Nothing Special   »   [go: up one dir, main page]

WO2020125694A1 - 码本信息的处理方法、终端及计算机可读存储介质 - Google Patents

码本信息的处理方法、终端及计算机可读存储介质 Download PDF

Info

Publication number
WO2020125694A1
WO2020125694A1 PCT/CN2019/126422 CN2019126422W WO2020125694A1 WO 2020125694 A1 WO2020125694 A1 WO 2020125694A1 CN 2019126422 W CN2019126422 W CN 2019126422W WO 2020125694 A1 WO2020125694 A1 WO 2020125694A1
Authority
WO
WIPO (PCT)
Prior art keywords
pmi
pmi1
selection rule
parameters
value information
Prior art date
Application number
PCT/CN2019/126422
Other languages
English (en)
French (fr)
Inventor
卞青
Original Assignee
深圳市中兴微电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中兴微电子技术有限公司 filed Critical 深圳市中兴微电子技术有限公司
Priority to EP19899995.5A priority Critical patent/EP3902151B9/en
Publication of WO2020125694A1 publication Critical patent/WO2020125694A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • H04B7/0479Special codebook structures directed to feedback optimisation for multi-dimensional arrays, e.g. horizontal or vertical pre-distortion matrix index [PMI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0486Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0645Variable feedback
    • H04B7/065Variable contents, e.g. long-term or short-short

