Nothing Special   »   [go: up one dir, main page]

WO2021095854A1 - 無方向性電磁鋼板の製造方法 - Google Patents

無方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
WO2021095854A1
WO2021095854A1 PCT/JP2020/042465 JP2020042465W WO2021095854A1 WO 2021095854 A1 WO2021095854 A1 WO 2021095854A1 JP 2020042465 W JP2020042465 W JP 2020042465W WO 2021095854 A1 WO2021095854 A1 WO 2021095854A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
rolling
content
annealing
oriented electrical
Prior art date
Application number
PCT/JP2020/042465
Other languages
English (en)
French (fr)
Inventor
鉄州 村川
美穂 冨田
智 鹿野
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to KR1020227005033A priority Critical patent/KR20220032109A/ko
Priority to CN202080059889.4A priority patent/CN114286871B/zh
Priority to US17/638,461 priority patent/US20220349037A1/en
Priority to BR112022002865-2A priority patent/BR112022002865B1/pt
Priority to EP20886738.2A priority patent/EP4060059A4/en
Priority to JP2021556178A priority patent/JP7047983B2/ja
Publication of WO2021095854A1 publication Critical patent/WO2021095854A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Definitions

  • the present invention relates to a method for manufacturing a non-oriented electrical steel sheet.
  • the present application claims priority based on Japanese Patent Application No. 2019-206708 filed in Japan on November 15, 2019, the contents of which are incorporated herein by reference.
  • Non-oriented electrical steel sheets are used, for example, in the iron core of motors.
  • the non-oriented electrical steel sheet has excellent magnetic properties in the average in all directions parallel to the plate surface (hereinafter, may be referred to as "overall circumference average in the plate surface (omnidirectional average)"). For example, it is required to have low iron loss and high magnetic flux density.
  • overall circumference average in the plate surface omnidirectional average
  • various techniques have been proposed so far, it is difficult to obtain sufficient magnetic characteristics on the average of the entire circumference in the plate surface. For example, even if sufficient magnetic characteristics can be obtained in a specific direction within the plate surface, sufficient magnetic characteristics may not be obtained in other directions.
  • an object of the present invention is to provide a method for manufacturing a non-oriented electrical steel sheet capable of obtaining excellent magnetic characteristics with an all-around average (omnidirectional average) in the plate surface.
  • the present inventors have conducted diligent studies to solve the above problems. As a result, the present inventors presuppose the chemical composition of the ⁇ - ⁇ transformation system in order to obtain excellent magnetic properties on the whole circumference average in the plate surface, and transform from austenite to ferrite during hot rolling. It is important to make the crystal structure finer by allowing it to be made finer, and by starting cooling within 0.1 seconds from the completion of the final pass of finish rolling in hot rolling. I found that there is.
  • overhang recrystallization (hereinafter referred to as bulging) by performing cold rolling at a desired cumulative rolling ratio and performing the first annealing (intermediate annealing) under desired conditions. It was also found that it is important to facilitate the development of ⁇ 100 ⁇ crystal grains, which are normally difficult to develop.
  • the gist of the present invention made based on the above findings is as follows.
  • (1) The method for manufacturing a non-oriented electrical steel sheet according to one aspect of the present invention is based on mass%.
  • C 0.0100% or less, Si: 1.50 to 4.00%, sol. Al: 0.0001 to 1.000%, S: 0.0100% or less, N: 0.0100% or less, Mn, Ni, Co, Pt, Pb, Cu and Au: 2.50 to 5.00% in total, Sn: 0.000 to 0.400%, Sb: 0.000 to 0.400%, P: 0.000 to 0.400%, and Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn and Cd: 0.0000 to 0.0100% in total.
  • Mn content is [Mn]
  • Ni content is [Ni]
  • Co content is [Co]
  • Pt content is [Pt]
  • Pb content is [Pb]
  • Cu content is [Cu].
  • Au content is [Au]
  • Si content is [Si]
  • sol. The Al content is [sol.
  • the final pass of the finish rolling during the hot rolling is performed in a temperature range of Ar1 temperature or higher, and the average cooling rate is 50 to 500 ° C./sec within 0.1 seconds from the completion of the final pass of the finish rolling.
  • a certain cooling is started and cooled to a temperature range of more than 250 ° C. and lower than 700 ° C. ([Mn] + [Ni] + [Co] + [Pt] + [Pb] + [Cu] + [Au])-([Si] + [sol.Al])> 0.00% ... ( 1) (2)
  • the steel material is mass%.
  • the first annealing may be performed in a temperature range lower than the Ac1 temperature.
  • the first annealing has a step of performing a second cold rolling after the first annealing. In the first cold rolling step, cold rolling is performed at a cumulative rolling reduction of 80 to 92%.
  • the non-oriented electrical steel sheet manufacturing method according to (4) above includes a step of performing a second annealing after the second cold rolling.
  • the annealing temperature may be lower than the Ac1 temperature.
  • the steel material used in the method for manufacturing the non-oriented electrical steel sheet according to the present embodiment may be simply referred to as the steel material according to the present embodiment
  • the method for manufacturing the non-oriented electrical steel sheet according to the present embodiment The chemical composition of the non-oriented electrical steel sheet (which may be simply referred to as the non-oriented electrical steel sheet according to the present embodiment) produced by the product will be described.
  • “%” which is a unit of the content of each element contained in non-oriented electrical steel sheets or steel materials, means “mass%” unless otherwise specified.
  • the numerical limit range described below with “ ⁇ ” in between includes the lower limit value and the upper limit value. Numerical values that indicate "less than” or "greater than” do not fall within the numerical range.
  • the non-oriented electrical steel sheet and the steel material according to the present embodiment have a chemical composition capable of causing a ferrite-austenite transformation (hereinafter, ⁇ - ⁇ transformation).
  • ⁇ - ⁇ transformation a chemical composition capable of causing a ferrite-austenite transformation
  • mass% C: 0.0100% or less, Si: 1.50 to 4.00%, sol. Al: 0.0001 to 1.000%, S: 0.0100% or less, N: 0.0100% or less, Mn, Ni, Co, Pt, Pb, Cu and Au: 2.50 to 5.00 in total %, Sn: 0.000 to 0.400%, Sb: 0.000 to 0.400%, P: 0.000 to 0.400%, and Mg, Ca, Sr, Ba, Ce, La, Nd.
  • Pr, Zn and Cd A total of 0.0000 to 0.0100% is contained, and the balance has a chemical composition consisting of Fe and impurities. Furthermore, Mn, Ni, Co, Pt, Pb, Cu, Au, Si and sol. The Al content satisfies a predetermined condition described later.
  • the C content is set to 0.0100% or less.
  • the reduction of the C content also contributes to a uniform improvement of the magnetic characteristics in all directions in the plate surface (improvement of magnetic characteristics in all directions). Therefore, the C content is preferably 0.0060% or less, more preferably 0.0040% or less, and even more preferably 0.0020% or less.
  • the lower limit of the C content is not particularly limited, it is preferably 0.0005% or more in consideration of the cost of decarburization treatment at the time of refining.
  • Si increases the electric resistance to reduce the eddy current loss, reduces the iron loss of the non-oriented electrical steel sheet, and increases the yield ratio to improve the punching workability to the iron core. If the Si content is less than 1.50%, these effects cannot be sufficiently obtained. Therefore, the Si content is 1.50% or more.
  • the Si content is preferably 2.00% or more, more preferably 2.50% or more.
  • the Si content exceeds 4.00%, the magnetic flux density of the non-oriented electrical steel sheet decreases, the punching workability decreases due to an excessive increase in hardness, and cold rolling becomes difficult. Therefore, the Si content is set to 4.00% or less.
  • the Si content is preferably 3.50% or less, more preferably 3.30% or less.
  • sol.Al 0.0001 to 1.000%) sol.
  • Al increases the electrical resistance, reduces the eddy current loss, and reduces the iron loss of the non-oriented electrical steel sheet.
  • sol. Al also contributes to the improvement of the relative magnitude of the magnetic flux density B50 with respect to the saturation magnetic flux density.
  • the magnetic flux density B50 is the magnetic flux density in a magnetic field of 5000 A / m. sol. If the Al content is less than 0.0001%, these effects cannot be sufficiently obtained. Al also has a desulfurization promoting effect in steelmaking. Therefore, sol.
  • the Al content is 0.0001% or more. sol.
  • the Al content is preferably 0.001% or more, more preferably 0.010% or more, and even more preferably 0.300% or more.
  • the Al content is 1.000% or less.
  • the Al content is preferably 0.900% or less, more preferably 0.800% or less, and even more preferably 0.700% or less.
  • sol. Al means acid-soluble Al, and indicates solid solution Al existing in steel in a solid solution state.
  • S is not an essential element to be contained, but is an element contained as an impurity in steel, for example.
  • S inhibits recrystallization and grain growth during annealing due to the precipitation of fine MnS.
  • the iron loss of the non-oriented electrical steel sheet increases and the magnetic flux density decreases. Therefore, the lower the S content, the more preferable.
  • the increase in iron loss and the decrease in magnetic flux density due to the inhibition of recrystallization and grain growth are remarkable when the S content exceeds 0.0100%. Therefore, the S content is set to 0.0100% or less.
  • the S content is preferably 0.0060% or less, more preferably 0.0040% or less.
  • the lower limit of the S content is not particularly limited, it is preferably 0.0003% or more in consideration of the cost of desulfurization treatment at the time of refining.
  • N (N: 0.0100% or less) Similar to C, N deteriorates the magnetic properties of the non-oriented electrical steel sheet. Therefore, the lower the N content, the more preferable. Therefore, the N content is 0.0100% or less.
  • the N content is preferably 0.0050% or less, more preferably 0.0030% or less.
  • the lower limit of the N content is not particularly limited, it is preferably 0.0010% or more in consideration of the cost of denitrification treatment at the time of refining.
  • Mn, Ni, Co, Pt, Pb, Cu and Au are elements required to cause ⁇ - ⁇ transformation. Therefore, at least one of these elements is contained in an amount of 2.50% or more. It is not necessary to contain all of these elements, and any one of them may have a content of 2.50% or more. The total content of these elements is preferably 3.00% or more. On the other hand, if the total content of these elements exceeds 5.00%, the cost may increase and the magnetic flux density of the non-oriented electrical steel sheet may decrease. Therefore, the total content of these elements should be 5.00% or less. The total content of these elements is preferably 4.50% or less. The total of Mn, Ni, Co, Pt, Pb, Cu and Au can be obtained by calculating the total content of Mn, Ni, Co, Pt, Pb, Cu and Au.
  • the non-oriented electrical steel sheet and the steel material according to the present embodiment have a chemical composition that satisfies the following conditions as conditions under which ⁇ - ⁇ transformation can occur. That is, the Mn content (mass%) is [Mn], the Ni content (mass%) is [Ni], the Co content (mass%) is [Co], and the Pt content (mass%) is [Pt].
  • Pb content (mass%) is [Pb]
  • Cu content (mass%) is [Cu]
  • Au content (mass%) is [Au]
  • Si content (mass%) is [Si] sol.
  • the Al content (% by mass) was changed to [sol. When expressed as [Al], the following equation (1) is satisfied. ([Mn] + [Ni] + [Co] + [Pt] + [Pb] + [Cu] + [Au])-([Si] + [sol.Al])> 0.00% ... ( 1)
  • the left side of Eq. (1) is set to more than 0.00%.
