例えば1.5μm以下である。
 図5は、上層ガスバリア膜40が形成された段階における積層構造体100の上面側を模式的に示す斜視図である。1個の積層構造体100は、ベース10に支持された複数の発光デバイス1000を含んでいる。図5に示される例において、1個の積層構造体100は、図1Aに示される例よりも多くの機能層領域20を含んでいる。前述したように、1枚のベース10に支持される機能層領域20の個数は任意である。
 <保護シート>
 次に図3Dを参照する。図3Dに示されるように、積層構造体100の上面に保護シート50を張り付ける。保護シート50は、例えばポリエチレンテレフタレート(PET)やポリ塩化ビニル(PVC)などの材料から形成され得る。前述したように、保護シート50の典型例は、離型剤の塗布層を表面に有するラミネート構造を有している。保護シート50の厚さは、例えば50μm以上150μm以下であり得る。
 こうして作製された積層構造体100を用意した後、前述の製造装置(剥離装置220)を用いて本開示による製造方法を実行することができる。
 本開示の製造方法に用いられ得る積層構造体100は、図1A及び図1Bに示される例に限定されない。保護シート50は、樹脂膜30の全体を覆い、樹脂膜30よりも外側に拡がっていてもよい。あるいは、保護シート50は、樹脂膜30の全体を覆い、かつ、ベース10よりも外側に拡がっていてもよい。後述するように、積層構造体100からベース10が隔離された後、積層構造体100は、剛性を有しないフレキシブルな薄いシート状の構造物になる。保護シート50は、ベース10の剥離を行う工程、及び、剥離後の工程において、機能層領域20が外部の装置または器具などに衝突したり、接触したりしたとき、機能層領域20を衝撃及び摩擦などから保護する役割を果たす。保護シート50は、最終的に積層構造体100から剥がし取られるため、保護シート50の典型例は、接着力が比較的小さな接着層(離型剤の塗布層)を表面に有するラミネート構造を有している。積層構造体100のより詳細な説明は、後述する。
 <発光デバイスの分割>
 本実施形態のフレキシブル発光デバイスの製造方法では、積層構造体100を用意する工程を実行した後、樹脂膜30の中間領域30iと複数のフレキシブル基板領域30dのそれぞれとを分割する工程を行う。分割を行う工程は、LLO工程の前に行う必要はなく、LLO工程の後に行ってもよい。
 分割は、レーザビームまたはダイシングソーによって隣接する発光デバイスの中央部を切断することによって行うことができる。本実施形態では、積層構造体のベース10以外の部分を切断し、ベース10は切断しない。しかし、ベース10を切断して個々の発光デバイスと各発光デバイスを支持するベース部分とを備える部分積層構造に分割してもよい。
 以下、レーザビームの照射によってベース10以外の積層構造を切断する工程を説明する。切断のためのレーザビームの照射位置は、個々のフレキシブル基板領域30dの外周に沿っている。
 図6A及び図6Bは、それぞれ、樹脂膜30の中間領域30iと複数のフレキシブル基板領域30dのそれぞれとを分割する位置を模式的に示す断面図及び平面図である。切断のためのレーザビームの照射位置は、個々のフレキシブル基板領域30dの外周に沿っている。図6A及び図6Bにおいて、矢印または破線で示される照射位置(切断位置)CTを切断用のレーザビームで照射し、積層構造体100のうちでベース10以外の部分を複数の発光デバイス1000とその他の不要部分とに切断する。切断により、個々の発光デバイス1000と、その周囲との間に数十μmから数百μmの隙間が形成される。このような切断は、前述したように、レーザビームの照射に代えて、ダイシングソーによって行うことも可能である。切断後も、発光デバイス(例えばディスプレイパネル)1000及びその他の不要部分は、ベース10に固着されている。
 図6Bに示されているように、積層構造体100における「不要部分」の平面レイアウトは、樹脂膜30の中間領域30iの平面レイアウトに整合している。図示されている例において、この「不要部分」は、開口部を有する1枚の連続したシート状構造物である。しかし、本開示の実施形態は、この例に限定されない。切断用レーザビームの照射位置CTは、「不要部分」を複数の部分に分けるように設定されていてもよい。なお、「不要部分」であるシート状構造物は、樹脂膜30の中間領域30iのみならず、中間領域30i上に存在する積層物(例えばガスバリア膜40及び保護シート50)の切断された部分を含んでいる。
