WO2020111784A1 - 자율주행을 지원하는 실내형 전천후 도로 및 그 네트워크 체계 - Google Patents
자율주행을 지원하는 실내형 전천후 도로 및 그 네트워크 체계 Download PDFInfo
- Publication number
- WO2020111784A1 WO2020111784A1 PCT/KR2019/016494 KR2019016494W WO2020111784A1 WO 2020111784 A1 WO2020111784 A1 WO 2020111784A1 KR 2019016494 W KR2019016494 W KR 2019016494W WO 2020111784 A1 WO2020111784 A1 WO 2020111784A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- road
- underground
- roads
- driving
- vehicle
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 68
- 238000000034 method Methods 0.000 claims description 36
- 238000005304 joining Methods 0.000 claims description 23
- 230000008859 change Effects 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 60
- 238000004891 communication Methods 0.000 description 23
- 238000009423 ventilation Methods 0.000 description 23
- 238000005516 engineering process Methods 0.000 description 19
- 206010039203 Road traffic accident Diseases 0.000 description 14
- 230000008569 process Effects 0.000 description 12
- 238000003860 storage Methods 0.000 description 11
- 238000010276 construction Methods 0.000 description 10
- 230000001174 ascending effect Effects 0.000 description 9
- 239000007789 gas Substances 0.000 description 9
- 239000013535 sea water Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 238000011160 research Methods 0.000 description 7
- 230000006378 damage Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 5
- 239000013505 freshwater Substances 0.000 description 5
- 238000005192 partition Methods 0.000 description 5
- 235000004522 Pentaglottis sempervirens Nutrition 0.000 description 4
- 240000004050 Pentaglottis sempervirens Species 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- 238000004887 air purification Methods 0.000 description 4
- 230000035939 shock Effects 0.000 description 4
- 239000004071 soot Substances 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- 238000006424 Flood reaction Methods 0.000 description 3
- 238000003915 air pollution Methods 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 238000007726 management method Methods 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 239000000779 smoke Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 239000003517 fume Substances 0.000 description 2
- 239000003673 groundwater Substances 0.000 description 2
- 239000008235 industrial water Substances 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 238000005339 levitation Methods 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 206010037844 rash Diseases 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000002341 toxic gas Substances 0.000 description 2
- 206010000369 Accident Diseases 0.000 description 1
- 241000554155 Andes Species 0.000 description 1
- 235000002918 Fraxinus excelsior Nutrition 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 238000009360 aquaculture Methods 0.000 description 1
- 244000144974 aquaculture Species 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 231100000517 death Toxicity 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003621 irrigation water Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 230000009192 sprinting Effects 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000004642 transportation engineering Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C1/00—Design or layout of roads, e.g. for noise abatement, for gas absorption
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C1/00—Design or layout of roads, e.g. for noise abatement, for gas absorption
- E01C1/04—Road crossings on different levels; Interconnections between roads on different levels
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D11/00—Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
- E21D11/38—Waterproofing; Heat insulating; Soundproofing; Electric insulating
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21F—SAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
- E21F1/00—Ventilation of mines or tunnels; Distribution of ventilating currents
Definitions
- the present invention relates to a network-type underground road system supporting ultra-high-speed autonomous driving of automobiles, and to an intelligent smart road using a wireless communication technology grafted to the underground road and a network-type underground road system using the same.
- a road network system with an indoor structure.
- the road network system having the indoor structure can completely replace the existing road system.
- a typical example of an indoor structure is an underground road, and American innovative entrepreneur Elon Musk launched a high-speed tunnel in the city that can run up to 240 km/h in December 2018 as part of the future transportation system. It was piloted in Los Angeles to show off in the world. It is reported that the Korea Institute of Construction Technology is working to secure the technology for constructing a networked underground road system by 2019.
- the challenge is to provide a solution that enables safe autonomous driving even in environments such as night roads, rain roads, snowy roads, ice roads or fog roads (or sea mists), sandy storm roads, and extreme cold waves, which are related to ever-changing weather or climate. have.
- roads supporting autonomous driving should include various intelligent devices and structures that can actively respond to the needs of advanced automobiles.
- it is required to establish a communication network environment that does not receive communication obstacles in all sections of the road and can communicate between the vehicle and the vehicle or between the vehicle and the external control center.
- an embodiment forms a driving space with the ceiling and the road surface adjacent to the ceiling, the road surface formed opposite the ceiling, the ceiling and the road surface in the form of a covered roof. It consists of a wall surface, a road having an indoor structure, a plurality of cars that move the traveling space, and are connected to each other by a wireless network to transmit and receive information, and the plurality of cars connected to a wired and wireless network to transmit and receive information ,
- a road traffic control center for controlling the plurality of cars, the road, a structure providing a single driving environment in all weather due to the indoor structure blocked from outdoor weather and independent indoor structure independent of various terrain on the ground
- It provides an indoor, all-weather road network system that is formed of a high-speed autonomous driving of a vehicle, characterized in that it comprises a structure that provides a single driving environment regardless of the terrain.
- the road includes a plurality of driving spaces constituting a reciprocating direction, and each of the plurality of driving spaces may be formed such that the plurality of cars move only in a single direction.
- the right turn lamp, the plurality of cars make a right turn; And a left turn lamp for the plurality of cars to turn left, wherein the road is a plurality, and the left turn lamp and the right turn lamp connect the plurality of roads to each other, and the plurality of cars include the left turn lamp and the A right turn ramp may move between the plurality of roads.
- the right turn lamp and the left turn lamp may be formed in the same direction with respect to the lane in which the plurality of cars travel.
- the right turn ramp starts on the right side of one road and ends on the right side of the other road, and the plurality of cars pass the right turn ramp on the right side of any one road and joins the right side of the other road By doing so, you can make a right turn.
- the left turn ramp starts on the right side of one road and ends on the right side of the other road, and the plurality of cars pass the left turn ramp on the right side of the one road to the right of the other road
- a left turn can be made.
- the road traffic control center In the system, the road traffic control center, the advanced driver assistance system (ADAS) program, cruise control control program, automatic emergency braking of the plurality of vehicles through the wired and wireless networks (You can control Autonomous Emergency Breaking (AEB) devices or Lane Change Assist (LCA) devices.
- ADAS advanced driver assistance system
- AEB Autonomous Emergency Breaking
- LCDA Lane Change Assist
- a width of a lane defined by high-speed driving among a plurality of lanes of the road may be wider than a width of a lane defined by low-speed driving.
- the bottom is formed in a flat surface may include a water tank that spreads water to a constant height.
- a ventilation hole for discharging the internal air of the road to the outdoors may further include a heating device for heating the internal air and moving the heated internal air to the outdoors through the ventilation hole have.
- a safe, ultra-high-efficiency indoor type that can completely replace the existing open-air road on the ground through an intelligent all-weather road system with a canopy structure or an underground tunnel structure. structure) It can provide all-weather road network.
- the safety function of the road is maximized, so that a person who dies from a traffic accident does not originate, and thus an extremely safe road traffic environment can be realized.
- the existing autonomous driving technology (levels 2 to 3) is also at least level 4 or higher as determined by the National Road Traffic Safety Administration (NHTSA). Autonomous driving may be possible.
- the road traffic environment for autonomous vehicles is implemented in all-weather and all-region barrier-free environment, so that autonomous vehicles are implemented, eliminating the need for a large part of existing expensive and complicated devices and software, so that autonomy to be produced in the future
- the cost of a driving car can be cheaper.
- asphalt toxicity can be washed away by rainwater, thereby eliminating environmental problems that contaminate rivers, rivers, and groundwater.
- the road width can be infinitely extended to 2 times, 4 times, 6 times, and the like.
- a large underground parking lot can be built in the basement of the road, thereby solving the parking shortage in a large city.
- the space on the ground where the roads were located can be used for eco-friendly uses such as parks, promenades, and bicycle paths, thereby realizing a car-free street.
- the all-weather road in the underground functions as a platform to perform a multi-purpose transport function. It functions as a waterproofing channel that supplies irrigation water, industrial water, or household water, and can function as a seawater pipe that supplies seawater to a distant place inland if necessary.
- an electric pipe or an optical cable network or a gas pipe, an oil pipeline, a water supply pipe, etc. can be installed along with a road, thereby establishing a national or international energy network connection network.
- the area through which the underground road passes can produce and develop new and renewable energy by a method such as salt differential power generation.
- FIG. 1 is a first exemplary view of an underground road according to an embodiment.
- FIG. 2 is a second exemplary view of an underpass according to an embodiment.
- FIG 3 is a third exemplary view of an underpass according to an embodiment.
- FIG. 4 is a fourth exemplary view of an underpass according to an embodiment.
- FIG 5 is an exemplary view of an underground road including a reciprocating road of a multi-layer structure according to an embodiment.
- FIG. 6 is an exemplary view of an underground road including a parallel structure reciprocating road according to an embodiment.
- FIG. 7 is a bird's-eye view illustrating a state in which a multi-story underground road is implemented in a large city underground according to an embodiment.
- FIG. 8 is a bird's-eye view showing a network of a multi-layered underpass according to an embodiment.
- 9 is an exemplary view illustrating lane classification of an underground road according to an embodiment.
- FIG. 10 is a first exemplary view showing a right turn lamp enabling a right turn at a point where two-layered cylindrical underground roads cross each other according to an embodiment.
- FIG. 11 is a second exemplary view showing a right turn lamp enabling a right turn at a point where two-layered cylindrical underground roads cross each other according to an embodiment.
- FIG. 12 is a third exemplary view showing a right turn lamp enabling right turn at a point where two-layered cylindrical underground roads cross each other according to an embodiment.
- FIG. 13 is a first exemplary view showing a right turn lamp enabling a right turn at a point where the semi-cylindrical underground roads of a parallel structure cross each other according to an embodiment.
- FIG. 14 is a second exemplary view showing a right turn lamp enabling a right turn at a point where the semi-cylindrical underground roads of a parallel structure cross each other according to an embodiment.
- FIG. 15 is a third exemplary view showing a right turn lamp enabling a right turn at a point where the semi-cylindrical underground roads of a parallel structure cross each other according to an embodiment.
- FIG. 16 is a first exemplary view showing a left turn ramp enabling a left turn at a point where two-layered cylindrical underground roads cross each other according to an embodiment.
- FIG. 17 is a second exemplary view showing a left turn ramp enabling a left turn at a point where a cylindrical underground road having a multi-layer structure crosses each other according to an embodiment.
- FIG. 18 is a third exemplary view showing a left turn ramp enabling a left turn at a point where two-layered cylindrical underground roads cross each other according to an embodiment.
- 19 is a first exemplary view showing a left turn ramp enabling a left turn at a point where the semi-cylindrical underground roads of a parallel structure cross each other according to an embodiment.
- 20 is a second exemplary view showing a left turn ramp enabling a left turn at a point where the semi-cylindrical underground roads of a parallel structure cross each other according to an embodiment.
- 21 is a third exemplary view showing a left turn ramp enabling a left turn at a point where the semi-cylindrical underground roads of a parallel structure cross each other according to an embodiment.
- FIG. 22 is a fourth exemplary view showing a left turn ramp enabling a left turn at a point where the semi-cylindrical underground roads of a parallel structure cross each other according to an embodiment.
- FIG. 23 is an exemplary view showing a U-turn in a semi-cylindrical underground road of a parallel structure according to an embodiment.
- 24 is an exemplary view showing a ventilation device for an underground road according to an embodiment.
- 25 is an exemplary view showing the flow of air in a ventilation system of an underground road according to an embodiment.
- 26 is an exemplary view showing an air purifying apparatus for an underground road according to an embodiment.
- 27 is an exemplary view digitizing and showing an accident area in an underground road according to an embodiment.
- FIG. 28 is a first exemplary view illustrating a vehicle stopper for preventing a secondary accident according to an embodiment.
- 29 is a second exemplary view illustrating a vehicle stopper for preventing a secondary accident according to an embodiment.
- FIG. 30 is a third exemplary view illustrating a vehicle stopper for preventing a secondary accident according to an embodiment.
- 31 is a fourth exemplary view illustrating a vehicle stopper for preventing a secondary accident according to an embodiment.
- 32 is an exemplary view showing an automated unmanned response device for an underground road according to an embodiment.
- 33 is an exemplary view showing a safety device for an underground road according to an embodiment.
- 34 is an exemplary view showing a structure of a multi-layered underpass according to an embodiment.
- 35 is an exemplary view showing a parking lot on a multi-story underground road according to an embodiment.
- 36 is an exemplary view showing an underground road installed in an alpine region according to an embodiment.
- FIG. 37 is a first exemplary view showing a waterway facility added to an underground road according to an embodiment.
- 38 is a second exemplary view showing a waterway facility added to an underground road according to an embodiment.
- 39 is a third exemplary view showing a waterway facility added to an underground road according to an embodiment.
- 40 is an exemplary view showing movement of water through a waterway facility added to an underground road according to an embodiment.
- 41 is an exemplary view showing a multipurpose function of an underground road according to an embodiment.
- first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the component from other components, and the nature, order, or order of the component is not limited by the term.
- a component is described as being “connected”, “coupled” or “connected” to another component, that component may be directly connected to or connected to the other component, but another component between each component It should be understood that elements may be “connected”, “coupled” or “connected”.
- FIG. 1 is a first exemplary view of an underground road according to an embodiment
- FIG. 2 is a second exemplary view of an underground road according to an embodiment
- FIG. 3 is a third exemplary view of an underground road according to an embodiment
- FIG. 4 is a fourth exemplary view of an underpass according to an embodiment.
- the underpass may include a canopy structure or a tunnel structure.
- 1 may show a cylindrical underground road 100a
- FIG. 2 may show a semi-cylindrical underground road 100b
- FIG. 3 may show a box-type underground road 100c
- 4 may show a semi-cylindrical underground road 100b in which an intelligent device is installed.
- the ceiling 110 serves as a roof of the road and may function to protect the road from various bad weather.
- the roof can be extended to be inclined to the side and connected to contact the road surface to form the wall surface 111.
- the ceiling 110, the wall surface 111, and the road surface may constitute a driving space in which the vehicle 125 moves in the underground roads 100a, 100b, 100c, 100d, 100e, and 100f.
- underground roads (100a, 100b, 100c, 100d, 100e, 100f) blocks all adverse effects of weather and climate, such as rain and cold, heavy snow, heavy rain, sand storms, protects the road, and weather It is possible to ensure a safe driving environment at all times, in which all the traffic conditions caused by weather and weather are removed. Therefore, the underground roads (100a, 100b, 100c, 100d, 100e, 100f) according to the present invention can be all-weather roads that can be safely operated regardless of all weather conditions occurring on the ground.
- the underground roads having such a road structure may be referred to as an indoor road (indoor road) or an all-weather road (weather-proof road), and existing outdoor ( outdoor).
- the structure of a representative underground road (100a, 100b, 100c, 100d, 100e, 100f) that completely shields the road from the adverse effects caused by various climates or weather by covering the roof structure can be said to be an underground tunnel structure.
- the shapes of the underground roads 100a, 100b, 100c, 100d, 100e, and 100f are the tunnel type 100a having a cylindrical structure as shown in FIG. 1, the tunnel type 100b having a semi-cylindrical structure as shown in FIG. 2, and/or It may include a tunnel type (100c) of a box-like structure such as 3.
- the semi-cylindrical underground road 100b may have a shape in which a cylinder is cut in half by a longitudinal section.
- the box-type underground road 100c can be used in a densely populated terrain like a metropolitan area. In addition to these structures, structures modified from these may be variously included.
- cylindrical underground road 100a shown in FIG. 1 is a structure that utilizes the entire cylindrical tunnel as a road and ancillary facilities, it can be used as a multi-level road structure beyond a single-level road structure.
- Cylindrical underground road (100a) can be used at the same time as a waterproof tunnel, oil pipeline, transmission pipe, etc. installed in the space inside the tunnel.
- the semi-cylindrical underground road 100b shown in FIG. 2 is a structure in which half of the cylindrical underground road 100a is used as a road and ancillary facilities, and thus can be used for limited purposes.
- the box-type underground road 100c illustrated in FIG. 3 may be a good structure to be installed near the surface of a large city.
- Underground roads (100a, 100b, 100c, 100d, 100e, 100f) according to the present invention are new solutions for the commercialization of autonomous vehicles, maximizing the function of the roadway to solve various challenges that autonomous vehicle researchers have not solved. How to do it.
- the new structure of the road through this new concept enables the maximization of human safety such as vehicle occupants and road pedestrians, while at the same time maximizing the performance of the vehicle.
- the problem of the backwardness of the road structure that could not keep up with the technological power of advanced automobiles was overlooked. Even if these technical gaps are resolved, the performance of automobiles and roads is greatly improved as well as the commercialization of autonomous vehicle technology to date. Technology alone can make it possible.
- the backwardness of infrastructure such as roads can cause various traffic accidents, causing damage to people and property, as well as limiting the performance of automobiles.
- the existing road is an open-air structure exposed to various weather as an outdoor, it has not completely overcome the various traffic obstacles created by the weather and climate. Therefore, people were exposed to traffic accidents caused by various bad weather conditions such as floods, heavy snow, cold waves, sand storms, hurricanes, and fog. If the open-air type road is changed to an outdoor structure that is shielded and protected from various weathers of the open-air, all the bad conditions of traffic created by the changing weather and climate may be eliminated.
- the road is always safe to run, so people do not have to worry about problems such as rain, snow, ice, fog, sandstorms, tornadoes, and hurricanes.
- a car that is safe from the weather does not need to be restricted by speed (in an environment where pedestrians and wild stones are shielded on the road), so it can perform at high speed and ultra-high speed while exerting the maximum function allowed by the vehicle performance.
- Vehicles equipped with modern cutting-edge technology have been able to drive at high speeds in the past, but they have not been able to show their performance due to the limitations of roads with open-air structures.
- Underground roads (100a, 100b, 100c, 100d, 100e, 100f), i.e. weather-proof roads, are roads with an indoor structure that blocks the traffic and bad conditions created by the weather and climate for the best possible safety.
- Can mean Underground roads (100a, 100b, 100c, 100d, 100e, and 100f) can block the road from the effects of various weather and climates, including a canopy structure with a roof in a certain space above the road.
- the road with the roof structure can have an effect of blocking all driving environments caused by the changing weather and climate in terms of transportation engineering to unify it into a single, uniform driving environment. Therefore, if the road with the roof structure is used, research on an autonomous vehicle for a complicated driving environment compressed to about 300,000 may no longer be necessary.
- the road with the roof structure may include an underground tunnel structure.
- the underground tunnel structure has the effect of cold, heat, wind, rain, snow, mist and radiation, and can provide a safe and efficient road function by blocking the bad weather on the ground.
- Underground roads 100a, 100b, 100c, 100d, 100e, and 100f may be used interchangeably with indoor roads, covered roof structure roads, all-weather roads, and tunnel roads.
- the roadway may implement the best transportation environment in which a traffic accident such as a human injury or road-kill does not occur fundamentally even at the maximum speed allowed by the performance of the vehicle.
- Underground roads 100a, 100b, 100c, 100d, 100e, and 100f may basically have a straight tunnel structure and a flat road structure.
- the straight line and the flat surface are concepts applied to the length, not the width of the road, it means that the length of the road is formed in a straight structure, and also means that the length of the road is formed in a straight structure in terms of height of the road.
- the straight structure may include a horizontal structure road.
- the expressions such as ultra-straight, ultra-planar, and super-high speed are used.
- the suffix'cho' means to emphasize the level of the length, area, or performance of something beyond the range of common sense.
- the term “super-planar structure” in the underground tunnel road means that the planar structure is formed to be wide enough to exceed the general recognition range, and the ultra-high speed refers to the high-speed state that exceeds the common sense. Therefore, the vehicle can travel at high speed as if running on a runway in all sections of the all-weather road formed of the super-planar structure without the help of high-precision maps or the like.
- an example of an underground road in which an intelligent device is installed is illustrated.
- the underground road on which the intelligent device is installed may function as an intelligent smart road.
- Underground roads (100a, 100b, 100c, 100d, 100e, 100f) are CCTV (400), sprinkler (410) robot arm (420), vacuum cleaner, car stopper (500) on the ceiling (110) or wall (111). )
- CCTV 400
- sprinkler (410) robot arm 420
- vacuum cleaner 410
- car stopper 500
- the devices may enable rapid unmanned automatic control or remote control in the event of an accident.
- Various safety devices can be added to prepare for emergency situations.
- the wireless repeater 560 may be installed on the underground roads (100a, 100b, 100c, 100d, 100e, 100f) at regular intervals.
- the wireless repeater 560 may establish a network for exchanging information between the cars 125 over all sections of the underground roads 100a, 100b, 100c, 100d, 100e, and 100f.
- the wireless repeater 560 can establish a wireless network between the vehicle 125 and the road traffic control center 550.
- the two-way wireless network between automobiles 125 is a major element to ensure the safe operation of autonomous vehicles, and the wireless network between automobile 125 and road traffic control center 550 may also be required for safe operation of autonomous vehicles. have.
- the vehicle 125 may be wirelessly connected to an external Internet network through the wireless repeater 560. Such a structure may enable a connected car environment in which the vehicle 125 and the cloud server 570 are always connected.
- a sensor is installed on the road to help locate the vehicle in operation and to help maintain the lane of the vehicle, and to support the location of the vehicle inside the underground roads (100a, 100b, 100c, 100d, 100e, 100f).
- Positioning of the vehicle 125 driving on the underground roads 100a, 100b, 100c, 100d, 100e, and 100f may be performed in conjunction with the ground GPS or independently of the ground GPS. Checking the position of each vehicle 125 may be advantageous when maintaining a safe distance between the front and rear vehicles 125 and changing lanes.
- the CCTV 400 installed at regular intervals on the wall 111 or the ceiling 110 may analyze and use the input image with artificial intelligence (AI).
- AI artificial intelligence
- underground roads (100a, 100b, 100c, 100d, 100e, 100f) according to the present invention can meet the requirements of the vehicle 125 equipped with modern advanced functions.
- Underground roads (100a, 100b, 100c, 100d, 100e, 100f) according to the present invention not only provide high performance driving and driving safety to the vehicle 125, but also provide the best convenience and safety to the occupants, so the functions of the smart road You can do
- Noise generated by the vehicle 125 and shock waves generated during high-speed operation may also be problems to be solved. This is because autonomous vehicles travel at high speeds on underground roads (100a, 100b, 100c, 100d, 100e, and 100f), and noise and shock waves generated during high-speed driving can be a problem in closed spaces.
- the shock wave produced by the high-speed driving vehicle may be a problem because it can be amplified in a closed space such as an underground road (100a, 100b, 100c, 100d, 100e, 100f). Doing so can cause the problem of the vehicle being overturned if severe.
- This can be solved by adjusting the method of operating the existing device or equipment without providing a separate device.
- the width of a lane defined as high-speed driving among a plurality of lanes may be wider than the width of a lane defined as low-speed driving.
- the width of the high-speed driving lane can be wider than that of other lanes, so that shock waves generated by high-speed vehicles can be transmitted to vehicles in neighboring lanes less.
- a high-speed driving vehicle is sprinting, a vehicle in a neighboring lane may temporarily move to another lane and then return to the original lane after the high-speed driving vehicle passes.
- a communication network that can exchange information between the cars 125 or between the cars 125 and the road traffic control center 550 may be required. Also, the road traffic control center 550 needs to control the vehicle 125. At the same time, the cloud server 570 may be required outside the underground roads 100a, 100b, 100c, 100d, 100e, and 100f in order for the vehicle 125 to be connected to an external Internet system.
- a wireless repeater 560 for establishing an Internet communication network is shown.
- the vehicle 125 and the road traffic control center 550 may be recommended an internet communication network including independent channels. Security is important in the network between the vehicle 125 and the road traffic control center 550. This is because if the network does not function, a safety accident cannot be prevented in advance. Therefore, a separate intranet can be additionally used.
- the Internet used by the passengers of the vehicle 125 for convenience may be an Internet communication network connected to an external cloud server 570.
- underground roads (100a, 100b, 100c, 100d, 100e, 100f) can perform the function of a high-speed autonomous driving dedicated road.
- the underground roads 100a, 100b, 100c, 100d, 100e, and 100f may include a hardware environment that enables practical use of autonomous vehicles as well as all-weather environments.
- Existing self-driving cars have not been able to identify self-driving solutions because they are unable to identify pedestrians at night in an open-air environment on the ground, resulting in life-threatening accidents, poor recognition of falling snow, or falling snow obstructing visibility. It was a situation.
- the underground roads (100a, 100b, 100c, 100d, 100e, and 100f) solve all the problems of autonomous vehicles related to the ever-changing weather at a time, allowing the existing technology to fully open the era of autonomous vehicles.
- Underground roads (100a, 100b, 100c, 100d, 100e, 100f) can be constructed without being influenced by the topographical structure of the ground or other factors, so that the improvement of road function can be further maximized.
- the existing underground road was constructed, straight lines and curves at appropriate distances were combined to solve the monotony of driving and improve safety.
- the underground roads (100a, 100b, 100c, 100d, 100e, 100f) according to the present invention do not need to consider an artificial curved structure considering the safety and convenience of drivers, and thus can be constructed as an ultra-planar, super-straight road structure with concentrated economic efficiency and efficiency. Can be.
- This single super-straight, ultra-planar driving environment structure across all sections of the road excluding the ramp section of the intersection eliminates the need for the super-precision map required for autonomous driving.
- underground roads (100a, 100b, 100c, 100d, 100e, 100f) may enable safe driving through a straight road structure and an ultra-planar road structure in bad traffic areas.
- the vehicle 125 is capable of driving at an ultra-high speed and straight line as if running on a runway, thereby opening a technological environment in which economic efficiency, speed, and safety are maximized in transportation, logistics, and transportation.
- the underground roads 100a, 100b, 100c, 100d, 100e, and 100f have a super-straight structure, which can provide an ideal environment in terms of communication.
- the straight road may include a plurality of wireless repeaters 560 at regular intervals on the ceiling 110 or the wall 111 of the road without including any communication obstacles. Therefore, two-way communication between the cars 125 or wireless communication between the cars 125 and the road traffic control center 550 may be possible.
- underground roads 100a, 100b, 100c, 100d, 100e, and 100f may implement a wireless communication environment between the vehicle 125 and the external cloud server 570 through the wireless repeater 560 over the entire section.
- a one-way structure in which all vehicles travel only in one direction may be possible in the underground roads 100a, 100b, 100c, 100d, 100e, and 100f.
- the underground space where the underground roads (100a, 100b, 100c, 100d, 100e, and 100f) are located is easy to secure a large space because three-dimensional space can be expanded in the vertical (vertical) direction.
- Underground roads (100a, 100b, 100c, 100d, 100e, and 100f) can eliminate overcrowding due to the existing road driving method in which a vehicle that is reciprocating is divided in half on one road.
- a one-way structure in which all vehicles travel in only one direction from up and down (vertical) can fundamentally suppress collision accidents occurring in an existing ground road traveling in a reciprocating direction.
- underground roads can facilitate the use of the three-dimensional space of the road due to the nature of using the underground space.
- Underground roads (100a, 100b, 100c, 100d, 100e, 100f) enable the intersection structure without traffic lights through the use of three-dimensional space, and in each direction of the underground roads (100a, 100b, 100c, 100d, 100e, 100f)
- the coming and going car 125 does not stop and can go straight, turn left and turn right at the same time.
- the underground roads (100a, 100b, 100c, 100d, 100e, 100f) are completely blocked from pedestrians and wild animals, and can enable an uninterrupted high-speed driving without traffic lights or pedestrian crossings. This can solve problems related to traffic lights, intersections, pedestrians, and road-kills. At the same time, all roads become safe driving environments that can operate at high speeds, thus maximizing the efficiency of transportation. The safety and efficiency of the underground roads (100a, 100b, 100c, 100d, 100e, and 100f) makes it possible to completely replace the existing ground road.
- the characteristics provided by the underground roads 100a, 100b, 100c, 100d, 100e, and 100f can be very favorably applied to autonomous vehicles. Therefore, if the underground roads (100a, 100b, 100c, 100d, 100e, and 100f) are used, the US Road Traffic Safety Administration (NHTSA) decided only by the research results and technical skills (between Level 2 and Level 3) related to autonomous vehicles. Full autonomous driving above level 4 may be possible.
- Hyundai Motors uses a hydrogen road at a maximum speed of 110 km/h at a distance of 190 km (from Seoul to Pyeongchang), which has a structure that is worse than the underground roads (100a, 100b, 100c, 100d, 100e, 100f) according to the present invention. He announced that he was driving in an autonomous vehicle. Therefore, it is obvious that autonomous driving is possible in an underground road (100a, 100b, 100c, 100d, 100e, 100f) environment that is more favorable for autonomous driving than an open-air road.
- Table 1 may represent a comparative analysis of the prevailing and unfavorable environment of the driving situation between the underground roads 100a, 100b, 100c, 100d, 100e, and 100f. Table 1 compares the difficulty of technologies required for autonomous driving.
- Variable/Classification Ground road (A) Underpass (100a, 100b, 100c, 100d, 100e, 100f) (B) Weather and climate (storms and floods, heavy snow and icy roads, fog, strong winds/sand storms, etc.)
- Various driving obstacle environments No driving obstacles Terrain (wetland, tundra terrain, steep hills, snowy areas, alpine cliff roads, people and animals, etc.)
- Various driving obstacle environments No driving obstacles Ubiquitous communication environment establishment (connected car implementation) Very difficult and expensive Easy and low cost Emergency preparedness in case of an accident Very difficult or expensive Easy and low cost Technical performance Success in autonomous driving (February 4, 2018) -
- the ground open-air road (column A) has various obstacles that cause traffic accidents depending on the weather, climate, and terrain, so there is a high possibility of traffic accidents.
- the underground roads (100a, 100b, 100c, 100d, 100e, 100f) (column B) show that they do not include such obstacles.
