Nothing Special   »   [go: up one dir, main page]

WO2021069951A1 - Lithium ion secondary battery positive electrode active material - Google Patents

Lithium ion secondary battery positive electrode active material Download PDF

Info

Publication number
WO2021069951A1
WO2021069951A1 PCT/IB2019/001263 IB2019001263W WO2021069951A1 WO 2021069951 A1 WO2021069951 A1 WO 2021069951A1 IB 2019001263 W IB2019001263 W IB 2019001263W WO 2021069951 A1 WO2021069951 A1 WO 2021069951A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
electrode active
negative electrode
secondary battery
Prior art date
Application number
PCT/IB2019/001263
Other languages
French (fr)
Japanese (ja)
Inventor
小野正樹
光山知宏
諸岡正浩
金澤昭彦
Original Assignee
日産自動車株式会社
ルノー エス. ア. エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス. ア. エス. filed Critical 日産自動車株式会社
Priority to JP2021550712A priority Critical patent/JP7248136B2/en
Priority to PCT/IB2019/001263 priority patent/WO2021069951A1/en
Publication of WO2021069951A1 publication Critical patent/WO2021069951A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a lithium ion secondary battery.
  • the secondary battery for driving the motor is required to have extremely high output characteristics and high energy as compared with the consumer lithium ion secondary battery used for mobile phones, notebook computers, and the like. Therefore, the lithium-ion secondary battery, which has the highest theoretical energy among all realistic batteries, is attracting attention and is currently being rapidly developed.
  • the lithium ion secondary battery currently widely used uses a flammable organic electrolyte as an electrolyte.
  • a flammable organic electrolyte as an electrolyte.
  • safety measures against liquid leakage, short circuit, overcharge, etc. are required more strictly than other batteries.
  • the solid electrolyte is a material composed mainly of an ionic conductor capable of conducting ions in a solid. Therefore, in the all-solid-state lithium ion secondary battery, various problems caused by the flammable organic electrolytic solution do not occur in principle unlike the conventional liquid-based lithium ion secondary battery. Further, in general, when a high potential / large capacity positive electrode material and a large capacity negative electrode material are used, the output density and energy density of the battery can be significantly improved.
  • An all-solid-state lithium-ion secondary battery using elemental sulfur (S) or a sulfide-based material as the positive electrode active material is a promising candidate.
  • Japanese Patent Application Laid-Open No. 2002-154815 describes a lithium ion secondary battery using polycarbon sulfide as a positive electrode active material.
  • Japanese Patent Application Laid-Open No. 2002-154815 describes polycarbon sulfide showing a predetermined Raman spectrum in response to the problem that the charge / discharge cycle life of a battery is shortened when the sulfur content of polycarbon sulfide is increased in order to increase the capacity. We are proposing to use it.
  • an object of the present invention is to provide a means capable of achieving a high output lithium ion secondary battery having a high capacity, high charge / discharge cycle durability, and excellent rate characteristics.
  • the present invention contains at least carbon and sulfur, in the Raman spectrum, the height of the peaks present in 980 ⁇ 1000 cm -1 of the main peak existing on the 1430 ⁇ 1450 cm -1 Raman shift relative to height A B It is a positive electrode active material for a lithium ion secondary battery having a ratio B / A of 0.3 or more.
  • One form of the present invention contains at least carbon and sulfur, in the Raman spectrum, the height of the peaks present in 980 ⁇ 1000 cm -1 of the main peak existing on the 1430 ⁇ 1450 cm -1 Raman shift relative to height A It is a positive electrode active material for a lithium ion secondary battery having a ratio B / A of B of 0.3 or more.
  • Organosulfur compounds containing carbon and sulfur as the main constituent elements have a high capacity and are more reversible than elemental sulfur, so they are attracting attention as positive electrode active materials that can achieve high capacity of lithium ion secondary batteries. Has been done.
  • the produced compound may contain a low molecular weight or high molecular weight polysulfide compound.
  • the sulfur content is increased in order to increase the capacity, the proportion of the polysulfide compound increases, but there is a problem that the cycle durability of the battery is lowered due to decomposition of the polysulfide compound during charging and discharging.
  • the life is improved by reducing the proportion of polysulfide bonds.
  • polycarbon sulfide as described in JP-A-2002-154815 is applied to an all-solid-state battery, sufficient rate characteristics cannot be obtained.
  • the present inventors have found that in the Raman spectrum of the cathode active material containing carbon and sulfur, the peak of 980 ⁇ 1000 cm -1 of the main peak existing on the 1430 ⁇ 1450 cm -1 Raman shift relative to height A It was found that the above-mentioned problems can be solved by setting the ratio of the height B of the above to a certain level or more.
  • the positive electrode active material of the present invention is considered to be a polycarbon sulfide having a structure as shown in FIG. 1A, although it is not clear because it is insoluble in a solvent and analysis means are limited.
  • included in the polysulfide carbon C-S bond of the sulfur atom, i.e. the ratio of sulfur atoms bonded to sp 2 carbon is higher than the conventional polysulfide carbon.
  • a C-S bond is relatively small poly hydrogen sulfide, which is a low active sulfur -C-S bond of the sulfur atom (sp 3 sulfur atoms bonded to carbon) High proportion, low proportion of highly active sulfur. As a result, the electrode reaction activity becomes low, and it is considered that it is difficult to obtain sufficient rate characteristics in the all-solid-state battery.
  • FIG. 2 schematically shows the overall structure of a laminated (internal parallel connection type) all-solid-state lithium-ion secondary battery (hereinafter, also simply referred to as “laminated secondary battery”) according to an embodiment of the present invention. It is a cross-sectional view.
  • the laminated secondary battery 10a shown in FIG. 2 has a structure in which a substantially rectangular power generation element 21 in which a charge / discharge reaction actually proceeds is sealed inside a laminated film 29 which is a battery exterior.
  • the power generation element 21 of the laminated secondary battery 10a of the present embodiment includes a positive electrode in which positive electrode active material layers 13 are arranged on both sides of a positive electrode current collector 11', a solid electrolyte layer 17, and a negative electrode. It has a structure in which a negative electrode in which a negative electrode active material layer 15 is arranged is laminated on both sides of a current collector 11 ′′. Specifically, the positive electrode, the solid electrolyte layer, and the negative electrode are laminated in this order so that one positive electrode active material layer 13 and the negative electrode active material layer 15 adjacent thereto face each other via the solid electrolyte layer 17. ing. As a result, the adjacent positive electrode, solid electrolyte layer, and negative electrode form one cell cell layer 19.
  • the laminated secondary battery 10a shown in FIG. 2 has a configuration in which a plurality of single battery layers 19 are laminated and electrically connected in parallel.
  • the positive electrode current collectors in the outermost layers located in both outermost layers of the power generation element 21 have the positive electrode active material layer 13 arranged on only one side, but active material layers may be provided on both sides. .. That is, instead of using a current collector dedicated to the outermost layer in which the active material layer is provided on only one side, a current collector having active material layers on both sides may be used as it is as the current collector in the outermost layer. Further, by reversing the arrangement of the positive electrode and the negative electrode as in FIG. 2, the negative electrode current collector of the outermost layer is located on both outermost layers of the power generation element 21, and one side of the negative electrode current collector of the outermost layer or Negative electrode active material layers may be arranged on both sides.
  • a positive electrode current collector plate 25 and a negative electrode current collector plate 27 that are conductive to each electrode are attached to the positive electrode current collector 11'and the negative electrode current collector 11', respectively, and the end portion of the laminate film 29 is attached. It has a structure that is led out to the outside of the laminated film 29 so as to be sandwiched between the two.
  • the positive electrode current collector plate 25 and the negative electrode current collector plate 27 are connected to the positive electrode current collector 11'and the negative electrode current collector 11'of each electrode via the positive electrode terminal lead and the negative electrode terminal lead (not shown), respectively, as necessary. It may be attached to'by ultrasonic welding, resistance welding, or the like.
  • all-solid-state battery has been described by taking a laminated type (internal parallel connection type) all-solid-state lithium-ion secondary battery as an example.
  • the type of all-solid-state battery to which the present invention can be applied is not particularly limited, and the positive electrode active material layer electrically bonded to one surface of the current collector and the opposite surface of the current collector are electrically connected. It is also applicable to a bipolar (bipolar) all-solid-state battery including a bipolar electrode having a coupled negative electrode active material layer.
  • FIG. 3 is a sectional view schematically showing a bipolar type (bipolar type) all-solid-state lithium ion secondary battery (hereinafter, also simply referred to as “bipolar type secondary battery”) according to an embodiment of the present invention. ..
  • the bipolar secondary battery 10b shown in FIG. 3 has a structure in which a substantially rectangular power generation element 21 in which a charge / discharge reaction actually proceeds is sealed inside a laminated film 29 which is a battery exterior.
  • a positive electrode active material layer 13 electrically bonded to one surface of the current collector 11 is formed, and the current collector 11 has a positive electrode active material layer 13. It has a plurality of bipolar electrodes 23 having an electrically coupled negative electrode active material layer 15 formed on the opposite surface. Each bipolar electrode 23 is laminated via a solid electrolyte layer 17 to form a power generation element 21.
  • the solid electrolyte layer 17 has a structure in which the solid electrolyte is formed into layers.
  • the bipolar electrodes 23 and the solid electrolyte layer 17 are alternately laminated. That is, the solid electrolyte layer 17 is sandwiched between the positive electrode active material layer 13 of the one bipolar electrode 23 and the negative electrode active material layer 15 of the other bipolar electrode 23 adjacent to the one bipolar electrode 23. Has been done.
  • the adjacent positive electrode active material layer 13, the solid electrolyte layer 17, and the negative electrode active material layer 15 constitute one cell cell layer 19. Therefore, it can be said that the bipolar secondary battery 10b has a configuration in which the cell cell layers 19 are laminated.
  • the positive electrode active material layer 13 is formed on only one side of the outermost layer current collector 11a on the positive electrode side located in the outermost layer of the power generation element 21.
  • the negative electrode active material layer 15 is formed on only one side of the outermost layer current collector 11b on the negative electrode side located in the outermost layer of the power generation element 21.
  • a positive electrode current collector plate (positive electrode tab) 25 is arranged so as to be adjacent to the outermost layer current collector 11a on the positive electrode side, and this is extended to form a battery exterior. It is derived from the laminated film 29.
  • the negative electrode current collector plate (negative electrode tab) 27 is arranged so as to be adjacent to the outermost layer current collector 11b on the negative electrode side, and is similarly extended and led out from the laminated film 29.
  • the number of times the cell cell layer 19 is laminated is adjusted according to the desired voltage. Further, in the bipolar type secondary battery 10b, the number of times the cell cell layer 19 is laminated may be reduced as long as a sufficient output can be secured even if the thickness of the battery is made as thin as possible. Even in the bipolar secondary battery 10b, in order to prevent external impact and environmental deterioration during use, the power generation element 21 is vacuum-sealed in the laminated film 29 which is the battery exterior, and the positive electrode current collector plate 25 and the negative electrode current collector are collected. It is preferable to have a structure in which the electric plate 27 is taken out from the laminated film 29.
  • the current collector has a function of mediating the movement of electrons from one surface in contact with the positive electrode active material layer to the other surface in contact with the negative electrode active material layer.
  • the materials that make up the current collector There are no particular restrictions on the materials that make up the current collector.
  • a constituent material of the current collector for example, a metal or a resin having conductivity can be adopted.
  • examples of the metal include aluminum, nickel, iron, stainless steel, titanium, and copper.
  • a clad material of nickel and aluminum, a clad material of copper and aluminum, and the like may be used.
  • the foil may be a metal surface coated with aluminum.
  • aluminum, stainless steel, copper, and nickel are preferable from the viewpoints of electron conductivity, battery operating potential, adhesion of the negative electrode active material by sputtering to the current collector, and the like.
  • non-conductive polymer material examples include polyethylene (PE; high density polyethylene (HDPE), low density polyethylene (LDPE), etc.), polypropylene (PP), polyethylene terephthalate (PET), polyether nitrile (PEN), and polyimide.
  • PE polyethylene
  • HDPE high density polyethylene
  • LDPE low density polyethylene
  • PP polypropylene
  • PET polyethylene terephthalate
  • PEN polyether nitrile
  • PI Polyimide
  • PAI Polyethylene
  • PA Polytetrafluoroethylene
  • SBR Styrene-butadiene rubber
  • PAN Polyacrylonitrile
  • PMA Polymethylacrylate
  • PMMA Polymethylmethacrylate
  • PVC Polyvinyl chloride
  • PVdF polyvinylidene fluoride
  • PS polystyrene
  • Such non-conductive polymer materials can have excellent potential resistance or solvent resistance.
  • a conductive filler may be added to the above-mentioned conductive polymer material or non-conductive polymer material as needed.
  • a conductive filler is inevitably indispensable in order to impart conductivity to the resin.
  • the conductive filler can be used without particular limitation as long as it is a conductive substance.
  • materials having excellent conductivity, potential resistance, or lithium ion blocking property include metals and conductive carbon.
  • the metal is not particularly limited, and includes at least one metal selected from the group consisting of Ni, Ti, Al, Cu, Pt, Fe, Cr, Sn, Zn, In, and Sb, or at least one of these metals. It preferably contains an alloy or metal oxide.
  • the conductive carbon is not particularly limited.
  • acetylene black is selected from the group consisting of acetylene black, vulcan (registered trademark), black pearl (registered trademark), carbon nanofiber, Ketjen black (registered trademark), carbon nanotube, carbon nanohorn, carbon nanoballoon, and fullerene. It contains at least one species.
  • the amount of the conductive filler added is not particularly limited as long as it can impart sufficient conductivity to the current collector, and is generally 5 to 80% by mass with respect to 100% by mass of the total mass of the current collector. Is.
  • the current collector may have a single-layer structure made of a single material, or may have a laminated structure in which layers made of these materials are appropriately combined. From the viewpoint of reducing the weight of the current collector, it is preferable to include a conductive resin layer made of at least a conductive resin. Further, from the viewpoint of blocking the movement of lithium ions between the cell layers, a metal layer may be provided as a part of the current collector.
  • the positive electrode active material layer contains a positive electrode active material.
  • the positive electrode active material includes the predetermined positive electrode active material of the present invention.
  • Positive electrode active material according to the present invention contains at least carbon and sulfur, in the Raman spectrum, the peaks present in 980 ⁇ 1000 cm -1 of the main peak existing on the 1430 ⁇ 1450 cm -1 Raman shift relative to height A It is a positive electrode active material for a lithium ion secondary battery having a height B ratio B / A of 0.3 or more.
  • the positive electrode active material of the present invention preferably contains carbon and sulfur as main constituent elements.
  • the total mass ratio of carbon and sulfur is 90% by mass or more, more preferably 95% by mass or more, still more preferably 96% by mass or more, and even more preferably 97% by mass or more.
  • a high energy density can be obtained.
  • high rate characteristics can be obtained.
  • the positive electrode active material of the present invention preferably has a sulfur mass ratio of 65% by mass or more, preferably 67% by mass or more, and preferably 70% by mass or more. Within the above range, a high energy density can be obtained. In addition, since it is possible to suppress a decrease in the redox activity of sulfur due to the inclusion of elements other than carbon and sulfur, high rate characteristics can be obtained.
  • the composition ratio (atomic ratio) of carbon and sulfur is not particularly limited, but it is preferably 1 ⁇ S / C (atomic ratio) ⁇ 1.5.
  • S / C (atomic ratio) is 1 or more, the capacity per mass of the active material is high, which is preferable.
  • the polysulfide bond (-S-S-S-) is relatively small, so that the rate characteristics and the cycle durability can be improved, which is preferable.
  • the mass ratio of carbon and sulfur in the positive electrode active material can be obtained by the method described in Examples.
  • the atomic ratio of carbon and sulfur can be obtained from the mass ratio.
  • the positive electrode active material of the present invention in the Raman spectrum, the ratio B / A of the height B of the peaks present in 980 ⁇ 1000 cm -1 of the main peak to the height A present 1430 ⁇ 1450 cm -1 Raman shift 0 .3 or more. If the B / A is less than 0.3, the rate characteristics become insufficient. B / A is preferably 0.48 or more, and more preferably 0.61 or more. Within the above range, the effect of the present invention can be further improved.
  • the upper limit of B / A is not particularly limited, but is, for example, 1 or less.
  • the B / A ratio of the positive electrode active material can be obtained by the method described in the examples.
  • the shape of the positive electrode active material is not particularly limited, and examples thereof include a particle shape (spherical shape, a fibrous shape), a thin film shape, and the like.
  • a particle shape sintered shape, a spherical shape, a fibrous shape, a thin film shape, and the like.
  • its average particle size is not particularly limited.
  • the method for preparing the positive electrode active material of the present invention containing carbon and sulfur and having a predetermined Raman spectrum is not particularly limited.
  • a method of synthesizing polycarbon sulfide by electrolytic reduction polymerization of carbon disulfide and heat-treating the synthesized polycarbon sulfide can be mentioned.
  • the electrolytic reduction polymerization of carbon disulfide (CS 2 ) can be carried out, for example, by using a solution obtained by dissolving CS 2 or a supporting electrolyte in a solvent and mixing them. It is considered that when a voltage is applied to the solution using an electrode such as platinum, CS 2 is reduced to generate CS carbene (: CS), which initiates polymerization.
  • CS carbene CS carbene
  • the concentration of CS 2 in the solution is not particularly limited, but it is desirable that the concentration is close to saturation within the range in which CS 2 can be dissolved, depending on the combination of the solvent and supporting electrolyte used.
  • the supporting electrolyte is not particularly limited, but for example, tetrabutylammonium perchlorate or the like can be used.
  • the concentration of the supporting electrolyte in the solution is not particularly limited, but is preferably 0.05 to 0.5 M, and more preferably 0.1 to 0.3 M. Within the above range, the polymerization reaction can proceed favorably.
  • acetonitrile for example, acetonitrile, N, N-dimethylformamide, hexamethylphosphoric acid triamide, N-methylpyrrolidone, tetrahydrofuran, ethyl acetate, acetone, dimethyl sulfoxide, propylene carbonate and the like can be used.
  • the applied voltage is not particularly limited, but is preferably 3 to 6 V, and more preferably 4 to 5 V.
  • the voltage is 3 V or higher, the polymerization can proceed favorably.
  • the voltage is 6 V or less, the electrolytic efficiency is unlikely to decrease due to gas generation, so that the polymerization can proceed favorably.
  • the reaction time of electrolytic reduction polymerization is not particularly limited and can be adjusted as appropriate.
  • the synthesized polycarbon sulfide is preferably heat-treated. This makes it possible to remove low molecular weight components and increase the proportion of active sulfur.
  • the heat treatment is preferably carried out under reduced pressure or under an inert gas atmosphere.
  • the dew point is preferably ⁇ 30 ° C. or lower, and more preferably the dew point is ⁇ 40 ° C. or lower.
  • the heat treatment temperature is preferably 80 to 250 ° C, still more preferably 80 to 200 ° C, and even more preferably 130 to 200 ° C. If the temperature is 80 ° C. or higher, the structure is likely to change to an electrochemically active sulfur-rich structure, which is preferable. Further, when the temperature is 250 ° C. or lower, thermal decomposition of polycarbon sulfide is unlikely to occur, which is preferable.
  • the heat treatment time is preferably 0.5 to 12 hours, more preferably 2 to 8 hours, and even more preferably 4 to 8 hours. If it is 0.5 hours or more, the effect of heat treatment (structural change and dehydration) can be sufficiently obtained. If it is 12 hours or less, the effect according to the heat treatment time can be obtained, which is preferable.
  • the positive electrode active material layer contains carbon and sulfur, and may contain a positive electrode active material (other positive electrode active material) other than the positive electrode active material of the present invention having a predetermined Raman spectrum.
  • positive electrode active material for example, elemental sulfur (S), lithium sulfide (Li 2 S), particles or a thin film of the organic sulfur compounds other than polysulfide carbon or inorganic sulfur compound and the like, redox sulfur A substance capable of releasing lithium ions during charging and occluding lithium ions during discharging can be used by utilizing the reaction.
  • elemental sulfur S
  • lithium sulfide Li 2 S
  • redox sulfur A substance capable of releasing lithium ions during charging and occluding lithium ions during discharging can be used by utilizing the reaction.
  • a positive electrode active material containing no sulfur may be contained.
  • the sulfur-free positive electrode active material include layered rock salt type active materials such as LiCoO 2 , LiMnO 2 , LiNiO 2 , LiVO 2 , and Li (Ni-Mn-Co) O 2 , LiMn 2 O 4 , LiNi 0.
  • spinel-type active materials such as 5 Mn 1.5 O 4
  • olivine-type active materials such as LiFePO 4 and LiMnPO 4
  • Si-containing active materials such as Li 2 FeSiO 4 and Li 2 MnSiO 4.
  • the oxide active material other than the above include Li 4 Ti 5 O 12 .
  • the content of the positive electrode active material of the present invention with respect to the total amount of the positive electrode active material is preferably 50% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more. It is more preferably 95% by mass or more, and particularly preferably 100% by mass.
  • the content of the positive electrode active material in the positive electrode active material layer is not particularly limited, but is preferably in the range of 40 to 99% by mass, preferably in the range of 50 to 90% by mass, for example. More preferred.
  • the positive electrode active material layer preferably further contains a solid electrolyte. Since the positive electrode active material layer contains a solid electrolyte, the ionic conductivity of the positive electrode active material layer can be improved. Examples of the solid electrolyte include sulfide solid electrolytes and oxide solid electrolytes, and sulfide solid electrolytes are preferable.
  • Examples of the sulfide solid electrolyte include LiI-Li 2 S-SiS 2 , LiI-Li 2 S-P 2 O 5 , LiI-Li 3 PO 4- P 2 S 5 , Li 2 S-P 2 S 5 , LiI-Li 3 PS 4 , LiI-LiBr-Li 3 PS 4, Li 3 PS 4 , Li 2 S-P 2 S 5 , Li 2 S-P 2 S 5 -Li I, Li 2 S-P 2 S 5- Li 2 O, Li 2 S-P 2 S 5 -Li 2 O-LiI, Li 2 S-SiS 2 , Li 2 S-SiS 2- LiI, Li 2 S-SiS 2- LiBr, Li 2 S-SiS 2 -LiCl, Li 2 S-SiS 2- B 2 S 3- LiI, Li 2 S-SiS 2- P 2 S 5- LiI, Li 2 SB 2 S 3 , Li 2 SP 2 S 5- Z m S n (where m and
  • the sulfide solid electrolyte may have, for example, a Li 3 PS 4 skeleton, a Li 4 P 2 S 7 skeleton, or a Li 4 P 2 S 6 skeleton. ..
  • Examples of the sulfide solid electrolyte having a Li 3 PS 4 skeleton include LiI-Li 3 PS 4 , LiI-LiBr-Li 3 PS 4, and Li 3 PS 4 .
  • examples of the sulfide solid electrolyte having a Li 4 P 2 S 7 skeleton include a Li-PS-based solid electrolyte called LPS (for example, Li 7 P 3 S 11 ).
  • the sulfide solid electrolyte for example, LGPS represented by Li (4-x) Ge (1-x) P x S 4 (x satisfies 0 ⁇ x ⁇ 1) may be used.
  • the sulfide solid electrolyte is preferably a sulfide solid electrolyte containing a P element, and the sulfide solid electrolyte is more preferably a material containing Li 2 SP 2 S 5 as a main component.
  • the sulfide solid electrolyte may contain halogens (F, Cl, Br, I).
  • the sulfide solid electrolyte may be sulfide glass, crystallized sulfide glass, or a crystalline material obtained by the solid phase method.
  • the sulfide glass can be obtained, for example, by performing mechanical milling (ball mill or the like) on the raw material composition.
  • the crystallized sulfide glass can be obtained, for example, by heat-treating the sulfide glass at a temperature equal to or higher than the crystallization temperature.
  • the ionic conductivity (for example, Li ion conductivity) of the sulfide solid electrolyte at room temperature (25 ° C.) is preferably 1 ⁇ 10 -5 S / cm or more , for example, 1 ⁇ 10 -4 S / cm. It is more preferably cm or more.
  • the value of the ionic conductivity of the solid electrolyte can be measured by the AC impedance method.
  • Examples of the oxide solid electrolyte include compounds having a NASICON type structure and the like.
  • a compound having a NASICON type structure a compound (LAGP) represented by the general formula Li 1 + x Al x Ge 2-x (PO 4 ) 3 (0 ⁇ x ⁇ 2), a general formula Li 1 + x Al x Ti 2
  • LAGP a compound represented by the general formula Li 1 + x Al x Ge 2-x (PO 4 ) 3 (0 ⁇ x ⁇ 2)
  • a general formula Li 1 + x Al x Ti 2 examples thereof include a compound (LATP) represented by ⁇ x (PO 4 ) 3 (0 ⁇ x ⁇ 2).
  • LiLaTIO for example, Li 0.34 La 0.51 TiO 3
  • LiPON for example, Li 2.9 PO 3.3 N 0.46
  • LiLaZrO for example, Li LaZrO
  • the shape of the solid electrolyte examples include a particle shape such as a true spherical shape and an elliptical spherical shape, and a thin film shape.
  • its average particle size (D 50 ) is not particularly limited, but is preferably 40 ⁇ m or less, more preferably 20 ⁇ m or less, and further preferably 10 ⁇ m or less.
  • the average particle size (D 50 ) is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more.
  • the content of the solid electrolyte in the positive electrode active material layer is, for example, preferably in the range of 1 to 60% by mass, and more preferably in the range of 10 to 50% by mass.
  • the positive electrode active material layer may further contain at least one of a conductive auxiliary agent and a binder in addition to the positive electrode active material and the solid electrolyte described above.
  • the conductive auxiliary agent examples include metals such as aluminum, stainless steel (SUS), silver, gold, copper, and titanium, alloys or metal oxides containing these metals; carbon fibers (specifically, vapor-grown carbon fibers). (VGCF), polyacrylonitrile-based carbon fiber, pitch-based carbon fiber, rayon-based carbon fiber, activated carbon fiber, etc.), carbon nanotube (CNT), carbon black (specifically, acetylene black, Ketjen black (registered trademark)) , Furness black, channel black, thermal lamp black, etc.), but is not limited to these. Further, a particulate ceramic material or a resin material coated with the above metal material by plating or the like can also be used as a conductive auxiliary agent.
  • metals such as aluminum, stainless steel (SUS), silver, gold, copper, and titanium, alloys or metal oxides containing these metals
  • carbon fibers specifically, vapor-grown carbon fibers). (VGCF), polyacrylonitrile-based carbon fiber, pitch-based carbon fiber, rayon
  • these conductive auxiliaries from the viewpoint of electrical stability, it is preferable to contain at least one selected from the group consisting of aluminum, stainless steel, silver, gold, copper, titanium, and carbon, and aluminum, stainless steel. It is more preferable to contain at least one selected from the group consisting of silver, gold, and carbon, and it is further preferable to contain at least one carbon. Only one kind of these conductive auxiliaries may be used alone, or two or more kinds thereof may be used in combination.
  • the shape of the conductive auxiliary agent is preferably particulate or fibrous.
  • the shape of the particles is not particularly limited, and may be any shape such as powder, sphere, rod, needle, plate, columnar, indefinite, flint, and spindle. It doesn't matter.
  • the average particle size (primary particle size) when the conductive auxiliary agent is in the form of particles is not particularly limited, but is preferably 0.01 to 10 ⁇ m from the viewpoint of the electrical characteristics of the battery.
  • the “particle size of the conductive auxiliary agent” means the maximum distance L among the distances between any two points on the contour line of the conductive auxiliary agent.
  • the particle size of the particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The value calculated as the average value of is adopted.
  • the content of the conductive auxiliary agent in the positive electrode active material layer is not particularly limited, but is preferably 0 to 10% by mass with respect to the total mass of the positive electrode active material layer. , More preferably 2 to 8% by mass, and even more preferably 4 to 7% by mass. Within such a range, a stronger electron conduction path can be formed in the positive electrode active material layer, which can effectively contribute to the improvement of battery characteristics.
  • the binder is not particularly limited, and is, for example, polybutylene terephthalate, polyethylene terephthalate, polyvinylidene fluoride (PVDF) (including a compound in which a hydrogen atom is replaced with another halogen element), polyethylene, polypropylene, polymethyl.
  • PVDF polyvinylidene fluoride
  • the thickness of the positive electrode active material layer varies depending on the configuration of the target all-solid-state battery, but is preferably in the range of 0.1 to 1000 ⁇ m, for example.
  • the method for producing the positive electrode active material layer is not particularly limited. Conventionally known methods can be referred to as appropriate.
  • the negative electrode active material layer contains a negative electrode active material.
  • the type of the negative electrode active material is not particularly limited, and examples thereof include a carbon material, a metal oxide, and a metal active material.
  • the carbon material include natural graphite, artificial graphite, mesocarbon microbeads (MCMB), highly oriented graphite (HOPG), hard carbon, soft carbon and the like.
  • the metal oxide include Nb 2 O 5 and Li 4 Ti 5 O 12 .
  • a silicon-based negative electrode active material or a tin-based negative electrode active material may be used.
  • silicon and tin belong to Group 14 elements and are known to be negative electrode active materials that can greatly improve the capacity of a non-aqueous electrolyte secondary battery. Since these simple substances can occlude and release a large number of charge carriers (lithium ions, etc.) per unit volume (mass), they are high-capacity negative electrode active materials.
  • Si alone as the silicon-based negative electrode active material.
  • a silicon oxide such as SiO x (0.3 ⁇ x ⁇ 1.6) disproportionated into two phases, a Si phase and a silicon oxide phase.
  • the range of x is more preferably 0.5 ⁇ x ⁇ 1.5, and even more preferably 0.7 ⁇ x ⁇ 1.2.
  • a silicon-containing alloy silicon-containing alloy-based negative electrode active material
  • examples of the negative electrode active material containing a tin element include Sn alone, tin alloys (Cu—Sn alloy, Co—Sn alloy), amorphous tin oxide, tin silicon oxide and the like.
  • SnB 0.4 P 0.6 O 3.1 is exemplified as the amorphous tin oxide.
  • SnSiO 3 is exemplified as the tin silicon oxide.
  • a metal containing lithium may be used as the negative electrode active material.
  • a negative electrode active material is not particularly limited as long as it is a lithium-containing active material, and examples thereof include metallic lithium and lithium-containing alloys.
  • the lithium-containing alloy include alloys of Li and at least one of In, Al, Si and Sn.
  • two or more kinds of negative electrode active materials may be used in combination.
  • a negative electrode active material other than the above may be used.
  • the present invention exerts a particularly excellent effect when the expansion and contraction of the negative electrode active material during charging and discharging is large.
  • the negative electrode active material preferably contains metallic lithium, a silicon-based negative electrode active material, or a tin-based negative electrode active material, and particularly preferably contains metallic lithium. Further, from the viewpoint of obtaining a battery having a high energy density, it is preferable to use an all-solid-state battery having metallic lithium as a negative electrode active material.
  • the shape of the negative electrode active material examples include a particle shape (spherical shape, fibrous shape), a thin film shape, and the like.
  • its average particle size (D 50 ) is preferably in the range of, for example, 1 nm to 100 ⁇ m, more preferably in the range of 10 nm to 50 ⁇ m, and further preferably in the range of 100 nm. It is in the range of ⁇ 20 ⁇ m, and particularly preferably in the range of 1 to 20 ⁇ m.
  • the value of the average particle size (D 50 ) of the active material can be measured by the laser diffraction / scattering method.
  • the content of the negative electrode active material in the negative electrode active material layer is not particularly limited, but is, for example, in the range of 0 to 100% by mass, preferably in the range of 0 to 99% by mass, and is preferably 50. More preferably, it is in the range of ⁇ 90% by mass.
  • the negative electrode active material layer may further contain a solid electrolyte, a conductive auxiliary agent and / or a binder as well as the positive electrode active material layer.
  • Solid electrolyte layer is a layer interposed between the positive electrode active material layer and the negative electrode active material layer, and contains a solid electrolyte (usually as a main component). Since the specific form of the solid electrolyte contained in the solid electrolyte layer is the same as that described above, detailed description thereof will be omitted here.
  • the content of the solid electrolyte in the solid electrolyte layer is preferably in the range of, for example, 10 to 100% by mass, and more preferably in the range of 50 to 100% by mass, based on the total mass of the solid electrolyte layer. It is preferably in the range of 90 to 100% by mass, and more preferably in the range of 90 to 100% by mass.
  • the solid electrolyte layer may further contain a binder in addition to the above-mentioned solid electrolyte. Since the specific form of the binder that can be contained in the solid electrolyte layer is the same as that described above, detailed description thereof will be omitted here.
  • the thickness of the solid electrolyte layer varies depending on the configuration of the target all-solid-state battery, but is preferably in the range of 0.1 to 1000 ⁇ m, and more preferably in the range of 0.1 to 300 ⁇ m. preferable.
  • the material constituting the current collector plates (25, 27) is not particularly limited, and a known highly conductive material conventionally used as a current collector plate for a secondary battery can be used.
  • a known highly conductive material conventionally used as a current collector plate for a secondary battery can be used.
  • the constituent material of the current collector plate for example, metal materials such as aluminum, carbon-coated aluminum, copper, titanium, nickel, stainless steel (SUS), and alloys thereof are preferable. From the viewpoint of light weight, corrosion resistance, and high conductivity, aluminum and copper are more preferable, and aluminum is particularly preferable.
  • the same material may be used or different materials may be used for the positive electrode current collector plate 25 and the negative electrode current collector plate 27.
  • the current collector 11 and the current collector plates (25, 27) may be electrically connected via a positive electrode lead or a negative electrode lead.
  • materials used in known lithium ion secondary batteries can be similarly adopted.
  • the part taken out from the exterior is heat-shrinkable with heat-resistant insulation so that it does not come into contact with peripheral devices or wiring and leak electricity, affecting the product (for example, automobile parts, especially electronic devices). It is preferable to cover with a tube or the like.
  • the battery exterior As the battery exterior, a known metal can case can be used, or a bag-shaped case using a laminated film 29 containing aluminum, which can cover the power generation element as shown in FIG. 2, can be used.
  • the laminate film for example, a laminate film having a three-layer structure in which PP, aluminum, and nylon are laminated in this order can be used, but the laminate film is not limited thereto.
  • a laminated film is desirable from the viewpoint of high output and excellent cooling performance, and can be suitably used for batteries for large devices for EVs and HEVs. Further, since the group pressure applied to the power generation element from the outside can be easily adjusted, a laminated film containing aluminum is more preferable for the exterior body.
  • the all-solid-state lithium-ion secondary battery of this embodiment has an excellent output characteristic at a high rate because it has a configuration in which a plurality of single battery layers are connected in series. Therefore, the all-solid-state lithium-ion secondary battery of this embodiment is suitably used as a power source for driving EVs and HEVs.
  • FIG. 4 is a perspective view showing the appearance of a laminated all-solid-state lithium ion secondary battery according to an embodiment of the present invention.
  • the flat laminated secondary battery 50 has a rectangular flat shape, and positive electrode tabs 58 and negative electrode tabs 59 for extracting electric power are pulled out from both side portions thereof.
  • the power generation element 57 is wrapped by the battery exterior (laminate film 52) of the laminated secondary battery 50, and the periphery thereof is heat-sealed.
  • the power generation element 57 pulls out the positive electrode tab 58 and the negative electrode tab 59 to the outside. It is sealed in a closed state.
  • the power generation element 57 corresponds to the power generation element 21 of the laminated secondary battery 10a shown in FIG. 2 described above.
  • the power generation element 57 is formed by stacking a plurality of single battery layers (single cells) 19 composed of a positive electrode (positive electrode active material layer) 13, an electrolyte layer 17, and a negative electrode (negative electrode active material layer) 15.
  • the all-solid-state battery of this embodiment is not limited to a flat shape.
  • the wound all-solid-state battery may have a cylindrical shape, or may be deformed into a rectangular flat shape.
  • the cylindrical shape is not particularly limited, for example, a laminated film may be used for the exterior body, or a conventional cylindrical can (metal can) may be used.
  • the power generation element is exteriorized with an aluminum laminate film. By this form, weight reduction can be achieved.
  • the extraction of tabs 58 and 59 shown in FIG. 4 is not particularly limited.
  • the positive electrode tab 58 and the negative electrode tab 59 may be pulled out from the same side, or the positive electrode tab 58 and the negative electrode tab 59 may be divided into a plurality of each and taken out from each side. It is not limited to.
  • the terminal in the winding type all-solid-state battery, the terminal may be formed by using, for example, a cylindrical can (metal can) instead of the tab.
  • the positive electrode active material of the present invention can be applied to a lithium ion secondary battery other than the all-solid-state battery without limitation.
  • An assembled battery is formed by connecting a plurality of batteries. More specifically, it is composed of serialization, parallelization, or both by using at least two or more. By connecting in series or in parallel, the capacitance and voltage can be adjusted freely.
  • a small assembled battery that can be attached and detached by connecting multiple batteries in series or in parallel. Then, by connecting a plurality of small detachable batteries in series or in parallel, a large capacity and a large capacity suitable for a vehicle driving power source or an auxiliary power source that require a high volume energy density and a high volume output density. It is also possible to form an assembled battery having an output. How many batteries are connected to make an assembled battery, and how many stages of small assembled batteries are stacked to make a large-capacity assembled battery depends on the battery capacity of the vehicle (electric vehicle) to be installed. It may be decided according to the output.
  • the all-solid-state battery according to this embodiment has a high energy density per volume.
  • Vehicle applications such as electric vehicles, hybrid electric vehicles, fuel cell vehicles, and hybrid fuel cell vehicles are required to have higher capacity and larger size than those used for electric and portable electronic devices. Therefore, the all-solid-state battery according to the present embodiment can be suitably used as a power source for a vehicle, for example, a vehicle drive power source or an auxiliary power source.
  • a battery or an assembled battery formed by combining a plurality of these batteries can be mounted on the vehicle.
  • a plug-in hybrid electric vehicle having a long EV mileage and an electric vehicle having a long one-charge mileage can be configured by mounting such a battery.
  • fuel cell vehicles, electric vehicles (all four-wheeled vehicles (passenger cars, trucks, commercial vehicles such as buses, light vehicles, etc.)) Including two-wheeled vehicles (motorcycles) and three-wheeled vehicles), it is possible to make an automobile with a long mileage.
  • the application is not limited to automobiles, and can be applied to various power sources of other vehicles, for example, moving objects such as trains, and power supplies for mounting such as uninterruptible power supplies. It is also possible to use it as.
  • Example 1 ⁇ Raw materials and reagents used> In the following examples and comparative examples, the following materials were used.
  • a Raman spectrophotometer (Laser Raman spectrophotometer NRS-5600 manufactured by Nippon Spectroscopy Co., Ltd.) was used for the Raman spectrum of polycarbon sulfide.
  • the excitation wavelength was 532 nm, and data in the range of Raman shift 2000 to 200 cm -1 was acquired.
  • a SUS cylindrical convex punch (10 mm diameter) is inserted into one side of a McCall cylindrical tube jig (tube inner diameter 10 mm, outer diameter 23 mm, height 20 mm), and the solid prepared above from the upper side of the cylindrical tube jig. 80 mg of electrolyte was added. After that, another SUS cylindrical convex punch is inserted to sandwich the solid electrolyte, and the solid electrolyte layer having a diameter of 10 mm and a thickness of about 0.6 mm is formed into a cylinder by pressing with a hydraulic press at a pressure of 75 MPa for 3 minutes. Formed in a tube jig.
  • the cylindrical convex punch inserted from the upper side is once pulled out, 7.5 mg of the positive electrode mixture is put on one side of the solid electrolyte layer in the cylindrical tube, and the cylindrical convex punch (also serves as the positive electrode current collector) is again inserted from the upper side. ) was inserted and pressed at a pressure of 300 MPa for 3 minutes to form a positive electrode active material layer (positive electrode mixture layer) having a diameter of 10 mm and a thickness of about 0.06 mm on one side surface of the solid electrolyte layer.
  • the lower cylindrical convex punch (which also serves as the negative electrode current collector) is extracted, and the lithium foil punched to a diameter of 8 mm and the indium foil punched to a diameter of 9 mm are used as the negative electrode so that the lithium foil is on the negative electrode current collector side.
  • a cylindrical convex punch was inserted again from the lower side of the cylindrical tube jig, and pressed at a pressure of 75 MPa for 3 minutes to form a lithium-indium negative electrode.
  • an all-solid-state lithium-ion battery in which a negative electrode current collector, a lithium-indium negative electrode, a solid electrolyte layer, a polycarbon sulfide positive electrode active material layer, and a positive electrode current collector are laminated was produced.
  • Example 2 The synthesized polycarbon sulfide was heat-treated at 130 ° C. for 4 hours under a reduced pressure of 5 Pa or less in an argon atmosphere having a dew point of ⁇ 76 ° C. or lower.
  • the ratio of the height B of the peak at around 980 ⁇ 1000 cm -1 of the main peak in the vicinity of 1430 ⁇ 1450 cm -1 Raman shift relative to the height A from the Raman spectra of polysulfides carbon after heat treatment (B / A) is 0. It was 48.
  • Example 3 The synthesized polycarbon sulfide was heat-treated at 130 ° C. for 4 hours under atmospheric pressure in an argon atmosphere with a dew point of ⁇ 76 ° C. or lower.
  • the ratio of the height B of the peak at around 980 ⁇ 1000 cm -1 to the height A of the main peak around 1430 ⁇ 1450 cm -1 of Raman shift in the Raman spectrum of the polysulfide carbon after heat treatment (B / A) is 0. It was 30.
  • constant current discharge is performed at a current density of 0.1 mA / cm 2 to a cell voltage of 0.6 V, followed by the same current density.
  • the 2.0 V constant current constant voltage charge was set to a cutoff current of 0.01 mA / cm 2.
  • the capacity value (mAh / g) per polycarbon sulfide mass was determined from the charge / discharge capacity value obtained after repeating this conditioning charge / discharge cycle 10 times and the mass value of polycarbon sulfide contained in the positive electrode.
  • the rate characteristics were charged at 25 ° C. with a cutoff current of 0.01C at a constant current of 0.2C-2.0V, and then discharged at a constant current of 0.6V with a cutoff voltage at each predetermined discharge rate. It was evaluated by the discharge capacity value obtained at times.
  • FIG. 5 shows the Raman spectrum of the positive electrode active material prepared in Examples 1, 3 and Comparative Example 1
  • FIG. 6 shows the rate characteristics of the batteries prepared in each Example and Comparative Example.
  • the discharge rate characteristic (%) shows the ratio (%) of the discharge capacities of 0.1C, 0.2C, 0.5C, and 1C to the 0.05C discharge capacity.
  • Table 1 shows the B / A of the Raman spectrum of the positive electrode active material prepared in each Example and Comparative Example, the mass ratio of carbon and sulfur, the total mass ratio of carbon and hydrogen, and the rate characteristics of the battery. ..
  • the discharge rate characteristic (%) shows the value (%) of the 1C discharge capacity with respect to the 0.05C discharge capacity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention provides a means for achieving a high-capacity, high-output lithium ion secondary battery that has excellent rate characteristics and high charge/discharge cycle durability. The present invention is a lithium ion secondary battery positive electrode active material that contains at least carbon and sulfur. The ratio B/A of the height B of a peak that is at a Raman shift of 980–1000 cm-1 on a Raman spectrum for the lithium ion secondary battery positive electrode active material to the height A of a main peak that is at 1430–1450 cm-1 is at least 0.3.