 レーザビームによって切断を行う場合、レーザビームの波長は、赤外、可視光、紫外のいずれの領域にあってもよい。ベース10に及ぶ切断の影響を小さくすると言う観点からは、波長が緑から紫外域に含まれるレーザビームが望ましい。例えば、Nd:YAGレーザ装置によれば、2次高調波(波長532nm)、または3次高調波(波長343nmまたは355nm)を利用して切断を行うことができる。その場合、レーザ出力を1~3ワットに調整して毎秒500mm程度の速度で走査すれば、ベース10に損傷を与えることなく、ベース10に支持されている積層物を発光デバイスと不要部分とに切断(分割)することができる。
 本開示の実施形態によれば、上記の切断を行うタイミングが従来技術に比べて早い。樹脂膜30がベース10に固着した状態で切断が実行されるため、隣接する発光デバイス1000の間隔が狭くても、高い正確度及び精度で切断の位置合わせが可能になる。このため、隣接する発光デバイス1000の間隔を短縮して、最終的に不要になる無駄な部分を少なくできる。
 <剥離光照射>
 図7Aは、不図示の製造装置(剥離装置)におけるステージ212が積層構造体100を支持する直前の状態を模式的に示す図である。本実施形態におけるステージ212は、吸着のための多数の孔を表面に有する吸着ステージである。吸着ステージの構成は、この例に限定されず、積層構造体を支持する静電チャックまたは他の固定装置を備えていてもよい。積層構造体100は、積層構造体100の第2の表面100bがステージ212の表面212Sに対向するように配置され、ステージ212に密着している。
 図7Bは、ステージ212が積層構造体100を支持している状態を模式的に示す図である。ステージ212と積層構造体100との配置関係は、図示される例に限定されない。例えば、積層構造体100の上下が反転し、ステージ212が積層構造体100の下方に位置していてもよい。
 図7Bに示される例において、積層構造体100は、ステージ212の表面212Sに接しており、ステージ212は積層構造体100を吸着している。
 次に、図7Cに示されるように、樹脂膜30の複数のフレキシブル基板領域30dとベース10との間に位置するリリース層12を剥離光216で照射する。図7Cは、図の紙面に垂直な方向に延びるライン状に成形された剥離光216によってベース10の側からリリース層12を照射している状態を模式的に示す図である。リリース層12は、剥離光216を吸収して短時間に加熱される。樹脂膜30の一部は、リリース層12と樹脂膜30との界面において、リリース層12からの熱によって気化または分解(消失)する。剥離光216でリリース層12をスキャンすることにより、樹脂膜30のリリース層12、言い換えると支持基板200に対する固着の程度を低下させる。剥離光216の波長は、典型的には紫外域にある。ベース10の光吸収率は、例えば波長が343~355nmの領域では10%程度だが、308nmでは30~60%に上昇し得る。
 以下、本実施形態における剥離光の照射を詳しく説明する。
 <剥離光照射装置1>
 本実施形態における剥離装置は、剥離光216を出射するラインビーム光源を備えている。ラインビーム光源は、レーザ装置と、レーザ装置から出射されたレーザ光をラインビーム状に成形する光学系とを備えている。
 図8Aは、剥離装置220のラインビーム光源214から出射されたラインビーム(剥離光216)で積層構造体100を照射する様子を模式的に示す斜視図である。わかりやすさのため、ステージ212、積層構造体100、及びラインビーム光源214は、図のZ軸方向に離れた状態で図示されている。剥離光216の照射時、積層構造体100の第2の表面100bはステージ212に接している。
 図8Bは、剥離光216の照射時におけるステージ212の位置を模式的に示している。図8Bには表れていないが、積層構造体100はステージ212によって支持されている。
 剥離光216を放射するレーザ装置の例は、エキシマレーザなどのガスレーザ装置、YAGレーザなどの固体レーザ装置、半導体レーザ装置、及び、その他のレーザ装置を含む。XeClのエキシマレーザ装置によれば、波長308nmのレーザ光が得られる。ネオジウム(Nd)がドープされたイットリウム・四酸化バナジウム(YVO4)、またはイッテルビウム(Yb)がドープされたYVO4をレーザ発振媒体として使用する場合は、レーザ発振媒体から放射されるレーザ光(基本波)の波長が約1000nmであるため、波長変換素子によって340~360nmの波長を有するレーザ光(第3次高調波)に変換してから使用され得る。
 アッシュの生成を抑制するという観点からは、波長が340~360nmのレーザ光よりも、エキシマレーザ装置による波長308nmのレーザ光を利用することが、より有効である。また、リリース層12の存在は、アッシュ生成の抑制に顕著な効果を発揮する。