  • the left side of the equation (1) is preferably 0.30% or more, more preferably 0.50% or more.
  • the upper limit of the left side of the equation (1) is not particularly limited, but may be 2.00% or less, or 1.00% or less.
  • the balance of the chemical composition of the non-oriented electrical steel sheet and the steel material according to this embodiment is composed of Fe and impurities.
  • Impurities include those contained in raw materials such as ore and scrap, those contained in the manufacturing process, or adversely affect the characteristics of non-oriented electrical steel sheets manufactured by the method for manufacturing grain-oriented electrical steel sheets according to the present embodiment.
  • An example is one that is permissible to the extent that it does not reach.
  • the non-oriented electrical steel sheet and steel material according to this embodiment may contain the following elements as optional elements in addition to a part of Fe.
  • the lower limit of the content when the following optional elements are not contained is 0%.
  • each arbitrary element will be described in detail.
  • Sn and Sb improve the magnetic flux density of the non-oriented electrical steel sheet by improving the texture after cold rolling and recrystallization. Therefore, these elements may be contained as needed. In order to surely obtain the above effect, it is preferable that the content of even one of Sn and Sb is 0.020% or more. On the other hand, if Sn and Sb are excessively contained, the steel becomes embrittlement. Therefore, both the Sn content and the Sb content are set to 0.400% or less.
  • P may be contained in order to secure the hardness of the steel sheet after recrystallization.
  • the P content is preferably 0.020% or more.
  • the P content is set to 0.400% or less.
  • Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn and Cd react with S in the molten steel to form sulfides and / or acid sulfides during casting of the molten steel.
  • Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn and Cd may be collectively referred to as "coarse precipitate-forming element".
  • the particle size of the precipitate of the coarse precipitate-forming element is about 1 to 2 ⁇ m, which is much larger than the particle size of fine precipitates such as MnS, TiN, and AlN (about 100 nm). These fine precipitates adhere to the precipitates of the coarse precipitate-forming element, and it becomes difficult to inhibit the recrystallization and the growth of crystal grains in annealing such as the first annealing (intermediate annealing). In order to sufficiently obtain these effects, the total content of the coarse precipitate-forming elements is preferably 0.0005% or more.
  • the total content of coarse precipitate-forming elements exceeds 0.0100%, the total amount of sulfide and / or acid sulfide becomes excessive, and recrystallization and recrystallization in annealing such as the first annealing (intermediate annealing) and The growth of crystal grains is inhibited. Therefore, the total content of the coarse precipitate-forming elements is 0.0100% or less.
  • the total content of Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn and Cd is the content of Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn and Cd. It is obtained by calculating the total value of.
  • the chemical composition of the non-oriented electrical steel sheet and the steel material according to this embodiment may be measured by a general analysis method.
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometry
  • OES emission spectroscopic analysis
  • C and S may be measured by using the combustion-infrared absorption method
  • N may be measured by using the inert gas melting-thermal conductivity method.
  • sol. Al may be measured by ICP-AES using a filtrate obtained by heat-decomposing the sample with an acid.
  • the non-directional electromagnetic steel sheet according to the present embodiment has a chemical composition capable of causing ⁇ - ⁇ transformation, and the crystal structure is refined by quenching immediately after the completion of rolling of the final pass of finish rolling in hot rolling. Has a texture in which ⁇ 100 ⁇ crystal grains have grown.
  • the non-oriented electrical steel sheet according to the present embodiment has, for example, an integrated strength of 5 or more in the ⁇ 100 ⁇ ⁇ 011> direction, and a magnetic flux density B50 in the 45 ° direction with respect to the rolling direction is particularly high.
  • the magnetic flux density increases in a specific direction in this way, but a high magnetic flux density can be obtained on the whole circumference average in the plate surface as a whole.
  • the integrated strength in the ⁇ 100 ⁇ ⁇ 011> orientation is less than 5
  • the magnetic flux density in the non-oriented electrical steel sheet is reduced.
  • the integrated strength in the ⁇ 111 ⁇ ⁇ 112> orientation is increased, and the magnetic flux density is decreased as a whole. It ends up.
  • the integrated intensity in the ⁇ 100 ⁇ ⁇ 011> direction can be measured by an X-ray diffraction method or an electron backscatter diffraction (EBSD) method. Since the angle of reflection of X-rays and electron beams from the sample differs depending on the crystal orientation, the crystal orientation intensity can be obtained from the reflection intensity or the like with reference to the random orientation sample.
  • EBSD electron backscatter diffraction
  • the non-oriented electrical steel sheet according to the present embodiment has the best magnetic characteristics in two directions in which the smaller angle of the rolling direction is 45 °.
  • the magnetic characteristics are the worst in the two directions in which the angles formed with the rolling direction are 0 ° and 90 °.
  • the 45 ° is a theoretical value, and it may not be easy to match it with 45 ° in actual manufacturing. Therefore, theoretically, if the directions in which the magnetic characteristics are the best are the two directions in which the smaller angle of the rolling direction is 45 °, the actual non-oriented electrical steel sheet is said to be 45.
  • ° shall include those that do not (exactly) match 45 °. This is the same at 0 ° and 90 °.
  • the magnetic characteristics in the two directions having the best magnetic characteristics are the same, but in actual manufacturing, it may not be easy to make the magnetic characteristics in the two directions the same. Therefore, theoretically, if the magnetic properties in the two directions having the best magnetic properties are the same, the same includes those that are not (strictly) the same. This is also the case in the two directions with the worst magnetic properties.
  • the above-mentioned angles are expressed assuming that the angles in both the clockwise and counterclockwise directions have positive values.
  • the clockwise direction is a negative direction and the counterclockwise direction is a positive direction
  • the two directions in which the smaller angle of the above-mentioned rolling directions is 45 ° are the above-mentioned rolling directions.
  • the angle with the smaller absolute value is 45 ° and ⁇ 45 ° in two directions.
  • the two directions in which the smaller angle formed with the rolling direction is 45 ° can be described as the two directions in which the angles formed with the rolling direction are 45 ° and 135 °.
  • the magnetic flux density B50 in the 45 ° direction with respect to the rolling direction is 1.660 T or more, and the magnetic flux of the all-around average (omnidirectional average) in the plate surface.
  • the density B50 is 1.605T or more.
  • the magnetic characteristics are further improved, the magnetic flux density B50 in the 45 ° direction with respect to the rolling direction is 1.800 T or more, and the all-around average in the plate surface (omnidirectional average). ), The magnetic flux density B50 is 1.650T or more.
  • the preferable magnetic characteristics are that the magnetic flux density B50 in the 45 ° direction with respect to the rolling direction is 1.815 T or more, and the magnetic flux density of the all-around average (omnidirectional average) in the plate surface. B50 is 1.685T or more.
  • the magnetic flux density in the 45 ° direction with respect to the rolling direction is high, but a high magnetic flux density can be obtained even in the all-around average (omnidirectional average) in the plate surface.
  • the magnetic flux density B50 is obtained by cutting out a 55 mm square sample from a non-directional electromagnetic steel plate from 45 °, 0 °, etc. with respect to the rolling direction, and using a single plate magnetic measuring device to determine the magnetic flux density in a magnetic field of 5000 A / m. Obtained by measuring.
  • the magnetic flux density B50 in the all-around average is obtained by calculating the average value of the magnetic flux densities of 0 °, 45 °, 90 ° and 135 ° with respect to the rolling direction.
  • the iron loss W10 / 400 changes depending on the thickness of the non-oriented electrical steel sheet. As the thickness of the non-oriented electrical steel sheet decreases, the iron loss W10 / 40 decreases. In the non-oriented electrical steel sheet according to the present embodiment, when the plate thickness is 0.350 to 0.400 mm, the iron loss W10 / 400 is 19.00 W / kg or less. When skin pass rolling and strain relief annealing, which will be described later, are carried out, the iron loss W10 / 400 is 16.00 W / kg or less when the plate thickness is 0.350 to 0.400 mm.
  • Iron loss W10 / 400 occurs when a sample collected from a non-oriented electrical steel sheet is applied with an alternating magnetic field of 400 Hz so that the maximum magnetic flux density becomes 1.0 T using a single-plate magnetic measuring device. It is obtained by measuring the energy loss (W / kg) of the whole circumference average.
  • thermoforming, first cold rolling, and first annealing are performed. Further, after the first annealing, a second cold rolling (skin pass rolling) and / or a second annealing (strain relief annealing) may be performed, if necessary.
  • the method for producing a non-oriented electrical steel sheet includes a step of hot-rolling a steel material having the above-mentioned chemical composition to obtain a hot-rolled steel sheet.
  • the step of performing the first cold rolling on the hot-rolled steel sheet and It has a step of performing a first annealing after the first cold rolling.
  • the final pass of the finish rolling during hot rolling is performed in a temperature range of Ar1 temperature or higher, and the average cooling rate is 50 to 500 ° C./sec within 0.1 seconds from the completion of the final pass of the finish rolling.
  • a certain cooling is started and cooled to a temperature range of more than 250 ° C. and lower than 700 ° C.
  • the first annealing may be performed in a temperature range lower than the Ac1 temperature.
  • the method for producing a non-directional electromagnetic steel sheet according to the present embodiment includes a step of performing a second cold rolling after the first annealing, and in the step of performing the first cold rolling, cumulative rolling is performed.
  • cold rolling may be performed at a cumulative rolling reduction rate of 5 to 25%.
  • the method for manufacturing non-oriented electrical steel sheets according to the present embodiment includes a step of performing a second annealing after the second cold rolling, and in the second annealing, even if the annealing temperature is lower than the Ac1 temperature. Good.
  • the steel material having the above-mentioned chemical composition is heated and hot-rolled.
  • the steel material may be, for example, a slab manufactured by ordinary continuous casting.
  • Rough rolling and finish rolling of hot rolling are performed in the temperature range of the ⁇ range (Ar1 temperature or higher). That is, hot rolling is performed so that the finishing temperature of the finish rolling (the temperature at the exit side of the final pass) is Ar1 temperature or higher.
  • the finishing temperature of the finish rolling the temperature at the exit side of the final pass
  • Ar1 temperature or higher Ar1 temperature or higher.
  • austenite is transformed into ferrite by the subsequent cooling, and the crystal structure becomes finer.