- Underground roads (100a, 100b, 100c, 100d, 100e, 100f) with few obstacles to driving because they already succeed in autonomous driving with individual vehicles even on the ground open road (column A), where there are many obstacles, making autonomous driving more difficult In (column B), existing technologies may be capable of autonomous driving.
- Self-driving underground roads (100a, 100b, 100c, 100d, 100e, and 100f) differ in many ways from existing underground roads, and existing underground roads are designed to solve obstacles in some areas of the ground road. Because it was formed for the purpose, it has the characteristics of partial and disconnected roads, so it cannot be networked. In addition, the penetration rate of the existing underground roads itself was very small compared to the entire roads, so there was no relation to the alternative and independent transportation system. Therefore, each of the underground roads 100a, 100b, 100c, 100d, 100e, and 100f capable of driving on the ground can be connected to each other like a network.
- Underground roads (100a, 100b, 100c, 100d, 100e, 100f) may be constructed in an underground space very close to the ground or in a deep depth space of 40m or more underground, depending on the conditions and needs of the area to be built. . Also, depending on the region, it can be constructed in a mixed form where the underground roads (100a, 100b, 100c, 100d, 100e, and 100f) are interconnected in some areas, very close to the ground in some areas, and in deep areas in other areas. Under threat of security, underground roads (100a, 100b, 100c, 100d, 100e, 100f) can be constructed at depths of about 100m or more underground.
- Underground roads (100a, 100b, 100c, 100d, 100e, and 100f) are seismic-designed, so underground tunnels (Turkey Eurasia submarine tunnels) that can withstand earthquakes up to 7.5 are already under construction and are being introduced. , 100b, 100c, 100d, 100e, and 100f) are more resistant to earthquakes than open-air roads. Also, with the development of technology, the inside diameter of the underground roads (100a, 100b, 100c, 100d, 100e, 100f) can be made larger, which can meet the demand for large-scale roads.In addition to simple transportation purposes, water, water, oil, power transmission, etc. It can also perform road platform functions that perform more various ancillary functions.
- Underground roads (100a, 100b, 100c, 100d, 100e, 100f) can be used in a hybrid form where both coexist until they completely replace the open road on the ground.
- the underground roads 100a, 100b, 100c, 100d, 100e, and 100f may be connected to and intersect with the ground road 100g.
- Self-driving underground roads (100a, 100b, 100c, 100d, 100e, and 100f) function like pavements, and open-air roads with limited autonomous driving are considered to be semi-automatic manual driving roads. Recognized as a dirt road now, they can coexist for a certain period of time.
- FIG 5 is an exemplary view of an underground road including a reciprocating road of a multi-layer structure according to an embodiment.
- the cylindrical underground road 100d having a multi-layer structure in which two roads are formed in one cylindrical underground tunnel is illustrated.
- the cylindrical underground road 100a may be a road buried underground, including a multi-layered reciprocating road.
- Underground roads (100a, 100b, 100c, 100d, 100e, 100f) may constitute a network underpass system.
- the network-type underground road system basically includes underground roads (100a, 100b, 100c, 100d, 100e, 100f) and incidentally, the road traffic control center 550, cloud server 570, automated unmanned response device, ventilation system,
- the storage tank 300, the monorail 320, may further include a conduit for transporting logistics.
- the reciprocating road structure can be implemented in two forms.
- One may be a double-deck method in which a reciprocating operation of the vehicle 125 is implemented by using a vertical structure of two or more floors, an upper road and a lower road, using a single tunnel as a double-layer structure.
- the other is to arrange two single-deck horizontally parallel to the same height using a semi-cylindrical underground road (100b) corresponding to the half of the cylindrical underground road (100a), so that the car 125 is reciprocated.
- the cylindrical underground road 100a and the box-type underground road 100c may be implemented in a multi-layer structure of three or more layers, as well as a two-layer multi-layer structure.
- a multi-layered road structure with a multi-layer structure or higher may be possible, but it can be said that a multi-layer structure is formed on one cylindrical underground road 100a with the current underground tunnel construction technology.
- Arrows 140 and 142 on the road may show the direction of the vehicle 125. Since the traveling direction of the vehicle 125 is one-way, it is possible to implement a round-trip operation by reversing the driving directions of the upper road and the lower road.
- the upper road in the middle of the duplex exemplifies the driving of the descending line 142 and the lower road shows the driving of the ascending line 140.
- the use of the empty space therein is possible, so the use may be more diversified according to the internal cross-sectional size.
- waterways, tracks, railroads, and pipelines are installed for versatile use.
- FIG. 6 is an exemplary view of an underground road including a parallel structure reciprocating road according to an embodiment.
- the semi-cylindrical underground road 100e of a parallel structure may constitute a network underground road system.
- Two semi-cylindrical underground tunnel roads 100b including a single-story road are arranged in parallel at the same height, and a road structure in which a vehicle reciprocates is illustrated.
- the reciprocating road may maintain a horizontally parallel structure.
- Two semi-cylindrical underground roads 100b are positioned in parallel to form a pair, and each road may include one one-way road.
- One of the semi-cylindrical underground roads 100e of a parallel structure is an ascending line 140 and the other as a descending line 142, which can perform a reciprocating function of the road.
- Both the cylindrical underground road 100d of the multi-layer structure shown in FIG. 5 and the semi-cylindrical underground road 100e of the parallel structure shown in FIG. 6 may have the potential to replace the existing long-distance highway on the ground.
- both of them function as all-weather roads in the underground spaces of all large cities, so they can be used selectively depending on local circumstances, conditions, and needs.
- the construction of the multi-layered cylindrical underground road (100d) can be economical because it reduces the direct construction cost of about 15% than the construction of the parallel structure semi-cylindrical underground road (100e).
- the center of the multi-layered cylindrical underground road 100d is illustrated, and if necessary, the semi-cylindrical underground road 100e of a parallel structure is additionally illustrated and described.
- Cylindrical underground road (100d) of a multi-layered structure with a three-dimensional structure can construct a traffic network system that can change directions in each direction while crossing a grid like a checkerboard from east to south in the metropolitan area. Due to the nature of the double-layer structure and the three-dimensional nature in which the double-layer structure crosses at different heights, the existing ground transportation system cannot be applied as it is. At a point where a plurality of roads of a multi-layered structure cross at different heights, it is possible to change directions such as straight, left, right, and U-turn through branching and confluence of roads.
- branches and confluences of roads can connect roads of different heights through ramps, which are ramps. That is, the lamp may enable a right turn and a left turn or a direction change such as a U-turn. Therefore, the lamp may play an important role in constructing a networked underground road system utilizing underground roads 100a, 100b, 100c, 100d, 100e, and 100f.
- the basic principle is that the underground roads (100a, 100b, 100c, 100d, 100e, and 100f) are one-way, and the method of crossing double-pass roads without collision with the car 125 is to implement a networked underground road system. This is an important part.
- FIG. 7 is a bird's-eye view illustrating a state in which a multi-story underground road is implemented in a large city underground according to an embodiment.
- a cylindrical underground road 100d having a double-layer structure is implemented in a basement of a large city.
- 1 and 2 are single-lane cylindrical underground roads (100a) or semi-cylindrical underground roads (100b), while FIG. 5 is a double-layered cylindrical underground road (100d) having a reciprocating lane having different multi-layer structures at different heights. It shows a networked underground road system that intersects the cylindrical underground road (100d).
- the car 125 goes straight at the intersection of a multi-layered cylindrical underground road (100d) that crosses in a grid like a checkerboard in the direction of east and west in the basement of a large city, or branches off a running road and joins the road in a new direction, turning left, turning right and turning can do. Since this process occurs at all intersections, a network-type traffic network that can be turned in either direction can be formed.
- the networked underground road system is formed so that the underground underground roads 100a, 100b, 100c, 100d, 100e, and 100f can completely replace the open road on the ground.
- Self-driving underground roads can be constructed in the form of a box-type underground road (100c) in FIG. 3 in an underground space immediately adjacent to the surface of the earth, and have a deep depth of more than 40m underground. It may be constructed in the form of a cylindrical underground road 100a of FIG. 1 or a cylindrical underground road 100d of a multi-layer structure including the multilayer structure of FIG. 5, and may be constructed in the form of a semi-cylindrical underground road 100b of FIG. 2. Can be.
- the road can be built near the surface, that is, about 4 to 5 stories deep from the first basement level. If you want to build an underground road that maximizes efficiency regardless of the existing urban structures, you can construct an underground road to be located deep underground. However, in the former case, there may be a case where it is impossible to implement an ultra-straight road or an ultra-planar road in which the efficiency of the road is maximized due to the influence of the geographical feature.
- FIG. 8 is a bird's-eye view showing a network of a multi-layered underpass according to an embodiment.
- FIG. 8 an overall view of a network-type underground road system in which a two-story underground road crosses is illustrated.
- Lamps (170, 175) that connect the cylindrical underground road (100d) of the double-layer structure to the cylindrical underground road (100d) of different double-layer structures at different heights and the cross-section cylindrical underground road (100d) of the double-layer structure Appears.
- the lamps 170 and 175 may change the direction of the vehicle 125 at a point where a plurality of multi-layered cylindrical underground roads 100d intersect. Since the network-type underground road system is a three-dimensional intersection structure, it is possible to simultaneously and simultaneously enable the straight, right and left turns of the cars 125 coming from each direction to be interrupted by the cars 125 coming from the other direction.
- 9 is an exemplary view illustrating lane classification of an underground road according to an embodiment.
- Underground roads (100a, 100b, 100c, 100d, 100e, 100f) according to the present invention may include differentiated lane speed systems.
- Underground roads (100a, 100b, 100c, 100d, 100e, 100f) provide an environment capable of performing the best high-speed sprint allowed by the performance of the vehicle 125, so the vehicle 125 is underpass (100a, 100b, 100c, 100d, 100e, 100f), it is possible to drive on a flat road with an ultra-planar structure such as an airplane runway.
- the only obstacle in such an ultra-high-speed driving environment is that the driving vehicles 125 interfere with each other.
- a high-speed vehicle may be interrupted by high-speed driving by a low-speed vehicle, and a low-speed vehicle may be threatened with an accident in a collision by a high-speed vehicle.
- the lane operation plan is to vary the speed according to the lane 130 of the underground roads (100a, 100b, 100c, 100d, 100e, 100f), and overcome the above-described problems to maximize the road function.
- the lane operation plan may be necessary because the underground roads 100a, 100b, 100c, 100d, 100e, and 100f are intelligent and autonomous driving of the vehicle 125 is possible.
- FIG. 9 can describe a lane operation plan for driving at differentiated lane speeds on underground roads 100a, 100b, 100c, 100d, 100e, and 100f.
- the lane management plan may stipulate that each of the plurality of lanes of the first underground road runs the vehicle at different speeds. For convenience, take the underground roads (100a, 100b, 100c, 100d, 100e, and 100f) from the left lane in the same direction as the driving direction of the car 125 in the first lane 135, the second lane 136, and the third lane (137 ), the fourth lane (138).
- Underground roads (100a, 100b, 100c, 100d, 100e, and 100f) have different allowable speeds for each lane, which can create an effective traffic environment.
- the first lane 135 may be a high-speed lane, which can run at the highest speed.
- the fourth lane 138 may be a low-speed lane, which runs at the lowest speed. Or vice versa.
- the lane division may be applied differently depending on the region, but it may be desirable to standardize the same to avoid confusion due to differences between countries. Even if you insist on a unique lane operation method in a specific country, it will not be a problem because you can adjust the lane's allowable speed to adapt to a specific area with a program built into the car.
- the first lane 135 is greater than 200 km/h
- the second lane 136 is between 150-200 km
- the third lane 137 is between 100-150 km.
- Four lanes (138) can be designated as less than 100 km. The wider the road, the more lanes you will have, so you can have a more detailed speed system for each lane, and if your car's performance improves, your vehicle's driving speed will increase.
- high-speed vehicles travel among high-speed lanes 135 and 136, and low-speed vehicles in relatively low-speed lanes 137 and 138. Since the high-speed vehicle is not interfered with by the low-speed vehicle, the low-speed vehicle may not be threatened with collision by the high-speed vehicle. At the same time, high-speed vehicles can run at higher speeds, creating an efficient and safe driving environment, which can open up a road traffic environment where cars can run at the maximum speed allowed.
- the slow lane 138 on the right edge may or may not interfere with other lane vehicles traveling at a relatively higher speed. Vehicles in both lanes can safely turn.
- the road traffic control center 550 may be programmed to control the problem vehicles and move them in a stepwise manner to low speed lanes when a problem occurs with vehicles running in each lane. Through this, the occurrence of discomfort or collisions with other vehicles in the vicinity may be reduced.
- Ultra-high-speed vehicles can be equipped with a parachute at the rear, so that precautions can be prepared to force rapid deceleration.
- FIG. 10 is a first exemplary view showing a right turn lamp enabling a right turn at a point where the multi-layered cylindrical underground roads cross each other
- FIG. 11 is a multi-layered cylindrical underground road according to an embodiment
- It is a second exemplary view showing a right turn lamp enabling a right turn at a point where they cross each other
- FIG. 12 is a view showing a right turn lamp enabling a right turn at a point where the cylindrical underground roads of the multi-layer structure according to one embodiment cross each other.
- 3 is an example.
- Underground roads (100a, 100b, 100c, 100d, 100e, 100f) implement a networked underground road system through a unique connection scheme.
- the networked underground road system is designed in such a way that it satisfies the principle of speed for each lane, with multiple underground roads of one-way, double-layered or single-layered parallel structures.
- a vehicle that was driving at a point where a double-story underground road (100d) with a tunnel structure intersects another double-story road (100d) at different heights moves to another underground road to connect different roads with different heights.
- the ramp structure which is an inclined road, should be used.
- the vehicle turns right and left or turns, such as U-turn.
- Another road is divided into two roads, and the two roads converge into a single road to go through the convergence process, and through such a branching and joining structure, the underground road creates a networked road network system. To form.
- the network-type underground road system enables a left turn and a right turn of the vehicle 125 by crossing a plurality of multi-layered cylindrical underground roads 100d and using a left turn lamp and a right turn lamp at the intersection, the left turn lamp and right turn lamp Is formed in the same direction based on the driving lane of the vehicle 125, and the entrance direction is also formed on the right side of the driving direction of the vehicle 125.
- the network-type underground road system includes a first-first driving space in which the vehicle 125 travels only in the first direction, a first-two driving space in which the automobile 125 travels only in the second direction, and a plurality of lanes. It may include a first underground road.
- the 1-1 and 1-2 driving spaces are formed vertically in the vertical direction inside the first underground road, and the first underground road is a roof of a covered roof type, a road surface formed to face the ceiling, and the It is composed of a wall adjacent to the ceiling and the road surface and together with the ceiling and the road surface to form the 1-1 and 1-2 driving spaces, and each of a plurality of lanes of the first underground road is a vehicle 125 ) Can be defined to run at different speeds.
- the first underground road may include a cylindrical underground road (denoted as 100d, A) of a first multi-layer structure.
- the networked underground road system includes a 2-1 driving space in which the vehicle 125 travels only in the first direction, a 2-2 driving space in which the automobile 125 travels only in the second direction, and a plurality of lanes.
- the second underground road includes a second underground road, and the 2-1 and 2-2 driving spaces are formed vertically in the vertical direction inside the second underground road, and the second underground road is formed on a covered roof-shaped ceiling and the ceiling. Consists of a road surface formed to face, the ceiling and a wall surface forming the 2-1 and 2-2 driving spaces together with the ceiling and the road surface adjacent to the road surface, the first underground road and the
- the second underground roads may be arranged to cross at different heights.
- the second underpass may include a second underlayer cylindrical underpass (indicated by 100d, B).
- FIG. 10 to 12 show a right turn ramp 170 to 173 that enables a right turn at a point where the multi-layered cylindrical underpass 100d crosses another multi-layered cylindrical underpass 100d at different heights.
- FIG. 10 illustrates a right turn ramp structure occurring in any one direction at a point where two multi-layer structures of a cylindrical underground road 100d cross at a height difference
- FIG. 11 illustrates a right turn ramp structure occurring in both directions of reciprocation
- Fig. 12 illustrates the structure of a right turn lamp occurring in each direction of the intersection point.
- a branch and confluence process of a road using a ramp is used in order to intersect a multi-layered cylindrical underpass 100d at a different height from another multi-layered cylindrical underpass 100d.
- the lamp that realizes the branching and confluence of the road is formed in a structure of a single-floor road 100a, 100b due to the characteristics of the one-way underground roads 100a, 100b, 100c, 100d, 100e, and 100f.
- the lamp has a simple structure with no branching or confluence inside.
- the lamp may enable simultaneous, non-stop crossing without traffic lights in a traffic situation in which a multi-layered cylindrical underground road 100d crosses each other.
- Cylindrical underground roads (denoted as 100d, A) of the first multi-layer structure are two-layer structures including a multi-layer road therein. Since the driving directions of the upper roads of the multi-level roads are upward lines (a' direction in a, 140, a), and the lower level roads are downward lines (142, a'to a direction), they form a reciprocating direction.
- Cylindrical underground road of the second multi-layer structure (indicated by 100d, B) is a two-layer structure including a multi-layer road therein.
- the upper road of the multi-story road has a traveling direction of a right-hand line (144, b'to b), and a lower-level road is a left-hand line (146, b to b') and forms a reciprocating direction with each other.
- the vehicle 125 is in each direction of up, down, left, and right, that is, in four directions. A right turn at Esau becomes possible.
- the car 125 running on the upper line (140, a to a'direction) on the upper road of the first multi-layered cylindrical underground road 100d, A may make a right turn as follows.
- the vehicle 125 moves to the right edge lane, which is the low-speed lane of the cylindrical underground road (100d, A) of the first multi-layer structure, exits with the first right turn lamp (marked 170, 1) on the right, and crosses 2
- the road (144, b'to b) road which is the upper road of the cylindrical underground road (100d, B) of a double-layer structure
- the vehicle 125 is naturally converted to a right turn.
- the relative position or height difference between the first two-layered cylindrical underground roads (100d, A) and the second double-layered cylindrical underground roads (100d, B) does not matter at all in the branching and joining process. This is because raising or lowering the inclination angle of the first right turn lamps 170 and 1 is a problem to be solved.
- the vehicle 125 that was going straight for a turn moves to the right low speed lane and passes the right turn lamps 170 to 173 or the left turn lamps 175 to 178 on the right edge, and then newly joins. You can enter the low speed lane on the right side of the road.
- This connection structure can be applied equally to all sections of the road connected by the left and right round-trip network.
- FIG. 11 a reciprocating two-way right turn ramp occurring in two roads inside the cylindrical underground roads 100d and A of the first multi-layer structure is illustrated.
- 11 shows a right turn process of the lower road.
- the vehicle 125 may travel on the lower road of the first multi-layered cylindrical underground roads 100d and A along the descending lines 142 and a'to a, and then move to the right low-speed lane.
- the vehicle 125 passes through a second right turn lamp (indicated by 171, 2) connected to the lower road of the second multi-layered cylindrical underground road (100d, B) and joins the road (146, b to b') You can turn right.
- the above-described right turning process occurring in both directions of the cylindrical underground roads 100d and A of the first multi-layer structure may be implemented in the same manner in the cylindrical underground roads 100d and B of the second multilayer structure.
- a reciprocating bi-directional right turn ramp occurring on two roads inside the cylindrical underground roads 100d and B of the second multi-layer structure is further illustrated.
- the vehicle 125 travels on the upper lane (144, b'to b direction) on the upper road of the cylindrical underground road (100d, B) of the second multi-layer structure, and then moves to the right-most lane and moves to the third right turn lamps 172, 3 ) To enter the lower level road of the first multi-layered cylindrical underground road (100d, A), so that it can turn right while driving down the line (142, a'to a direction).
- the vehicle 125 travels on the lower road of the second underground structure of the cylindrical underground road (100d, B) in the left direction (146, b to b'direction), and then passes through the fourth right turn lamps 173 and 4. 1 If you enter the upper road of the multi-layered cylindrical underground road (100d, A), you can turn right while driving in the upward line (140, a to a'direction).
- FIG. 13 is a first exemplary view showing a right turn ramp enabling a right turn at a point where the semi-cylindrical underground roads having a parallel structure cross each other according to an embodiment
- FIG. 14 is a semi-cylindrical underpass of a parallel structure according to an embodiment
- FIG. 15 is a right turn lamp enabling a right turn at a point where the semi-cylindrical underpasses of a parallel structure cross each other according to an embodiment
- It is a third example showing.
- the networked underground road system intersects a plurality of parallel structures of semi-cylindrical underground roads 100e and enables left and right turns of the vehicle 125 by including a left turn ramp and a right turn ramp at the intersection.
- the left turn lamp and the right turn lamp are formed in the same direction based on the driving lane of the vehicle 125, and the direction is formed on the right side of the driving direction of the vehicle 125.
- the first-first underground road and the vehicle 125 which include a plurality of lanes and the first-first driving space in which the vehicle 125 travels only in the first direction, travel only in the second direction.
- a 1-2-2 underground road including a 1-2 driving space and a plurality of lanes, wherein the 1-1 and 1-2 underground roads are arranged side by side in parallel, and are covered with a roof having a roof shape.
- Each of the plurality of lanes of the -2 underground road may be defined such that the vehicle 125 runs at different speeds. 13 to 15, the 1-1 underground road corresponds to the semi-cylindrical underground roads 100e, A of the 1-1 parallel structure, and the 1-2 underground road is half of the 1-2 parallel structure Can correspond to the cylindrical underground road (100e, B).
- the network-type underground road system includes a plurality of lanes and a vehicle 125 including a 2-1 underground road and a plurality of lanes including a 2-1 driving space in which the vehicle 125 travels only in the first direction.
- the 2-1 and 2-2 underground roads are arranged side by side in parallel, and have a roof of a covered roof type , A road surface formed to face the ceiling, and a wall surface forming 2-1 and 2-2 driving spaces with the ceiling and the road surface adjacent to the ceiling and the road surface
- the 1 and 1-2 underground roads and the 2-1 and 2-2 underground roads may be arranged to cross at different heights. 13 to 15, the 2-1 underground road corresponds to the semi-cylindrical underground road 100e, C of the 2-1 parallel structure, and the 2-2 underground road is half of the 2-2 parallel structure Can correspond to the cylindrical underground road (100e, D).
- a plurality of parallel structures of a semi-cylindrical underground road 100e are shown with a right turn structure possible when crossing at a height.
- the parallel structure of the semi-cylindrical underground road (100e) includes only one floor of the semi-cylindrical underground road (100b) and the semi-cylindrical underground road (100b). ) May be arranged side by side with different driving directions.
- the parallel structure semi-cylindrical underground road 100e enables straight, right and left turns on the same principle as the multi-layered cylindrical underground road 100d.
- the vehicle 125 travels along the semi-cylindrical underground roads (referred to as 100e, B) of the 1-2 parallel structure of the ascending lines 140 and B, and then moves to the rightmost lane, which is a low-speed lane, and 1 It is possible to pass the right turn lamps 170 and 1.
- a right turn is realized by the vehicle 125 joining the semi-cylindrical underground roads 100e, D of the 2-2 parallel structure of the right lines 144, D.
- FIG. 14 a right turn of the semi-cylindrical underground roads 100e and A of the 1-1 parallel structure is illustrated.
- the vehicle 125 travels along the semi-cylindrical underground road (shown as 100e, A) of the 1-1 parallel structure of the descending lines 142, A, and then moves to the rightmost lane, which is the low speed lane, and the second right turn lamp 171,
- Right turn is realized by passing through 2) and joining the 2-1 parallel semi-cylindrical underpass (100e, C) of the left line (146, C).
- a right turn of the semi-cylindrical underground roads 100e and D of the 2-2 parallel structure is illustrated.
- the vehicle 125 travels along the semi-cylindrical underground road (shown as 100e, D) of the 2-2 parallel structure of the right line 144, D, and then moves to the rightmost lane, which is the low speed lane, and the third right turn lamp 172 , 3), and right turn is realized by joining the semi-cylindrical underpass (100e, A) of the 1-1 parallel structure of the descending lines (142, A).
- the vehicle 125 travels along the semi-cylindrical underground road (referred to as 100e, C) of the 2-1 parallel structure of the left line 146, C, and then moves to the rightmost lane, which is the low-speed lane, and the fourth right turn ramp 173 , 4), and right turn is realized by joining the semi-cylindrical underpass (100e, B) of the 1-2 parallel structure of the ascending lines (140, B).
- the vehicle 125 in all directions running to the crossing point is implemented to turn to a right turn even in a semi-cylindrical underground road 100e having a parallel structure.
- FIG. 16 is a first exemplary view showing a left turn ramp enabling a left turn at a point where the cylindrical underground roads of the multi-layer structure according to one embodiment cross each other
- FIG. 17 is a cylindrical underground road of the multi-layer structure according to an embodiment.
- It is a second exemplary view showing a left turn lamp enabling a left turn at a point where they cross each other
- FIG. 18 is a view showing a left turn lamp enabling a left turn at a point where the cylindrical underground roads of the multi-layer structure according to one embodiment cross each other.
- 3 is an example.
- FIG. 16 to 18 show left turn ramps 175 to 178 that enable left turn at a point where the multi-layered cylindrical underpass 100d crosses another multi-layered cylindrical underpass 100d at different heights.
- FIG. 16 illustrates a left turn ramp structure occurring in any one direction at a point where two multi-layer structures of a cylindrical underground road 100d cross at a height difference
- FIG. 17 illustrates a left turn ramp structure occurring in both directions of reciprocation
- Fig. 18 illustrates the structure of a left turn ramp occurring in each direction of the intersection.
- a ramp structure for changing the direction of a left turn at a point where a cylindrical underground road 100d of a multi-layer structure crosses another cylindrical multi-layer cylindrical underground road 100d at a different height is shown.
- the left turn ramp is formed in a single-layer road structure (100a, 100b) due to the nature of the one-way underground roads (100a, 100b, 100c, 100d, 100e, 100f).
- the lamp is formed in a simple structure with no branching or confluence of the road.
- the left turn ramp also enables simultaneous, non-stop crossing without traffic lights at the point where the two-story cylindrical underground road (100d) crosses each other.
- a cylindrical underground road (denoted by 100d, A) of the first multi-layer structure may be a two-layer structure including a multi-layer road therein.
- the upper road of the multi-story road is an ascending line 140 (a' direction in a), and the lower road is a descending line (142, a'to a direction) and forms a reciprocating direction.
- Cylindrical underground road of the second multi-layer structure (indicated by 100d, B) is a two-layer structure including a multi-layer road therein.
- the upper road of the second underground multi-layered cylindrical underground road (100d, B) is the right line (144, b'to b direction) and the lower road is the left line (146, b to b'direction) and forms a reciprocating direction to each other. have.
- the first multi-layered cylindrical underground roads (100d, A) intersect the second multi-layered cylindrical underground roads (100d, B) at different heights. Conversion is possible.
- the car 125 running on the upstairs (140, a to a'direction) of the first multi-layered cylindrical underpass (100d, A) on the upper road is as follows: Turn left at 100d, A).
- the vehicle 125 moves to the right edge lane, which is the low speed lane of the cylindrical underground road (100d, A) of the first multi-layer structure, and then exits with the first left turn lamp (marked 175, 1) on the right, and crosses 2
- the left-hand line (146, b to b'direction) of the multi-layered cylindrical underground road (100d, B) it can be naturally converted to a left turn.
- the relative position or height difference between the first two-layered cylindrical underground roads (100d, A) and the second double-layered cylindrical underground roads (100d, B) does not matter at all in the branching and joining process. This is because the inclination angle of the first right turn lamp (indicated by 170 and 1) can be increased or decreased.
- the left turn process is the same as the right turn process of branching from the right lane to the right, which is a low-speed lane, but the starting point of the first left turn ramps 175 and 1 starts past the intersection of the multi-layered cylindrical underground road 100d. The point is different.
- the left rotation lamps 175 to 178 may include a reverse rotation structure in which the lamp is located on the right side and rotated 270 degrees based on the driving direction to complete the left rotation when viewed from the vehicle moving direction (vehicle driving direction). It is a shape structure that is great for safe high-speed driving because it is possible to safely and concisely turn left without colliding with the principle of the present invention that distinguishes a high-speed lane from a low-speed lane.
- FIG. 17 a left turn process on the lower road of the cylindrical underground road 100d, A of the first multi-layer structure is further illustrated.
- the vehicle 125 travels on the lower lane (142, a'to a direction) on the lower road of the first multi-layered cylindrical underground road (100d, A), then moves to the right low-speed lane, and then moves to the right low-speed lane of the cylindrical underground road of the second multi-layered structure ( A left turn is realized while driving in the direction of the right line (144, b'to b) passing through the second left turn lamps 176, 2 connected to the upper road of 100d, B).
- a reciprocating bi-directional left turn ramp required by two roads inside the cylindrical multi-layered underground roads 100d and B is further illustrated.
- the vehicle 125 travels in the direction of the right line (144, b'to b direction) on the upper road of the cylindrical underground road (100d, B) of the second multi-layer structure, and then moves to the rightmost lane, and then the third left turn lamp (177, 3) and then, when entering the upper road of the first multi-layered cylindrical underground road (100d, A), it will be able to make a left turn while driving in the upward line (140, a to a'direction).
- the vehicle 125 travels in the direction of the left line (146, b to b'direction) on the lower road of the second multi-layered cylindrical underground road (100d, B), and then passes through the fourth left turn lamps 178, 4.
- the vehicle may turn left while driving in the descending lines (142, a'to a direction).
