Nothing Special   »   [go: up one dir, main page]

WO2020261597A1 - Method for manufacturing heat exchanger - Google Patents

Method for manufacturing heat exchanger Download PDF

Info

Publication number
WO2020261597A1
WO2020261597A1 PCT/JP2019/045194 JP2019045194W WO2020261597A1 WO 2020261597 A1 WO2020261597 A1 WO 2020261597A1 JP 2019045194 W JP2019045194 W JP 2019045194W WO 2020261597 A1 WO2020261597 A1 WO 2020261597A1
Authority
WO
WIPO (PCT)
Prior art keywords
perforated pipe
lid
extruded perforated
stirring pin
aluminum alloy
Prior art date
Application number
PCT/JP2019/045194
Other languages
French (fr)
Japanese (ja)
Inventor
堀 久司
伸城 瀬尾
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Priority to CN201980097737.0A priority Critical patent/CN113993650B/en
Publication of WO2020261597A1 publication Critical patent/WO2020261597A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal

Definitions

  • the present invention relates to a method for manufacturing a heat exchanger.
  • Patent Document 1 describes a method for manufacturing a heat exchanger in which an extruded perforated pipe in which a plurality of holes are arranged side by side and a sealing body for sealing the openings of the extruded perforated pipe are joined by friction stir welding. It is disclosed.
  • FIG. 8 is a cross-sectional view showing a method of manufacturing a conventional heat exchanger.
  • an extruded perforated tube 101 made of an aluminum alloy having a plurality of fins 110 and a stepped portion 103 formed on the outer periphery of the lid 102 are butted to form a butt portion J10.
  • the butt portion J10 is subjected to friction stir welding using the rotary tool G.
  • the step portion 103 is composed of a step bottom surface 103a and a step side surface 103b.
  • the butt portion J10 is configured by abutting the end surface 101a of the extruded perforated pipe 101 and the step bottom surface 103a of the lid 102.
  • the rotation tool G includes a shoulder portion G1 and a stirring pin G2 hanging from the shoulder portion G1. In the friction stir welding step, the rotation center axis Z of the rotated stirring pin G2 is superposed on the butt portion J10 and relatively moved.
  • a relatively simple shape such as the extruded perforated pipe 101 is formed of a wrought material of a 1000 series aluminum alloy, and the lid 102 is formed of, for example, a cast material of a 4000 series aluminum alloy.
  • the lid 102 generally has a higher hardness than the extruded perforated pipe 101. Therefore, when friction stir welding is performed as shown in FIG. 8, the stirring pin G2 becomes the extruded perforated pipe 101.
  • the material resistance received from the lid 102 side is larger than the material resistance received from the side. Therefore, it becomes difficult to stir different grades in a well-balanced manner by the stirring pin G2 of the rotating tool G, and there is a problem that cavity defects occur in the plasticized region after joining and the joining strength decreases.
  • the present invention is composed of an extruded perforated pipe having fins inside and a lid for sealing the opening of the extruded perforated pipe, and the extruded perforated pipe and the lid are combined.
  • a method for manufacturing a heat exchanger to be joined by frictional stirring wherein the lid has a bottom portion and a peripheral wall portion rising from the peripheral edge of the bottom portion, and the outer peripheral edge of the peripheral wall portion has a step side surface and a step side surface.
  • a peripheral wall stepped portion having a stepped inclined surface that inclines toward the bottom side toward the outside is formed, and the extruded perforated pipe is fitted with the peripheral wall portion without the fins formed at the end.
  • the extruded porous pipe has a fitting portion to be fitted, the extruded perforated pipe is formed of a second aluminum alloy, the lid is formed of a first aluminum alloy, and the first aluminum alloy is made of the second aluminum alloy.
  • the rotary tool used for frictional stirring is provided with a stirring pin, and the stirring pin is tapered toward the tip side to fit the fitting portion of the extruded porous pipe.
  • the stirring pin After inserting at the start position set on the extruded perforated pipe side, the stirring pin is gradually pushed in until the predetermined depth is reached while moving the rotation center axis of the rotation tool to a position overlapping the set movement route. It is characterized by.
  • the present invention is composed of an extruded perforated pipe having fins inside and a lid for sealing the opening of the extruded perforated pipe, and heat for joining the extruded perforated pipe and the lid by frictional stirring.
  • the lid has a bottom portion and a peripheral wall portion rising from the peripheral edge of the bottom portion, and the outer peripheral edge of the peripheral wall portion has a step side surface and the bottom portion as it goes outward from the step side surface.
  • a peripheral wall stepped portion having a stepped inclined surface inclined so as to be close to the side is formed, and the extruded perforated pipe has a fitting portion in which the fin is not formed at the end portion and the peripheral wall portion is fitted.
  • the extruded perforated pipe is made of a second aluminum alloy
  • the lid is made of a first aluminum alloy
  • the first aluminum alloy is a grade having a higher hardness than the second aluminum alloy.
  • the rotary tool used for frictional stirring is provided with a stirring pin, and the stirring pin is tapered toward the tip side, and the peripheral wall of the lid body is fitted to the fitting portion of the extruded perforated pipe.
  • the stirring pin is inserted from the start position set on the set movement route in the main joining step, and the stirring pin is inserted in the traveling direction. The stirring pin is gradually pushed in until it reaches a predetermined height while being moved.
  • the frictional heat between the lid and the extruded perforated pipe stirs and plastically fluidizes the second aluminum alloy mainly on the extruded perforated pipe side of the butt portion, and the lid and the extruded perforated pipe are formed at the butt portion. Can be joined. Further, since the outer peripheral surface of the stirring pin is kept in contact with the lid slightly, it is possible to minimize the mixing of the first aluminum alloy from the lid into the extruded perforated pipe. As a result, the second aluminum alloy on the extruded perforated pipe side is mainly frictionally agitated at the butt portion, so that a decrease in joint strength can be suppressed.
  • the stirring pin is rotated at a predetermined rotation speed to perform frictional stirring, and when the stirring pin is inserted in the main joining step, the stirring is performed at a speed higher than the predetermined rotation speed. It is preferable to insert the pin in a rotated state and move it to the set movement route while gradually reducing the rotation speed.
  • friction stir welding can be performed more preferably.
  • the present invention is composed of an extruded perforated pipe having fins inside and a lid for sealing the opening of the extruded perforated pipe, and heat for joining the extruded perforated pipe and the lid by frictional stirring.
  • the lid has a bottom portion and a peripheral wall portion rising from the peripheral edge of the bottom portion, and the outer peripheral edge of the peripheral wall portion has a step side surface and the bottom portion as it goes outward from the step side surface.
  • a peripheral wall stepped portion having a stepped inclined surface inclined so as to be close to the side is formed, and the extruded perforated pipe has a fitting portion in which the fin is not formed at the end portion and the peripheral wall portion is fitted.
  • the extruded perforated pipe is made of a second aluminum alloy
  • the lid is made of a first aluminum alloy
  • the first aluminum alloy is a grade having a higher hardness than the second aluminum alloy.
  • the rotary tool used for frictional stirring is provided with a stirring pin, and the stirring pin is tapered toward the tip side, and the peripheral wall of the lid body is fitted to the fitting portion of the extruded perforated pipe.
  • the extruded perforated pipe While flowing the second aluminum alloy into the gap in contact with the above, the extruded perforated pipe has a predetermined depth along a set movement route set on the extruded perforated pipe side of the butt portion.
  • the end position is set further on the extruded perforated pipe side than the set movement route, and the butt is set.
  • the present invention is composed of an extruded perforated pipe having fins inside and a lid for sealing the opening of the extruded perforated pipe, and heat for joining the extruded perforated pipe and the lid by frictional stirring.
  • the lid has a bottom portion and a peripheral wall portion rising from the peripheral edge of the bottom portion, and the outer peripheral edge of the peripheral wall portion has a step side surface and the bottom portion as it goes outward from the step side surface.
  • a peripheral wall stepped portion having a stepped inclined surface inclined so as to be close to the side is formed, and the extruded perforated pipe has a fitting portion in which the fin is not formed at the end portion and the peripheral wall portion is fitted.
  • the extruded perforated pipe is made of a second aluminum alloy
  • the lid is made of a first aluminum alloy
  • the first aluminum alloy is a grade having a higher hardness than the second aluminum alloy.
  • the rotary tool used for frictional stirring is provided with a stirring pin, and the stirring pin is tapered toward the tip side, and the peripheral wall of the lid body is fitted to the fitting portion of the extruded perforated pipe.
  • the extruded perforated pipe While flowing the second aluminum alloy into the gap in contact with the above, the extruded perforated pipe has a predetermined depth along a set movement route set on the extruded perforated pipe side of the butt portion.
  • the end position is set on the set movement route in the main joining step, and after the friction stirring joining to the butt portion.
  • the rotating tool is gradually pulled out while moving the rotating tool to the end position, and the rotating tool is separated from the extruded perforated pipe at the end position.
  • the frictional heat between the lid and the extruded perforated pipe stirs and plastically fluidizes the second aluminum alloy mainly on the extruded perforated pipe side of the butt portion, and the lid and the extruded perforated pipe are formed at the butt portion. Can be joined. Further, since the outer peripheral surface of the stirring pin is kept in contact with the lid slightly, it is possible to minimize the mixing of the first aluminum alloy from the lid into the extruded perforated pipe. As a result, the second aluminum alloy on the extruded perforated pipe side is mainly frictionally agitated at the butt portion, so that a decrease in joint strength can be suppressed. Further, by gradually pulling out the stirring pin while moving the rotating tool, it is possible to prevent the frictional heat from becoming excessive locally. This makes it possible to prevent the first aluminum alloy of the lid from being mixed into the extruded perforated pipe side on the set movement route.
  • the stirring pin is rotated at a predetermined rotation speed to perform frictional stirring, and when the stirring pin is separated in the main joining step, the rotation speed is gradually increased from the predetermined rotation speed. It is preferable to move it to the end position while raising it.
  • friction stir welding can be performed more preferably.
  • the extruded perforated pipe and the lid so that the outer peripheral surface of the extruded perforated pipe is on the outer side of the outer peripheral surface of the lid.
  • the tip of the stirring pin penetrates the stepped side surface of the lid and circulates around the outer peripheral surface of the extruded perforated pipe to frictionally stir the butt portion.
  • the lid body and the extruded perforated pipe can be more preferably joined.
  • the first aluminum alloy is made of a cast material and the second aluminum alloy is made of a wrought material.
  • the heat exchanger 1 is composed of an extruded perforated pipe 2 and lids 3 and 3 arranged at both ends of the extruded perforated pipe 2.
  • the heat exchanger 1 is a device that cools a heating element that is arranged by circulating a fluid inside.
  • the extruded perforated pipe 2 and the lids 3 and 3 are integrated by friction stir welding.
  • the extruded perforated pipe 2 is mainly composed of a main body 11 and a plurality of fins 12.
  • the extruded perforated pipe 2 is formed mainly containing a second aluminum alloy.
  • the second aluminum alloy is formed of, for example, an aluminum alloy wrought material such as JIS A1050, A1100, A6063.
  • the extruded perforated pipe 2 is an extruded shape member made of a second aluminum alloy.
  • the main body 11 has a tubular shape.
  • the side portions 11a and 11b of the main body portion 11 are curved so as to be convex outward (outside in the width direction of the main body portion 11).
  • the substrate portions 11c and 11d of the main body portion 11 are flat and face each other in parallel. That is, the cross section of the main body 11 has an oblong shape.
  • the fins 12 are perpendicular to the substrate portions 11c and 11d.
  • the fins 12 extend in the pushing direction of the main body 11, and are formed in parallel with each other.
  • a hole 13 having a rectangular cross section through which a fluid flows is formed between the adjacent fins 12.
  • Fitting portions 14 having no fins 12 formed are formed in the openings at both ends of the extruded perforated pipe 2.
  • the fitting portion 14 is a portion into which the peripheral wall portion 22 of the lid body 3, which will be described later, is inserted.
  • the fitting portion 14 is formed by cutting both ends of the fin 12.
  • the shape of the extruded perforated pipe 2 is not limited to the above-mentioned shape.
  • the cross section of the extruded perforated pipe 2 may be circular, elliptical, or square.
  • the lids 3 and 3 are members that seal the openings at both ends of the extruded perforated pipe 2.
  • the lids 3 and 3 have the same shape.
  • the lid 3 has a bottom portion 21 and a peripheral wall portion 22.
  • the bottom portion 21 is a plate-shaped member having an oval shape.
  • the outer shape of the bottom portion 21 is substantially the same as the outer shape of the main body portion 11 of the extruded perforated pipe 2 so as to seal the opening of the extruded perforated pipe 2.
  • the peripheral wall portion 22 is a portion that rises vertically from the peripheral edge portion of the bottom portion 21.
  • the peripheral wall portion 22 is formed in an oval frame shape along the shape of the bottom portion 21.
  • a concave header flow path 24 is formed by the bottom portion 21 and the peripheral wall portion 22.
  • the material of the lid 3 is not particularly limited as long as it is a metal capable of friction stir welding, but in the present embodiment, it is formed mainly containing a first aluminum alloy.
  • the first aluminum alloy is a material having a higher hardness than the second aluminum alloy.
  • an aluminum alloy casting material such as JISH5302 ADC12 (Al—Si—Cu system) is used.
  • a peripheral wall step portion 23 composed of a step side surface 23a and a step inclined surface 23b rising from the step side surface 23a is formed on the outer peripheral edge of the peripheral wall portion 22.
  • the peripheral wall step portion 23 is formed over the entire peripheral direction.
  • the step side surface 23a is parallel to the extrusion direction.
  • the step inclined surface 23b is inclined so as to approach the bottom portion 21 from the step side surface 23a toward the outside (outside in the width direction of the main body portion 11). In other words, the step inclined surface 23b is inclined so as to be separated from the main body portion 11 toward the outside.
  • the inclination angle ⁇ of the step inclined surface 23b is a constant inclination angle.
  • the outer peripheral surface 11f of the extruded perforated pipe 2 and the outer peripheral surface 22b of the peripheral wall portion 22 may be flush with each other, but in the present embodiment, the extruded perforated pipe 2 and the lid 3 are subjected to the butt step described later, and then the peripheral wall portion is formed.