Definitions

  • the present disclosure relates to the field of information processing, for example, to a method for processing codebook information, a terminal, and a computer-readable storage medium.
  • the 5G (5th-Generation, fifth-generation mobile communication technology) system uses a large-scale antenna array and beamforming technology to improve system performance.
  • the beamforming technology based on the large-scale antenna array requires that the channel state information (Channel State Information, CSI) can be accurately obtained at the sending end, and the optimal beam is selected to transmit data according to the channel state information.
  • the channel state information needs to be fed back to the sender through the user terminal (User Equipment, UE) at the receiving end.
  • the information includes CSI-RS (CSI References, channel state information reference signal) resource indication signals and the rank of the channel matrix (Rank).
  • the UE uses channel estimation to obtain the channel coefficient matrix H and the noise coefficient No. First, it selects the CSI-RS resource that is most suitable for the current report to obtain the CRI (CSI-RS Resource Indicator, channel status information refers to the signal resource indicator), and then Some optimal criterion selects the RI and PMI that best match the current channel, calculates the channel quality CQI after using the RI and PMI, and finally reports the CSI to the base station.
  • the conventional PMI selection method is to traverse all PMIs under the current RI, and select an optimal PMI according to some optimal criteria (such as maximum channel capacity or minimum mean square error), so the number of codebooks under the current layer determines the The complexity of the calculation.
  • the 5G system codebook is based on a two-dimensional Discrete Fourier Transform (DFT) beam plus appropriate spatial sampling, which makes the number of codebooks configured by the system also increase dramatically.
  • DFT Discrete Fourier Transform
  • the codebook adopts the basic structure of first PMI+second PMI, where first PMI means broadband precoding index, second PMI means subband precoding index,
  • first PMI means broadband precoding index
  • second PMI means subband precoding index
  • the structure of first PMI1+first PMI2 is adopted to characterize the beam precoding directions in the horizontal and vertical directions, respectively.
  • the SP 5G system can be configured with up to 32 CSI-RS ports and supports a maximum spatial sampling multiple of 4 in the horizontal and vertical directions.
  • the number of codebooks per layer can be up to 2048. It is foreseeable that in the future, 5G systems may need to support more CSI-RS ports and support higher resolution precoding codebooks, so that the number of system codebooks will increase. It can be seen that if the traversal search algorithm is continued for each layer, the computational complexity of the UE feedback will be huge.
  • the present disclosure provides a method for processing codebook information, a terminal, and a computer-readable storage medium, which can reduce the computational complexity of acquiring codebook information.
  • the present disclosure provides a method for processing codebook information, including:
  • the codebook information used is determined according to the first value information and a preset PMI (Precoding Matrix Index) selection rule.
  • the present disclosure provides a terminal including a memory and a processor.
  • the memory stores a computer program.
  • any of the codebook information described above is processed. method.
  • the present invention discloses a computer-readable storage medium that stores one or at least two computer programs, and the one or at least two computer programs are executed by one or at least two processors to implement The method for processing codebook information described above.
  • the embodiments provided by the present disclosure can effectively reduce the number of calculations of terminal PMI feedback and reduce the calculation complexity of acquiring codebook information on the premise of achieving traversal search performance.
  • FIG. 1 is a flowchart of a method for processing codebook information provided by the present disclosure
  • FIG. 2 is a flowchart of a method of codebook selection in a 5G system provided by the present disclosure
  • FIG. 3 is a schematic structural diagram of a terminal provided by the present disclosure.
  • FIG. 1 is a flowchart of a method for processing codebook information provided by the present disclosure. The method shown in Figure 1 includes:
  • Step 101 Obtain first value information corresponding to a broadband precoding index (first PMI) when performing a coarse search operation;
  • the acquiring first value information corresponding to the first PMI when performing the rough search operation includes:
  • the PMI parameters of the Numi12 group are ⁇ (i11 rand +a-1)mod(Numi11), (i12 rand +a- 1) mod(Numi12), i2 rand ⁇ , where Numi11 and Numi12 are both positive integers, which in turn represent the total available number of first PMI1 and first PMI2, a is an integer less than or equal to Numi12;
  • the value information i12 save of the first PMI2 that meets the PMI selection rule is selected from the Numi12 group of PMI parameters as the first PMI2 obtained by performing the rough search operation.
  • the wideband precoding index (first PMI) is the first precoding index
  • the subband precoding index (second PMI) is the second precoding index
  • Step 102 Determine the used codebook information according to the first value information and the preset PMI selection rule.
  • the determining the used codebook information according to the first value information and the preset PMI selection rule includes:
  • the second value information determines the second value information corresponding to the first PMI when performing the fine search operation
  • the second value range of the first PMI and the PMI selection rule determine the third value information corresponding to the second PMI when performing the fine search operation.
  • the method embodiment provided by the present disclosure obtains the first value information corresponding to the first PMI when performing the rough search operation, and then determines the codebook information to be used according to the first value information and the preset PMI selection rules , Use rough search to first determine the approximate range of first PMI, and then determine the accurate values of first PMI and second PMI through further fine search, which can effectively reduce the number of terminal PMI feedback calculations under the premise of traversing the search performance, Reduce the computational complexity of obtaining codebook information.
  • the determining the second value information corresponding to the first PMI when performing the fine search operation according to the first value information and the PMI selection rule includes:
  • the value information corresponding to the first PMI1 when performing the fine search operation determines the value information corresponding to the first PMI1 when performing the fine search operation
  • the value information of the first PMI1 and the PMI selection rule determine the value information corresponding to the first PMI2 when performing the fine search operation.
  • the value information of first search PMI1 of fine search can be calculated, and then the value information of first search PMI1 of fine search can be used to obtain the value of first search PMI2 of fine search Value information to ensure the accuracy of the first PMI2 value and improve the overall accuracy of the first PMI.
  • the determining, according to the first value information and the PMI selection rule, the value information corresponding to the first PMI1 when performing the fine search operation includes:
  • the value i11 report of the first PMI1 that meets the PMI selection rule is selected from the PMI parameters of the Numi11 group as the fine search corresponding first PMI1.
  • determining the value information corresponding to the first PMI2 when performing the fine search operation includes:
  • i11 report value to obtain a corresponding first PMI1 fine search is based on the initial value of the fine search i2 rand obtained first PMI1 and SECOND values
  • the PMI parameters are ⁇ i11 report , c-1, i2 rand ⁇ , where N is a positive integer less than or equal to Numi12;
  • the value i12 report of the first PMI1 that meets the PMI selection rule is selected from the PMI parameters of the Numi12 group as the fine search corresponding first PMI2.
  • the determining the third value information corresponding to the second PMI when performing the fine search operation according to the second value range of the first PMI and the PMI selection rule includes:
  • the PMI parameters of the Numi2 group are ⁇ i11 report , i12 report , d- 1 ⁇ , where d is a positive integer less than or equal to Numi2;
  • the value of the second PMI i2 report that meets the PMI selection rule is selected from the PMI parameters of the Numi2 group as the fine search corresponding second PMI.
  • a rough search is used to first determine the approximate range of first PMI2, and then through further fine search to determine the accurate values of first PMI and second PMI, which can effectively reduce the terminal The number of calculations for PMI feedback.
  • the PMI selection rule may be to calculate the channel capacity using at least two sets of PMI parameters obtained, and to select the PMI based on the size of the channel capacity, for example, the PMI used when the channel capacity is maximum can be set
  • the parameter is the final target parameter.
  • the spatial sampling multiple is 4
  • the second PMI configuration is the Ni2 codebook configuration
  • the coarse search uses random first PMI1 and second PMI values, and traverses the possible first PMI2 values , N2*4 searches are required;
  • the three-level separated search form of first PMI1, first PMI2 and second PMI is used to traverse the possible first PMI1, first PMI2 and second PMI respectively, and a total of N1*4+N2* is required 4+Ni2 searches.
  • N1*N2*4*4*Ni2 traversal searches are reduced to N1*4+2*N2*4+Ni2 searches, so that the optimal PMI value can be obtained with few search times.
  • the method further includes:
  • the codebook information is sent to the base station to provide data basis for subsequent transmission.
  • the related technologies give some solutions to the selection of horizontal codebook and vertical codebook grouping for codebooks based on the principle of discrete Fourier transform under large-scale antenna arrays Method, this method can to a certain extent the complexity of codebook selection, but can not effectively target the current codebook structure of the 5G system.
  • the technical solution provided by the present disclosure overcomes the problems and deficiencies of the PMI selection calculation and implementation complexity under the single antenna board 5G system in the related art, and proposes to reduce the complexity of the codebook selection for the current codebook structure of the 5G system Degree method.
  • FIG. 2 is a flowchart of a method of codebook selection in a 5G system provided by the present disclosure.
  • the method shown in Figure 2 includes:
  • Step 201 Estimating the channel coefficient matrix H k and the noise variance matrix on each subcarrier based on the pilot signal CSI-RS
  • Step 202 According to the currently configured RI value, codebook mode, and antenna configuration, randomly generate initial values of first PMI1, first PMI2, and second PMI, and generate a first PMI set for rough search based on the initial values and search steps, in turn Calculate the channel capacity corresponding to the PMI parameter composed of each first PMI and initial second PMI in the set, and select the value of the first PMI2 corresponding to the maximum capacity and record it;
  • Step 203 According to the currently configured RI value, codebook mode and antenna configuration, generate the first PMI1 set used in the search, and sequentially calculate each first PMI1 in the set and the coarse search first PMI2 and initial second PMI values selected in step 202 For the channel capacity corresponding to the composed PMI parameter, select the first PMI1 corresponding to the maximum capacity and record it;
  • Step 204 Based on the currently configured RI value, codebook mode, and antenna configuration, the module 405 is used to generate the first PMI2 set used in the search, and in turn calculate each first PMI2 in the set and the first PMI1 and initial second PMI selected in step 203.
  • Step 205 Based on the currently configured RI value, codebook mode, and antenna configuration, the module 406 is used to generate the second PMI set for search, and the module 402 sequentially calculates each second PMI in the set and the first PMI 1 selected in step 203 and step 204 The channel capacity corresponding to the PMI parameter composed of the first PMI2 selected in the selection, select the second PMI corresponding to the maximum capacity and record it;
  • the spatial sampling multiple is 4, the second PMI configuration is Ni2 codebook configuration, the coarse search uses random first PMI1 and second PMI values, and traverses possible first PMI2 values , Requires N2*4 searches; for refined search, further adopts the first-PMI1, first-PMI2, and second-PMI three-level separated search form, and iterates through the searchable possible first PMI1, first-PMI2, and second-PMI respectively, which requires N1*4+N2* 4+Ni2 searches. In this way, N1*N2*4*4*Ni2 traversal searches are reduced to N1*4+2*N2*4+Ni2 searches, so that the optimal PMI value can be obtained with few search times.