 剥離光216の照射は、例えば50~400mJ/cm2のエネルギ照射密度で実行され得る。熱伝導が良いアルミニウムとシリコンの合金からなるリリース層を用いることで、エネルギ照射密度の下限を大きく広げることができる。なお、ラインビーム状の剥離光216は、ベース10を横切るサイズ、すなわちベースの1辺の長さを超えるライン長さ(長軸寸法、図8BのY軸方向サイズ)を有する。ライン長さは、例えば750mm以上であり得る。一方、剥離光216のライン幅(短軸寸法、図8BのX軸方向サイズ)は、例えば0.2mm程度であり得る。これらの寸法は、樹脂膜30とベース10との界面における照射領域のサイズである。剥離光216は、パルス状または連続波として照射され得る。パルス状の照射は、例えば毎秒200回程度の周波数で行われ得る。
 剥離光216の照射位置は、ベース10に対して相対的に移動し、剥離光216のスキャンが実行される。剥離装置220内において、剥離光を出射する光源214及び光学装置(不図示)が固定され、積層構造体100が移動してもよいし、その逆であってもよい。本実施形態では、ステージ212が図8Bに示される位置から図8Cに示される位置に移動する間、剥離光216の照射が行われる。すなわち、X軸方向に沿ったステージ212の移動により、剥離光216のスキャンが実行される。
 <剥離光照射装置2>
 上記の実施形態における剥離光照射装置が備える光源は、レーザ光源であるが、本開示の剥離光照射装置は、この例に限定されない。剥離光は、レーザ光源のようなコヒーレント光源の代わりに、非コヒーレント光源から放射されてもよい。以下、紫外線ランプから放射された剥離光で樹脂膜とガラスベースとの界面を照射する例を説明する。
 図9Aは、剥離光216を放射する面光源215の構成例を模式的に示す断面図である。図9Bは、この面光源215の構成例を示す上面図である。
 図示されている面光源215は、積層構造体100に対向する領域に配列された複数の紫外ランプ380と、各紫外ランプ380から放射された紫外光を反射するリフレクタ390とを備えている。この紫外ランプ380は、例えば、波長365nmのi線を放射する高圧水銀ランプであり得る。図示されている例におけるリフレクタ390は、紫外ランプ380から周囲に放射された紫外光を反射して実質的に平行光にすることができる。リフレクタ390がコールドミラーから形成されていると、高圧水銀ランプから放射された光に含まれる赤外成分が積層構造体100に入射することを抑制できる。紫外ランプ380と積層構造体100との間に赤外カットフィルタを配置してもよい。剥離光216に含まれ得る赤外成分を低減またはカットすることにより、赤外線照射による積層構造体100の昇温を抑制または防止することができる。
 樹脂膜30の剥離に必要な剥離光の照射エネルギは、例えば100mJ/cm2以上300mJ/cm2以下の範囲にある。紫外ランプ380のような光源(非コヒーレント光源)は、前述したレーザ光源に比べて一般に単位面積あたりの照射強度が小さい。このため、充分な照射エネルギを達成するためには、レーザ光源を用いる場合に比べて剥離光照射時間を長くすればよい。
 図9A及び図9Bに示される面光源215は、面状に広がる剥離光216を形成できるため、ラインビームをスキャンする場合に比べて、それぞれの位置での照射時間を長くすることが容易である。
 なお、図9Aの例では、リフレクタ390によって平行化された剥離光216が形成されているが、本開示の実施形態は、この例に限定されない。リフレクタ390及び不図示のレンズを利用して、各紫外ランプ380から放射された光を幅が1~3mm程度のライン状に集光してもよい。そのようなストライプ状の剥離光216で積層構造体100を照射する場合は、積層構造体100に対する面光源215の相対位置をシフトさせることにより、積層構造体100の全面を剥離光216で照射することができる。
 紫外ランプ380から放射される紫外光の照射強度が高い場合、1本または数本の紫外ランプ380でスキャンすることにより、積層構造体100の全面を剥離光216で照射することも可能である。紫外ランプ380から放射される紫外光の照射強度が高くない場合でも、スキャン速度を低下させれば、1本または数本の紫外ランプ380のスキャンにより、積層構造体100の全面を剥離光216で照射することが可能である。
 <剥離光照射装置3>
 以下、複数の発光ダイオード素子を備える非コヒーレント光源から放射された剥離光で樹脂膜とガラスベースとの界面を照射する例を説明する。
 剥離光を放射する光源として、紫外光を放射する複数の発光ダイオード(UV-LED)素子を用いることができる。このような発光ダイオード素子は、それぞれが、例えば縦3.5mm×横3.5mm×厚さ1.2mmのサイズを有している。複数の発光ダイオード素子は、1列または複数列に並べられて使用され得る。