  • the outer peripheral surface 11f of the extruded perforated pipe 2 is set to be on the outer side of the outer peripheral surface 22b of 22. In other words, the height (thickness) dimension of the end surface 11e of the extruded perforated pipe 2 is set to be larger than the height dimension of the stepped inclined surface 23b.
  • the preparation step is a step of preparing the extruded perforated pipe 2 and the lid 3.
  • the extruded perforated pipe 2 and the lid 3 are not particularly limited in terms of manufacturing method, but the extruded perforated pipe 2 is molded by, for example, extrusion molding.
  • the lid 3 is molded by die casting, for example.
  • the butt step is a step of butting the lid 3 against the extruded perforated pipe 2 as shown in FIG.
  • the fitting portion 14 of the extruded perforated pipe 2 is fitted to the peripheral wall portion 22 of the lid body 3.
  • the stepped inclined surface 23b of the lid 3 and the end surface 11e of the extruded perforated pipe 2 are abutted to form the butt portion J1
  • the stepped side surface 23a of the lid 3 and the inner peripheral surface 11g of the extruded perforated pipe 2 are formed. And are overlapped to form a butt portion J2.
  • the end face 22a of the peripheral wall portion 22 and the end face 12a of the fin 12 are in contact with each other or face each other with a slight gap.
  • the butt portions J1 and J2 are formed over the circumferential direction.
  • a gap having a V-shaped cross section is formed in the butt portion J1.
  • this joining step is a step of friction stir welding of the butt portion J1 using the rotary tool F.
  • the "set movement route L1" (dashed line) is set at a position away from the lid 3 with respect to the butt portion J1.
  • the set movement route L1 is a movement route of the rotation tool F necessary for joining the butt portion J1 in the main joining step described later.
  • the set movement route L1 will be described in detail later.
  • the rotation tool F is composed of a connecting portion F1 and a stirring pin F2.
  • the rotary tool F is made of, for example, tool steel.
  • the connecting portion F1 is a portion connected to the rotating shaft of the friction stir device (not shown).
  • the connecting portion F1 has a columnar shape, and a screw hole (not shown) for fastening a bolt is formed.
  • the stirring pin F2 hangs down from the connecting portion F1 and is coaxial with the connecting portion F1.
  • the stirring pin F2 is tapered as it is separated from the connecting portion F1.
  • the inclination angle ⁇ of the stirring pin F2 with respect to the rotation center axis Z is the same as the inclination angle ⁇ (FIG. 2) of the step inclined surface 23b with respect to the vertical plane.
  • the tip of the stirring pin F2 is provided with a flat flat surface F3.
  • a spiral groove is engraved on the outer peripheral surface of the stirring pin F2.
  • the spiral groove in order to rotate the rotation tool F clockwise, is formed counterclockwise from the base end to the tip end.
  • the spiral groove is formed counterclockwise when viewed from above when the spiral groove is traced from the base end to the tip end.
  • the rotation tool F When rotating the rotation tool F counterclockwise, it is preferable to form the spiral groove clockwise from the base end to the tip end.
  • the spiral groove in this case is formed clockwise when viewed from above when the spiral groove is traced from the base end to the tip end.
  • the rotation tool F may be attached to, for example, a robot arm having a rotation driving means such as a spindle unit at its tip.
  • Three sections of the detachment section from to the end position EP1 are continuously friction-stir welded.
  • the intermediate points S1 and S2 are set on the set movement route L1.
  • the start position SP1 is set in the main body 11 of the extruded perforated pipe 2 at a position separated from the lid 3 with respect to the set movement route L1.
  • the start position SP1 is set at a position where the angle formed by the line segment connecting the start position SP1 and the intermediate point S1 and the set movement route L1 is an obtuse angle.
  • the rotation tool F is made to go around along the set movement route L1.
  • the outer peripheral surface of the stirring pin F2 and the step inclined surface 23b are set to be parallel.
  • the outer peripheral surface of the stirring pin F2 and the stepped inclined surface 23b are set to slightly contact each other.
  • the rotation center axis Z of the rotation tool F and the outer peripheral surface 11f of the main body 11 are set to be vertical, and the rotation tool F is relatively moved along the butt portion J1 while maintaining these.
  • the contact allowance (offset amount) N between the outer peripheral surface of the stirring pin F2 and the stepped inclined surface 23b is set, for example, between 0 ⁇ N ⁇ 1.0 mm, preferably 0 ⁇ N ⁇ 0.85 mm. However, it is more preferably set between 0 ⁇ N ⁇ 0.65 mm.
  • the set movement route L1 shows a locus through which the center of the flat surface F3 passes. That is, the set movement route L1 is set so that the step inclined surface 23b and the outer peripheral surface of the stirring pin F2 are made parallel to each other and slightly contact each other in the circumferential direction of the butt portion J1.
  • the rotation tool F is moved so that the center of the flat surface F3 overlaps with the set movement route L1.
  • the "predetermined depth" of the stirring pin F2 may be appropriately set, but in the present embodiment, the flat surface F3 of the rotating tool F is inserted to a position where it penetrates the step side surface 23a. As a result, the butt portion J2 can also be reliably joined.
  • the joint strength of the butt portion J1 becomes low.
  • the contact allowance N of the stepped inclined surface 23b of the stirring pin F2 exceeds 1.0 mm, a large amount of the first aluminum alloy of the lid 3 may be mixed into the extruded perforated pipe 2 side, resulting in poor joining.
  • the stirring pin F2 when the stirring pin F2 reaches the intermediate point S2 by rotating the rotating tool F around the rotation tool F, the rotation tool F shifts to the withdrawal section as it is.
  • the stirring pin F2 In the detachment section, the stirring pin F2 is gradually pulled out (raised) from the intermediate point S2 toward the end position EP1, and the stirring pin F2 is detached from the extruded perforated pipe 2 at the end position EP1. That is, the rotation tool F is gradually pulled out while being moved to the end position EP1 without staying in one place.
  • the end position EP1 is set at a position where the angle formed by the line segment connecting the end position EP1 and the intermediate point S2 and the set movement route L1 is an obtuse angle.
  • a plasticized region W1 is formed in the movement locus of the rotation tool F.
  • the frictional heat between the extruded perforated pipe 2 and the stirring pin F2 stirs the second aluminum alloy mainly on the extruded perforated pipe 2 side of the butt portion J1 to make it plastic. It is fluidized, and the end surface 11e of the extruded perforated pipe 2 and the stepped inclined surface 23b of the lid 3 can be joined at the butt portion J1.
  • the outer peripheral surface of the stirring pin F2 is kept slightly in contact with the stepped inclined surface 23b, it is possible to minimize the mixing of the first aluminum alloy from the lid 3 into the extruded perforated pipe 2.
  • the second aluminum alloy on the extruded perforated pipe 2 side is mainly frictionally agitated, so that a decrease in joint strength can be suppressed. That is, in this joining step, the imbalance of the material resistance received by the stirring pin F2 on one side and the other side with respect to the rotation center axis Z of the stirring pin F2 can be minimized.
  • the outer peripheral surface of the stirring pin F2 and the stepped inclined surface 23b of the lid 3 are set in parallel, the plastic fluid material is frictionally agitated in a well-balanced manner, and a decrease in joint strength can be suppressed.
  • the set movement route is gradually pushed in until the stirring pin F2 reaches a predetermined depth while moving the rotation tool F from the start position SP1 to a position overlapping the set movement route L1. It is possible to prevent the rotation tool F from stopping on L1 and causing the frictional heat to become excessive.
  • the stirring pin F2 is gradually pulled out from a predetermined depth while moving the rotation tool F from the set movement route L1 to the end position EP1 to separate the stirring pin F2 on the set movement route L1. It is possible to prevent the rotation tool F from stopping and the frictional heat from becoming excessive.
  • the positions of the start position SP1 and the end position EP1 may be appropriately set, but the angle formed by the start position SP1 and the set movement route L1 and the angle formed by the end position EP1 and the set movement route L1 are different.
  • the rotation tool F may be moved from the start position SP1 to the set movement route L1 so that the locus of the rotation tool F draws an arc when viewed from above.
  • the rotation tool F may be moved from the set movement route L1 to the end position EP1 so that the locus of the rotation tool F draws an arc when viewed from above.
  • the rotation direction and the traveling direction of the rotation tool F may be appropriately set, but the lid 3 side (of the plasticized region W1 formed in the movement locus of the rotation tool F) ( The rotation direction and the traveling direction of the rotation tool F were set so that the butt portion J1 side) was on the shear side and the extruded perforated pipe 2 side was on the flow side.
  • the lid 3 side By setting the lid 3 side to be the shear side, the stirring action by the stirring pin F2 around the butt portion J1 is enhanced, the temperature rise in the butt portion J1 can be expected, and the extruded perforated pipe 2 and the lid in the butt portion J1.
  • the body 3 can be joined more reliably.
  • the shear side means the side where the relative speed of the outer circumference of the rotating tool with respect to the jointed portion is the value obtained by adding the magnitude of the moving speed to the magnitude of the tangential velocity on the outer circumference of the rotating tool. ..
  • the flow side refers to the side where the relative speed of the rotating tool with respect to the jointed portion becomes low due to the rotation of the rotating tool in the direction opposite to the moving direction of the rotating tool.
  • the first aluminum alloy of the lid 3 is a material having a higher hardness than the second aluminum alloy of the extruded perforated pipe 2. Thereby, the durability of the heat exchanger 1 can be enhanced. Further, it is preferable that the first aluminum alloy of the lid 3 is an aluminum alloy casting material and the second aluminum alloy of the extruded perforated pipe 2 is an aluminum alloy wrought material.
  • an Al—Si—Cu based aluminum alloy casting material such as JIS H5302 ADC12
  • JIS H5302 ADC12 the first aluminum alloy
  • the castability, strength, machinability, etc. of the lid 3 can be improved.
  • JIS A1000 series or A6000 series the processability and thermal conductivity of the extruded perforated pipe 2 can be improved.
  • the airtightness and watertightness of the heat exchanger can be improved.
  • the rotation tool F is made to move toward the end position EP1 after completely passing through the intermediate point S1. That is, the airtightness and watertightness can be further improved by overlapping the ends of the plasticized region W1 formed by this joining step with each other.
  • friction stir welding is performed with the base end side of the stirring pin F2 of the rotary tool F exposed, so that the load acting on the friction stir welding device can be reduced.
  • the outer peripheral surface 11f of the extruded perforated pipe 2 is set to be outside the outer peripheral surface 22b of the peripheral wall portion 22. As a result, it is possible to further prevent the metal shortage of the butt portion J1 when performing friction stir welding.
  • the header flow path 24 in the lid 3 the fluid flowing in or out of the hole 13 can be collected.
  • the rotation speed of the rotation tool F may be constant, but may be variable.
  • V1 the rotation speed of the rotation tool F at the start position SP1
  • V2 the rotation speed of the rotation tool F in this section
  • V1> V2 may be satisfied.
  • the rotation speed V2 is a preset constant rotation speed in the set movement route L1. That is, at the start position SP1, the rotation speed may be set high, and the rotation speed may be gradually reduced in the closet section to shift to the main section.
  • the rotation speed of the rotation tool F in this section is V2 and the rotation speed of the rotation tool F at the end position EP1 is V3, V3> V2 may be satisfied. That is, after shifting to the detachment section, the rotation tool F may be detached from the extruded perforated pipe 2 while gradually increasing the rotation speed toward the end position EP1.
  • the rotary tool F is pushed into the extruded perforated pipe 2 or separated from the extruded perforated pipe 2, by setting as described above, it is possible to supplement the small pressing pressure in the indentation section or the inseparing section with the rotation speed. Therefore, friction stir welding can be preferably performed.
  • the first embodiment is set in that the positions of the start position SP1, the intermediate points S1 and S2, and the end position EP1 in the main joining process are all set on the set movement route L1. Different from the form.
  • the parts different from the first embodiment will be mainly described.
  • the preparation step, the butt step, and the main joining step are performed.
  • the preparation step and the butt step are the same as those in the first embodiment.
  • the start position SP1 is set on the set movement route L1.
  • the intrusion section from the start position SP1 to the intermediate point S1 the main section from the intermediate point S1 on the set movement route L1 to the intermediate point S2, and the departure from the intermediate point S2 to the end position EP1. Friction stir welding is performed continuously for three sections.
  • the outer peripheral surface of the stirring pin F2 and the step inclined surface 23b are set to be parallel to each other, and the stirring pin F2 is set.
  • the outer peripheral surface and the stepped inclined surface 23b are set so as to be in slight contact with each other. Then, while maintaining that state, the process shifts to friction stir welding in this section.
  • the contact allowance (offset amount) N between the outer peripheral surface of the stirring pin F2 and the stepped inclined surface 23b and the setting of the set movement route L1 are the same as those in the first embodiment.
  • the heat exchanger manufacturing method according to the second embodiment described above can also achieve substantially the same effect as the first embodiment.
  • the start position SP1 and the end position EP1 in the main joining step may be set on the set movement route L1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The present invention is characterized by including a main joining step in which one lap around the outer circumferential surface (11f) of an extruded porous tube (2) is completed at a prescribed depth along a set movement route (L1) that is set closer to the extruded porous tube (2) than to an abutting part (J1), to perform friction stirring around the abutting part (J1) while pouring in a second aluminum alloy into a gap, in a state in which only an agitation pin (F2) of a rotating tool (F) is inserted into a second outer circumferential surface (11f) of the extruded porous tube (2) and the outer circumferential surface of the agitation pin (F2) is lightly brought into contact with a stepped inclined surface (23b) of a lid (3). The present invention is also characterized by, in the main joining step, the agitation pin (F2) being gradually pushed in to the prescribed depth while a central axis of rotation (Z) of the rotating tool (F) is moved to a position that overlaps the set movement route (L1), after only the rotating agitation pin (F2) is inserted at a start position (SP1) set closer to the extruded porous tube (2) side than to the set movement route (L1).