  • the method provided by the embodiment of the present invention adopts a method of firstly searching first PMI2 and then performing a fine search, thereby avoiding the performance loss caused by the poor initial PMI used in the fine search; at the same time, first search PMI1, first PMI2 and second PMI are further adopted
  • the three-level separated search form effectively reduces the number of PMI searches, improves the processing speed of the UE, and reduces the difficulty of hardware implementation.
  • the implementation steps are as follows:
  • Step 301 Use the channel coefficient matrix H k and noise variance matrix on the k-th subcarrier estimated by CSI-RS among them,
  • h i,j is the channel coefficient from the jth transmit antenna port to the i-th receive antenna, and ⁇ i,i is the noise power on the i-th receive antenna.
  • Step 302 Obtain the first PMI2 coarse search PMI parameter required for each capacity calculation, and then calculate the corresponding channel capacity according to the channel and noise figure and PMI parameter obtained in step 301, and compare and select the PMI parameter corresponding to the maximum capacity to obtain first PMI2 Rough search results. Proceed as follows:
  • the initial values corresponding to first PMI1 i11, first PMI2 i12, and second PMI i2 are generated.
  • the PMI parameters of the first PMI2 rough search at each capacity calculation are as follows:
  • the first calculation uses the initial values of the three parameters ⁇ i11 rand , i12 rand , i2 rand ⁇ (PMI parameters are arranged in the order of ⁇ first PMI1 i11, first PMI2 i12, second PMI i2 ⁇ , the same applies hereinafter);
  • the PMI parameters used in the Nth calculation are ⁇ (i11 rand +N-1)mod(Numi11), (i12 rand +N-1)mod(Numi12), i2 rand ⁇ ;
  • the PMI parameters used for the first Numi12 calculation are ⁇ (i11 rand +Numi12-1)mod(Numi11), (i12 rand +Numi12-1)mod(Numi12), i2 rand ⁇ .
  • the corresponding precoding matrix W N is generated according to the preset configuration parameters and the PMI parameter input at the Nth time, and then combined with the channel coefficient matrix H k and the noise variance matrix Calculate the channel capacity and Cap N corresponding to all subcarriers.
  • the precoding matrix please refer to the relevant protocol of SP codebook in 3GPP 38.214 V15.0.0 5.2.2.2.1.
  • the capacity calculation process is as follows:
  • N Rx represents the number of receiving antennas
  • I RI ⁇ RI represents a unit array of size RI*RI
  • H represents a conjugate transpose.
  • Step 303 After obtaining the value of coarse search first PMI2, obtain first PMI1 fine search PMI parameters required for each capacity calculation, and then calculate the corresponding channel capacity according to the channel and noise coefficients and PMI parameters obtained in step 301, compare and select PMI parameters corresponding to the maximum capacity are displayed. Proceed as follows:
  • the initial values of first PMI1 i11, first PMI2 i12, and second PMI i2 corresponding to this step are generated, where the initial values of i11 are 0, the initial values of i12 For i12 save , the initial value of i2 is i2 rand .
  • the PMI parameters of the first PMI1 fine search for each capacity calculation are as follows:
  • the first calculation uses the initial values of the three parameters ⁇ 0, i12 save , i2 rand ⁇ ;
  • the PMI parameters used in the Nth calculation are ⁇ N-1, i12 save , i2 rand ⁇ ;
  • the PMI parameters used for the first Numi11 calculation are ⁇ Numi11-1, i12 save , i2 rand ⁇ .
  • the corresponding precoding matrix W N is generated according to the preset configuration parameters and the PMI parameters input at the Nth time, and then the channel coefficient matrix H k and the noise variance matrix are combined.
  • the channel capacity and Cap N corresponding to all subcarriers are calculated, and the capacity calculation process is the same as step 302.
  • Step 304 After obtaining the value of the fine search first PMI1, obtain the PMI parameters required for each capacity calculation of the first PMI2 fine search, and then calculate the corresponding channel capacity according to the channel and noise coefficients and PMI parameters obtained in step 301, and compare and select PMI parameters corresponding to the maximum capacity are displayed. Proceed as follows:
  • the initial values of first PMI1 i11, first PMI2 i12, and second PMI i2 corresponding to this step are generated, where the initial values of i11 are the initial values of i11 report , i12 The value is 0 and the initial value of i2 is i2 rand .
  • irst PMI2 fine search PMI parameters for each capacity calculation are as follows:
  • the first calculation uses the initial values of the three parameters ⁇ i11 report , 0, i2 rand ⁇ ;
  • the PMI parameters used in the Nth calculation are ⁇ i11 report , N-1, i2 rand ⁇ ;
  • the PMI parameters used for the first Numi12 calculation are ⁇ i11 report , Numi12-1, i2 rand ⁇ .
  • the corresponding precoding matrix W N is generated according to the preset configuration parameters and the PMI parameters input at the Nth time, and then the channel coefficient matrix H k and the noise variance matrix are combined.
  • the channel capacity and Cap N corresponding to all subcarriers are calculated, and the capacity calculation process is the same as step 302.
  • Step 305 After obtaining the values of the fine search first PMI1 and fine search first PMI2, obtain the PMI parameters required for each capacity calculation of the second PMI fine search, and calculate the corresponding PMI parameters according to the channel and noise coefficients and PMI parameters obtained in step 301 For channel capacity, compare and select the PMI parameter corresponding to the maximum capacity as the final selected PMI. Proceed as follows:
  • the initial values of first PMI1 i11, first PMI2 i12, and second PMI i2 corresponding to this step are generated, where the initial values of i11 are the initial values of i11 report , i12 The value is i12 report and the initial value of i2 is 0.
  • the second PMI fine search requires the following PMI parameters for each capacity calculation:
  • the first calculation uses the initial values of the three parameters ⁇ i11 report , i12 report , 0 ⁇ ;
  • the PMI parameters used in the Nth calculation are ⁇ i11 report , i12 report , N-1 ⁇ ;
  • the PMI parameters used in the second Numi calculation until the last time are ⁇ i11 report , i12 report , Numi2-1 ⁇ .
  • the corresponding precoding matrix W N is generated according to the preset configuration parameters and the PMI parameters of the Nth input, and then the channel coefficient matrix H k and the noise variance matrix are combined.
  • the channel capacity and Cap N corresponding to all subcarriers are calculated, and the capacity calculation process is the same as step 302.
  • the channel capacity After obtaining the channel capacity, select the maximum value of all the calculated Numi2 channel capacities and record the second PMI parameter used for this maximum capacity, marked as i2 report . At this time, all search processes are completed, and the final selected report PMI is the three parameters ⁇ i11 report , i12 report , i2 report ⁇ .
  • the complexity of the disclosed method is only 5% of the first-level search of the traversal method, and 1/4 of related similar technologies, and the method of the disclosed method selects better i12 parameters by performing a rough search in sequence, which avoids excessive initial parameters during fine search
  • the resulting loss in search performance can ensure that the search performance is consistent with the traversal method.
  • the method of the present disclosure can also reduce the search to within 10% of the traversal algorithm at this time, while ensuring performance and traversal The algorithm is consistent.
  • the coarse search complexity is smaller, and the fine search complexity is both Numi12+Numi11+Numi2, so the method shown in the present disclosure is more advantageous in terms of overall search times.
  • An embodiment of the present invention provides a terminal, including a memory and a processor.
  • the memory stores a computer program.
  • the computer program is read and executed by the processor, any of the above codebook information is implemented. Approach.
  • FIG. 3 is a schematic structural diagram of a terminal provided by the present disclosure.
  • the memory stores the following computer programs, including:
  • the channel coefficient and noise variance estimation program 401 is set to estimate the channel coefficient matrix H k and the noise variance matrix on each subcarrier based on the pilot signal And input the channel coefficient and noise to the program 402 to calculate the capacity.
  • the capacity calculation and comparison program 402 is set to generate a corresponding codebook according to the configured RI, codebook mode, antenna configuration, and parameters output by the search control program (including first PMI1, first PMI2, and second PMI), combined with the program 401
  • the channel coefficient matrix and the noise variance matrix calculate the corresponding channel capacity, select the codebook with larger capacity and save the corresponding first PMI1, first PMI2, and second PMI, and output these PMI parameters to the programs 404, 405, and 406.
  • the first PMI2 coarse search control program 403 is set to output PMI parameters (including first PMI1, first PMI2, and second PMI) in sequence according to the input parameters (RI, codebook mode, and antenna configuration) according to the preset first PMI2 coarse search rules Give capacity calculation and comparison program 402.
  • PMI parameters including first PMI1, first PMI2, and second PMI
  • the first PMI1 fine search control program 404 is set to follow the input parameters (RI, codebook mode and antenna configuration) and the first PMI2 coarse search after the first PMI2 provided by the program 402, followed by the preset first PMI1 fine search rules
  • the PMI parameters (including first PMI1, first PMI2, and second PMI) are output to the capacity calculation and comparison program 402.
  • the first PMI2 fine search control program 405 is set to the optimal first PMI1 after fine search based on the input parameters (RI, codebook mode and antenna configuration) and the first PMI1 provided by the program 402, according to the preset first PMI2 fine search rules
  • the PMI parameters (including first PMI1, first PMI2, and second PMI) are sequentially output to the capacity calculation and comparison program 402.
  • the second PMI fine search control program 406 is set to the optimal first PMI1 after the first PMI1 fine search and the optimal first PMI2 after the fine search according to the input parameters (RI, codebook mode and antenna configuration) and the first PMI1 provided by the program 402,
  • the PMI parameters (including first PMI1, first PMI2, and second PMI) are sequentially output to the capacity calculation and comparison program 402 according to the preset second PMI fine search rules.
  • the terminal embodiment provided by the present disclosure obtains the first value information corresponding to the first PMI when performing the rough search operation, and then determines the codebook information to be used according to the first value information and the preset PMI selection rules , Use coarse search to first determine the approximate range of first PMI, and then determine the accurate values of first PMI and second PMI through further fine search, which can effectively reduce the number of terminal PMI feedback calculations under the premise of traversing the search performance, Reduce the computational complexity of obtaining codebook information.
  • An embodiment of the present invention provides a computer-readable storage medium that stores one or at least two computer programs, and the one or at least two computer programs are executed by one or at least two processors to A method for processing the codebook information described above.
  • the embodiment of the computer-readable storage medium provided by the present disclosure obtains the first value information corresponding to the first PMI when performing the rough search operation, and then determines the use according to the first value information and the preset PMI selection rules Codebook information, use rough search to first determine the approximate range of first PMI, and then determine the accurate values of first PMI and second PMI through further fine search, which can effectively reduce terminal PMI feedback under the premise of traversing search performance
  • the number of calculations reduces the computational complexity of acquiring codebook information.
  • the term computer storage medium includes both volatile and nonvolatile implemented in any method or technology for storing information such as computer readable instructions, data structures, program modules, or other data Sex, removable and non-removable media.
  • Computer storage media include but are not limited to RAM, ROM, EEPROM, flash memory or other memory technologies, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may Any other medium used to store desired information and accessible by a computer.
  • the communication medium generally contains computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery medium .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)

Abstract

本公开提供了一种码本信息的处理方法、终端及计算机可读存储介质。所述方法包括:获取宽带预编码索引first PMI在执行粗搜索操作时对应的第一取值信息;根据所述第一取值信息以及预先设置的预编码索引PMI选择规则,确定所使用的码本信息。

Description

码本信息的处理方法、终端及计算机可读存储介质
本申请要求在2018年12月18日提交中国专利局、申请号为201811549964.6的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及信息处理领域,例如涉及一种码本信息的处理方法、终端及计算机可读存储介质。
背景技术
5G(5th-Generation,第五代移动通信技术)系统采用了大规模天线阵列以及波束赋型技术来提高系统性能。基于大规模天线阵列的波束赋型技术要求在发送端能够准确地获得信道状态信息(Channel State Information,CSI),并依据该信道状态信息选择最优的波束对数据进行发射。信道状态信息需要通过处于接收端的用户终端(User Equipment,UE)来向发送端进行反馈,这些信息包括CSI-RS(CSI Reference Signals,信道状态信息参考信号)资源指示信号、信道矩阵的秩(Rank Indicator,RI)、预编码码本索引(Precoding Matrix Index,PMI)和信道质量指示(Channel Quality Indicator,CQI)。UE利用信道估计获得信道系数矩阵H及噪声系数No,首先选择出最适合当前上报使用的CSI-RS资源即得出CRI(CSI-RS Resource Indicator,信道状态信息参考信号资源指示符),再按照某种最优准则选出与当前信道最为匹配的RI和PMI,并计算使用该RI和PMI后的信道质量CQI,最后将CSI上报基站。常规的PMI选择方法是遍历当前RI下所有的PMI,按照某种最优准则(如信道容量最大或均方误差最小)选出最优的一个PMI,因此当前层数下的码本数量决定了计算的复杂度。
5G系统码本是以二维离散傅里叶变换(Discrete Fourier Transform,DFT)波束为基础加上适当的空间采样,这使系统配置的码本数量也在急剧增加。目前针对单板(Single Panel,SP)天线阵列5G系统配置的场景下其码本采用了first PMI+second PMI的基本结构,其中first PMI表示宽带预编码索引,second PMI表示子带预编码索引,对于1层以及5~8层码本的first PMI又采用了first PMI1+first PMI2的结构,分别表征水平和垂直方向上的波束预编码方向。在这种配置下,SP 5G系统最多可配置CSI-RS端口数为32个,支持水平和垂直方向上的最大空间采样倍数为4,此时其每层的码本数量最多可以达到2048个。可以预见,未来5G系统中可能需要支持更多的CSI-RS端口数,同时支持分辨率更高的预编码码本,这样其系统码本数量还将增加。由此可见,如果继续针对每层均采用遍历搜索算法,UE反馈的计算复杂度将会非常巨大。
发明内容
本公开提供了一种码本信息的处理方法、终端及计算机可读存储介质,能够降低码本信息的获取的计算复杂度。
本公开提供了一种码本信息的处理方法,包括:
获取first PMI(first Precoding Matrix Index,宽带预编码索引)在执行粗搜索操作时对应的第一取值信息;
根据所述第一取值信息以及预先设置的PMI(Precoding Matrix Index,预编码索引)选择规则,确定所使用的码本信息。
本公开提供了一种终端,包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序在被所述处理器读取执行时,实现上文任一所述的码本信息的处理方法。
本发明公开了一种计算机可读存储介质,所述计算机可读存储介质存储有一个或至少两个计算机程序,所述一个或至少两个计算机程序被一个或者至少两个处理器执行,以实现上文任一所述的码本信息的处理方法。
本公开提供的实施例,在达到遍历搜索性能的前提下,能够有效的减少终端PMI反馈的计算次数,降低码本信息的获取的计算复杂度。
附图说明
附图用来提供对本公开技术方案的理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1为本公开提供的码本信息的处理方法的流程图;
图2为本公开提供的5G系统中码本选择的方法的流程图;
图3为本公开提供的终端的结构示意图。
具体实施方式
下文中将结合附图对本公开的实施例进行详细说明。需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图1为本公开提供的码本信息的处理方法的流程图。图1所示方法包括:
步骤101、获取宽带预编码索引(first PMI)在执行粗搜索操作时对应的第一取值信息;
在一个示例性实施例中,所述获取first PMI在执行粗搜索操作时对应的第一取值信息,包括:
获取first PMI1的初始取值i11 rand、first PMI2的初始取值i12 rand和子带预编码索引(second PMI)的初始取值i2 rand
根据获取到的初始取值i11 rand、i12 rand和i2 rand,获取Numi12组PMI参数,其中,第a组PMI参数为{(i11 rand+a-1)mod(Numi11)、(i12 rand+a-1)mod(Numi12)、i2 rand},其中Numi11和Numi12均为正整数,依次表示first PMI1和first PMI2的可用总数,a为小于或等于Numi12的整数;
按照所述PMI选择规则,从所述Numi12组PMI参数选择符合所述PMI选择规则的first PMI2的取值信息i12 save,作为执行粗搜索操作得到的first PMI2。
这里,宽带预编码索引(first PMI)即为第一预编码索引,子带预编码索引(second PMI)即为第二预编码索引。
步骤102、根据所述第一取值信息以及预先设置的PMI选择规则,确定所使用的码本信息。
在一个示例性实施例中,所述根据所述第一取值信息以及预先设置的PMI选择规则,确定所使用的码本信息,包括:
根据所述第一取值信息以及所述PMI选择规则,确定所述first PMI在执行精搜索操作时对应的第二取值信息;
根据所述first PMI的第二取值范围以及所述PMI选择规则,确定所述second PMI在执行精搜索操作时对应的第三取值信息。
本公开提供的方法实施例,通过获取first PMI在执行粗搜索操作时对应的第一取值信息,再根据所述第一取值信息以及预先设置的PMI选择规则,确定所使用的码本信息,利用粗搜索先确定first PMI的大致范围,再通过进一步的 精搜索确定准确的first PMI与second PMI的取值,在达到遍历搜索性能的前提下,能够有效的减少终端PMI反馈的计算次数,降低码本信息的获取的计算复杂度。
下面对本公开提供的方法作进一步说明:
在本示例性实施例中,所述根据所述第一取值信息以及所述PMI选择规则,确定所述first PMI在执行精搜索操作时对应的第二取值信息,包括:
根据所述第一取值信息以及所述PMI选择规则,确定first PMI1在执行精搜索操作时对应的取值信息;
根据first PMI1的取值信息以及所述PMI选择规则,确定first PMI2在执行精搜索操作时对应的取值信息。
在本示例性实施例中,利用粗搜索得到的first PMI2的取值,可以计算得精搜索的first PMI1的取值信息,再借助精搜索的first PMI1的取值信息,得到精搜索first PMI2的取值信息,保证first PMI2的取值的准确性,提高first PMI整体的准确性。
在一个示例性实施例中,所述根据所述第一取值信息以及所述PMI选择规则,确定first PMI1在执行精搜索操作时对应的取值信息,包括:
根据所述粗搜索得到的first PMI2的取值信息i12 save以及second PMI的初始取值i2 rand,确定Numi11组PMI参数,其中第b组PMI参数为{b-1、i12 save、i2 rand},其中b=1,2,3,……,Numi11,其中Numi11为正整数,表示first PMI1的可用总数;
按照所述PMI选择规则,从所述Numi11组PMI参数中选择符合所述PMI选择规则的first PMI1的取值i11 report,作为精搜索对应的first PMI1。
在一个示例性实施例中,所述根据first PMI1的取值信息以及所述PMI选择 规则,确定first PMI2在执行精搜索操作时对应的取值信息,包括:
在得到精搜索对应的first PMI1的取值i11 report后,根据所述精搜索得到的first PMI1的取值i11 report和second PMI的初始取值i2 rand,确定Numi12组PMI参数,其中,第c组PMI参数为{i11 report、c-1、i2 rand},其中N为小于等于Numi12的正整数;
按照所述PMI选择规则,从所述Numi12组PMI参数中选择符合所述PMI选择规则的first PMI1的取值i12 report,作为精搜索对应的first PMI2。
在一个示例性实施例中,所述根据所述first PMI的第二取值范围以及所述PMI选择规则,确定所述second PMI在执行精搜索操作时对应的第三取值信息,包括:
利用所述精搜索得到的first PMI1的取值i11 report和精搜索得到的first PMI2的取值i12 report,确定Numi2组PMI参数,其中,第d组PMI参数为{i11 report、i12 report、d-1},其中d为小于或等于Numi2的正整数;
按照所述PMI选择规则,从所述Numi2组PMI参数中选择符合所述PMI选择规则的second PMI的取值i2 report,作为精搜索对应的second PMI。
在本示例性实施例中,在确定PMI取值过程中,使用粗搜索先确定first PMI2的大致范围,再通过进一步的精搜索确定准确的first PMI与second PMI的取值,能够有效地减少终端PMI反馈的计算次数。
在上述示例性实施例中,PMI选择规则可以为利用得到的至少两组PMI参数进行信道容量的计算,以信道容量的大小来进行PMI的选择,例如,可以设置信道容量最大时所使用的PMI参数为最终使用的目标参数。
另外,在本示例性实施例中,通过分别对first PMI1、first PMI2以及second PMI分别进行精搜索,实现对PMI的三层搜索,降低了搜索的复杂度,且上述 搜索性能与遍历搜索性能一致。
对于水平与垂直方向天线组数分别为N1、N2,空间采样倍数为4,second PMI配置为Ni2的码本配置,粗搜索使用随机的first PMI1与second PMI取值,遍历可能的first PMI2取值,需要N2*4次搜索;对于精搜索进一步采用first PMI1、first PMI2与second PMI三级分离的搜索形式,分别遍历搜索可能的first PMI1、first PMI2与second PMI,共需要N1*4+N2*4+Ni2次搜索。这样,将N1*N2*4*4*Ni2次的遍历搜索减少为了N1*4+2*N2*4+Ni2次搜索,从而使用很少的搜索次数就能够得到最优的PMI取值。
在一个示例性实施例中,所述根据所述第一取值信息以及预先设置的PMI选择规则,确定所使用的码本信息之后,所述方法还包括:
向基站发送所述码本信息。
在本示例性实施例中,在得到PMI的取值后,向基站发送所述码本信息,以便为后续传输提供数据依据。
下面对本公开提供的方法进行说明:
针对大规模天线阵列下的PMI搜索复杂度的问题,相关技术给出了一些解决方案是针对大规模天线阵列下的基于离散傅立叶变换原则设计的码本采用水平码本与垂直码本分组的选择方法,该方法能在一定程度上码本选择的复杂度,但是不能有效针对5G系统目前的码本结构。
本公开提供的技术方案,为克服相关技术中存在的单天线板5G系统下的PMI选择计算和实现复杂度较高的问题和缺陷,针对5G系统目前的码本结构提出降低码本选择的复杂度的方法。
图2为本公开提供的5G系统中码本选择的方法的流程图。图2所示方法包括:
步骤201、基于导频信号CSI-RS估计每个子载波上的信道系数矩阵H k和噪声方差矩阵
Figure PCTCN2019126422-appb-000001
步骤202、根据当前配置的RI值、码本模式和天线配置,随机产生first PMI1、first PMI2和second PMI的初始取值,根据初始取值以及搜索步长产生粗搜索使用的first PMI集合,依次计算集合中的每个first PMI与初始second PMI所组成的PMI参数对应的信道容量,选择最大容量时对应的first PMI2的取值并记录下来;
步骤203、根据当前配置的RI值、码本模式和天线配置,产生搜索使用的first PMI1集合,依次计算集合中的每个first PMI1以及步骤202中选择的粗搜索first PMI2与初始second PMI取值所组成的PMI参数对应的信道容量,选择最大容量对应的first PMI1并记录下来;
步骤204、根据当前配置的RI值、码本模式和天线配置,使用模块405产生搜索使用的first PMI2集合,依次计算集合中的每个first PMI2以及步骤203中选择的first PMI1与初始second PMI取值所组成的PMI参数对应的信道容量,选择最大容量对应的first PMI2并记录下来;
步骤205、根据当前配置的RI值、码本模式、天线配置,使用模块406产生搜索使用的second PMI集合,模块402依次计算集合中的每个second PMI与步骤203中选择的first PMI1及步骤204中选择的first PMI2所组成的PMI参数对应的信道容量,选择最大容量对应的second PMI并记录下来;
在上述步骤中,使用粗搜索先确定first PMI2的大致范围,再通过进一步的精搜索确定准确的first PMI与second PMI的取值,能够有效地减少终端PMI反馈的计算次数,同时保证搜索性能与遍历搜索基本一致。对于水平与垂直方向天线组数分别为N1、N2,空间采样倍数为4,second PMI配置为Ni2的码本 配置,粗搜索使用随机的first PMI1与second PMI取值,遍历可能的first PMI2取值,需要N2*4次搜索;对于精搜索进一步采用first PMI1、first PMI2与second PMI三级分离的搜索形式,分别遍历搜索可能的first PMI1、first PMI2与second PMI,共需要N1*4+N2*4+Ni2次搜索。这样,将N1*N2*4*4*Ni2次的遍历搜索减少为了N1*4+2*N2*4+Ni2次搜索,从而使用很少的搜索次数就能够得到最优的PMI取值。
本发明实施例提供的方法,采用先粗搜索first PMI2再进行精搜索的方法,从而避免精搜索使用的初始PMI太差造成性能损失;同时对于精搜索进一步采取了first PMI1、first PMI2与second PMI三级分离的搜索形式,有效降低了PMI搜索次数,提升UE处理速度,降低硬件实现难度。
下面以本公开提供的应用实例对本公开提供的方法进行说明:
本应用实例以天线组数N1=4、N2=4、过采样参数O1=4、O2=4、RI=1、码本模式1的32个发送天线端口及8个接收天线端口的SP 5G系统为例介绍,其中实施步骤如下:
步骤301:利用CSI-RS估计得到的第k个子载波上的信道系数矩阵H k和噪声方差矩阵
Figure PCTCN2019126422-appb-000002
其中,
Figure PCTCN2019126422-appb-000003
Figure PCTCN2019126422-appb-000004
h i,j为第j个发射天线端口到第i个接收天线的信道系数,σ i,i为第i个接收天线 上的噪声功率。
步骤302:获取first PMI2粗搜索在每次容量计算需要的PMI参数,再根据步骤301得到的信道和噪声系数以及PMI参数计算对应的信道容量,比较选择出最大容量对应的PMI参数,得到first PMI2粗搜索结果。步骤如下:
根据当前的RI、天线配置、码本配置,产生对应first PMI1 i11、first PMI2 i12与second PMI i2的初始值,具体产生方法为:当前天线组数N1=4、N2=4、过采样参数O1=4、O2=4、RI=1、码本模式1,根据3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)38.214 V15.0.0 5.2.2.2.1章节中SP码本的相关协议,此时i11的可用个数为Numi11=N1*O1=16,取值范围是[0,Numi11-1],i12的可用个数为Numi12=N2*O2=16,取值范围是[0,Numi12-1],i2的可用个数为Numi2=4,取值范围是[0,3]。在这三个参数的取值范围内随机选择一个值作为这三个PMI参数的搜索初始值,分别记为i11 rand、i12 rand、i2 rand
根据产生的PMI参数初始值,first PMI2粗搜索在每次容量计算的PMI参数如下:
第一次计算使用三个参数的初始值{i11 rand、i12 rand、i2 rand}(PMI参数按照{first PMI1 i11、first PMI2 i12、second PMI i2}的顺序排列,后同);
第N次计算使用的PMI参数为{(i11 rand+N-1)mod(Numi11)、(i12 rand+N-1)mod(Numi12)、i2 rand};
依次类推,直到最后一次第Numi12次计算使用的PMI参数为{(i11 rand+Numi12-1)mod(Numi11)、(i12 rand+Numi12-1)mod(Numi12)、i2 rand}。
在得到Numi12组PMI参数后,根据预设的配置参数以及第N次输入的PMI参数产生对应的预编码矩阵W N再结合信道系数矩阵H k和噪声方差矩阵
Figure PCTCN2019126422-appb-000005
计算出所有子载波对应的信道容量和Cap N,其中,预编码矩阵可以参见3GPP 38.214 V15.0.0 5.2.2.2.1章节中SP码本的相关协议,容量计算过程如下:
Figure PCTCN2019126422-appb-000006
其中,N Rx表接收天线个数,I RI×RI表示大小为RI*RI的单位阵,H表示共轭转置。
在得到信道容量后,选择出所有计算出的Numi12个信道容量中的最大值并记录下此最大容量使用的first PMI2的取值,标记为i12 save
步骤303:在得到粗搜索first PMI2的取值后,获取first PMI1精搜索在每次容量计算需要的PMI参数,再根据步骤301得到的信道和噪声系数以及PMI参数计算对应的信道容量,比较选择出最大容量对应的PMI参数。步骤如下:
根据当前的RI、天线配置、码本配置以及模块402输出的PMI参数,产生本步骤对应first PMI1 i11、first PMI2 i12与second PMI i2的初始值,其中i11的初始值为0、i12的初始值为i12 save,i2的初始值为i2 rand
根据产生的PMI参数初始值,first PMI1精搜索每次容量计算的PMI参数如下:
第一次计算使用三个参数的初始值{0、i12 save、i2 rand};
第N次计算使用的PMI参数为{N-1、i12 save、i2 rand};
依次类推,直到最后一次第Numi11次计算使用的PMI参数为{Numi11-1、i12 save、i2 rand}。
在得到Numi11组PMI参数后,根据预设的配置参数以及第N次输入的PMI参数产生对应的预编码矩阵W N,再结合信道系数矩阵H k和噪声方差矩阵
Figure PCTCN2019126422-appb-000007
计算出所有子载波对应的信道容量和Cap N,容量计算过程同步骤302。
在得到信道容量后,选择出所有计算出的Numi11个信道容量中的最大值并记录下此最大容量使用的first PMI1参数,标记为i11 report
步骤304:在得到精搜索first PMI1的取值后,获取first PMI2精搜索在每次容量计算需要的PMI参数,再根据步骤301得到的信道和噪声系数以及PMI参数计算对应的信道容量,比较选择出最大容量对应的PMI参数。步骤如下:
根据当前的RI、天线配置、码本配置以及模块402输出的PMI参数,产生本步骤对应first PMI1 i11、first PMI2 i12与second PMI i2的初始值,其中i11的初始值为i11 report、i12的初始值为0,i2的初始值为i2 rand
根据产生的PMI参数初始值,irst PMI2精搜索每次容量计算的PMI参数如下:
第一次计算使用三个参数的初始值{i11 report、0、i2 rand};
第N次计算使用的PMI参数为{i11 report、N-1、i2 rand};
依次类推直到最后一次第Numi12次计算使用的PMI参数为{i11 report、Numi12-1、i2 rand}。
在得到Numi12组PMI参数后,根据预设的配置参数以及第N次输入的PMI参数产生对应的预编码矩阵W N,再结合信道系数矩阵H k和噪声方差矩阵
Figure PCTCN2019126422-appb-000008
计算出所有子载波对应的信道容量和Cap N,容量计算过程同步骤302。
在得到信道容量后,选择出所有计算出的Numi12个信道容量中的最大值并记录下此最大容量使用的first PMI2参数,标记为i12 report
步骤305:在得到精搜索first PMI1和精搜索first PMI2的取值后,获取second PMI精搜索在每次容量计算需要的PMI参数,并根据步骤301得到的信道和噪声系数以及PMI参数计算对应的信道容量,比较选择出最大容量对应的PMI参数作为最终选择的PMI。步骤如下:
根据当前的RI、天线配置、码本配置以及模块402输出的PMI参数,产生本步骤对应first PMI1 i11、first PMI2 i12与second PMI i2的初始值,其中i11的初始值为i11 report、i12的初始值为i12 report,i2的初始值为0。
根据产生的PMI参数初始值,second PMI精搜索在每次容量计算需要的PMI参数如下:
第一次计算使用三个参数的初始值{i11 report、i12 report、0};
第N次计算使用的PMI参数为{i11 report、i12 report、N-1};
依次类推,直到最后一次第Numi2次计算使用的PMI参数为{i11 report、i12 report、Numi2-1}。
在得到Numi2组PMI参数后,根据预设的配置参数以及第N次输入的PMI参数产生对应的预编码矩阵W N,再结合信道系数矩阵H k和噪声方差矩阵
Figure PCTCN2019126422-appb-000009
计算出所有子载波对应的信道容量和Cap N,容量计算过程同步骤302。
在得到信道容量后,选择出所有计算出的Numi2个信道容量中的最大值并记录下此最大容量使用的second PMI参数,标记为i2 report。此时完成所有搜索过程,最终选择出的上报PMI就是{i11 report、i12 report、i2 report}这三个参数。
从以上步骤可以看出,针对本实施例,利用本公开提供的方法进行PMI码本的搜索,需要通过四次搜索完成一层的三级分离搜索,所需的搜索次数为52次,其计算方式为Numi12*2+Numi11+Numi2=16*2+16+4=52次搜索,相比较于常规遍历方法需要1024次搜索,而相关技术中,其一层搜索复杂度最低也需要Numi11*Numi12+Numi2=16*16+4=260次。本公开方法复杂度仅为遍历方法一层搜索的5%、相关类似技术的1/4,且本公开方法通过先进行依次粗搜索选择较好的i12参数,避免了精搜索时初始参数过差造成的搜索性能损失,能够保证搜索性能与遍历方法一致。同时针对采用与一层SP码本类似结构的5~8层码本, 在本实施例的配置下,本公开方法也能够将搜索此时降低到遍历算法的10%以内,同时保证性能与遍历算法一致。
本公开所述方法和先进行i11粗搜索再进行i12精搜索、最后进行i11与i2精搜索方法相比,在粗搜索时的复杂度也小于或等于上述方法。这是因为根据5G协议天线配置规则,N1大于等于N2,本公开方法中粗搜索次数为4*N2,对比方法粗搜索次数为4*N1,因此除了N1=N2的情况其余配置下本公开方法粗搜索复杂度均更小,而精搜索复杂度两者都是Numi12+Numi11+Numi2,所以总体搜索次数上本公开所示方法更具优势。
本发明实施例提供一种终端,包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序在被所述处理器读取执行时,实现上文任一所述的码本信息的处理方法。
图3为本公开提供的终端的结构示意图。图3所示结构图中,所述存储器存储有如下计算机程序,包括:
信道系数和噪声方差估计程序401,设置为根据导频信号估计每个子载波上的信道系数矩阵H k和噪声方差矩阵
Figure PCTCN2019126422-appb-000010
并将信道系数和噪声输入到程序402进行容量计算。
容量计算与比较程序402,设置为根据配置的RI、码本模式、天线配置以及搜索控制程序输出的参数(包含first PMI1、first PMI2和second PMI)产生对应的码本,并结合程序401提供的信道系数矩阵和噪声方差矩阵计算出对应的信道容量,比较选择出容量较大的码本并保存对应的first PMI1、first PMI2和second PMI,并将这些PMI参数输出给程序404、405、406。
first PMI2粗搜索控制程序403,设置为根据输入参数(RI、码本模式和天线配置),按照预先设定好的first PMI2粗搜索规则依次输出PMI参数(包含first  PMI1、first PMI2和second PMI)给容量计算与比较程序402。
first PMI1精搜索控制程序404,设置为根据输入参数(RI、码本模式和天线配置)以及程序402提供的first PMI2粗搜索后的初步first PMI2,按照预先设定好的first PMI1精搜索规则依次输出PMI参数(包含first PMI1、first PMI2和second PMI)给容量计算与比较程序402。
first PMI2精搜索控制程序405,设置为根据输入参数(RI、码本模式和天线配置)以及程序402提供的first PMI1精搜索后的最优first PMI1,按照预先设定好的first PMI2精搜索规则依次输出PMI参数(包含first PMI1、first PMI2和second PMI)给容量计算与比较程序402。
second PMI精搜索控制程序406,设置为根据输入参数(RI、码本模式和天线配置)以及程序402提供的first PMI1精搜索后的最优first PMI1、first PMI2精搜索后的最优first PMI2,按照预先设定好的second PMI精搜索规则依次输出PMI参数(包含first PMI1、first PMI2和second PMI)给容量计算与比较程序402。
本公开提供的终端实施例,通过获取first PMI在执行粗搜索操作时对应的第一取值信息,再根据所述第一取值信息以及预先设置的PMI选择规则,确定所使用的码本信息,利用粗搜索先确定first PMI的大致范围,再通过进一步的精搜索确定准确的first PMI与second PMI的取值,在达到遍历搜索性能的前提下,能够有效地减少终端PMI反馈的计算次数,降低码本信息的获取的计算复杂度。
本发明实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有一个或至少两个计算机程序,所述一个或至少两个计算机程序被一个或者至少两个处理器执行,以实现上文任一所述的码本信息的处理方法。
本公开提供的计算机可读存储介质实施例,通过获取first PMI在执行粗搜索操作时对应的第一取值信息,再根据所述第一取值信息以及预先设置的PMI选择规则,确定所使用的码本信息,利用粗搜索先确定first PMI的大致范围,再通过进一步的精搜索确定准确的first PMI与second PMI的取值,在达到遍历搜索性能的前提下,能够有效地减少终端PMI反馈的计算次数,降低码本信息的获取的计算复杂度。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (10)