Description

リチウムイオン二次電池用正極活物質Positive electrode active material for lithium ion secondary batteries
 本発明は、リチウムイオン二次電池用正極活物質に関する。 The present invention relates to a positive electrode active material for a lithium ion secondary battery.
 近年、地球温暖化に対処するため、二酸化炭素排出量の低減が切に望まれている。自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に期待が集まっており、これらの実用化の鍵を握るモータ駆動用二次電池などの非水電解質二次電池の開発が盛んに行われている。 In recent years, there is an urgent need to reduce carbon dioxide emissions in order to deal with global warming. In the automobile industry, expectations are high for the reduction of carbon dioxide emissions by introducing electric vehicles (EVs) and hybrid electric vehicles (HEVs), and non-water batteries such as secondary batteries for driving motors, which hold the key to their practical application. The development of secondary electrolyte batteries is being actively carried out.
 モータ駆動用二次電池としては、携帯電話やノートパソコン等に使用される民生用リチウムイオン二次電池と比較して極めて高い出力特性、および高いエネルギーを有することが求められている。したがって、現実的な全ての電池の中で最も高い理論エネルギーを有するリチウムイオン二次電池が注目を集めており、現在急速に開発が進められている。 The secondary battery for driving the motor is required to have extremely high output characteristics and high energy as compared with the consumer lithium ion secondary battery used for mobile phones, notebook computers, and the like. Therefore, the lithium-ion secondary battery, which has the highest theoretical energy among all realistic batteries, is attracting attention and is currently being rapidly developed.
 ここで、現在一般に普及しているリチウムイオン二次電池は、電解質に可燃性の有機電解液を用いている。このような液系リチウムイオン二次電池では、液漏れ、短絡、過充電などに対する安全対策が他の電池よりも厳しく求められる。 Here, the lithium ion secondary battery currently widely used uses a flammable organic electrolyte as an electrolyte. In such a liquid-based lithium-ion secondary battery, safety measures against liquid leakage, short circuit, overcharge, etc. are required more strictly than other batteries.
 そこで近年、電解質に酸化物系や硫化物系の固体電解質を用いた全固体リチウムイオン二次電池に関する研究開発が盛んに行われている。固体電解質は、固体中でイオン伝導が可能なイオン伝導体を主体として構成される材料である。このため、全固体リチウムイオン二次電池においては、従来の液系リチウムイオン二次電池のように可燃性の有機電解液に起因する各種問題が原理的に発生しない。また一般に、高電位・大容量の正極材料、大容量の負極材料を用いると電池の出力密度およびエネルギー密度の大幅な向上が図れる。正極活物質として単体硫黄(S)や硫化物系材料を用いた全固体リチウムイオン二次電池は、その有望な候補である。 Therefore, in recent years, research and development on an all-solid-state lithium-ion secondary battery using an oxide-based or sulfide-based solid electrolyte as the electrolyte has been actively carried out. The solid electrolyte is a material composed mainly of an ionic conductor capable of conducting ions in a solid. Therefore, in the all-solid-state lithium ion secondary battery, various problems caused by the flammable organic electrolytic solution do not occur in principle unlike the conventional liquid-based lithium ion secondary battery. Further, in general, when a high potential / large capacity positive electrode material and a large capacity negative electrode material are used, the output density and energy density of the battery can be significantly improved. An all-solid-state lithium-ion secondary battery using elemental sulfur (S) or a sulfide-based material as the positive electrode active material is a promising candidate.
 なかでも、炭素と硫黄とを主な構成元素とするポリ硫化炭素などの有機硫黄化合物は、高いエネルギー密度を有することから注目されている。例えば、特開2002−154815号公報には、正極活物質としてポリ硫化炭素を用いたリチウムイオン二次電池が記載されている。特開2002−154815号公報は、高容量化のためにポリ硫化炭素の硫黄含有率を高くすると電池の充放電サイクル寿命が短くなるという課題に対して、所定のラマンスペクトルを示すポリ硫化炭素を用いることを提案している。すなわち、特開2002−154815号公報に記載のポリ硫化炭素は、ラマンスペクトルの400~525cm−1の領域に存在するピークがジスルフィド結合(S−S結合)に帰属される490cm−1付近の1つのピークのみである。これにより、当該領域にポリスルフィド結合が多く存在することを示す複数のピークを示す材料と比較して、充放電時に分解して寿命低下の原因となるポリスルフィド化合物やポリスルフィド結合の割合が少なく、充放電サイクル寿命が向上しうるとされている。 Among them, organic sulfur compounds such as polycarbon sulfide containing carbon and sulfur as main constituent elements are attracting attention because they have a high energy density. For example, Japanese Patent Application Laid-Open No. 2002-154815 describes a lithium ion secondary battery using polycarbon sulfide as a positive electrode active material. Japanese Patent Application Laid-Open No. 2002-154815 describes polycarbon sulfide showing a predetermined Raman spectrum in response to the problem that the charge / discharge cycle life of a battery is shortened when the sulfur content of polycarbon sulfide is increased in order to increase the capacity. We are proposing to use it. That is, in the polycarbon sulfide described in JP-A-2002-154815, the peak existing in the region of 400 to 525 cm -1 of the Raman spectrum is assigned to a disulfide bond (SS bond) around 490 cm -1. There is only one peak. As a result, the proportion of polysulfide compounds and polysulfide bonds that decompose during charging and discharging and cause a decrease in life is smaller than that of materials showing multiple peaks indicating that many polysulfide bonds are present in the region, and charging and discharging are performed. It is said that the cycle life can be improved.
 しかしながら、本発明者らの検討によれば、特開2002−154815号公報に記載されるポリ硫化炭素を正極活物質として全固体電池に適用した場合、高い可逆容量および高い充放電特性が得られるが、レート特性が著しく低くなる場合があることが判明した。 However, according to the studies by the present inventors, when polycarbon sulfide described in JP-A-2002-154815 is applied to an all-solid-state battery as a positive electrode active material, high reversible capacity and high charge / discharge characteristics can be obtained. However, it has been found that the rate characteristics may be significantly reduced.
 そこで本発明は、高容量で充放電サイクル耐久性が高く、レート特性に優れた高出力のリチウムイオン二次電池を達成しうる手段を提供することを目的とする。 Therefore, an object of the present invention is to provide a means capable of achieving a high output lithium ion secondary battery having a high capacity, high charge / discharge cycle durability, and excellent rate characteristics.
 本発明者らは、上記課題を解決すべく鋭意検討を行った。その結果、ラマンスペクトルにおいてC=C結合に帰属される1430~1450cm−1のメインピークの高さAに対する=C−S結合に帰属される980~1000cm−1のピークの高さBの割合を一定以上とすることで、上記課題が解決されることを見出し、本発明を完成させるに至った。 The present inventors have made diligent studies to solve the above problems. As a result, the ratio of height B of the peak of 980 ~ 1000 cm -1 attributed to the = C-S bond with respect to the height A of the main peak of 1430 ~ 1450 cm -1 attributed to the C = C bond in the Raman spectrum It has been found that the above-mentioned problems can be solved by setting the temperature above a certain level, and the present invention has been completed.
 すなわち、本発明は、少なくとも炭素と硫黄とを含有し、ラマンスペクトルにおいて、ラマンシフトの1430~1450cm−1に存在するメインピークの高さAに対する980~1000cm−1に存在するピークの高さBの比B/Aが0.3以上である、リチウムイオン二次電池用正極活物質である。 That is, the present invention contains at least carbon and sulfur, in the Raman spectrum, the height of the peaks present in 980 ~ 1000 cm -1 of the main peak existing on the 1430 ~ 1450 cm -1 Raman shift relative to height A B It is a positive electrode active material for a lithium ion secondary battery having a ratio B / A of 0.3 or more.
(a)本発明の正極活物質および(b)従来の正極活物質の推定構造を示す図である。It is a figure which shows (a) the positive electrode active material of this invention, and (b) the estimated structure of the conventional positive electrode active material. 本発明の一実施形態である積層型の全固体リチウムイオン二次電池を模式的に表した断面図である。It is sectional drawing which represented typically the laminated type all-solid-state lithium ion secondary battery which is one Embodiment of this invention. 本発明の一実施形態である双極型の全固体リチウムイオン二次電池を模式的に表した断面図である。It is sectional drawing which represented typically the bipolar type all-solid-state lithium ion secondary battery which is one Embodiment of this invention. 本発明の一実施形態に係る積層型の全固体リチウムイオン二次電池の外観を表した斜視図である。It is a perspective view which showed the appearance of the laminated type all-solid-state lithium ion secondary battery which concerns on one Embodiment of this invention. 実施例1、3および比較例2で作製したポリ硫化炭素のラマンスペクトルを示す図である。It is a figure which shows the Raman spectrum of the polycarbon sulfide prepared in Example 1, 3 and Comparative Example 2. 実施例1~3、比較例1~3で作製したリチウムイオン二次電池のレート特性を示すグラフである。3 is a graph showing the rate characteristics of the lithium ion secondary batteries produced in Examples 1 to 3 and Comparative Examples 1 to 3.
 本発明の一形態は、少なくとも炭素と硫黄とを含有し、ラマンスペクトルにおいて、ラマンシフトの1430~1450cm−1に存在するメインピークの高さAに対する980~1000cm−1に存在するピークの高さBの比B/Aが0.3以上である、リチウムイオン二次電池用正極活物質である。 One form of the present invention contains at least carbon and sulfur, in the Raman spectrum, the height of the peaks present in 980 ~ 1000 cm -1 of the main peak existing on the 1430 ~ 1450 cm -1 Raman shift relative to height A It is a positive electrode active material for a lithium ion secondary battery having a ratio B / A of B of 0.3 or more.
 本発明によれば、炭素と硫黄とを含有する正極活物質を用いることで高容量で充放電サイクル耐久性が高い電池が得られうる。また、硫黄と炭素とを含有する正極活物質において、=C−S結合に帰属されるラマンシフトの980~1000cm−1のピークの高さBの割合を一定以上とすることで、電極反応活性の高い=C−S結合の硫黄原子の割合の高い正極活物質となる。その結果、電池のレート特性が向上しうる。 According to the present invention, a battery having a high capacity and high charge / discharge cycle durability can be obtained by using a positive electrode active material containing carbon and sulfur. Further, in the positive electrode active material containing sulfur and carbon, the electrode reaction activity is set by setting the ratio of the peak height B of 980 to 1000 cm -1 of the Raman shift attributed to the CS bond to a certain value or more. High = Positive electrode active material with a high proportion of sulfur atoms in the CS bond. As a result, the rate characteristics of the battery can be improved.
 炭素と硫黄とを主な構成元素とする有機硫黄化合物は、高容量であり、単体硫黄よりも可逆性が高いことから、リチウムイオン二次電池の高容量化を達成しうる正極活物質として注目されている。 Organosulfur compounds containing carbon and sulfur as the main constituent elements have a high capacity and are more reversible than elemental sulfur, so they are attracting attention as positive electrode active materials that can achieve high capacity of lithium ion secondary batteries. Has been done.
 しかしながら、前記有機硫黄化合物は得られる化合物の硫黄含有量を制御することが難しく、生成した化合物には低分子量または高分子量のポリスルフィド化合物が混在する場合があった。高容量化のために硫黄含有量を高くすると前記ポリスルフィド化合物の割合が多くなるが、このポリスルフィド化合物の充放電時の分解などにより電池のサイクル耐久性が低下する問題があった。これに対して、上記の特開2002−154815号公報に記載された技術ではポリスルフィド結合の割合を少なくすることで寿命が改善している。しかしながら、特開2002−154815号公報に記載されるようなポリ硫化炭素を全固体電池に適用すると、レート特性が十分に得られない。 However, it is difficult to control the sulfur content of the obtained compound in the organic sulfur compound, and the produced compound may contain a low molecular weight or high molecular weight polysulfide compound. When the sulfur content is increased in order to increase the capacity, the proportion of the polysulfide compound increases, but there is a problem that the cycle durability of the battery is lowered due to decomposition of the polysulfide compound during charging and discharging. On the other hand, in the technique described in JP-A-2002-154815, the life is improved by reducing the proportion of polysulfide bonds. However, when polycarbon sulfide as described in JP-A-2002-154815 is applied to an all-solid-state battery, sufficient rate characteristics cannot be obtained.
 これに対して、本発明者らは、炭素と硫黄とを含む正極活物質のラマンスペクトルにおいて、ラマンシフトの1430~1450cm−1に存在するメインピークの高さAに対する980~1000cm−1のピークの高さBの割合を一定以上とすることで、上記課題が解決されることを見出した。 In contrast, the present inventors have found that in the Raman spectrum of the cathode active material containing carbon and sulfur, the peak of 980 ~ 1000 cm -1 of the main peak existing on the 1430 ~ 1450 cm -1 Raman shift relative to height A It was found that the above-mentioned problems can be solved by setting the ratio of the height B of the above to a certain level or more.
 ここで、ラマンシフトの1430~1450cm−1に存在するメインピークはC=C結合に由来するピークであり、ラマンシフトの980~1000cm−1に存在するピークは=C−S結合に由来するピークである。 Here, the main peak existing on the 1430 ~ 1450 cm -1 of Raman shift is a peak derived from C = C bond, a peak derived from the peak present in the 980 ~ 1000 cm -1 Raman shift = C-S bond Is.
 本発明の正極活物質は、溶媒に不溶で、また、分析手段が限られるため明らかではないが、図1(a)に示されるような構造のポリ硫化炭素であるものと考えられる。本発明の正極活物質では、=C−S結合の割合が一定以上である。すなわち、ポリ硫化炭素に含まれる=C−S結合の硫黄原子、すなわちsp炭素に結合した硫黄原子の割合が従来のポリ硫化炭素に比べて高い。sp炭素に結合した硫黄原子は電極反応活性が高い(高活性硫黄)と考えられるため、=C−S結合を多く含むポリ硫化炭素である本発明の正極活物質は、従来のポリ硫化炭素と比較して電極反応活性が高い。したがって、優れたレート特性が得られるものと考えられる。 The positive electrode active material of the present invention is considered to be a polycarbon sulfide having a structure as shown in FIG. 1A, although it is not clear because it is insoluble in a solvent and analysis means are limited. In the positive electrode active material of the present invention, the ratio of = CS bond is above a certain level. In other words, included in the polysulfide carbon = C-S bond of the sulfur atom, i.e. the ratio of sulfur atoms bonded to sp 2 carbon is higher than the conventional polysulfide carbon. Since the sulfur atom bonded to sp 2 carbon is considered to electrode reaction activity is high (high activity sulfur) = positive electrode active material of the present invention which is a C-S containing more binding polysulfide carbon, conventional polysulfide carbon The electrode reaction activity is high as compared with. Therefore, it is considered that excellent rate characteristics can be obtained.
 一方、図1(b)のように、=C−S結合が相対的に少ないポリ硫化水素では、低活性硫黄である−C−S結合の硫黄原子(sp炭素に結合した硫黄原子)の割合が多く、高活性硫黄の割合が少ない。その結果、電極反応活性が低くなり、全固体電池において十分なレート特性が得られにくいものと考えられる。 On the other hand, as shown in FIG. 1 (b), = a C-S bond is relatively small poly hydrogen sulfide, which is a low active sulfur -C-S bond of the sulfur atom (sp 3 sulfur atoms bonded to carbon) High proportion, low proportion of highly active sulfur. As a result, the electrode reaction activity becomes low, and it is considered that it is difficult to obtain sufficient rate characteristics in the all-solid-state battery.
 以下、図面を参照しながら、本形態を説明するが、本発明の技術的範囲は特許請求の範囲の記載に基づいて定められるべきであり、以下の形態のみに制限されない。なお、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, this embodiment will be described with reference to the drawings, but the technical scope of the present invention should be determined based on the description of the scope of claims, and is not limited to the following embodiments. The dimensional ratios in the drawings are exaggerated for convenience of explanation and may differ from the actual ratios.
 図2は、本発明の一実施形態である積層型(内部並列接続タイプ)の全固体リチウムイオン二次電池(以下、単に「積層型二次電池」とも称する)の全体構造を模式的に表した断面図である。図2に示す積層型二次電池10aは、実際に充放電反応が進行する略矩形の発電要素21が、電池外装体であるラミネートフィルム29の内部に封止された構造を有する。 FIG. 2 schematically shows the overall structure of a laminated (internal parallel connection type) all-solid-state lithium-ion secondary battery (hereinafter, also simply referred to as “laminated secondary battery”) according to an embodiment of the present invention. It is a cross-sectional view. The laminated secondary battery 10a shown in FIG. 2 has a structure in which a substantially rectangular power generation element 21 in which a charge / discharge reaction actually proceeds is sealed inside a laminated film 29 which is a battery exterior.
 図2に示すように、本形態の積層型二次電池10aの発電要素21は、正極集電体11’の両面に正極活物質層13が配置された正極と、固体電解質層17と、負極集電体11’’の両面に負極活物質層15が配置された負極とを積層した構成を有している。具体的には、1つの正極活物質層13とこれに隣接する負極活物質層15とが、固体電解質層17を介して対向するようにして、正極、固体電解質層および負極がこの順に積層されている。これにより、隣接する正極、固体電解質層、および負極は、1つの単電池層19を構成する。したがって、図2に示す積層型二次電池10aは、単電池層19が複数積層されることで、電気的に並列接続されてなる構成を有するともいえる。なお、発電要素21の両最外層に位置する最外層の正極集電体には、いずれも片面のみに正極活物質層13が配置されているが、両面に活物質層が設けられてもよい。すなわち、片面にのみ活物質層を設けた最外層専用の集電体とするのではなく、両面に活物質層がある集電体をそのまま最外層の集電体として用いてもよい。また、図2とは正極および負極の配置を逆にすることで、発電要素21の両最外層に最外層の負極集電体が位置するようにし、該最外層の負極集電体の片面又は両面に負極活物質層が配置されるようにしてもよい。 As shown in FIG. 2, the power generation element 21 of the laminated secondary battery 10a of the present embodiment includes a positive electrode in which positive electrode active material layers 13 are arranged on both sides of a positive electrode current collector 11', a solid electrolyte layer 17, and a negative electrode. It has a structure in which a negative electrode in which a negative electrode active material layer 15 is arranged is laminated on both sides of a current collector 11 ″. Specifically, the positive electrode, the solid electrolyte layer, and the negative electrode are laminated in this order so that one positive electrode active material layer 13 and the negative electrode active material layer 15 adjacent thereto face each other via the solid electrolyte layer 17. ing. As a result, the adjacent positive electrode, solid electrolyte layer, and negative electrode form one cell cell layer 19. Therefore, it can be said that the laminated secondary battery 10a shown in FIG. 2 has a configuration in which a plurality of single battery layers 19 are laminated and electrically connected in parallel. The positive electrode current collectors in the outermost layers located in both outermost layers of the power generation element 21 have the positive electrode active material layer 13 arranged on only one side, but active material layers may be provided on both sides. .. That is, instead of using a current collector dedicated to the outermost layer in which the active material layer is provided on only one side, a current collector having active material layers on both sides may be used as it is as the current collector in the outermost layer. Further, by reversing the arrangement of the positive electrode and the negative electrode as in FIG. 2, the negative electrode current collector of the outermost layer is located on both outermost layers of the power generation element 21, and one side of the negative electrode current collector of the outermost layer or Negative electrode active material layers may be arranged on both sides.
 正極集電体11’および負極集電体11’’には、各電極(正極および負極)と導通される正極集電板25および負極集電板27がそれぞれ取り付けられ、ラミネートフィルム29の端部に挟まれるようにしてラミネートフィルム29の外部に導出される構造を有している。正極集電板25および負極集電板27は、それぞれ必要に応じて正極端子リードおよび負極端子リード(図示せず)を介して、各電極の正極集電体11’および負極集電体11’’に超音波溶接や抵抗溶接等により取り付けられていてもよい。 A positive electrode current collector plate 25 and a negative electrode current collector plate 27 that are conductive to each electrode (positive electrode and negative electrode) are attached to the positive electrode current collector 11'and the negative electrode current collector 11', respectively, and the end portion of the laminate film 29 is attached. It has a structure that is led out to the outside of the laminated film 29 so as to be sandwiched between the two. The positive electrode current collector plate 25 and the negative electrode current collector plate 27 are connected to the positive electrode current collector 11'and the negative electrode current collector 11'of each electrode via the positive electrode terminal lead and the negative electrode terminal lead (not shown), respectively, as necessary. It may be attached to'by ultrasonic welding, resistance welding, or the like.