 図10は、2次元的に配列された複数の発光ダイオード素子400を備える面光源215を模式的に示す断面図である。個々の発光ダイオード素子400から放射された光は、Z軸方向を中心として拡がる。この光は、Z軸からの傾きである放射角度θに依存した相対放射強度の分布(指向性)を示す。ある例において、発光ダイオード素子の相対放射強度は、θ=45°で約75%、θ=65°で約50%であり得る。発光ダイオード素子の指向性は、レンズ及び/またはリフレクタを配置することにより、調節され得る。
 市販されている発光ダイオード素子によれば、例えば電圧:3.85ボルト、電流:1000ミリアンペアの駆動条件で波長365nmの紫外光を1450ミリワットの出力で放射することができる。
 図11は、図10に示される例に比べて発光ダイオード素子400の面内個数密度を高めた面光源215を示す断面図である。発光ダイオード素子400の面内個数密度が高くなるほど、照射強度を高めることができる。
 図12は、行及び列状に配列された発光ダイオード素子400のアレイを示す図である。隣接する発光ダイオード素子400の間隔(配列ピッチ)Pは、樹脂膜とガラスベースとの界面の全体において、照射強度が剥離に必要なレベルを超えるように選択される。
 <剥離光照射装置4>
 発光ダイオード素子は、駆動電流の大きさを調整することにより、その発光強度が制御される。従って、複数の発光ダイオード素子を1次元または2次元的に配列した状態において、個々の発光ダイオード素子を流れる駆動電流を変調することにより、剥離光の照射強度を時間的及び/または空間的に変調することもできる。
 発光ダイオード素子の配列ピッチは、例えば3mm以上10mm以下の範囲にある。発光ダイオード素子から放射される光は、レーザ光とは異なり、インコヒーレント(非コヒーレント)光である。発光ダイオード素子から放射される光の波長は、例えば300nm以上380nm以下の範囲にある。
 図13A、図13B及び図13Cを参照しながら、複数の発光ダイオード素子が配列されたラインビーム光源の例を説明する。
 図13Aは、Y軸方向に配列された複数の発光ダイオード素子400を備えるラインビーム光源214の上面を模式的に示している。図13Bは、図13Aに示されるラインビーム光源214のB-B線断面図である。図13Bには、積層構造体100も記載されている。図13Cは、積層構造体100に対するラインビーム光源214の移動方向を示す図である。
 この例において、発光ダイオード素子400から放射された紫外光は、単位面積あたりの照射エネルギ(照射強度:単位はジュール/cm2)を高めるために、シリンドリカルレンズ410を通って積層構造体100のガラスベース10に入射する。紫外光はX軸方向にフォーカスされるため、剥離が生じる界面(剥離面)における照射領域の幅(X軸方向サイズ)を例えば0.2mm程度またはそれ以下に狭くすることができる。シリンドリカルレンズ410は、X軸方向におけるフォーカスは行わないため、照射領域のY軸方向サイズは短縮されない。
 剥離光の照射強度を高めるためには、発光ダイオード素子400の配列ピッチを縮小して発光ダイオード素子400の個数密度を高めればよい。例えば、個々の発光ダイオード素子400のサイズが前述した大きさを有する場合、3.5mm~10mm間隔(配列ピッチ:隣接する光源の中心間距離)で数十個または100個以上の個数の発光ダイオード素子400を配列してもよい。より小さな発光ダイオード素子400を用いる場合は、例えば2.0mm~10mm間隔で配置することも可能である。発光ダイオード素子400の配列ピッチは5mm以下であることが好ましい。
 図13Cに示すように積層構造体100に対してラインビーム光源214を移動させることにより、積層構造体100の全面に対する剥離光の照射を実行できる。
 ラインビーム光源214の照射強度を高めるため、発光ダイオード素子400を複数列に並べてもよい。
 図14Aは、Y軸方向に配列された複数列の発光ダイオード素子400を備えるラインビーム光源214の上面を模式的に示している。図14Bは、図14Aに示されるラインビーム光源214のB-B線断面図である。図14Bには、積層構造体100も記載されている。図14Cは、積層構造体100に対するラインビーム光源214の移動方向を示す図である。
 この例のラインビーム光源214は、それぞれがY軸方向に延びる5列の発光ダイオード素子400を備えている。Y軸方向における5列の発光ダイオード素子400の位置は、それぞれ、異なる。配列ピッチをPとするとき、発光ダイオード列の位置は、隣接する列の間で、Y軸方向にP/5ずつシフトしている。図14Cに示すように積層構造体100に対してラインビーム光源214を移動させることにより、積層構造体100の全面に対する剥離光の照射を実行できる。