Description

熱交換器の製造方法How to make a heat exchanger
 本発明は、熱交換器の製造方法に関する。 The present invention relates to a method for manufacturing a heat exchanger.
 例えば、特許文献1には、複数の孔部が並設された押出多孔管と、当該押出多孔管の開口部を封止する封止体とを摩擦攪拌で接合する熱交換器の製造方法が開示されている。図8は、従来の熱交換器の製造方法を示す断面図である。 For example, Patent Document 1 describes a method for manufacturing a heat exchanger in which an extruded perforated pipe in which a plurality of holes are arranged side by side and a sealing body for sealing the openings of the extruded perforated pipe are joined by friction stir welding. It is disclosed. FIG. 8 is a cross-sectional view showing a method of manufacturing a conventional heat exchanger.
 従来の熱交換器の製造方法では、複数のフィン110を備えたアルミニウム合金製の押出多孔管101と、蓋体102の外周に形成された段差部103とを突き合わせて突合せ部J10を形成した後、突合せ部J10に対して回転ツールGを用いて摩擦攪拌接合を行うというものである。段差部103は、段差底面103aと、段差側面103bとで構成されている。突合せ部J10は、押出多孔管101の端面101aと、蓋体102の段差底面103aとを突き合わせて構成されている。回転ツールGは、ショルダ部G1と、ショルダ部G1から垂下する攪拌ピンG2とを備えている。摩擦攪拌工程では、回転させた攪拌ピンG2の回転中心軸Zを突合せ部J10に重ね合わせて相対移動させるというものである。 In the conventional method for manufacturing a heat exchanger, an extruded perforated tube 101 made of an aluminum alloy having a plurality of fins 110 and a stepped portion 103 formed on the outer periphery of the lid 102 are butted to form a butt portion J10. , The butt portion J10 is subjected to friction stir welding using the rotary tool G. The step portion 103 is composed of a step bottom surface 103a and a step side surface 103b. The butt portion J10 is configured by abutting the end surface 101a of the extruded perforated pipe 101 and the step bottom surface 103a of the lid 102. The rotation tool G includes a shoulder portion G1 and a stirring pin G2 hanging from the shoulder portion G1. In the friction stir welding step, the rotation center axis Z of the rotated stirring pin G2 is superposed on the butt portion J10 and relatively moved.
特開2016-74016号公報Japanese Unexamined Patent Publication No. 2016-74016
 ここで、押出多孔管101のように比較的単純な形状のものは、1000系アルミニウム合金の展伸材で形成し、蓋体102は、例えば、4000系アルミニウム合金の鋳造材で形成するというような場合がある。このように、アルミニウム合金の材種の異なる部材同士を接合して、熱交換器を製造する場合がある。このような場合は、蓋体102の方が押出多孔管101よりも硬度が高くなることが一般的であるため、図8のように摩擦攪拌接合を行うと、攪拌ピンG2が押出多孔管101側から受ける材料抵抗に比べて、蓋体102側から受ける材料抵抗が大きくなる。そのため、回転ツールGの攪拌ピンG2によって異なる材種をバランスよく攪拌することが困難となり、接合後の塑性化領域に空洞欠陥が発生し接合強度が低下するという問題がある。 Here, a relatively simple shape such as the extruded perforated pipe 101 is formed of a wrought material of a 1000 series aluminum alloy, and the lid 102 is formed of, for example, a cast material of a 4000 series aluminum alloy. There are cases. In this way, a heat exchanger may be manufactured by joining members of different grades of aluminum alloy. In such a case, the lid 102 generally has a higher hardness than the extruded perforated pipe 101. Therefore, when friction stir welding is performed as shown in FIG. 8, the stirring pin G2 becomes the extruded perforated pipe 101. The material resistance received from the lid 102 side is larger than the material resistance received from the side. Therefore, it becomes difficult to stir different grades in a well-balanced manner by the stirring pin G2 of the rotating tool G, and there is a problem that cavity defects occur in the plasticized region after joining and the joining strength decreases.
 また、図8に示すように、攪拌ピンG2を突合せ部J10に挿入する際、所定の深さとなるまで鉛直方向に攪拌ピンG2を押入するため、摩擦攪拌の開始位置における摩擦熱が過大となる。これにより、当該開始位置において、蓋体102側の金属が押出多孔管101側に混入しやすくなり、接合不良の一因となるという問題がある。 Further, as shown in FIG. 8, when the stirring pin G2 is inserted into the butt portion J10, the stirring pin G2 is pushed in in the vertical direction until it reaches a predetermined depth, so that the frictional heat at the start position of frictional stirring becomes excessive. .. As a result, at the starting position, the metal on the lid 102 side is likely to be mixed into the extruded perforated pipe 101 side, which causes a problem of contributing to poor joining.
 一方、攪拌ピンG2を突合せ部J10から引き抜いて離脱させる際、鉛直方向に攪拌ピンG2を引き抜くため、摩擦攪拌の終了位置における摩擦熱が過大となる。これにより、当該終了位置において、蓋体102側の金属が押出多孔管101側に混入しやすくなり、接合不良の一因となるという問題がある。 On the other hand, when the stirring pin G2 is pulled out from the butt portion J10 and separated, the stirring pin G2 is pulled out in the vertical direction, so that the frictional heat at the end position of frictional stirring becomes excessive. As a result, at the end position, the metal on the lid 102 side is likely to be mixed into the extruded perforated pipe 101 side, which causes a problem of contributing to poor joining.
 このような観点から、本発明は、材種の異なるアルミニウム合金を好適に接合することができる熱交換器の製造方法を提供することを課題とする。 From this point of view, it is an object of the present invention to provide a method for manufacturing a heat exchanger capable of suitably joining aluminum alloys of different grades.
 前記課題を解決するために、本発明は、内部にフィンを有する押出多孔管と、前記押出多孔管の開口部を封止する蓋体とで構成され、前記押出多孔管と前記蓋体とを摩擦攪拌で接合する熱交換器の製造方法であって、前記蓋体は、底部及び前記底部の周縁から立ち上がる周壁部を有し、前記周壁部の外周縁に、段差側面と、当該段差側面から外側に向かうにつれて前記底部側に近接するように傾斜する段差傾斜面と、を有する周壁段差部を形成し、前記押出多孔管は、端部に前記フィンが形成されておらず前記周壁部が嵌め合わされる嵌合部を有し、前記押出多孔管は第二アルミニウム合金で形成されており、前記蓋体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、摩擦攪拌で用いる回転ツールは、攪拌ピンを備えており、前記攪拌ピンは、先端側に向けて先細りとなっており、前記押出多孔管の前記嵌合部に前記蓋体の前記周壁部を挿入することにより、前記押出多孔管の内周面と前記蓋体の段差側面とを重ね合わせるとともに、前記押出多孔管の端面と前記蓋体の前記段差傾斜面とを突き合わせて突合せ部に断面V字状の隙間を形成する突合せ工程と、回転する前記回転ツールの攪拌ピンのみを前記押出多孔管の外周面に挿入し、前記攪拌ピンの外周面を前記蓋体の段差傾斜面にわずかに接触させた状態で、前記隙間に前記第二アルミニウム合金を流入させながら、前記突合せ部よりも前記押出多孔管側に設定された設定移動ルートに沿って所定の深さで前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、前記本接合工程において、回転する前記攪拌ピンのみを前記設定移動ルートよりもさらに前記押出多孔管側に設定した開始位置に挿入した後、前記回転ツールの回転中心軸を前記設定移動ルートと重複する位置まで移動させつつ前記所定の深さとなるまで前記攪拌ピンを徐々に押入することを特徴とする。 In order to solve the above problems, the present invention is composed of an extruded perforated pipe having fins inside and a lid for sealing the opening of the extruded perforated pipe, and the extruded perforated pipe and the lid are combined. A method for manufacturing a heat exchanger to be joined by frictional stirring, wherein the lid has a bottom portion and a peripheral wall portion rising from the peripheral edge of the bottom portion, and the outer peripheral edge of the peripheral wall portion has a step side surface and a step side surface. A peripheral wall stepped portion having a stepped inclined surface that inclines toward the bottom side toward the outside is formed, and the extruded perforated pipe is fitted with the peripheral wall portion without the fins formed at the end. The extruded porous pipe has a fitting portion to be fitted, the extruded perforated pipe is formed of a second aluminum alloy, the lid is formed of a first aluminum alloy, and the first aluminum alloy is made of the second aluminum alloy. The rotary tool used for frictional stirring is provided with a stirring pin, and the stirring pin is tapered toward the tip side to fit the fitting portion of the extruded porous pipe. By inserting the peripheral wall portion of the lid, the inner peripheral surface of the extruded perforated pipe and the stepped side surface of the lid are overlapped, and the end surface of the extruded perforated pipe and the stepped inclined surface of the lid are overlapped. In the butt step of forming a gap having a V-shaped cross section in the butt portion, only the stirring pin of the rotating tool is inserted into the outer peripheral surface of the extruded perforated pipe, and the outer peripheral surface of the stirring pin is inserted into the lid. A predetermined depth along the set movement route set on the extruded perforated pipe side from the butt portion while flowing the second aluminum alloy into the gap in a state of being slightly in contact with the stepped inclined surface of the above. Including the main joining step of rubbing and stirring the butt portion around the outer peripheral surface of the extruded perforated pipe, in the main joining step, only the rotating stirring pin is further described as being more than the set movement route. After inserting at the start position set on the extruded perforated pipe side, the stirring pin is gradually pushed in until the predetermined depth is reached while moving the rotation center axis of the rotation tool to a position overlapping the set movement route. It is characterized by.
 また、本発明は、内部にフィンを有する押出多孔管と、前記押出多孔管の開口部を封止する蓋体とで構成され、前記押出多孔管と前記蓋体とを摩擦攪拌で接合する熱交換器の製造方法であって、前記蓋体は、底部及び前記底部の周縁から立ち上がる周壁部を有し、前記周壁部の外周縁に、段差側面と、当該段差側面から外側に向かうにつれて前記底部側に近接するように傾斜する段差傾斜面と、を有する周壁段差部を形成し、前記押出多孔管は、端部に前記フィンが形成されておらず前記周壁部が嵌め合わされる嵌合部を有し、前記押出多孔管は第二アルミニウム合金で形成されており、前記蓋体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、摩擦攪拌で用いる回転ツールは、攪拌ピンを備えており、前記攪拌ピンは、先端側に向けて先細りとなっており、前記押出多孔管の前記嵌合部に前記蓋体の前記周壁部を挿入することにより、前記押出多孔管の内周面と前記蓋体の段差側面とを重ね合わせるとともに、前記押出多孔管の端面と前記蓋体の前記段差傾斜面とを突き合わせて突合せ部に断面V字状の隙間を形成する突合せ工程と、回転する前記回転ツールの攪拌ピンのみを前記押出多孔管の外周面に挿入し、前記攪拌ピンの外周面を前記蓋体の段差傾斜面にわずかに接触させた状態で、前記隙間に前記第二アルミニウム合金を流入させながら、前記突合せ部よりも前記押出多孔管側に設定された設定移動ルートに沿って所定の深さで前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、前記本接合工程において、前記設定移動ルート上に設定した開始位置から前記攪拌ピンを挿入し、進行方向に移動させつつ所定の高さとなるまで徐々に前記攪拌ピンを押入することを特徴とする。 Further, the present invention is composed of an extruded perforated pipe having fins inside and a lid for sealing the opening of the extruded perforated pipe, and heat for joining the extruded perforated pipe and the lid by frictional stirring. A method of manufacturing a switch, the lid has a bottom portion and a peripheral wall portion rising from the peripheral edge of the bottom portion, and the outer peripheral edge of the peripheral wall portion has a step side surface and the bottom portion as it goes outward from the step side surface. A peripheral wall stepped portion having a stepped inclined surface inclined so as to be close to the side is formed, and the extruded perforated pipe has a fitting portion in which the fin is not formed at the end portion and the peripheral wall portion is fitted. The extruded perforated pipe is made of a second aluminum alloy, the lid is made of a first aluminum alloy, and the first aluminum alloy is a grade having a higher hardness than the second aluminum alloy. The rotary tool used for frictional stirring is provided with a stirring pin, and the stirring pin is tapered toward the tip side, and the peripheral wall of the lid body is fitted to the fitting portion of the extruded perforated pipe. By inserting the portion, the inner peripheral surface of the extruded perforated pipe and the stepped side surface of the lid are overlapped, and the end surface of the extruded perforated pipe and the stepped inclined surface of the lid are abutted into the butt portion. Only the butt step for forming a gap having a V-shaped cross section and the stirring pin of the rotating tool are inserted into the outer peripheral surface of the extruded perforated pipe, and the outer peripheral surface of the stirring pin is slightly on the stepped inclined surface of the lid. While flowing the second aluminum alloy into the gap in contact with the above, the extruded perforated pipe has a predetermined depth along a set movement route set on the extruded perforated pipe side of the butt portion. Including the main joining step of rubbing and stirring the butt portion around the outer peripheral surface, the stirring pin is inserted from the start position set on the set movement route in the main joining step, and the stirring pin is inserted in the traveling direction. The stirring pin is gradually pushed in until it reaches a predetermined height while being moved.
 かかる製造方法によれば、蓋体と押出多孔管との摩擦熱によって突合せ部の主として押出多孔管側の第二アルミニウム合金が攪拌されて塑性流動化され、突合せ部において蓋体と押出多孔管とを接合することができる。また、攪拌ピンの外周面を蓋体にわずかに接触させるに留めるため、蓋体から押出多孔管への第一アルミニウム合金の混入を極力少なくすることができる。これにより、突合せ部においては主として押出多孔管側の第二アルミニウム合金が摩擦攪拌されるため、接合強度の低下を抑制することができる。また、回転ツールを移動させながら所定の深さとなるまで攪拌ピンを徐々に押入することにより、局所的に摩擦熱が過大になるのを防ぐことができる。これにより、設定移動ルート上において、蓋体の第一アルミニウム合金が押出多孔管側に混入するのを防ぐことができる。 According to such a manufacturing method, the frictional heat between the lid and the extruded perforated pipe stirs and plastically fluidizes the second aluminum alloy mainly on the extruded perforated pipe side of the butt portion, and the lid and the extruded perforated pipe are formed at the butt portion. Can be joined. Further, since the outer peripheral surface of the stirring pin is kept in contact with the lid slightly, it is possible to minimize the mixing of the first aluminum alloy from the lid into the extruded perforated pipe. As a result, the second aluminum alloy on the extruded perforated pipe side is mainly frictionally agitated at the butt portion, so that a decrease in joint strength can be suppressed. Further, by gradually pushing the stirring pin until it reaches a predetermined depth while moving the rotating tool, it is possible to prevent the frictional heat from becoming excessive locally. This makes it possible to prevent the first aluminum alloy of the lid from being mixed into the extruded perforated pipe side on the set movement route.
 また、前記本接合工程では、所定の回転速度で前記攪拌ピンを回転させて摩擦攪拌を行い、前記本接合工程において前記攪拌ピンを挿入するとき、前記所定の回転速度よりも高い速度で前記攪拌ピンを回転させた状態で挿入し、徐々に回転速度を下げながら前記設定移動ルートまで移動させることが好ましい。 Further, in the main joining step, the stirring pin is rotated at a predetermined rotation speed to perform frictional stirring, and when the stirring pin is inserted in the main joining step, the stirring is performed at a speed higher than the predetermined rotation speed. It is preferable to insert the pin in a rotated state and move it to the set movement route while gradually reducing the rotation speed.
 かかる製造方法によれば、より好適に摩擦攪拌接合を行うことができる。 According to such a manufacturing method, friction stir welding can be performed more preferably.