  • overhang recrystallization bulging
  • the upper limit of the finishing temperature is not particularly limited, but may be, for example, 950 ° C. or lower.
  • the heating temperature of the steel material may be, for example, 1100 to 1250 ° C. so that the finishing temperature of the finish rolling is Ar1 temperature or higher.
  • cooling with an average cooling rate of 50 to 500 ° C./sec is started within 0.1 seconds from the completion of rolling in the final pass of finish rolling. Further, this cooling is performed up to a temperature range of more than 250 ° C. and 700 ° C. or lower.
  • the cooling method is mainly water cooling, but cooling may be performed by mixing a slurry or the like, and the cooling method is not particularly limited as long as it can be cooled at the above-mentioned cooling rate.
  • the average cooling rate is a value obtained by dividing the temperature difference between the start of cooling (excluding air cooling) and the end of cooling by the elapsed time from the start of cooling to the end of cooling.
  • the crystal structure becomes finer due to the transformation of austenite into ferrite, but in the present embodiment, the crystal structure becomes finer by quenching within 0.1 seconds after the completion of hot rolling (finish rolling). To change.
  • finish rolling finish rolling
  • a method of performing the above-mentioned cooling 0.0 seconds after the completion of rolling in the final pass of the finish rolling for example, the cooling water ejected from the final pass of the finish rolling mill is applied to the steel sheet of the final pass of the finish rolling mill. There is a method of spouting so as to cover the exit side.
  • the time from the completion of rolling of the final pass of finish rolling to the start of cooling is measured by measuring the distance from the finish rolling mill to the start of water cooling and the plate passing speed in that section, and the plate passing distance / sheet passing speed. Obtained by calculating the speed.
  • the average cooling rate is set to 50 ° C./sec or more. Preferably, it is 70 ° C./sec or higher and 90 ° C./sec or higher.
  • the average cooling rate is set to 500 ° C./sec or less.
  • it is 400 ° C./sec or less and 300 ° C./sec or less.
  • cooling with an average cooling rate of 50 to 500 ° C./sec is performed up to a temperature range of more than 250 ° C. and 700 ° C. or lower. It is preferably 600 ° C. or lower. When cooled to a temperature range of 700 ° C. or lower, the transformation from austenite to ferrite is completed. If the cooling stop temperature after finish rolling is 50 to 500 ° C / sec and the cooling stop temperature is 250 ° C or less, recrystallization does not occur after finish rolling and processed grains remain, so that the crystal structure is sufficient. It cannot be miniaturized. Therefore, the above-mentioned cooling is performed up to a temperature range of more than 250 ° C. Preferably, it is 300 ° C. or higher and 400 ° C. or higher.
  • the hot-rolled steel sheet After cooling to a temperature range of more than 250 ° C and 700 ° C or less, it is wound into a coil without allowing cooling, slow cooling, and hot rolling plate annealing.
  • the temperature at which cooling is stopped is substantially the coil winding temperature.
  • the coil After winding into a coil, the coil may be rewound and pickled if necessary. After the coil is rewound or pickled, the hot-rolled steel sheet is subjected to the first cold rolling.
  • the cumulative rolling reduction is preferably 80 to 92%.
  • the higher the cumulative reduction rate the easier it is for ⁇ 100 ⁇ crystal grains to grow due to subsequent bulging, but it becomes more difficult to wind the hot-rolled steel sheet and the operation becomes more difficult.
  • the cumulative rolling reduction in the first cold rolling within the above range, the growth of ⁇ 100 ⁇ crystal grains due to the subsequent bulging can be preferably controlled.
  • the cumulative reduction rate referred to here is the thickness of the hot-rolled steel sheet before the first cold rolling: t 0 and the thickness of the steel sheet after the first cold rolling (cold-rolled steel sheet) t 1. It is expressed as (1-t 1 / t 0 ) ⁇ 100 (%) using and.
  • the first annealing (intermediate annealing) is performed.
  • the annealing time of the first annealing is preferably 5 to 60 seconds.
  • the first annealing is preferably performed at 600 ° C. or higher, and is preferably performed in a non-oxidizing atmosphere.
  • the non-oriented electrical steel sheet can be manufactured by the method described above.
  • the second cold rolling skin pass rolling
  • ⁇ 100 ⁇ crystal grains are further grown starting from the portion where bulging has occurred.
  • the cumulative rolling reduction of the second cold rolling is preferably 5 to 25%. By setting the cumulative reduction rate of the second cold rolling to 5 to 25%, ⁇ 100 ⁇ crystal grains can be preferably grown.
  • the cumulative reduction rate referred to here is the thickness of the non-oriented electrical steel sheet before the second cold rolling: t 0 and the thickness of the non-oriented electrical steel sheet after the second cold rolling t 1 . Is expressed by (1-t 1 / t 0 ) ⁇ 100 (%).
  • the annealing temperature is preferably less than the Ac1 temperature.
  • the ⁇ 100 ⁇ crystal grains with excellent magnetic characteristics are less likely to accumulate strain, and the ⁇ 111 ⁇ crystal grains with inferior magnetic characteristics are likely to accumulate strain.
  • the ⁇ 100 ⁇ crystal grains with less strain erode the ⁇ 111 ⁇ crystal grains using the difference in strain as the driving force. As a result, ⁇ 100 ⁇ crystal grains are further grown.
  • This silkworm phenomenon that occurs with the difference in strain as the driving force is called strain-induced grain boundary movement (SIBM).
  • short-time annealing finish annealing
  • long-term annealing strain relief annealing
  • both may be performed.
  • annealing for a short time it is preferable to perform annealing for 1 hour or less in a temperature range lower than Ac1 temperature.
  • annealing for a long time it is preferable to perform annealing at a temperature lower than Ac1 temperature for 1 hour or more.
  • the Ar1 temperature is obtained from the change in thermal expansion of the steel material (steel plate) being cooled at an average cooling rate of 1 ° C./sec. Further, in the present embodiment, the Ac1 temperature is obtained from the change in thermal expansion of the steel material (steel plate) being heated at an average heating rate of 1 ° C./sec.
  • Table 2 shows the exit temperature (finishing temperature) of the final pass of finish rolling, the time from the completion of rolling of the final pass of finish rolling to the start of cooling (start of water cooling), the average cooling rate, and the take-up temperature.
  • start of water cooling For the time from the completion of rolling in the final pass of finish rolling to the start of cooling, the distance from the finish rolling mill to the start of water cooling and the plate passing speed in that section are measured, and the plate passing distance / plate passing speed is calculated. I got it by doing.
  • the time from the completion of rolling of the final pass of the finish rolling to the start of cooling is 0.0 seconds, which means that the cooling is performed so that the cooling water is applied to the exit side of the final pass of the finish rolling mill.
  • the obtained hot-rolled steel sheet was pickled to remove scale. Then, a steel sheet (cold-rolled steel sheet) was obtained by cold rolling until the sheet thickness became 0.385 mm at a cumulative reduction rate of 85%.
  • the obtained steel sheet was heated and subjected to the first annealing (intermediate annealing) in which the temperature was lower than the Ac1 temperature of all the steel sheets and was maintained at 700 ° C. for 5 to 60 seconds in a non-oxidizing atmosphere. Then, a second cold rolling (skin pass rolling) was performed at a cumulative rolling reduction of 9% until the plate thickness became 0.35 mm.
  • the Ar1 temperature was obtained from the change in thermal expansion of the steel plate being cooled at an average cooling rate of 1 ° C./sec, and the Ac1 temperature was obtained from the change in thermal expansion of the steel plate being heated at an average heating rate of 1 ° C./sec. ..
  • the second annealing strain removal annealing was performed by heating at 800 ° C. for 2 hours.
  • the temperature of 800 ° C. was lower than the Ac1 temperature of all the steel sheets.
  • the magnetic flux density B50 was measured using a single plate magnetic measuring device. A 55 mm square sample was sampled in two directions of 0 ° and 45 ° with respect to the rolling direction of the steel sheet, and the magnetic flux density B50 was measured. The magnetic flux density in the 45 ° direction with respect to the rolling direction was defined as the magnetic flux density B50 in the 45 ° direction. By calculating the average values of the magnetic flux densities of 0 °, 45 °, 90 °, and 135 ° with respect to the rolling direction, the all-around average of the magnetic flux density B50 was obtained.
  • Table 2 shows the conditions outside the scope of the present invention. No. which is an example of the present invention. 101-No. 108, No. 112, No. 114, No. In 116 to 119, excellent magnetic characteristics (high magnetic flux density B50 and low iron loss W10 / 400) were obtained in the 45 ° direction and the all-around average.
  • the obtained hot-rolled steel sheet was pickled to remove scale. Then, a steel sheet (cold-rolled steel sheet) was obtained by cold rolling until the sheet thickness became 0.385 mm at a cumulative reduction rate of 85%.
  • the obtained steel sheet was heated and subjected to the first annealing (intermediate annealing) in which the temperature was lower than the Ac1 temperature of all the steel sheets and was maintained at 700 ° C. for 5 to 60 seconds in a non-oxidizing atmosphere. Then, a second cold rolling (skin pass rolling) was performed at a cumulative rolling reduction of 9% until the plate thickness became 0.35 mm.
  • the second annealing strain removal annealing was performed by heating at 800 ° C. for 2 hours.
  • the temperature of 800 ° C. was lower than the Ac1 temperature of all the steel sheets.
  • the magnetic flux density B50 and the iron loss W10 / 400 were measured using a single plate magnetic measuring device. The measurement was carried out in the same procedure as in the first embodiment. Further, the Ar1 temperature and the Ac1 temperature were measured by the same method as in the first embodiment.
  • No. 201-No. Reference numeral 216 was an example of the present invention, and all of them had good magnetic characteristics.
  • No. 202-No. 204 is No. 201
  • the magnetic flux density B50 is higher than that of 214
  • No. 205-No. 214 is No. 201-No.
  • the iron loss W10 / 400 was lower than that of 204. sol. No. with high Al content. 215 and No. 216 is No.
  • the iron loss W10 / 400 was lower than that of 201, and the magnetic flux density B50 was lower.
  • the obtained hot-rolled steel sheet was pickled to remove scale. Then, a steel sheet (cold-rolled steel sheet) was obtained by cold rolling until the sheet thickness became 0.385 mm at a cumulative reduction rate of 85%.
  • the obtained steel sheet was heated and subjected to the first annealing (intermediate annealing) in which the temperature was lower than the Ac1 temperature of all the steel sheets and was maintained at 700 ° C. for 5 to 60 seconds in a non-oxidizing atmosphere.
  • the magnetic flux density B50 and the iron loss W10 / 400 were measured using a single plate magnetic measuring device. The measurement was carried out in the same procedure as in the first embodiment. Further, the Ar1 temperature and the Ac1 temperature were measured by the same method as in the first example.
  • Table 6 shows the conditions outside the scope of the present invention.
  • 301-No. 308, No. 312, No. 314, No. 316-No. 326 obtained excellent magnetic characteristics (high magnetic flux density B50 and low iron loss W10 / 400) in the 45 ° direction and all-around average.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

この無方向性電磁鋼板の製造方法は、所定の化学組成を有する鋼材に対して熱間圧延を行い、熱間圧延鋼板を得る工程と、前記熱間圧延鋼板に対して第1の冷間圧延を行う工程と、前記第1の冷間圧延の後に第1の焼鈍を行う工程と、を有し、仕上げ圧延の最終パスをAr1温度以上の温度域で行い、前記仕上げ圧延の前記最終パスの圧延完了から0.1秒以内に、平均冷却速度が50~500℃/秒である冷却を開始し、250℃超、700℃以下の温度域まで冷却する。

Description

無方向性電磁鋼板の製造方法
 本発明は、無方向性電磁鋼板の製造方法に関する。
 本願は、2019年11月15日に、日本に出願された特願2019-206708号に基づき優先権を主張し、その内容をここに援用する。
 無方向性電磁鋼板は、例えばモータの鉄心に使用される。無方向性電磁鋼板には、その板面に平行なすべての方向の平均(以下、「板面内の全周平均(全方向平均)」ということがある)において優れた磁気特性を有すること、例えば低鉄損及び高磁束密度を有することが要求される。これまで種々の技術が提案されているが、板面内の全周平均において十分な磁気特性を得ることは困難である。例えば、板面内のある特定の方向で十分な磁気特性が得られるとしても、他の方向では十分な磁気特性が得られない場合がある。
日本国特許第4029430号公報 日本国特許第6319465号公報
 本発明は前述の問題点に鑑み、板面内の全周平均(全方向平均)で優れた磁気特性を得ることができる無方向性電磁鋼板の製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討を行った。この結果、本発明者らは、板面内の全周平均で優れた磁気特性を得るためには、α-γ変態系の化学組成を前提とすること、熱間圧延時にオーステナイトからフェライトへ変態させることによって結晶組織を微細化すること、および熱間圧延での仕上げ圧延の最終パスの圧延完了から0.1秒以内に冷却を開始することによって、より微細な結晶組織とすることが重要であることを知見した。
 さらに、本発明者らは、冷間圧延を所望の累積圧下率で行うこと、および所望の条件で第1の焼鈍(中間焼鈍)を行うことで張出再結晶(以下、バルジング)を発生させることによって、通常は発達しにくい{100}結晶粒を発達させやすくすることが重要であることも知見した。
 上記知見に基づいてなされた本発明の要旨は以下の通りである。
(1)本発明の一態様に係る無方向性電磁鋼板の製造方法は、質量%で、
 C:0.0100%以下、
 Si:1.50~4.00%、
 sol.Al:0.0001~1.000%、
 S:0.0100%以下、
 N:0.0100%以下、
 Mn、Ni、Co、Pt、Pb、CuおよびAu:総計で2.50~5.00%、
 Sn:0.000~0.400%、
 Sb:0.000~0.400%、
 P:0.000~0.400%、並びに
 Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、ZnおよびCd:総計で0.0000~0.0100%を含有し、
 質量%で、Mn含有量を[Mn]、Ni含有量を[Ni]、Co含有量を[Co]、Pt含有量を[Pt]、Pb含有量を[Pb]、Cu含有量を[Cu]、Au含有量を[Au]、Si含有量を[Si]、sol.Al含有量を[sol.Al]と表したとき、以下の(1)式を満たし、
 残部がFeおよび不純物からなる化学組成を有する鋼材に対して熱間圧延を行い、熱間圧延鋼板を得る工程と、
 前記熱間圧延鋼板に対して第1の冷間圧延を行う工程と、
 前記第1の冷間圧延の後に第1の焼鈍を行う工程と、を有し、
 前記熱間圧延時の仕上げ圧延の最終パスをAr1温度以上の温度域で行い、前記仕上げ圧延の前記最終パスの圧延完了から0.1秒以内に、平均冷却速度が50~500℃/秒である冷却を開始し、250℃超、700℃以下の温度域まで冷却する。
 ([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])-([Si]+[sol.Al])>0.00%   ・・・(1)
(2)上記(1)に記載の無方向性電磁鋼板の製造方法では、前記鋼材が、質量%で、
 Sn:0.020~0.400%、
 Sb:0.020~0.400%、
 P:0.020~0.400%、並びに
 Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、ZnおよびCd:総計で0.0005~0.0100%
からなる群から選ばれる1種以上を含有してもよい。
(3)上記(1)または(2)に記載の無方向性電磁鋼板の製造方法では、前記第1の焼鈍は、Ac1温度未満の温度域で行ってもよい。
(4)上記(1)~(3)のいずれか1項に記載の無方向性電磁鋼板の製造方法では、
 前記第1の焼鈍の後に第2の冷間圧延を行う工程を有し、
 前記第1の冷間圧延を行う工程においては、累積圧下率80~92%で冷間圧延を行い、
 前記第2の冷間圧延を行う工程においては、累積圧下率5~25%で冷間圧延を行ってもよい。
(5)上記(4)に記載の無方向性電磁鋼板の製造方法では、前記第2の冷間圧延の後に第2の焼鈍を行う工程を有し、
 前記第2の焼鈍では、焼鈍温度をAc1温度未満としてもよい。
 本発明に係る上記態様によれば、板面内の全周平均(全方向平均)で優れた磁気特性を得ることができる無方向性電磁鋼板の製造方法を提供することができる。
 以下、本発明の実施形態について詳細に説明する。ただし、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。
 まず、本実施形態に係る無方向性電磁鋼板の製造方法において用いられる鋼材(単に、本実施形態に係る鋼材と記載する場合がある)、および本実施形態に係る無方向性電磁鋼板の製造方法によって製造される、無方向性電磁鋼板(単に、本実施形態に係る無方向性電磁鋼板と記載する場合がある)の化学組成について説明する。以下の説明において、無方向性電磁鋼板又は鋼材に含まれる各元素の含有量の単位である「%」は、特に断りがない限り「質量%」を意味する。以下に「~」を挟んで記載する数値限定範囲には、下限値および上限値がその範囲に含まれる。「未満」または「超」と示す数値には、その値が数値範囲に含まれない。
 本実施形態に係る無方向性電磁鋼板及び鋼材は、フェライト-オーステナイト変態(以下、α-γ変態)が生じ得る化学組成である。具体的には、質量%で、C:0.0100%以下、Si:1.50~4.00%、sol.Al:0.0001~1.000%、S:0.0100%以下、N:0.0100%以下、Mn、Ni、Co、Pt、Pb、CuおよびAu:総計で2.50~5.00%、Sn:0.000~0.400%、Sb:0.000~0.400%、P:0.000~0.400%、並びに、Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、ZnおよびCd:総計で0.0000~0.0100%を含有し、残部がFeおよび不純物からなる化学組成を有する。さらに、Mn、Ni、Co、Pt、Pb、Cu、Au、Siおよびsol.Alの含有量が後述する所定の条件を満たす。
 (C:0.0100%以下)
 Cは、無方向性電磁鋼板の鉄損を高めたり、磁気時効を引き起こしたりする。従って、C含有量は低ければ低いほど好ましい。このような現象は、C含有量が0.0100%超で顕著である。このため、C含有量は0.0100%以下とする。C含有量の低減は、板面内の全方向における磁気特性の均一な向上(全周方向の磁気特性の向上)にも寄与する。そのため、C含有量は、好ましくは0.0060%以下であり、より好ましくは0.0040%以下であり、より一層好ましくは0.0020%以下である。
 なお、C含有量の下限は特に限定しないが、精錬時の脱炭処理のコストを踏まえ、0.0005%以上とすることが好ましい。
 (Si:1.50~4.00%)
 Siは、電気抵抗を増大させて、渦電流損を減少させ、無方向性電磁鋼板の鉄損を低減したり、降伏比を増大させて、鉄心への打ち抜き加工性を向上したりする。Si含有量が1.50%未満では、これらの作用効果を十分に得ることができない。従って、Si含有量は1.50%以上とする。Si含有量は、好ましくは2.00%以上であり、より好ましくは2.50%以上である。
 一方、Si含有量が4.00%超では、無方向性電磁鋼板の磁束密度が低下したり、硬度の過度な上昇により打ち抜き加工性が低下したり、冷間圧延が困難になったりする。従って、Si含有量は4.00%以下とする。Si含有量は、好ましくは3.50%以下であり、より好ましくは3.30%以下である。
 (sol.Al:0.0001~1.000%)
 sol.Alは、電気抵抗を増大させて、渦電流損を減少させ、無方向性電磁鋼板の鉄損を低減する。sol.Alは、飽和磁束密度に対する磁束密度B50の相対的な大きさの向上にも寄与する。ここで、磁束密度B50とは、5000A/mの磁場における磁束密度である。sol.Al含有量が0.0001%未満では、これらの作用効果を十分に得ることができない。また、Alには製鋼での脱硫促進効果もある。従って、sol.Al含有量は0.0001%以上とする。sol.Al含有量は、好ましくは0.001%以上であり、より好ましくは0.010%以上、より一層好ましくは0.300%以上である。
 一方、sol.Al含有量が1.000%超では、無方向性電磁鋼板の磁束密度が低下したり、降伏比が低下して、打ち抜き加工性が低下したりする。従って、sol.Al含有量は1.000%以下とする。sol.Al含有量は、好ましくは0.900%以下であり、より好ましくは0.800%以下であり、より一層好ましくは0.700%以下である。
 なお、本実施形態においてsol.Alとは、酸可溶性Alを意味し、固溶状態で鋼中に存在する固溶Alのことを示す。
 (S:0.0100%以下)
 Sは、含有させることが必須の元素ではなく、例えば鋼中に不純物として含有される元素である。Sは、微細なMnSの析出により、焼鈍における再結晶及び結晶粒の成長を阻害する。再結晶及び結晶粒の成長が阻害されると、無方向性電磁鋼板の鉄損が増し、且つ磁束密度が低下する。従って、S含有量は低ければ低いほど好ましい。このような再結晶及び結晶粒成長の阻害による鉄損の増加および磁束密度の低下は、S含有量が0.0100%超で顕著である。このため、S含有量は0.0100%以下とする。S含有量は、好ましくは0.0060%以下であり、より好ましくは0.0040%以下である。
 なお、S含有量の下限は特に限定しないが、精錬時の脱硫処理のコストを踏まえ、0.0003%以上とすることが好ましい。
 (N:0.0100%以下)
 NはCと同様に、無方向性電磁鋼板の磁気特性を劣化させるので、N含有量は低ければ低いほど好ましい。したがって、N含有量は0.0100%以下とする。N含有量は、好ましくは0.0050%以下であり、より好ましくは0.0030%以下である。
 なお、N含有量の下限は特に限定しないが、精錬時の脱窒処理のコストを踏まえ、0.0010%以上とすることが好ましい。
 (Mn、Ni、Co、Pt、Pb、CuおよびAu:総計で2.50~5.00%)
 Mn、Ni、Co、Pt、Pb、CuおよびAuは、α-γ変態を生じさせるために必要な元素である。そのため、これらの元素の少なくとも1種を2.50%以上含有させる。これらの元素の全てを含有させる必要はなく、いずれか1種でもその含有量が2.50%以上であればよい。これらの元素の含有量の総計は、好ましくは3.00%以上である。
 一方で、これらの元素の含有量の総計が5.00%を超えると、コスト高となる場合があり、且つ無方向性電磁鋼板の磁束密度が低下する場合がある。したがって、これらの元素の含有量の総計は5.00%以下とする。これらの元素の含有量の総計は、好ましくは4.50%以下である。
 なお、Mn、Ni、Co、Pt、Pb、CuおよびAuの総計は、Mn、Ni、Co、Pt、Pb、CuおよびAuの含有量の合計値を算出することで得られる。
 本実施形態に係る無方向性電磁鋼板および鋼材は、α-γ変態が生じ得る条件として、以下の条件を満たす化学組成を有する。つまり、Mn含有量(質量%)を[Mn]、Ni含有量(質量%)を[Ni]、Co含有量(質量%)を[Co]、Pt含有量(質量%)を[Pt]、Pb含有量(質量%)を[Pb]、Cu含有量(質量%)を[Cu]、Au含有量(質量%)を[Au]、Si含有量(質量%)を[Si]、sol.Al含有量(質量%)を[sol.Al]と表したときに、以下の(1)式を満たす。
 ([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])-([Si]+[sol.Al])>0.00%   ・・・(1)
 前述の(1)式を満たさない場合には、α-γ変態が生じないため、無方向性電磁鋼板の磁束密度が低くなる。そのため、(1)式の左辺は0.00%超とする。(1)式の左辺は、好ましくは0.30%以上であり、より好ましくは0.50%以上である。
 (1)式の左辺の上限は特に限定しないが、2.00%以下、または1.00%以下としてもよい。
 本実施形態に係る無方向性電磁鋼板および鋼材の化学組成の残部は、Feおよび不純物からなる。不純物としては、鉱石やスクラップ等の原材料に含まれるもの、製造工程において含まれるもの、あるいは本実施形態に係る無方向性電磁鋼板の製造方法によって製造された、無方向性電磁鋼板の特性に悪影響を及ぼさない範囲で許容されるものが例示される。
 本実施形態に係る無方向性電磁鋼板および鋼材は、Feの一部に加え、以下の元素を任意元素として含有してもよい。下記任意元素を含有させない場合の含有量の下限は0%である。以下、各任意元素について詳細に説明する。
 (Sn:0.000~0.400%、Sb:0.000~0.400%、P:0.000~0.400%)
 SnおよびSbは、冷間圧延および再結晶後の集合組織を改善することで、無方向性電磁鋼板の磁束密度を向上させる。そのため、これらの元素を必要に応じて含有させてもよい。上記効果を確実に得るためには、SnおよびSbのうち1種でもその含有量を0.020%以上とすることが好ましい。一方、SnおよびSbが過剰に含まれると鋼が脆化する。したがって、Sn含有量およびSb含有量はいずれも0.400%以下とする。
 また、Pは再結晶後の鋼板の硬度を確保するために含有させてもよい。この効果を確実に得るためには、P含有量を0.020%以上とすることが好ましい。一方、Pが過剰に含まれると鋼の脆化を引き起こす。したがって、P含有量は0.400%以下とする。
 (Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、ZnおよびCd:総計で0.0000~0.0100%)
 Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn及びCdは、溶鋼の鋳造時に溶鋼中のSと反応して硫化物および/または酸硫化物を生成する。以下、Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn及びCdを総称して「粗大析出物生成元素」ということがある。
 粗大析出物生成元素の析出物の粒径は1~2μm程度であり、MnS、TiN、AlN等の微細析出物の粒径(100nm程度)よりはるかに大きい。これら微細析出物は粗大析出物生成元素の析出物に付着し、第1の焼鈍(中間焼鈍)などの焼鈍における再結晶及び結晶粒の成長を阻害しにくくなる。これらの作用効果を十分に得るためには、粗大析出物生成元素の含有量の総計は0.0005%以上であることが好ましい。なお、上記作用を十分に得るためには、Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、ZnおよびCdのうち全てを含有する必要はなく、いずれか1種でもその含有量が0.0005%以上であることが好ましい。
 一方、粗大析出物生成元素の含有量の総計が0.0100%を超えると、硫化物および/または酸硫化物の総量が過剰となり、第1の焼鈍(中間焼鈍)などの焼鈍における再結晶及び結晶粒の成長が阻害される。従って、粗大析出物生成元素の含有量の総計は0.0100%以下とする。
 なお、Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、ZnおよびCdの含有量の総計は、Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、ZnおよびCdの含有量の合計値を算出することで得られる。
 本実施形態に係る無方向性電磁鋼板および鋼材の化学組成は、一般的な分析方法によって測定すればよい。例えば、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)や発光分光分析(OES:Optical Emission Spectroscopy)を用いて測定すればよい。なお、CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用いて測定すればよい。sol.Alは、試料を酸で加熱分解した後の濾液を用いてICP-AESによって測定すればよい。
 次に、本実施形態に係る無方向性電磁鋼板の集合組織について説明する。本実施形態に係る無方向性電磁鋼板は、α-γ変態が生じ得る化学組成を有し、熱間圧延での仕上げ圧延の最終パスの圧延完了直後の急冷によって結晶組織が微細化されることによって、{100}結晶粒が成長した集合組織を有する。これにより、本実施形態に係る無方向性電磁鋼板は、例えば{100}<011>方位の集積強度が5以上となり、圧延方向に対して45°方向の磁束密度B50が特に高くなる。本実施形態に係る無方向性電磁鋼板では、このように特定の方向で磁束密度が高くなるが、全体的に板面内の全周平均で高い磁束密度が得られる。{100}<011>方位の集積強度が5未満になると、無方向性電磁鋼板の磁束密度を低下させる{111}<112>方位の集積強度が高くなり、全体的に磁束密度が低下してしまう。
 {100}<011>方位の集積強度は、X線回折法又は電子線後方散乱回折(electron backscatter diffraction:EBSD)法により測定することができる。X線及び電子線の試料からの反射角等が結晶方位毎に異なるため、ランダム方位試料を基準にしてこの反射強度等で結晶方位強度を求めることができる。
 次に、本実施形態に係る無方向性電磁鋼板の磁気特性について説明する。本実施形態に係る無方向性電磁鋼板は、圧延方向となす角度のうち小さい方の角度が45°となる2つの方向において、磁気特性が最も優れる。一方、圧延方向となす角度が0°、90°の2つの方向において、磁気特性が最も劣る。ここで、当該45°は、理論的な値であり、実際の製造に際しては45°に一致させることが容易でない場合がある。したがって、理論的には、磁気特性が最も優れる方向が、圧延方向となす角度のうち小さい方の角度が45°となる2つの方向であれば、実際の無方向性電磁鋼板においては、当該45°は、(厳密に)45°に一致していないものも含むものとする。このことは、当該0°、90°においても同じである。
 また、理論的には、磁気特性が最も優れる2つの方向の磁気特性は同じになるが、実際の製造に際しては当該2つの方向の磁気特性を同じにすることが容易でない場合がある。したがって、理論的には、磁気特性が最も優れる2つの方向の磁気特性が同じであれば、当該同じは、(厳密に)同じでないものも含むものとする。このことは、磁気特性が最も劣る2つの方向においても同じである。
 なお、上述の角度は、時計回りおよび反時計回りの何れの向きの角度も正の値を有するものとして表記したものである。時計回りの方向を負の方向とし、反時計回りの方向を正の方向とする場合、前述した圧延方向となす角度のうち小さい方の角度が45°となる2つの方向は、前述した圧延方向となす角度のうち絶対値の小さい方の角度が45°、-45°となる2つの方向となる。
 前述した圧延方向となす角度のうち小さい方の角度が45°となる2つの方向は、圧延方向となす角度が45°、135°となる2つの方向とも表記できる。
 本実施形態に係る無方向性電磁鋼板の磁束密度を測定すると、圧延方向に対して45°方向の磁束密度B50が1.660T以上かつ、板面内の全周平均(全方向平均)の磁束密度B50が1.605T以上となる。
 さらに、後述するスキンパス圧延および歪取焼鈍を実施すると更に磁気特性が向上し、圧延方向に対して45°方向の磁束密度B50が1.800T以上かつ、板面内の全周平均(全方向平均)の磁束密度B50が1.650T以上となる。スキンパス圧延および歪取焼鈍を実施した場合の好ましい磁気特性は、圧延方向に対して45°方向の磁束密度B50が1.815T以上かつ、板面内の全周平均(全方向平均)の磁束密度B50が1.685T以上である。
 本実施形態に係る無方向性電磁鋼板では、圧延方向に対して45°方向の磁束密度が高いものの、板面内の全周平均(全方向平均)でも高い磁束密度が得られる。
 磁束密度B50は、無方向性電磁鋼板から、圧延方向に対して45°、0°方向等から55mm角の試料を切り出し、単板磁気測定装置を用いて、5000A/mの磁場における磁束密度を測定することで得られる。全周平均(全方向平均)での磁束密度B50は、圧延方向に対して、0°、45°、90°および135°の磁束密度の平均値を算出することで得られる。
 鉄損W10/400は、無方向性電磁鋼板の板厚により変化する。無方向性電磁鋼板の板厚が減少する程、鉄損W10/40は低くなる。
 本実施形態に係る無方向性電磁鋼板では、板厚が0.350~0.400mmの場合、鉄損W10/400は19.00W/kg以下となる。後述するスキンパス圧延および歪取焼鈍を実施した場合には、板厚が0.350~0.400mmの場合、鉄損W10/400は16.00W/kg以下となる。
 鉄損W10/400は、無方向性電磁鋼板から採集した試料に対し、単板磁気測定装置を用いて、最大磁束密度が1.0Tになるように400Hzの交流磁場をかけたときに生じる、全周平均のエネルギーロス(W/kg)を測定することで得られる。
 次に、本実施形態に係る無方向性電磁鋼板の製造方法について説明する。本実施形態に係る無方向性電磁鋼板の製造方法では、熱間圧延、第1の冷間圧延および第1の焼鈍(中間焼鈍)を行う。また、第1の焼鈍の後に、必要に応じて、第2の冷間圧延(スキンパス圧延)および/または第2の焼鈍(歪取焼鈍)を行ってもよい。
 具体的には、本実施形態に係る無方向性電磁鋼板の製造方法は、上述した化学組成を有する鋼材に対して熱間圧延を行い、熱間圧延鋼板を得る工程と、
 前記熱間圧延鋼板に対して第1の冷間圧延を行う工程と、
 前記第1の冷間圧延の後に第1の焼鈍を行う工程と、を有し、
 前記熱間圧延時の仕上げ圧延の最終パスをAr1温度以上の温度域で行い、前記仕上げ圧延の前記最終パスの圧延完了から0.1秒以内に、平均冷却速度が50~500℃/秒である冷却を開始し、250℃超、700℃以下の温度域まで冷却する。
 本実施形態に係る無方向性電磁鋼板の製造方法では、前記第1の焼鈍は、Ac1温度未満の温度域で行ってもよい。
 本実施形態に係る無方向性電磁鋼板の製造方法では、前記第1の焼鈍の後に第2の冷間圧延を行う工程を有し、前記第1の冷間圧延を行う工程においては、累積圧下率80~92%で冷間圧延を行い、前記第2の冷間圧延を行う工程においては、累積圧下率5~25%で冷間圧延を行ってもよい。
 本実施形態に係る無方向性電磁鋼板の製造方法では、前記第2の冷間圧延の後に第2の焼鈍を行う工程を有し、前記第2の焼鈍では、焼鈍温度をAc1温度未満としてもよい。
 以下、各工程について詳細に説明する。
 まず、上述した化学組成を有する鋼材を加熱し、熱間圧延を施す。鋼材は、例えば通常の連続鋳造によって製造されるスラブであればよい。熱間圧延の粗圧延および仕上げ圧延はγ域(Ar1温度以上)の温度域で行う。つまり、仕上げ圧延の仕上温度(最終パスの出側温度)がAr1温度以上となるように熱間圧延を行う。これにより、その後の冷却によってオーステナイトがフェライトへと変態し、結晶組織が微細化する。結晶組織が微細化された状態で冷間圧延を施すと、張出再結晶(バルジング)が発生しやすく、通常は成長しにくい{100}結晶粒を成長させやすくすることができる。仕上温度の上限は特に限定しないが、例えば950℃以下とすればよい。
 仕上げ圧延の仕上温度がAr1温度以上となるように、鋼材の加熱温度は、例えば1100~1250℃とすればよい。
 本実施形態では、仕上げ圧延の最終パスの圧延完了から0.1秒以内に、平均冷却速度が50~500℃/秒である冷却を開始する。また、この冷却を、250℃超、700℃以下の温度域まで行う。
 冷却方法としては主に水冷が挙げられるが、スラリーなどを混入させて冷却してもよく、上述の冷却速度で冷却できれば冷却方法は特に限定されない。
 また、本実施形態において、平均冷却速度とは、冷却(空冷を含まない)開始時と冷却終了時との温度差を、冷却開始時から冷却終了時までの経過時間で除した値である。
 オーステナイトがフェライトへと変態することによって結晶組織は微細化するが、本実施形態では、熱間圧延(仕上げ圧延)を完了してから0.1秒以内に急冷することによって、結晶組織をより微細化する。このように結晶組織をより微細化することによって、その後の冷間圧延および中間焼鈍を経てバルジングを発生させやすくすることができる。
 仕上げ圧延の最終パスの圧延完了後は、0.0秒で上述の冷却を行うことが好ましい。仕上げ圧延の最終パスの圧延完了から0.0秒で上述の冷却を行う方法としては、例えば、仕上げ圧延機の最終パスから出てくる鋼板に噴出する冷却水を、仕上げ圧延機の最終パスの出側にかかるように噴出する方法が挙げられる。
 本実施形態では、仕上げ圧延の最終パスの圧延完了~冷却開始までの時間は、仕上げ圧延機から水冷開始するまでの距離と、その区間の通板速度とを測定し、通板距離/通板速度を算出することで得る。
 仕上げ圧延後の冷却において、平均冷却速度が50℃/秒未満であると、結晶組織が十分に微細化しないため、その後のバルジングも十分に発生しない。その結果、{100}結晶粒が十分に成長せず、無方向性電磁鋼板の磁束密度が十分に高くならない。そのため、仕上げ圧延後の冷却において、平均冷却速度は50℃/秒以上とする。好ましくは、70℃/秒以上、90℃/秒以上である。
 一方、熱間圧延設備を考慮すると、仕上げ圧延後の冷却において、平均冷却速度を500℃/秒よりも大きくすることは困難である。そのため、仕上げ圧延後の冷却において、平均冷却速度は500℃/秒以下とする。好ましくは、400℃/秒以下、300℃/秒以下である。
 仕上げ圧延後の、平均冷却速度が50~500℃/秒である冷却は、250℃超、700℃以下の温度域まで行う。好ましくは600℃以下である。700℃以下の温度域まで冷却すれば、オーステナイトからフェライトへの変態は完了する。
 仕上げ圧延後の、平均冷却速度が50~500℃/秒である冷却の停止温度が250℃以下であると、仕上げ圧延完了後に再結晶せず、加工粒が残存するため、結晶組織を十分に微細化することができない。そのため、上述の冷却は、250℃超の温度域まで行う。好ましくは、300℃以上、400℃以上である。
 250℃超、700℃以下の温度域まで冷却した後は、放冷、緩冷却および熱間圧延板焼鈍を行わずにコイル状に巻き取る。冷却を停止する温度は、実質的にコイルの巻き取り温度となる。コイル状に巻き取った後、コイルを巻き戻し、必要に応じて酸洗を行ってもよい。コイルを巻き戻した後、または酸洗した後は、熱間圧延鋼板に対して第1の冷間圧延を行う。
 第1の冷間圧延では、累積圧下率を80~92%とすることが好ましい。なお、累積圧下率が高いほどその後のバルジングによって{100}結晶粒が成長しやすくなるが、熱間圧延鋼板の巻取りが困難になり、操業が困難になりやすくなる。第1の冷間圧延における累積圧下率を上述の範囲内とすることで、その後のバルジングによる{100}結晶粒の成長を好ましく制御することができる。
 なお、ここでいう累積圧下率は、第1の冷間圧延前の熱間圧延鋼板の板厚:tと、第1の冷間圧延後の鋼板(冷間圧延鋼板)の板厚tとを用いて、(1-t/t)×100(%)で表される。
 第1の冷間圧延を行った後は、第1の焼鈍(中間焼鈍)を行う。本実施形態では、フェライトからオーステナイトへ変態しない温度域で中間焼鈍を行うことが好ましい。つまり、第1の焼鈍の温度をAc1温度未満とすることが好ましい。このような条件で第1の焼鈍を行うことによってバルジングが生じ、{100}結晶粒が成長しやすくなる。また、第1の焼鈍の焼鈍時間(Ac1温度未満の温度域での保持時間)は、5~60秒とすることが好ましい。また、第1の焼鈍は600℃以上で行うことが好ましく、また無酸化雰囲気にて行うことが好ましい。
 以上説明した方法により、無方向性電磁鋼板を製造することができる。
 第1の焼鈍を行った後は、第2の冷間圧延(スキンパス圧延)を行うことが好ましい。上述したようにバルジングが発生した状態で冷間圧延を行うと、バルジングが発生した部分を起点に{100}結晶粒がさらに成長する。第2の冷間圧延の累積圧下率は5~25%とすることが好ましい。第2の冷間圧延の累積圧下率を5~25%とすることで、{100}結晶粒を好ましく成長させることができる。
 なお、ここでいう累積圧下率は、第2の冷間圧延前の無方向性電磁鋼板の板厚:tと、第2の冷間圧延後の無方向性電磁鋼板の板厚tとを用いて、(1-t/t)×100(%)で表される。
 第2の冷間圧延を行った後は、第2の焼鈍を行うことが好ましい。第2の焼鈍では、焼鈍温度をAc1温度未満とすることが好ましい。このような条件で第2の焼鈍を行うことによって、{100}結晶粒を選択的に粗大化させることができる。これにより、無方向性電磁鋼板の磁束密度をより高めることができる。
 磁気特性に優れた{100}結晶粒には歪が溜まりにくく、磁気特性に劣る{111}結晶粒には歪が溜まりやすい性質がある。第2の冷間圧延を行った後、焼鈍を行うことで、歪の少ない{100}結晶粒が歪の差を駆動力として{111}結晶粒を蚕食する。これにより、{100}結晶粒がさらに成長する。歪の差を駆動力にして発生するこの蚕食現象は歪誘起粒界移動(SIBM)と呼ばれる。
 なお、第2の焼鈍としては、短時間焼鈍(仕上げ焼鈍)を行ってもよく、長時間焼鈍(歪取焼鈍)を行ってもよく、その両方を行ってもよい。短時間焼鈍を行う場合には、Ac1温度未満の温度域で1時間以下の焼鈍を行うことが好ましい。長時間焼鈍を行う場合は、Ac1温度未満の温度で1時間以上焼鈍を行うことが好ましい。長時間焼鈍を行うことで、打抜き加工により導入された歪みを除去する効果、および{100}結晶粒を選択的に粗大化させる効果を得ることができる。
 短時間焼鈍および長時間焼鈍の両方を行う場合は、短時間焼鈍の後に長時間焼鈍を行うことが好ましい。
 本実施形態においてAr1温度は、1℃/秒の平均冷却速度で冷却中の鋼材(鋼板)の熱膨張変化から求める。また、本実施形態においてAc1温度は、1℃/秒の平均加熱速度で加熱中の鋼材(鋼板)の熱膨張変化から求める。
 次に、本発明の実施形態に係る無方向性電磁鋼板の製造方法について、実施例を示しながら具体的に説明する。以下に示す実施例は、本発明の実施形態に係る無方向性電磁鋼板の製造方法のあくまでも一例にすぎず、本発明に係る無方向性電磁鋼板の製造方法が下記の例に限定されるものではない。
 (第1の実施例)
 溶鋼を鋳造することにより、以下の表1に示す化学組成のスラブを作製した。表中の式左辺とは、前述の(1)式の左辺の値を表している。その後、作製したスラブを1150℃まで加熱し、表2中に示す条件で熱間圧延を行うことで、板厚2.5mmの熱間圧延鋼板を得た。仕上げ圧延後は水冷し、表中の巻取温度で水冷を停止した後、巻き取りを行った。
 仕上げ圧延の最終パスの出側温度(仕上温度)、仕上げ圧延の最終パスの圧延完了~冷却開始(水冷開始)までの時間、平均冷却速度、および巻取温度を表2に示す。なお、仕上げ圧延の最終パスの圧延完了~冷却開始までの時間は、仕上げ圧延機から水冷開始するまでの距離と、その区間の通板速度とを測定し、通板距離/通板速度を算出することで得た。ここで、仕上げ圧延の最終パスの圧延完了~冷却開始までの時間が0.0秒とは、仕上げ圧延機の最終パスの出側に冷却水がかかるように冷却を行ったことを示す。
 次に、得られた熱間圧延鋼板に対し、酸洗を行うことでスケールを除去した。その後、85%の累積圧下率で板厚0.385mmになるまで冷間圧延を行うことで鋼板(冷間圧延鋼板)を得た。得られた鋼板を加熱し、無酸化雰囲気中で、全ての鋼板のAc1温度よりも低い温度である、700℃で5~60秒保持する第1の焼鈍(中間焼鈍)を行った。次いで、9%の累積圧下率で、板厚が0.35mmになるまで第2の冷間圧延(スキンパス圧延)を行った。
 なお、Ar1温度は、1℃/秒の平均冷却速度で冷却中の鋼板の熱膨張変化から求め、Ac1温度は、1℃/秒の平均加熱速度で加熱中の鋼板の熱膨張変化から求めた。
 第2の冷間圧延(スキンパス圧延)を行った後、800℃で2時間加熱する、第2の焼鈍(歪取焼鈍)を行った。なお、800℃は、全ての鋼板のAc1温度よりも低い温度であった。
 第2の焼鈍を行った後、単板磁気測定装置を用いて磁束密度B50を測定した。55mm角の試料を鋼板の圧延方向に対し0°および45°の2種類の方向に採取し、磁束密度B50を測定した。圧延方向に対して、45°方向の磁束密度を45°方向の磁束密度B50とした。圧延方向に対して、0°、45°、90°および135°の磁束密度の平均値を算出することで、磁束密度B50の全周平均を得た。
 また、無方向性電磁鋼板から採集した試料に対し、最大磁束密度が1.0Tになるように400Hzの交流磁場をかけたときに生じる、全周平均のエネルギーロス(W/kg)を測定することで鉄損W10/400を得た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2中の下線は、本発明の範囲から外れた条件を示している。本発明例であるNo.101~No.108、No.112、No.114、No.116~119は、45°方向及び全周平均において優れた磁気特性(高い磁束密度B50および低い鉄損W10/400)が得られた。
 一方、比較例であるNo.109~No.111は仕上げ圧延の最終パスの圧延完了~冷却開始までの時間(表中では「仕上げ~冷却開始時間」)が長かったため、磁束密度B50が低く、鉄損W10/400が高く、磁気特性が本発明例よりも劣っていた。比較例であるNo.113は平均冷却速度が小さかったため、本発明例よりも磁束密度B50が低く、鉄損W10/400が高く、磁気特性が劣っていた。比較例であるNo.115は巻取温度(冷却を停止する温度)が低かったため、本発明例よりも磁束密度B50が低く、鉄損W10/400が高く、磁気特性が劣っていた。
 (第2の実施例)
 溶鋼を鋳造することにより、以下の表3に示す化学組成のスラブを作製した。その後、作製したインゴットを1150℃まで加熱し、表4中に示す条件で熱間圧延を行うことで、板厚2.5mmの熱間圧延鋼板を得た。仕上げ圧延後は水冷し、表中の巻取温度で水冷を停止した後、巻き取りを行った。
 表4中の項目については、実施例1と同様のため説明を省略する。
 次に、得られた熱間圧延鋼板に対し、酸洗を行うことでスケールを除去した。その後、85%の累積圧下率で板厚が0.385mmになるまで冷間圧延を行うことで鋼板(冷間圧延鋼板)を得た。得られた鋼板を加熱し、無酸化雰囲気中で、全ての鋼板のAc1温度よりも低い温度である、700℃で5~60秒保持する第1の焼鈍(中間焼鈍)を行った。次いで、9%の累積圧下率で、板厚が0.35mmになるまで第2の冷間圧延(スキンパス圧延)を行った。
 第2の冷間圧延(スキンパス圧延)を行った後、800℃で2時間加熱する、第2の焼鈍(歪取焼鈍)を行った。なお、800℃は、全ての鋼板のAc1温度よりも低い温度であった。
 第2の焼鈍を行った後、単板磁気測定装置を用いて磁束密度B50および鉄損W10/400を測定した。測定は第1の実施例と同様の手順で行った。また、Ar1温度およびAc1温度は第1の実施例と同様の方法により測定した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 No.201~No.216は本発明例であり、いずれも磁気特性が良好であった。特に、No.202~No.204はNo.201、No.205~No.214よりも磁束密度B50が高く、No.205~No.214はNo.201~No.204よりも鉄損W10/400が低かった。sol.Al含有量が高いNo.215およびNo.216は、No.201よりも鉄損W10/400が低く、磁束密度B50は低かった。
 (第3の実施例)
 溶鋼を鋳造することにより、以下の表5に示す化学組成のスラブを作製した。その後、作製したインゴットを1150℃まで加熱し、表6中に示す条件で熱間圧延を行うことで、板厚2.5mmの熱間圧延鋼板を得た。仕上げ圧延後は水冷し、表中の巻取温度で水冷を停止した後、巻き取りを行った。
 表6中の項目については、実施例1と同様のため説明を省略する。
 次に、得られた熱間圧延鋼板に対し、酸洗を行うことでスケールを除去した。その後、85%の累積圧下率で板厚が0.385mmになるまで冷間圧延を行うことで鋼板(冷間圧延鋼板)を得た。得られた鋼板を加熱し、無酸化雰囲気中で、全ての鋼板のAc1温度よりも低い温度である、700℃で5~60秒保持する第1の焼鈍(中間焼鈍)を行った。
 第1の焼鈍を行った後、単板磁気測定装置を用いて磁束密度B50および鉄損W10/400を測定した。測定は第1の実施例と同様の手順で行った。また、Ar1温度およびAc1温度は第1の実施例と同様の方法により測定した。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表6中の下線は、本発明の範囲から外れた条件を示している。本発明例であるNo.301~No.308、No.312、No.314、No.316~No.326は、45°方向及び全周平均において優れた磁気特性(高い磁束密度B50および低い鉄損W10/400)が得られた。
 一方、比較例であるNo.309~No.311は仕上げ圧延の最終パスの圧延完了~冷却開始までの時間が長かったため、磁束密度B50が低く、鉄損W10/400が高く、磁気特性が本発明例よりも劣っていた。比較例であるNo.313は平均冷却速度が小さかったため、本発明例よりも磁束密度B50が低く、鉄損W10/400が高く、磁気特性が劣っていた。比較例であるNo.315は巻取温度が低かったため、本発明例よりも磁束密度B50が低く、鉄損W10/400が高く、磁気特性が劣っていた。

Claims (5)

  1.  質量%で、
     C:0.0100%以下、
     Si:1.50~4.00%、
     sol.Al:0.0001~1.000%、
     S:0.0100%以下、
     N:0.0100%以下、
     Mn、Ni、Co、Pt、Pb、CuおよびAu:総計で2.50~5.00%、
     Sn:0.000~0.400%、
     Sb:0.000~0.400%、
     P:0.000~0.400%、並びに
     Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、ZnおよびCd:総計で0.0000~0.0100%を含有し、
     質量%で、Mn含有量を[Mn]、Ni含有量を[Ni]、Co含有量を[Co]、Pt含有量を[Pt]、Pb含有量を[Pb]、Cu含有量を[Cu]、Au含有量を[Au]、Si含有量を[Si]、sol.Al含有量を[sol.Al]と表したとき、以下の(1)式を満たし、
     残部がFeおよび不純物からなる化学組成を有する鋼材に対して熱間圧延を行い、熱間圧延鋼板を得る工程と、
     前記熱間圧延鋼板に対して第1の冷間圧延を行う工程と、
     前記第1の冷間圧延の後に第1の焼鈍を行う工程と、を有し、
     前記熱間圧延時の仕上げ圧延の最終パスをAr1温度以上の温度域で行い、前記仕上げ圧延の前記最終パスの圧延完了から0.1秒以内に、平均冷却速度が50~500℃/秒である冷却を開始し、250℃超、700℃以下の温度域まで冷却する
    ことを特徴とする無方向性電磁鋼板の製造方法。
     ([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])-([Si]+[sol.Al])>0.00%   ・・・(1)
  2.  前記鋼材が、質量%で、
     Sn:0.020~0.400%、
     Sb:0.020~0.400%、
     P:0.020~0.400%、並びに
     Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、ZnおよびCd:総計で0.0005~0.0100%
    からなる群から選ばれる1種以上を含有することを特徴とする請求項1に記載の無方向性電磁鋼板の製造方法。
  3.  前記第1の焼鈍は、Ac1温度未満の温度域で行うことを特徴とする請求項1または2に記載の無方向性電磁鋼板の製造方法。
  4.  前記第1の焼鈍の後に第2の冷間圧延を行う工程を有し、
     前記第1の冷間圧延を行う工程においては、累積圧下率80~92%で冷間圧延を行い、
     前記第2の冷間圧延を行う工程においては、累積圧下率5~25%で冷間圧延を行うことを特徴とする請求項1~3のいずれか1項に記載の無方向性電磁鋼板の製造方法。
  5.  前記第2の冷間圧延の後に第2の焼鈍を行う工程を有し、
     前記第2の焼鈍では、焼鈍温度をAc1温度未満とすることを特徴とする請求項4に記載の無方向性電磁鋼板の製造方法。
PCT/JP2020/042465 2019-11-15 2020-11-13 無方向性電磁鋼板の製造方法 WO2021095854A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020227005033A KR20220032109A (ko) 2019-11-15 2020-11-13 무방향성 전자 강판의 제조 방법
CN202080059889.4A CN114286871B (zh) 2019-11-15 2020-11-13 无取向性电磁钢板的制造方法
US17/638,461 US20220349037A1 (en) 2019-11-15 2020-11-13 Method for manufacturing non-oriented electrical steel sheet
BR112022002865-2A BR112022002865B1 (pt) 2019-11-15 2020-11-13 Método para fabricar uma chapa de aço elétrico não orientado
EP20886738.2A EP4060059A4 (en) 2019-11-15 2020-11-13 PROCESS FOR MANUFACTURING NON-ORIENTED ELECTROMAGNETIC STEEL SHEET
JP2021556178A JP7047983B2 (ja) 2019-11-15 2020-11-13 無方向性電磁鋼板の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019206708 2019-11-15
JP2019-206708 2019-11-15

Publications (1)

Publication Number Publication Date
WO2021095854A1 true WO2021095854A1 (ja) 2021-05-20

Family

ID=75912997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042465 WO2021095854A1 (ja) 2019-11-15 2020-11-13 無方向性電磁鋼板の製造方法

Country Status (7)

Country Link
US (1) US20220349037A1 (ja)
EP (1) EP4060059A4 (ja)
JP (1) JP7047983B2 (ja)
KR (1) KR20220032109A (ja)
CN (1) CN114286871B (ja)
TW (1) TWI753650B (ja)
WO (1) WO2021095854A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020111006A1 (ja) * 2018-11-26 2020-06-04 Jfeスチール株式会社 無方向性電磁鋼板の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319465B2 (ja) 1982-10-15 1988-04-22 Matsushita Electric Works Ltd
JP4029430B2 (ja) 1995-09-20 2008-01-09 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
KR20140084895A (ko) * 2012-12-27 2014-07-07 주식회사 포스코 무방향성 전기강판 및 그 제조방법
JP2017145462A (ja) * 2016-02-17 2017-08-24 新日鐵住金株式会社 電磁鋼板、及びその製造方法
JP2017193731A (ja) * 2016-04-18 2017-10-26 新日鐵住金株式会社 電磁鋼板、及びその製造方法
JP2019019355A (ja) * 2017-07-13 2019-02-07 新日鐵住金株式会社 電磁鋼板及びその製造方法、ロータ用モータコア及びその製造方法、ステータ用モータコア及びその製造方法、並びに、モータコアの製造方法
JP2019178380A (ja) * 2018-03-30 2019-10-17 日本製鉄株式会社 電磁鋼板、及び、電磁鋼板の製造方法
JP2019206708A (ja) 2014-06-03 2019-12-05 ピュラック バイオケム ビー. ブイ. 非反応性ホットメルト接着剤、その製造及び封止パッケージにおけるその使用

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686624B2 (ja) * 1987-03-11 1994-11-02 新日本製鐵株式会社 高抗張力無方向性電磁鋼板の製造方法
JP2510641B2 (ja) * 1987-03-11 1996-06-26 新日本製鐵株式会社 抗張力の高い無方向性電磁鋼板の製造方法
JPS6417821A (en) * 1987-07-13 1989-01-20 Kawasaki Steel Co Manufacture of non-oriented electromagnetic steel strip
JP3852227B2 (ja) * 1998-10-23 2006-11-29 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
JP4258918B2 (ja) * 1999-11-01 2009-04-30 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP4507316B2 (ja) * 1999-11-26 2010-07-21 Jfeスチール株式会社 Dcブラシレスモーター
JP4681450B2 (ja) * 2005-02-23 2011-05-11 新日本製鐵株式会社 圧延方向の磁気特性に優れた無方向性電磁鋼板とその製造方法
BR112013002583B1 (pt) * 2010-08-04 2018-07-10 Nippon Steel & Sumitomo Metal Corporation Método de fabricação de chapa de aço para fins elétricos de grão não orientado
JP5273235B2 (ja) * 2011-11-29 2013-08-28 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
PL3140430T3 (pl) * 2014-05-08 2021-08-30 Rina Consulting - Centro Sviluppo Materiali S.P.A. Sposób wytwarzania taśmy stalowej elektrotechnicznej o ziarnie niezorientowanym z wysokim stopniem redukcji na zimno
WO2016067568A1 (ja) * 2014-10-30 2016-05-06 Jfeスチール株式会社 無方向性電磁鋼板および無方向性電磁鋼板の製造方法
JP6406522B2 (ja) * 2015-12-09 2018-10-17 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
CN108463569B (zh) * 2016-01-15 2020-08-11 杰富意钢铁株式会社 无取向性电磁钢板及其制造方法
RU2712795C1 (ru) * 2016-11-25 2020-01-31 ДжФЕ СТИЛ КОРПОРЕЙШН Листовая электротехническая сталь с неориентированной структурой и способ ее производства
EP3569726B1 (en) * 2017-01-16 2022-05-11 Nippon Steel Corporation Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
KR102087182B1 (ko) * 2017-12-26 2020-03-10 주식회사 포스코 무방향성 전기강판 및 그 제조방법
BR112020023352B1 (pt) * 2018-05-21 2023-12-26 Jfe Steel Corporation Chapa de aço elétrico não orientado e método de produção da mesma
CN109022703A (zh) * 2018-10-29 2018-12-18 武汉钢铁有限公司 一种磁各向异性低的无取向硅钢及其制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319465B2 (ja) 1982-10-15 1988-04-22 Matsushita Electric Works Ltd
JP4029430B2 (ja) 1995-09-20 2008-01-09 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
KR20140084895A (ko) * 2012-12-27 2014-07-07 주식회사 포스코 무방향성 전기강판 및 그 제조방법
JP2019206708A (ja) 2014-06-03 2019-12-05 ピュラック バイオケム ビー. ブイ. 非反応性ホットメルト接着剤、その製造及び封止パッケージにおけるその使用
JP2017145462A (ja) * 2016-02-17 2017-08-24 新日鐵住金株式会社 電磁鋼板、及びその製造方法
JP2017193731A (ja) * 2016-04-18 2017-10-26 新日鐵住金株式会社 電磁鋼板、及びその製造方法
JP2019019355A (ja) * 2017-07-13 2019-02-07 新日鐵住金株式会社 電磁鋼板及びその製造方法、ロータ用モータコア及びその製造方法、ステータ用モータコア及びその製造方法、並びに、モータコアの製造方法
JP2019178380A (ja) * 2018-03-30 2019-10-17 日本製鉄株式会社 電磁鋼板、及び、電磁鋼板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4060059A4

Also Published As

Publication number Publication date
EP4060059A4 (en) 2023-01-18
JP7047983B2 (ja) 2022-04-05
US20220349037A1 (en) 2022-11-03
TWI753650B (zh) 2022-01-21
BR112022002865A2 (pt) 2022-05-17
EP4060059A1 (en) 2022-09-21
CN114286871A (zh) 2022-04-05
TW202126821A (zh) 2021-07-16
JPWO2021095854A1 (ja) 2021-05-20
KR20220032109A (ko) 2022-03-15
CN114286871B (zh) 2023-03-17

Similar Documents

Publication Publication Date Title
US20240153683A1 (en) Non-oriented electrical steel sheet and method for manufacturing same
CN110612358A (zh) 无方向性电磁钢板
CN110573639B (zh) 无方向性电磁钢板
JP7047983B2 (ja) 無方向性電磁鋼板の製造方法
JP7352082B2 (ja) 無方向性電磁鋼板
KR20230144606A (ko) 무방향성 전자 강판 및 그 제조 방법
JP7415135B2 (ja) 無方向性電磁鋼板の製造方法
JP7415134B2 (ja) 無方向性電磁鋼板の製造方法
JP7415136B2 (ja) 無方向性電磁鋼板の製造方法
JP7211532B2 (ja) 無方向性電磁鋼板の製造方法
JP7428873B2 (ja) 無方向性電磁鋼板及びその製造方法
JP7415138B2 (ja) 無方向性電磁鋼板の製造方法
CN114616353B (zh) 无方向性电磁钢板
JP7428872B2 (ja) 無方向性電磁鋼板及びその製造方法
JP7295465B2 (ja) 無方向性電磁鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886738

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021556178

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227005033

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022002865

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112022002865

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220215

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020886738

Country of ref document: EP

Effective date: 20220615