- FIG. 19 is a first exemplary view showing a left turn ramp enabling a left turn at a point where the semi-cylindrical underground roads of a parallel structure cross each other according to an embodiment
- FIG. 20 is a semi-cylindrical underpass of a parallel structure according to an embodiment
- FIG. 19 is a first exemplary view showing a left turn ramp enabling a left turn at a point where the semi-cylindrical underground roads of a parallel structure cross each other
- FIG. 20 is a semi-cylindrical underpass of a parallel structure according to an embodiment
- 21 is a left turn ramp enabling a left turn at a point where the semi-cylindrical underpasses of a parallel structure cross each other according to an embodiment
- 3 is a fourth exemplary view showing a left turn ramp enabling a left turn at a point where the semi-cylindrical underground roads of a parallel structure cross each other according to an embodiment.
- a left turn structure is illustrated when the semi-cylindrical underground road 100e of a plurality of parallel structures crosses at a height.
- the parallel structure of the semi-cylindrical underground road 100e may enable straight, right and left turns on the same principle as the multi-layered cylindrical underground road 100d.
- the parallel structured semi-cylindrical underground road 100e may also include a left turn ramp that enables left turn through a 270-degree turn.
- the vehicle 125 travels along the semi-cylindrical underground road (shown as 100e, B) of the parallel structure 1-2 of the ascending lines 140 and B, and then moves to the rightmost lane, which is the low speed lane.
- a left turn is realized by passing through the first left turn ramps 175 and 1 and joining the 2-1 parallel semi-cylindrical underpass 100e, C, which is the left lane 146 and C road.
- a left turn is illustrated in the semi-cylindrical underground roads 100e and A of the 1-1 parallel structure.
- the vehicle 125 travels along the semi-cylindrical underground road (shown as 100e, A) of the 1-1 parallel structure of the descending lines 142, A, and then moves to the rightmost lane, which is the low-speed lane, and then moves to the second left turn ramp 176, After passing through 2), left turn is realized by joining the 2-2 parallel semi-cylindrical underpass (100e, D), which is the right line (144, D).
- a left turn ramp structure in a semi-cylindrical underground road 100e, D of a 2-2 parallel structure and a left turn ramp structure of a semicylindrical underground road 100e, C of a 2-1 parallel structure are added. It is shown as.
- the vehicle 125 travels along the semi-cylindrical underground road (shown as 100e, D) of the 2-2 parallel structure of the right lines 144 and D, and then moves to the rightmost lane, which is the low-speed lane, and moves to the third After passing the left turn ramps 177 and 3, a left turn is realized by joining the semi-cylindrical underpasses 100e and B of the parallel structure 1-2, which are the upward lines 140 and B.
- the car 125 is the left lane 146, C, 2-1 parallel structure semi-cylindrical underground road (100e) , Indicated by C), then move to the right-most lane, which is the low-speed lane, pass through the fourth left turn lamps 178, 4, and then the descending lines 142, A, the semi-cylindrical underground road of the 1-1 parallel structure ( Left turn is realized by joining 100e, A).
- a semi-intersection system without a traffic light is shown.
- a left turn ramp (175 to 178) and a right turn ramp (170 to 173) of the present specification at a point where a pair of parallel structures of a semi-cylindrical underground road (100e) intersecting at different heights at an intersection cross an open road on the ground. If is installed, it is possible to perform multiple crossings without traffic lights or stops. Only one of the two round-trip roads that intersects can be said to be a semi- or semi-shaped intersection in terms of underground or above ground.
- vehicles in all directions running to the crossing point do not stop, but can go straight, turn right, turn left and make turns simultaneously to perform a landmark intersection function.
- the car 125 driving the upward line 140 of the ground road (100g) is driven through the first right turn lamps 170 and 1. You can make a right turn by joining the semi-cylindrical underground road 100e of 144). At the same time, the vehicle 125 driving the upward line 140 of the ground road 100g turns left by joining the semi-cylindrical underground road 100e of the parallel structure of the left line 146 through the first left turn lamps 175, 1. You can also do
- the car 125 driving the descending line 142 of the ground road 100g turns right by joining the semi-cylindrical underground road 100e of the parallel structure, which is the road to the left line 146 through the second right turn lamps 171 and 2. can do.
- the car 125 driving the descending line 142 of the ground road 100g turns left by joining the semi-cylindrical underground road 100e of the parallel structure, which is the right line 144, through the second left turn lamps 176, 2. You can also do
- Vehicles driving the semi-cylindrical underground road 100e of a parallel parallel structure can also change the direction of right and left turns.
- the car 125 driving on the right line 144 road of the semi-cylindrical underground road 100e of the parallel structure is the down line of the ground road 100g, which is the down line 142 road through the third right turn lamps 172 and 3 You can turn right by joining 142).
- the car 125 driving on the right road 144 road of the underground road 100e can make a left turn by joining the road 140 road of the ground road 100g through the third left turn lamps 177 and 3. have.
- the vehicle 125 driving on the left lane 146 of the parallel cylindrical semi-cylindrical underground road 100e turns right by joining the ground road 100g of the ascending line 140 through the fourth right turn ramps 173, 4. can do.
- the vehicle 125 driving on the left line 146 of the underground road 100e can turn left by joining the ground road 100g of the descending line 142 through the fourth left turn lamps 178 and 4.
- FIG. 23 is an exemplary view showing a U-turn in a semi-cylindrical underground road of a parallel structure according to an embodiment.
- a network-type underground road system can be turned without a separate structure. This is because two consecutive left turns can lead to a U-turn.
- U-turns in the underpasses 100a, 100b, 100c, 100d, 100e, and 100f are explained using the semi-cylindrical underpass 100e of a parallel structure.
- the multi-layered cylindrical underground road (100d) can also be turned on the same principle as the parallel structure of the semi-cylindrical underground road (100e).
- the vehicle 125 may drive the descending lines 142 and A by turning and then traveling up the lines 140 and B of the semi-cylindrical underground roads 100e and B of the 1-2 parallel structure.
- the vehicle 125 goes straight through the point 1 on the semi-cylindrical underground road (100e, B) of the 1-2 parallel structure, enters the first left turn lamp 175 at the point 2, passes the point 3, and then passes the point 4 When entering the 2-1 parallel structure semi-cylindrical underground road (100e, C), complete the first left turn.
- the vehicle 125 passes through point 5, enters the fourth left turn ramp 178, passes through point 6, and naturally enters the semi-cylindrical underpass (100e, A) of the 1st-1 parallel structure, which is point 7.
- the second left turn is completed.
- the vehicle 125 running the upstream lines 140 and B of the semi-cylindrical underground roads 100e and B of the 1-2 parallel structure by these two successive left turns is the semi-cylindrical underground road 100e of the 1-1 parallel structure , A) U-turn is implemented while running down line (142, B).
- the all-weather underground road (100a, 100b, 100c, 100d, 100e, 100f) network system according to the present invention completely replaces the ground road because the road network system is concise, economical, and efficient as it implements u-turns without any separate structure. You have the potential to do it.
- the all-weather underground road network system completely replaces the open-air road on the ground, it is possible to use it according to partial application in a semi-seminar form as shown in FIG.
- the network-type underground road system using the underground roads 100a, 100b, 100c, 100d, 100e, and 100f according to the present invention can be applied to complex intersections such as 5, 6, and 7 streets.
- the network-type underground road system connects the most neighboring roads first and merges them into one road, which is 4 streets at the intersection, so the above-described U-turn method can be applied as it is.
- Underground roads (100a, 100b, 100c, 100d, 100e, 100f) according to the present invention solve important parts of the future “network-type multi-layer tunnel” construction technology dreamed by road researchers.
- the branching and confluence of roads appearing at the intersections between the two-level roads can be designed most concisely and efficiently.
- the network type underground road system according to the present invention can be easily applied even in a large city with many large buildings.
- 24 is an exemplary view showing a ventilation device for an underground road according to an embodiment.
- Underground roads (100a, 100b, 100c, 100d, 100e, 100f) according to the present invention may include ventilation.
- underground roads underground road networks
- underground tunnels there is a problem that automobile exhaust gas accumulates in underground tunnels.
- the phenomenon that automobile exhaust gas accumulates inside the underground tunnel can be a good opportunity to solve the air pollution on the ground.
- Modern technology level can sufficiently purify contaminated air in a limited space, so if the ground road is replaced by an underground road, the contaminated air in the underground road can be purified so that the air on the ground can be preserved cleanly without worrying about automobile emissions. have.
- the underground road (100a, 100b, 100c, 100d, 100e, 100f) may include a ventilation and ventilation device to solve the problem of the vehicle 125 emissions.
- Some of the ventilators 155 are exposed to the ground, and can form a city landscape that people can see.
- the underground road (100a, 100b, 100c, 100d, 100e, 100f) according to the present invention draws the air from the ground as much as possible, and then utilizes the structure of the conduit 220 functioning as a duct to move the air to a predetermined direction and place.
- the air in the furnace (100a, 100b, 100c, 100d, 100e, 100f) is first ventilated, and the contaminated air can be purified through a purification and treatment facility and discharged to the ground or underground to secondaryly purify the air. have.
- Underground roads (100a, 100b, 100c, 100d, 100e, 100f) according to the present invention may not use a propeller. This is because natural ventilation and ventilation, and a little artificial equipment, allow for ventilation and ventilation to meet the needs of large-scale underground road networks or long-distance underground roads.
- the collector 210 has a shape structure capable of inhaling as much of the ground air as possible.
- the collector 210 may include a form of a loudspeaker having a structure in which an inlet through which air flows is wide but gradually narrows as it goes inward.
- the entrance includes an oval or square shape.
- the house fan 210 is installed near the underground roads 100a, 100b, 100c, 100d, 100e, and 100f, and may be installed in a space away from the underground road.
- the collector 210 may be fixed in one direction like a built-in or rotated according to the wind direction.
- the house fan 210 may be installed on a flat surface, a wall next to a building, or a roof.
- the rotating fan 210 rotates according to the direction of the wind, and the entrance thereof is always directed in the direction in which the wind blows, thereby sucking the most wind.
- the collector 210 may include a structure that naturally inhales wind or forcibly intakes air through a motor.
- the house fan 210 may install a safety net near the entrance to block access to people or animals.
- the ventilation method of the underground roads 100a, 100b, 100c, 100d, 100e, and 100f according to the present invention may include introducing air from the ground near the entrance to the collector 210 and pushing it into the underground.
- Another ventilation method of the underground roads (100a, 100b, 100c, 100d, 100e, 100f) according to the present invention is a method of sucking air from an outlet (for example, a vent 290) through which air escapes to the outside And venting and ventilation.
- the heating device when the heating device is installed in the ventilation hole 290, the air heated by the heating device passes upward and the underground air is sucked into the ventilation hole 290.
- the underground air can be sucked in strongly and discharged to the outside.
- the vent 290 is operated like a straw.
- Such a ventilation method may be useful in a long-sized tunnel or an alpine area 317 underpass, which has a difficult condition to install a vent or exhaust vent in the underpass (100a, 100b, 100c, 100d, 100e, 100f).
- fast-moving cars 125 may contribute to ventilation of the underground roads 100a, 100b, 100c, 100d, 100e, and 100f.
- 25 is an exemplary view showing the flow of air in a ventilation system of an underground road according to an embodiment.
- the conduit 220 can send the ground wind collected in one place through the house fan 210 to the underground road 100c.
- the wind can be distributed according to the connection method of the conduit 220, so the underground road can be distributed according to the design method.
- the wind direction in 100c may be determined.
- the air introduced into the basement through the fan 210 descends through the conduit 220, some move to the underground first floor road by the ascending conduit 220-1, and the rest to the descending conduit 220-2. It can be distributed by moving to the 2nd basement road.
- the flow is determined by the upward line vent outlet connected to the upward conduit 220-1, and when the distributed air is supplied to the underground second floor road, the downstream air conduit 220-2 The flow can be determined by the connected downstream line vent outlet.
- the air introduced into the underground roads 100a, 100b, 100c, 100d, 100e, and 100f may have different wind directions according to the structure of the conduit 220, that is, the upward wind direction 149-1 and the downward wind direction 149-2.
- the principle of the wind direction depending on the structure of the conduit 220 can always blow the wind from the rear of the vehicle 125 driving the underground road 100a, 100b, 100c, 100d, 100e, 100f in one way. . This may be possible in one road as well as in a networked road network system.
- the wind direction principle can be useful even in an emergency situation, such as a fire in an underground road (100a, 100b, 100c, 100d, 100e, 100f).
- an emergency situation such as a fire in an underground road (100a, 100b, 100c, 100d, 100e, 100f).
- an air curtain effect may be prevented from blowing wind from the front to prevent smoke from coming to the rear. Therefore, people at the scene of the accident can also be placed in a safe situation free from fumes or toxic gases.
- 26 is an exemplary view showing an air purifying apparatus for an underground road according to an embodiment.
- an air purifying device installed on the underground roads 100a, 100b, 100c, 100d, 100e, and 100f is illustrated.
- the vehicle exhaust gas from the underground roads 100a, 100b, 100c, 100d, 100e, and 100f may pass through the air purification facility 250 before being discharged through the vent 290.
- the exhaust gas may be supplied to the air purification treatment facility 250 through the inlet 255 and the conduit 220 located near the ceiling 110 under the underground roads (100a, 100b, 100c, 100d, 100e, 100f).
- the air cleaned from the air purification facility 250 may be discharged to the ground through the vent 290 or circulated through the outlet 275 again into the underground roads 100a, 100b, 100c, 100d, 100e, and 100f.
- Modern advanced dust collection technology and air purification and treatment technology can guarantee more than 99% of purification treatment.
- 27 is an exemplary view digitizing and showing an accident area in an underground road according to an embodiment.
- the road traffic control center 550 informs the car 125 driving around the accident area that the traffic accident has occurred and the second accident occurs. You can take steps to prevent it from happening.
- the road traffic control center 550 may mark the space behind the accident vehicle 127 as the accident area 440 and prevent surrounding vehicles from entering the accident area 440.
- the road traffic control center 550 may urgently take measures to change the lane while informing the vehicles around the accident area 440 of the accident.
- the road traffic control center 550 may control to change lanes when necessary while transmitting information on the accident vehicle 127 and the accident area 440 to the subsequent vehicle 125.
- the road traffic control center 550 may move a vehicle having a high probability of occurrence of a failure problem to a low-speed lane. This is because it is advantageous to respond to accidents in low-speed lanes.
- the road traffic control center 550 digitally displays the accident area 440 and propagates and shares the information to the vehicles.
- the road traffic control center 550 is essential for safe autonomous driving of the vehicle 125.
- the road traffic control center 550 may be programmed to constantly receive information related to the operation of parts inside the vehicle from vehicles in question (possibly having a malfunction or an accident).
- the road traffic control center 550 may stop the acceleration of the vehicle in question or perform automatic control to move the vehicle in a low speed lane.
- the road traffic control center 550 may control the vehicle 125 by receiving and analyzing data identified through the sensors of the vehicle 125 through wired and wireless communication networks.
- the road traffic control center 550 may use or control a cruise control control program or an advanced driver assistant system (ADAS) program for the vehicle 125.
- ADAS advanced driver assistant system
- the road traffic control center 550 may use or control an Autonomous Emergency Breaking (AEB) device, a Lane Change Assist (LCA) device, and a program associated with these devices.
- AEB Autonomous Emergency Breaking
- LCDA Lane Change Assist
- the control function of the vehicle 125 on the road of the road traffic control center 550 may have a problem of misuse and abuse. To solve this, the control function of the road traffic control center 550 needs to be minimized. Therefore, the road traffic control center 550 can focus on two main functions. First, the road traffic control center 550 may perform only a function of reducing the speed of the vehicle, and it may be impossible to increase the speed. This is because the road traffic control center 550 may cause an accident when controlling to increase the speed of the vehicle. This is to prevent traffic accidents even if there are illegal external manipulations, such as hacking. Second, the road traffic control center 550 may be designed to move only in a low-speed lane when controlling and operating a Lane Change Assist (LCA) device. If the control range of the road traffic control center 550 is limited, the occurrence of an accident may be essentially inhibited. The control function of the road traffic control center 550 may be reflected in related software after being produced in a specific manual.
- LCA Lane Change Assist
- a one-time password generator used in Internet banking or a blockchain-based technology may be used.
- OTP one-time password generator
- different colors for each lane may be displayed in the middle of the lane to allow the vehicle 125 to travel according to the color, or a lane identification sensor may be installed in the middle of the lane to assist the driving of the vehicle 125 and provide its location information. have.
- these devices are operated together with the communication between the vehicle 125 and the road traffic control center 550, many of the expensive devices used in the autonomous vehicle are unnecessary, thereby significantly reducing the production cost of the autonomous vehicle.
- the location of all cars 125 can be confirmed and the location information of each vehicle
- the position, distance, and speed of each car 125 are automatically identified to measure the distance between the vehicles to provide an expensive lidar device that secures a safe distance. There is no need to mount it in a car.
- FIG. 28 is a first exemplary view showing a vehicle stopper for preventing a secondary accident according to an embodiment
- FIG. 29 is a second exemplary view showing a vehicle stopper for preventing a secondary accident according to an embodiment
- FIG. 30 is for example 3 is an exemplary view showing a vehicle stopper for preventing a secondary accident according to an embodiment
- FIG. 31 is a fourth exemplary view showing a vehicle stopper for preventing a secondary accident according to an embodiment.
- a vehicle stopper 500 that is a device for preventing secondary accidents is illustrated.
- the car stopper 500 is installed at regular intervals on the underpass (100a, 100b, 100c, 100d, 100e, 100f) ceiling 110 to descend when necessary to stop the vehicle 125 driving to the accident area 440 can do.
- the vehicle stopper 500 is provided connected to the rail 510 installed on the ceiling 110 of the underground roads 100a, 100b, 100c, 100d, 100e, and 100f, and can be placed behind the accident vehicle 127 if necessary. have.
- the vehicle stopper 500 functions to prevent a secondary accident by naturally stopping the vehicle 125 accidentally entering the accident area 440.
- the vehicle stopper 500 functions to physically prevent entry of the vehicle 125 driving from the rear.
- the vehicle stopper 500 may be referred to as a continuous hardware secondary safety measure after the software primary measure by the road traffic control center 550.
- FIG. 29 shows the operation of the vehicle stopper 500 when an accident occurs
- FIG. 30 shows a state where the dangerous vehicle 128 rises above the vehicle stopper 500 and stops.
- the vehicle stops (500) is folded down to the ceiling (110) and installed at an angle down to the surface of the underpass and automatically installed.
- the vehicle stopper 500 includes a rail 510 installed under a ceiling 110 or a safety plate 330 of an underground road (100a, 100b, 100c, 100d, 100e, 100f), a cable 516 moving over the rail 510, It can be driven by the cable controller 517 and the rail pulley (515).
- the vehicle stopper 500 is normally kept in close contact with the rail 510, and when the rear of the accident vehicle 127 is designated as the accident area 440 in the event of an accident, the vehicle stopper 500 automatically It will come down from the ceiling 110.
- the dangerous vehicle 128 rises above the vehicle stopper 500 by running inertia and stops on the vehicle stopper 500. This is because the wheel of the dangerous vehicle 128 stops while idling away from the ground on the vehicle stopper 500.
- the vehicle stopper 500 includes two vertical fixing rods 525 and a plurality of horizontal fixing rods 520 fixed across the vertical fixing rods 525.
- the horizontal fixing rod 520 is surrounded by an outer hoop 535 that functions as an outer shell, and the horizontal fixing rod 520 and the hoop 535 can be coupled with a bearing therebetween.
- the driving vehicle 125 is in an accelerated state and may have a certain degree of forward force due to the acceleration force at the moment when it goes up to the vehicle stopper 500.
- the vehicle stopper 500 is installed in an oblique shape, and the front portion of the vehicle becomes a shape to be heard, rapidly compensating the acceleration force of the vehicle 125 by the force of gravity and weakening the remaining acceleration force. 500)
- the wheel 530 attached to the lower portion may be pushed away and disappear.
- the vehicle stopper 500 may be installed thanks to the ceiling 110 which is a characteristic of the tunnel structure underground roads 100a, 100b, 100c, 100d, 100e, and 100f. Recently, since light steel having a high tensile strength such as gas steel is produced, even if a plurality of car stops 500 are installed on the ceiling 110, a weight problem may not occur.
- FIG. 32 is an exemplary view showing an automated unmanned response device for an underground road according to an embodiment
- FIG. 33 is an exemplary view showing a safety device for an underground road according to an embodiment.
- Underground roads (100a, 100b, 100c, 100d, 100e, 100f) are easy to install an automated device for vehicle failure or fire.
- CCTV (400), sprinkler (410), robot arm (420) and vacuum cleaner can be installed on the ceiling (110) or safety plate (330) of the underground road (100a, 100b, 100c, 100d, 100e, 100f). have.
- the vacuum cleaner can quickly clean up the accident site even before the personnel and equipment for handling the accident are mobilized.
- FIG. 32 various automated unmanned response devices installed on the ceiling 110 of the underground road in preparation for an emergency are illustrated.
- Underground roads (100a, 100b, 100c, 100d, 100e, 100f) may be installed CCTV 400, sprinkler 410 and robot arm 420 on the ceiling 110.
- CCTV 400 may monitor the vehicle 125 and record the accident.
- the sprinkler 410 can be prepared for fire.
- the robot arm 420 may remove rubble that has been broken out from the accident vehicle 127.
- a safety device for an underground road is shown.
- a device for evacuating people in the accident area 440 may be required.
- the evacuation manhole 600 may be located on one side of the underground roads (100a, 100b, 100c, 100d, 100e, 100f). People can ensure safety by moving to other floors through the emergency evacuation manhole 600.
- Underground roads (100a, 100b, 100c, 100d, 100e, 100f) always blow wind in a certain direction, so if people are located behind the car 125, they can be safe from the danger of smoke or toxic gases. .
- people will have a manhole cover installed every distance on the emergency sidewalk 610 on the edge of the underpass (100a, 100b, 100c, 100d, 100e, 100f). It can be safe by opening (615) and moving to a road on the other floor of the duplex. For example, if a large accident occurs on the lower road of the cylindrical underground road 100d having a double-layer structure, the evacuation manhole 600 may be used to evacuate the upper road.
- the road traffic control center 550 may designate a certain area of the lane closest to the emergency sidewalk 610 as an accident zone 440 to prevent cars from entering.
- 34 is an exemplary view showing a structure of a multi-layered underpass according to an embodiment.
- Underground roads (100a, 100b, 100c, 100d, 100e, 100f) can provide a multi-layer road structure.
- the underground roads (100a, 100b, 100c, 100d, 100e, and 100f) enable the use of three-dimensional three-dimensional space. This is because the underground roads 100a, 100b, 100c, 100d, 100e, and 100f can be formed in a vertical overlapping structure.
- FIG. 34 there is shown a box-type underground road 100c composed of a total of four floors in which a one-way road is multi-layered in a reciprocating direction.
- This type of underground road may be referred to as a multilayer underground road 100f.
- the multi-storey underground road (100f) can be useful in overcrowded areas of large cities where there is a lot of traffic and high-rise buildings are concentrated on both sides of the road, making it difficult to expand horizontal space.
- Underground roads (100a, 100b, 100c, 100d, 100e, and 100f) can be used infinitely in underground spaces, so if additional road construction or expansion is necessary in a large city with heavy traffic, vertical expansion of space is possible.
- the width of the road is actually doubled, and if the road changes to a multi-layered structure, it can be expanded three times or more.
- the ground road (100g) is a two-dimensional planar type based on a single-layer structure
- the underground roads (100a, 100b, 100c, 100d, 100e, 100f) become a three-dimensional three-dimensional road that can be extended in the vertical direction.
- the car 125 driving on one floor of the road in the multi-story underground road 100f may move to another road. For example, if the car 125 on the lower road receives the information that the upper road is busy if the road in progress is considered complicated, the car 125 may move to the upper road through the upper moving lamp 180. Likewise, the car 125 on the upper road may move to the lower road through the lower moving lamp 185 when a traffic jam occurs on the upper road.
- 35 is an exemplary view showing a parking lot on a multi-story underground road according to an embodiment.
- the parking problem may also be one of the major urban traffic problems.
- the underground roads (100a, 100b, 100c, 100d, 100e, and 100f) enable the infinite expansion of the underground space, so the parking space problem can also be solved.
- Underground roads 100a, 100b, 100c, 100d, 100e, 100f may include an underground parking lot 190 therein. The occupant can park the vehicle in the underground parking lot 190 near the destination and use the lift of the underground parking lot 190 to climb to the ground.
- underground roads (100a, 100b, 100c, 100d, 100e, and 100f) allow vehicles to use the ground space for other purposes by allowing them to park underground.
- underground roads 100a, 100b, 100c, 100d, 100e, and 100f passengers can make non-stop driving at high speed from the underground parking lot (190) at the destination to the underground parking lot (190) at the destination. Can be. Therefore, the underground roads 100a, 100b, 100c, 100d, 100e, and 100f can function as convenient individual transportation systems such as door-to-door delivery. Each individual car 125 can move at a high speed from the departure gate to the arrival gate.
- 36 is an exemplary view showing an underground road installed in an alpine region according to an embodiment.
- Underground roads (100a, 100b, 100c, 100d, 100e, 100f) can serve as an alternative to transportation problems in large cities and mountainous or remote areas.
- the underground road (100a, 100b, 100c, 100d, 100e, 100f) can be connected to the alpine region 317.
- underground roads (100a, 100b, 100c, 100d, 100e, 100f) can be efficient even in adverse traffic conditions, such as alpine, canyon, desert or tundra.
- Underground roads (100a, 100b, 100c, 100d, 100e, 100f) may be formed of an inclined roadway from a certain distance before reaching the alpine region 317 after being formed of a flat road made of hyperplanes.
- Underground roads (100a, 100b, 100c, 100d, 100e, and 100f) are mostly straight roads with a horizontal structure, but the section of the mountain climbs a slope.
- the inclined road may be formed in a zigzag structure as needed.
- the vehicle 125 may reach the top of the mountain while driving along the underground road penetrating the basement of the alpine region 317.
- Underground roads (100a, 100b, 100c, 100d, 100e, 100f) according to the present invention allow the automobile 125 to reach the alpine region 317, thereby opening an era in which remote areas and cities are connected to each other.
- the era of the road transport network will be opened, where cars can be safely and quickly moved to any place on the land without damaging nature.
- This structure allows the vehicle to be easily and safely moved to remote areas such as the Himalayas, the Vietnamese Desert, the Andes, or the Grand Canyon.
- people can safely evacuate through underground roads (100a, 100b, 100c, 100d, 100e, 100f).
- FIG. 37 is a first exemplary view showing a waterway facility added to an underground road according to an embodiment
- FIG. 38 is a second exemplary view showing a waterway facility added to an underground road according to an embodiment
- FIG. 39 is a day 3 is an exemplary view showing a waterway facility added to an underground road according to an embodiment.
- Underground roads (100a, 100b, 100c, 100d, 100e, 100f) can perform a number of functions in combination.
- Underground roads (100a, 100b, 100c, 100d, 100e, 100f) are the reservoir 300, the oil pipe 340, the gas pipe 350, the transmission pipe 360, the cable conduit 370, the heat transportation pipe 380 or the blow pipe 390.
- the water storage tank 300 may function to waterproof agricultural, living, and industrial water.
- the reservoir 300 may further include a fresh waterway 303 and a seawater channel 305 supplying seawater and a water supply and sewage pipe.
- Underground roads (100a, 100b, 100c, 100d, 100e, and 100f) can transport seawater and freshwater to remote areas and supply deep inland areas.
- the underground roads 100a, 100b, 100c, 100d, 100e, and 100f may include a monorail 320 or a maglev train on the ceiling 110.
- Underground roads (100a, 100b, 100c, 100d, 100e, 100f) are constructed in an ultra-planar structure so that water can be stored in the reservoir 300 installed below. Water can flow along the underground roads (100a, 100b, 100c, 100d, 100e, 100f). Water from the intake of the river or lake may flow into the reservoir 300. Water that has entered the reservoir 300 may move a long distance along the underground roads 100a, 100b, 100c, 100d, 100e, and 100f. This is because the bottom of the reservoir 300 is flat so that water can spread along the bottom of the reservoir 300 of the underground roads 100a, 100b, 100c, 100d, 100e, and 100f.
- water can be supplied at any time and place from rivers or lakes with abundant water to inland areas with insufficient water.
- water resources can be supplied to all parts of the inland, national or international water resource networks can be formed.
- the water resource network enables indigenous freshwater flowing into the sea to be resolved globally to solve the global water shortage problem.
- FIG. 37 is an exemplary view showing a basic principle of forming the water resource network according to an embodiment of the present invention.
- 1) of FIG. 37 shows an empty reservoir 300.
- the distance through which the water spreads may be a short distance within 1 km (2 in FIG. 37) or a long distance of 1,000 km or more (3 in FIG. 37).
- the reservoir 300 installed in the underground roads 100a, 100b, 100c, 100d, 100e, and 100f can supply water from point A, which is a region rich in water, to point B, which is a region where water is insufficient. Water that has reached point B, an area with insufficient water, can be pumped up to the ground using a pump.
- the reservoir 300 may function as a groundwater that does not dry out in an area where water is insufficient, thereby forming a water resource network.
- 38 is an exemplary view showing a reservoir formed in an underground road according to an embodiment of the present invention.
- the reservoir 300 may have a different size depending on the amount of water stored or the amount of water supplied to other regions.
- the water intake method of the water storage tank 300 may include a direct water intake method and an indirect water intake method. If possible, an indirect water intake method may be preferable in which water filtered through impurity or microorganisms in river water is filtered through a river bed alluvial layer. In addition, when collecting water from the river, water can be supplied to the water storage tank 300 by installing a water collecting well on the waterside.
- 39 is an exemplary view showing a water tank equipped with a partition according to an embodiment of the present invention.
- the water storage tank 300 may include a partition 307.
- the partition 307 may function to open and close the water storage tank 300 at regular intervals and switch the amount and direction of water.