 また、本発明は、内部にフィンを有する押出多孔管と、前記押出多孔管の開口部を封止する蓋体とで構成され、前記押出多孔管と前記蓋体とを摩擦攪拌で接合する熱交換器の製造方法であって、前記蓋体は、底部及び前記底部の周縁から立ち上がる周壁部を有し、前記周壁部の外周縁に、段差側面と、当該段差側面から外側に向かうにつれて前記底部側に近接するように傾斜する段差傾斜面と、を有する周壁段差部を形成し、前記押出多孔管は、端部に前記フィンが形成されておらず前記周壁部が嵌め合わされる嵌合部を有し、前記押出多孔管は第二アルミニウム合金で形成されており、前記蓋体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、摩擦攪拌で用いる回転ツールは、攪拌ピンを備えており、前記攪拌ピンは、先端側に向けて先細りとなっており、前記押出多孔管の前記嵌合部に前記蓋体の前記周壁部を挿入することにより、前記押出多孔管の内周面と前記蓋体の段差側面とを重ね合わせるとともに、前記押出多孔管の端面と前記蓋体の前記段差傾斜面とを突き合わせて突合せ部に断面V字状の隙間を形成する突合せ工程と、回転する前記回転ツールの攪拌ピンのみを前記押出多孔管の外周面に挿入し、前記攪拌ピンの外周面を前記蓋体の段差傾斜面にわずかに接触させた状態で、前記隙間に前記第二アルミニウム合金を流入させながら、前記突合せ部よりも前記押出多孔管側に設定された設定移動ルートに沿って所定の深さで前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、前記本接合工程において、前記設定移動ルートよりもさらに前記押出多孔管側に終了位置を設定し、前記突合せ部に対する摩擦攪拌接合の後、前記回転ツールを前記終了位置に移動させつつ前記攪拌ピンを徐々に引き抜いて前記終了位置で前記押出多孔管から前記回転ツールを離脱させることを特徴とする。 Further, the present invention is composed of an extruded perforated pipe having fins inside and a lid for sealing the opening of the extruded perforated pipe, and heat for joining the extruded perforated pipe and the lid by frictional stirring. A method of manufacturing a switch, the lid has a bottom portion and a peripheral wall portion rising from the peripheral edge of the bottom portion, and the outer peripheral edge of the peripheral wall portion has a step side surface and the bottom portion as it goes outward from the step side surface. A peripheral wall stepped portion having a stepped inclined surface inclined so as to be close to the side is formed, and the extruded perforated pipe has a fitting portion in which the fin is not formed at the end portion and the peripheral wall portion is fitted. The extruded perforated pipe is made of a second aluminum alloy, the lid is made of a first aluminum alloy, and the first aluminum alloy is a grade having a higher hardness than the second aluminum alloy. The rotary tool used for frictional stirring is provided with a stirring pin, and the stirring pin is tapered toward the tip side, and the peripheral wall of the lid body is fitted to the fitting portion of the extruded perforated pipe. By inserting the portion, the inner peripheral surface of the extruded perforated pipe and the stepped side surface of the lid are overlapped, and the end surface of the extruded perforated pipe and the stepped inclined surface of the lid are abutted into the butt portion. Only the butt step for forming a gap having a V-shaped cross section and the stirring pin of the rotating tool are inserted into the outer peripheral surface of the extruded perforated pipe, and the outer peripheral surface of the stirring pin is slightly on the stepped inclined surface of the lid. While flowing the second aluminum alloy into the gap in contact with the above, the extruded perforated pipe has a predetermined depth along a set movement route set on the extruded perforated pipe side of the butt portion. Including the main joining step of rubbing and stirring the butt portion around the outer peripheral surface, in the main joining step, the end position is set further on the extruded perforated pipe side than the set movement route, and the butt is set. After the friction stirring joint to the portion, the rotating tool is gradually pulled out while moving the rotating tool to the end position, and the rotating tool is separated from the extruded perforated pipe at the end position.
 また、本発明は、内部にフィンを有する押出多孔管と、前記押出多孔管の開口部を封止する蓋体とで構成され、前記押出多孔管と前記蓋体とを摩擦攪拌で接合する熱交換器の製造方法であって、前記蓋体は、底部及び前記底部の周縁から立ち上がる周壁部を有し、前記周壁部の外周縁に、段差側面と、当該段差側面から外側に向かうにつれて前記底部側に近接するように傾斜する段差傾斜面と、を有する周壁段差部を形成し、前記押出多孔管は、端部に前記フィンが形成されておらず前記周壁部が嵌め合わされる嵌合部を有し、前記押出多孔管は第二アルミニウム合金で形成されており、前記蓋体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、摩擦攪拌で用いる回転ツールは、攪拌ピンを備えており、前記攪拌ピンは、先端側に向けて先細りとなっており、前記押出多孔管の前記嵌合部に前記蓋体の前記周壁部を挿入することにより、前記押出多孔管の内周面と前記蓋体の段差側面とを重ね合わせるとともに、前記押出多孔管の端面と前記蓋体の前記段差傾斜面とを突き合わせて突合せ部に断面V字状の隙間を形成する突合せ工程と、回転する前記回転ツールの攪拌ピンのみを前記押出多孔管の外周面に挿入し、前記攪拌ピンの外周面を前記蓋体の段差傾斜面にわずかに接触させた状態で、前記隙間に前記第二アルミニウム合金を流入させながら、前記突合せ部よりも前記押出多孔管側に設定された設定移動ルートに沿って所定の深さで前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、前記本接合工程において、前記設定移動ルート上に終了位置を設定し、前記突合せ部に対する摩擦攪拌接合の後、前記回転ツールを前記終了位置に移動させつつ前記攪拌ピンを徐々に引き抜いて前記終了位置で前記押出多孔管から前記回転ツールを離脱させることを特徴とする。 Further, the present invention is composed of an extruded perforated pipe having fins inside and a lid for sealing the opening of the extruded perforated pipe, and heat for joining the extruded perforated pipe and the lid by frictional stirring. A method of manufacturing a switch, the lid has a bottom portion and a peripheral wall portion rising from the peripheral edge of the bottom portion, and the outer peripheral edge of the peripheral wall portion has a step side surface and the bottom portion as it goes outward from the step side surface. A peripheral wall stepped portion having a stepped inclined surface inclined so as to be close to the side is formed, and the extruded perforated pipe has a fitting portion in which the fin is not formed at the end portion and the peripheral wall portion is fitted. The extruded perforated pipe is made of a second aluminum alloy, the lid is made of a first aluminum alloy, and the first aluminum alloy is a grade having a higher hardness than the second aluminum alloy. The rotary tool used for frictional stirring is provided with a stirring pin, and the stirring pin is tapered toward the tip side, and the peripheral wall of the lid body is fitted to the fitting portion of the extruded perforated pipe. By inserting the portion, the inner peripheral surface of the extruded perforated pipe and the stepped side surface of the lid are overlapped, and the end surface of the extruded perforated pipe and the stepped inclined surface of the lid are abutted into the butt portion. Only the butt step for forming a gap having a V-shaped cross section and the stirring pin of the rotating tool are inserted into the outer peripheral surface of the extruded perforated pipe, and the outer peripheral surface of the stirring pin is slightly on the stepped inclined surface of the lid. While flowing the second aluminum alloy into the gap in contact with the above, the extruded perforated pipe has a predetermined depth along a set movement route set on the extruded perforated pipe side of the butt portion. Including the main joining step of rubbing and stirring the butt portion around the outer peripheral surface, the end position is set on the set movement route in the main joining step, and after the friction stirring joining to the butt portion. The rotating tool is gradually pulled out while moving the rotating tool to the end position, and the rotating tool is separated from the extruded perforated pipe at the end position.
 かかる製造方法によれば、蓋体と押出多孔管との摩擦熱によって突合せ部の主として押出多孔管側の第二アルミニウム合金が攪拌されて塑性流動化され、突合せ部において蓋体と押出多孔管とを接合することができる。また、攪拌ピンの外周面を蓋体にわずかに接触させるに留めるため、蓋体から押出多孔管への第一アルミニウム合金の混入を極力少なくすることができる。これにより、突合せ部においては主として押出多孔管側の第二アルミニウム合金が摩擦攪拌されるため、接合強度の低下を抑制することができる。また、回転ツールを移動させながら攪拌ピンを徐々に引き抜くことにより、局所的に摩擦熱が過大になるのを防ぐことができる。これにより、設定移動ルート上において、蓋体の第一アルミニウム合金が押出多孔管側に混入するのを防ぐことができる。 According to such a manufacturing method, the frictional heat between the lid and the extruded perforated pipe stirs and plastically fluidizes the second aluminum alloy mainly on the extruded perforated pipe side of the butt portion, and the lid and the extruded perforated pipe are formed at the butt portion. Can be joined. Further, since the outer peripheral surface of the stirring pin is kept in contact with the lid slightly, it is possible to minimize the mixing of the first aluminum alloy from the lid into the extruded perforated pipe. As a result, the second aluminum alloy on the extruded perforated pipe side is mainly frictionally agitated at the butt portion, so that a decrease in joint strength can be suppressed. Further, by gradually pulling out the stirring pin while moving the rotating tool, it is possible to prevent the frictional heat from becoming excessive locally. This makes it possible to prevent the first aluminum alloy of the lid from being mixed into the extruded perforated pipe side on the set movement route.
 また、前記本接合工程では、所定の回転速度で前記攪拌ピンを回転させて摩擦攪拌を行い、前記本接合工程において前記攪拌ピンを離脱させるとき、前記所定の回転速度よりも徐々に回転速度を上げながら終了位置まで移動させることが好ましい。 Further, in the main joining step, the stirring pin is rotated at a predetermined rotation speed to perform frictional stirring, and when the stirring pin is separated in the main joining step, the rotation speed is gradually increased from the predetermined rotation speed. It is preferable to move it to the end position while raising it.
 かかる製造方法によれば、より好適に摩擦攪拌接合を行うことができる。 According to such a manufacturing method, friction stir welding can be performed more preferably.
 また、前記突合せ工程では、前記蓋体の外周面よりも前記押出多孔管の外周面の方が外側となるように、前記押出多孔管と前記蓋体とを形成することが好ましい。 Further, in the butt step, it is preferable to form the extruded perforated pipe and the lid so that the outer peripheral surface of the extruded perforated pipe is on the outer side of the outer peripheral surface of the lid.
 かかる製造方法によれば、接合部の金属不足を防ぐことができる。 According to such a manufacturing method, it is possible to prevent a metal shortage at the joint.
 また、前記回転ツールの回転方向及び進行方向を前記突合せ部側がアドバンシング側となるように設定することが好ましい。 Further, it is preferable to set the rotation direction and the traveling direction of the rotation tool so that the butt portion side is the advancing side.
 かかる製造方法によれば、突合せ部側の摩擦攪拌が促進され、より好適に接合することができる。 According to such a manufacturing method, friction stir welding on the butt portion side is promoted, and more suitable joining can be performed.
 また、前記本接合工程では、前記攪拌ピンの先端が前記蓋体の段差側面を突き抜けた状態で前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌することが好ましい。 Further, in the main joining step, it is preferable that the tip of the stirring pin penetrates the stepped side surface of the lid and circulates around the outer peripheral surface of the extruded perforated pipe to frictionally stir the butt portion.
 かかる製造方法によれば、蓋体と押出多孔管とをより好適に接合することができる。 According to such a manufacturing method, the lid body and the extruded perforated pipe can be more preferably joined.
 また、前記第一アルミニウム合金は鋳造材からなり、前記第二アルミニウム合金は展伸材からなることが好ましい。 Further, it is preferable that the first aluminum alloy is made of a cast material and the second aluminum alloy is made of a wrought material.
 本発明に係る熱交換器の製造方法によれば、材種の異なるアルミニウム合金を好適に接合することができる。 According to the method for manufacturing a heat exchanger according to the present invention, aluminum alloys of different grades can be suitably joined.
本発明の第一実施形態に係る熱交換器を示す分解斜視図である。It is an exploded perspective view which shows the heat exchanger which concerns on 1st Embodiment of this invention. 第一実施形態に係る熱交換器の製造方法の突合せ工程を示す断面図である。It is sectional drawing which shows the butt process of the manufacturing method of the heat exchanger which concerns on 1st Embodiment. 第一実施形態に係る熱交換器の製造方法の本接合工程の開始位置を示す模式図である。It is a schematic diagram which shows the start position of the main joining process of the manufacturing method of the heat exchanger which concerns on 1st Embodiment. 第一実施形態に係る熱交換器の製造方法の本接合工程を示す断面図である。It is sectional drawing which shows the main joining process of the manufacturing method of the heat exchanger which concerns on 1st Embodiment. 第一実施形態に係る熱交換器の製造方法の本接合工程の終了位置を示す模式図である。It is a schematic diagram which shows the end position of this joining process of the manufacturing method of the heat exchanger which concerns on 1st Embodiment. 本発明の第二実施形態に係る熱交換器の製造方法の本接合工程の開始位置を示す模式図である。It is a schematic diagram which shows the start position of this joining process of the manufacturing method of the heat exchanger which concerns on 2nd Embodiment of this invention. 本発明の第二実施形態に係る熱交換器の製造方法の本接合工程の終了位置を示す模式図である。It is a schematic diagram which shows the end position of this joining process of the manufacturing method of the heat exchanger which concerns on 2nd Embodiment of this invention. 従来の熱交換器の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the conventional heat exchanger.
[第一実施形態]
 本発明の実施形態について、適宜図面を参照しながら説明する。第一実施形態に係る熱交換器1は、図1に示すように、押出多孔管2と、押出多孔管2の両端に配置された蓋体3,3とで構成されている。熱交換器1は、内部に流体を流通させて、配置される発熱体を冷却する機器である。押出多孔管2と蓋体3,3とは摩擦攪拌接合で一体化される。
[First Embodiment]
Embodiments of the present invention will be described with reference to the drawings as appropriate. As shown in FIG. 1, the heat exchanger 1 according to the first embodiment is composed of an extruded perforated pipe 2 and lids 3 and 3 arranged at both ends of the extruded perforated pipe 2. The heat exchanger 1 is a device that cools a heating element that is arranged by circulating a fluid inside. The extruded perforated pipe 2 and the lids 3 and 3 are integrated by friction stir welding.
 押出多孔管2は、本体部11と、複数のフィン12とで主に構成されている。押出多孔管2は、本実施形態では第二アルミニウム合金を主に含んで形成されている。第二アルミニウム合金は、例えば、JIS A1050,A1100,A6063等のアルミニウム合金展伸材で形成されている。押出多孔管2は、第二アルミニウム合金で形成された押出形材である。 The extruded perforated pipe 2 is mainly composed of a main body 11 and a plurality of fins 12. In this embodiment, the extruded perforated pipe 2 is formed mainly containing a second aluminum alloy. The second aluminum alloy is formed of, for example, an aluminum alloy wrought material such as JIS A1050, A1100, A6063. The extruded perforated pipe 2 is an extruded shape member made of a second aluminum alloy.
 本体部11は、筒状を呈する。本体部11の側部11a,11bは外側(本体部11の幅方向外側)に凸となるように湾曲している。本体部11の基板部11c,11dは平坦になっており、平行に対向している。つまり、本体部11の断面は長丸形状になっている。フィン12は、基板部11c,11dに対して垂直になっている。フィン12は、本体部11の押し出し方向に延設され、それぞれ平行に形成されている。隣り合うフィン12の間には、流体が流通する断面矩形の孔部13が形成されている。 The main body 11 has a tubular shape. The side portions 11a and 11b of the main body portion 11 are curved so as to be convex outward (outside in the width direction of the main body portion 11). The substrate portions 11c and 11d of the main body portion 11 are flat and face each other in parallel. That is, the cross section of the main body 11 has an oblong shape. The fins 12 are perpendicular to the substrate portions 11c and 11d. The fins 12 extend in the pushing direction of the main body 11, and are formed in parallel with each other. A hole 13 having a rectangular cross section through which a fluid flows is formed between the adjacent fins 12.
 押出多孔管2の両端の開口部には、フィン12が形成されていない嵌合部14が形成されている。嵌合部14は、後記する蓋体3の周壁部22が挿入される部位である。嵌合部14は、フィン12の両端を切削することにより形成されている。押出多孔管2の形状は、上記した形状に限定されるものではない。例えば、押出多孔管2の断面(押出方向に対して垂直な断面)が、円形、楕円形又は角形であってもよい。 Fitting portions 14 having no fins 12 formed are formed in the openings at both ends of the extruded perforated pipe 2. The fitting portion 14 is a portion into which the peripheral wall portion 22 of the lid body 3, which will be described later, is inserted. The fitting portion 14 is formed by cutting both ends of the fin 12. The shape of the extruded perforated pipe 2 is not limited to the above-mentioned shape. For example, the cross section of the extruded perforated pipe 2 (cross section perpendicular to the extrusion direction) may be circular, elliptical, or square.
 蓋体3,3は、押出多孔管2の両端の開口部を封止する部材である。蓋体3,3は、それぞれ同形状になっている。蓋体3は、底部21と、周壁部22とを有する。底部21は、長丸形状を呈する板状部材である。底部21の外形は、押出多孔管2の開口部を封止するように、押出多孔管2の本体部11の外形と概ね同形状になっている。周壁部22は、底部21の周縁部から垂直に立ち上がる部位である。周壁部22は、底部21の形状に沿って長丸の枠状に形成されている。底部21と周壁部22とで凹状のヘッダー流路24が形成されている。 The lids 3 and 3 are members that seal the openings at both ends of the extruded perforated pipe 2. The lids 3 and 3 have the same shape. The lid 3 has a bottom portion 21 and a peripheral wall portion 22. The bottom portion 21 is a plate-shaped member having an oval shape. The outer shape of the bottom portion 21 is substantially the same as the outer shape of the main body portion 11 of the extruded perforated pipe 2 so as to seal the opening of the extruded perforated pipe 2. The peripheral wall portion 22 is a portion that rises vertically from the peripheral edge portion of the bottom portion 21. The peripheral wall portion 22 is formed in an oval frame shape along the shape of the bottom portion 21. A concave header flow path 24 is formed by the bottom portion 21 and the peripheral wall portion 22.