 剥離光の照射は、積層構造体100に対して複数の光源を静止させた状態で行ってもよい。
 図15は、多数の発光ダイオード素子400がマトリックス状に配列された面光源215の例を模式的に示す上面図である。剥離するべき面内を複数の領域に区分し、ステッパによる順次露光と同様に、各領域を剥離光のフラッシュで照射してもよい。
 なお、積層構造体100及び面光源215を共に静止した状態で剥離光照射を行う場合、光スキャンのための精密な駆動装置が不要になる。また、固定されたラインビーム光源に対して積層構造体100を移動させながら剥離光照射を行う場合(図13A-図13Cまたは図14A-図14C)は、積層構造体100の移動のために積層構造体100の2倍の面積を持つエリアが必要である。しかし、面光源215を使用すれば、積層構造体100の移動に必要な余分のエリアが不要になり、装置の設置面積が半減する利点がある。
 このように発光ダイオード素子を用いることにより、比較的に高価な半導体レーザ素子を用いるよりも多数の光源を用いて剥離光照射を実行することが低コストで可能になる。また、個々の発光ダイオード素子から剥離光を放射する時間を長くすることも容易であるため、各発光ダイオード素子の光出力が小さくても、照射時間を調整することにより、剥離に必要な照射エネルギを達成できる。さらには、レーザ光を使用しないため、人間の眼に対する安全性(アイセーフ)の面でも有利であり、より容易な装置設計や運用が可能となる。
 <リフトオフ>
 図16Aは、剥離光の照射後、積層構造体100がステージ212に接触している状態を記載している。この状態を維持したまま、ステージ212からベース10までの距離を拡大する。このとき、本実施形態におけるステージ212は積層構造体100の発光デバイス部分を吸着している。
 不図示の駆動装置がベース10を保持してベース10の全体を矢印の方向に移動させることにより、剥離(リフトオフ)が実行される。ベース10は、不図示の吸着ステージによって吸着した状態で吸着ステージとともに移動し得る。ベース10の移動の方向は、積層構造体100の第1の表面100aに垂直である必要はなく、傾斜していてもよい。ベース10の移動は直線運動である必要はなく、回転運動であってもよい。また、ベース10が不図示の保持装置または他のステージによって固定され、ステージ212が図の上方に移動してもよい。
 図16Bは、こうして分離された積層構造体100の第1部分110と第2部分120とを示す断面図である。積層構造体100の第1部分110は、ステージ212に接触した複数の発光デバイス1000を含む。各発光デバイス1000は、機能層領域20と、樹脂膜30の複数のフレキシブル基板領域30dとを有している。これに対して、積層構造体100の第2部分120は、ベース10とリリース層12とを有している。
 ステージ212に支持された個々の発光デバイス1000は、相互に切断された関係にあるため、同時または順次に、ステージ212から容易に取り外され得る。
 上記の実施形態では、LLO工程の前に各発光デバイス1000の切断分離を行ったが、LLO工程の後に各発光デバイス1000の切断分離を行ってもよい。また、各発光デバイス1000の切断分離は、ベース10を対応する部分に分割することを含んでいてもよい。
 本開示の実施形態によれば、紫外線を透過する透明度の高いポリイミド及びPETから形成されたフレキシブルフィルムを用いる場合、あるいは透明度は低いが薄く(厚さが5~20μm)紫外線を透過し得るフレキシブルフィルムを用いる場合でも、紫外線による機能層領域の特性劣化、及びガスバリア層の性能劣化を抑制することができる。また、高融点金属と異なり、アルミニウム合金の回収及びリサイクルが容易であるため、リリース層を採用することの製造コストの増加も低く抑えることができる。
 本発明の実施形態は、新しいフレキシブル発光デバイスの製造方法を提供する。フレキシブル発光デバイスは、スマートフォン、タブレット端末、車載用ディスプレイ、及び中小型から大型のテレビジョン装置に広く適用され得る。また、フレキシブル発光デバイスは、照明装置としても利用され得る。
 10・・・ベース、12・・・リリース層、20・・・機能層領域、20A・・・TFT層、20B・・・発光素子層、30・・・樹脂膜、30d・・・樹脂膜のフレキシブル基板領域、30i・・・樹脂膜の中間領域、40・・・ガスバリア膜、50・・・保護シート、100・・・積層構造体、212・・・ステージ、1000・・・発光デバイス