- the reservoir 300 may flow a long distance in a straight structure, and may also partially pass through obstacles according to the siphon principle and the history siphon principle.
- the water in the reservoir 300 of the crossing underground roads (100a, 100b, 100c, 100d, 100e, 100f) can be sent in different directions using an artificial device such as a pump. Can be controlled.
- the partition 307 may be arranged side by side in the direction of water flow in the reservoir 300.
- the water storage tank 300 may be divided into a fresh water channel 303 on the one hand and a sea water channel 305 on the other side based on the partition 307.
- the underground roads 100a, 100b, 100c, 100d, 100e, and 100f supply seawater deep into the inland, producing salt and lithium, using aquaculture and seawater. It can be used in the renewable energy industry.
- 40 is an exemplary view showing movement of water through a waterway facility added to an underground road according to an embodiment.
- FIG. 40 a structure is illustrated in which water taken from a river moves inland at a distance through a reservoir 300 under an underground road (100a, 100b, 100c, 100d, 100e, 100f) having an ultra-planar structure.
- the underground roads 100a, 100b, 100c, 100d, 100e, and 100f may function as a waterway connecting between the alpine region 317, the desert region 315, and the water source 310.
- Fresh water collected from the river may flow along the reservoir 300 by the ultra-planar structure of the underground roads (100a, 100b, 100c, 100d, 100e, 100f).
- the water storage tank 300 may connect a river or a lake rich in water with an inland lacking water by a water path. Inland areas where water is scarce, water resources can be obtained stably and continuously, which can solve the problems caused by water shortage.
- the water storage tank 300 can temporarily prevent the damage of the flood by storing rainwater that is concentrated temporarily.
- Underground roads 100a, 100b, 100c, 100d, 100e, and 100f may include railway functions.
- a monorail 320 or a maglev train is installed on the underpass (100a, 100b, 100c, 100d, 100e, 100f) ceiling 110
- the underpass (100a, 100b, 100c, 100d, 100e, 100f) Can function as a railroad.
- the railway function of the underground roads (100a, 100b, 100c, 100d, 100e, 100f) can maximize the spatial and economic efficiency of the underground roads (100a, 100b, 100c, 100d, 100e, 100f).
- 41 is an exemplary view showing a multipurpose function of an underground road according to an embodiment.
- Underground roads (100a, 100b, 100c, 100d, 100e, 100f) include an oil pipe 340, a gas pipe 350, a transmission pipe 360, a cable conduit 370, a heat transport pipe 380, or a blower pipe 390 Therefore, it can perform a complex function of transporting various types of logistics.
- the cylindrical underground road 100d having a double-layer structure may include a double-layer in which the ascending line 140 and the descending line 142 reciprocate.
- Cylindrical underground road (100d) of the double-layer structure is a road or a magnetic levitation train or monorail 320 installed on the ceiling 110, the oil pipe 340, the gas pipe 350, the power transmission pipe 360, It may include a cable conduit 370, a heat transport pipe 380 and a blower pipe 390. If necessary, the cylindrical underground road 100d of a multi-layer structure may include an underground parking lot 190.
- the monorail 320 may be formed in a single-line structure or a double-line structure, if necessary.
- the magnetic levitation train can reduce the construction cost because it uses the empty space of the underground roads (100a, 100b, 100c, 100d, 100e, 100f). It can be used for evacuation or high-speed transportation.
- the monorail 320 may be provided with a safety plate 330 at the bottom.
- the safety plate 330 functions as a safety plate that separates the monorail 320 from the road.
- the safety plate 330 may prevent an accident that may include a perforated plate structure.
- the safety plate 330 may function as a scaffold for a person to access devices installed on the ceiling 110 and the wall 111.
- the safety plate 330 may be used as an evacuation route for people in the event of an accident.
- conduit for logistics transportation such as an oil pipeline 340
- oil pipeline 340 When a conduit for logistics transportation such as an oil pipeline 340 is installed inside the underground roads 100a, 100b, 100c, 100d, 100e, and 100f, it may be more economical and safe from theft.
Landscapes
- Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Mining & Mineral Resources (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Traffic Control Systems (AREA)
Abstract
일 실시예는, 덮지붕 형태의 천장, 상기 천장에 대향하여 형성되는 도로면, 상기 천장 및 상기 도로면에 인접하여 상기 천장 및 상기 도로면과 함께 주행공간을 형성하는 벽면으로 구성되어, 실내 구조를 가지는 도로; 상기 주행공간을 이동하고, 서로 무선 네트워크로 연결되어 정보를 송수신하는 복수의 자동차; 및 상기 복수의 자동차와 유선 및 무선 네트워크로 연결되어 정보를 송수신하고, 상기 복수의 자동차를 제어하는 도로교통관제센터를 포함하고, 상기 도로는, 야외 기후로부터 차단된 실내 구조로 인해 전천후 단일한 주행환경을 제공하는 구조 및 지상의 각종 지형과 상관없는 독립적인 실내구조로 형성되어 지형과 무관하게 단일한 주행환경을 제공하는 구조를 포함하는 것을 특징으로 하는 자동차의 고속 자율주행을 구현하게 하는 실내형 전천후 도로망 시스템을 제공한다.
Description
본 발명은 자동차의 초고속 자율주행을 지원하는 네트워크형 지하도로 체계에 관한 것으로, 지하도로에 접목된 무선통신 기술을 이용한 지능형 스마트 도로 및 이를 이용한 네트워크형 지하도로 체계에 관한 것이다.
자율주행 자동차의 실용화를 위한 연구는 계속되고 있으나 자동차 주행 중 직면하게 되는 외부 환경이 너무나 복잡다단하기 때문에 실용화에 이르지 못하고 있다. 그 주된 요인은 외부환경으로서, 날씨와 기후가 초래하는 악천후와 지상의 복잡한 지형지물 및 보행자와 교통신호등을 고려하는 것이다. 이러한 문제가 해결되지 않아 상용화가 지연되고 있다.
이에 이런 문제를 해결하기 위하여 기존의 노천(outdoor)구조 형태의 도로를 실내(indoor)구조로 된 도로로 바꾸는 것이 제안될 수 있다. 그럴 경우 기존의 도로 상황에서 발생하는 교통사고 유발 상황과 요인을 전면적으로 제거할 수 있게 된다. 동시에 도로 주행 상황이 도로 전 구간에서 단일한 주행환경으로 통일되어 현재의 자율주행 연구에서 해결되어야 할 문제의 대부분이 해결되며 자율주행차 시대가 열리게 된다.
또한 자율주행 자동차의 실용화와 전 지구적인 보편화를 위해서는 실내구조로 된 도로망 체계라는 인프라가 구비될 필요가 있다. 그럴 때 상기 실내구조로 된 도로망 체계는 기존의 도로체계를 전면적으로 대체할 수 있게 된다. 실내구조로 된 도로의 대표적인 경우가 지하도로라 할 수 있는데, 미국의 혁신기업가 일론 머스크(Elon Musk)는 2018년 12월에 미래 교통 시스템의 일환으로 최고 시속 240km까지 달릴 수 있는 도심 속 고속 터널을 미국 로스앤젤레스에 시범적으로 설치하여 세계에 과시했다. 한국건설기술연구원은 네트워크화 된 지하 도로 체계를 시공하는 기술을 2019년까지 확보하기 위해 연구하고 있는 것으로 보도되었다.
자율주행 자동차 연구가 많이 진행되었음에도 실용화가 지연되는 주된 이유는 자동차의 외부 상황이 너무나 복잡다기하고 변화무쌍하여 해결이 어렵기 때문이다. 변화무쌍한 날씨나 기후와 관련이 있는 밤길, 빗길, 눈길, 빙판길 혹은 안개길(또는 바다 안개), 모래폭풍이 부는 도로, 극심한 한파 등의 환경에서도 안전한 자율주행이 가능한 해결책을 마련해야 하는 과제를 안고 있다.
또한 자율주행 자동차가 주행하는 지역의 각종 복잡한 지형과 지물이 야기하는 교통 악조건 상황과 교통장애 요인을 극복하며 자율주행을 할 수 있는 방법에 대한 연구도 해결해야 할 중요한 과제이다. 기존의 연구방식은 이 요인을 해결하기 위해 대도시의 이곳저곳을 돌며 지형지물에 대한 사진 자료를 확보하려 하거나 한적한 시골길까지 구석구석 찾아가는 등 전 지구 이곳저곳을 돌며 이미지 자료를 확보하는 것이었다. 이러한 상황에서 보면, 복잡다기한 지형지물을 극복하며 안전한 자율주행을 할 수 있는 방법의 모색이 해결되어야 할 과제로 남아있다.
또한 다른 요인은 주행 중 출현하는 야생동물이나 보행자(사람)와 신호등 체계에 대한 준비도 미흡하다. 그래서 일부 보급되고 있는 하이브리드형 자율주행차는 주행 중 인명 사망 사고를 내며 가까운 미래에 자율주행차 상용화에 의문을 던져주고 있다. 따라서 야생동물이나 보행자 및 각종 교통 신호등 상황에 대응하여 안전한 자율주행을 할 수 있는 방법의 모색이 중요한 과제이다.
또한 자율주행을 지원하는 도로는 첨단 자동차가 필요로 하는 요구사항에 능동적으로 대응할 수 있는 각종 지능형 장치와 구조를 포함해야 한다. 특히 도로 전 구간에서 통신 장애를 받지 않으며 자동차와 자동차 사이 또는 자동차와 외부 통제 센터 사이의 통신이 가능한 통신 네트워크 환경의 구축을 요구한다.
또한 자율주행 지원하는 도로에 의한 매연 문제를 해결해야 하는 과제를 안고 있다.
전술한 목적을 달성하기 위하여, 일 실시예는, 덮지붕 형태의 천장, 상기 천장에 대향하여 형성되는 도로면, 상기 천장 및 상기 도로면에 인접하여 상기 천장 및 상기 도로면과 함께 주행공간을 형성하는 벽면으로 구성되어, 실내 구조를 가지는 도로, 상기 주행공간을 이동하고, 서로 무선 네트워크로 연결되어 정보를 송수신하는 복수의 자동차, 및 상기 복수의 자동차와 유선 및 무선 네트워크로 연결되어 정보를 송수신하고, 상기 복수의 자동차를 제어하는 도로교통관제센터를 포함하고, 상기 도로는, 야외 기후로부터 차단된 실내 구조로 인해 전천후 단일한 주행환경을 제공하는 구조 및 지상의 각종 지형과 상관없는 독립적인 실내구조로 형성되어 지형과 무관하게 단일한 주행환경을 제공하는 구조를 포함하는 것을 특징으로 하는 자동차의 고속 자율주행을 구현하게 하는 실내형 전천후 도로망 시스템을 제공한다.
상기 시스템에서, 상기 도로는, 왕복 방향을 구성하는 복수의 주행공간을 포함하고, 상기 복수의 주행공간 각각은, 상기 복수의 자동차가 단일한 방향으로만 이동하도록 형성될 수 있다.
상기 시스템에서, 상기 복수의 자동차가 우회전을 하는 우회전 램프; 및 상기 복수의 자동차가 좌회전을 하는 좌회전 램프를 포함하고, 상기 도로는, 복수이고 상기 좌회전 램프 및 상기 우회전 램프는, 상기 복수의 도로를 서로 연결하며, 상기 복수의 자동차는, 상기 좌회전 램프 및 상기 우회전 램프를 통해 상기 복수의 도로 사이를 이동할 수 있다.
상기 시스템에서, 상기 우회전 램프 및 좌회전 램프는, 상기 복수의 자동차가 주행하는 차선에 대하여 모두 동일한 방향으로 형성될 수 있다.
상기 시스템에서, 상기 우회전 램프는, 어느 하나의 도로의 우측에서 시작하여 다른 도로 우측에서 끝나고, 상기 복수의 자동차는, 상기 어느 하나의 도로의 우측에서 상기 우회전 램프를 통과하고 상기 다른 도로 우측으로 합류함으로써 우회전을 할 수 있다.
상기 시스템에서, 상기 좌회전 램프는, 어느 하나의 도로의 우측에서 시작하여 다른 도로의 우측에서 끝나고, 상기 복수의 자동차는, 상기 어느 하나의 도로의 우측에서 상기 좌회전 램프를 통과하여 상기 다른 도로의 우측으로 합류하고 주행방향을 기준으로 270도 전환함으로써, 좌회전을 할 수 있다.
상기 시스템에서, 상기 도로교통관제센터는, 상기 유선 및 무선 네트워크를 통해 상기 복수의 자동차의 첨단운전자보조시스템(Advanced Driver Assistant System, ADAS) 프로그램, 크루즈 컨트롤(cruise control) 제어프로그램, 자동긴급제동(Autonomous Emergency Breaking, AEB) 장치 또는 차선변경보조(Lane Change Assist, LCA) 장치를 제어할 수 있다.
상기 시스템에서, 상기 도로의 복수의 차선 중 고속주행으로 규정된 차선의 폭은, 저속주행으로 규정된 차선의 폭보다 넓을 수 있다.
상기 시스템에서, 상기 도로의 하부에 위치하고, 바닥이 평면으로 형성되어 물을 일정한 높이로 퍼져나가게 하는 저수조를 포함할 수 있다.
상기 시스템에서, 상기 도로의 내부 공기를 야외로 배출하는 환풍구를 포함하고, 상기 환풍구는, 상기 내부 공기를 가열하고 상기 가열된 내부 공기를 상기 환풍구를 통해 야외로 이동시키는 발열장치를 더 포함할 수 있다.
이상에서 설명한 바와 같이 본 실시예에 의하면, 덮지붕(canopy) 구조 혹은 지하 터널 구조로 된 지능형 전천후 도로체계를 통해 현존하는 지상의 노천 도로를 전면적으로 대체할 수 있는 안전하고 초고효율적인 실내형(indoor structure) 전천후 도로망을 제공할 수 있다.
또한 본 실시예에 의하면, 도로의 안전 기능이 극대화되어 교통사고로 사망하는 사람이 원천적으로 발생하지 않아서 극도로 안전한 도로교통 환경을 구현할 수 있다. 현재 전 세계적으로 매년 약 120만 명이 교통사고로 사망하는 것으로 알려져 있는데 이런 사망사고를 대부분 막을 수 있게 된다..
또한 본 실시예에 의하면, 교차로에서 무정차 직진, 우회전, 좌회전이 모든 방면에서 동시다발적으로 또 연속적으로 가능하여 교통 신호등이 전혀 필요 없는 초고효율적인 도로 교통망을 제고할 수 있다. 동시에 도로 전 구간에 걸쳐 무정차(non-stop) 고속주행이 가능할 수 있다.
또한 본 실시예에 의하면, 기상 악조건 상황이나 교통악조건 지역에서도 자동차의 성능이 허용하는 최대한의 고속주행이 가능할 수 있다. 흔히 교통대란을 초래하곤 하던 폭설이나 혹한, 폭우, 홍수 혹은 모래폭풍이나 허리케인/토네이도 등 날씨나 기후가 초래하는 교통 장애를 전혀 받지 않고 또 빙판길이나 눈길, 안개길 등을 전혀 걱정할 필요가 없이 전천후 초고속 주행이 가능해진다. 특히 교통에 악조건을 초래하는 지형지물이 있는 고산 및 설산 지역 혹은 큰 강이나 협곡 또는 사막이나 툰드라 지역 혹은 과밀화된 대도시 지역 등에서도 일반 평지와 마찬가지로 안전한 초고속 주행/운송이 가능할 수 있다.
또한 본 실시예에 의하면, 지체되고 있는 자율주행자동차의 실용화와 상업화를 가능하게 하는데, 현존하는 자율주행차 기술력(레벨 2에서 3 해당)으로도 미국 도로교통안전국(NHTSA)이 정한 레벨4 이상의 완전한 자율주행이 가능할 수 있다.
또한 본 실시예에 의하면, 자율주행차를 위한 도로 교통 환경이 전천후·전 지역 무장애 환경의 구축으로 자율주행차가 구현되어 기존의 값비싸고 복잡한 장치와 소프트웨어 등의 상당 부분이 필요 없게 되어 추후 생산될 자율주행자동차의 가격이 저렴해질 수 있다.
또한 본 실시예에 의하면, 전 지구적으로 대량생산되어 과포화 상태에 이른 자동차가 배출하여 대기를 오염시키는 매연 및 미세먼지의 상당부분을 포집하여 정화·처리할 수 있게 되어 자동차로 인해 발생하는 환경오염 문제를 줄일 수 있다.
또한 본 실시예에 의하면, 기존의 도로에서는 아스팔트 독성이 빗물에 씻겨 내려가 강과 하천 및 지하수 등을 오염시키는 환경문제를 제거할 수 있다.
또한 본 실시예에 의하면, 도로를 넓히기 위하여 토지 수용 및 그에 따른 높은 보상비용의 문제와 수용된 건물의 파괴의 문제를 제거할 수 있다.
또한 본 실시예에 의하면, 수직적 공간 확장이 가능하기에 도로 폭을 2배, 4배, 6배 등으로 무한적으로 확장할 수 있다.
또한 본 실시예에 의하면, 도로 지하에 넓은 지하 주차장을 건립할 수 있어서 대도시 주차난을 해결할 수 있다.
또한 본 실시예에 의하면, 기후변화나 자연재해에 의한 교량붕괴나 도로유실 혹은 포트홀과 같은 도로손상의 발생을 사전에 차단하고, 이에 따른 유지·보수비용을 줄일 수 있다.
또한 본 실시예에 의하면, 자동차와 도로를 통제하는 도로교통관제센터와의 무선 통신을 통해 사고에 대비한 자동화 무인 대응 장치를 제어하고 교통사고를 신속히 처리함으로써 안전한 교통 환경을 구현할 수 있다.
또한 본 실시예에 의하면, 도로가 모두 지하로 들어가게 되면 도로가 있었던 지상의 공간은 공원이나 산책길 혹은 자전거길 등 친환경적 용도로 활용할 수 있게 되어 자동차 없는 거리를 구현할 수 있다.
또한 본 실시예에 의하면, 지하의 전천후 도로가 하나의 플랫폼처럼 기능하여 다목적 운송 기능을 수행하는데. 관개용수나 공업용수 혹은 생활용수를 공급하는 방수로 기능을 하며 필요 시 해수를 내륙 먼 곳으로 공급하는 해수관 등의 기능을 할 수 있다.
또한 본 실시예에 의하면, 전기배관이나 광케이블망 혹은 가스관, 송유관, 상수도관 등을 도로와 함께 설치할 수 있어 전국적 혹은 국제적 에너지 네트워크 연결망을 구축할 수 있다.
또한 본 실시예에 의하면, 지하도로 밑에 대규모 저수조를 이용하여 가뭄과 물 부족 문제를 해결할 수 있을 뿐만 아니라 홍수를 대비할 수 있다. 특히 바다로 흘러가던 물을 내륙으로 역류시키거나 홍수 시 도로 밑 저수장에 저장된 빗물을 전국적으로 혹은 국제적으로 물 부족 지역으로 공급하여 전 지구적인 물 부족 문제와 가뭄 지역의 해갈 문제를 해결하는 효과가 발생한다.
또한 본 실시예에 의하면, 지하도로가 지나는 지역은 염분차발전 등의 방법으로 신재생 에너지를 생산·개발할 수 있다.
또한 본 실시예에 의하면, 대형 산불이나 화산 폭발에 따른 대규모 화산재가 발생한 지역 혹은 대규모 홍수가 발생한 지역 등에서 인명피해 없이 안전하고 신속한 인명 탈출과 구호 및 재난 진압·복구 활동이 가능할 수 있다.
도 1은 일 실시예에 따른 지하도로의 제1 예시도이다.
도 2는 일 실시예에 따른 지하도로의 제2 예시도이다.
도 3은 일 실시예에 따른 지하도로의 제3 예시도이다.
도 4는 일 실시예에 따른 지하도로의 제4 예시도이다.
도 5는 일 실시예에 따른 복층 구조의 왕복 도로를 포함하는 지하도로의 예시도이다.
도 6은 일 실시예에 따른 병렬 구조의 왕복 도로를 포함하는 지하도로의 예시도이다.
도 7은 일 실시예에 따른 복층 구조의 지하도로가 대도시 지하에 구현된 모습을 예시하는 조감도이다.
도 8은 일 실시예에 따른 복층 구조의 지하도로 네트워크를 보여주는 조감도이다.
도 9는 일 실시예에 따른 지하도로의 차선 분류를 예시하는 예시도이다.
도 10은 일 실시예에 따른 복층 구조의 원통형 지하도로가 서로 교차하는 지점에서 우회전을 가능하게 하는 우회전 램프를 보여주는 제1 예시도이다.
도 11은 일 실시예에 따른 복층 구조의 원통형 지하도로가 서로 교차하는 지점에서 우회전을 가능하게 하는 우회전 램프를 보여주는 제2 예시도이다.
도 12는 일 실시예에 따른 복층 구조의 원통형 지하도로가 서로 교차하는 지점에서 우회전을 가능하게 하는 우회전 램프를 보여주는 제3 예시도이다.
도 13은 일 실시예에 따른 병렬 구조의 반원통형 지하도로가 서로 교차하는 지점에서 우회전을 가능하게 하는 우회전 램프를 보여주는 제1 예시도이다.
도 14는 일 실시예에 따른 병렬 구조의 반원통형 지하도로가 서로 교차하는 지점에서 우회전을 가능하게 하는 우회전 램프를 보여주는 제2 예시도이다.
도 15는 일 실시예에 따른 병렬 구조의 반원통형 지하도로가 서로 교차하는 지점에서 우회전을 가능하게 하는 우회전 램프를 보여주는 제3 예시도이다.
도 16은 일 실시예에 따른 복층 구조의 원통형 지하도로가 서로 교차하는 지점에서 좌회전을 가능하게 하는 좌회전 램프를 보여주는 제1 예시도이다.
도 17은 일 실시예에 따른 복층 구조의 원통형 지하도로가 서로 교차하는 지점에서 좌회전을 가능하게 하는 좌회전 램프를 보여주는 제2 예시도이다.
도 18은 일 실시예에 따른 복층 구조의 원통형 지하도로가 서로 교차하는 지점에서 좌회전을 가능하게 하는 좌회전 램프를 보여주는 제3 예시도이다.
도 19는 일 실시예에 따른 병렬 구조의 반원통형 지하도로가 서로 교차하는 지점에서 좌회전을 가능하게 하는 좌회전 램프를 보여주는 제1 예시도이다.
도 20은 일 실시예에 따른 병렬 구조의 반원통형 지하도로가 서로 교차하는 지점에서 좌회전을 가능하게 하는 좌회전 램프를 보여주는 제2 예시도이다.
도 21은 일 실시예에 따른 병렬 구조의 반원통형 지하도로가 서로 교차하는 지점에서 좌회전을 가능하게 하는 좌회전 램프를 보여주는 제3 예시도이다.
도 22는 일 실시예에 따른 병렬 구조의 반원통형 지하도로가 서로 교차하는 지점에서 좌회전을 가능하게 하는 좌회전 램프를 보여주는 제4 예시도이다.
도 23은 일 실시예에 따른 병렬 구조의 반원통형 지하도로에서 유턴을 보여주는 예시도이다.
도 24는 일 실시예에 따른 지하도로의 환기장치를 보여주는 예시도이다.
도 25는 일 실시예에 따른 지하도로의 환기장치에서 공기의 흐름을 보여주는 예시도이다.
도 26은 일 실시예에 따른 지하도로의 공기정화장치를 보여주는 예시도이다.
도 27은 일 실시예에 따른 지하도로에서의 사고지역을 디지털화하여 보여주는 예시도이다.
도 28은 일 실시예에 따른 2차 사고를 막는 자동차 정차기를 보여주는 제1 예시도이다.
도 29는 일 실시예에 따른 2차 사고를 막는 자동차 정차기를 보여주는 제2 예시도이다.
도 30은 일 실시예에 따른 2차 사고를 막는 자동차 정차기를 보여주는 제3 예시도이다.
도 31은 일 실시예에 따른 2차 사고를 막는 자동차 정차기를 보여주는 제4 예시도이다.
도 32는 일 실시예에 따른 지하도로의 자동화 무인 대응 장치를 보여주는 예시도이다.
도 33은 일 실시예에 따른 지하도로의 안전 장치를 보여주는 예시도이다.
도 34는 일 실시예에 따른 다층 지하도로 구조를 보여주는 예시도이다.
도 35는 일 실시예에 따른 다층 지하도로에 있는 주차장을 보여주는 예시도이다.
도 36은 일 실시예에 따른 고산지역에 설치된 지하도로를 보여주는 예시도이다.
도 37은 일 실시예에 따른 지하도로에 부가되는 수로시설을 보여주는 제1 예시도이다.
도 38은 일 실시예에 따른 지하도로에 부가되는 수로시설을 보여주는 제2 예시도이다.
도 39는 일 실시예에 따른 지하도로에 부가되는 수로시설을 보여주는 제3 예시도이다.
도 40은 일 실시예에 따른 지하도로에 부가되는 수로시설을 통한 물의 이동을 보여주는 예시도이다.
도 41은 일 실시예에 따른 지하도로의 다목적 기능을 보여주는 예시도이다.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
도 1은 일 실시예에 따른 지하도로의 제1 예시도이고, 도 2는 일 실시예에 따른 지하도로의 제2 예시도이고, 도 3은 일 실시예에 따른 지하도로의 제3 예시도이며, 도 4는 일 실시예에 따른 지하도로의 제4 예시도이다.
도 1 내지 4를 참조하면, 지하도로의 예시가 도시된다. 지하도로는 덮지붕(canopy) 구조 혹은 터널 구조를 포함할 수 있다. 도 1은 원통형 지하도로(100a)를, 도 2는 반원통형 지하도로(100b)를, 도 3은 박스형 지하도로(100c)를 각각 나타낼 수 있다. 도 4는 지능형장치가 설치된 반원통형 지하도로(100b)를 나타낼 수 있다.
지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 그 천장(110)이 도로의 지붕 역할을 하며 각종 악천후로부터 도로를 보호하는 기능을 할 수 있다. 덮지붕 구조의 지하도로(100a, 100b, 100c, 100d, 100e, 100f)에서, 지붕은 옆으로 기울어지듯이 확장하여 도로면과 접하도록 연결되어 벽면(111)을 형성할 수 있다. 천장(110), 벽면(111) 및 도로면은 지하도로(100a, 100b, 100c, 100d, 100e, 100f)에서 자동차(125)가 이동하는 주행공간을 구성할 수 있다.
지하도로(100a, 100b, 100c, 100d, 100e, 100f)의 이런 확장된 덮지붕 구조는 비바람과 한파, 폭설, 폭우, 모래폭풍 등 날씨와 기후에 따른 모든 악영향을 차단하고 도로를 보호해주며, 기상과 날씨가 초래하는 교통 악조건이 모두 제거된 안전한 주행 환경을 항시적으로 보장할 수 있다. 따라서 본 발명에 따른 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 지상에서 발생하는 모든 기상 조건과 상관없이 안전 운행이 가능한 전천후 도로가 될 수 있다. 본 명세서에서 이러한 도로 구조를 가지는 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 실내형 도로(indoor road) 혹은 전천후 도로(weather-proof road)라 명명될 수 있으며, 기존의 실외(outdoor) 노천도로와 구별될 수 있다.
덮지붕 구조를 하여 각종 기후나 날씨가 초래하는 악영향으로부터 도로를 가장 완벽하게 차폐시켜주는 대표적인 지하도로(100a, 100b, 100c, 100d, 100e, 100f) 구조는 지하의 터널 구조라 할 수 있다. 지하도로(100a, 100b, 100c, 100d, 100e, 100f)의 형태는 도 1과 같은 원통구조로 된 터널형(100a), 도 2와 같은 반원통 구조로 된 터널형 (100b) 및/또는 도 3과 같은 박스형 구조로 된 터널형(100c)을 포함할 수 있다. 반원통형 지하도로(100b)는 원통을 종단면으로 절반 정도 잘라 낸 형태일 수 있다. 박스형 지하도로(100c)는 대도시 지역처럼 건물이 밀집된 지형에서 사용될 수 있다. 이러한 구조 외에도 이것으로부터 변형된 구조도 다양하게 포함될 수 있다.
도 1에 도시된 원통형 지하도로(100a)는 원통형 터널 전체를 도로 및 부속시설로 활용하는 구조이기에 단층도로 구조를 넘어서 복층도로 구조로 활용될 수 있다. 원통형 지하도로(100a)는 동시에 터널 내부 공간에 방수로, 송유관, 송전관 등이 설치되어 다목적으로 활용될 수 있다. 도 2에 도시된 반원통형 지하도로(100b)는 원통형 지하도로(100a)의 절반을 도로 및 부속시설로 활용되는 구조이므로 제한된 용도로 사용될 수 있다. 도 3에 도시된 박스형 지하도로(100c)는 대도시의 지표면 가까운 곳에 설치하기 좋은 구조일 수 있다.
본 발명에 따른 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 자율주행차의 실용화를 위한 새로운 해법으로서 도로의 기능을 극대화하여 자율주행차 연구자들이 해결하지 못한 여러 가지 난제들을 해결하는 방법을 제시하고 있다. 이런 신개념에 의한 새로운 구조의 도로는 차량 탑승자와 도로 보행자 등 사람의 안전을 극대화하면서 동시에 자동차의 성능을 극대화할 수 있게 해준다. 그 동안 첨단화되는 자동차의 기술력을 따라가지 못하는 도로 구조의 낙후성에 대한 문제가 간과되었는데, 이런 기술적 격차만 해소되어도 자동차와 도로의 성능이 함께 크게 개선되는 것은 물론 자율주행차 기술의 실용화도 지금까지의 기술력만으로도 충분히 가능해 질 수 있다.