 蓋体3の材料は、摩擦攪拌可能な金属であれば特に制限されないが、本実施形態では第一アルミニウム合金を主に含んで形成されている。第一アルミニウム合金は、第二アルミニウム合金よりも硬度の高い材料である。第一アルミニウム合金は、例えば、JISH5302 ADC12(Al-Si-Cu系)等のアルミニウム合金鋳造材を用いている。 The material of the lid 3 is not particularly limited as long as it is a metal capable of friction stir welding, but in the present embodiment, it is formed mainly containing a first aluminum alloy. The first aluminum alloy is a material having a higher hardness than the second aluminum alloy. As the first aluminum alloy, for example, an aluminum alloy casting material such as JISH5302 ADC12 (Al—Si—Cu system) is used.
 図2にも示すように、周壁部22の外周縁には、段差側面23aと、段差側面23aから立ち上がる段差傾斜面23bとで構成された周壁段差部23が形成されている。周壁段差部23は、周方向全体にわたって形成されている。段差側面23aは、押し出し方向と平行になっている。段差傾斜面23bは、段差側面23aから外側(本体部11の幅方向外側)に向かうにつれて底部21に近接するように傾斜している。換言すると、段差傾斜面23bは、外側に向かうにつれて本体部11から離間するように傾斜している。段差傾斜面23bの傾斜角度βは、一定の傾斜角度になっている。 As shown in FIG. 2, a peripheral wall step portion 23 composed of a step side surface 23a and a step inclined surface 23b rising from the step side surface 23a is formed on the outer peripheral edge of the peripheral wall portion 22. The peripheral wall step portion 23 is formed over the entire peripheral direction. The step side surface 23a is parallel to the extrusion direction. The step inclined surface 23b is inclined so as to approach the bottom portion 21 from the step side surface 23a toward the outside (outside in the width direction of the main body portion 11). In other words, the step inclined surface 23b is inclined so as to be separated from the main body portion 11 toward the outside. The inclination angle β of the step inclined surface 23b is a constant inclination angle.
 押出多孔管2の外周面11fと周壁部22の外周面22bとは面一でもよいが、本実施形態では、押出多孔管2及び蓋体3は、後記する突合せ工程を行った後、周壁部22の外周面22bよりも、押出多孔管2の外周面11fが外側となるように設定している。換言すると、段差傾斜面23bの高さ寸法よりも、押出多孔管2の端面11eの高さ(厚さ)寸法の方が大きくなるように設定している。 The outer peripheral surface 11f of the extruded perforated pipe 2 and the outer peripheral surface 22b of the peripheral wall portion 22 may be flush with each other, but in the present embodiment, the extruded perforated pipe 2 and the lid 3 are subjected to the butt step described later, and then the peripheral wall portion is formed. The outer peripheral surface 11f of the extruded perforated pipe 2 is set to be on the outer side of the outer peripheral surface 22b of 22. In other words, the height (thickness) dimension of the end surface 11e of the extruded perforated pipe 2 is set to be larger than the height dimension of the stepped inclined surface 23b.
 次に、本実施形態に係る熱交換器の製造方法について説明する。本実施形態に係る熱交換器の製造方法では、準備工程と、突合せ工程と、本接合工程とを行う。 Next, the method of manufacturing the heat exchanger according to the present embodiment will be described. In the heat exchanger manufacturing method according to the present embodiment, a preparation step, a butt step, and a main joining step are performed.
 準備工程は、押出多孔管2及び蓋体3を準備する工程である。押出多孔管2及び蓋体3は、製造方法については特に制限されないが、押出多孔管2は、例えば、押出成形で成形する。蓋体3は、例えば、ダイキャストにより成形する。 The preparation step is a step of preparing the extruded perforated pipe 2 and the lid 3. The extruded perforated pipe 2 and the lid 3 are not particularly limited in terms of manufacturing method, but the extruded perforated pipe 2 is molded by, for example, extrusion molding. The lid 3 is molded by die casting, for example.
 突合せ工程は、図2に示すように、押出多孔管2に蓋体3を突き合わせる工程である。突合せ工程では、蓋体3の周壁部22に、押出多孔管2の嵌合部14を嵌め合わせる。これにより、蓋体3の段差傾斜面23bと押出多孔管2の端面11eとが突き合わされて突合せ部J1が形成されるとともに、蓋体3の段差側面23aと押出多孔管2の内周面11gとが重ね合わされて突合せ部J2が形成される。周壁部22の端面22aと、フィン12の端面12aとは接触するか、わずかな隙間をあけて対向する。突合せ部J1,J2は、周方向にわたって形成される。突合せ部J1には断面V字状の隙間が形成される。 The butt step is a step of butting the lid 3 against the extruded perforated pipe 2 as shown in FIG. In the butt step, the fitting portion 14 of the extruded perforated pipe 2 is fitted to the peripheral wall portion 22 of the lid body 3. As a result, the stepped inclined surface 23b of the lid 3 and the end surface 11e of the extruded perforated pipe 2 are abutted to form the butt portion J1, and the stepped side surface 23a of the lid 3 and the inner peripheral surface 11g of the extruded perforated pipe 2 are formed. And are overlapped to form a butt portion J2. The end face 22a of the peripheral wall portion 22 and the end face 12a of the fin 12 are in contact with each other or face each other with a slight gap. The butt portions J1 and J2 are formed over the circumferential direction. A gap having a V-shaped cross section is formed in the butt portion J1.
 本接合工程は、図3及び図4に示すように、回転ツールFを用いて突合せ部J1を摩擦攪拌接合する工程である。まず、突合せ部J1に対して蓋体3から離間する位置に「設定移動ルートL1」(一点鎖線)を設定する。設定移動ルートL1は、後記する本接合工程において、突合せ部J1を接合するために必要な回転ツールFの移動ルートである。設定移動ルートL1については追って詳述する。 As shown in FIGS. 3 and 4, this joining step is a step of friction stir welding of the butt portion J1 using the rotary tool F. First, the "set movement route L1" (dashed line) is set at a position away from the lid 3 with respect to the butt portion J1. The set movement route L1 is a movement route of the rotation tool F necessary for joining the butt portion J1 in the main joining step described later. The set movement route L1 will be described in detail later.
 図4に示すように、回転ツールFは、連結部F1と、攪拌ピンF2とで構成されている。回転ツールFは、例えば工具鋼で形成されている。連結部F1は、摩擦攪拌装置(図示省略)の回転軸に連結される部位である。連結部F1は円柱状を呈し、ボルトが締結されるネジ孔(図示省略)が形成されている。 As shown in FIG. 4, the rotation tool F is composed of a connecting portion F1 and a stirring pin F2. The rotary tool F is made of, for example, tool steel. The connecting portion F1 is a portion connected to the rotating shaft of the friction stir device (not shown). The connecting portion F1 has a columnar shape, and a screw hole (not shown) for fastening a bolt is formed.
 攪拌ピンF2は、連結部F1から垂下しており、連結部F1と同軸になっている。攪拌ピンF2は連結部F1から離間するにつれて先細りになっている。回転中心軸Zに対する攪拌ピンF2の傾斜角度αは、鉛直面に対する段差傾斜面23bの傾斜角度β(図2)と同一になっている。攪拌ピンF2の先端には平坦な平坦面F3を備えている。 The stirring pin F2 hangs down from the connecting portion F1 and is coaxial with the connecting portion F1. The stirring pin F2 is tapered as it is separated from the connecting portion F1. The inclination angle α of the stirring pin F2 with respect to the rotation center axis Z is the same as the inclination angle β (FIG. 2) of the step inclined surface 23b with respect to the vertical plane. The tip of the stirring pin F2 is provided with a flat flat surface F3.
 攪拌ピンF2の外周面には螺旋溝が刻設されている。本実施形態では、回転ツールFを右回転させるため、螺旋溝は、基端から先端に向かうにつれて左回りに形成されている。言い換えると、螺旋溝は、螺旋溝を基端から先端に向けてなぞると上から見て左回りに形成されている。 A spiral groove is engraved on the outer peripheral surface of the stirring pin F2. In the present embodiment, in order to rotate the rotation tool F clockwise, the spiral groove is formed counterclockwise from the base end to the tip end. In other words, the spiral groove is formed counterclockwise when viewed from above when the spiral groove is traced from the base end to the tip end.
 なお、回転ツールFを左回転させる場合は、螺旋溝を基端から先端に向かうにつれて右回りに形成することが好ましい。言い換えると、この場合の螺旋溝は、螺旋溝を基端から先端に向けてなぞると上から見て右回りに形成されている。螺旋溝をこのように設定することで、摩擦攪拌の際に塑性流動化した金属が螺旋溝によって攪拌ピンF2の先端側に導かれる。これにより、被接合金属部材(押出多孔管2及び蓋体3)の外部に溢れ出る金属の量を少なくすることができる。回転ツールFは、例えば、先端にスピンドルユニット等の回転駆動手段を備えたロボットアームに取り付けてもよい。 When rotating the rotation tool F counterclockwise, it is preferable to form the spiral groove clockwise from the base end to the tip end. In other words, the spiral groove in this case is formed clockwise when viewed from above when the spiral groove is traced from the base end to the tip end. By setting the spiral groove in this way, the metal plastically fluidized during friction stir welding is guided to the tip end side of the stirring pin F2 by the spiral groove. As a result, the amount of metal that overflows to the outside of the metal member to be joined (extruded perforated pipe 2 and lid 3) can be reduced. The rotation tool F may be attached to, for example, a robot arm having a rotation driving means such as a spindle unit at its tip.
 図3に示すように、本接合工程では、開始位置SP1から中間点S1までの押入区間と、設定移動ルートL1上の中間点S1から一周廻って中間点S2までの本区間と、中間点S2から終了位置EP1までの離脱区間の三つの区間を連続して摩擦攪拌接合する。中間点S1,S2は、設定移動ルートL1上に設定されている。開始位置SP1は、押出多孔管2の本体部11において、設定移動ルートL1に対して蓋体3から離間する位置に設定されている。本実施形態では、開始位置SP1と中間点S1とを結ぶ線分と、設定移動ルートL1とのなす角度が鈍角となる位置に開始位置SP1を設定している。 As shown in FIG. 3, in the main joining step, the closet section from the start position SP1 to the intermediate point S1, the main section from the intermediate point S1 on the set movement route L1 to the intermediate point S2, and the intermediate point S2. Three sections of the detachment section from to the end position EP1 are continuously friction-stir welded. The intermediate points S1 and S2 are set on the set movement route L1. The start position SP1 is set in the main body 11 of the extruded perforated pipe 2 at a position separated from the lid 3 with respect to the set movement route L1. In the present embodiment, the start position SP1 is set at a position where the angle formed by the line segment connecting the start position SP1 and the intermediate point S1 and the set movement route L1 is an obtuse angle.
 本接合工程の押入区間では、開始位置SP1から中間点S1までの摩擦攪拌を行う。押入区間では、本体部11の外周面11fに対して回転中心軸Zを垂直にしつつ、右回転させた攪拌ピンF2を開始位置SP1に挿入し、中間点S1まで相対移動させる。この際、少なくとも中間点S1に到達するまでに予め設定された「所定の深さ」に達するように攪拌ピンF2を徐々に押し入れていく。つまり、回転ツールFを一ヶ所に留まらせることなく、回転ツールFを設定移動ルートL1に移動させながら徐々に下降させていく。回転ツールFが中間点S1に達したら、そのまま本区間に移行する。 In the closet section of the main joining process, friction stirring is performed from the start position SP1 to the intermediate point S1. In the closet section, the stirring pin F2 rotated clockwise is inserted into the start position SP1 while the rotation center axis Z is perpendicular to the outer peripheral surface 11f of the main body 11, and is relatively moved to the intermediate point S1. At this time, the stirring pin F2 is gradually pushed in so as to reach a preset "predetermined depth" by at least reaching the intermediate point S1. That is, the rotation tool F is gradually lowered while being moved to the set movement route L1 without staying in one place. When the rotation tool F reaches the intermediate point S1, the section shifts to this section as it is.
 本区間では、図4に示すように回転ツールFを設定移動ルートL1に沿って一周させる。本区間においては、中間点S1に達した際に、攪拌ピンF2の外周面と段差傾斜面23bとが平行となるように設定する。また、中間点S1に達した際に、攪拌ピンF2の外周面と段差傾斜面23bとがわずかに接触するように設定する。回転ツールFの回転中心軸Zと、本体部11の外周面11fとが垂直となるように設定し、これらを維持した状態で、突合せ部J1に沿って回転ツールFを相対移動させる。 In this section, as shown in FIG. 4, the rotation tool F is made to go around along the set movement route L1. In this section, when the intermediate point S1 is reached, the outer peripheral surface of the stirring pin F2 and the step inclined surface 23b are set to be parallel. Further, when the intermediate point S1 is reached, the outer peripheral surface of the stirring pin F2 and the stepped inclined surface 23b are set to slightly contact each other. The rotation center axis Z of the rotation tool F and the outer peripheral surface 11f of the main body 11 are set to be vertical, and the rotation tool F is relatively moved along the butt portion J1 while maintaining these.
 攪拌ピンF2の外周面と段差傾斜面23bとの接触代(オフセット量)Nは、例えば、0<N≦1.0mmの間で設定し、好ましくは0<N≦0.85mmの間で設定し、より好ましくは0<N≦0.65mmの間で設定する。 The contact allowance (offset amount) N between the outer peripheral surface of the stirring pin F2 and the stepped inclined surface 23b is set, for example, between 0 <N ≦ 1.0 mm, preferably 0 <N ≦ 0.85 mm. However, it is more preferably set between 0 <N ≦ 0.65 mm.
 設定移動ルートL1は、図4に示すように、平坦面F3の中心が通過する軌跡を示している。つまり、設定移動ルートL1は、突合せ部J1の周方向において、段差傾斜面23bと攪拌ピンF2の外周面とを平行にしつつ両者がわずかに接触するように設定されている。本区間においては、回転ツールFを上方から見た場合に、平坦面F3の中心が、設定移動ルートL1と重なるように回転ツールFを移動させる。なお、攪拌ピンF2の「所定の深さ」は、適宜設定すればよいが、本実施形態では回転ツールFの平坦面F3が、段差側面23aを突き抜ける位置まで挿入する。これにより、突合せ部J2も確実に接合することができる。 As shown in FIG. 4, the set movement route L1 shows a locus through which the center of the flat surface F3 passes. That is, the set movement route L1 is set so that the step inclined surface 23b and the outer peripheral surface of the stirring pin F2 are made parallel to each other and slightly contact each other in the circumferential direction of the butt portion J1. In this section, when the rotation tool F is viewed from above, the rotation tool F is moved so that the center of the flat surface F3 overlaps with the set movement route L1. The "predetermined depth" of the stirring pin F2 may be appropriately set, but in the present embodiment, the flat surface F3 of the rotating tool F is inserted to a position where it penetrates the step side surface 23a. As a result, the butt portion J2 can also be reliably joined.
 攪拌ピンF2の外周面と段差傾斜面23bとが接触しないように設定すると、突合せ部J1の接合強度が低くなる。一方、攪拌ピンF2の段差傾斜面23bの接触代Nが1.0mmを超えると蓋体3の第一アルミニウム合金が、押出多孔管2側に大量に混入して接合不良となるおそれがある。 If the outer peripheral surface of the stirring pin F2 and the stepped inclined surface 23b are set so as not to come into contact with each other, the joint strength of the butt portion J1 becomes low. On the other hand, if the contact allowance N of the stepped inclined surface 23b of the stirring pin F2 exceeds 1.0 mm, a large amount of the first aluminum alloy of the lid 3 may be mixed into the extruded perforated pipe 2 side, resulting in poor joining.
 図5に示すように、回転ツールFを一周させて攪拌ピンF2が中間点S2に到達したら、そのまま離脱区間に移行する。離脱区間では、中間点S2から終了位置EP1に向かうまでの間に攪拌ピンF2を徐々に引き抜いて(上昇させて)、終了位置EP1で押出多孔管2から攪拌ピンF2を離脱させる。つまり、回転ツールFを一ヶ所に留まらせることなく、回転ツールFを終了位置EP1に移動させながら徐々に引抜いていく。終了位置EP1は、終了位置EP1と中間点S2とが結ぶ線分と設定移動ルートL1とでなす角度が鈍角となる位置に設定する。回転ツールFの移動軌跡には塑性化領域W1が形成される。なお、前記したように押出多孔管2と一端側の蓋体3との摩擦攪拌接合が終了したら、同じ要領で押出多孔管2と他端側の蓋体3との摩擦攪拌接合を行う。 As shown in FIG. 5, when the stirring pin F2 reaches the intermediate point S2 by rotating the rotating tool F around the rotation tool F, the rotation tool F shifts to the withdrawal section as it is. In the detachment section, the stirring pin F2 is gradually pulled out (raised) from the intermediate point S2 toward the end position EP1, and the stirring pin F2 is detached from the extruded perforated pipe 2 at the end position EP1. That is, the rotation tool F is gradually pulled out while being moved to the end position EP1 without staying in one place. The end position EP1 is set at a position where the angle formed by the line segment connecting the end position EP1 and the intermediate point S2 and the set movement route L1 is an obtuse angle. A plasticized region W1 is formed in the movement locus of the rotation tool F. When the friction stir welding between the extruded porous pipe 2 and the lid 3 on one end side is completed as described above, the friction stir welding between the extruded porous pipe 2 and the lid 3 on the other end side is performed in the same manner.
 以上説明した本実施形態における熱交換器の製造方法によれば、押出多孔管2と攪拌ピンF2との摩擦熱によって突合せ部J1の主として押出多孔管2側の第二アルミニウム合金が攪拌されて塑性流動化され、突合せ部J1において押出多孔管2の端面11eと蓋体3の段差傾斜面23bとを接合することができる。 According to the method for manufacturing the heat exchanger in the present embodiment described above, the frictional heat between the extruded perforated pipe 2 and the stirring pin F2 stirs the second aluminum alloy mainly on the extruded perforated pipe 2 side of the butt portion J1 to make it plastic. It is fluidized, and the end surface 11e of the extruded perforated pipe 2 and the stepped inclined surface 23b of the lid 3 can be joined at the butt portion J1.
 また、攪拌ピンF2の外周面を段差傾斜面23bにわずかに接触させるに留めるため、蓋体3から押出多孔管2への第一アルミニウム合金の混入を極力少なくすることができる。これにより、突合せ部J1においては主として押出多孔管2側の第二アルミニウム合金が摩擦攪拌されるため、接合強度の低下を抑制することができる。つまり、本接合工程では、攪拌ピンF2の回転中心軸Zに対して一方側と他方側で、攪拌ピンF2が受ける材料抵抗の不均衡を極力少なくすることができる。また、攪拌ピンF2の外周面と蓋体3の段差傾斜面23bとを平行に設定しているため、塑性流動材がバランス良く摩擦攪拌され、接合強度の低下を抑制することができる。 Further, since the outer peripheral surface of the stirring pin F2 is kept slightly in contact with the stepped inclined surface 23b, it is possible to minimize the mixing of the first aluminum alloy from the lid 3 into the extruded perforated pipe 2. As a result, in the butt portion J1, the second aluminum alloy on the extruded perforated pipe 2 side is mainly frictionally agitated, so that a decrease in joint strength can be suppressed. That is, in this joining step, the imbalance of the material resistance received by the stirring pin F2 on one side and the other side with respect to the rotation center axis Z of the stirring pin F2 can be minimized. Further, since the outer peripheral surface of the stirring pin F2 and the stepped inclined surface 23b of the lid 3 are set in parallel, the plastic fluid material is frictionally agitated in a well-balanced manner, and a decrease in joint strength can be suppressed.
 また、本接合工程の押入区間では、開始位置SP1から設定移動ルートL1と重複する位置まで回転ツールFを移動させつつ所定の深さとなるまで攪拌ピンF2を徐々に押入することにより、設定移動ルートL1上で回転ツールFが停止して摩擦熱が過大になるのを防ぐことができる。
 同様に、本接合工程の離脱区間では、設定移動ルートL1から終了位置EP1まで回転ツールFを移動させつつ所定の深さから攪拌ピンF2を徐々に引き抜いて離脱させることにより、設定移動ルートL1上で回転ツールFが停止して摩擦熱が過大になるのを防ぐことができる。
Further, in the closet section of the main joining step, the set movement route is gradually pushed in until the stirring pin F2 reaches a predetermined depth while moving the rotation tool F from the start position SP1 to a position overlapping the set movement route L1. It is possible to prevent the rotation tool F from stopping on L1 and causing the frictional heat to become excessive.
Similarly, in the separation section of the main joining step, the stirring pin F2 is gradually pulled out from a predetermined depth while moving the rotation tool F from the set movement route L1 to the end position EP1 to separate the stirring pin F2 on the set movement route L1. It is possible to prevent the rotation tool F from stopping and the frictional heat from becoming excessive.
 これらにより、設定移動ルートL1上で摩擦熱が過大となり、蓋体3から押出多孔管2へ第一アルミニウム合金が過剰に混入して接合不良となるのを防ぐことができる。 As a result, it is possible to prevent the frictional heat from becoming excessive on the set movement route L1 and excessively mixing the first aluminum alloy from the lid 3 into the extruded perforated pipe 2 resulting in poor joining.
 また、本接合工程において、開始位置SP1及び終了位置EP1の位置は適宜設定すればよいが、開始位置SP1と設定移動ルートL1とのなす角度、終了位置EP1と設定移動ルートL1とのなす角度が鈍角となるように設定することにより、中間点S1,S2で回転ツールFの移動速度が低下することなくスムーズに本区間又は離脱区間に移行することができる。これにより、設定移動ルートL1上で回転ツールFが停止又は移動速度が低下することにより、摩擦熱が過大となることを防ぐことができる。なお、上方から見て回転ツールFの軌跡が円弧を描くように開始位置SP1から設定移動ルートL1に回転ツールFを移動させてもよい。同様に、上方から見て回転ツールFの軌跡が円弧を描くように設定移動ルートL1から終了位置EP1に回転ツールFを移動させてもよい。 Further, in this joining step, the positions of the start position SP1 and the end position EP1 may be appropriately set, but the angle formed by the start position SP1 and the set movement route L1 and the angle formed by the end position EP1 and the set movement route L1 are different. By setting the angle to be obtuse, it is possible to smoothly shift to the main section or the departure section at the intermediate points S1 and S2 without reducing the moving speed of the rotation tool F. As a result, it is possible to prevent the frictional heat from becoming excessive due to the rotation tool F stopping or the moving speed decreasing on the set movement route L1. The rotation tool F may be moved from the start position SP1 to the set movement route L1 so that the locus of the rotation tool F draws an arc when viewed from above. Similarly, the rotation tool F may be moved from the set movement route L1 to the end position EP1 so that the locus of the rotation tool F draws an arc when viewed from above.
 また、本実施形態の本接合工程では、回転ツールFの回転方向及び進行方向は適宜設定すればよいが、回転ツールFの移動軌跡に形成される塑性化領域W1のうち、蓋体3側(突合せ部J1側)がシアー側となり、押出多孔管2側がフロー側となるように回転ツールFの回転方向及び進行方向を設定した。蓋体3側がシアー側となるように設定することで、突合せ部J1の周囲における攪拌ピンF2による攪拌作用が高まり、突合せ部J1における温度上昇が期待でき、突合せ部J1において押出多孔管2と蓋体3とをより確実に接合することができる。 Further, in the main joining step of the present embodiment, the rotation direction and the traveling direction of the rotation tool F may be appropriately set, but the lid 3 side (of the plasticized region W1 formed in the movement locus of the rotation tool F) ( The rotation direction and the traveling direction of the rotation tool F were set so that the butt portion J1 side) was on the shear side and the extruded perforated pipe 2 side was on the flow side. By setting the lid 3 side to be the shear side, the stirring action by the stirring pin F2 around the butt portion J1 is enhanced, the temperature rise in the butt portion J1 can be expected, and the extruded perforated pipe 2 and the lid in the butt portion J1. The body 3 can be joined more reliably.
 なお、シアー側(Advancing side)とは、被接合部に対する回転ツールの外周の相対速度が、回転ツールの外周における接線速度の大きさに移動速度の大きさを加算した値となる側を意味する。一方、フロー側(Retreating side)とは、回転ツールの移動方向の反対方向に回転ツールが回動することで、被接合部に対する回転ツールの相対速度が低速になる側を言う。 The shear side (Advancing side) means the side where the relative speed of the outer circumference of the rotating tool with respect to the jointed portion is the value obtained by adding the magnitude of the moving speed to the magnitude of the tangential velocity on the outer circumference of the rotating tool. .. On the other hand, the flow side (Retreating side) refers to the side where the relative speed of the rotating tool with respect to the jointed portion becomes low due to the rotation of the rotating tool in the direction opposite to the moving direction of the rotating tool.
 また、蓋体3の第一アルミニウム合金は、押出多孔管2の第二アルミニウム合金よりも硬度の高い材料になっている。これにより、熱交換器1の耐久性を高めることができる。また、蓋体3の第一アルミニウム合金をアルミニウム合金鋳造材とし、押出多孔管2の第二アルミニウム合金をアルミニウム合金展伸材とすることが好ましい。第一アルミニウム合金を例えば、JISH5302 ADC12等のAl-Si-Cu系アルミニウム合金鋳造材とすることにより、蓋体3の鋳造性、強度、被削性等を高めることができる。また、第二アルミニウム合金を例えば、JIS A1000系又はA6000系とすることにより、押出多孔管2の加工性、熱伝導性を高めることができる。 Further, the first aluminum alloy of the lid 3 is a material having a higher hardness than the second aluminum alloy of the extruded perforated pipe 2. Thereby, the durability of the heat exchanger 1 can be enhanced. Further, it is preferable that the first aluminum alloy of the lid 3 is an aluminum alloy casting material and the second aluminum alloy of the extruded perforated pipe 2 is an aluminum alloy wrought material. By using an Al—Si—Cu based aluminum alloy casting material such as JIS H5302 ADC12 as the first aluminum alloy, the castability, strength, machinability, etc. of the lid 3 can be improved. Further, by using, for example, JIS A1000 series or A6000 series as the second aluminum alloy, the processability and thermal conductivity of the extruded perforated pipe 2 can be improved.
 また、本接合工程においては、突合せ部J1の全周を摩擦攪拌接合できるため、熱交換器の気密性及び水密性を高めることができる。また、本接合工程の終端部分において、回転ツールFが中間点S1を完全に通過してから終了位置EP1に向かうようにする。つまり、本接合工程によって形成された塑性化領域W1の各端部同士をオーバーラップさせることにより、より気密性及び水密性を高めることができる。 Further, in this joining step, since the entire circumference of the butt portion J1 can be subjected to friction stir welding, the airtightness and watertightness of the heat exchanger can be improved. Further, at the end portion of the main joining step, the rotation tool F is made to move toward the end position EP1 after completely passing through the intermediate point S1. That is, the airtightness and watertightness can be further improved by overlapping the ends of the plasticized region W1 formed by this joining step with each other.
 また、本接合工程では、回転ツールFの攪拌ピンF2の基端側を露出した状態で摩擦攪拌を行うため、摩擦攪拌装置に作用する負荷を軽減することができる。また、本実施形態では、突合せ工程を行った後、周壁部22の外周面22bよりも、押出多孔管2の外周面11fが外側となるように設定している。これにより、摩擦攪拌を行う際に、突合せ部J1の金属不足をより防ぐことができる。 Further, in this joining step, friction stir welding is performed with the base end side of the stirring pin F2 of the rotary tool F exposed, so that the load acting on the friction stir welding device can be reduced. Further, in the present embodiment, after the butt step is performed, the outer peripheral surface 11f of the extruded perforated pipe 2 is set to be outside the outer peripheral surface 22b of the peripheral wall portion 22. As a result, it is possible to further prevent the metal shortage of the butt portion J1 when performing friction stir welding.
 また、蓋体3にヘッダー流路24を備えることにより、孔部13に流入又は流出する流体を集約することができる。 Further, by providing the header flow path 24 in the lid 3, the fluid flowing in or out of the hole 13 can be collected.
 なお、本接合工程では、回転ツールFの回転速度を一定としてもよいが、可変させてもよい。本接合工程の押入区間において、開始位置SP1における回転ツールFの回転速度をV1とし、本区間における回転ツールFの回転速度をV2とすると、V1>V2としてもよい。回転速度のV2は、設定移動ルートL1における予め設定された一定の回転速度である。つまり、開始位置SP1では、回転速度を高く設定しておき、押入区間内で徐々に回転速度を低減させながら本区間に移行してもよい。 In the main joining step, the rotation speed of the rotation tool F may be constant, but may be variable. In the indentation section of the main joining step, if the rotation speed of the rotation tool F at the start position SP1 is V1 and the rotation speed of the rotation tool F in this section is V2, V1> V2 may be satisfied. The rotation speed V2 is a preset constant rotation speed in the set movement route L1. That is, at the start position SP1, the rotation speed may be set high, and the rotation speed may be gradually reduced in the closet section to shift to the main section.
 また、第一本接合工程の離脱区間において、本区間における回転ツールFの回転速度をV2、終了位置EP1において離脱させるときの回転ツールFの回転速度をV3とすると、V3>V2としてもよい。つまり、離脱区間に移行したら、終了位置EP1に向けて徐々に回転速度を上げながら押出多孔管2から回転ツールFを離脱させてもよい。回転ツールFを押出多孔管2に押し入れる際又は押出多孔管2から離脱させる際に、前記のように設定することで、押入区間又は離脱区間時における少ない押圧力を、回転速度で補うことができるため、摩擦攪拌を好適に行うことができる。 Further, in the detachment section of the first main joining process, if the rotation speed of the rotation tool F in this section is V2 and the rotation speed of the rotation tool F at the end position EP1 is V3, V3> V2 may be satisfied. That is, after shifting to the detachment section, the rotation tool F may be detached from the extruded perforated pipe 2 while gradually increasing the rotation speed toward the end position EP1. When the rotary tool F is pushed into the extruded perforated pipe 2 or separated from the extruded perforated pipe 2, by setting as described above, it is possible to supplement the small pressing pressure in the indentation section or the inseparing section with the rotation speed. Therefore, friction stir welding can be preferably performed.
[第二実施形態]
 次に、本発明の第二実施形態に係る熱交換器の製造方法について説明する。第二実施形態では、図6,7に示すように、本接合工程における開始位置SP1、中間点S1,S2及び終了位置EP1の位置をいずれも設定移動ルートL1上に設定する点で第一実施形態と相違する。第二実施形態では、第一実施形態と相違する部分を中心に説明する。
[Second Embodiment]
Next, a method for manufacturing the heat exchanger according to the second embodiment of the present invention will be described. In the second embodiment, as shown in FIGS. 6 and 7, the first embodiment is set in that the positions of the start position SP1, the intermediate points S1 and S2, and the end position EP1 in the main joining process are all set on the set movement route L1. Different from the form. In the second embodiment, the parts different from the first embodiment will be mainly described.
 第二実施形態に係る熱交換器の製造では、準備工程と、突合せ工程と、本接合工程とを行う。準備工程及び突合せ工程は、第一実施形態と同一である。 In the manufacture of the heat exchanger according to the second embodiment, the preparation step, the butt step, and the main joining step are performed. The preparation step and the butt step are the same as those in the first embodiment.
 本接合工程では、図6に示すように、開始位置SP1を設定移動ルートL1上に設定する。本接合工程では、開始位置SP1から中間点S1までの押入区間と、設定移動ルートL1上の中間点S1から一周廻って中間点S2までの本区間と、中間点S2から終了位置EP1までの離脱区間の三つの区間を連続して摩擦攪拌する。 In this joining process, as shown in FIG. 6, the start position SP1 is set on the set movement route L1. In this joining process, the intrusion section from the start position SP1 to the intermediate point S1, the main section from the intermediate point S1 on the set movement route L1 to the intermediate point S2, and the departure from the intermediate point S2 to the end position EP1. Friction stir welding is performed continuously for three sections.
 押入区間では、図6に示すように、設定移動ルート上の開始位置SP1から中間点S1までの摩擦攪拌を行う。押入区間では、押出多孔管2の外周面11fに対して回転中心軸Zを垂直となるようにしつつ、右回転させた攪拌ピンF2を開始位置SP1に挿入し、中間点S1まで相対移動させる。この際、少なくとも中間点S1に到達するまでに予め設定された「所定の深さ」に達するように攪拌ピンF2を徐々に押し入れていく。 In the closet section, as shown in FIG. 6, friction stir welding is performed from the start position SP1 on the set movement route to the intermediate point S1. In the intrusion section, the stirring pin F2 rotated clockwise is inserted into the start position SP1 while the rotation center axis Z is perpendicular to the outer peripheral surface 11f of the extruded perforated pipe 2, and is relatively moved to the intermediate point S1. At this time, the stirring pin F2 is gradually pushed in so as to reach a preset "predetermined depth" by at least reaching the intermediate point S1.
 また、押入区間においては、回転ツールFを移動させつつ、中間点S1に達した際に、攪拌ピンF2の外周面と段差傾斜面23bとが平行となるように設定しつつ、攪拌ピンF2の外周面と段差傾斜面23bとがわずかに接触するように設定する。そして、その状態を維持しつつ本区間の摩擦攪拌接合に移行する。攪拌ピンF2の外周面と段差傾斜面23bとの接触代(オフセット量)N及び設定移動ルートL1の設定は第一実施形態と同一である。 Further, in the indentation section, while moving the rotation tool F, when the intermediate point S1 is reached, the outer peripheral surface of the stirring pin F2 and the step inclined surface 23b are set to be parallel to each other, and the stirring pin F2 is set. The outer peripheral surface and the stepped inclined surface 23b are set so as to be in slight contact with each other. Then, while maintaining that state, the process shifts to friction stir welding in this section. The contact allowance (offset amount) N between the outer peripheral surface of the stirring pin F2 and the stepped inclined surface 23b and the setting of the set movement route L1 are the same as those in the first embodiment.
 図7に示すように、回転ツールFを一周させて攪拌ピンF2が中間点S2に到達したら、そのまま離脱区間に移行する。離脱区間では、図7に示すように、中間点S2から終了位置EP1に向かうまでの間に攪拌ピンF2を徐々に引き抜いて(上方に移動させて)、設定移動ルートL1上に設定された終了位置EP1で押出多孔管2から攪拌ピンF2を離脱させる。 As shown in FIG. 7, when the stirring pin F2 reaches the intermediate point S2 by rotating the rotating tool F around the rotation tool F, the rotation tool F shifts to the withdrawal section as it is. In the departure section, as shown in FIG. 7, the stirring pin F2 is gradually pulled out (moved upward) from the intermediate point S2 toward the end position EP1 to end the set on the set movement route L1. At position EP1, the stirring pin F2 is separated from the extruded perforated tube 2.
 以上説明した第二実施形態に係る熱交換器の製造方法によっても第一実施形態と略同等の効果を奏することができる。第二実施形態のように本接合工程における開始位置SP1、終了位置EP1は、設定移動ルートL1上に設定してもよい。 The heat exchanger manufacturing method according to the second embodiment described above can also achieve substantially the same effect as the first embodiment. As in the second embodiment, the start position SP1 and the end position EP1 in the main joining step may be set on the set movement route L1.
 1    熱交換器
 2    押出多孔管
 3    蓋体
 F    回転ツール
 F2   攪拌ピン
 F3   平坦面
 J1   突合せ部
 SP1  開始位置
 EP1  終了位置
 W1   塑性化領域
 
1 Heat exchanger 2 Extruded perforated pipe 3 Lid F Rotating tool F2 Stirring pin F3 Flat surface J1 Butt SP1 Start position EP1 End position W1 Plasticization area

Claims (12)

  1.  内部にフィンを有する押出多孔管と、前記押出多孔管の開口部を封止する蓋体とで構成され、前記押出多孔管と前記蓋体とを摩擦攪拌で接合する熱交換器の製造方法であって、
     前記蓋体は、底部及び前記底部の周縁から立ち上がる周壁部を有し、前記周壁部の外周縁に、段差側面と、当該段差側面から外側に向かうにつれて前記底部側に近接するように傾斜する段差傾斜面と、を有する周壁段差部を形成し、
     前記押出多孔管は、端部に前記フィンが形成されておらず前記周壁部が嵌め合わされる嵌合部を有し、
     前記押出多孔管は第二アルミニウム合金で形成されており、前記蓋体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、
     摩擦攪拌で用いる回転ツールは、攪拌ピンを備えており、前記攪拌ピンは、先端側に向けて先細りとなっており、
     前記押出多孔管の前記嵌合部に前記蓋体の前記周壁部を挿入することにより、前記押出多孔管の内周面と前記蓋体の段差側面とを重ね合わせるとともに、前記押出多孔管の端面と前記蓋体の前記段差傾斜面とを突き合わせて突合せ部に断面V字状の隙間を形成する突合せ工程と、
     回転する前記回転ツールの攪拌ピンのみを前記押出多孔管の外周面に挿入し、前記攪拌ピンの外周面を前記蓋体の段差傾斜面にわずかに接触させた状態で、前記隙間に前記第二アルミニウム合金を流入させながら、前記突合せ部よりも前記押出多孔管側に設定された設定移動ルートに沿って所定の深さで前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、
     前記本接合工程において、回転する前記攪拌ピンのみを前記設定移動ルートよりもさらに前記押出多孔管側に設定した開始位置に挿入した後、前記回転ツールの回転中心軸を前記設定移動ルートと重複する位置まで移動させつつ前記所定の深さとなるまで前記攪拌ピンを徐々に押入することを特徴とする熱交換器の製造方法。
    A method for manufacturing a heat exchanger, which is composed of an extruded perforated pipe having fins inside and a lid for sealing an opening of the extruded perforated pipe, and joins the extruded perforated pipe and the lid by friction stir welding. There,
    The lid has a bottom portion and a peripheral wall portion that rises from the peripheral edge of the bottom portion, and a stepped side surface and a stepped portion that inclines toward the bottom side toward the outside from the stepped side surface on the outer peripheral edge of the peripheral wall portion. Forming a peripheral wall stepped portion having an inclined surface,
    The extruded perforated pipe has a fitting portion in which the fin is not formed at the end portion and the peripheral wall portion is fitted.
    The extruded perforated pipe is formed of a second aluminum alloy, the lid is made of a first aluminum alloy, and the first aluminum alloy is a grade having a higher hardness than the second aluminum alloy.
    The rotary tool used for friction stirring is equipped with a stirring pin, and the stirring pin is tapered toward the tip side.
    By inserting the peripheral wall portion of the lid into the fitting portion of the extruded perforated pipe, the inner peripheral surface of the extruded perforated pipe and the stepped side surface of the lid are overlapped, and the end surface of the extruded perforated pipe is overlapped. And the butt step of abutting the stepped inclined surface of the lid body to form a gap having a V-shaped cross section in the butt portion.
    Only the stirring pin of the rotating tool that rotates is inserted into the outer peripheral surface of the extruded perforated pipe, and the outer peripheral surface of the stirring pin is slightly brought into contact with the stepped inclined surface of the lid, and the second is inserted into the gap. While flowing the aluminum alloy, the butt portion is rubbed around the outer peripheral surface of the extruded perforated pipe at a predetermined depth along a set movement route set on the extruded perforated pipe side of the butt portion. Including the main joining step of stirring,
    In the main joining step, after inserting only the rotating stirring pin at the start position set on the extruded perforated pipe side of the set movement route, the rotation center axis of the rotation tool overlaps with the set movement route. A method for manufacturing a heat exchanger, which comprises gradually pushing in the stirring pin until the predetermined depth is reached while moving the stirring pin to a position.
  2.  前記本接合工程では、所定の回転速度で前記攪拌ピンを回転させて摩擦攪拌を行い、
     前記本接合工程において前記攪拌ピンを挿入するとき、前記所定の回転速度よりも高い速度で前記攪拌ピンを回転させた状態で挿入し、徐々に回転速度を下げながら前記設定移動ルートまで移動させることを特徴とする請求項1に記載の熱交換器の製造方法。
    In the main joining step, the stirring pin is rotated at a predetermined rotation speed to perform frictional stirring.
    When the stirring pin is inserted in the main joining step, the stirring pin is inserted in a state of being rotated at a speed higher than the predetermined rotation speed, and the stirring pin is moved to the set movement route while gradually reducing the rotation speed. The method for manufacturing a heat exchanger according to claim 1, wherein the heat exchanger is manufactured.
  3.  内部にフィンを有する押出多孔管と、前記押出多孔管の開口部を封止する蓋体とで構成され、前記押出多孔管と前記蓋体とを摩擦攪拌で接合する熱交換器の製造方法であって、
     前記蓋体は、底部及び前記底部の周縁から立ち上がる周壁部を有し、前記周壁部の外周縁に、段差側面と、当該段差側面から外側に向かうにつれて前記底部側に近接するように傾斜する段差傾斜面と、を有する周壁段差部を形成し、
     前記押出多孔管は、端部に前記フィンが形成されておらず前記周壁部が嵌め合わされる嵌合部を有し、
     前記押出多孔管は第二アルミニウム合金で形成されており、前記蓋体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、
     摩擦攪拌で用いる回転ツールは、攪拌ピンを備えており、前記攪拌ピンは、先端側に向けて先細りとなっており、
     前記押出多孔管の前記嵌合部に前記蓋体の前記周壁部を挿入することにより、前記押出多孔管の内周面と前記蓋体の段差側面とを重ね合わせるとともに、前記押出多孔管の端面と前記蓋体の前記段差傾斜面とを突き合わせて突合せ部に断面V字状の隙間を形成する突合せ工程と、
     回転する前記回転ツールの攪拌ピンのみを前記押出多孔管の外周面に挿入し、前記攪拌ピンの外周面を前記蓋体の段差傾斜面にわずかに接触させた状態で、前記隙間に前記第二アルミニウム合金を流入させながら、前記突合せ部よりも前記押出多孔管側に設定された設定移動ルートに沿って所定の深さで前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、
     前記本接合工程において、前記設定移動ルート上に設定した開始位置から前記攪拌ピンを挿入し、進行方向に移動させつつ所定の高さとなるまで徐々に前記攪拌ピンを押入することを特徴とする熱交換器の製造方法。
    A method for manufacturing a heat exchanger, which is composed of an extruded perforated pipe having fins inside and a lid for sealing an opening of the extruded perforated pipe, and joins the extruded perforated pipe and the lid by friction stir welding. There,
    The lid has a bottom portion and a peripheral wall portion that rises from the peripheral edge of the bottom portion, and a stepped side surface and a stepped portion that inclines toward the bottom side toward the outside from the stepped side surface on the outer peripheral edge of the peripheral wall portion. Forming a peripheral wall stepped portion having an inclined surface,
    The extruded perforated pipe has a fitting portion in which the fin is not formed at the end portion and the peripheral wall portion is fitted.
    The extruded perforated pipe is formed of a second aluminum alloy, the lid is made of a first aluminum alloy, and the first aluminum alloy is a grade having a higher hardness than the second aluminum alloy.
    The rotary tool used for friction stirring is equipped with a stirring pin, and the stirring pin is tapered toward the tip side.
    By inserting the peripheral wall portion of the lid into the fitting portion of the extruded perforated pipe, the inner peripheral surface of the extruded perforated pipe and the stepped side surface of the lid are overlapped, and the end surface of the extruded perforated pipe is overlapped. And the butt step of abutting the stepped inclined surface of the lid body to form a gap having a V-shaped cross section in the butt portion.
    Only the stirring pin of the rotating tool that rotates is inserted into the outer peripheral surface of the extruded perforated pipe, and the outer peripheral surface of the stirring pin is slightly brought into contact with the stepped inclined surface of the lid, and the second is inserted into the gap. While flowing the aluminum alloy, the butt portion is rubbed around the outer peripheral surface of the extruded perforated pipe at a predetermined depth along a set movement route set on the extruded perforated pipe side of the butt portion. Including the main joining step of stirring,
    In the main joining step, the stirring pin is inserted from a start position set on the set movement route, and the stirring pin is gradually pushed in until it reaches a predetermined height while moving in the traveling direction. How to make a switch.
  4.  前記本接合工程では、所定の回転速度で前記攪拌ピンを回転させて摩擦攪拌を行い、
     前記本接合工程において前記攪拌ピンを挿入するとき、前記所定の回転速度よりも高い速度で前記攪拌ピンを回転させた状態で挿入し、徐々に回転速度を下げながら前記設定移動ルートまで移動させることを特徴とする請求項3に記載の熱交換器の製造方法。
    In the main joining step, the stirring pin is rotated at a predetermined rotation speed to perform frictional stirring.
    When the stirring pin is inserted in the main joining step, the stirring pin is inserted in a state of being rotated at a speed higher than the predetermined rotation speed, and the stirring pin is moved to the set movement route while gradually reducing the rotation speed. The method for manufacturing a heat exchanger according to claim 3, wherein the heat exchanger is manufactured.
  5.  内部にフィンを有する押出多孔管と、前記押出多孔管の開口部を封止する蓋体とで構成され、前記押出多孔管と前記蓋体とを摩擦攪拌で接合する熱交換器の製造方法であって、
     前記蓋体は、底部及び前記底部の周縁から立ち上がる周壁部を有し、前記周壁部の外周縁に、段差側面と、当該段差側面から外側に向かうにつれて前記底部側に近接するように傾斜する段差傾斜面と、を有する周壁段差部を形成し、
     前記押出多孔管は、端部に前記フィンが形成されておらず前記周壁部が嵌め合わされる嵌合部を有し、
     前記押出多孔管は第二アルミニウム合金で形成されており、前記蓋体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、
     摩擦攪拌で用いる回転ツールは、攪拌ピンを備えており、前記攪拌ピンは、先端側に向けて先細りとなっており、
     前記押出多孔管の前記嵌合部に前記蓋体の前記周壁部を挿入することにより、前記押出多孔管の内周面と前記蓋体の段差側面とを重ね合わせるとともに、前記押出多孔管の端面と前記蓋体の前記段差傾斜面とを突き合わせて突合せ部に断面V字状の隙間を形成する突合せ工程と、
     回転する前記回転ツールの攪拌ピンのみを前記押出多孔管の外周面に挿入し、前記攪拌ピンの外周面を前記蓋体の段差傾斜面にわずかに接触させた状態で、前記隙間に前記第二アルミニウム合金を流入させながら、前記突合せ部よりも前記押出多孔管側に設定された設定移動ルートに沿って所定の深さで前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、
     前記本接合工程において、前記設定移動ルートよりもさらに前記押出多孔管側に終了位置を設定し、前記突合せ部に対する摩擦攪拌接合の後、前記回転ツールを前記終了位置に移動させつつ前記攪拌ピンを徐々に引き抜いて前記終了位置で前記押出多孔管から前記回転ツールを離脱させることを特徴とする熱交換器の製造方法。
    A method for manufacturing a heat exchanger, which is composed of an extruded perforated pipe having fins inside and a lid for sealing an opening of the extruded perforated pipe, and joins the extruded perforated pipe and the lid by friction stir welding. There,
    The lid has a bottom portion and a peripheral wall portion that rises from the peripheral edge of the bottom portion, and a stepped side surface and a stepped portion that inclines toward the bottom side toward the outside from the stepped side surface on the outer peripheral edge of the peripheral wall portion. Forming a peripheral wall stepped portion having an inclined surface,
    The extruded perforated pipe has a fitting portion in which the fin is not formed at the end portion and the peripheral wall portion is fitted.
    The extruded perforated pipe is formed of a second aluminum alloy, the lid is made of a first aluminum alloy, and the first aluminum alloy is a grade having a higher hardness than the second aluminum alloy.
    The rotary tool used for friction stirring is equipped with a stirring pin, and the stirring pin is tapered toward the tip side.
    By inserting the peripheral wall portion of the lid into the fitting portion of the extruded perforated pipe, the inner peripheral surface of the extruded perforated pipe and the stepped side surface of the lid are overlapped, and the end surface of the extruded perforated pipe is overlapped. And the butt step of abutting the stepped inclined surface of the lid body to form a gap having a V-shaped cross section in the butt portion.
    Only the stirring pin of the rotating tool that rotates is inserted into the outer peripheral surface of the extruded perforated pipe, and the outer peripheral surface of the stirring pin is slightly brought into contact with the stepped inclined surface of the lid, and the second is inserted into the gap. While flowing the aluminum alloy, the butt portion is rubbed around the outer peripheral surface of the extruded perforated pipe at a predetermined depth along a set movement route set on the extruded perforated pipe side of the butt portion. Including the main joining step of stirring,
    In the main joining step, the end position is set further on the extruded perforated pipe side than the set movement route, and after friction stir welding with respect to the butt portion, the stirring pin is moved while moving the rotating tool to the end position. A method for manufacturing a heat exchanger, which comprises gradually pulling out the rotary tool from the extruded perforated tube at the end position.
  6.  前記本接合工程では、所定の回転速度で前記攪拌ピンを回転させて摩擦攪拌を行い、
     前記本接合工程において前記攪拌ピンを離脱させるとき、前記所定の回転速度よりも徐々に回転速度を上げながら終了位置まで移動させることを特徴とする請求項5に記載の熱交換器の製造方法。
    In the main joining step, the stirring pin is rotated at a predetermined rotation speed to perform frictional stirring.
    The method for manufacturing a heat exchanger according to claim 5, wherein when the stirring pin is detached in the main joining step, the stirring pin is moved to the end position while gradually increasing the rotation speed from the predetermined rotation speed.
  7.  内部にフィンを有する押出多孔管と、前記押出多孔管の開口部を封止する蓋体とで構成され、前記押出多孔管と前記蓋体とを摩擦攪拌で接合する熱交換器の製造方法であって、
     前記蓋体は、底部及び前記底部の周縁から立ち上がる周壁部を有し、前記周壁部の外周縁に、段差側面と、当該段差側面から外側に向かうにつれて前記底部側に近接するように傾斜する段差傾斜面と、を有する周壁段差部を形成し、
     前記押出多孔管は、端部に前記フィンが形成されておらず前記周壁部が嵌め合わされる嵌合部を有し、
     前記押出多孔管は第二アルミニウム合金で形成されており、前記蓋体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、
     摩擦攪拌で用いる回転ツールは、攪拌ピンを備えており、前記攪拌ピンは、先端側に向けて先細りとなっており、
     前記押出多孔管の前記嵌合部に前記蓋体の前記周壁部を挿入することにより、前記押出多孔管の内周面と前記蓋体の段差側面とを重ね合わせるとともに、前記押出多孔管の端面と前記蓋体の前記段差傾斜面とを突き合わせて突合せ部に断面V字状の隙間を形成する突合せ工程と、
     回転する前記回転ツールの攪拌ピンのみを前記押出多孔管の外周面に挿入し、前記攪拌ピンの外周面を前記蓋体の段差傾斜面にわずかに接触させた状態で、前記隙間に前記第二アルミニウム合金を流入させながら、前記突合せ部よりも前記押出多孔管側に設定された設定移動ルートに沿って所定の深さで前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、
     前記本接合工程において、前記設定移動ルート上に終了位置を設定し、前記突合せ部に対する摩擦攪拌接合の後、前記回転ツールを前記終了位置に移動させつつ前記攪拌ピンを徐々に引き抜いて前記終了位置で前記押出多孔管から前記回転ツールを離脱させることを特徴とする熱交換器の製造方法。
    A method for manufacturing a heat exchanger, which is composed of an extruded perforated pipe having fins inside and a lid for sealing an opening of the extruded perforated pipe, and joins the extruded perforated pipe and the lid by friction stir welding. There,
    The lid has a bottom portion and a peripheral wall portion that rises from the peripheral edge of the bottom portion, and a stepped side surface and a stepped portion that inclines toward the bottom side toward the outside from the stepped side surface on the outer peripheral edge of the peripheral wall portion. Forming a peripheral wall stepped portion having an inclined surface,
    The extruded perforated pipe has a fitting portion in which the fin is not formed at the end portion and the peripheral wall portion is fitted.
    The extruded perforated pipe is formed of a second aluminum alloy, the lid is made of a first aluminum alloy, and the first aluminum alloy is a grade having a higher hardness than the second aluminum alloy.
    The rotary tool used for friction stirring is equipped with a stirring pin, and the stirring pin is tapered toward the tip side.
    By inserting the peripheral wall portion of the lid into the fitting portion of the extruded perforated pipe, the inner peripheral surface of the extruded perforated pipe and the stepped side surface of the lid are overlapped, and the end surface of the extruded perforated pipe is overlapped. And the butt step of abutting the stepped inclined surface of the lid body to form a gap having a V-shaped cross section in the butt portion.
    Only the stirring pin of the rotating tool that rotates is inserted into the outer peripheral surface of the extruded perforated pipe, and the outer peripheral surface of the stirring pin is slightly brought into contact with the stepped inclined surface of the lid, and the second is inserted into the gap. While flowing the aluminum alloy, the butt portion is rubbed around the outer peripheral surface of the extruded perforated pipe at a predetermined depth along a set movement route set on the extruded perforated pipe side of the butt portion. Including the main joining step of stirring,
    In the main joining step, an end position is set on the set movement route, and after friction stir welding with respect to the butt portion, the stirring pin is gradually pulled out while moving the rotation tool to the end position to reach the end position. A method for manufacturing a heat exchanger, which comprises separating the rotary tool from the extruded perforated pipe.
  8.  前記本接合工程では、所定の回転速度で前記攪拌ピンを回転させて摩擦攪拌を行い、
     前記本接合工程において前記攪拌ピンを離脱させるとき、前記所定の回転速度よりも徐々に回転速度を上げながら終了位置まで移動させることを特徴とする請求項7に記載の熱交換器の製造方法。
    In the main joining step, the stirring pin is rotated at a predetermined rotation speed to perform frictional stirring.
    The method for manufacturing a heat exchanger according to claim 7, wherein when the stirring pin is detached in the main joining step, the stirring pin is moved to the end position while gradually increasing the rotation speed from the predetermined rotation speed.
  9.  前記突合せ工程では、前記蓋体の外周面よりも前記押出多孔管の外周面の方が外側となるように、前記押出多孔管と前記蓋体とを形成することを特徴とする請求項1、請求項3、請求項5又は請求項7に記載の熱交換器の製造方法。 The butt step is characterized in that the extruded perforated pipe and the lid are formed so that the outer peripheral surface of the extruded perforated pipe is on the outer side of the outer peripheral surface of the lid. The method for manufacturing a heat exchanger according to claim 3, claim 5 or claim 7.
  10.  前記回転ツールの回転方向及び進行方向を前記突合せ部側がアドバンシング側となるように設定することを特徴とする請求項1、請求項3、請求項5又は請求項7に記載の熱交換器の製造方法。 The heat exchanger according to claim 1, claim 3, claim 5 or claim 7, wherein the rotation direction and the traveling direction of the rotation tool are set so that the butt portion side is the advancing side. Production method.
  11.  前記本接合工程では、前記攪拌ピンの先端が前記蓋体の段差側面を突き抜けた状態で前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌することを特徴とする請求項1、請求項3、請求項5又は請求項7に記載の熱交換器の製造方法。 The present claim is characterized in that, in a state where the tip of the stirring pin penetrates the stepped side surface of the lid, the butt portion is frictionally agitated by circling around the outer peripheral surface of the extruded perforated pipe. 1. The method for manufacturing a heat exchanger according to claim 3, claim 5 or claim 7.
  12.  前記第一アルミニウム合金は鋳造材からなり、前記第二アルミニウム合金は展伸材からなることを特徴とする請求項1、請求項3、請求項5又は請求項7に記載の熱交換器の製造方法。 The manufacture of the heat exchanger according to claim 1, claim 3, claim 5 or claim 7, wherein the first aluminum alloy is made of a cast material and the second aluminum alloy is made of a wrought material. Method.
PCT/JP2019/045194 2019-06-28 2019-11-19 Method for manufacturing heat exchanger WO2020261597A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980097737.0A CN113993650B (en) 2019-06-28 2019-11-19 Method for manufacturing heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-120709 2019-06-28
JP2019120709A JP7127618B2 (en) 2019-06-28 2019-06-28 Heat exchanger manufacturing method

Publications (1)

Publication Number Publication Date
WO2020261597A1 true WO2020261597A1 (en) 2020-12-30

Family

ID=74061578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045194 WO2020261597A1 (en) 2019-06-28 2019-11-19 Method for manufacturing heat exchanger

Country Status (3)

Country Link
JP (1) JP7127618B2 (en)
CN (1) CN113993650B (en)
WO (1) WO2020261597A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7211342B2 (en) * 2019-11-21 2023-01-24 日本軽金属株式会社 Heat exchanger manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566073A (en) * 1991-09-05 1993-03-19 Sanden Corp Multilayered heat exchanger
WO2014034590A1 (en) * 2012-09-03 2014-03-06 日本軽金属株式会社 Method for producing hollow container and method for bonding members
WO2019082439A1 (en) * 2017-10-27 2019-05-02 日本軽金属株式会社 Method for manufacturing liquid-cooled jacket

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3449944B2 (en) * 1999-05-11 2003-09-22 住友軽金属工業株式会社 Metal container and method of manufacturing the same
CN102303183B (en) * 2006-10-02 2014-01-29 日本轻金属株式会社 Method of welding
AU2010273997B2 (en) * 2009-07-17 2014-04-17 Lockheed Martin Corporation Heat exchanger and method for making
TWI485023B (en) * 2012-12-11 2015-05-21 Metal Ind Res & Dev Ct Aluminum alloy oil hot plate manufacturing method
WO2014164501A1 (en) * 2013-03-12 2014-10-09 Lockheed Martin Corporation Process of friction stir welding on tube end joints and a product produced thereby
JP6015622B2 (en) * 2013-10-21 2016-10-26 日本軽金属株式会社 Manufacturing method of heat transfer plate
CN108274109A (en) * 2018-04-18 2018-07-13 北京世佳博科技发展有限公司 A kind of composite connecting method for radiator class product
CN108480941B (en) * 2018-06-06 2019-06-28 武汉市润之达石化设备有限公司 The manufacturing process of fin tube type air cooler and its fin tube type air cooler of manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566073A (en) * 1991-09-05 1993-03-19 Sanden Corp Multilayered heat exchanger
WO2014034590A1 (en) * 2012-09-03 2014-03-06 日本軽金属株式会社 Method for producing hollow container and method for bonding members
WO2019082439A1 (en) * 2017-10-27 2019-05-02 日本軽金属株式会社 Method for manufacturing liquid-cooled jacket

Also Published As

Publication number Publication date
CN113993650B (en) 2023-02-24
JP7127618B2 (en) 2022-08-30
CN113993650A (en) 2022-01-28
JP2021006349A (en) 2021-01-21

Similar Documents

Publication Publication Date Title
WO2020261597A1 (en) Method for manufacturing heat exchanger
JP7020562B2 (en) How to manufacture a liquid-cooled jacket
JP2020175396A (en) Manufacturing method for liquid-cooled jacket
JP7140061B2 (en) Heat exchanger manufacturing method
JP7211342B2 (en) Heat exchanger manufacturing method
WO2021171635A1 (en) Method for manufacturing heat exchanger
WO2021053839A1 (en) Friction-stir welding method
JP2020131263A (en) Liquid-cooled jacket manufacturing method
WO2020213197A1 (en) Method for manufacturing liquid-cooled jacket
WO2021171636A1 (en) Method for manufacturing heat exchanger
JP2021112750A (en) Heat exchanger manufacturing method
WO2021171637A1 (en) Method for manufacturing heat exchanger
JP2020175395A (en) Manufacturing method for liquid-cooled jacket
WO2020188858A1 (en) Method of manufacturing liquid-cooled jacket
WO2021124594A1 (en) Method for manufacturing liquid cooling jacket
WO2021144999A1 (en) Joining method
JP7226254B2 (en) Liquid cooling jacket manufacturing method
JP7226241B2 (en) Liquid cooling jacket manufacturing method
JP2020131262A (en) Liquid-cooled jacket manufacturing method
WO2020213185A1 (en) Method for manufacturing liquid cooling jacket
JP2021074736A (en) Liquid-cooled jacket manufacturing method
JP2020151719A (en) Manufacturing method of liquid-cooled jacket
JP2020151720A (en) Manufacturing method of liquid-cooled jacket
WO2020170488A1 (en) Method for manufacturing liquid-cooled jacket
JP2021065915A (en) Liquid-cooled jacket manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19935594

Country of ref document: EP

Kind code of ref document: A1