  1. 一种码本信息的处理方法,包括:
    获取宽带预编码索引first PMI在执行粗搜索操作时对应的第一取值信息;
    根据所述第一取值信息以及预先设置的预编码索引PMI选择规则,确定所使用的码本信息。
  2. 根据权利要求1所述的方法,其中,所述获取first PMI在执行粗搜索操作时对应的第一取值信息,包括:
    获取first PMI1的初始取值i11 rand、first PMI2的初始取值i12 rand和子带预编码索引second PMI的初始取值i2 rand
    根据获取到的初始取值i11 rand、i12 rand和i2 rand,获取Numi12组PMI参数,其中,第a组PMI参数为{(i11 rand+a-1)mod(Numi11)、(i12 rand+a-1)mod(Numi12)、i2 rand},其中Numi11和Numi12均为正整数,依次表示first PMI1和first PMI2的可用总数,a为小于或等于Numi12的整数;
    按照所述PMI选择规则,从所述Numi12组PMI参数中选择符合所述PMI选择规则的first PMI2的取值信息i12 save,作为执行粗搜索操作得到的first PMI2。
  3. 根据权利要求1所述的方法,其中,所述根据所述第一取值信息以及预先设置的PMI选择规则,确定所使用的码本信息,包括:
    根据所述第一取值信息以及所述PMI选择规则,确定所述first PMI在执行精搜索操作时对应的第二取值信息;
    根据所述first PMI的第二取值范围以及所述PMI选择规则,确定所述second PMI在执行精搜索操作时对应的第三取值信息。
  4. 根据权利要求3所述的方法,其中,所述根据所述第一取值信息以及所述PMI选择规则,确定所述first PMI在执行精搜索操作时对应的第二取值信息, 包括:
    根据所述第一取值信息以及所述PMI选择规则,确定所述first PMI1在执行精搜索操作时对应的取值信息;
    根据所述first PMI1的取值信息以及所述PMI选择规则,确定所述first PMI2在执行精搜索操作时对应的取值信息。
  5. 根据权利要求4所述的方法,其中,所述根据所述第一取值信息以及所述PMI选择规则,确定所述first PMI1在执行精搜索操作时对应的取值信息,包括:
    根据所述粗搜索得到的first PMI2的取值信息i12 save以及所述second PMI的初始取值i2 rand,确定Numi11组PMI参数,其中第b组PMI参数为{b-1、i12 save、i2 rand},其中b=1,2,3,……,Numi11,其中Numi11为正整数,表示所述first PMI1的可用总数;
    按照所述PMI选择规则,从所述Numi11组PMI参数中选择符合所述PMI选择规则的first PMI1的取值i11 report,作为所述精搜索对应的first PMI1。
  6. 根据权利要求4所述的方法,其中,所述根据所述first PMI1的取值信息以及所述PMI选择规则,确定first PMI2在执行精搜索操作时对应的取值信息,包括:
    在得到所述精搜索对应的first PMI1的取值i11 report后,根据所述精搜索得到的first PMI1的取值i11 report和所述second PMI的初始取值i2 rand,确定Numi12组PMI参数,其中,第c组PMI参数为{i11 report、c-1、i2 rand},其中N为小于或等于Numi12的正整数;
    按照所述PMI选择规则,从所述Numi12组PMI参数中选择符合所述PMI选择规则的first PMI1的取值i12 report,作为所述精搜索对应的first PMI2。
  7. 根据权利要求4或5或6所述的方法,其中,所述根据所述first PMI的第二取值范围以及所述PMI选择规则,确定所述second PMI在执行精搜索操作时对应的第三取值信息,包括:
    利用所述精搜索得到的first PMI1的取值i11 report和所述精搜索得到的first PMI2的取值i12 report,确定Numi2组PMI参数,其中,第d组PMI参数为{i11 report、i12 report、d-1},其中d为小于或等于Numi2的正整数;
    按照所述PMI选择规则,从所述Numi2组PMI参数中选择符合所述PMI选择规则的second PMI的取值i2 report,作为所述精搜索对应的second PMI。
  8. 根据权利要求1所述的方法,所述根据所述第一取值信息以及预先设置的PMI选择规则,确定所使用的码本信息之后,所述方法还包括:
    向基站发送所述码本信息。
  9. 一种终端,包括存储器和处理器,其中,所述存储器存储有计算机程序,所述计算机程序在被所述处理器读取执行时,实现如权利要求1至8任一所述的码本信息的处理方法。
  10. 一种计算机可读存储介质,其中,所述计算机可读存储介质存储有一个或至少两个计算机程序,所述一个或至少两个计算机程序被一个或者至少两个处理器执行,以实现如权利要求1至8任一所述的码本信息的处理方法。
PCT/CN2019/126422 2018-12-18 2019-12-18 码本信息的处理方法、终端及计算机可读存储介质 WO2020125694A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19899995.5A EP3902151B9 (en) 2018-12-18 2019-12-18 Codebook information processing method, terminal, and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811549964.6 2018-12-18
CN201811549964.6A CN111342872B (zh) 2018-12-18 2018-12-18 码本信息的处理方法和终端及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2020125694A1 true WO2020125694A1 (zh) 2020-06-25

Family

ID=71100639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126422 WO2020125694A1 (zh) 2018-12-18 2019-12-18 码本信息的处理方法、终端及计算机可读存储介质

Country Status (3)

Country Link
EP (1) EP3902151B9 (zh)
CN (1) CN111342872B (zh)
WO (1) WO2020125694A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130195035A1 (en) * 2010-04-30 2013-08-01 Ntt Docomo, Inc. Mobile terminal device and radio base station apparatus
CN104144006A (zh) * 2013-05-07 2014-11-12 北京三星通信技术研究有限公司 Mimo系统中的信道状态信息的传输方法、用户设备及基站
CN104321983A (zh) * 2013-05-17 2015-01-28 华为技术有限公司 传输预编码矩阵的方法、用户设备和基站
US20160156401A1 (en) * 2014-12-02 2016-06-02 Samsung Electronics Co., Ltd. Downlink signaling for partially precoded csi-rs and csi feedback
WO2016206052A1 (en) * 2015-06-25 2016-12-29 Intel IP Corporation User equipment and codebook search method for 4tx dual codebook (ran1)
US20170047978A1 (en) * 2015-08-13 2017-02-16 Electronics And Telecommunications Research Institute Terminal for periodically transmitting csi feedback information

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101534268B (zh) * 2008-03-14 2012-03-07 中兴通讯股份有限公司 一种多输入多输出系统预编码的码本设计及反馈方法
CN102237975B (zh) * 2010-05-04 2013-10-02 华为技术有限公司 发送预编码矩阵索引及进行预编码的方法和装置
EP2400705B1 (en) * 2010-06-22 2014-03-05 HTC Corporation Multiple-input multiple-output systems and methods for wireless communication thereof for reducing the quantization effect of precoding operations utilizing finite codebooks
CN103036601B (zh) * 2011-09-30 2017-08-29 锐迪科(重庆)微电子科技有限公司 一种确定秩指示和预编码矩阵索引的方法和装置
US9438321B2 (en) * 2012-07-12 2016-09-06 Samsung Electronics Co., Ltd. Methods and apparatus for codebook subset restriction for two-dimensional advanced antenna systems
CN104935366B (zh) * 2015-04-21 2018-01-02 北京航空航天大学 毫米波通信中的波束搜索方法
WO2017031672A1 (zh) * 2015-08-24 2017-03-02 华为技术有限公司 一种预编码信息发送、反馈方法及装置
CN107222247B (zh) * 2016-03-21 2020-09-08 深圳市中兴微电子技术有限公司 一种码本搜索方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130195035A1 (en) * 2010-04-30 2013-08-01 Ntt Docomo, Inc. Mobile terminal device and radio base station apparatus
CN104144006A (zh) * 2013-05-07 2014-11-12 北京三星通信技术研究有限公司 Mimo系统中的信道状态信息的传输方法、用户设备及基站
CN104321983A (zh) * 2013-05-17 2015-01-28 华为技术有限公司 传输预编码矩阵的方法、用户设备和基站
US20160156401A1 (en) * 2014-12-02 2016-06-02 Samsung Electronics Co., Ltd. Downlink signaling for partially precoded csi-rs and csi feedback
WO2016206052A1 (en) * 2015-06-25 2016-12-29 Intel IP Corporation User equipment and codebook search method for 4tx dual codebook (ran1)
US20170047978A1 (en) * 2015-08-13 2017-02-16 Electronics And Telecommunications Research Institute Terminal for periodically transmitting csi feedback information

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NEW POSTCOM: "PMI feedback for DL CoMP", 3GPP DRAFT R1-113696, 11 November 2011 (2011-11-11), XP050562370, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_67/Docs/> DOI: 20200226155928A *

Also Published As

Publication number Publication date
CN111342872B (zh) 2023-01-10
EP3902151A4 (en) 2022-02-23
EP3902151A1 (en) 2021-10-27
CN111342872A (zh) 2020-06-26
EP3902151B9 (en) 2023-10-04
EP3902151B1 (en) 2023-08-23

Similar Documents

Publication Publication Date Title
RU2695125C1 (ru) Способы и устройства для определения параметров прекодера в сети беспроводной связи
JP7450625B2 (ja) 無線通信ネットワークにおけるフィードバック報告のための方法および装置
US11996911B2 (en) Channel state information feedback method and apparatus
CN111800172B (zh) 一种通信方法及装置
WO2022151955A1 (zh) 信道状态信息传输方法、装置、电子设备和存储介质
US12040855B2 (en) Frequency time domain channel hardening and overhead reduction
TW201817181A (zh) 在多輸入多輸出系統中預編碼選擇的裝置以及方法、製造預編碼選擇的裝置的方法以及構造具有預編碼選擇的裝置的積體電路的方法
WO2018027813A1 (zh) 一种反馈参数上报方法和装置
US20200119796A1 (en) Channel state information transmission method, access network device, and terminal device
KR102153207B1 (ko) 피드백 정보의 전송 방법 및 장치
CN114257354A (zh) 一种传输方法、终端设备及网络侧设备
WO2015196974A1 (zh) 一种针对csi反馈系统的发射加权方法及装置
WO2016154923A1 (zh) 波束信息获取方法、装置以及通信系统
WO2017121092A1 (zh) 一种信道估计方法及装置
CN108282204B (zh) 通信方法、装置及系统
CN108667490B (zh) 一种信道状态信息反馈方法及装置
WO2020125694A1 (zh) 码本信息的处理方法、终端及计算机可读存储介质
CN107222249B (zh) 一种信道状态信息获取方法及装置
CN104756427B (zh) 一种预编码本选择方法及装置
WO2022116875A1 (zh) 传输方法、装置、设备及可读存储介质
CN109391306B (zh) 两级码本和秩的选择方法及装置、计算机可读存储介质
WO2022111119A1 (zh) 一种数据检测方法及通信装置
CN107342798B (zh) 一种确定码本的方法及装置
WO2021057634A1 (zh) 获取预编码矩阵索引的方法和装置及存储介质
CN108667497B (zh) 一种传输层数确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019899995

Country of ref document: EP

Effective date: 20210719