도로와 같은 기반시설의 낙후성은 각종 교통사고를 유발하여 인명과 재산상 피해를 발생시킬 뿐만 아니라 자동차의 성능에 제한을 가할 수 있다. 현존하는 도로는 노천형(outdoor)으로써 각종 천후에 노출된 개방형 구조이기 때문에 날씨와 기후가 만들어내는 각종 교통장애 상황을 완전하게 극복하지 못하였다. 따라서 사람들은, 홍수나 폭설과 한파 혹은 모래폭풍이나 허리케인, 안개 등 각종 악천후 상황이 야기하는 교통사고에 그대로 노출되었다. 상기 노천형 도로가 노천의 각종 날씨와 차폐되어 보호되는 실내(indoor) 구조로 바뀐다면 변화무쌍한 날씨와 기후가 만들어내는 각종 교통 악조건은 모두 제거될 수 있을 것이다. 따라서 도로는 상시적으로 안전하게 달릴 수 있는 상태이므로, 사람들은 빗길, 눈길, 빙판길, 안개길, 모래폭풍, 토네이도, 허리케인 등의 문제를 전혀 걱정할 필요없다. 동시에 천후로부터 안전해진 자동차는 (도로에 보행자와 야생돌물이 차폐된 환경에서) 속도에 제한을 받을 필요가 없게 되어 자동차 성능이 허용하는 최대한의 기능을 그대로 발휘하며 고속 및 초고속 주행을 할 수 있게 된다. 현대의 첨단 기술을 장착한 자동차들은 그동안 성능 상으로는 고속 주행을 할 수 있었으나 노천구조로 된 도로의 한계로 인해 제 성능을 발휘하지 못하고 있었던 셈이다.
지하도로(100a, 100b, 100c, 100d, 100e, 100f) 즉, 전천후(weather-proof) 도로는 날씨와 기후가 만들어내는 교통악조건을 모두 차단하여 최상의 안전한 운행이 가능한 실내(indoor)구조로 된 도로를 의미할 수 있다. 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 도로 위 일정 공간에 지붕을 설치한 덮지붕(canopy) 구조를 포함하여 도로를 각종 날씨와 기후의 영향으로부터 차단시킬 수 있다. 상기 덮지붕 구조의 도로는 교통 공학적 측면에서 변화무쌍한 날씨와 기후가 초래하는 천태만상의 주행환경을 모두 차단하여 하나의 단일하고 균질한 주행환경으로 통일시켜주는 효과를 가질 수 있다. 따라서 상기 덮지붕 구조로 된 도로를 이용하게 되면, 약 300,000개로 압축된 복잡한 주행환경에 대한 자율주행차 연구는 더 이상 필요없을 수 있다. 상기 덮지붕 구조로 된 도로는 지하 터널 구조를 포함할 수 있다. 지하 터널 구조는 방한, 내열, 방풍, 방우, 방설, 방무 및 방사(防沙) 등의 효과를 나타내며 지상의 악천후를 차단하여 안전하고 효율적인 도로 기능을 제공할 수 있다.
지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 실내형 도로, 덮지붕 구조 도로, 전천후 도로 및 터널도로와 같은 의미로 혼용될 수 있다.
일반적으로 사람(보행자)은 지하보도를 이용하고 자동차는 지상의 공간을 이용하도록 설계되었다. 만약 그 설계방식을 반대로 하여 사람이 지상의 공간을 점유하고 자동차가 지하공간을 이용하게 되는 구조가 되면, 교통사고, 도로정체 및 자동차 속도제한 등의 문제가 전혀 발생하지 않는 혁신적인 도로 교통 환경이 구현될 수 있다.
또한 사람이 지상의 공간을 차지하면 ‘차 없는 도시’가 구현되면서 많은 사람들이 꿈꾸어오던 친환경적인 목가적 삶을 살게 되어 삶의 질이 향상되고, 자동차는 지하공간으로 내려가면서 전천후 주행 환경과 더불어 자동차 전용 교통 환경을 제공받으면서 자동차의 안전성과 성능을 극대화할 수 있다. 이 경우 차도는 자동차의 성능이 허용하는 최대한의 속도를 내도 인명 피해 사고나 로드킬(road-kill) 등의 교통사고가 근본적으로 발생하지 않는 최고의 교통 환경이 구현될 수 있다.
지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 기본적으로 직선 터널 구조와 평면 도로 구조를 갖을 수 있다. 여기서 직선과 평면은 도로의 폭이 아닌 길이에 적용되는 개념이기에 도로의 길이가 직선형 구조로 형성되는 것을 의미하며 또 도로의 높낮이라는 측면에서도 도로의 길이가 직선 구조로 형성됨을 말한다. 직선 구조는 수평 구조 도로를 포함할 수 있다. 또한 지하도로의 특성을 표현하며 초직선, 초평면, 초고속 등의 표현을 사용하고 있는데 이때 ‘초’라는 접사는 어떤 것의 길이나 면적 혹은 성능 등이 일상 상식의 범위를 넘어서는 수준을 강조하는 의미이다. 따라서 지하터널 도로가 초평면 구조라 함은 평면 구조가 일반적 인식 범위를 넘어설 정도로 넓게 형성된 것을 말하며, 초고속은 일반의 상식적 인식의 범위를 넘어서는 고속 상태를 말한다. 그러므로 자동차는 고정밀지도 등의 도움이 없어도 상기 초평면 구조로 형성되는 전천후 도로의 모든 구간에서 마치 활주로를 달리듯이 초고속 주행을 할 수 있게 된다.
도 4를 참조하면, 지능형장치가 설치된 지하도로의 예시가 도시된다. 상기 지능형장치가 설치된 지하도로는 지능형 스마트 도로의 기능을 할 수 있다.
지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 천장(110)이나 벽면(111)에 CCTV(400), 스프링쿨러(410) 로봇팔(420), 진공청소기, 자동차 정차기(500) 등 다양한 장치가 설치될 수 있다. 상기 장치들은 사고 발생 시 신속한 무인 자동 제어나 원격 제어를 가능하게 할 수 있다. 비상상황을 대비하는 각종 안전장치가 추가될 수 있다.
또한 무선중계기(560)가 일정 간격으로 지하도로(100a, 100b, 100c, 100d, 100e, 100f)에 설치될 수 있다. 무선중계기(560)는 지하도로(100a, 100b, 100c, 100d, 100e, 100f) 전 구간에 걸쳐 자동차(125)간 정보 교환을 위한 네트워크를 구축할 수 있다. 동시에 무선 중계기(560)는 자동차(125)와 도로교통관제센터(550) 사이의 무선 네트워크를 구축할 수 있다.
자동차(125)간 쌍방향 무선 네트워크는 자율주행차의 안전 운행을 보장하는 주요한 요소이며, 자동차(125)와 도로교통관제센터(550) 사이의 무선 네트워크 역시 자율주행차의 안전 운행을 위해 요구될 수 있다. 또한 자동차(125)는 무선중계기(560)를 통해 외부 인터넷망과 무선으로 연결될 수 있다. 이런 구조는 자동차(125)와 클라우드 서버(570)가 항상 연결된 상태인 커넥티드 자동차(connected car) 환경을 가능하게 할 수 있다.
센서가 도로에 설치되어 주행 중인 자동차의 위치 확인 및 차량의 차선유지를 도울 수 있으며, 지하도로(100a, 100b, 100c, 100d, 100e, 100f) 내부에 있는 차량의 위치 확인을 지원할 수 있다.
지하도로(100a, 100b, 100c, 100d, 100e, 100f)에서 주행 중인 자동차(125)의 위치확인은 지상의 GPS와 연동하여 수행되거나 지상의 GPS에 의존하지 않고 독자적으로 수행될 수 있다. 각 자동차(125)의 위치 확인은 앞뒤 자동차(125) 간의 안전거리 유지, 차선변경 시 유리할 수 있다. 벽면(111)이나 천장(110)에 일정 간격을 두고 설치된 CCTV(400)는 입력되는 영상을 인공지능(AI)으로 분석하여 이용할 수 있다.
따라서 본 발명에 따른 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 현대의 첨단 기능을 장착한 자동차(125)가 필요하는 요구사항을 충족시켜킬 수 있다. 본 발명에 따른 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 자동차(125)에게 고성능 주행과 주행 안전성을 제공할 뿐만 아니라 탑승자에게 최고의 편리성과 안전성을 제공하기 때문에, 스마트 도로의 기능을 수행할 수 있다.
자동차(125)가 만들어내는 소음과 고속운행 시 발생하는 충격파도 해결해야 할 문제일 수 있다. 왜냐하면 자율주행차는 지하도로(100a, 100b, 100c, 100d, 100e, 100f)에서 초고속 주행을 하고, 고속주행 시 발생하는 소음과 충격파가 밀폐공간에서 문제될 수 있기 때문이다.
사실 최근의 차량들은 모두 내부에 공기정화 장치와 에어컨 장치를 포함하고 있어 창문을 닫고 운전하기 때문에 지하도로(100a, 100b, 100c, 100d, 100e, 100f)에서 주변의 차량들이 만드는 소음은 차량 운전자와 탑승자들에게 크게 문제가 되지는 않는다. 특히 자율주행을 하는 상황에서도 마찬가지다. 자율주행차량 내부에서 운전자는 이어폰을 끼고 음악을 듣거나 영화 관람을 할 수도 있으므로 주변의 소음은 문제가 되지 않을 수 있다. 그럼에도 불구하고 소음문제를 해결하기 위하여 도 4와 같이 천장(110)과 벽면(111)에 소음 방지 장치(112)를 설치할 수 있다.
고속주행 차량이 만드는 충격파는 지하도로(100a, 100b, 100c, 100d, 100e, 100f)와 같은 밀폐공간에서 증폭될 수 있어서 문제일 수 있다. 그렇게 되면, 심할 경우 가까이 있는 차량이 전복되는 문제가 발생할 수 있다. 이것은 별도의 장치를 마련하지 않고 기존의 장치나 설비를 운용하는 방법을 조정하여 해결될 수 있다. 예를 들어, 복수의 차선 중 고속주행으로 규정된 차선의 폭은 저속주행으로 규정된 차선의 폭보다 넓을 수 있다. 고속주행 차선의 폭을 다른 차선보다 더 넓혀 고속차량이 만들어내는 충격파가 이웃 차선의 차량에게 적게 전달되도록 할 수 있다. 또 다른 예를 들어, 초고속주행 차량이 질주할 때에 이웃 차선의 차량은 잠시 다른 차선으로 이동하였다가 초고속주행 차량이 지나간 후 원래 차선으로 복귀할 수 있다.
단일한 주행환경, 초평면·직진 도로 구조, 보행자와 야생동물이 차단된 교통 환경, 교통신호등이 필요 없는 무정차 교차로 환경 등으로 인해 지하도로(100a, 100b, 100c, 100d, 100e, 100f)에서의 주행은 단순화될 수 있다. 따라서 본 발명에 따른 지하도로(100a, 100b, 100c, 100d, 100e, 100f)를 이용한다면, 현재의 기술로도 충분히 자율주행이 가능하다.
그러나 집단으로 주행하는 교통 환경에서의 사고나 도로 분기 및 합류 지점에서의 사고를 막는 차량 간 협조체계의 구축은 해결되어야 할 문제일 수 있다.
자동차(125)사이의 또는 자동차(125)와 도로교통관제센터(550) 사이의 정보를 주고받을 수 있는 통신 네트워크가 요구될 수 있다. 또한 도로교통관제센터(550)가 자동차(125)를 통제할 필요가 있다. 동시에 자동차(125)가 외부의 인터넷 시스템과 연결되기 위하여 지하도로(100a, 100b, 100c, 100d, 100e, 100f) 외부에 클라우드 서버(570)가 필요할 수 있다.
도 4를 참조하면, 인터넷 통신 네트워크 구축을 위한 무선중계기(560)가 도시된다. 자동차(125)와 도로교통관제센터(550)는 독립적인 채널을 포함하는 인터넷 통신 네트워크가 권장될 수 있다. 자동차(125)와 도로교통관제센터(550) 사이 네트워크에서 보안은 중요하다. 상기 네트워크가 기능하지 못하면, 안전사고를 사전에 막을 수 없기 때문이다. 따라서 별도의 인트라넷이 추가적으로 사용될 수 있다. 자동차(125) 탑승자가 편의상 이용하는 인터넷은 외부의 클라우드 서버(570)와 연결되는 인터넷 통신망일 수 있다.
그리고 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 초고속 자율주행 전용도로의 기능을 수행할 수 있다.
지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 전천후 환경뿐만 아니라 자율주행차의 실용화를 가능하게 하는 하드웨어적 환경을 포함할 수 있다. 기존의 자율주행차 연구는 지상의 노천도로 환경에서 야간 보행자를 식별하지 못해 인명피해 사고를 내거나, 내리는 눈을 제대로 인식하지 못하거나 혹은 내리는 눈이 시야를 방해하기 때문에, 자율주행 해법을 발견하지 못하는 상황이었다. 하지만 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 변화무쌍한 기상과 관련된 자율주행차의 모든 문제를 한꺼번에 해결하면서 현존하는 기술력으로도 충분히 자율주행차 시대를 열 수 있도록 한다.
지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 지상의 지형구조나 다른 요인들에 의한 영향없이 건설될 수 있어서, 도로 기능의 개선이 더욱 극대화되는 혁신성이 발현될 수 있다. 기존의 지하도로가 건설될 때, 운전자들의 주행 단조로움을 해소하고 안전성을 향상시키기 위하여 적정 거리의 직선과 곡선이 조합되었다. 그러나 본 발명에 따른 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 운전자들의 안전 편의성을 고려한 인위적인 곡선 구조 등을 고려할 필요가 없어 경제성과 효율성이 집중된 초평면, 초직선 도로 구조로 건설될 수 있다. 교차로의 램프 구간을 제외한 도로 전 구간에 걸친 이런 단일한 초직선, 초평면 주행환경 구조는 자율주행을 위해 요구되는 초정밀지도를 필요하지 않게 한다.
또한 지상의 악지형에 영향을 받는 기존의 노천도로는 산악지역, 협곡, 사막 도로 또는 설산·고산 지역 등의 지역에서는 속도가 제한적이고 주행이 위험할 수 있다. 그러나 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 교통 악조건 지역에서 직선 도로 구조 및 초평면 도로 구조를 통해 안전한 주행을 가능하게 할 수 있다. 자동차(125)는 마치 활주로를 질주하듯이 초고속 직선 주행할 수 있게 되어 교통, 물류 및 운송에 있어 경제성, 신속성 및 안전성이 극대화되는 획기적인 환경이 열릴 수 있다.
자동차(125)들이 집단적으로 운행되는 상황에서 자동차(125)의 고장 등을 후방이나 주변의 자동차(125)에게 알려주거나 도로가 합류하는 지점에서 차량 간 정보를 주고받을 수 있는 정보통신 체계가 형성되면 더욱 안전한 교통 환경이 구현될 수 있다.
따라서 이런 필요에 부응하기 위해 자동차(125)간 정보를 서로 주고받을 수 있는 통신 네트워크가 도로 전 구간에 걸쳐 구현될 필요성이 있다. 또한 자동차(125)와 도로교통관제센터(550)의 통신 네트워크가 구축되어 지하도로(100a, 100b, 100c, 100d, 100e, 100f)를 통제할 필요가 있다. 그런데 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 초직선의 구조로 되어 있으므로 통신 측면에서 이상적인 환경을 제공할 수 있다. 직선 도로는 어떠한 통신상 장애요인도 포함하지 않고 도로의 천장(110)이나 벽면(111)에 무선중계기(560)를 일정한 간격으로 다수 포함할 수 있다. 따라서 자동차(125)끼리의 양방향 통신이나 자동차(125)와 도로교통관제센터(550)의 무선통신이 장애없이 가능할 수 있다.
또한 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 전 구간에 걸쳐 무선중계기(560)를 통해 자동차(125)와 외부의 클라우드 서버(570) 사이의 무선통신환경을 구현할 수 있다.
또한 지하도로(100a, 100b, 100c, 100d, 100e, 100f)에서는 모든 차량이 한 방향으로만 주행하는 일방통행(one-way) 구조가 가능할 수 있다. 지하도로(100a, 100b, 100c, 100d, 100e, 100f)가 위치하는 지하공간은 상하(수직)방향으로 입체적 공간 확장이 가능하기 때문에 넓은 공간 확보가 용이하다. 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 왕복하는 차량이 한 도로에서 반반으로 나뉘어 서로 오고가는 기존의 도로 운행방식에 의한 과밀성을 제거할 수 있다. 또한 상하(수직)에서 모든 차량이 한 방향으로만 주행하는 일방통행 구조는 왕복 방향으로 주행하는 기존의 지상도로에서 발생하는 충돌사고를 근본적으로 억제할 수 있다.
그리고 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 지하공간을 이용하는 특성상 도로의 입체적 공간 사용을 용이하게 할 수 있다. 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 입체적 공간 사용을 통해 신호등이 없는 교차로 구조를 가능하게 하고, 지하도로(100a, 100b, 100c, 100d, 100e, 100f)의 각 방면에서 오고 가는 자동차(125)는 멈추지 않고 직진, 좌회전 및 우회전을 동시에 할 수 있게 된다.
또한 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 보행자와 야생동물 등과도 완전히 차단되고 신호등이나 횡단보도 등이 없는 무정차 고속 주행을 가능하게 할 수 있다. 이것은 신호등, 교차로, 보행자, 로드킬(road-kill)과 관련된 문제를 해결할 수 있다. 동시에 모든 도로가 안전한 초고속 운행이 가능한 주행환경이 되어 교통의 효율성이 극대화될 수 있다. 지하도로(100a, 100b, 100c, 100d, 100e, 100f)의 안전성과 효율성은 기존의 지상 노천도로를 전면적으로 대체할 수 있게 한다.
지하도로(100a, 100b, 100c, 100d, 100e, 100f)가 제공하는 특성들이 자율주행차에게 매우 우호적으로 적용될 수 있다. 따라서 지하도로(100a, 100b, 100c, 100d, 100e, 100f)가 이용된다면, 자율주행차와 관련된 현재까지의 연구 성과와 기술력(레벨 2에서 레벨 3 사이)만으로도 미국도로교통안전국(NHTSA)이 정한 레벨 4 이상의 완전한 자율주행이 가능할 수 있다. 실제로 현대자동차는 본 발명에 따른 지하도로(100a, 100b, 100c, 100d, 100e, 100f)보다 더 열악한 노천도로 구조로 된 190㎞ 거리(서울에서 평창까지)를 최고시속 110㎞/h로 수소전기자율주행차로 주행했다는 소식을 발표하였다. 따라서 노천도로보다 자율주행에 더 우호적인 지하도로(100a, 100b, 100c, 100d, 100e, 100f)환경에서 자율주행이 가능함은 너무나 명백하다.
표 1은 지하도로(100a, 100b, 100c, 100d, 100e, 100f)와 지상 노천도로 간 주행 상황의 유·불리 환경을 비교 분석한 것을 나타낼 수 있다. 표 1을 통해 자율주행에 요구되는 기술의 난이도가 비교될 수 있다
변수/구분 | 지상 노천도로(A) | 지하도로(100a, 100b, 100c, 100d, 100e, 100f)(B) |
날씨 및 기후(폭우 및 홍수, 폭설 및 빙판길, 안개, 강풍/모래폭풍 등) | 다양한 주행 장애 환경 발생 | 주행 장애 없음 |
지형(습지, 툰드라 지형, 가파른 언덕길, 설산지역, 고산 절벽도로, 사람과 동물 출현 등) | 다양한 주행 장애 환경 발생 | 주행 장애 없음 |
유비쿼터스 통신환경 구축(커넥티드 카 구현) | 매우 어렵고 고비용 | 용이하고 저비용 |
사고 시 긴급 대응 준비 능력 | 매우 어렵거나 고비용 | 용이하고 저비용 |
기술적 성과 | 자율주행 성공(2018. 2. 4.) | - |
표 1을 참조하면, 자율주행에 불리한 상황에서는 그런 점을 극복하기 위해 요구되는 기술의 난이도도 함께 높아진다. 표 1에서 지상 노천도로(열 A)는 날씨와 기후 및 지형에 따라서 교통사고를 유발하는 다양한 장애 요인을 가지고 있어 교통사고 가능성이 높다. 반면에 지하도로(100a, 100b, 100c, 100d, 100e, 100f)(열 B)는 그런 장애를 포함하지 않음을 보여주고 있다. 장애 요소가 많아 자율주행이 더 어려운 지상 노천도로(열 A) 상황에서도 이미 개별차량으로 자율주행에 성공하고 있기 때문에 주행 장애 요인이 거의 없는 지하도로(100a, 100b, 100c, 100d, 100e, 100f)(열 B)에서는 현존하는 기술로도 충분히 자율주행이 가능할 수 있다.
자율주행이 가능한 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 기존의 지하도로와 여러 가지 면에서 다른 점이 많은데, 기존의 지하도로는 지상도로의 일부 지역의 장애문제를 해결하기 위한 목적으로 형성되었기에 부분적·단절적 도로의 성격을 갖고 있어 네트워크화 되지 못했다. 또한 기존의 지하도로의 보급률 자체도 전체 도로에 비해 아주 미미하기 때문에 대안적이고 독립적인 교통망체계와는 전혀 관계가 없었다. 따라서 지율주행이 가능한 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 각각이 서로 네트워크처럼 연결될 수 있다. 본 발명에 따른 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 건설될 지역의 여건과 필요에 따라 지면에 아주 가까운 지하공간에 건설되거나 지하 40m 이상의 깊은 대심도 공간에 건설될 수도 있다. 또한 지역에 따라 일부 지역에서는 지면에 아주 근접하게, 다른 지역에서는 깊은 대심도 공간에, 각각 지하도로(100a, 100b, 100c, 100d, 100e, 100f)가 상호 연결되는 혼합형 형태로 건설될 수 있다. 안보의 위협이 있는 곳에서는 지하 100m 내외 혹은 그 이상의 깊이에서도 지하도로(100a, 100b, 100c, 100d, 100e, 100f)가 건설될 수 있다.
지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 내진설계가 가능하여 진도 7.5 까지의 강진을 견딜 수 있는 지하터널(터키 유라시아 해저터널 사례)이 이미 시공되어 선보이고 있기 때문에 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 지상 노천도로보다 지진에 더 견고하게 견딜 수 있다. 또한 기술의 발전에 따라 지하도로(100a, 100b, 100c, 100d, 100e, 100f) 내부의 직경이 더욱 커질 수 있기에 대규모 도로 수요를 충당할 수 있고, 단순한 교통 목적 외에도 저수, 송수, 송유, 송전 등 더욱 다양한 부수 기능을 수행하는 도로 플랫폼 기능도 수행할 수 있다.
지하도로(100a, 100b, 100c, 100d, 100e, 100f)가 지상의 노천도로를 완전히 대체할 때까지 양자가 서로 공존하는 하이브리드 형태로 이용될 수 있다. 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 지상도로(100g)와 연결되고 교차할 수 있다. 자율주행이 가능한 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 마치 지금의 포장도로처럼 기능하고, 자율주행이 제한적으로 가능한 지상의 노천도로는 반자동 수동운전 용도의 도로처럼 간주되어 마치 지금의 비포장도로처럼 인식되면서 일정 기간 서로 공존할 수 있다.
도 5는 일 실시예에 따른 복층 구조의 왕복 도로를 포함하는 지하도로의 예시도이다.
도 5를 참조하면, 하나의 원통형 지하 터널에 2층의 도로가 형성된 복층 구조의 원통형 지하도로(100d)가 도시된다. 원통형 지하도로(100a)는 복층 구조의 왕복 도로를 포함하는 지하에 매설된 도로일 수 있다.
지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 네트워크 지하도로 체계를 구성할 수 있다. 네트워크형 지하도로 체계는 기본적으로 지하도로(100a, 100b, 100c, 100d, 100e, 100f)를 포함하고 부수적으로 도로교통관제센터(550), 클라우드 서버(570), 자동화 무인 대응 장치, 환기장치, 저수조(300), 모노레일(320), 물류를 운송하는 도관을 추가적으로 포함할 수 있다.
지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 일방통행 방식을 수용하므로 왕복 도로 구조는 두 가지 형태로 구현될 수 있다. 하나는 한 개의 터널 내부를 복층구조로 하여 위층 도로와 아래층 도로라는 수직적인 2층 이상 구조로 하여 자동차(125)의 왕복 운행이 구현되는 복층구조(double-deck) 방식일 수 있다. 다른 하나는 원통형 지하도로(100a)의 반쪽에 해당하는 반원통형 지하도로(100b)를 이용한 단층구조(single-deck) 두 개를 수평적으로 같은 높이에 병렬로 배치하여 자동차(125)의 왕복 운행을 구현하는 방식일 수 있다. 그리고 원통형 지하도로(100a) 및 박스형 지하도로(100c)는 2층의 복층구조 뿐만 아니라 3층 이상의 다층구조로 구현될 수 있다.
필요에 따라서 복층 구조 이상의 다층 도로 구조도 가능하지만 지금의 지하터널 공사 기술로는 하나의 원통형 지하도로(100a)에 복층 구조가 형성되는 것이 보편적이라 할 수 있다.
도로위의 화살표(140, 142)는 자동차(125)의 진행방향을 보여줄 수 있다. 자동차(125)의 진행방향은 일방통행이므로 위층 도로와 아래층 도로의 주행 방향을 반대로 하여 왕복 운행을 구현할 수 있다. 복층 중 위층 도로는 하행선(142) 주행을 예시하고 아래층 도로는 상행선(140) 주행을 예시하고 있다.
복층 구조의 원통형 지하도로(100d)에서는 내부에 있는 빈 공간의 활용이 가능하기 때문에 내부의 단면 크기에 따라 용도가 더욱 다양해질 수 있다. 도로 용도 외에도 수로, 선로, 철로, 송유관로 등이 설치되어 다목적 활용이 가능하다.
도 6은 일 실시예에 따른 병렬 구조의 왕복 도로를 포함하는 지하도로의 예시도이다.
도 6을 참조하면, 병렬 구조의 왕복 도로를 포함하는 지하도로의 예시가 도시된다. 병렬 구조의 반원통형 지하도로(100e)는 네트워크 지하도로 체계를 구성할 수 있다.
단층도로를 포함하는 반원통형 지하 터널도로(100b) 두 개가 같은 높이에 병렬로 배치되어 차량이 왕복하는 도로 구조가 도시된다. 도 5에서 왕복 도로가 상하로 2층 구조를 유지한 것과 대조적으로, 도 6에서는 왕복 도로가 수평으로 나란한 구조를 유지할 수 있다. 반원통형 지하도로(100b) 두 개가 병렬로 위치하여 쌍을 이루고 각 도로는 하나의 일방통행 도로를 포함할 수 있다. 병렬 구조의 반원통형 지하도로(100e) 중 하나는 상행선(140)이고 다른 하나는 하행선(142)으로서 도로의 왕복기능을 수행할 수 있다.
도 5에 도시된 복층 구조의 원통형 지하도로(100d)와 도 6에 도시된 병렬 구조의 반원통형 지하도로(100e)는 모두 현존하는 지상의 장거리 고속도로를 대체할 잠재력을 가질 수 있다. 또한 양자는 모든 대도시의 지하 공간에서 전천후 도로로서 기능하기에 현지의 사정과 여건 및 필요성에 따라 선택적으로 사용될 수 있다. 일반적으로 복층 구조의 원통형 지하도로(100d)의 공사는 병렬 구조의 반원통형 지하도로(100e)의 공사보다 약 15%의 직접 공사비를 절감하므로 경제적일 수 있다. 이하에서는 복층 구조의 원통형 지하도로(100d) 중심으로 예시하고 필요에 따라 병렬 구조의 반원통형 지하도로(100e)를 추가적으로 예시하여 설명하도록 한다.
입체적 구조를 가진 복층 구조의 원통형 지하도로(100d)는 대도시 지역에서는 동서남북으로 바둑판처럼 격자로 교차하면서 각 방면으로의 방향전환이 가능한 교통망체계를 구축할 수 있다. 복층 구조라는 성격과 또 복층 구조가 서로 다른 높이로 교차하는 입체적 성격으로 인해 기존의 지상 교통시스템이 그대로 적용될 수 없다. 복층 구조의 복수의 도로가 서로 다른 높이로 교차하는 지점에서는 도로의 분기와 합류 과정을 통해 직진, 좌회전, 우회전 및 유턴(U-turn) 등의 방향전환이 가능하다.
또한 도로의 분기와 합류는 경사로인 램프(ramp)를 통해 높이가 서로 다른 도로를 연결할 수 있다. 즉 상기 램프는 우회전과 좌회전 혹은 유턴 등의 방향전환을 가능하게 할 수 있다. 따라서 상기 램프는 지하도로(100a, 100b, 100c, 100d, 100e, 100f)를 활용한 네트워크형 지하도로 체계를 구축하는데 중요한 역할을 할 수 있다. 지하도로(100a, 100b, 100c, 100d, 100e, 100f)가 일방통행 방식을 기본원칙으로 하고 왕복의 복층 도로가 자동차(125) 충돌 없이 교차하는 방식을 마련하는 것은, 네트워크형 지하도로 체계 구현에 중요한 부분이다.
도 7은 일 실시예에 따른 복층 구조의 지하도로가 대도시 지하에 구현된 모습을 예시하는 조감도이다.
도 7을 참조하면, 복층 구조의 원통형 지하도로(100d)가 대도시 지하에 구현된 모습이 도시된다. 도 1 및 2는 단일노선 형태의 원통형 지하도로(100a) 혹은 반원통형 지하도로(100b)인 반면 도 5는 왕복 차선을 가지는 복층 구조의 원통형 지하도로(100d)가 서로 다른 높이에서 다른 복층 구조의 원통형 지하도로(100d)와 교차하는 네트워크형 지하도로 체계를 보여주고 있다. 자동차(125)는 대도시 지하에 동서남북 방향으로 바둑판처럼 격자 모양으로 교차하는 복층 구조의 원통형 지하도로(100d)의 교차지점에서 직진하거나, 달리던 도로에서 분기하여 새로운 방향의 도로로 합류하며 좌회전, 우회전 및 유턴을 할 수 있다. 이런 과정이 모든 교차지점에서 발생하므로 어느 쪽으로든 방향전환이 가능해지는 네트워크형 교통망이 형성될 수 있다. 네트워크형 교통망의 일환으로서 상기 네트워크형 지하도로 체계가 형성됨으로써 지하의 지하도로(100a, 100b, 100c, 100d, 100e, 100f)가 지상의 노천도로를 전면적으로 대체할 수 있다.
지하도로(100a, 100b, 100c, 100d, 100e, 100f)의 경우 신호등이 필요 없고 횡단보도나 보행자 관련 문제가 근본적으로 발생하지 않아 도로 전 구간에서 무정차(non-stop) 고속 주행이 가능할 수 있다.
자율주행이 가능한 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 지표면 바로 인근 지하공간에 도 3의 박스형 지하도로(100c)의 형태로 건설될 수 있고, 지하 40m 이상의 깊은 대심도에 도 1의 원통형 지하도로(100a) 또는 도 5의 복층 구조를 포함하는 복층 구조의 원통형 지하도로(100d)의 형태로 건설될 수 있으며, 도 2의 반원통형 지하도로(100b)의 형태로 건설될 수 있다. 대도시 환경에서 도시의 현 구조물 형태를 최대한 유지하면서 자율주행이 가능한 지하도로의 구축을 원하면, 지표면 인근, 즉 지하 1층에서 4~5층 정도의 깊이에 도로가 건설될 수 있다. 현존하는 도시의 지상 구조물과 상관없이 효율성이 극대화되는 지하도로의 구축을 원하면, 지하 깊은 곳에 위치하도록 지하도로를 건설하면 될 것이다. 다만 전자의 경우에는 지형지물의 영향력으로 때에 따라 도로의 효율성이 극대화되는 초직선 도로나 초평면 도로를 구현하지 못할 경우가 발생할 수도 있다.
도 8은 일 실시예에 따른 복층 구조의 지하도로 네트워크를 보여주는 조감도이다.
도 8을 참조하면, 복층 구조의 지하도로가 교차하는 네트워크형 지하도로 체계의 전반적 모습이 도시된다. 복층 구조의 원통형 지하도로(100d)가 서로 다른 높이에서 다른 복층 구조의 원통형 지하도로(100d)와 교차되는 모습과 상기 교차되는 복층 구조의 원통형 지하도로(100d)를 연결하는 램프(170, 175)의 모습이 나타난다. 램프(170, 175)는 다수의 복층 구조의 원통형 지하도로(100d)가 교차하는 지점에서 자동차(125)의 방향을 전환할 수 있다. 네트워크형 지하도로 체계는 입체 교차로 구조이기 때문에, 각 방향에서 오는 자동차(125)의 직진, 우회전 및 좌회전이 다른 방향에서 오는 자동차(125)에 의해 방해받지 않고 동시 다발적으로 가능하게 할 수 있다.
도 9는 일 실시예에 따른 지하도로의 차선 분류를 예시하는 예시도이다.
도 9를 참조하면, 차별화된 차선별 속도 운용 계획을 설명하기 위한 차선 분류 예시가 도시된다. 본 발명에 따른 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 차별화된 차선별 속도 체계를 포함할 수 있다.
지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 자동차(125) 성능이 허용하는 최고의 고속질주를 할 수 있는 환경을 제공하므로, 자동차(125)는 지하도로(100a, 100b, 100c, 100d, 100e, 100f)에서 비행기 활주로와 같은 초평면 구조로 된 평탄한 길을 장애없이 주행할 수 있다. 이와 같은 초고속 주행가능 환경에서 유일한 장애 요인은 주행하는 자동차(125)들이 서로를 방해하는 것이다. 고속주행차량이 저속주행 차량에 의해 고속주행에 방해를 받을 수 있고 또 저속주행 차량은 고속주행 차량에 의해 은연중 추돌사고 위협을 받을 수 있다.
차선 운용계획은 지하도로(100a, 100b, 100c, 100d, 100e, 100f)의 차선(130)에 따라 속도를 달리하는 것으로서, 상술한 문제를 극복하여 도로 기능을 극대화할 수 있다. 상기 차선 운용계획은 지하도로(100a, 100b, 100c, 100d, 100e, 100f)가 지능화되고 자동차(125)의 자율주행이 가능한 환경이기 때문에 필요할 수 있다
도 9는 지하도로(100a, 100b, 100c, 100d, 100e, 100f)에서 차별화된 차선별 속도로 주행하는 차선운용 계획을 설명할 수 있다. 상기 차선운용 계획은 상기 제1 지하도로의 복수의 차선 중 각각은 상기 자동차가 서로 다른 속도로 주행하도록 규정할 수 있다. 편의상 지하도로(100a, 100b, 100c, 100d, 100e, 100f)를 자동차(125)의 주행방향과 같은 방향으로 좌측 차선으로부터 제1 차로(135), 제2 차로(136), 제3 차로(137), 제4 차로(138)로 구분할 수 있다. 지하도로(100a, 100b, 100c, 100d, 100e, 100f)가 각 차선별로 허용 가능한 속도를 다르게 하면 효과적인 교통 환경을 구축할 수 있다. 제1 차로(135)는 가장 높은 속도로 달릴 수 있는, 고속 차선일 수 있다. 반대로 제4 차로(138)는 가장 낮은 속도로 달리는, 저속 차선일 수 있다. 혹은 그 반대일 수 있다. 차선의 구분은 지역에 따라 다르게 적용될 수도 있으나 동일하게 표준화하여 국가 간 차이에 따른 혼란이 발생하지 않도록 하는 것이 바람직할 수 있다. 특정 개별 국가에서 독자적인 차선 운용방식을 고집할 경우에도 차선의 허용 속도를 자동차에 내장된 프로그램으로 특정 지역에 맞게 적응하도록 조정할 수도 있기 때문에 큰 문제가 되지는 않을 것이다. 따라서 앞에서 예시된 방식에 따라 속도제한을 가상적으로 설정해보면 제1 차로(135)는 시속 200km 이상, 제2 차로(136)는 150~200km 사이, 제3 차로(137)는 100~150km사이, 제4 차로(138)는 100km이하 등으로 지정해볼 수 있다. 도로의 폭이 더 넓어지면 더 많은 차선을 갖게 되어 차선별로 더 세분화된 속도체계를 가질 수도 있으며 또 자동차의 성능이 더욱 개선되면 차량의 주행 가능한 속도도 더욱 높아질 것이다.
차별화된 속도를 차선별로 지정하고 상기 차선에서 주행하는 자동차(125)에 적용하게 되면, 고속 차로(135, 136)에서는 고속 차량들끼리 주행하게 되고 상대적으로 저속 차로(137, 138)에서는 저속 차량들끼리 주행하게 되어 고속 차량이 저속 차량에 의해 운행에 방해받지 않고, 저속 차량은 고속 차량에 의한 추돌사고 위협을 받지 않을 수 있다. 동시에 고속 차량은 더욱 고속으로 달릴 수 있어 효율적이고 안전한 주행환경을 만들 수 있는데 자동차가 허용 최고 속도로 달릴 수 있는 도로교통 환경이 열릴 수 있다. 우측 가장자리에 있는 저속 차선(138)은 상대적으로 더 빠른 속도로 주행하는 다른 차선의 차량들에게 방해를 주지도 않고 방해받지도 않을 수 있다. 양 차선의 차량들은 안전하게 방향전환을 할 수도 있다. 또한 고장 등으로 사고의 위험성이 있는 차량은 안전한 저속 차선으로 이동하여 충돌·추돌 사고에 보다 안전하게 대비할 수 있다. 또한 도로교통관제센터(550)는, 각 차선을 달리던 차량들에 문제가 생길 경우 문제 차량들을 제어하여 저속 차선으로 단계적으로 이동시키도록 프로그램될 수 있다. 이를 통해 주변의 다른 차량들에 대한 불편이나 추돌사고의 발생이 감소할 수 있다.
만약 지하도로(100a, 100b, 100c, 100d, 100e, 100f) 내에서 사고가 발생하면 지상의 노천도로에서보다 많은 교통불편과 사고 처리비용이 발생할 수 있다. 고속주행차량은 평소 자동차 유지·관리에 주의를 기울일 필요가 있으므로 공인 차량정비업체에서 정기적으로 정비를 받은 차량만이 고속주행을 하도록 제도화할 수 있다. 초고속주행차량은 후미에 낙하산이 장착되어 급감속이 가능하도록 강제하는 사전조치를 마련할 수 있다.
도 10은 일 실시예에 따른 복층 구조의 원통형 지하도로가 서로 교차하는 지점에서 우회전을 가능하게 하는 우회전 램프를 보여주는 제1 예시도이고, 도 11은 일 실시예에 따른 복층 구조의 원통형 지하도로가 서로 교차하는 지점에서 우회전을 가능하게 하는 우회전 램프를 보여주는 제2 예시도이며, 도 12는 일 실시예에 따른 복층 구조의 원통형 지하도로가 서로 교차하는 지점에서 우회전을 가능하게 하는 우회전 램프를 보여주는 제3 예시도이다.
본 발명에 따른 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 고유의 연결 체계를 통해 네트워크형 지하도로 체계를 구현한다. 이하에는, 도 10 내지 23을 통해 네트워크형 지하도로 체계를 설명하도록 한다. 네트워크형 지하도로 체계는 일방통행, 복층 구조 또는 단층으로 된 병렬 구조의 복수의 지하도로, 차별화된 차선별 속도 원칙을 충족시키는 방식으로 설계된다. 기본적으로 터널구조로 된 복층 지하도로(100d)가 서로 다른 높이에서 또 다른 복층도로(100d)와 교차하는 지점에서 주행 중이던 차량이 다른 지하도로로 옮겨가 방향전환을 하기 위해서는 높이가 서로 다른 도로를 연결하는 경사길인 램프(ramp)구조를 이용해야 하는데, 이 램프구조를 통해 차량은 우회전과 좌회전 혹은 유턴 등의 방향전환을 하게 된다. 또 하나의 도로가 나뉘어져 두 개의 도로로 되는 도로의 분기와 역으로 두 개의 도로가 합쳐져 하나의 도로가 되는 합류 과정을 거치게 되는데 이런 도로의 분기와 합류 구조를 통해 지하도로는 하나의 네트워크화 된 도로망 체계를 형성하게 된다.
네트워크형 지하도로 체계는 복수의 복층 구조의 원통형 지하도로(100d)를 교차시키고 교차지점에 좌회전 램프 및 우회전 램프를 이용하여 자동차(125)의 좌회전 및 우회전을 가능하게 하는데, 상기 좌회전 램프 및 우회전 램프는 자동차(125) 주행차선을 기준으로 동일한 방향으로 형성되고, 그 입구 방향 역시 자동차(125) 주행 방향의 우측에 형성된다.
네트워크형 지하도로 체계는 자동차(125)가 제1 방향으로만 주행하는 제1-1 주행공간, 자동차(125)가 제2 방향으로만 주행하는 제1-2 주행공간 및 복수의 차선을 포함하는 제1 지하도로를 포함할 수 있다. 상기 제1-1 및 1-2 주행공간은 상기 제1 지하도로 내부에서 수직방향으로 상하로 형성되고, 상기 제1 지하도로는 덮지붕 형태의 천장, 상기 천장에 대향하여 형성되는 도로면, 상기 천장 및 상기 도로면에 인접하여 상기 천장 및 상기 도로면과 함께 상기 제1-1 및 1-2 주행공간을 형성하는 벽면으로 구성되며, 상기 제1 지하도로의 복수의 차선 중 각각은 자동차(125)가 서로 다른 속도로 주행하도록 규정될 수 있다. 도 7에서, 상기 제1 지하도로는 제1 복층 구조의 원통형 지하도로(100d, A로 표시)를 포함할 수 있다.
네트워크형 지하도로 체계는 자동차(125)가 제1 방향으로만 주행하는 제2-1 주행공간, 자동차(125)가 제2 방향으로만 주행하는 제2-2 주행공간 및 복수의 차선을 포함하는 제2 지하도로를 포함하고, 상기 제2-1 및 2-2 주행공간은 상기 제2 지하도로 내부에서 수직방향으로 상하로 형성되고, 상기 제2 지하도로는 덮지붕 형태의 천장, 상기 천장에 대향하여 형성되는 도로면, 상기 천장 및 상기 도로면에 인접하여 상기 천장 및 상기 도로면과 함께 상기 제2-1 및 2-2 주행공간을 형성하는 벽면으로 구성되며, 상기 제1 지하도로와 상기 제2 지하도로는 서로 높이를 달리하여 교차하도록 배치될 수 있다. 도 7에서, 상기 제2 지하도로는 제2 복층 구조의 원통형 지하도로(100d, B로 표시)를 포함할 수 있다.
도 10 내지 12는 복층 구조의 원통형 지하도로(100d)가 또 다른 복층 구조의 원통형 지하도로(100d)와 서로 다른 높이로 교차하는 지점에서 우회전을 가능하게 하는 우회전 램프(170 내지 173)가 도시된다. 도 10은 두 개의 복층 구조의 원통형 지하도로(100d)가 높이차를 두고 교차하는 지점의 임의의 일방향에서 발생하는 우회전 램프 구조를 예시하고 있고, 도 11은 왕복 양방향에서 발생하는 우회전 램프 구조를 예시하고 있으며, 도 12는 교차 지점 각 방향에서 발생하는 우회전 램프 구조를 예시한다.
도 10를 참조하면, 복층 구조의 원통형 지하도로(100d)가 또 다른 복층 구조의 원통형 지하도로(100d)와 서로 다른 높이에서 교차하기 위하여 램프를 이용한 도로의 분기와 합류 과정이 이용된다. 도로의 분기와 합류를 구현하는 램프는 일방통행인 지하도로(100a, 100b, 100c, 100d, 100e, 100f)의 특성상 단층도로(100a, 100b) 구조로 형성된다. 램프는 그 내부에서 분기나 합류가 없는 단순한 구조로 형성된다. 상기 램프는 복층 구조의 원통형 지하도로(100d)가 서로 교차하는 교통상황에서 교통신호등 없는 무정차 동시 교차를 가능하게 할 수 있다.
제1 복층 구조의 원통형 지하도로(100d, A로 표시)는 내부에 복층도로를 포함하는 2층 구조이다. 상기 복층도로의 위층도로는 주행방향이 상행선(140, a에서 a‘ 방향)이고 아래층도로는 하행선(142, a‘에서 a 방향)이기에 서로 왕복 방향을 형성하고 있다. 제2 복층 구조의 원통형 지하도로(100d, B로 표시)는 내부에 복층도로를 포함하는 2층 구조이다. 상기 복층도로의 위층도로는 주행방향이 우행선(144, b’에서 b 방향)이고 아래층도로는 좌행선(146, b에서 b’ 방향)이며 서로 왕복 방향을 이루고 있다. 제1 복층 구조의 원통형 지하도로(100d, A)가 제2 복층 구조의 원통형 지하도로(100d, B)와 서로 다른 높이로 교차하는 지점에서, 자동차(125)는 상하좌우 각 방향, 즉 4 방향에서의 우회전이 가능하게 된다.
예를 들어, 제1 복층 구조의 원통형 지하도로(100d, A)의 위층 도로에서 상행선(140, a 에서 a' 방향)으로 달리던 자동차(125)는 다음과 같이 우회전을 할 수 있다. 자동차(125)는 제1 복층 구조의 원통형 지하도로(100d, A)의 저속차선인 우측 가장자리 차선으로 이동한 후 우측에 있는 제1 우회전 램프(170, ①로 표시)로 빠져나와, 교차하는 제2 복층 구조의 원통형 지하도로(100d, B)의 상층도로인 우행선(144, b’에서 b 방향)도로로 합류하면 자동차(125)는 자연스럽게 우회전으로 전환이 된다. 이때 서로 교차하는 제1 복층 구조의 원통형 지하도로(100d, A)와 제2 복층 구조의 원통형 지하도로(100d, B)의 상대적인 위치나 높이차는 분기 및 합류 과정에서 전혀 문제되지 않는다. 제1 우회전 램프(170, ①)의 경사각을 올리거나 내리면 해결되는 문제이기 때문이다.
이하에서 우회전과 좌회전 등 방향전환을 위해서 직진하던 차량(125)은 우측 저속차선으로 이동 후 우측 가장자리에 나 있는 우회전 램프(170 내지 173)나 혹은 좌회전 램프(175 내지 178)를 통과한 후 새로 합류하는 도로의 우측 저속차선으로 진입할 수 있다. 이러한 연결구조는 좌우왕복 네트워크망으로 연결된 도로 전 구간에서 모두 동일하게 적용될 수 있다.
도 11을 참조하면, 제1 복층 구조의 원통형 지하도로(100d, A) 내부의 두 개의 도로에서 발생하는 왕복 양방향 우회전 램프가 도시된다. 도 11에는 하층도로의 우회전 과정이 도시된다. 자동차(125)는 제1 복층 구조의 원통형 지하도로(100d, A)의 하층도로에서 하행선(142, a‘ 에서 a 방향)으로 주행하다가 우측 저속차선으로 이동할 수 있다. 자동차(125)는 제2 복층 구조의 원통형 지하도로(100d, B)의 하층도로로 연결되는 제2 우회전 램프(171, ②로 표시)를 통과하고 우행선(146, b에서 b’방향)도로로 합류하여 우회전할 수 있다.
상술한 제1 복층 구조의 원통형 지하도로(100d, A)의 양방향에서 발생하는 우회전 과정은 제2 복층 구조의 원통형 지하도로(100d, B)에서도 동일하게 구현할 수 있다.
도 12를 참조하면, 제2 복층 구조의 원통형 지하도로(100d, B) 내부의 두 개의 도로에서 발생하는 왕복 양방향 우회전 램프가 추가로 도시된다. 자동차(125)는 제2 복층 구조의 원통형 지하도로(100d, B)의 상층도로에서 우행선(144, b' 에서 b 방향)으로 주행하다가 가장 우측차선으로 이동하여 제3 우회전 램프(172, ③으로 표시)를 통과하여 제1 복층 구조의 원통형 지하도로(100d, A)의 하층도로로 진입하면 하행선(142, a' 에서 a 방향)으로 주행하게 되면서 우회전할 수 있게 된다.
또한 자동차(125)는 제2 복층 구조의 원통형 지하도로(100d, B)의 하층도로에서 좌행선(146, b에서 b‘ 방향)으로 주행하다가 제4 우회전 램프(173, ④)를 통과하고 제1 복층 구조의 원통형 지하도로(100d, A)의 상층도로로 진입하면 상행선(140, a 에서 a’방향)으로 주행하면서 우회전할 수 있다.
이로써 복층 구조의 원통형 지하도로(100d)가 서로 교차하는 지점에서 모든 우회전은 교통신호등 없이 동시다발적으로 또는 연속적으로 이루어질 수 있다.
도 13은 일 실시예에 따른 병렬 구조의 반원통형 지하도로가 서로 교차하는 지점에서 우회전을 가능하게 하는 우회전 램프를 보여주는 제1 예시도이고, 도 14는 일 실시예에 따른 병렬 구조의 반원통형 지하도로가 서로 교차하는 지점에서 우회전을 가능하게 하는 우회전 램프를 보여주는 제2 예시도이며, 도 15는 일 실시예에 따른 병렬 구조의 반원통형 지하도로가 서로 교차하는 지점에서 우회전을 가능하게 하는 우회전 램프를 보여주는 제3 예시도이다.
네트워크형 지하도로 체계는 복수의 병렬 구조의 반원통형 지하도로(100e)를 교차시키고 교차지점에 좌회전 램프 및 우회전 램프를 포함하여 자동차(125)의 좌회전 및 우회전을 가능하게 한다. 본 명세서에서 좌회전 램프 및 우회전 램프는 자동차(125) 주행차선을 기준으로 동일한 방향으로 형성되고, 그 방향은 자동차(125) 주행 방향의 우측에 형성된다.
네트워크형 지하도로 체계는 자동차(125)가 제1 방향으로만 주행하는 제1-1 주행공간과 복수의 차선을 포함하는 제1-1 지하도로 및 자동차(125)가 제2 방향으로만 주행하는 제1-2 주행공간과 복수의 차선을 포함하는 제1-2 지하도로를 포함하고, 상기 제1-1 및 1-2 지하도로는 병렬로 나란히 배치되고, 덮지붕 형태의 천장, 상기 천장에 대향하여 형성되는 도로면, 상기 천장 및 상기 도로면에 인접하여 상기 천장 및 상기 도로면과 함께 상기 제1-1 및 1-2 주행공간을 형성하는 벽면으로 구성되고, 상기 제1-1 및 1-2 지하도로의 복수의 차선 중 각각은 자동차(125)가 서로 다른 속도로 주행하도록 규정될 수 있다. 도 13 내지 15에서, 상기 제1-1 지하도로는 제1-1 병렬 구조의 반원통형 지하도로(100e, A)에 대응하고, 상기 제1-2 지하도로는 제1-2 병렬 구조의 반원통형 지하도로(100e, B)에 대응할 수 있다.
네트워크형 지하도로 체계는 복수의 차선을 포함하고 자동차(125)가 제1 방향으로만 주행하는 제2-1 주행공간을 포함하는 제2-1 지하도로 및 복수의 차선을 포함하고 자동차(125)가 제2 방향으로만 주행하는 제2-2 주행공간을 포함하는 제2-2 지하도로를 포함하고, 상기 제2-1 및 2-2 지하도로는 병렬로 나란히 배치되고, 덮지붕 형태의 천장, 상기 천장에 대향하여 형성되는 도로면, 상기 천장 및 상기 도로면에 인접하여 상기 천장 및 상기 도로면과 함께 제2-1 및 2-2 주행공간을 형성하는 벽면으로 구성되며, 상기 제1-1 및 1-2 지하도로와 상기 제2-1 및 2-2 지하도로는 서로 높이를 달리하여 교차하도록 배치될 수 있다. 도 13 내지 15에서, 상기 제2-1 지하도로는 제2-1 병렬 구조의 반원통형 지하도로(100e, C)에 대응하고, 상기 제2-2 지하도로는 제2-2 병렬 구조의 반원통형 지하도로(100e, D)에 대응할 수 있다.
도 13 내지 15를 참조하면, 복수의 병렬 구조의 반원통형 지하도로(100e)가 높이를 두고 교차할 때 가능한 우회전 구조가 도시된다. 하나의 터널 내에 왕복 도로가 포함된 복층 구조의 원통형 지하도로(100d)와 달리 병렬 구조의 반원통형 지하도로(100e)는 한 층의 반원통형 지하도로(100b)만을 포함하고 반원통형 지하도로(100b)가 주행방향을 달리하여 나란히 배치될 수 있다. 병렬 구조의 반원통형 지하도로(100e)는 복층 구조의 원통형 지하도로(100d)와 동일한 원리로 직진, 우회전 및 좌회전을 가능하게 한다.
도 13을 참조하면, 자동차(125)는 상행선(140, B)의 제1-2 병렬 구조의 반원통형 지하도로(100e, B로 표시)를 따라 주행하다가 저속차선인 가장 우측 차선으로 이동하고 제1 우회전 램프(170, ①)를 통과할 수 있다. 자동차(125)가 우행선(144, D)의 제2-2 병렬 구조의 반원통형 지하도로(100e, D)로 합류함으로써 우회전이 구현된다.
도 14를 참조하면, 제1-1 병렬 구조의 반원통형 지하도로(100e, A)의 우회전이 도시된다. 자동차(125)는 하행선(142, A)의 제1-1 병렬 구조의 반원통형 지하도로(100e, A로 표시)를 따라 주행하다가 저속차선인 가장 우측 차선으로 이동하고 제2 우회전 램프(171, ②)를 통과하여 좌행선(146, C)의 제2-1 병렬 구조의 반원통형 지하도로(100e, C)로 합류함으로써 우회전이 구현된다.
도 15를 참조하면, 제2-2 병렬 구조의 반원통형 지하도로(100e, D)의 우회전이 도시된다. 자동차(125)는 우행선(144, D)의 제2-2 병렬 구조의 반원통형 지하도로(100e, D로 표시)를 따라 주행하다가 저속차선인 가장 우측 차선으로 이동하고 제3 우회전 램프(172, ③)를 통과하여 하행선(142, A)의 제1-1 병렬 구조의 반원통형 지하도로(100e, A)로 합류함으로써 우회전이 구현된다.
또한 제2-1 병렬 구조의 반원통형 지하도로(100e, C)의 우회전이 도시된다. 자동차(125)는 좌행선(146, C)의 제2-1 병렬 구조의 반원통형 지하도로(100e, C로 표시)를 따라 주행하다가 저속차선인 가장 우측 차선으로 이동하고 제4 우회전 램프(173, ④)를 통과하여 상행선(140, B)의 제1-2 병렬 구조의 반원통형 지하도로(100e, B)로 합류함으로써 우회전이 구현된다.
상술한 바와 같이 교차지점으로 달려오는 모든 방향의 자동차(125)는 병렬 구조의 반원통형 지하도로(100e)에서도 모두 우회전으로의 방향전환이 구현되는 것이다.
도 16은 일 실시예에 따른 복층 구조의 원통형 지하도로가 서로 교차하는 지점에서 좌회전을 가능하게 하는 좌회전 램프를 보여주는 제1 예시도이고, 도 17은 일 실시예에 따른 복층 구조의 원통형 지하도로가 서로 교차하는 지점에서 좌회전을 가능하게 하는 좌회전 램프를 보여주는 제2 예시도이며, 도 18은 일 실시예에 따른 복층 구조의 원통형 지하도로가 서로 교차하는 지점에서 좌회전을 가능하게 하는 좌회전 램프를 보여주는 제3 예시도이다.
도 16 내지 18는 복층 구조의 원통형 지하도로(100d)가 또 다른 복층 구조의 원통형 지하도로(100d)와 서로 다른 높이로 교차하는 지점에서 좌회전을 가능하게 하는 좌회전 램프(175 내지 178)가 도시된다. 도 16은 두 개의 복층 구조의 원통형 지하도로(100d)가 높이차를 두고 교차하는 지점의 임의의 일방향에서 발생하는 좌회전 램프 구조를 예시하고 있고, 도 17은 왕복 양방향에서 발생하는 좌회전 램프 구조를 예시하고 있으며, 도 18은 교차지점 각 방향에서 발생하는 좌회전 램프 구조를 예시한다.
도 16을 참조하면, 복층 구조의 원통형 지하도로(100d)가 또 다른 복층 구조의 원통형 지하도로(100d)와 서로 다른 높이에서 교차하는 지점에서 좌회전으로의 방향전환을 하기 위한 램프 구조를 도시하고 있다. 좌회전 램프 역시 우회전 램프와 마찬가지로 일방통행인 지하도로(100a, 100b, 100c, 100d, 100e, 100f)의 특성상 단층도로(100a, 100b) 구조로 형성된다. 또 램프 내에서는 도로의 분기나 합류가 없는 단순한 구조로 형성된다. 좌회전 램프 역시 복층 구조의 원통형 지하도로(100d)가 서로 교차하는 지점에서 교통신호등 없는 무정차 동시 교차를 가능하게 한다.
제1 복층 구조의 원통형 지하도로(100d, A로 표시)는 내부에 복층도로를 포함하는 2층 구조일 수 있다. 상기 복층도로의 위층도로는 상행선(140, a에서 a‘ 방향)이고 아래층도로는 하행선(142, a‘에서 a 방향)이며 서로 왕복 방향을 형성하고 있다. 제2 복층 구조의 원통형 지하도로(100d, B로 표시)는 내부에 복층도로를 포함하는 2층 구조이다. 제2 복층 구조의 원통형 지하도로(100d, B)의 위층도로는 우행선(144, b’에서 b 방향)이고 아래층도로는 좌행선(146, b에서 b’ 방향)이고 서로 왕복 방향을 형성하고 있다. 제1 복층 구조의 원통형 지하도로(100d, A)가 제2 복층 구조의 원통형 지하도로(100d, B)와 서로 다른 높이로 교차하는 지점에서 상하좌우 각 방향, 즉 4 방향에서의 좌회전으로의 방향전환이 가능하다.
예를 들어, 제1 복층 구조의 원통형 지하도로(100d, A)의 위층 도로에서 상행선(140, a 에서 a' 방향)으로 달리던 자동차(125)는 다음과 같이 제1 복층 구조의 원통형 지하도로(100d, A)에서 좌회전을 할 수 있다. 자동차(125)는 제1 복층 구조의 원통형 지하도로(100d, A)의 저속차선인 우측 가장자리 차선으로 이동한 후 우측에 있는 제1 좌회전 램프(175, ①로 표시)로 빠져나오고, 교차하는 제2 복층 구조의 원통형 지하도로(100d, B)의 좌행선(146, b에서 b‘ 방향)으로 합류하여 자연스럽게 좌회전으로 전환할 수 있다. 이때 서로 교차하는 제1 복층 구조의 원통형 지하도로(100d, A)와 제2 복층 구조의 원통형 지하도로(100d, B)의 상대적인 위치나 높이차는 분기 및 합류 과정에서 전혀 문제되지 않는다. 제1 우회전 램프(170, ①로 표시)의 경사각을 올리거나 내리면 되기 때문이다.
여기서 좌회전 과정은 저속차선인 우측 차선에서 우측으로 분기하는 방식의 우회전 과정과 동일하지만, 제1 좌회전 램프(175, ①)의 출발점이 복층 구조의 원통형 지하도로(100d)의 교차지점을 지나서 시작하는 점이 다르다.
좌회전 램프(175 내지 178)는 차량의 진행방향(차량 주행방향)에서 보면 우측에 램프가 위치하고 주행방향을 기준으로 270도 회전하여 좌회전이 완성되는 역방향 회전구조를 포함할 수 있다. 고속차선과 저속차선을 구별하는 본 발명의 원리와 충돌하지 않고, 안전하고 간결한 좌회전이 가능하여 안전한 고속 주행에 큰 도움이 되는 형상구조이다.
도 17을 참조하면, 제1 복층 구조의 원통형 지하도로(100d, A)의 하층도로에서의 좌회전 과정이 추가로 도시된다. 자동차(125)는 제1 복층 구조의 원통형 지하도로(100d, A)의 하층도로에서 하행선(142, a‘ 에서 a 방향)으로 주행하다가 우측 저속차선으로 이동하여 제2 복층 구조의 원통형 지하도로(100d, B)의 상층도로로 연결되는 제2 좌회전 램프(176, ②)를 통과하여 우행선(144, b‘ 에서 b 방향)방향으로 주행하게 되면서 좌회전이 구현된다.
도 18을 참조하면, 제2 복층 구조의 원통형 지하도로(100d, B) 내부의 두 개의 도로에서 요구되는 왕복 양방향 좌회전 램프가 추가로 도시된다. 자동차(125)는 제2 복층 구조의 원통형 지하도로(100d, B)의 상층도로에서 우행선(144, b' 에서 b 방향)방향으로 주행하다가 가장 우측차선으로 이동 후 제3 좌회전 램프(177, ③)를 통과하고 제1 복층 구조의 원통형 지하도로(100d, A)의 상층도로로 진입하면 상행선(140, a 에서 a’ 방향)으로 주행하게 되면서 좌회전을 할 수 있게 된다.
또한 자동차(125)는 제2 복층 구조의 원통형 지하도로(100d, B)의 하층도로에서 좌행선(146, b에서 b‘ 방향)방향으로 주행하다가 제4 좌회전 램프(178, ④)를 통과하여 제1 복층 구조의 원통형 지하도로(100d, A)의 하층도로로 진입하면 하행선(142, a‘ 에서 a 방향)으로 주행하게 되면서 좌회전할 수 있다.
복층 구조의 원통형 지하도로(100d)가 서로 교차하는 지점에서 모든 좌회전은 교통신호등 없이 동시다발적으로 또는 연속적으로 이루어질 수 있다.
도 19는 일 실시예에 따른 병렬 구조의 반원통형 지하도로가 서로 교차하는 지점에서 좌회전을 가능하게 하는 좌회전 램프를 보여주는 제1 예시도이고, 도 20은 일 실시예에 따른 병렬 구조의 반원통형 지하도로가 서로 교차하는 지점에서 좌회전을 가능하게 하는 좌회전 램프를 보여주는 제2 예시도이고, 도 21은 일 실시예에 따른 병렬 구조의 반원통형 지하도로가 서로 교차하는 지점에서 좌회전을 가능하게 하는 좌회전 램프를 보여주는 제3 예시도이며, 도 22는 일 실시예에 따른 병렬 구조의 반원통형 지하도로가 서로 교차하는 지점에서 좌회전을 가능하게 하는 좌회전 램프를 보여주는 제4 예시도이다.
도 19 내지 21을 참조하면, 복수의 병렬 구조의 반원통형 지하도로(100e)가 높이를 두고 교차할 때 좌회전 구조가 도시된다. 병렬 구조의 반원통형 지하도로(100e)는 복층 구조의 원통형 지하도로(100d)와 동일한 원리로 직진, 우회전 및 좌회전을 가능하게 할 수 있다. 도 16 내지 18에서 예시된 복층 구조의 원통형 지하도로(100d)와 같이, 병렬 구조의 반원통형 지하도로(100e)도 270도 방향 전환을 통한 좌회전을 가능하게 하는 좌회전 램프를 포함할 수 있다.
도 19를 참조하면, 자동차(125)는 상행선(140, B)의 제1-2 병렬 구조의 반원통형 지하도로(100e, B로 표시)를 따라 주행하다가 저속차선인 가장 우측 차선으로 이동한 후 제1 좌회전 램프(175, ①)를 통과하여 좌행선(146, C) 도로인 제2-1 병렬 구조의 반원통형 지하도로(100e, C)로 합류함으로써 좌회전이 구현된다.
도 20을 참조하면, 제1-1 병렬 구조의 반원통형 지하도로(100e, A)에서의 좌회전이 도시된다. 자동차(125)는 하행선(142, A)의 제1-1 병렬 구조의 반원통형 지하도로(100e, A로 표시)를 따라 주행하다가 저속차선인 가장 우측 차선으로 이동하여 제2 좌회전 램프(176, ②)를 통과한 후 우행선(144, D)인 제2-2 병렬 구조의 반원통형 지하도로(100e, D)로 합류함으로써 좌회전이 구현된다.
도 21을 참조하면, 제2-2 병렬 구조의 반원통형 지하도로(100e, D)에서의 좌회전 램프 구조와 제2-1 병렬 구조의 반원통형 지하도로(100e, C)의 좌회전 램프 구조가 추가로 도시된다. 먼저 전자의 경우 자동차(125)는 우행선(144, D)의 제2-2 병렬 구조의 반원통형 지하도로(100e, D로 표시)를 따라 주행하다가 저속차선인 가장 우측 차선으로 이동하여 제3 좌회전 램프(177, ③)를 통과한 후 상행선(140, B)인 제1-2 병렬 구조의 반원통형 지하도로(100e, B)로 합류함으로써 좌회전이 구현된다.
또 후자인 제2-1 병렬 구조의 반원통형 지하도로(100e, C)에서의 좌회전의 경우 자동차(125)는 좌행선(146, C)인 제2-1 병렬 구조의 반원통형 지하도로(100e, C로 표시)를 따라 주행하다가 저속차선인 가장 우측 차선으로 이동하여 제4 좌회전 램프(178, ④)를 통과한 후 하행선(142, A)인 제1-1 병렬 구조의 반원통형 지하도로(100e, A)로 합류함으로써 좌회전이 구현된다.
도 22를 참조하면, 교통 신호등이 필요 없는 반지하형 교차로 체계가 도시된다. 교차로에서 서로 다른 높이로 교차하는 한 쌍의 병렬 구조의 반원통형 지하도로(100e)와 지상의 노천도로가 서로 교차하는 지점에서 본 명세서의 좌회전 램프(175 내지 178)와 우회전 램프(170 내지 173)가 설치되면, 무신호등, 무정차 방식의 동시다발적 교차가 가능하다. 교차하는 두 왕복도로 중 한 쪽만 지하 혹은 지상이라는 측면에서 반지하형 혹은 반지상형 교차로라 할 수 있다.
반지하형 혹은 반지상형 교차로 구조에서는 교차지점으로 달려오는 모든 방향에서 차량들은 정지하지 않고 직진, 우회전, 좌회전 및 유턴이 동시다발적으로 가능하여 획기적인 교차로 기능을 수행할 수 있다.
직진 교차는 자명한 일이기에 설명을 생략하고 우회전과 좌회전을 살펴보면, 먼저 지상도로(100g)의 상행선(140)을 주행하는 자동차(125)는 제1 우회전 램프(170, ①)를 통해 우행선(144)의 병렬 구조의 반원통형 지하도로(100e)와 합류함으로써 우회전 할 수 있다. 동시에 지상도로(100g)의 상행선(140)을 주행하는 자동차(125)는 제1 좌회전 램프(175, ①)를 통해 좌행선(146)의 병렬 구조의 반원통형 지하도로(100e)와 합류함으로써 좌회전을 할 수도 있다.
지상도로(100g)의 하행선(142)을 주행하는 자동차(125)는 제2 우회전 램프(171, ②)를 통해 좌행선(146)도로인 병렬 구조의 반원통형 지하도로(100e)에 합류함으로써 우회전을 할 수 있다. 동시에 지상도로(100g)의 하행선(142)을 주행하는 자동차(125)는 제2 좌회전 램프(176, ②)를 통해 우행선(144)인 병렬 구조의 반원통형 지하도로(100e)와 합류함으로써 좌회전을 할 수도 있다.
지하의 병렬 구조의 반원통형 지하도로(100e)를 주행하는 차량들도 마찬가지로 우회전과 좌회전의 방향전환을 할 수 있다. 병렬 구조의 반원통형 지하도로(100e)의 우행선(144) 도로를 주행하는 자동차(125)는 제3 우회전 램프(172, ③)를 통해 하행선(142)도로인 지상도로(100g)의 하행선(142)과 합류함으로써 우회전할 수 있다. 동시에 지하도로(100e)의 우행선(144)도로를 주행하는 자동차(125)는 제3 좌회전 램프(177, ③)를 통해 지상도로(100g)의 상행선(140) 도로와 합류함으로써 좌회전을 할 수 있다.
병렬 구조의 반원통형 지하도로(100e)의 좌행선(146) 도로를 주행하는 자동차(125)는 제4 우회전 램프(173, ④)를 통해 상행선(140)의 지상도로(100g)와 합류함으로써 우회전할 수 있다. 동시에 지하도로(100e)의 좌행선(146)을 주행하는 자동차(125)는 제4 좌회전 램프(178, ④)를 통해 하행선(142)의 지상도로(100g)에 합류함으로써 좌회전할 수 있다.
도 23은 일 실시예에 따른 병렬 구조의 반원통형 지하도로에서 유턴을 보여주는 예시도이다.
도 23을 참조하면, 네트워크형 지하도로 체계는 별도의 구조물 없이도 유턴이 가능하다. 연속적인 두 번의 좌회전은 유턴으로 이어질 수 있기 때문이다. 이해의 편의상 병렬 구조의 반원통형 지하도로(100e)를 이용하여 지하도로(100a, 100b, 100c, 100d, 100e, 100f)에서의 유턴이 설명된다. 복층 구조의 원통형 지하도로(100d)도 병렬 구조의 반원통형 지하도로(100e)와 동일한 원리로 유턴이 가능하다.
자동차(125)는 제1-2 병렬 구조의 반원통형 지하도로(100e, B)의 상행선(140, B)을 주행하다가 유턴하여 하행선(142, A)을 주행할 수 있다. 자동차(125)는 제1-2 병렬 구조의 반원통형 지하도로(100e, B)의 ① 지점을 통과하여 직진하다가 ② 지점에서 제1 좌회전 램프(175)로 진입하여 ③ 지점을 통과한 후 ④ 지점인 제2-1 병렬 구조의 반원통형 지하도로(100e, C)로 진입하면서 첫 번째 좌회전을 완성한다. 이어서 자동차(125)는 ⑤ 지점을 통과하여 제4 좌회전 램프(178)로 진입하여 ⑥ 지점을 통과한 후 자연스럽게 ⑦ 지점인 제1-1 병렬 구조의 반원통형 지하도로(100e, A)로 진입하면 두 번째 좌회전이 완성된다.
이 두 번의 연속된 좌회전으로 제1-2 병렬 구조의 반원통형 지하도로(100e, B)의 상행선(140, B)을 달리던 자동차(125)는 제1-1 병렬 구조의 반원통형 지하도로(100e, A)의 하행선(142, B)을 달리며 유턴이 구현되는 것이다.
본 발명에 따른 전천후 지하도로(100a, 100b, 100c, 100d, 100e, 100f)망 체계는 별도의 구조물 없이도 유턴을 구현함에 따라 도로망 시스템이 간결하고 경제적이며 효율성이 담보되기에 지상도로를 전면적으로 대체할 잠재력을 갖게 된다. 또 전천후 지하도로망 체계가 전면적으로 지상의 노천도로를 대체하기 이전에라도 도 22와 같은 반지하 형태로 부분적인 적용에 따른 이용도 가능하다.
또한 본 발명에 따른 지하도로(100a, 100b, 100c, 100d, 100e, 100f)를 이용한 네트워크형 지하도로 체계는 5거리, 6거리, 7거리 등의 복잡한 교차로에서도 적용이 가능하다. 이 경우 네트워크형 지하도로 체계는 가장 이웃하는 도로를 먼저 연결하여 하나의 도로로 합류시키면 교차로에서는 4거리가 되어 상술한 유턴 방식이 그대로 적용될 수 있기 때문이다.
본 발명에 따른 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 도로 연구자들이 꿈꾸는 미래형‘네트워크형 복층터널’건설기술의 중요 부분을 해결하고 있다. 본 발명에 따르면, 복층도로끼리 교차하는 곳에서 나타나는 도로의 분기와 합류가 가장 간결하고 효율적으로 설계될 수 있다. 또한 본 발명에 따른 네트워크형 지하도로 체계는 대형 빌딩이 많은 거대 도시에서도 쉽게 적용될 수 있다.
도 24는 일 실시예에 따른 지하도로의 환기장치를 보여주는 예시도이다.
본 발명에 따른 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 환기장치를 포함할 수 있다. 그동안 지하도로(지하도로망)가 활용되기 어려운 이유 중 하나는 자동차 배출가스가 지하 터널에 누적되는 문제가 있었기 때문이다. 하지만 자동차 배출가스가 지하터널 내부에 누적되는 현상은 지상의 대기오염을 해결할 좋은 기회를 제공하는 일이 될 수 있다. 현대 기술 수준은 제한된 공간에 있는 오염된 공기는 충분히 정화시킬 수 있기 때문에, 지상도로가 지하도로로 대체된다면 지하도로의 오염된 공기는 정화될 수 있어 지상의 공기는 자동차 배출가스 걱정 없이 깨끗이 보존될 수 있다.
도 24를 참조하면, 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 자동차(125) 배출가스 문제를 해결하는 통풍 및 환기장치를 포함할 수 있다. 환기장치 중 일부(155)는 지상으로 드러나고, 사람들이 볼 수 있는 도시 풍경을 구성할 수 있다.
지하터널의 공기오염 문제를 해결하기 위해서 사용되는 가장 전통적인 방식은 지상의 공기를 지하터널로 끌어 들인 후 순환시켜 오염된 공기를 지상으로 배출시키는 방식이었다. 그래서 매연이 집중적으로 배출되는 출입구 주변에 사는 주민들은 지하도로 건설을 반대하곤 했다. 이러한 지하 터널 내부의 매연 문제는 매연을 배출하지 않는 친환경 자동차가 보편화된다면 근본적으로 해결될 수 있다. 그러나 아직까지 친환경 자동차가 보편적이지 않으므로 지하도로 내 대기오염은 여전히 중요한 문제로 남아 있다.
본 발명에 따른 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 지상의 공기를 최대한 끌어들인 후 닥트 기능을 하는 도관(220)구조를 활용하여 공기를 정해진 방향과 장소로 이동시킴으로써 지하도로(100a, 100b, 100c, 100d, 100e, 100f)의 공기를 1차적으로 환기하고, 오염된 공기를 정화·처리 시설을 통해 정화하여 지상 또는 지하로 배출함으로써 공기를 2차적으로 정화처리 할 수 있다.
본 발명에 따른 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 프로펠러를 이용하지 않을 수 있다. 자연적인 집풍과 송풍 그리고 약간의 인위적 장치에 의해 대규모 지하도로망 혹은 장거리 지하도로의 수요에 부응하는 송풍과 환기가 가능하기 때문이다.
먼저 집풍기(210)는 지상의 공기를 최대한 많이 흡입할 수 있는 형상구조를 한다. 집풍기(210)는 공기가 유입되는 입구는 넓지만 안으로 갈수록 점차 좁아지는 구조를 가진 확성기의 형태를 포함할 수 있다. 상기 입구는 타원형 또는 사각형 형태를 포함한다. 집풍기(210)는 지하도로(100a, 100b, 100c, 100d, 100e, 100f) 인근에 설치되며 지하도로와 떨어진 공간에 설치될 수도 있다.
집풍기(210)는 붙박이처럼 한 방향으로 고정되거나 풍향에 따라 회전하도록 설치될 수 있다. 집풍기(210)는 평지, 빌딩 옆 벽면 또는 옥상에 설치될 수도 있다. 회전하는 집풍기(210)는 바람의 방향에 따라 회전하여 그 입구가 항상 바람이 불어오는 방향으로 향함으로써 가장 많은 바람을 빨아들일 수 있다. 집풍기(210)는 바람을 자연스럽게 흡입하거나 모터를 통해 공기를 강제로 흡입하는 구조를 포함할 수 있다. 집풍기(210)는 입구 근처에 안전망을 설치하여 사람이나 짐승의 접근을 차단할 수 있다.
본 발명에 따른 지하도로(100a, 100b, 100c, 100d, 100e, 100f)의 환기 방식은 집풍기(210) 입구 인근의 지상의 공기를 유입하고 지하 내부로 밀어넣는 것을 포함할 수 있다. 본 발명에 따른 지하도로(100a, 100b, 100c, 100d, 100e, 100f)의 또 다른 환기 방식은 공기가 외부로 빠져나가는 출구(예를 들어, 환풍구(290))에서 공기를 빨아들이는 방식으로 배출하며 환기하는 방식을 포함할 수 있다.
예를 들어 발열장치가 환풍구(290)에 설치되면 상기 발열장치에 의해 뜨거워진 공기가 위로 빠져나가면서 지하의 공기가 환풍구(290) 쪽으로 빨려 들어가게 된다. 지하의 공기는 강하게 빨려 들어가면서 외부로 배출될 수 있다. 환풍구(290)는 빨대처럼 동작하는 것이다. 이러한 환기 방식은 지하도로(100a, 100b, 100c, 100d, 100e, 100f)에 환기구나 배기구를 설치하기 힘든 여건을 가지는 장대터널이나 고산지역(317) 지하도로에서 유용할 수 있다. 또한 환풍구(290)에서 모터회전을 이용하여 지하도로(100a, 100b, 100c, 100d, 100e, 100f)의 공기를 배출하는 방식도 가능하다. 그리고 빠르게 달리는 자동차(125)들이 지하도로(100a, 100b, 100c, 100d, 100e, 100f)의 환기에 일부 기여할 수도 있다.
도 25는 일 실시예에 따른 지하도로의 환기장치에서 공기의 흐름을 보여주는 예시도이다.
도 25를 참조하면, 집풍기(210)를 통해 지하로 유입된 공기가 도관(220)의 구조에 따라 방향이 바뀌고 분배되는 것이 도시된다.
도관(220)은 집풍기(210)를 통해 한 곳으로 모은 지상의 바람을 지하도로(100c)로 보낼 수 있는데 도관(220)의 연결방식에 따라 바람은 분배될 수 있기에 설계방식에 따라 지하도로(100c) 내의 풍향이 결정될 수 있다.
가령 집풍기(210)를 통해 지하로 유입된 공기는 도관(220)을 통해 하강하면서 일부는 상행선 도관(220-1)에 의해 지하 1층 도로로 이동하고, 나머지는 하행선 도관(220-2)에 의해 지하 2층 도로로 이동함으로써 분배될 수 있다. 또한 상기 분배된 공기는 지하 1층 도로로 공급되면 상행선 도관(220-1)에 연결된 상행선 송풍배출구에 의하여 흐름이 결정되고, 상기 분배된 공기가 지하 2층 도로로 공급되면 하행선 도관(220-2)에 연결된 하행선 송풍배출구에 의하여 흐름이 결정될 수 있다. 지하도로(100a, 100b, 100c, 100d, 100e, 100f) 유입된 공기는 도관(220) 구조에 따라 다른 풍향 즉, 상행 풍향(149-1) 및 하행 풍향(149-2)을 가질 수 있다.
도관(220) 구조에 따라 달라지는 풍향 원리는 지하도로(100a, 100b, 100c, 100d, 100e, 100f)를 일방통행으로 주행하는 차량(125)의 후방에서 차량의 전방으로 항상 바람을 불게 할 수 있다. 이것은 하나의 도로뿐만 아니라 네트워크화된 도로망 체계에서도 가능할 수 있다.
상기 풍향 원리는 지하도로(100a, 100b, 100c, 100d, 100e, 100f) 내 화재 발생 등 비상 상황에서도 유용하게 활용될 수 있다. 예를 들어, 대형 화재사고가 지하도로에서 발생하여 연기로 가득할 경우에 사람들이 자동차(125) 후방으로 이동하면 전방으로 부는 바람이 후방으로 연기가 오는 것을 차단하는 에어 커튼 효과가 발생할 수 있다. 따라서 사고현장에 있는 사람들도 매연이나 유독가스의 피해가 없는 안전한 상황에 놓일 수 있다.
도 26은 일 실시예에 따른 지하도로의 공기정화장치를 보여주는 예시도이다.
도 26을 참조하면, 지하도로(100a, 100b, 100c, 100d, 100e, 100f)에 설치된 공기정화장치가 도시된다. 지하도로(100a, 100b, 100c, 100d, 100e, 100f)에서의 자동차 배출가스는 환풍구(290)를 통해 배출되기 전에 공기정화시설(250)을 거쳐갈 수 있다.
배출가스는 지하도로(100a, 100b, 100c, 100d, 100e, 100f) 천장(110) 부근에 위치한 흡입구(255)와 도관(220)을 통해 공기정화처리시설(250)로 공급될 수 있다. 공기정화시설(250)에서 깨끗해진 공기는 환풍구(290)를 통해 지상으로 배출되거나 배출구(275)를 통해 다시 지하도로(100a, 100b, 100c, 100d, 100e, 100f) 내부로 순환할 수 있다. 현대의 고도화된 집진 기술과 공기 정화·처리 기술은 99%이상의 정화처리를 보장할 수 있다.
도 27은 일 실시예에 따른 지하도로에서의 사고지역을 디지털화하여 보여주는 예시도이다.
지하도로(100a, 100b, 100c, 100d, 100e, 100f)에서 교통사고가 발생하면, 도로교통관제센터(550)는 사고지역 주변을 주행하는 자동차(125)에 교통사고 사실을 알리고 2차 사고가 발생하지 않도록 조치할 수 있다. 도로교통관제센터(550)는 사고차량(127) 후방의 공간을 사고지역(440)으로 표시하고 사고지역(440)으로 주변 차량들이 진입하지 않도록 할 수 있다. 도로교통관제센터(550)는 사고지역(440) 주변의 차량들에게 사고사실을 알리면서 차선변경을 하도록 긴급히 조치할 수 있다.
도 27을 참조하면, 지하도로(100a, 100b, 100c, 100d, 100e, 100f)에서 교통사고가 발생한 경우 사고차량(127) 후방의 일정 영역을 디지털 방식으로 사고지역(440)으로 표시되는 것이 도시된다. 사고 내역 정보를 통보 받은 후속차량(125)은 전산화된 프로그램을 통해 자동적으로 사고지역(440)으로 진입하지 못하게 된다. 도로교통관제센터(550)는 사고차량(127)과 사고지역(440)에 대한 정보를 후속차량(125)에게 전달하면서 필요 시 차선변경을 하도록 제어할 수도 있다. 또한 도로교통관제센터(550)는 고장 문제가 발생하거나 발생할 개연성이 높은 차량을 저속차선으로 이동시킬 수도 있다. 사고는 저속차선에서 대응하는 것이 유리하기 때문이다. 이런 과정의 프로그램화를 위해 도로교통관제센터(550)는 사고지역(440)을 디지털로 표시하고 그에 대한 정보를 차량들에게 전파하며 공유하는 것이다.
도로교통관제센터(550)는 자동차(125)의 안전한 자율주행에 필수적이다. 먼저 도로교통관제센터(550)는 문제의(고장이나 사고의 가능성이 있는) 차량들로부터 차량 내부의 부품 작동과 관련된 정보를 상시적으로 수신하도록 프로그램될 수 있다. 도로교통관제센터(550)는 상기 문제의 차량의 가속을 중지하거나 차량을 저속차선으로 이동시키는 자동제어를 수행할 수 있다. 도로교통관제센터(550)는 자동차(125)의 센서를 통해 파악된 데이터를 유선 및 무선 통신 네트워크를 통해 수신하고 분석함으로써 자동차(125)를 제어할 수 있다. 여기서 도로교통관제센터(550)는 자동차(125)에 대한 크루즈 컨트롤(cruise control) 제어프로그램 또는 첨단운전자보조시스템(Advanced Driver Assistant System, ADAS) 프로그램을 사용 또는 제어할 수 있다. 또한 도로교통관제센터(550)는 자동긴급제동(Autonomous Emergency Breaking, AEB) 장치, 차선변경보조(Lane Change Assist, LCA) 장치 및 이들 장치와 연동된 프로그램을 사용 또는 제어할 수 있다.
도로교통관제센터(550)의 도로 위 자동차(125) 제어 기능은 오·남용 문제가 있을 수 있다. 이를 해결하기 위하여 도로교통관제센터(550)의 제어 기능은 최소화될 필요가 있다. 따라서 도로교통관제센터(550)는 크게 두 가지 기능을 중점적으로 할 수 있다. 첫째, 도로교통관제센터(550)는 차량의 속도를 줄이는 기능만을 수행하고 속도를 높이는 것은 불가능하게 장치할 수 있다. 도로교통관제센터(550)가 차량의 속도를 높이는 제어를 할 경우 사고를 유발할 수 있기 때문이다. 설혹 해킹 등 외부의 불법적인 조작이 있더라도 교통사고가 발생하지 않게 하기 위한 조치이다. 둘째, 도로교통관제센터(550)는 차선변경보조(Lane Change Assist, LCA) 장치를 제어하여 조작할 때, 저속차선으로만 이동할 수 있도록 설계할 수 있다. 도로교통관제센터(550)의 제어 범위가 한정되면 사고의 발생은 근본적으로 억지될 수 있다. 이러한 도로교통관제센터(550)의 제어 기능은 구체적인 매뉴얼로 제작된 후 관련 소프트웨어에 반영될 수 있다.
자동차(125)와 도로교통관제센터(550)의 통신 시 보안을 위해 인터넷 뱅킹에서 사용되는 일회용 비밀번호 생성기(OTP)나 블록체인 기반의 기술 등이 사용될 수 있다. 일회용 비밀번호 생성기(OTP)가 자동차(125)에 장착되면 외부의 해킹에 강하게 대비할 수 있다.
그 밖에 차선 별로 다른 색상이 차선 중간에 표시되어 자동차(125)가 상기 색상에 따라 주행하도록 하거나, 차선 식별 센서가 차선 중간에 설치되어 자동차(125)의 주행을 도와주고 그 위치정보를 제공할 수도 있다. 이러한 장치는 자동차(125)와 도로교통관제센터(550)의 통신과 함께 작동되면, 자율주행차에서 이용되던 고가의 장치가 상당수가 필요 없게 되어 자율주행차의 생산단가를 크게 낮출 수 있다. 예를 들어, 지하도로(100a, 100b, 100c, 100d, 100e, 100f)에 일정 간격으로 설치된 위치 표지판과 센서를 활용하면 모든 자동차(125)의 위치가 확인될 수 있고 또 각 차량의 위치정보를 속도 정보와 함께 주변 자동차(125)와 공유하게 되면, 각 자동차(125)의 위치, 거리 및 속도가 자동적으로 파악되어 차량간 거리를 측정하여 안전거리를 확보해주는 고가의 라이다(lidar) 장치를 자동차에 장착할 필요가 없게 된다.
도 28은 일 실시예에 따른 2차 사고를 막는 자동차 정차기를 보여주는 제1 예시도이고, 도 29는 일 실시예에 따른 2차 사고를 막는 자동차 정차기를 보여주는 제2 예시도이고, 도 30은 일 실시예에 따른 2차 사고를 막는 자동차 정차기를 보여주는 제3 예시도이며, 도 31은 일 실시예에 따른 2차 사고를 막는 자동차 정차기를 보여주는 제4 예시도이다.
통신 네트워크에 기반한 안전장치에도 불구하고 지하도로(100a, 100b, 100c, 100d, 100e, 100f)를 주행하는 많은 차량(125)들에게는 언제든 크고 작은 사고가 일어날 수 있다. 예를 들어, 자동차(125) 내부의 통신 기기의 갑작스런 고장으로 자동차(125)가 통신불통이 되면서 사고지역(440)으로 돌진하여 2차 사고를 일으킬 수 있다. 따라서 이러한 2차 사고를 막는 물리적 장치가 필요할 수 있다.
도 28 내지 31을 참조하면, 2차 사고를 막는 장치인 자동차 정차기(500)가 도시된다. 자동차 정차기(500)는 지하도로(100a, 100b, 100c, 100d, 100e, 100f) 천장(110)에 일정한 간격으로 설치되어 필요시 하강하여 사고지역(440)으로 주행하는 자동차(125)를 멈추게 할 수 있다.
도 28은 자동차 정차기(500)의 평상시 보관 상태가 도시된다. 자동차 정차기(500)는 지하도로(100a, 100b, 100c, 100d, 100e, 100f)의 천장(110)에 설치된 레일(510)에 연결되어 비치되고 필요 시 사고차량(127)의 후방에 놓일 수 있다. 자동차 정차기(500)는 사고지역(440)에 우발적으로 진입하는 자동차(125)를 자연스럽게 정지시켜서 2차 사고를 예방하는 기능을 한다. 자동차 정차기(500)는 후방에서 주행하는 자동차(125)의 진입을 물리적으로 막는 기능을 한다. 자동차 정차기(500)는 도로교통관제센터(550)에 의한 소프트웨어적 1차 조치 이후에 연속하는 하드웨어적 2차 안전 조치라 할 수 있다.
도 29는 자동차 정차기(500)의 사고 발생시 동작이 도시되고, 도 30은 위험차량(128)이 자동차 정차기(500) 위로 올라가 멈춘 상태가 도시된다. 위험차량(128)이 통신장애로 전방의 사고 정보를 도로교통관제센터(550)나 주변의 자동차(125)로부터 제공받지 못한 채 사고지역(440)으로 주행하는 돌발 상황이 발생할 경우, 자동차 정차기(500)는 천장(110)에 접혀 비치되어 있던 상태에서 지하도로 표면으로 비스듬히 내려와 자동적으로 설치된다. 자동차 정차기(500)는 지하도로(100a, 100b, 100c, 100d, 100e, 100f)의 천장(110)이나 안전판(330) 밑에 설치된 레일(510), 레일(510) 위로 움직이는 케이블(516), 케이블 제어기(517) 및 레일 도르레(515)에 의해 구동될 수 있다. 자동차 정차기(500)는 평상시 레일(510)에 밀착되어 접힌 상태로 비치되어 있다가 사고 발생 시 사고차량(127)의 후방이 사고지역(440)으로 지정되면 자동차 정차기(500)는 자동적으로 천장(110)에서 내려오게 된다. 위험차량(128)은 달리는 관성에 의해 자동차 정차기(500) 위로 올라가며 자동차 정차기(500) 위에서 멈추게 된다. 위험차량(128)의 바퀴는 자동차 정차기(500) 위에서 지면과 떨어져서 공회전을 하며 멈추게 되기 때문이다.
도 31은 자동차 정차기(500) 구조의 확대된 모양이 도시된다. 자동차 정차기(500)는 두 개의 세로 고정봉(525), 세로 고정봉(525)에 걸쳐서 고정된 복수의 가로 고정봉(520)을 포함한다. 가로 고정봉(520)은 외피 기능을 하는 굴렁쇠(535)에 의하여 그 외부가 둘러싸이고, 가로 고정봉(520)과 굴렁쇠(535)는 그 사이에서 베어링과 결합할 수 있다. 자동차(125)가 자동차 정차기(500)의 굴렁쇠(535)에 올라오면 굴렁쇠(535)만이 겉돌 수 있다. 겉도는 굴렁쇠(535)에 의하여 자동차 바퀴의 마찰력이 상실하게 되면서 자동차(125)는 멈추게 된다.
다만 주행하는 자동차(125)는 가속된 상태이고 자동차 정차기(500)에 올라가는 순간에 가속력에 의한 일정 정도의 전진하는 힘을 가질 수 있다. 상기 힘을 제어하기 위하여 자동차 정차기(500)는 비스듬한 모양으로 설치되는데 차량의 앞부분이 들리는 모양이 되어 중력의 힘으로 자동차(125)의 가속력을 급속하게 상쇄하고 약화된 나머지 가속력은 자동차 정차기(500) 하단부에 달린 바퀴(530)가 밀려나면서 사라지게 할 수 있다.
자동차 정차기(500)는 터널 구조인 지하도로(100a, 100b, 100c, 100d, 100e, 100f)의 특성인 천장(110) 덕분에 설치될 수 있다. 최근 기가스틸처럼 가벼우면서 인장강도가 강한 철강이 생산되므로 천장(110)에 다수의 자동차 정차기(500)를 설치해도 중량의 문제는 발생하지 않을 수 있다.
도 32는 일 실시예에 따른 지하도로의 자동화 무인 대응 장치를 보여주는 예시도이고, 도 33은 일 실시예에 따른 지하도로의 안전 장치를 보여주는 예시도이다.
지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 차량 고장이나 화재에 대비한 자동화 장치가 설치되기에 용이하다. 지하도로(100a, 100b, 100c, 100d, 100e, 100f)의 천장(110) 또는 안전판(330)에 CCTV(400), 스프링쿨러(410), 로봇팔(420) 및 진공청소기 등이 설치될 수 있다. 상기 진공청소기는 사고를 처리하기 위한 인력과 장비가 동원되기 전에도 신속하게 사고현장을 정리할 수 있다.
도 32를 참조하면, 비상사태를 대비하여 지하도로 천장(110)에 설치되는 각종 자동화 무인 대응 장치가 도시된다.
지하도로(100a, 100b, 100c, 100d, 100e, 100f) 천장(110)에 CCTV(400), 스프링쿨러(410) 및 로봇팔(420) 등이 설치될 수 있다. CCTV(400)는 자동차(125)를 감시하고 사고를 녹화할 수 있다. 스프링쿨러(410)는 화재에 대비할 수 있다. 로봇팔(420)은 사고차량(127)에서 부서져 나온 잔해를 치울 수 있다.
도 33을 참조하면, 지하도로의 안전 장치가 도시된다. 사고처리와 함께 사고지역(440)에 있는 사람들의 대피를 돕는 장치가 필요할 수 있다. 예를 들어, 대피용 맨홀(600)은 지하도로(100a, 100b, 100c, 100d, 100e, 100f)의 한 편에 위치할 수 있다. 사람들은 비상시 대피용 맨홀(600)을 통해 다른 층으로 이동하여 안전을 확보할 수 있다.
지하도로(100a, 100b, 100c, 100d, 100e, 100f)에서 사고가 발생하면 자동차(125)의 탑승자들은 비상용 인도(610)에 일정 간격으로 설치된 대피용 맨홀(600)을 통해 신속히 사고현장을 벗어날 수 있다.
지하도로(100a, 100b, 100c, 100d, 100e, 100f)에서는 항상 일정한 방향으로 바람이 불어오므로, 사람들은 자동차(125)의 후방에 위치하게 되면 연기나 유독가스의 위험으로부터 벗어나 안전할 수 있다. 그러나 혹여 대규모 사고가 발생하거나 환기가 제대로 작동하지 않는 상황이 발생하면, 사람들은 지하도로(100a, 100b, 100c, 100d, 100e, 100f) 가장자리에 있는 비상용 인도(610)에 일정 거리마다 설치된 맨홀 뚜껑(615)을 열고 복층의 다른 층 도로로 이동하여 안전할 수 있다. 예를 들어, 복층 구조의 원통형 지하도로(100d)의 하층도로에서 대형사고가 나면 대피용 맨홀(600)을 이용하여 위층 도로로 대피할 수 있다. 반대로 위층도로에서 대형사고가 나면 대피용 맨홀(600)을 통해 하층도로로 이동할 수 있다. 비상용 인도(610)는 그 폭이 좁으므로 도로교통관제센터(550)는 비상용 인도(610)에서 가장 인접한 차선의 일정 지역을 사고지역(440)으로 지정하여 차들이 진입하지 못하도록 할 수 있다.
도 34는 일 실시예에 따른 다층 지하도로 구조를 보여주는 예시도이다.
본 발명에 따른 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 다층 도로 구조를 제공할 수 있다. 고밀도 대도시 지역은 도로 확장을 위한 공간 확보가 어렵고 또 많은 비용을 요구할 수 있다. 그러나 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 3차원의 입체적 공간 활용을 가능하게 한다. 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 수직의 중첩된 구조로 형성할 수 있기 때문이다.
도 34를 참조하면, 내부에 일방통행의 도로가 왕복 방향으로 각각 복층화 되어 총 4층으로 구성된 박스형 지하도로(100c)가 도시된다. 이러한 형태의 지하도로는 다층 지하도로(100f)로 명명될 수 있다. 다층 지하도로(100f)는 교통량이 많고 도로 양쪽 옆으로 고층건물이 밀집되어 수평적 공간 확장이 어려운 대도시 과밀지역에서 유용하게 쓰일 수 있다.
지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 지하공간의 무한 활용이 가능하여 교통량이 많은 대도시에서 추가적인 도로 건설이나 확장이 필요한 경우 공간의 수직적 확장이 가능하여 도로가 복층 구조로 바뀌면 도로의 폭이 사실상 두 배로 확장되는 셈이며 도로가 다층 구조로 바뀌면 세 배 혹은 그 이상으로 확장될 수 있다. 지상도로(100g)가 단층구조를 기반으로 한 2차원 평면형인 반면 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 수직방향으로 확장이 가능한 3차원 입체형 도로가 된다.
다층 지하도로(100f)에서 한 층의 도로를 주행하던 자동차(125)는 다른 층의 도로로 이동할 수 있다. 예를 들어, 하층도로의 자동차(125)는 주행 중인 도로가 복잡하다고 생각하면 상층도로가 한산하다는 정보를 수신할 경우 상층이동램프(180)를 통해 상층도로로 이동할 수 있다. 마찬가지로 상층도로의 자동차(125)는 상층도로의 교통체증이 생기면 하층이동램프(185)를 통해 하층도로로 이동할 수 있다.
도 35는 일 실시예에 따른 다층 지하도로에 있는 주차장을 보여주는 예시도이다.
주차문제 역시 대도시 교통문제들 중 하나일 수 있다. 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 지하공간의 무한적 확장을 가능하게 하므로 주차공간 문제 또한 해결될 수 있다.
도 35를 참조하면, 지하도로(100a, 100b, 100c, 100d, 100e, 100f) 하부에 형성되는 지하주차장(190)이 도시된다. 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 내부에 지하주차장(190)를 포함할 수 있다. 탑승자는 목적지 인근 지하주차장(190)에 차량을 주차하고 지하주차장(190) 승강기를 이용하여 지상으로 올라갈 수 있다. 또한 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 차량들이 지상에 주차하는 대신 지하에 주차하게 함으로써 지상공간을 다른 용도로 이용할 수 있게 한다.
지하도로(100a, 100b, 100c, 100d, 100e, 100f)를 이용한 네트워크형 지하도로 체계에서 탑승자는 출발지 지하주차장(190)에서 목적지 지하주차장(190)까지 고속으로 무정차(non-stop) 주행을 할 수 있다. 따라서 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 문전(door-to-door)배송과 같은 편리한 개별 운송 시스템처럼 기능할 수 있다. 각각의 개인 자동차(125)가 출발지 문 앞에서 도착지 문 앞까지 고속으로 이동할 수 있는 것이다.
도 36은 일 실시예에 따른 고산지역에 설치된 지하도로를 보여주는 예시도이다.
지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 대도시 지역의 교통문제뿐만 아니라 산악이나 오지의 교통문제에서도 대안적 기능을 할 수 있다.
도 36을 참조하면, 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 고산지역(317)까지 연결될 수 있다. 또한 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 고산, 협곡, 사막 또는 툰드라와 같이 불리한 교통조건에서도 효율적일 수 있다. 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 초평면으로 된 평탄대로로 이뤄지다가 고산지역(317)에 도달하기 일정거리 이전부터 경사도로 구조로 형성될 수 있다. 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 대부분 수평 구조로 된 직선도로이지만 산을 올라가는 구간은 경사도로 구조가 된다. 상기 경사도로는 필요에 따라 지그재그 구조로 형성될 수도 있다. 자동차(125)는 고산지역(317)의 지하를 관통하는 지하도로를 따라서 주행하면서 산 정상에 도달할 수 있다.
본 발명에 따른 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 자동차(125)가 고산지역(317)까지 도달하게 함으로써 오지와 도시가 서로 연결되는 시대를 열 수 있게 한다. 자연을 훼손하지 않으면서 안전하고 빠르게 육지의 어느 곳으로든 자동차로 이동할 수 있는 도로 교통망 시대가 열리는 것이다. 이러한 구조는 히말라야 산맥, 티베트 사막, 안데스 산맥 또는 그랜드 캐년 등의 오지로 차량이 쉽고 안전하게 이동할 수 있도록 한다. 또한 산악지대에서 대규모의 산불이 발생하거나 화산폭발이 일어난 경우 사람들은 지하도로(100a, 100b, 100c, 100d, 100e, 100f)를 통해서 안전하게 대피할 수 있다.
도 37은 일 실시예에 따른 지하도로에 부가되는 수로시설을 보여주는 제1 예시도이고, 도 38은 일 실시예에 따른 지하도로에 부가되는 수로시설을 보여주는 제2 예시도이며, 도 39는 일 실시예에 따른 지하도로에 부가되는 수로시설을 보여주는 제3 예시도이다.
지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 다수의 기능을 복합적으로 수행할 수 있다. 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 저수조(300), 송유관(340), 가스관(350), 송전관(360), 케이블 도관(370), 열수송관(380) 또는 송풍관(390)을 포함할 수 있다. 저수조(300)는 농업·생활·공업용수를 방수하는 기능을 할 수 있다. 저수조(300)는 담수로(303) 및 해수를 공급하는 해수로(305)와 상·하수도관을 더 포함할 수 있다. 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 해수와 담수를 먼 지역까지 수송하고 내륙 깊은 오지에까지 공급할 수 있다. 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 천장(110)에 모노레일(320)이나 자기부상열차를 포함할 수 있다.
지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 초평면 구조로 건설되므로 밑에 설치된 저수조(300)에 물을 저장할 수 있다. 물은 지하도로(100a, 100b, 100c, 100d, 100e, 100f)를 따라 흘러서 이동할 수 있다. 강 또는 호수의 취수장의 물이 저수조(300)로 흘러 들어갈 수 있다. 저수조(300)로 들어간 물은 지하도로(100a, 100b, 100c, 100d, 100e, 100f)를 따라서 먼 거리로 이동할 수 있다. 저수조(300)의 바닥이 평면이어서 물이 지하도로(100a, 100b, 100c, 100d, 100e, 100f)의 저수조(300) 바닥을 따라 퍼져나갈 수 있기 때문이다. 이런 구조를 이용하면 물이 풍족한 강 하구나 호수 지역에서 물이 부족한 내륙 지역으로 때와 장소를 불문하고 물을 공급할 수 있다. 수자원을 내륙 곳곳으로 공급할 수 있게 되어 전국적 또는 국제적 수자원 네트워크가 형성될 수 있다. 상기 수자원 네트워크는 바다로 흐르는 담수를 내륙으로 돌려 전 지구적인 물 부족 문제를 해결할 수 있게 한다.
도 37은 본 발명의 일 실시예에 따른 상기 수자원 네트워크를 형성하는 기본 원리를 보여주는 예시도이다. 도 37의 1)은 비어있는 저수조(300)를 도시한다. 도 37의 2)와 같이, 물이 상기 비어있는 저수조(300)의 일단의 A지점으로부터 유입되면, 초평면 구조의 속성으로 타단의 B지점까지 퍼질 수 있다. 물이 퍼지는 거리는 1km 내외의 근거리(도 37의 2))이거나 1,000km 이상의 장거리(도 37의 3))일 수도 있다. 지하도로(100a, 100b, 100c, 100d, 100e, 100f)에 설치된 저수조(300)는 물이 풍부한 지역인 A지점에서 물이 부족한 지역인 B지점까지 물을 공급할 수 있다. 물이 부족한 지역인 B지점에 도달한 물은 펌프를 이용하여 지상으로 끌어올려질 수 있다. 저수조(300)는 물이 부족한 지역에서 마르지 않는 지하수처럼 기능하여 수자원 네트워크를 형성할 수 있다.
도 38은 본 발명의 일 실시예에 따른 지하도로에 형성된 저수조를 보여주는 예시도이다.
저수조(300)는 저장하는 물의 양이나 다른 지역으로 공급되는 물의 양에 따라 다른 크기를 가질 수 있다. 저수조(300)의 물을 취수하는 방식은 직접 취수 방식과 간접 취수 방식을 포함할 수 있다. 가능하면 강물에 있는 불순물이나 미생물을 강변 충적층을 통해 여과한 물을 취수하는 간접 취수 방식이 바람직할 수 있다. 그리고 강에서 물을 취수할 때 수변에 집수정을 설치하여 저수조(300)로 물을 공급할 수 있다.
도 39는 본 발명의 일 실시예에 따른 칸막이가 설치된 저수조를 보여주는 예시도이다.
저수조(300)는 칸막이(307)를 포함할 수 있다. 칸막이(307)는 저수조(300)를 일정 간격으로 개폐하고 물의 양과 방향을 전환하는 기능을 할 수 있다. 저수조(300)는 장거리를 직선 구조로 흐를 수 있고, 또 사이펀 원리 및 역사이펀 원리에 의하여 부분적으로 장애물을 통과할 수도 있다. 또한 교차하는 지하도로(100a, 100b, 100c, 100d, 100e, 100f)의 저수조(300) 물은 펌프 등 인공장치를 이용하여 다른 방향으로 보낼 수 있는데, 이러한 것들은 자동화 장치를 통해 수자원관리센터에 의하여 제어될 수 있다.
칸막이(307)는 저수조(300)에 물의 진행방향으로 나란하게 배치될 수 있다. 저수조(300)는 칸막이(307)를 기준으로 한편은 담수가 흐르는 담수로(303)로 또 다른 편은 해수가 흐르는 해수로(305)로 구분되어 활용될 수 있다. 담수로(303)와 해수로(305)를 구분함으로써, 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 해수를 내륙 깊은 곳으로 공급하여 소금·리튬 생산, 양식업 및 해수를 이용한 신재생에너지 산업에 활용할 수 있다.
도 40은 일 실시예에 따른 지하도로에 부가되는 수로시설을 통한 물의 이동을 보여주는 예시도이다.
도 40을 참조하면, 강에서 취수된 물이 초평면 구조로 된 지하도로(100a, 100b, 100c, 100d, 100e, 100f) 하부의 저수조(300)를 통해 원거리에 있는 내륙으로 이동하는 구조가 도시된다. 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 고산지역(317), 사막지역(315) 및 수원지(310) 사이를 연결하는 수로의 기능을 할 수 있다.
강에서 취수된 담수는 지하도로(100a, 100b, 100c, 100d, 100e, 100f)의 초평면 구조에 의하여 저수조(300)를 따라 흐를 수 있다. 저수조(300)는 물이 풍부한 강 또는 호수와 물이 부족한 내륙을 물길로 연결할 수 있다. 물이 부족한 내륙도 수자원을 안정적이고 지속적으로 얻을 수 있어 물 부족에 따른 문제를 해결할 수 있다. 또한 저수조(300)는 일시적으로 집중되는 빗물을 저장함으로써 홍수의 피해를 상당 부분 예방할 수 있게 한다.
지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 철도 기능을 포함할 수 있다. 예를 들어, 지하도로(100a, 100b, 100c, 100d, 100e, 100f) 천장(110)에 모노레일(320)이나 자기부상열차가 설치되면 지하도로(100a, 100b, 100c, 100d, 100e, 100f)가 철도로서 기능할 수 있다. 지하도로(100a, 100b, 100c, 100d, 100e, 100f)의 철도 기능은 지하도로(100a, 100b, 100c, 100d, 100e, 100f)의 공간적·경제적 효율성을 극대화할 수 있다.
도 41은 일 실시예에 따른 지하도로의 다목적 기능을 보여주는 예시도이다.
도 41을 참조하면, 다목적 기능이 포함된 복층 구조의 원통형 지하도로(100d)가 도시된다. 지하도로(100a, 100b, 100c, 100d, 100e, 100f)는 송유관(340), 가스관(350), 송전관(360), 케이블 도관(370), 열수송관(380) 또는 송풍관(390)을 포함하여 다양한 종류의 물류를 운송하는 복합적 기능을 수행할 수 있다.
복층 구조의 원통형 지하도로(100d)는 상행선(140)과 하행선(142)이 왕복하는 복층을 포함할 수 있다. 복층 구조의 원통형 지하도로(100d)는 자동차(125)가 주행하는 도로, 천장(110)에 설치된 자기부상열차 또는 모노레일(320), 송유관(340), 가스관(350), 송전관(360), 케이블 도관(370), 열수송관(380) 및 송풍관(390) 등을 포함할 수 있다. 필요에 따라 복층 구조의 원통형 지하도로(100d)는 지하주차장(190)을 포함할 수 있다.
모노레일(320)은 필요에 따라 단선구조 또는 복선구조로 형성될 수 있다 자기부상열차는 지하도로(100a, 100b, 100c, 100d, 100e, 100f)의 빈 공간을 이용하므로 건설비용을 줄일 수 있고 터널 내 재난 대피용 또는 고속운송의 용도로 활용될 수 있다. 모노레일(320)은 하부에 안전판(330)을 설치할 수 있다. 안전판(330)은 모노레일(320)과 도로를 구분하는 안전판 기능을 한다. 안전판(330)은 다공판 구조를 포함하여 있을지도 모르는 사고를 예방할 수 있다. 안전판(330)은 사람이 천장(110) 및 벽면(111)에 설치된 장치에 접근하는 발판 용도로 기능할 수 있다. 또한 안전판(330)은 사고 발생시 사람들의 대피로로 활용될 수 있다.
송유관(340)과 같은 물류 운송용 도관이 지하도로(100a, 100b, 100c, 100d, 100e, 100f) 내부에 설치되면 지상에 설치되는 것보다 경제적이고 절도로부터 안전할 수 있다.
이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재될 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥 상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
Claims (10)
- 덮지붕 형태의 천장, 상기 천장에 대향하여 형성되는 도로면, 상기 천장 및 상기 도로면에 인접하여 상기 천장 및 상기 도로면과 함께 주행공간을 형성하는 벽면으로 구성되어, 실내 구조를 가지는 도로;상기 주행공간을 이동하고, 서로 무선 네트워크로 연결되어 정보를 송수신하는 복수의 자동차; 및상기 복수의 자동차와 유선 및 무선 네트워크로 연결되어 정보를 송수신하고, 상기 복수의 자동차를 제어하는 도로교통관제센터;를 포함하고,상기 도로는, 야외 기후로부터 차단된 실내 구조로 인해 전천후 단일한 주행환경을 제공하는 구조 및 지상의 각종 지형과 상관없는 독립적인 실내구조로 형성되어 지형과 무관하게 단일한 주행환경을 제공하는 구조를 포함하는 것을 특징으로 하는 자동차의 고속 자율주행을 구현하게 하는 실내형 전천후 도로망 시스템.
- 제1항에 있어서,상기 도로는, 왕복 방향을 구성하는 복수의 주행공간을 포함하고,상기 복수의 주행공간 각각은, 상기 복수의 자동차가 단일한 방향으로만 이동하도록 형성된 것을 특징으로 하는 자동차의 고속 자율주행을 구현하게 하는 실내형 전천후 도로망 시스템.
- 제1항에 있어서,상기 복수의 자동차가 우회전을 하는 우회전 램프; 및상기 복수의 자동차가 좌회전을 하는 좌회전 램프를 포함하고,상기 도로는, 복수이고상기 좌회전 램프 및 상기 우회전 램프는, 상기 복수의 도로를 서로 연결하며,상기 복수의 자동차는, 상기 좌회전 램프 및 상기 우회전 램프를 통해 상기 복수의 도로 사이를 이동하는 것을 특징으로 하는 자동차의 고속 자율주행을 구현하게 하는 실내형 전천후 도로망 시스템.
- 제3항에 있어서,상기 우회전 램프 및 좌회전 램프는, 상기 복수의 자동차가 주행하는 차선에 대하여 모두 동일한 방향으로 형성된 것을 특징으로 하는 자동차의 고속 자율주행을 구현하게 하는 실내형 전천후 도로망 시스템.
- 제4항에 있어서,상기 우회전 램프는, 어느 하나의 도로의 우측에서 시작하여 다른 도로 우측에서 끝나고,상기 복수의 자동차는, 상기 어느 하나의 도로의 우측에서 상기 우회전 램프를 통과하고 상기 다른 도로 우측으로 합류함으로써 우회전을 하는 것을 특징으로 하는 자동차의 고속 자율주행을 구현하게 하는 실내형 전천후 도로망 시스템.
- 제4항에 있어서,상기 좌회전 램프는, 어느 하나의 도로의 우측에서 시작하여 다른 도로의 우측에서 끝나고,상기 복수의 자동차는, 상기 어느 하나의 도로의 우측에서 상기 좌회전 램프를 통과하여 상기 다른 도로의 우측으로 합류하고 주행방향을 기준으로 270도 전환함으로써, 좌회전을 하는 것을 특징으로 하는 자동차의 고속 자율주행을 구현하게 하는 실내형 전천후 도로망 시스템.
- 제1항에 있어서,상기 도로교통관제센터는, 상기 유선 및 무선 네트워크를 통해 상기 복수의 자동차의 첨단운전자보조시스템(Advanced Driver Assistant System, ADAS) 프로그램, 크루즈 컨트롤(cruise control) 제어프로그램, 자동긴급제동(Autonomous Emergency Breaking, AEB) 장치 또는 차선변경보조(Lane Change Assist, LCA) 장치를 제어하는 것을 특징으로 하는 자동차의 고속 자율주행을 구현하게 하는 실내형 전천후 도로망 시스템.
- 제1항에 있어서,상기 도로의 복수의 차선 중 고속주행으로 규정된 차선의 폭은, 저속주행으로 규정된 차선의 폭보다 넓은 것을 특징으로 하는 자동차의 고속 자율주행을 구현하게 하는 실내형 전천후 도로망 시스템.
- 제1항에 있어서,바닥이 평면으로 형성되어 물을 일정한 높이로 퍼져나가게 하는 저수조를 포함하는 것을 특징으로 하는 자동차의 고속 자율주행을 구현하게 하는 실내형 전천후 도로망 시스템.
- 제1항에 있어서,상기 도로의 내부 공기를 야외로 배출하는 환풍구를 포함하고,상기 환풍구는, 상기 내부 공기를 가열하고 상기 가열된 내부 공기를 상기 환풍구를 통해 야외로 이동시키는 발열장치를 더 포함하는 것을 특징으로 하는 자동차의 고속 자율주행을 구현하게 하는 실내형 전천후 도로망 시스템.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980090671.2A CN113366170A (zh) | 2018-11-28 | 2019-11-27 | 支持自动驾驶的室内型全天候道路及其网络系统 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20180149992 | 2018-11-28 | ||
KR10-2018-0149992 | 2018-11-28 | ||
KR1020190073223A KR20200063961A (ko) | 2018-11-28 | 2019-06-20 | 자율주행을 지원하는 실내형 전천후 도로 및 그 네트워크 체계 |
KR10-2019-0073223 | 2019-06-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020111784A1 true WO2020111784A1 (ko) | 2020-06-04 |
Family
ID=70853588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/016494 WO2020111784A1 (ko) | 2018-11-28 | 2019-11-27 | 자율주행을 지원하는 실내형 전천후 도로 및 그 네트워크 체계 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020111784A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001317001A (ja) * | 2000-05-08 | 2001-11-16 | Yasuo Ide | 道路環境整備装置、道路構造体及び道路環境整備方法 |
JP2002212904A (ja) * | 2001-01-15 | 2002-07-31 | Toshiaki Shiotani | 自動開閉全天候型の屋根を付けた重構造歩道路から収益と交通安全を得る方法 |
US20100179720A1 (en) * | 2009-01-13 | 2010-07-15 | Gm Global Technology Operations, Inc. | Autonomous vehicle maintenance and repair system |
KR101227275B1 (ko) * | 2012-09-26 | 2013-01-28 | 주식회사 에코탑 | 도로포장용 블록, 그것을 이용한 도로포장구조 및 그 시공방법 |
KR101817822B1 (ko) * | 2010-10-05 | 2018-01-11 | 웨이모 엘엘씨 | 구역 운행 |
-
2019
- 2019-11-27 WO PCT/KR2019/016494 patent/WO2020111784A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001317001A (ja) * | 2000-05-08 | 2001-11-16 | Yasuo Ide | 道路環境整備装置、道路構造体及び道路環境整備方法 |
JP2002212904A (ja) * | 2001-01-15 | 2002-07-31 | Toshiaki Shiotani | 自動開閉全天候型の屋根を付けた重構造歩道路から収益と交通安全を得る方法 |
US20100179720A1 (en) * | 2009-01-13 | 2010-07-15 | Gm Global Technology Operations, Inc. | Autonomous vehicle maintenance and repair system |
KR101817822B1 (ko) * | 2010-10-05 | 2018-01-11 | 웨이모 엘엘씨 | 구역 운행 |
KR101227275B1 (ko) * | 2012-09-26 | 2013-01-28 | 주식회사 에코탑 | 도로포장용 블록, 그것을 이용한 도로포장구조 및 그 시공방법 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101528755B1 (ko) | 도로 및 철로 구간에 설치된 스마트 솔라웨이 | |
CN111971455B (zh) | 道路管道系统和方法 | |
EA012687B1 (ru) | Здание и структурный элемент дороги, а также создаваемая из них городская структура для крупных районов высокой плотности населения | |
CN101886359A (zh) | 私家车保有量饱和状态下城市道路交通系列难题解决方案 | |
WO2020111784A1 (ko) | 자율주행을 지원하는 실내형 전천후 도로 및 그 네트워크 체계 | |
KR20140014422A (ko) | 도로 및 철로에 따라 설치하는 2층 구조물을 이용한 네트워크 기반의 물류 및 교통 및 통신시스템 | |
RU2476633C1 (ru) | Многоуровневая магистраль-эстакада для перемещения транспортных средств и передачи транспортируемых сред | |
JP7097882B2 (ja) | 都市輸送および物流システム | |
CN112681039B (zh) | 多能公用基础设施走廊 | |
KR20200063961A (ko) | 자율주행을 지원하는 실내형 전천후 도로 및 그 네트워크 체계 | |
US20150299965A1 (en) | Covered Highway System | |
CN211472000U (zh) | 城市十字路口无红绿灯全方向无障碍通行立交桥 | |
JP6938296B2 (ja) | 仮設通路構造 | |
Jícha | Study on connection of the Pardubice Airport to the Czech Railway Network | |
RU2379404C2 (ru) | Строительный комплекс | |
CN110117924A (zh) | 一种基于土地纵深利用的人工环境型交通道路的构建方法及其应用 | |
Clark | General guidelines for the design of light rail transit facilities in Edmonton | |
RU2808273C1 (ru) | Линия метрополитена в условиях городской застройки глубокого заложения | |
CN202626780U (zh) | 用于大城市及其郊区的公路网络 | |
Rudneva | Specific features of building transport infrastructure in megacities | |
RU2175364C2 (ru) | Внутригородская скоростная кольцевая автомагистраль мегаполиса | |
RU136073U1 (ru) | Многофункциональное сооружение | |
CN115182211A (zh) | 一种城市交通系统 | |
CN118668610A (zh) | 一种应用绿色能源的智能化多功能声屏障系统 | |
Rasmussen | Denver airport's soft landing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19888375 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19888375 Country of ref document: EP Kind code of ref document: A1 |