 なお、上記の説明では、積層型(内部並列接続タイプ)の全固体リチウムイオン二次電池を例に挙げて全固体電池の一実施形態を説明した。しかしながら、本発明が適用可能な全固体電池の種類は特に制限されず、集電体の一方の面に電気的に結合した正極活物質層と、集電体の反対側の面に電気的に結合した負極活物質層とを有する双極型電極を含む、双極型(バイポーラ型)の全固体電池にも適用可能である。 In the above description, one embodiment of the all-solid-state battery has been described by taking a laminated type (internal parallel connection type) all-solid-state lithium-ion secondary battery as an example. However, the type of all-solid-state battery to which the present invention can be applied is not particularly limited, and the positive electrode active material layer electrically bonded to one surface of the current collector and the opposite surface of the current collector are electrically connected. It is also applicable to a bipolar (bipolar) all-solid-state battery including a bipolar electrode having a coupled negative electrode active material layer.
 図3は、本発明の一実施形態に係る双極型(バイポーラ型)の全固体リチウムイオン二次電池(以下、単に「双極型二次電池」とも称する)を模式的に表した断面図である。図3に示す双極型二次電池10bは、実際に充放電反応が進行する略矩形の発電要素21が、電池外装体であるラミネートフィルム29の内部に封止された構造を有する。 FIG. 3 is a sectional view schematically showing a bipolar type (bipolar type) all-solid-state lithium ion secondary battery (hereinafter, also simply referred to as “bipolar type secondary battery”) according to an embodiment of the present invention. .. The bipolar secondary battery 10b shown in FIG. 3 has a structure in which a substantially rectangular power generation element 21 in which a charge / discharge reaction actually proceeds is sealed inside a laminated film 29 which is a battery exterior.
 図3に示すように、本形態の双極型二次電池10bの発電要素21は、集電体11の一方の面に電気的に結合した正極活物質層13が形成され、集電体11の反対側の面に電気的に結合した負極活物質層15が形成された複数の双極型電極23を有する。各双極型電極23は、固体電解質層17を介して積層されて発電要素21を形成する。なお、固体電解質層17は、固体電解質が層状に成形されてなる構成を有する。この際、一の双極型電極23の正極活物質層13と前記一の双極型電極23に隣接する他の双極型電極23の負極活物質層15とが固体電解質層17を介して向き合うように、各双極型電極23および固体電解質層17が交互に積層されている。すなわち、一の双極型電極23の正極活物質層13と前記一の双極型電極23に隣接する他の双極型電極23の負極活物質層15との間に固体電解質層17が挟まれて配置されている。 As shown in FIG. 3, in the power generation element 21 of the bipolar secondary battery 10b of the present embodiment, a positive electrode active material layer 13 electrically bonded to one surface of the current collector 11 is formed, and the current collector 11 has a positive electrode active material layer 13. It has a plurality of bipolar electrodes 23 having an electrically coupled negative electrode active material layer 15 formed on the opposite surface. Each bipolar electrode 23 is laminated via a solid electrolyte layer 17 to form a power generation element 21. The solid electrolyte layer 17 has a structure in which the solid electrolyte is formed into layers. At this time, the positive electrode active material layer 13 of the one bipolar electrode 23 and the negative electrode active material layer 15 of the other bipolar electrode 23 adjacent to the one bipolar electrode 23 face each other via the solid electrolyte layer 17. , The bipolar electrodes 23 and the solid electrolyte layer 17 are alternately laminated. That is, the solid electrolyte layer 17 is sandwiched between the positive electrode active material layer 13 of the one bipolar electrode 23 and the negative electrode active material layer 15 of the other bipolar electrode 23 adjacent to the one bipolar electrode 23. Has been done.
 隣接する正極活物質層13、固体電解質層17、および負極活物質層15は、一つの単電池層19を構成する。したがって、双極型二次電池10bは、単電池層19が積層されてなる構成を有するともいえる。なお、発電要素21の最外層に位置する正極側の最外層集電体11aには、片面のみに正極活物質層13が形成されている。また、発電要素21の最外層に位置する負極側の最外層集電体11bには、片面のみに負極活物質層15が形成されている。 The adjacent positive electrode active material layer 13, the solid electrolyte layer 17, and the negative electrode active material layer 15 constitute one cell cell layer 19. Therefore, it can be said that the bipolar secondary battery 10b has a configuration in which the cell cell layers 19 are laminated. The positive electrode active material layer 13 is formed on only one side of the outermost layer current collector 11a on the positive electrode side located in the outermost layer of the power generation element 21. Further, the negative electrode active material layer 15 is formed on only one side of the outermost layer current collector 11b on the negative electrode side located in the outermost layer of the power generation element 21.
 さらに、図3に示す双極型二次電池10bでは、正極側の最外層集電体11aに隣接するように正極集電板(正極タブ)25が配置され、これが延長されて電池外装体であるラミネートフィルム29から導出している。一方、負極側の最外層集電体11bに隣接するように負極集電板(負極タブ)27が配置され、同様にこれが延長されてラミネートフィルム29から導出している。 Further, in the bipolar secondary battery 10b shown in FIG. 3, a positive electrode current collector plate (positive electrode tab) 25 is arranged so as to be adjacent to the outermost layer current collector 11a on the positive electrode side, and this is extended to form a battery exterior. It is derived from the laminated film 29. On the other hand, the negative electrode current collector plate (negative electrode tab) 27 is arranged so as to be adjacent to the outermost layer current collector 11b on the negative electrode side, and is similarly extended and led out from the laminated film 29.
 なお、単電池層19の積層回数は、所望する電圧に応じて調節する。また、双極型二次電池10bでは、電池の厚みを極力薄くしても十分な出力が確保できれば、単電池層19の積層回数を少なくしてもよい。双極型二次電池10bでも、使用する際の外部からの衝撃、環境劣化を防止するために、発電要素21を電池外装体であるラミネートフィルム29に減圧封入し、正極集電板25および負極集電板27をラミネートフィルム29の外部に取り出した構造とするのがよい。 The number of times the cell cell layer 19 is laminated is adjusted according to the desired voltage. Further, in the bipolar type secondary battery 10b, the number of times the cell cell layer 19 is laminated may be reduced as long as a sufficient output can be secured even if the thickness of the battery is made as thin as possible. Even in the bipolar secondary battery 10b, in order to prevent external impact and environmental deterioration during use, the power generation element 21 is vacuum-sealed in the laminated film 29 which is the battery exterior, and the positive electrode current collector plate 25 and the negative electrode current collector are collected. It is preferable to have a structure in which the electric plate 27 is taken out from the laminated film 29.
 以下、全固体電池の主な構成要素について説明する。 The main components of the all-solid-state battery will be described below.
 [集電体]
 集電体は、正極活物質層と接する一方の面から、負極活物質層と接する他方の面へと電子の移動を媒介する機能を有する。集電体を構成する材料に特に制限はない。集電体の構成材料としては、例えば、金属や、導電性を有する樹脂が採用されうる。
[Current collector]
The current collector has a function of mediating the movement of electrons from one surface in contact with the positive electrode active material layer to the other surface in contact with the negative electrode active material layer. There are no particular restrictions on the materials that make up the current collector. As a constituent material of the current collector, for example, a metal or a resin having conductivity can be adopted.
 具体的には、金属としては、アルミニウム、ニッケル、鉄、ステンレス、チタン、銅などが挙げられる。これらのほか、ニッケルとアルミニウムとのクラッド材、銅とアルミニウムとのクラッド材などが用いられてもよい。また、金属表面にアルミニウムが被覆されてなる箔であってもよい。なかでも、電子伝導性や電池作動電位、集電体へのスパッタリングによる負極活物質の密着性等の観点からは、アルミニウム、ステンレス、銅、ニッケルが好ましい。 Specifically, examples of the metal include aluminum, nickel, iron, stainless steel, titanium, and copper. In addition to these, a clad material of nickel and aluminum, a clad material of copper and aluminum, and the like may be used. Further, the foil may be a metal surface coated with aluminum. Of these, aluminum, stainless steel, copper, and nickel are preferable from the viewpoints of electron conductivity, battery operating potential, adhesion of the negative electrode active material by sputtering to the current collector, and the like.
 また、後者の導電性を有する樹脂としては、非導電性高分子材料に必要に応じて導電性フィラーが添加された樹脂が挙げられる。 Further, as the latter resin having conductivity, a resin in which a conductive filler is added to a non-conductive polymer material as needed can be mentioned.
 非導電性高分子材料としては、例えば、ポリエチレン(PE;高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)など)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアミド(PA)、ポリテトラフルオロエチレン(PTFE)、スチレン−ブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVdF)、またはポリスチレン(PS)などが挙げられる。かような非導電性高分子材料は、優れた耐電位性または耐溶媒性を有しうる。 Examples of the non-conductive polymer material include polyethylene (PE; high density polyethylene (HDPE), low density polyethylene (LDPE), etc.), polypropylene (PP), polyethylene terephthalate (PET), polyether nitrile (PEN), and polyimide. (PI), Polyethyleneimide (PAI), Polyethylene (PA), Polytetrafluoroethylene (PTFE), Styrene-butadiene rubber (SBR), Polyacrylonitrile (PAN), Polymethylacrylate (PMA), Polymethylmethacrylate (PMMA) , Polyvinyl chloride (PVC), polyvinylidene fluoride (PVdF), polystyrene (PS) and the like. Such non-conductive polymer materials can have excellent potential resistance or solvent resistance.
 上記の導電性高分子材料または非導電性高分子材料には、必要に応じて導電性フィラーが添加されうる。特に、集電体の基材となる樹脂が非導電性高分子のみからなる場合は、樹脂に導電性を付与するために必然的に導電性フィラーが必須となる。 A conductive filler may be added to the above-mentioned conductive polymer material or non-conductive polymer material as needed. In particular, when the resin used as the base material of the current collector is composed of only a non-conductive polymer, a conductive filler is inevitably indispensable in order to impart conductivity to the resin.
 導電性フィラーは、導電性を有する物質であれば特に制限なく用いることができる。例えば、導電性、耐電位性、またはリチウムイオン遮断性に優れた材料として、金属および導電性カーボンなどが挙げられる。金属としては、特に制限はないが、Ni、Ti、Al、Cu、Pt、Fe、Cr、Sn、Zn、In、およびSbからなる群から選択される少なくとも1種の金属もしくはこれらの金属を含む合金または金属酸化物を含むことが好ましい。また、導電性カーボンとしては、特に制限はない。好ましくは、アセチレンブラック、バルカン(登録商標)、ブラックパール(登録商標)、カーボンナノファイバー、ケッチェンブラック(登録商標)、カーボンナノチューブ、カーボンナノホーン、カーボンナノバルーン、およびフラーレンからなる群より選択される少なくとも1種を含むものである。 The conductive filler can be used without particular limitation as long as it is a conductive substance. For example, materials having excellent conductivity, potential resistance, or lithium ion blocking property include metals and conductive carbon. The metal is not particularly limited, and includes at least one metal selected from the group consisting of Ni, Ti, Al, Cu, Pt, Fe, Cr, Sn, Zn, In, and Sb, or at least one of these metals. It preferably contains an alloy or metal oxide. Further, the conductive carbon is not particularly limited. Preferably, it is selected from the group consisting of acetylene black, vulcan (registered trademark), black pearl (registered trademark), carbon nanofiber, Ketjen black (registered trademark), carbon nanotube, carbon nanohorn, carbon nanoballoon, and fullerene. It contains at least one species.
 導電性フィラーの添加量は、集電体に十分な導電性を付与できる量であれば特に制限はなく、一般的には、集電体の全質量100質量%に対して5~80質量%である。 The amount of the conductive filler added is not particularly limited as long as it can impart sufficient conductivity to the current collector, and is generally 5 to 80% by mass with respect to 100% by mass of the total mass of the current collector. Is.
 なお、集電体は、単独の材料からなる単層構造であってもよいし、あるいは、これらの材料からなる層を適宜組み合わせた積層構造であっても構わない。集電体の軽量化の観点からは、少なくとも導電性を有する樹脂からなる導電性樹脂層を含むことが好ましい。また、単電池層間のリチウムイオンの移動を遮断する観点からは、集電体の一部に金属層を設けてもよい。 The current collector may have a single-layer structure made of a single material, or may have a laminated structure in which layers made of these materials are appropriately combined. From the viewpoint of reducing the weight of the current collector, it is preferable to include a conductive resin layer made of at least a conductive resin. Further, from the viewpoint of blocking the movement of lithium ions between the cell layers, a metal layer may be provided as a part of the current collector.
 [正極活物質層]
 正極活物質層は、正極活物質を含む。本実施形態の電池においては、正極活物質は、本発明の所定の正極活物質を含む。
[Positive electrode active material layer]
The positive electrode active material layer contains a positive electrode active material. In the battery of the present embodiment, the positive electrode active material includes the predetermined positive electrode active material of the present invention.
 本発明に係る正極活物質は、少なくとも炭素と硫黄とを含有し、ラマンスペクトルにおいて、ラマンシフトの1430~1450cm−1に存在するメインピークの高さAに対する980~1000cm−1に存在するピークの高さBの比B/Aが0.3以上である、リチウムイオン二次電池用正極活物質である。 Positive electrode active material according to the present invention contains at least carbon and sulfur, in the Raman spectrum, the peaks present in 980 ~ 1000 cm -1 of the main peak existing on the 1430 ~ 1450 cm -1 Raman shift relative to height A It is a positive electrode active material for a lithium ion secondary battery having a height B ratio B / A of 0.3 or more.
 本発明の正極活物質は、炭素および硫黄を主な構成元素とすることが好ましい。好ましくは、炭素および硫黄の質量比率の合計が90質量%以上であり、より好ましくは95質量%以上であり、さらに好ましくは96質量%以上であり、さらにより好ましくは97質量%以上である。上記範囲とすることで、高いエネルギー密度が得られうる。また、炭素および硫黄以外の元素が含まれることによる硫黄のレドックス活性の低下を抑制することができるため、高いレート特性が得られうる。 The positive electrode active material of the present invention preferably contains carbon and sulfur as main constituent elements. Preferably, the total mass ratio of carbon and sulfur is 90% by mass or more, more preferably 95% by mass or more, still more preferably 96% by mass or more, and even more preferably 97% by mass or more. Within the above range, a high energy density can be obtained. In addition, since it is possible to suppress a decrease in the redox activity of sulfur due to the inclusion of elements other than carbon and sulfur, high rate characteristics can be obtained.
 また、本発明の正極活物質は、硫黄の質量比率が65質量%以上であることが好ましく、67質量%以上であることが好ましく、70質量%以上であることが好ましい。上記範囲とすることで、高いエネルギー密度が得られうる。また、炭素および硫黄以外の元素が含まれることによる硫黄のレドックス活性の低下を抑制することができるため、高いレート特性が得られうる。 Further, the positive electrode active material of the present invention preferably has a sulfur mass ratio of 65% by mass or more, preferably 67% by mass or more, and preferably 70% by mass or more. Within the above range, a high energy density can be obtained. In addition, since it is possible to suppress a decrease in the redox activity of sulfur due to the inclusion of elements other than carbon and sulfur, high rate characteristics can be obtained.
 炭素と硫黄との組成比(原子比)は特に制限されないが、1≦S/C(原子比)≦1.5であることが好ましい。S/C(原子比)が1以上であれば、活物質質量あたりの容量が高くなるため好ましい。また、1.5以下であれば、ポリスルフィド結合(−S−S−S−)が相対的に少なくなるためレート特性およびサイクル耐久性が向上しうるため好ましい。 The composition ratio (atomic ratio) of carbon and sulfur is not particularly limited, but it is preferably 1 ≦ S / C (atomic ratio) ≦ 1.5. When the S / C (atomic ratio) is 1 or more, the capacity per mass of the active material is high, which is preferable. Further, when it is 1.5 or less, the polysulfide bond (-S-S-S-) is relatively small, so that the rate characteristics and the cycle durability can be improved, which is preferable.
 なお、正極活物質中の炭素および硫黄の質量比率は実施例に記載の方法で求めることができる。また、当該質量比率から炭素と硫黄との原子比を求めることができる。 The mass ratio of carbon and sulfur in the positive electrode active material can be obtained by the method described in Examples. In addition, the atomic ratio of carbon and sulfur can be obtained from the mass ratio.
 本発明の正極活物質は、ラマンスペクトルにおいて、ラマンシフトの1430~1450cm−1に存在するメインピークの高さAに対する980~1000cm−1に存在するピークの高さBの比B/Aが0.3以上である。B/Aが0.3未満であるとレート特性が不十分になる。好ましくは、B/Aは0.48以上であり、さらに好ましくは0.61以上である。上記範囲であれば本発明の効果がより一層向上しうる。B/Aの上限値は特に制限されないが、例えば、1以下である。 The positive electrode active material of the present invention, in the Raman spectrum, the ratio B / A of the height B of the peaks present in 980 ~ 1000 cm -1 of the main peak to the height A present 1430 ~ 1450 cm -1 Raman shift 0 .3 or more. If the B / A is less than 0.3, the rate characteristics become insufficient. B / A is preferably 0.48 or more, and more preferably 0.61 or more. Within the above range, the effect of the present invention can be further improved. The upper limit of B / A is not particularly limited, but is, for example, 1 or less.
 なお、正極活物質のB/A比は実施例に記載の方法で求めることができる。 The B / A ratio of the positive electrode active material can be obtained by the method described in the examples.
 正極活物質の形状は特に制限されず、例えば、粒子状(球状、繊維状)、薄膜状等が挙げられる。正極活物質が粒子形状である場合、その平均粒径も特に制限されない。 The shape of the positive electrode active material is not particularly limited, and examples thereof include a particle shape (spherical shape, a fibrous shape), a thin film shape, and the like. When the positive electrode active material has a particle shape, its average particle size is not particularly limited.
 炭素および硫黄を含み、所定のラマンスペクトルを有する本発明の正極活物質の調製方法は特に制限されない。例えば、二硫化炭素の電解還元重合によってポリ硫化炭素を合成し、合成したポリ硫化炭素を加熱処理する方法が挙げられる。 The method for preparing the positive electrode active material of the present invention containing carbon and sulfur and having a predetermined Raman spectrum is not particularly limited. For example, a method of synthesizing polycarbon sulfide by electrolytic reduction polymerization of carbon disulfide and heat-treating the synthesized polycarbon sulfide can be mentioned.
 (ポリ硫化炭素の合成)
 二硫化炭素(CS)の電解還元重合は、例えば、CS、支持電解質を溶媒に溶解させて混合して得られた溶液を用いて行うことができる。溶液に白金などの電極を用いて電圧を印加することによりCSが還元されてCSカルベン(:CS)が生成し、これにより重合が開始するものと考えられる。
(Synthesis of polycarbon sulfide)
The electrolytic reduction polymerization of carbon disulfide (CS 2 ) can be carried out, for example, by using a solution obtained by dissolving CS 2 or a supporting electrolyte in a solvent and mixing them. It is considered that when a voltage is applied to the solution using an electrode such as platinum, CS 2 is reduced to generate CS carbene (: CS), which initiates polymerization.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 溶液中のCS濃度は特に制限されないが、使用する溶媒、支持電解質の組み合わせによって、CSが溶解可能な範囲で飽和に近い濃度にすることが望ましい。 The concentration of CS 2 in the solution is not particularly limited, but it is desirable that the concentration is close to saturation within the range in which CS 2 can be dissolved, depending on the combination of the solvent and supporting electrolyte used.
 支持電解質としては特に制限されないが、例えば、過塩素酸テトラブチルアンモニウムなどが用いられうる。溶液中の支持電解質濃度は特に制限されないが、好ましくは0.05~0.5Mであり、さらに好ましくは0.1~0.3Mである。上記範囲であれば重合反応が好適に進行しうる。 The supporting electrolyte is not particularly limited, but for example, tetrabutylammonium perchlorate or the like can be used. The concentration of the supporting electrolyte in the solution is not particularly limited, but is preferably 0.05 to 0.5 M, and more preferably 0.1 to 0.3 M. Within the above range, the polymerization reaction can proceed favorably.
 溶媒としては、例えば、アセトニトリル、N,N−ジメチルホルムアミド、ヘキサメチルリン酸トリアミド、N−メチルピロリドン、テトラヒドロフラン、酢酸エチル、アセトン、ジメチルスルホキシド、炭酸プロピレンなどが用いられうる。 As the solvent, for example, acetonitrile, N, N-dimethylformamide, hexamethylphosphoric acid triamide, N-methylpyrrolidone, tetrahydrofuran, ethyl acetate, acetone, dimethyl sulfoxide, propylene carbonate and the like can be used.
 印加電圧は特に制限されないが、好ましくは3~6Vであり、さらに好ましくは4~5Vである。3V以上であると重合が好適に進行しうる。6V以下であるとガス発生による電解効率の低下が生じにくいため、重合が好適に進行しうる。 The applied voltage is not particularly limited, but is preferably 3 to 6 V, and more preferably 4 to 5 V. When the voltage is 3 V or higher, the polymerization can proceed favorably. When the voltage is 6 V or less, the electrolytic efficiency is unlikely to decrease due to gas generation, so that the polymerization can proceed favorably.
 電解還元重合の反応時間についても特に制限されず、適宜調整されうる。 The reaction time of electrolytic reduction polymerization is not particularly limited and can be adjusted as appropriate.
 (合成したポリ硫化炭素の加熱処理)
 合成したポリ硫化炭素は加熱処理を行うことが好ましい。これにより低分子量成分を除去し、活性硫黄の割合を高めることができる。
(Heat treatment of synthesized polycarbon sulfide)
The synthesized polycarbon sulfide is preferably heat-treated. This makes it possible to remove low molecular weight components and increase the proportion of active sulfur.
 前記加熱処理は、減圧下、または不活性ガス雰囲気下で行うことが好ましい。不活性ガス雰囲気下で行う場合、好ましくは露点−30℃以下であり、さらに好ましくは露点−40℃以下である。このようにすることで、合成したポリ硫化炭素の脱水を十分に行うことができる。これにより、正極合剤を作製したときに固体電解質と水分が反応することによる正極合剤中の固体電解質の劣化を防止することができる。 The heat treatment is preferably carried out under reduced pressure or under an inert gas atmosphere. When the operation is carried out in an inert gas atmosphere, the dew point is preferably −30 ° C. or lower, and more preferably the dew point is −40 ° C. or lower. By doing so, the synthesized polycarbon sulfide can be sufficiently dehydrated. This makes it possible to prevent deterioration of the solid electrolyte in the positive electrode mixture due to the reaction between the solid electrolyte and water when the positive electrode mixture is produced.
 熱処理温度は、好ましくは80~250℃であり、さらに好ましくは80~200℃であり、さらにより好ましくは130~200℃である。80℃以上であれば、電気化学的に活性な硫黄を多く含む構造に変化しやすくなるため好ましい。また、250℃以下であるとポリ硫化炭素の熱分解が生じにくいため好ましい。 The heat treatment temperature is preferably 80 to 250 ° C, still more preferably 80 to 200 ° C, and even more preferably 130 to 200 ° C. If the temperature is 80 ° C. or higher, the structure is likely to change to an electrochemically active sulfur-rich structure, which is preferable. Further, when the temperature is 250 ° C. or lower, thermal decomposition of polycarbon sulfide is unlikely to occur, which is preferable.
 熱処理時間は、好ましくは0.5~12時間であり、より好ましくは2~8時間であり、さらにより好ましくは4~8時間である。0.5時間以上であれば熱処理の効果(構造変化や脱水)が十分に得られうる。12時間以下であれば熱処理時間に応じた効果が得られうるため好ましい。 The heat treatment time is preferably 0.5 to 12 hours, more preferably 2 to 8 hours, and even more preferably 4 to 8 hours. If it is 0.5 hours or more, the effect of heat treatment (structural change and dehydration) can be sufficiently obtained. If it is 12 hours or less, the effect according to the heat treatment time can be obtained, which is preferable.
 正極活物質層は、炭素および硫黄を含み、所定のラマンスペクトルを有する本発明の正極活物質以外の正極活物質(他の正極活物質を含んでもよい。 The positive electrode active material layer contains carbon and sulfur, and may contain a positive electrode active material (other positive electrode active material) other than the positive electrode active material of the present invention having a predetermined Raman spectrum.
 他の正極活物質としては、例えば、単体硫黄(S)、硫化リチウム(LiS)、上記のポリ硫化炭素以外の有機硫黄化合物または無機硫黄化合物の粒子または薄膜が挙げられ、硫黄の酸化還元反応を利用して、充電時にリチウムイオンを放出し、放電時にリチウムイオンを吸蔵することができる物質が用いられうる。 As other positive electrode active material, for example, elemental sulfur (S), lithium sulfide (Li 2 S), particles or a thin film of the organic sulfur compounds other than polysulfide carbon or inorganic sulfur compound and the like, redox sulfur A substance capable of releasing lithium ions during charging and occluding lithium ions during discharging can be used by utilizing the reaction.
 また、他の正極活物質として、硫黄を含まない正極活物質を含んでもよい。硫黄を含まない正極活物質としては、例えば、LiCoO、LiMnO、LiNiO、LiVO、Li(Ni−Mn−Co)O等の層状岩塩型活物質、LiMn、LiNi0.5Mn1.5等のスピネル型活物質、LiFePO、LiMnPO等のオリビン型活物質、LiFeSiO、LiMnSiO等のSi含有活物質等が挙げられる。また上記以外の酸化物活物質としては、例えば、LiTi12が挙げられる。 Further, as another positive electrode active material, a positive electrode active material containing no sulfur may be contained. Examples of the sulfur-free positive electrode active material include layered rock salt type active materials such as LiCoO 2 , LiMnO 2 , LiNiO 2 , LiVO 2 , and Li (Ni-Mn-Co) O 2 , LiMn 2 O 4 , LiNi 0. Examples thereof include spinel-type active materials such as 5 Mn 1.5 O 4 , olivine-type active materials such as LiFePO 4 and LiMnPO 4 , and Si-containing active materials such as Li 2 FeSiO 4 and Li 2 MnSiO 4. Examples of the oxide active material other than the above include Li 4 Ti 5 O 12 .
 この際、正極活物質の全量に対する本発明の正極活物質の含有量は、50質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることがさらにより好ましく、100質量%であることが特に好ましい。 At this time, the content of the positive electrode active material of the present invention with respect to the total amount of the positive electrode active material is preferably 50% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more. It is more preferably 95% by mass or more, and particularly preferably 100% by mass.
 正極活物質層における正極活物質の含有量は、特に限定されるものではないが、例えば、40~99質量%の範囲内であることが好ましく、50~90質量%の範囲内であることがより好ましい。 The content of the positive electrode active material in the positive electrode active material layer is not particularly limited, but is preferably in the range of 40 to 99% by mass, preferably in the range of 50 to 90% by mass, for example. More preferred.
 正極活物質層は、固体電解質をさらに含むことが好ましい。正極活物質層が固体電解質を含むことにより、正極活物質層のイオン伝導性を向上させることができる。固体電解質としては、例えば、硫化物固体電解質や酸化物固体電解質が挙げられるが、硫化物固体電解質であることが好ましい。 The positive electrode active material layer preferably further contains a solid electrolyte. Since the positive electrode active material layer contains a solid electrolyte, the ionic conductivity of the positive electrode active material layer can be improved. Examples of the solid electrolyte include sulfide solid electrolytes and oxide solid electrolytes, and sulfide solid electrolytes are preferable.
 硫化物固体電解質としては、例えば、LiI−LiS−SiS、LiI−LiS−P、LiI−LiPO−P、LiS−P、LiI−LiPS、LiI−LiBr−LiPS4、LiPS、LiS−P、LiS−P−LiI、LiS−P−LiO、LiS−P−LiO−LiI、LiS−SiS、LiS−SiS−LiI、LiS−SiS−LiBr、LiS−SiS−LiCl、LiS−SiS−B−LiI、LiS−SiS−P−LiI、LiS−B、LiS−P−Z(ただし、m、nは正の数であり、Zは、Ge、Zn、Gaのいずれかである)、LiS−GeS、LiS−SiS−LiPO、LiS−SiS−LiMO(ただし、x、yは正の数であり、Mは、P、Si、Ge、B、Al、Ga、Inのいずれかである)等が挙げられる。なお、「LiS−P」の記載は、LiSおよびPを含む原料組成物を用いてなる硫化物固体電解質を意味し、他の記載についても同様である。 Examples of the sulfide solid electrolyte include LiI-Li 2 S-SiS 2 , LiI-Li 2 S-P 2 O 5 , LiI-Li 3 PO 4- P 2 S 5 , Li 2 S-P 2 S 5 , LiI-Li 3 PS 4 , LiI-LiBr-Li 3 PS 4, Li 3 PS 4 , Li 2 S-P 2 S 5 , Li 2 S-P 2 S 5 -Li I, Li 2 S-P 2 S 5- Li 2 O, Li 2 S-P 2 S 5 -Li 2 O-LiI, Li 2 S-SiS 2 , Li 2 S-SiS 2- LiI, Li 2 S-SiS 2- LiBr, Li 2 S-SiS 2 -LiCl, Li 2 S-SiS 2- B 2 S 3- LiI, Li 2 S-SiS 2- P 2 S 5- LiI, Li 2 SB 2 S 3 , Li 2 SP 2 S 5- Z m S n (where m and n are positive numbers and Z is one of Ge, Zn or Ga), Li 2 S-GeS 2 , Li 2 S-SiS 2 -Li 3 PO 4 , Examples thereof include Li 2 S-SiS 2 -Li x MO y (where x and y are positive numbers, and M is any of P, Si, Ge, B, Al, Ga and In). .. The description of "Li 2 SP 2 S 5 " means a sulfide solid electrolyte made by using a raw material composition containing Li 2 S and P 2 S 5, and the same applies to other descriptions.
 硫化物固体電解質は、例えば、LiPS骨格を有していてもよく、Li骨格を有していてもよく、Li骨格を有していてもよい。LiPS骨格を有する硫化物固体電解質としては、例えば、LiI−LiPS、LiI−LiBr−LiPS4、LiPSが挙げられる。また、Li骨格を有する硫化物固体電解質としては、例えば、LPSと称されるLi−P−S系固体電解質(例えば、Li11)が挙げられる。また、硫化物固体電解質として、例えば、Li(4−x)Ge(1−x)(xは、0<x<1を満たす)で表されるLGPS等を用いてもよい。なかでも、硫化物固体電解質は、P元素を含む硫化物固体電解質であることが好ましく、硫化物固体電解質は、LiS−Pを主成分とする材料であることがより好ましい。さらに、硫化物固体電解質は、ハロゲン(F、Cl、Br、I)を含有していてもよい。 The sulfide solid electrolyte may have, for example, a Li 3 PS 4 skeleton, a Li 4 P 2 S 7 skeleton, or a Li 4 P 2 S 6 skeleton. .. Examples of the sulfide solid electrolyte having a Li 3 PS 4 skeleton include LiI-Li 3 PS 4 , LiI-LiBr-Li 3 PS 4, and Li 3 PS 4 . Further, examples of the sulfide solid electrolyte having a Li 4 P 2 S 7 skeleton include a Li-PS-based solid electrolyte called LPS (for example, Li 7 P 3 S 11 ). Further, as the sulfide solid electrolyte, for example, LGPS represented by Li (4-x) Ge (1-x) P x S 4 (x satisfies 0 <x <1) may be used. Among them, the sulfide solid electrolyte is preferably a sulfide solid electrolyte containing a P element, and the sulfide solid electrolyte is more preferably a material containing Li 2 SP 2 S 5 as a main component. Further, the sulfide solid electrolyte may contain halogens (F, Cl, Br, I).
 また、硫化物固体電解質がLiS−P系である場合、LiSおよびPの割合は、モル比で、LiS:P=50:50~100:0の範囲内であることが好ましく、なかでもLiS:P=60:40~80:20であることが好ましい。 When the sulfide solid electrolyte is a Li 2 SP 2 S 5 system, the ratio of Li 2 S and P 2 S 5 is a molar ratio of Li 2 S: P 2 S 5 = 50: 50 to 100. It is preferably in the range of: 0, and in particular, Li 2 S: P 2 S 5 = 60: 40 to 80:20.
 また、硫化物固体電解質は、硫化物ガラスであってもよく、結晶化硫化物ガラスであってもよく、固相法により得られる結晶質材料であってもよい。なお、硫化物ガラスは、例えば原料組成物に対してメカニカルミリング(ボールミル等)を行うことにより得ることができる。また、結晶化硫化物ガラスは、例えば硫化物ガラスを結晶化温度以上の温度で熱処理を行うことにより得ることができる。また、硫化物固体電解質の常温(25℃)におけるイオン伝導度(例えば、Liイオン伝導度)は、例えば、1×10−5S/cm以上であることが好ましく、1×10−4S/cm以上であることがより好ましい。なお、固体電解質のイオン伝導度の値は、交流インピーダンス法により測定することができる。 Further, the sulfide solid electrolyte may be sulfide glass, crystallized sulfide glass, or a crystalline material obtained by the solid phase method. The sulfide glass can be obtained, for example, by performing mechanical milling (ball mill or the like) on the raw material composition. Further, the crystallized sulfide glass can be obtained, for example, by heat-treating the sulfide glass at a temperature equal to or higher than the crystallization temperature. The ionic conductivity (for example, Li ion conductivity) of the sulfide solid electrolyte at room temperature (25 ° C.) is preferably 1 × 10 -5 S / cm or more , for example, 1 × 10 -4 S / cm. It is more preferably cm or more. The value of the ionic conductivity of the solid electrolyte can be measured by the AC impedance method.
 酸化物固体電解質としては、例えば、NASICON型構造を有する化合物等が挙げられる。NASICON型構造を有する化合物の一例としては、一般式Li1+xAlGe2−x(PO(0≦x≦2)で表される化合物(LAGP)、一般式Li1+xAlTi2−x(PO(0≦x≦2)で表される化合物(LATP)等が挙げられる。また、酸化物固体電解質の他の例としては、LiLaTiO(例えば、Li0.34La0.51TiO)、LiPON(例えば、Li2.9PO3.30.46)、LiLaZrO(例えば、LiLaZr12)等が挙げられる。 Examples of the oxide solid electrolyte include compounds having a NASICON type structure and the like. As an example of a compound having a NASICON type structure, a compound (LAGP) represented by the general formula Li 1 + x Al x Ge 2-x (PO 4 ) 3 (0 ≦ x ≦ 2), a general formula Li 1 + x Al x Ti 2 Examples thereof include a compound (LATP) represented by −x (PO 4 ) 3 (0 ≦ x ≦ 2). Further, as another example of the oxide solid electrolyte, LiLaTIO (for example, Li 0.34 La 0.51 TiO 3 ), LiPON (for example, Li 2.9 PO 3.3 N 0.46 ), LiLaZrO (for example, Li LaZrO). , Li 7 La 3 Zr 2 O 12 ) and the like.
 固体電解質の形状としては、例えば、真球状、楕円球状等の粒子形状、薄膜形状等が挙げられる。固体電解質が粒子形状である場合、その平均粒径(D50)は、特に限定されないが、40μm以下であることが好ましく、20μm以下であることがより好ましく、10μm以下であることがさらに好ましい。一方、平均粒径(D50)は、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。 Examples of the shape of the solid electrolyte include a particle shape such as a true spherical shape and an elliptical spherical shape, and a thin film shape. When the solid electrolyte has a particle shape, its average particle size (D 50 ) is not particularly limited, but is preferably 40 μm or less, more preferably 20 μm or less, and further preferably 10 μm or less. On the other hand, the average particle size (D 50 ) is preferably 0.01 μm or more, and more preferably 0.1 μm or more.
 正極活物質層における固体電解質の含有量は、例えば、1~60質量%の範囲内であることが好ましく、10~50質量%の範囲内であることがより好ましい。 The content of the solid electrolyte in the positive electrode active material layer is, for example, preferably in the range of 1 to 60% by mass, and more preferably in the range of 10 to 50% by mass.
 正極活物質層は、上述した正極活物質および固体電解質に加えて、導電助剤およびバインダの少なくとも1つをさらに含有していてもよい。 The positive electrode active material layer may further contain at least one of a conductive auxiliary agent and a binder in addition to the positive electrode active material and the solid electrolyte described above.
 導電助剤としては、例えば、アルミニウム、ステンレス(SUS)、銀、金、銅、チタン等の金属、これらの金属を含む合金または金属酸化物;炭素繊維(具体的には、気相成長炭素繊維(VGCF)、ポリアクリロニトリル系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維、活性炭素繊維等)、カーボンナノチューブ(CNT)、カーボンブラック(具体的には、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラック、チャンネルブラック、サーマルランプブラック等)等のカーボンが挙げられるが、これらに限定されない。また、粒子状のセラミック材料や樹脂材料の周りに上記金属材料をめっき等でコーティングしたものも導電助剤として使用できる。これらの導電助剤のなかでも、電気的安定性の観点から、アルミニウム、ステンレス、銀、金、銅、チタン、およびカーボンからなる群より選択される少なくとも1種を含むことが好ましく、アルミニウム、ステンレス、銀、金、およびカーボンからなる群より選択される少なくとも1種を含むことがより好ましく、カーボンを少なくとも1種を含むことがさらに好ましい。これらの導電助剤は、1種のみを単独で使用してもよいし、2種以上を併用しても構わない。 Examples of the conductive auxiliary agent include metals such as aluminum, stainless steel (SUS), silver, gold, copper, and titanium, alloys or metal oxides containing these metals; carbon fibers (specifically, vapor-grown carbon fibers). (VGCF), polyacrylonitrile-based carbon fiber, pitch-based carbon fiber, rayon-based carbon fiber, activated carbon fiber, etc.), carbon nanotube (CNT), carbon black (specifically, acetylene black, Ketjen black (registered trademark)) , Furness black, channel black, thermal lamp black, etc.), but is not limited to these. Further, a particulate ceramic material or a resin material coated with the above metal material by plating or the like can also be used as a conductive auxiliary agent. Among these conductive auxiliaries, from the viewpoint of electrical stability, it is preferable to contain at least one selected from the group consisting of aluminum, stainless steel, silver, gold, copper, titanium, and carbon, and aluminum, stainless steel. It is more preferable to contain at least one selected from the group consisting of silver, gold, and carbon, and it is further preferable to contain at least one carbon. Only one kind of these conductive auxiliaries may be used alone, or two or more kinds thereof may be used in combination.
 導電助剤の形状は、粒子状または繊維状であることが好ましい。導電助剤が粒子状である場合、粒子の形状は特に限定されず、粉末状、球状、棒状、針状、板状、柱状、不定形状、燐片状、紡錘状等、いずれの形状であっても構わない。 The shape of the conductive auxiliary agent is preferably particulate or fibrous. When the conductive auxiliary agent is in the form of particles, the shape of the particles is not particularly limited, and may be any shape such as powder, sphere, rod, needle, plate, columnar, indefinite, flint, and spindle. It doesn't matter.
 導電助剤が粒子状である場合の平均粒子径(一次粒子径)は、特に限定されるものではないが、電池の電気特性の観点から、0.01~10μmであることが好ましい。なお、本明細書中において、「導電助剤の粒子径」とは、導電助剤の輪郭線上の任意の2点間の距離のうち、最大の距離Lを意味する。「導電助剤の平均粒子径」の値としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。 The average particle size (primary particle size) when the conductive auxiliary agent is in the form of particles is not particularly limited, but is preferably 0.01 to 10 μm from the viewpoint of the electrical characteristics of the battery. In the present specification, the “particle size of the conductive auxiliary agent” means the maximum distance L among the distances between any two points on the contour line of the conductive auxiliary agent. As the value of the "average particle size of the conductive auxiliary agent", the particle size of the particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The value calculated as the average value of is adopted.
 正極活物質層が導電助剤を含む場合、当該正極活物質層における導電助剤の含有量は特に制限されないが、正極活物質層の合計質量に対して、好ましくは0~10質量%であり、より好ましくは2~8質量%であり、さらに好ましくは4~7質量%である。このような範囲であれば、正極活物質層においてより強固な電子伝導パスを形成することが可能となり、電池特性の向上に有効に寄与することが可能である。 When the positive electrode active material layer contains a conductive auxiliary agent, the content of the conductive auxiliary agent in the positive electrode active material layer is not particularly limited, but is preferably 0 to 10% by mass with respect to the total mass of the positive electrode active material layer. , More preferably 2 to 8% by mass, and even more preferably 4 to 7% by mass. Within such a range, a stronger electron conduction path can be formed in the positive electrode active material layer, which can effectively contribute to the improvement of battery characteristics.
 一方、バインダとしては、特に限定されないが、例えば、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフッ化ビニリデン(PVDF)(水素原子が他のハロゲン元素にて置換された化合物を含む)、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリブテン、ポリエーテルニトリル、ポリテトラフルオロエチレン、ポリアクリロニトリル、ポリイミド、ポリアミド、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル、スチレン・ブタジエンゴム(SBR)、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体およびその水素添加物、スチレン・イソプレン・スチレンブロック共重合体およびその水素添加物などの熱可塑性高分子、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ビニリデンフルオライド−ヘキサフルオロプロピレン系フッ素ゴム(VDF−HFP系フッ素ゴム)、ビニリデンフルオライド−ヘキサフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−HFP−TFE系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン系フッ素ゴム(VDF−PFP系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−PFP−TFE系フッ素ゴム)、ビニリデンフルオライド−パーフルオロメチルビニルエーテル−テトラフルオロエチレン系フッ素ゴム(VDF−PFMVE−TFE系フッ素ゴム)、ビニリデンフルオライド−クロロトリフルオロエチレン系フッ素ゴム(VDF−CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴム、エポキシ樹脂等が挙げられる。中でも、ポリイミド、スチレン・ブタジエンゴム、カルボキシメチルセルロース、ポリプロピレン、ポリテトラフルオロエチレン、ポリアクリロニトリル、ポリアミドであることがより好ましい。 On the other hand, the binder is not particularly limited, and is, for example, polybutylene terephthalate, polyethylene terephthalate, polyvinylidene fluoride (PVDF) (including a compound in which a hydrogen atom is replaced with another halogen element), polyethylene, polypropylene, polymethyl. Penten, polybutene, polyether nitrile, polytetrafluoroethylene, polyacrylonitrile, polyimide, polyamide, ethylene-vinyl acetate copolymer, polyvinyl chloride, styrene-butadiene rubber (SBR), ethylene-propylene-diene copolymer, styrene -Polypolymers such as butadiene-styrene block copolymer and its hydrogen additive, styrene-isoprene-styrene block copolymer and its hydrogen additive, tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetra Fluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), ethylene / tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE), polyfluoropolymer Fluororesin such as vinyl (PVF), vinylidene fluoride-hexafluoropropylene-based fluororubber (VDF-HFP-based fluororubber), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene-based fluororubber (VDF-HFP-TFE-based fluoropolymer) Rubber), vinylidene fluoride-pentafluoropropylene fluororubber (VDF-PFP fluororubber), vinylidene fluoride-pentafluoropropylene-tetrafluoroethylene fluororubber (VDF-PFP-TFE fluororubber), vinylidene fluoride -Perfluoromethyl Vinyl Ether-Tetrafluoroethylene Fluororesin (VDF-PFMVE-TFE Fluororubber), Vinylidene Fluoride-Chlorotrifluoroethylene Fluororesin (VDF-CTFE Fluororesin), etc. , Epoxy resin and the like. Of these, polyimide, styrene-butadiene rubber, carboxymethyl cellulose, polypropylene, polytetrafluoroethylene, polyacrylonitrile, and polyamide are more preferable.
 正極活物質層の厚さは、目的とする全固体電池の構成によっても異なるが、例えば、0.1~1000μmの範囲内であることが好ましい。 The thickness of the positive electrode active material layer varies depending on the configuration of the target all-solid-state battery, but is preferably in the range of 0.1 to 1000 μm, for example.
 正極活物質層の作製方法は特に制限されない。従来公知の方法が適宜参照されうる。 The method for producing the positive electrode active material layer is not particularly limited. Conventionally known methods can be referred to as appropriate.
 [負極活物質層]
 負極活物質層は、負極活物質を含む。負極活物質の種類としては、特に制限されないが、炭素材料、金属酸化物および金属活物質が挙げられる。炭素材料としては、例えば、天然黒鉛、人造黒鉛、メソカーボンマイクロビーズ(MCMB)、高配向性グラファイト(HOPG)、ハードカーボン、ソフトカーボン等が挙げられる。また、金属酸化物としては、例えば、Nb、LiTi12等が挙げられる。さらに、ケイ素系負極活物質やスズ系負極活物質が用いられてもよい。ここで、ケイ素およびスズは第14族元素に属し、非水電解質二次電池の容量を大きく向上させうる負極活物質であることが知られている。これらの単体は単位体積(質量)あたり多数の電荷担体(リチウムイオン等)を吸蔵および放出しうることから、高容量の負極活物質となる。ここで、ケイ素系負極活物質としては、Si単体を用いることが好ましい。また同様に、Si相とケイ素酸化物相との2相に不均化されたSiO(0.3≦x≦1.6)などのケイ素酸化物を用いることも好ましい。この際、xの範囲は0.5≦x≦1.5であることがより好ましく、0.7≦x≦1.2であることがさらに好ましい。さらには、ケイ素を含有する合金(ケイ素含有合金系負極活物質)が用いられてもよい。一方、スズ元素を含む負極活物質(スズ系負極活物質)としては、Sn単体、スズ合金(Cu−Sn合金、Co−Sn合金)、アモルファススズ酸化物、スズケイ素酸化物等が挙げられる。このうち、アモルファススズ酸化物としてはSnB0.40.63.1が例示される。また、スズケイ素酸化物としてはSnSiOが例示される。また、負極活物質として、リチウムを含有する金属を用いてもよい。このような負極活物質は、リチウムを含有する活物質であれば特に限定されず、金属リチウムのほか、リチウム含有合金が挙げられる。リチウム含有合金としては、例えば、Liと、In、Al、SiおよびSnの少なくとも1種との合金が挙げられる。場合によっては、2種以上の負極活物質が併用されてもよい。なお、上記以外の負極活物質が用いられてもよいことは勿論である。本発明は、充放電時の負極活物質の膨張収縮が大きい場合に特に優れた効果を奏するものである。このような観点と、高容量であるという点で、負極活物質は、金属リチウム、ケイ素系負極活物質またはスズ系負極活物質を含むことが好ましく、金属リチウムを含むことが特に好ましい。さらに、高エネルギー密度の電池を得る観点から、負極活物質として金属リチウムを有する全固体電池とすることが好ましい。
[Negative electrode active material layer]
The negative electrode active material layer contains a negative electrode active material. The type of the negative electrode active material is not particularly limited, and examples thereof include a carbon material, a metal oxide, and a metal active material. Examples of the carbon material include natural graphite, artificial graphite, mesocarbon microbeads (MCMB), highly oriented graphite (HOPG), hard carbon, soft carbon and the like. Examples of the metal oxide include Nb 2 O 5 and Li 4 Ti 5 O 12 . Further, a silicon-based negative electrode active material or a tin-based negative electrode active material may be used. Here, silicon and tin belong to Group 14 elements and are known to be negative electrode active materials that can greatly improve the capacity of a non-aqueous electrolyte secondary battery. Since these simple substances can occlude and release a large number of charge carriers (lithium ions, etc.) per unit volume (mass), they are high-capacity negative electrode active materials. Here, it is preferable to use Si alone as the silicon-based negative electrode active material. Similarly, it is also preferable to use a silicon oxide such as SiO x (0.3 ≦ x ≦ 1.6) disproportionated into two phases, a Si phase and a silicon oxide phase. At this time, the range of x is more preferably 0.5 ≦ x ≦ 1.5, and even more preferably 0.7 ≦ x ≦ 1.2. Further, a silicon-containing alloy (silicon-containing alloy-based negative electrode active material) may be used. On the other hand, examples of the negative electrode active material containing a tin element (tin-based negative negative active material) include Sn alone, tin alloys (Cu—Sn alloy, Co—Sn alloy), amorphous tin oxide, tin silicon oxide and the like. Of these, SnB 0.4 P 0.6 O 3.1 is exemplified as the amorphous tin oxide. Further, SnSiO 3 is exemplified as the tin silicon oxide. Further, as the negative electrode active material, a metal containing lithium may be used. Such a negative electrode active material is not particularly limited as long as it is a lithium-containing active material, and examples thereof include metallic lithium and lithium-containing alloys. Examples of the lithium-containing alloy include alloys of Li and at least one of In, Al, Si and Sn. In some cases, two or more kinds of negative electrode active materials may be used in combination. Needless to say, a negative electrode active material other than the above may be used. The present invention exerts a particularly excellent effect when the expansion and contraction of the negative electrode active material during charging and discharging is large. From such a viewpoint and a high capacity, the negative electrode active material preferably contains metallic lithium, a silicon-based negative electrode active material, or a tin-based negative electrode active material, and particularly preferably contains metallic lithium. Further, from the viewpoint of obtaining a battery having a high energy density, it is preferable to use an all-solid-state battery having metallic lithium as a negative electrode active material.
 負極活物質の形状は、例えば、粒子状(球状、繊維状)、薄膜状等が挙げられる。負極活物質が粒子形状である場合、その平均粒径(D50)は、例えば、1nm~100μmの範囲内であることが好ましく、より好ましくは10nm~50μmの範囲内であり、さらに好ましくは100nm~20μmの範囲内であり、特に好ましくは1~20μmの範囲内である。なお、本明細書において、活物質の平均粒径(D50)の値は、レーザー回折散乱法によって測定することができる。 Examples of the shape of the negative electrode active material include a particle shape (spherical shape, fibrous shape), a thin film shape, and the like. When the negative electrode active material has a particle shape, its average particle size (D 50 ) is preferably in the range of, for example, 1 nm to 100 μm, more preferably in the range of 10 nm to 50 μm, and further preferably in the range of 100 nm. It is in the range of ~ 20 μm, and particularly preferably in the range of 1 to 20 μm. In the present specification, the value of the average particle size (D 50 ) of the active material can be measured by the laser diffraction / scattering method.
 負極活物質層における負極活物質の含有量は、特に限定されるものではないが、例えば、0~100質量%の範囲内であり、0~99質量%の範囲内であることが好ましく、50~90質量%の範囲内であることがより好ましい。 The content of the negative electrode active material in the negative electrode active material layer is not particularly limited, but is, for example, in the range of 0 to 100% by mass, preferably in the range of 0 to 99% by mass, and is preferably 50. More preferably, it is in the range of ~ 90% by mass.
 負極活物質層もまた、正極活物質層と同様に固体電解質、導電助剤および/またはバインダをさらに含んでもよい。 The negative electrode active material layer may further contain a solid electrolyte, a conductive auxiliary agent and / or a binder as well as the positive electrode active material layer.
 [固体電解質層]
 固体電解質層は、正極活物質層と負極活物質層との間に介在する層であり、固体電解質を(通常は主成分として)含有する。固体電解質層に含有される固体電解質の具体的な形態については上述したものと同様であるため、ここでは詳細な説明を省略する。
[Solid electrolyte layer]
The solid electrolyte layer is a layer interposed between the positive electrode active material layer and the negative electrode active material layer, and contains a solid electrolyte (usually as a main component). Since the specific form of the solid electrolyte contained in the solid electrolyte layer is the same as that described above, detailed description thereof will be omitted here.
 固体電解質層における固体電解質の含有量は、固体電解質層の合計質量に対して、例えば、10~100質量%の範囲内であることが好ましく、50~100質量%の範囲内であることがより好ましく、90~100質量%の範囲内であることがさらに好ましい。 The content of the solid electrolyte in the solid electrolyte layer is preferably in the range of, for example, 10 to 100% by mass, and more preferably in the range of 50 to 100% by mass, based on the total mass of the solid electrolyte layer. It is preferably in the range of 90 to 100% by mass, and more preferably in the range of 90 to 100% by mass.
 固体電解質層は、上述した固体電解質に加えて、バインダをさらに含有していてもよい。固体電解質層に含有されうるバインダの具体的な形態については上述したものと同様であるため、ここでは詳細な説明を省略する。 The solid electrolyte layer may further contain a binder in addition to the above-mentioned solid electrolyte. Since the specific form of the binder that can be contained in the solid electrolyte layer is the same as that described above, detailed description thereof will be omitted here.
 固体電解質層の厚さは、目的とする全固体電池の構成によっても異なるが、例えば、0.1~1000μmの範囲内であることが好ましく、0.1~300μmの範囲内であることがより好ましい。 The thickness of the solid electrolyte layer varies depending on the configuration of the target all-solid-state battery, but is preferably in the range of 0.1 to 1000 μm, and more preferably in the range of 0.1 to 300 μm. preferable.
 [正極集電板および負極集電板]
 集電板(25、27)を構成する材料は、特に制限されず、二次電池用の集電板として従来用いられている公知の高導電性材料が用いられうる。集電板の構成材料としては、例えば、アルミニウム、カーボン被覆アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等の金属材料が好ましい。軽量、耐食性、高導電性の観点から、より好ましくはアルミニウム、銅であり、特に好ましくはアルミニウムである。なお、正極集電板25と負極集電板27とでは、同一の材料が用いられてもよいし、異なる材料が用いられてもよい。
[Positive current collector plate and negative electrode current collector plate]
The material constituting the current collector plates (25, 27) is not particularly limited, and a known highly conductive material conventionally used as a current collector plate for a secondary battery can be used. As the constituent material of the current collector plate, for example, metal materials such as aluminum, carbon-coated aluminum, copper, titanium, nickel, stainless steel (SUS), and alloys thereof are preferable. From the viewpoint of light weight, corrosion resistance, and high conductivity, aluminum and copper are more preferable, and aluminum is particularly preferable. The same material may be used or different materials may be used for the positive electrode current collector plate 25 and the negative electrode current collector plate 27.
 [正極リードおよび負極リード]
 また、図示は省略するが、集電体11と集電板(25、27)との間を正極リードや負極リードを介して電気的に接続してもよい。正極および負極リードの構成材料としては、公知のリチウムイオン二次電池において用いられる材料が同様に採用されうる。なお、外装から取り出された部分は、周辺機器や配線などに接触して漏電したりして製品(例えば、自動車部品、特に電子機器等)に影響を与えないように、耐熱絶縁性の熱収縮チューブなどにより被覆することが好ましい。
[Positive lead and negative electrode lead]
Further, although not shown, the current collector 11 and the current collector plates (25, 27) may be electrically connected via a positive electrode lead or a negative electrode lead. As the constituent materials of the positive electrode and the negative electrode leads, materials used in known lithium ion secondary batteries can be similarly adopted. The part taken out from the exterior is heat-shrinkable with heat-resistant insulation so that it does not come into contact with peripheral devices or wiring and leak electricity, affecting the product (for example, automobile parts, especially electronic devices). It is preferable to cover with a tube or the like.
 [電池外装体]
 電池外装体としては、公知の金属缶ケースを用いることができるほか、図2に示すように発電要素を覆うことができる、アルミニウムを含むラミネートフィルム29を用いた袋状のケースが用いられうる。該ラミネートフィルムには、例えば、PP、アルミニウム、ナイロンをこの順に積層してなる3層構造のラミネートフィルム等を用いることができるが、これらに何ら制限されるものではない。高出力化や冷却性能に優れ、EV、HEV用の大型機器用電池に好適に利用することができるという観点から、ラミネートフィルムが望ましい。また、外部から掛かる発電要素への群圧を容易に調整することができることから、外装体はアルミニウムを含むラミネートフィルムがより好ましい。
[Battery exterior]
As the battery exterior, a known metal can case can be used, or a bag-shaped case using a laminated film 29 containing aluminum, which can cover the power generation element as shown in FIG. 2, can be used. As the laminate film, for example, a laminate film having a three-layer structure in which PP, aluminum, and nylon are laminated in this order can be used, but the laminate film is not limited thereto. A laminated film is desirable from the viewpoint of high output and excellent cooling performance, and can be suitably used for batteries for large devices for EVs and HEVs. Further, since the group pressure applied to the power generation element from the outside can be easily adjusted, a laminated film containing aluminum is more preferable for the exterior body.
 本形態の全固体リチウムイオン二次電池は、複数の単電池層が直列に接続された構成を有することにより、高レートでの出力特性に優れるものである。したがって、本形態の全固体リチウムイオン二次電池は、EV、HEVの駆動用電源として好適に使用される。 The all-solid-state lithium-ion secondary battery of this embodiment has an excellent output characteristic at a high rate because it has a configuration in which a plurality of single battery layers are connected in series. Therefore, the all-solid-state lithium-ion secondary battery of this embodiment is suitably used as a power source for driving EVs and HEVs.
 図4は、本発明の一実施形態に係る積層型の全固体リチウムイオン二次電池の外観を表した斜視図である。 FIG. 4 is a perspective view showing the appearance of a laminated all-solid-state lithium ion secondary battery according to an embodiment of the present invention.
 図4に示すように、扁平な積層型二次電池50では、長方形状の扁平な形状を有しており、その両側部からは電力を取り出すための正極タブ58、負極タブ59が引き出されている。発電要素57は、積層型二次電池50の電池外装体(ラミネートフィルム52)によって包まれ、その周囲は熱融着されており、発電要素57は、正極タブ58および負極タブ59を外部に引き出した状態で密封されている。ここで、発電要素57は、先に説明した図2に示す積層型二次電池10aの発電要素21に相当するものである。発電要素57は、正極(正極活物質層)13、電解質層17および負極(負極活物質層)15で構成される単電池層(単セル)19が複数積層されたものである。 As shown in FIG. 4, the flat laminated secondary battery 50 has a rectangular flat shape, and positive electrode tabs 58 and negative electrode tabs 59 for extracting electric power are pulled out from both side portions thereof. There is. The power generation element 57 is wrapped by the battery exterior (laminate film 52) of the laminated secondary battery 50, and the periphery thereof is heat-sealed. The power generation element 57 pulls out the positive electrode tab 58 and the negative electrode tab 59 to the outside. It is sealed in a closed state. Here, the power generation element 57 corresponds to the power generation element 21 of the laminated secondary battery 10a shown in FIG. 2 described above. The power generation element 57 is formed by stacking a plurality of single battery layers (single cells) 19 composed of a positive electrode (positive electrode active material layer) 13, an electrolyte layer 17, and a negative electrode (negative electrode active material layer) 15.
 なお、本形態の全固体電池は、扁平な形状のものに制限されるものではない。巻回型の全固体電池では、円筒型形状のものであってもよいし、こうした円筒型形状のものを変形させて、長方形状の扁平な形状にしたようなものであってもよいなど、特に制限されるものではない。上記円筒型の形状のものでは、その外装体に、ラミネートフィルムを用いてもよいし、従来の円筒缶(金属缶)を用いてもよいなど、特に制限されるものではない。好ましくは、発電要素がアルミニウムラミネートフィルムで外装される。当該形態により、軽量化が達成されうる。 The all-solid-state battery of this embodiment is not limited to a flat shape. The wound all-solid-state battery may have a cylindrical shape, or may be deformed into a rectangular flat shape. There are no particular restrictions. The cylindrical shape is not particularly limited, for example, a laminated film may be used for the exterior body, or a conventional cylindrical can (metal can) may be used. Preferably, the power generation element is exteriorized with an aluminum laminate film. By this form, weight reduction can be achieved.
 また、図4に示すタブ58、59の取り出しに関しても、特に制限されるものではない。正極タブ58と負極タブ59とを同じ辺から引き出すようにしてもよいし、正極タブ58と負極タブ59をそれぞれ複数に分けて、各辺から取り出しようにしてもよいなど、図4に示すものに制限されるものではない。また、巻回型の全固体電池では、タブに変えて、例えば、円筒缶(金属缶)を利用して端子を形成すればよい。 Further, the extraction of tabs 58 and 59 shown in FIG. 4 is not particularly limited. The positive electrode tab 58 and the negative electrode tab 59 may be pulled out from the same side, or the positive electrode tab 58 and the negative electrode tab 59 may be divided into a plurality of each and taken out from each side. It is not limited to. Further, in the winding type all-solid-state battery, the terminal may be formed by using, for example, a cylindrical can (metal can) instead of the tab.
 以上、全固体電池を例にして本発明の実施形態を説明したが、本発明の正極活物質は全固体電池以外のリチウムイオン二次電池にも制限なく適用することができる。 Although the embodiment of the present invention has been described above by taking an all-solid-state battery as an example, the positive electrode active material of the present invention can be applied to a lithium ion secondary battery other than the all-solid-state battery without limitation.
 [組電池]
 組電池は、電池を複数個接続して構成した物である。詳しくは少なくとも2つ以上用いて、直列化あるいは並列化あるいはその両方で構成されるものである。直列、並列化することで容量および電圧を自由に調節することが可能になる。
[Battery set]
An assembled battery is formed by connecting a plurality of batteries. More specifically, it is composed of serialization, parallelization, or both by using at least two or more. By connecting in series or in parallel, the capacitance and voltage can be adjusted freely.
 電池が複数、直列にまたは並列に接続して装脱着可能な小型の組電池を形成することもできる。そして、この装脱着可能な小型の組電池をさらに複数、直列にまたは並列に接続して、高体積エネルギー密度、高体積出力密度が求められる車両駆動用電源や補助電源に適した大容量、大出力を持つ組電池を形成することもできる。何個の電池を接続して組電池を作製するか、また、何段の小型組電池を積層して大容量の組電池を作製するかは、搭載される車両(電気自動車)の電池容量や出力に応じて決めればよい。 It is also possible to form a small assembled battery that can be attached and detached by connecting multiple batteries in series or in parallel. Then, by connecting a plurality of small detachable batteries in series or in parallel, a large capacity and a large capacity suitable for a vehicle driving power source or an auxiliary power source that require a high volume energy density and a high volume output density. It is also possible to form an assembled battery having an output. How many batteries are connected to make an assembled battery, and how many stages of small assembled batteries are stacked to make a large-capacity assembled battery depends on the battery capacity of the vehicle (electric vehicle) to be installed. It may be decided according to the output.
 [車両]
 本形態に係る全固体電池は、体積あたりのエネルギー密度が高い。電気自動車やハイブリッド電気自動車や燃料電池車やハイブリッド燃料電池自動車などの車両用途においては、電気・携帯電子機器用途と比較して、高容量、大型化が求められる。したがって、本形態に係る全固体電池は、車両用の電源として、例えば、車両駆動用電源や補助電源に好適に利用することができる。
[vehicle]