Claims (15)

  1.  ベースと、TFT層及び発光素子層を含む機能層領域と、前記ベースと前記機能層領域との間に位置して前記機能層領域を支持するフレキシブルフィルムと、前記フレキシブルフィルムと前記ベースとの間に位置して前記ベースに固着しているリリース層とを備える積層構造体を用意する工程、及び
     前記ベースを透過する紫外剥離光で前記リリース層を照射して前記リリース層から前記フレキシブルフィルムを剥離する工程と、
    を含み、
     前記リリース層はアルミニウム及びシリコンの合金から形成されている、フレキシブル発光デバイスの製造方法。
  2.  前記紫外剥離光は、非コヒーレント光である、請求項1に記載の製造方法。
  3.  前記発光素子層は、配列された複数のマイクロLEDを含み、
     前記紫外剥離光は、レーザ光である、請求項1に記載の製造方法。
  4.  前記合金に含まれるシリコンの重量比率は、4%以上20%以下である、請求項1から3のいずれかに記載の製造方法。
  5.  前記リリース層の線膨張係数は、前記フレキシブルフィルムの線膨張係数の30%以上500%以下である、請求項1から4のいずれかに記載の製造方法。
  6.  前記リリース層の厚さは、100nm以上5000nm以下である、請求項1から5のいずれかに記載の製造方法。
  7.  前記紫外剥離光の波長は、300nm以上360nm以下である、請求項1から6のいずれかに記載の製造方法。
  8.  前記フレキシブルフィルムの厚さは、5μm以上20μm以下である、請求項1から7のいずれかに記載の製造方法。
  9.  前記積層構造体を用意する工程は、
     シリコンを含有するアルミニウムターゲットをスパッタすることによって前記ベース上に前記リリース層を形成する工程と、
     前記リリース層上に前記フレキシブルフィルムを形成する工程と、
    を含む、請求項1から8のいずれかに記載の製造方法。
  10.  前記リリース層から前記フレキシブルフィルムを剥離した後、前記ベースから前記リリース層を除去して回収する工程を含む、請求項1から9のいずれかに記載の製造方法。
  11.  フレキシブル発光デバイスの支持基板であって、
     アルミニウム及びシリコンの合金から形成されたリリース層と、
     紫外線を透過する材料から形成されたベースであって、前記リリース層を支持しているベースと、
    を備える支持基板。
  12.  前記リリース層を覆い、前記紫外線を透過する材料から形成されたフレキシブルフィルムを更に備える、請求項11に記載の支持基板。
  13.  前記合金に含まれるシリコンの重量比率は、4%以上20%以下である、請求項11または12に記載の支持基板。
  14.  前記リリース層の線膨張係数は、前記フレキシブルフィルムの線膨張係数の30%以上500%以下である、請求項11から13のいずれかに記載の支持基板。
  15.  前記リリース層の厚さは、100nm以上5000nm以下である、請求項11から14のいずれかに記載の支持基板。
PCT/JP2019/027580 2019-07-11 2019-07-11 フレキシブル発光デバイスの製造方法及び支持基板 WO2021005798A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/027580 WO2021005798A1 (ja) 2019-07-11 2019-07-11 フレキシブル発光デバイスの製造方法及び支持基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/027580 WO2021005798A1 (ja) 2019-07-11 2019-07-11 フレキシブル発光デバイスの製造方法及び支持基板

Publications (1)

Publication Number Publication Date
WO2021005798A1 true WO2021005798A1 (ja) 2021-01-14

Family

ID=74114116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027580 WO2021005798A1 (ja) 2019-07-11 2019-07-11 フレキシブル発光デバイスの製造方法及び支持基板

Country Status (1)

Country Link