The all-solid-state battery according to this embodiment has a high energy density per volume. Vehicle applications such as electric vehicles, hybrid electric vehicles, fuel cell vehicles, and hybrid fuel cell vehicles are required to have higher capacity and larger size than those used for electric and portable electronic devices. Therefore, the all-solid-state battery according to the present embodiment can be suitably used as a power source for a vehicle, for example, a vehicle drive power source or an auxiliary power source.
 具体的には、電池またはこれらを複数個組み合わせてなる組電池を車両に搭載することができる。本発明では、出力特性に優れた高容量の電池を構成できることから、こうした電池を搭載するとEV走行距離の長いプラグインハイブリッド電気自動車や、一充電走行距離の長い電気自動車を構成できる。電池またはこれらを複数個組み合わせてなる組電池を、例えば、自動車ならばハイブリット車、燃料電池車、電気自動車(いずれも四輪車(乗用車、トラック、バスなどの商用車、軽自動車など)のほか、二輪車(バイク)や三輪車を含む)に用いることにより、走行距離の長い自動車とすることができるからである。ただし、用途が自動車に限定されるわけではなく、例えば、他の車両、例えば、電車などの移動体の各種電源であっても適用は可能であるし、無停電電源装置などの載置用電源として利用することも可能である。 Specifically, a battery or an assembled battery formed by combining a plurality of these batteries can be mounted on the vehicle. In the present invention, since a high-capacity battery having excellent output characteristics can be configured, a plug-in hybrid electric vehicle having a long EV mileage and an electric vehicle having a long one-charge mileage can be configured by mounting such a battery. In addition to hybrid vehicles, fuel cell vehicles, electric vehicles (all four-wheeled vehicles (passenger cars, trucks, commercial vehicles such as buses, light vehicles, etc.)) , Including two-wheeled vehicles (motorcycles) and three-wheeled vehicles), it is possible to make an automobile with a long mileage. However, the application is not limited to automobiles, and can be applied to various power sources of other vehicles, for example, moving objects such as trains, and power supplies for mounting such as uninterruptible power supplies. It is also possible to use it as.
 以下、実施例により本発明をさらに詳細に説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。 Hereinafter, the present invention will be described in more detail with reference to Examples. However, the technical scope of the present invention is not limited to the following examples.
 [実施例1]
 <使用原材料および試薬>
 以下の実施例および比較例においては、以下の材料を使用した。
[Example 1]
<Raw materials and reagents used>
In the following examples and comparative examples, the following materials were used.
 ・ポリ硫化炭素合成用試薬
 二硫化炭素(富士フィルム和光純薬社製 特級)
 ジメチルスルホキシド(富士フィルム和光純薬社製 特級)
 過塩素酸テトラブチルアンモニウム(東京化成工業社製)
 メタノール(富士フィルム和光純薬社製 特級)
 ・導電助剤
 ケッチェンブラック(登録商標)(ライオン社製、EC600JD)
 ・負極材料
 リチウム箔(ニラコ社製、厚さ0.20mm)
 インジウム箔(ニラコ社製、厚さ0.30mm)
 ・固体電解質材料
 硫化リチウム(三津和化学薬品社製、LiS)
 五硫化二リン(Aldrich社製、P)。
・ Reagent for polycarbon sulfide synthesis Carbon disulfide (Fujifilm Wako Pure Chemical Industries, Ltd. special grade)
Dimethyl sulfoxide (special grade manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.)
Tetrabutylammonium perchlorate (manufactured by Tokyo Chemical Industry Co., Ltd.)
Methanol (special grade manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.)
-Conductive aid Ketjen Black (registered trademark) (manufactured by Lion, EC600JD)
・ Negative electrode material Lithium foil (manufactured by Niraco, thickness 0.20 mm)
Indium foil (manufactured by Niraco, thickness 0.30 mm)
・ Solid electrolyte material Lithium sulfide (Mitsuwa Chemical Co., Ltd., Li 2 S)
Phosphorus pentasulfide (Aldrich Corp., P 2 S 5).
 1.正極活物質の調製
 <ポリ硫化炭素の合成>
 ジメチルスルホキシド60mLに二硫化炭素15mLと過塩素酸テトラブチルアンモニウム5.14gとを室温で撹拌することにより十分に混合溶解させた。この混合溶液に白金製の陽極および陰極を入れ、定電圧電源により陰極−陽極間に4.5Vの電圧を印加して72時間電解を行った。電解により混合溶液中および白金板表面に生成した赤黒褐色の生成物を濾取し、メタノールで十分に洗浄した後、定温乾燥器により80℃で乾燥させ、粉末状のポリ硫化炭素を得た。
1. 1. Preparation of positive electrode active material <Synthesis of polycarbon sulfide>
15 mL of carbon disulfide and 5.14 g of tetrabutylammonium perchlorate were sufficiently mixed and dissolved in 60 mL of dimethyl sulfoxide by stirring at room temperature. A platinum anode and a cathode were placed in this mixed solution, and a voltage of 4.5 V was applied between the cathode and the anode with a constant voltage power source to perform electrolysis for 72 hours. The red-black-brown product produced in the mixed solution and on the surface of the platinum plate by electrolysis was collected by filtration, thoroughly washed with methanol, and dried at 80 ° C. with a constant temperature dryer to obtain powdered polycarbon sulfide.
 <ポリ硫化炭素の加熱処理>
 合成したポリ硫化炭素を露点−76℃以下のアルゴン雰囲気中で5Pa以下の減圧下、200℃で6時間加熱処理した。加熱処理後のポリ硫化炭素のラマンスペクトルにおいてラマンシフトの1430~1450cm−1付近のメインピークの高さAに対する980~1000cm−1付近のピークの高さBの比(B/A)は0.61であった。
<Heat treatment of polycarbon sulfide>
The synthesized polycarbon sulfide was heat-treated at 200 ° C. for 6 hours under a reduced pressure of 5 Pa or less in an argon atmosphere having a dew point of −76 ° C. or lower. The ratio of the height B of the peak at around 980 ~ 1000 cm -1 to the height A of the main peak around 1430 ~ 1450 cm -1 of Raman shift in the Raman spectrum of the polysulfide carbon after heat treatment (B / A) is 0. It was 61.
 <ポリ硫化炭素の分析方法>
 ポリ硫化炭素に含まれる硫黄および炭素の定量は燃焼赤外吸収法(株式会社堀場製作所製 炭素硫黄分析装置EMIA−Expert)を用いた。
<Analysis method of polycarbon sulfide>
The combustion infrared absorption method (HORIBA, Ltd. carbon sulfur analyzer EMIA-Expert) was used to quantify sulfur and carbon contained in polycarbon sulfide.
 ポリ硫化炭素のラマンスペクトルはラマン分光分析装置(日本分光株式会社製 レーザーラマン分光光度計NRS−5600)を用いた。励起波長は532nmとし、ラマンシフト2000~200cm−1の範囲のデータを取得した。 A Raman spectrophotometer (Laser Raman spectrophotometer NRS-5600 manufactured by Nippon Spectroscopy Co., Ltd.) was used for the Raman spectrum of polycarbon sulfide. The excitation wavelength was 532 nm, and data in the range of Raman shift 2000 to 200 cm -1 was acquired.
 ラマンスペクトルのバックグランドは直線法で差し引き、ラマンシフトの1430~1450cm−1に存在するメインピークの高さAと、980~1000cm−1に存在するピークの高さBとをそれぞれ求めた。 Background Raman spectrum subtracts a straight line method, was determined and the height A of the main peak existing on the 1430 ~ 1450 cm -1 Raman shift, the peaks present in 980 ~ 1000 cm -1 height B and, respectively.
 2.固体電解質および正極合剤の作製
 <固体電解質の作製>
 露点−76℃以下のアルゴングローブボックス内で硫化リチウム(LiS)と五硫化二リン(P)とをモル比LiS:P=75:25で合計1.8gとなるように秤取し、メノウ乳鉢で15分混合したものと4mm径のジルコニアボール162gとを容量80mlのジルコニア製ポットに入れ、遊星ボールミル(フリッチュ社製、Premium line P−7)で、470rpmで8時間処理して、固体電解質を作製した。
2. Preparation of solid electrolyte and positive electrode mixture <Production of solid electrolyte>
In an argon glove box with a dew point of -76 ° C or lower, lithium sulfide (Li 2 S) and diphosphorus sulfide (P 2 S 5 ) were mixed in a molar ratio of Li 2 S: P 2 S 5 = 75: 25, for a total of 1.8 g. Weighed in a Menou mortar for 15 minutes and 162 g of 4 mm diameter zirconia balls in a zirconia pot with a capacity of 80 ml, and put it in a planetary ball mill (Fritsch, Premium line P-7) at 470 rpm. To prepare a solid electrolyte.
 <正極合剤の調製>
 次に、露点−76℃以下のアルゴン雰囲気のグローブボックス内で、5mm径のジルコニアボール40gと上記で合成し、加熱処理して得られたポリ硫化炭素0.100gと、上記で作製した固体電解質0.080gと、ケッチェンブラック(登録商標)0.020gと、を容量45mlのジルコニア製容器に入れ、遊星ボールミル(フリッチュ社製、Premium line P−7)で370rpmで6時間処理することにより、正極合剤の粉末を得た。
<Preparation of positive electrode mixture>
Next, in a glove box having an argon atmosphere with a dew point of −76 ° C. or lower, 0.100 g of polycarbon sulfide obtained by synthesizing and heat-treating 40 g of zirconia balls having a diameter of 5 mm and the above-mentioned solid electrolyte prepared above. 0.080 g and 0.020 g of Ketjen Black (registered trademark) were placed in a zirconia container having a capacity of 45 ml and treated with a planetary ball mill (Fritsch, Premium line P-7) at 370 rpm for 6 hours. A powder of the positive electrode mixture was obtained.
 3.全固体リチウムイオン電池の作製
 <電池の作製>
 電池作製は、固体電解質の作製を行った露点−76℃以下のアルゴン雰囲気のグローブボックス内で行った。
3. 3. Manufacture of all-solid-state lithium-ion battery <Battery manufacture>
The battery was prepared in a glove box having an argon atmosphere with a dew point of −76 ° C. or lower in which the solid electrolyte was prepared.
 マコール製の円筒チューブ治具(管内径10mm、外径23mm、高さ20mm)の片側にSUS製の円筒凸型パンチ(10mm径)を挿し入れ、円筒チューブ治具の上側から上記で作製した固体電解質80mgを入れた。その後、もう1つのSUS製円筒凸型パンチを挿し入れて固体電解質を挟み込み、油圧プレスを用いて75MPaの圧力で3分間プレスすることにより直径10mm、厚さ約0.6mmの固体電解質層を円筒チューブ治具中に形成した。次に、上側から挿し入れた円筒凸型パンチを一旦抜き取り、円筒チューブ内の固体電解質層の片側面に正極合剤7.5mgを入れ、再び上側から円筒凸型パンチ(正極集電体を兼ねる)を挿し入れ、300MPaの圧力で3分間プレスすることで、直径10mm、厚さ約0.06mmの正極活物質層(正極合剤層)を固体電解質層の片側面に形成した。次に、下側の円筒凸型パンチ(負極集電体を兼ねる)を抜き取り、負極として直径8mmに打ち抜いたリチウム箔と直径9mmに打ち抜いたインジウム箔を、リチウム箔が負極集電体側になるように重ねて円筒チューブ治具の下側から入れて、再び円筒凸型パンチを挿し入れ、75MPaの圧力で3分間プレスすることでリチウム−インジウム負極を形成した。 A SUS cylindrical convex punch (10 mm diameter) is inserted into one side of a McCall cylindrical tube jig (tube inner diameter 10 mm, outer diameter 23 mm, height 20 mm), and the solid prepared above from the upper side of the cylindrical tube jig. 80 mg of electrolyte was added. After that, another SUS cylindrical convex punch is inserted to sandwich the solid electrolyte, and the solid electrolyte layer having a diameter of 10 mm and a thickness of about 0.6 mm is formed into a cylinder by pressing with a hydraulic press at a pressure of 75 MPa for 3 minutes. Formed in a tube jig. Next, the cylindrical convex punch inserted from the upper side is once pulled out, 7.5 mg of the positive electrode mixture is put on one side of the solid electrolyte layer in the cylindrical tube, and the cylindrical convex punch (also serves as the positive electrode current collector) is again inserted from the upper side. ) Was inserted and pressed at a pressure of 300 MPa for 3 minutes to form a positive electrode active material layer (positive electrode mixture layer) having a diameter of 10 mm and a thickness of about 0.06 mm on one side surface of the solid electrolyte layer. Next, the lower cylindrical convex punch (which also serves as the negative electrode current collector) is extracted, and the lithium foil punched to a diameter of 8 mm and the indium foil punched to a diameter of 9 mm are used as the negative electrode so that the lithium foil is on the negative electrode current collector side. A cylindrical convex punch was inserted again from the lower side of the cylindrical tube jig, and pressed at a pressure of 75 MPa for 3 minutes to form a lithium-indium negative electrode.
 以上のようにして、負極集電体、リチウム−インジウム負極、固体電解質層、ポリ硫化炭素正極活物質層、正極集電体が積層された全固体リチウムイオン電池を作製した。 As described above, an all-solid-state lithium-ion battery in which a negative electrode current collector, a lithium-indium negative electrode, a solid electrolyte layer, a polycarbon sulfide positive electrode active material layer, and a positive electrode current collector are laminated was produced.
 [実施例2]
 合成したポリ硫化炭素を露点−76℃以下のアルゴン雰囲気中で5Pa以下の減圧下、130℃で4時間加熱処理した。加熱処理後のポリ硫化炭素のラマンスペクトルからラマンシフトの1430~1450cm−1付近のメインピークの高さAに対する980~1000cm−1付近のピークの高さBの比(B/A)は0.48であった。
[Example 2]
The synthesized polycarbon sulfide was heat-treated at 130 ° C. for 4 hours under a reduced pressure of 5 Pa or less in an argon atmosphere having a dew point of −76 ° C. or lower. The ratio of the height B of the peak at around 980 ~ 1000 cm -1 of the main peak in the vicinity of 1430 ~ 1450 cm -1 Raman shift relative to the height A from the Raman spectra of polysulfides carbon after heat treatment (B / A) is 0. It was 48.
 上記以外は実施例1と同じ材料、組成、手順により電池を作製した。 Batteries were produced using the same materials, compositions, and procedures as in Example 1 except for the above.
 [実施例3]
 合成したポリ硫化炭素を露点−76℃以下のアルゴン雰囲気中で大気圧下、130℃で4時間加熱処理した。加熱処理後のポリ硫化炭素のラマンスペクトルにおけるラマンシフトの1430~1450cm−1付近のメインピークの高さAに対する980~1000cm−1付近のピークの高さBの比(B/A)は0.30であった。
[Example 3]
The synthesized polycarbon sulfide was heat-treated at 130 ° C. for 4 hours under atmospheric pressure in an argon atmosphere with a dew point of −76 ° C. or lower. The ratio of the height B of the peak at around 980 ~ 1000 cm -1 to the height A of the main peak around 1430 ~ 1450 cm -1 of Raman shift in the Raman spectrum of the polysulfide carbon after heat treatment (B / A) is 0. It was 30.
 上記以外は実施例1と同じ材料、組成、手順により電池を作製した。 Batteries were produced using the same materials, compositions, and procedures as in Example 1 except for the above.
 [比較例1]
 合成したポリ硫化炭素を露点−76℃以下のアルゴン雰囲気中で5Pa以下の減圧下、70℃で4時間加熱処理した。ラマンスペクトルからラマンシフトの1430~1450cm−1付近のメインピークの高さAに対する980~1000cm−1付近のピークの高さBの比(B/A)は0.11であった。
[Comparative Example 1]
The synthesized polycarbon sulfide was heat-treated at 70 ° C. for 4 hours under a reduced pressure of 5 Pa or less in an argon atmosphere having a dew point of −76 ° C. or lower. The ratio of the height B of the peak of 980 ~ 1000 cm around -1 from the Raman spectra of the main peak around 1430 ~ 1450 cm -1 Raman shift relative to the height A (B / A) was 0.11.
 上記以外は実施例1と同じ材料、組成、手順により電池を作製した。 Batteries were produced using the same materials, compositions, and procedures as in Example 1 except for the above.
 [比較例2]
 合成したポリ硫化炭素を純度99.9%以上の窒素雰囲気中で5Pa以下に減圧した状態で、70℃で4時間加熱処理した。ラマンスペクトルにおけるラマンシフトの1430~1450cm−1付近のメインピークの高さAに対する980~1000cm−1付近のピークの高さBの比(B/A)は0.07であった。
[Comparative Example 2]
The synthesized polycarbon sulfide was heat-treated at 70 ° C. for 4 hours in a state where the pressure was reduced to 5 Pa or less in a nitrogen atmosphere having a purity of 99.9% or more. The ratio of the height B of the peak at around 980 ~ 1000 cm -1 to the height A of the main peak around 1430 ~ 1450 cm -1 of Raman shift in the Raman spectrum (B / A) was 0.07.
 上記以外は実施例1と同じ材料、組成、手順により電池を作製した。 Batteries were produced using the same materials, compositions, and procedures as in Example 1 except for the above.
 [比較例3]
 合成したポリ硫化炭素を露点−40℃以下の大気圧空気中で70℃で4時間加熱処理した。ラマンスペクトルからラマンシフトの1430~1450cm−1付近のメインピークは見られたものの、980~1000cm−1付近のピークは検出することができなかった。
[Comparative Example 3]
The synthesized polycarbon sulfide was heat-treated at 70 ° C. for 4 hours in atmospheric pressure air having a dew point of −40 ° C. or lower. Although the Raman spectrum main peak around 1430 ~ 1450 cm -1 Raman shift was seen, it was not possible to detect the peak in the vicinity of 980 ~ 1000 cm -1.
 上記以外は実施例1と同じ材料、組成、手順により電池を作製した。 Batteries were produced using the same materials, compositions, and procedures as in Example 1 except for the above.
 <レート特性評価方法>
 実施例1~3および比較例1~3において作製した電池の評価は充放電試験装置(北斗電工株式会社製、HJ−SD8)を用い、25℃に設定した定温恒温槽中で行った。
<Rate characteristic evaluation method>
The evaluation of the batteries produced in Examples 1 to 3 and Comparative Examples 1 to 3 was carried out in a constant temperature and constant temperature bath set at 25 ° C. using a charge / discharge test device (HJ-SD8 manufactured by Hokuto Denko Co., Ltd.).
 恒温槽内に電池を設置し、セル温度が一定になった後、セルコンディショニングとして、0.1mA/cmの電流密度でセル電圧0.6Vまで定電流放電を行い、それに続いて同じ電流密度で2.0V定電流定電圧充電をカットオフ電流0.01mA/cmに設定して行った。このコンディショニング充放電サイクルを10回繰り返した後に得られた充放電容量値と正極に含まれるポリ硫化炭素の質量値からポリ硫化炭素質量あたりの容量値(mAh/g)を求めた。 After installing the battery in the constant temperature bath and keeping the cell temperature constant, as cell conditioning, constant current discharge is performed at a current density of 0.1 mA / cm 2 to a cell voltage of 0.6 V, followed by the same current density. The 2.0 V constant current constant voltage charge was set to a cutoff current of 0.01 mA / cm 2. The capacity value (mAh / g) per polycarbon sulfide mass was determined from the charge / discharge capacity value obtained after repeating this conditioning charge / discharge cycle 10 times and the mass value of polycarbon sulfide contained in the positive electrode.
 レート特性は同様に25℃で0.2C−2.0V定電流定電圧でカットオフ電流0.01Cの条件で充電した後に、所定の各放電レートによりカットオフ電圧0.6Vで定電流放電した時に得られる放電容量値により評価した。 Similarly, the rate characteristics were charged at 25 ° C. with a cutoff current of 0.01C at a constant current of 0.2C-2.0V, and then discharged at a constant current of 0.6V with a cutoff voltage at each predetermined discharge rate. It was evaluated by the discharge capacity value obtained at times.
 図5に、実施例1、3および比較例1で作製した正極活物質のラマンスペクトルを、図6に各実施例および比較例で作製した電池のレート特性を示す。図6において、放電レート特性(%)は、0.05C放電容量に対する0.1C、0.2C、0.5C、1Cの放電容量の割合(%)を示している。また、表1に、各実施例および比較例で作製した正極活物質のラマンスペクトルのB/A、炭素および硫黄の質量比率、炭素と水素との合計の質量比率、ならびに電池のレート特性を示す。表1中、放電レート特性(%)は0.05C放電容量に対する1C放電容量の値(%)を示す。 FIG. 5 shows the Raman spectrum of the positive electrode active material prepared in Examples 1, 3 and Comparative Example 1, and FIG. 6 shows the rate characteristics of the batteries prepared in each Example and Comparative Example. In FIG. 6, the discharge rate characteristic (%) shows the ratio (%) of the discharge capacities of 0.1C, 0.2C, 0.5C, and 1C to the 0.05C discharge capacity. Table 1 shows the B / A of the Raman spectrum of the positive electrode active material prepared in each Example and Comparative Example, the mass ratio of carbon and sulfur, the total mass ratio of carbon and hydrogen, and the rate characteristics of the battery. .. In Table 1, the discharge rate characteristic (%) shows the value (%) of the 1C discharge capacity with respect to the 0.05C discharge capacity.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1および図5、6に示す結果から、本発明に係る所定のラマンスペクトルを有する正極活物質を用いた実施例1~3のリチウムイオン二次電池は、比較例1~3の電池と比べて、高レート条件下においても放電容量が高い割合で維持されることがわかった。 From the results shown in Table 1 and FIGS. 5 and 6, the lithium ion secondary batteries of Examples 1 to 3 using the positive electrode active material having a predetermined Raman spectrum according to the present invention are compared with the batteries of Comparative Examples 1 to 3. It was found that the discharge capacity was maintained at a high rate even under high rate conditions.
10a、50 積層型二次電池、
10b 双極型二次電池、
11 集電体、
11’ 正極集電体、
11’’ 負極集電体、
11a 正極側の最外層集電体、
11b 負極側の最外層集電体、
13 正極活物質層、
15 負極活物質層、
17 電解質層、
19 単電池層、
21、57 発電要素、
23 双極型電極、
25 正極集電板(正極タブ)、
27 負極集電板(負極タブ)、
29、52 ラミネートフィルム、
31 シール部、
58 正極タブ、
59 負極タブ。
10a, 50 stacked secondary batteries,
10b bipolar secondary battery,
11 Current collector,
11'Positive current collector,
11'' Negative electrode current collector,
11a Outermost layer current collector on the positive electrode side,
11b Outermost layer current collector on the negative electrode side,
13 Positive electrode active material layer,
15 Negative electrode active material layer,
17 Electrolyte layer,
19 Single battery layer,
21,57 Power generation elements,
23 Bipolar electrode,
25 Positive electrode current collector plate (positive electrode tab),
27 Negative electrode current collector plate (negative electrode tab),
29, 52 Laminated film,
31 Seal part,
58 Positive tab,
59 Negative electrode tab.

Claims (6)

  1.  少なくとも炭素と硫黄とを含有し、ラマンスペクトルにおいて、ラマンシフトの1430~1450cm−1に存在するメインピークの高さAに対する980~1000cm−1に存在するピークの高さBの比B/Aが0.3以上である、リチウムイオン二次電池用正極活物質。 Containing at least carbon and sulfur, in the Raman spectrum, the ratio B / A of the height B of the peaks present in 980 ~ 1000 cm -1 of the main peak existing on the 1430 ~ 1450 cm -1 Raman shift relative to height A Positive electrode active material for lithium ion secondary batteries, which is 0.3 or more.
  2.  炭素および硫黄の質量比率の合計が90質量%以上である、請求項1に記載のリチウムイオン二次電池用正極活物質。 The positive electrode active material for a lithium ion secondary battery according to claim 1, wherein the total mass ratio of carbon and sulfur is 90% by mass or more.
  3.  硫黄の質量比率が65質量%以上である、請求項1または2に記載のリチウムイオン二次電池用正極活物質。 The positive electrode active material for a lithium ion secondary battery according to claim 1 or 2, wherein the mass ratio of sulfur is 65% by mass or more.
  4.  B/Aが0.48以上である、請求項1~3のいずれか1項に記載のリチウムイオン二次電池用正極活物質。 The positive electrode active material for a lithium ion secondary battery according to any one of claims 1 to 3, wherein the B / A is 0.48 or more.
  5.  請求項1~4のいずれか1項に記載の正極活物質を含む正極と、負極活物質を含む負極と、電解質と、を含むリチウムイオン二次電池。 A lithium ion secondary battery containing a positive electrode containing the positive electrode active material according to any one of claims 1 to 4, a negative electrode containing a negative electrode active material, and an electrolyte.
  6.  負極活物質として金属リチウムを有する全固体電池である、請求項5に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 5, which is an all-solid-state battery having metallic lithium as a negative electrode active material.
PCT/IB2019/001263 2019-10-09 2019-10-09 Lithium ion secondary battery positive electrode active material WO2021069951A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021550712A JP7248136B2 (en) 2019-10-09 2019-10-09 Positive electrode active material for lithium-ion secondary batteries
PCT/IB2019/001263 WO2021069951A1 (en) 2019-10-09 2019-10-09 Lithium ion secondary battery positive electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2019/001263 WO2021069951A1 (en) 2019-10-09 2019-10-09 Lithium ion secondary battery positive electrode active material

Publications (1)

Publication Number Publication Date
WO2021069951A1 true WO2021069951A1 (en) 2021-04-15

Family

ID=75437194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/001263 WO2021069951A1 (en) 2019-10-09 2019-10-09 Lithium ion secondary battery positive electrode active material

Country Status (2)

Country Link
JP (1) JP7248136B2 (en)
WO (1) WO2021069951A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002154815A (en) * 2000-02-09 2002-05-28 Hitachi Maxell Ltd Carbon polysulfide, method for manufacturing the same and nonaqueous electrolyte battery which uses the same
JP2003123758A (en) * 2001-10-16 2003-04-25 Hitachi Maxell Ltd Carbon polysulfide and nonaqueous electrolyte battery using the same
WO2011129103A1 (en) * 2010-04-16 2011-10-20 株式会社豊田自動織機 Positive electrode for lithium ion secondary battery, and lithium ion secondary battery comprising the positive electrode
WO2016159212A1 (en) * 2015-03-31 2016-10-06 国立研究開発法人産業技術総合研究所 Organic sulfur material and method for producing same
JP2017098124A (en) * 2015-11-25 2017-06-01 日本化学工業株式会社 Positive electrode active material and nonaqueous battery arranged by use thereof
JP2017095315A (en) * 2015-11-25 2017-06-01 日本化学工業株式会社 Manufacturing method of carbon sulfide polymer
JP2018055998A (en) * 2016-09-29 2018-04-05 国立研究開発法人産業技術総合研究所 Electrode slurry and method of manufacturing electrode using the same
JP2019091538A (en) * 2017-11-10 2019-06-13 住友ゴム工業株式会社 Method for manufacturing lithium ion storage device, and lithium ion storage device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002154815A (en) * 2000-02-09 2002-05-28 Hitachi Maxell Ltd Carbon polysulfide, method for manufacturing the same and nonaqueous electrolyte battery which uses the same
JP2003123758A (en) * 2001-10-16 2003-04-25 Hitachi Maxell Ltd Carbon polysulfide and nonaqueous electrolyte battery using the same
WO2011129103A1 (en) * 2010-04-16 2011-10-20 株式会社豊田自動織機 Positive electrode for lithium ion secondary battery, and lithium ion secondary battery comprising the positive electrode
WO2016159212A1 (en) * 2015-03-31 2016-10-06 国立研究開発法人産業技術総合研究所 Organic sulfur material and method for producing same
JP2017098124A (en) * 2015-11-25 2017-06-01 日本化学工業株式会社 Positive electrode active material and nonaqueous battery arranged by use thereof
JP2017095315A (en) * 2015-11-25 2017-06-01 日本化学工業株式会社 Manufacturing method of carbon sulfide polymer
JP2018055998A (en) * 2016-09-29 2018-04-05 国立研究開発法人産業技術総合研究所 Electrode slurry and method of manufacturing electrode using the same
JP2019091538A (en) * 2017-11-10 2019-06-13 住友ゴム工業株式会社 Method for manufacturing lithium ion storage device, and lithium ion storage device

Also Published As

Publication number Publication date
JPWO2021069951A1 (en) 2021-04-15
JP7248136B2 (en) 2023-03-29

Similar Documents

Publication Publication Date Title
JP5957947B2 (en) Bipolar electrode and bipolar lithium ion secondary battery using the same
WO2019163895A1 (en) Pre-doping method for negative electrode active material, production method for negative electrode, and production method for power storage device
JP7304014B2 (en) Solid electrolyte layer for all solid state lithium ion secondary battery and all solid state lithium ion secondary battery using the same
JP7206798B2 (en) Lithium ion conductive solid electrolyte and electrochemical device using the same
JP2020035634A (en) Nonaqueous electrolyte secondary battery
JP2021072262A (en) All-solid battery
CN111954952A (en) Nonaqueous electrolyte secondary battery
JP2021106095A (en) All-solid battery and manufacturing method thereof
JP2021099958A (en) All-solid-state lithium-ion secondary battery
JP2021048045A (en) All-solid battery
JP2020140950A (en) Electrode composition containing sulfur active material and electrode and battery, using the same
WO2022090757A1 (en) Positive electrode material for electrical devices, positive electrode for electrical devices using same, and electrical device
JP2022115375A (en) Positive electrode material for electrical device, and positive electrode for electrical device using the same, and electrical device
JP2021170494A (en) Secondary battery
JP7248136B2 (en) Positive electrode active material for lithium-ion secondary batteries
JP2022062519A (en) Internal resistance reducing agent for positive electrode active material layer, and electrode material for secondary batteries using the same
JP2021106094A (en) All-solid battery electrode
JP7523533B2 (en) Positive electrodes for secondary batteries
WO2023187466A1 (en) Positive electrode material and secondary battery using the same
WO2022069913A1 (en) Secondary battery
WO2023031639A1 (en) Positive electrode material for electrical device, and positive electrode for electrical device and electrical device using same
JP7296302B2 (en) All-solid battery
WO2023031638A1 (en) Positive electrode material for electric devices, and positive electrode for electric devices and electric device each using same
JP2023064496A (en) Positive electrode material and secondary battery using the same
JP2023086518A (en) Manufacturing method for all solid lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948366

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021550712

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948366

Country of ref document: EP

Kind code of ref document: A1