WO (1) WO2021005798A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024203903A1 (en) * 2023-03-27 2024-10-03 Nec Corporation Method, apparatus, system and program for applying mask on object in image

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174153A (ja) * 2001-07-16 2003-06-20 Semiconductor Energy Lab Co Ltd 剥離方法および半導体装置の作製方法、および半導体装置
JP2015129917A (ja) * 2013-12-02 2015-07-16 株式会社半導体エネルギー研究所 情報処理装置
WO2019069352A1 (ja) * 2017-10-02 2019-04-11 シャープ株式会社 表示デバイスの製造方法、表示デバイスの製造装置
JP2019067978A (ja) * 2017-10-03 2019-04-25 トヨタ自動車株式会社 半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174153A (ja) * 2001-07-16 2003-06-20 Semiconductor Energy Lab Co Ltd 剥離方法および半導体装置の作製方法、および半導体装置
JP2015129917A (ja) * 2013-12-02 2015-07-16 株式会社半導体エネルギー研究所 情報処理装置
WO2019069352A1 (ja) * 2017-10-02 2019-04-11 シャープ株式会社 表示デバイスの製造方法、表示デバイスの製造装置
JP2019067978A (ja) * 2017-10-03 2019-04-25 トヨタ自動車株式会社 半導体装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024203903A1 (en) * 2023-03-27 2024-10-03 Nec Corporation Method, apparatus, system and program for applying mask on object in image

Similar Documents

Publication Publication Date Title
JP6334079B1 (ja) フレキシブルoledデバイスの製造方法および製造装置
JP6674592B1 (ja) フレキシブル発光デバイスの製造方法および製造装置
WO2019097673A1 (ja) フレキシブルoledデバイスの製造方法および製造装置
WO2019082357A1 (ja) フレキシブルoledデバイスの製造方法および製造装置
JP6694558B2 (ja) フレキシブル発光デバイスの製造方法および製造装置
JP6588186B1 (ja) フレキシブルoledデバイスの製造方法及び支持基板
JP6664037B1 (ja) フレキシブル発光デバイスの製造方法および製造装置
WO2019082358A1 (ja) フレキシブルoledデバイスの製造方法および製造装置
US20210375844A1 (en) Method and device for manufacturing flexible light emission device
JP6674591B1 (ja) フレキシブル発光デバイスの製造方法および製造装置
JP6674593B1 (ja) フレキシブル発光デバイスの製造方法および製造装置
WO2021005798A1 (ja) フレキシブル発光デバイスの製造方法及び支持基板
JP6692003B2 (ja) フレキシブル発光デバイスの製造方法および製造装置
JP6899477B2 (ja) フレキシブルoledデバイス、その製造方法及び支持基板
JP6564555B1 (ja) フレキシブルoledデバイス、その製造方法及び支持基板
JP6772348B2 (ja) フレキシブルoledデバイス、その製造方法及び支持基板
WO2021005796A1 (ja) フレキシブル発光デバイス、その製造方法及び支持基板
JP6535122B2 (ja) フレキシブルoledデバイスの製造方法および製造装置
JP2020115238A (ja) フレキシブル発光デバイスの製造方法および製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19936693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP