WO2020111425A1 - 발광 소자, 이의 제조 방법 및 발광 소자를 구비한 표시 장치 - Google Patents
발광 소자, 이의 제조 방법 및 발광 소자를 구비한 표시 장치 Download PDFInfo
- Publication number
- WO2020111425A1 WO2020111425A1 PCT/KR2019/007465 KR2019007465W WO2020111425A1 WO 2020111425 A1 WO2020111425 A1 WO 2020111425A1 KR 2019007465 W KR2019007465 W KR 2019007465W WO 2020111425 A1 WO2020111425 A1 WO 2020111425A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light emitting
- pattern
- insulating film
- light
- layer
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- 239000004065 semiconductor Substances 0.000 claims abstract description 113
- 239000000758 substrate Substances 0.000 claims description 64
- 229920005989 resin Polymers 0.000 claims description 30
- 239000011347 resin Substances 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 27
- 239000011248 coating agent Substances 0.000 claims description 18
- 238000000576 coating method Methods 0.000 claims description 18
- 238000005530 etching Methods 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 3
- 238000009413 insulation Methods 0.000 abstract 1
- 230000001788 irregular Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 243
- 239000010408 film Substances 0.000 description 88
- 101100153768 Oryza sativa subsp. japonica TPR2 gene Proteins 0.000 description 41
- 101150102021 REL2 gene Proteins 0.000 description 41
- 101150037899 REL1 gene Proteins 0.000 description 34
- 101100099158 Xenopus laevis rela gene Proteins 0.000 description 34
- 239000000463 material Substances 0.000 description 33
- 101150080924 CNE1 gene Proteins 0.000 description 18
- 238000005192 partition Methods 0.000 description 14
- 101100294209 Schizosaccharomyces pombe (strain 972 / ATCC 24843) cnl2 gene Proteins 0.000 description 13
- 239000011241 protective layer Substances 0.000 description 13
- 101100058498 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CNL1 gene Proteins 0.000 description 12
- 101100401683 Schizosaccharomyces pombe (strain 972 / ATCC 24843) mis13 gene Proteins 0.000 description 12
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 11
- 239000003990 capacitor Substances 0.000 description 9
- 101100179596 Caenorhabditis elegans ins-3 gene Proteins 0.000 description 8
- 238000003860 storage Methods 0.000 description 8
- 239000002019 doping agent Substances 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 229910002704 AlGaN Inorganic materials 0.000 description 4
- 101100179594 Caenorhabditis elegans ins-4 gene Proteins 0.000 description 4
- -1 InGaN Inorganic materials 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 238000005054 agglomeration Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 238000005253 cladding Methods 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 238000003848 UV Light-Curing Methods 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 238000004943 liquid phase epitaxy Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000000016 photochemical curing Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- 238000000927 vapour-phase epitaxy Methods 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000005341 toughened glass Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- TYHJXGDMRRJCRY-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) tin(4+) Chemical compound [O-2].[Zn+2].[Sn+4].[In+3] TYHJXGDMRRJCRY-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/44—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/075—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
- H01L25/0753—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/16—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
- H01L25/167—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0066—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0095—Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/20—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/20—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
- H01L33/24—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0025—Processes relating to coatings
Definitions
- the present invention relates to a light-emitting element, and to an ultra-small light-emitting element, a manufacturing method thereof, and a display device including the light-emitting element.
- the light emitting diode (Light Emitting Diode) shows a relatively good durability even in harsh environmental conditions, and has excellent performance in terms of life and luminance. Recently, studies for applying such a light emitting diode to various display devices have been actively conducted.
- the light emitting diode may be manufactured to a size small enough to constitute pixels and the like of the display panel. After the light-emitting diodes are independently grown on the substrate, the grown light-emitting diodes can be separated and used for the production of display panels.
- the present invention provides a light emitting device capable of preventing agglomeration of adjacent light emitting devices, a manufacturing method thereof, and a display device including the light emitting device.
- the light emitting device includes: a rod-shaped light emitting stack pattern including a first conductive semiconductor layer, an active layer disposed on the first conductive semiconductor layer, and a second conductive semiconductor layer disposed on the active layer; And an insulating coating surrounding the outer surface of the light emitting laminate pattern and having a constant thickness.
- the shape of the outer surface of the light emitting laminate pattern and the outer surface of the insulating film are different.
- the light emitting stack pattern is a circular pillar shape in which the first conductive semiconductor layer, the active layer and the second conductive semiconductor layer are sequentially stacked along one direction, and an outer surface of the insulating film is elliptical. , A polygon or a shape in which the oval and the polygon are mixed.
- the outer surface of the insulating film includes at least one protrusion.
- the shape of the outer surface of the light emitting laminate pattern and the shape of the outer surface of the insulating film are the same.
- the light emitting laminate pattern and the outer surface of the insulating film are polygonal.
- a method of manufacturing a light emitting device includes providing a substrate; Forming a rod-shaped light emitting stack pattern on the substrate; Forming an insulating film having an uneven thickness, surrounding the outer surface of the light-emitting laminate pattern; And separating the light emitting laminate pattern surrounded by the insulating film from the substrate to form a plurality of light emitting elements.
- the forming of the insulating film may include: forming an insulating film pattern having an outer surface having the same shape as the outer surface of the light emitting laminate pattern; And forming an insulating film having a different outer surface from the outer surface of the light emitting laminate pattern by partially removing the insulating film pattern.
- the forming of the insulating film may include an oval, a polygon, or an outer surface of a shape in which the ellipse and the polygon are mixed so as to surround the outer surface of the light-emitting laminate pattern of a circular pillar shape.
- An insulating film is formed.
- the step of forming the insulating film is formed so that the outer surface of the insulating film has at least one protrusion.
- the step of forming the light emitting layered pattern may include: forming a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer on the substrate in order to form a light emitting laminate; Forming a plurality of first fine patterns on the light emitting laminate; And etching the light emitting laminate along the plurality of first fine patterns, and removing the plurality of first fine patterns to form a plurality of the light emitting laminate patterns.
- the forming of the plurality of first fine patterns may include: forming a plurality of first resins on the light emitting laminate; Causing the first resins to fill the plurality of first grooves of a first mold having a plurality of first grooves; And removing the first mold to form a plurality of first fine patterns on the light emitting laminate.
- the forming of the insulating film may include: forming a plurality of second fine patterns on the light emitting laminate pattern and the insulating film pattern; The insulating coating pattern is etched along the plurality of second fine patterns to form the insulating coating.
- the forming of the plurality of second fine patterns may include forming a plurality of second resins on the emission layer pattern and the insulating coating pattern surrounding the outer surface of the emission layer pattern. ; Causing the second resins to fill the plurality of second grooves of a second mold having a plurality of second grooves; And removing the second mold to form a plurality of second fine patterns on the insulating layer pattern surrounding the light emitting layer pattern and the outer surface of the light emitting layer pattern.
- the shape of the first groove of the first mold is different from the shape of the second groove of the second mold.
- the insulating film in the step of forming the insulating film, is formed to have the same outer surface as the outer surface of the light emitting laminate pattern.
- the light emitting laminate pattern and the outer surface of the insulating film are formed in a polygon.
- a display device includes a substrate including a display area and a non-display area; And a plurality of pixels provided in the display area of the substrate, each having a plurality of sub-pixels, each sub-pixel having a pixel circuit portion including at least one transistor and a unit emission region emitting light.
- a display element layer wherein the display element layer includes at least one light emitting element that is provided on the substrate and emits light, and the first and second electrodes spaced apart at regular intervals between the light emitting elements, And a first contact electrode electrically connecting the first electrode and the first end of the light-emitting element and a second contact electrode electrically connecting the second electrode and the second end of the light-emitting element, and wherein the light-emitting element A light emitting laminate pattern comprising a first conductive semiconductor layer, an active layer disposed on the first conductive semiconductor layer, and a second conductive semiconductor layer disposed on the active layer; And an insulating coating surrounding the outer surface of the light emitting laminate pattern and having a constant thickness.
- the shape of the outer surface of the light emitting laminate pattern and the outer surface of the insulating film are different.
- the light emitting device of the present invention surrounds the light emitting layer pattern and the outer surface of the light emitting layer pattern, and includes an insulating film having a non-uniform thickness to prevent agglomeration of adjacent light emitting devices.
- FIG. 1A is a perspective view of a light emitting device according to an embodiment of the present invention.
- FIG. 1B is a cross-sectional view of II of FIG. 1A.
- FIG. 1C is a cross-sectional view of IIII of FIG. 1A.
- FIGS. 2A to 2D are perspective views of light emitting devices according to another embodiment of the present invention.
- 3A to 3C are perspective views of light emitting devices according to still another embodiment of the present invention.
- 4A to 4O are cross-sectional views showing a method of manufacturing the light emitting device of FIG. 1A.
- FIG. 5A is a perspective view of the first mold disclosed in FIG. 4D.
- FIG. 5B is a plan view of the first mold of FIG. 5A as viewed from below.
- FIG. 6A is a perspective view of the second mold starting in FIG. 4K.
- FIG. 6B is a plan view of the second mold of FIG. 6A as viewed from below.
- FIG. 7A to 7G are diagrams showing various shapes of the second groove disclosed in FIG. 6B.
- FIGS. 8A and 8B are perspective views of a light emitting device according to another embodiment of the present invention.
- FIG. 9 illustrates a display device according to an exemplary embodiment of the present invention, and is a schematic plan view of a display device using the light emitting device shown in FIG. 1A as a light emitting source.
- 10A to 10C are circuit diagrams illustrating a unit emission area of the display device of FIG. 9 according to various embodiments.
- FIG. 11 is a plan view schematically illustrating first to third sub-pixels included in one of the pixels illustrated in FIG. 9.
- FIG. 12A is a cross-sectional view along IIIIII of FIG. 11.
- FIG. 13A and 13B are cross-sectional views of IVIV of FIG. 11 including a light emitting device according to another embodiment of the present invention.
- first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from other components.
- first component may be referred to as a second component without departing from the scope of the present invention, and similarly, the second component may be referred to as a first component.
- Singular expressions include plural expressions unless the context clearly indicates otherwise.
- FIG. 1A is a perspective view of a light emitting device according to an embodiment of the present invention as viewed from above.
- FIG. 1B is a cross-sectional view of II of FIG. 1A
- FIG. 1C is a cross-sectional view of IIII of FIG. 1A.
- the light emitting device LD includes a light emitting stack pattern 10 and an insulating film 14 surrounding the outer surface 10a of the light emitting stack pattern 10. It includes.
- the light emitting laminate pattern 10 may be formed in a circular column shape, and the insulating film 14 is not uniform in thickness.
- the shape of the outer surface 10a of the light emitting laminate pattern 10 and the shape of the outer surface 14a of the insulating film 14 may be different.
- the emission stack pattern 10 may include a first conductive semiconductor layer 11, an active layer 12, and a second conductive semiconductor layer 13.
- the light emitting stack pattern 10 includes a stacked structure in which the first conductive semiconductor layer 11, the active layer 12, and the second conductive semiconductor layer 13 are sequentially stacked in the length L direction of the light emitting device LD. can do.
- the light emitting device LD including the light emitting stack pattern 10 may be provided in a rod shape extending along one direction.
- the rod shape encompasses a rod-like shape, or a bar-like shape, which is long in the length L direction (ie, the aspect ratio is greater than 1).
- the light emitting stack pattern 10 is a rod shape in which the first conductive semiconductor layer 11, the active layer 12, and the second conductive semiconductor layer 13 are sequentially stacked along the length L direction of the light emitting element LD, Based on the active layer 12, one end and the other end may be provided. Either one of the first conductive semiconductor layer 11 or the second conductive semiconductor layer 13 is disposed at one end of the light emitting laminate pattern 10, and the other one may be disposed at the other end of the light emitting laminate pattern 10. .
- the light emitting device LD may have a size as small as a nano size to a micro size, for example, a diameter and/or length in a nano size or micro size range, respectively.
- the size of the light emitting device LD in the present invention is not limited thereto.
- the size of the light emitting element LD may be variously changed according to design conditions such as various devices using the light emitting device using the light emitting device LD as a light source, for example, a display device.
- the first conductive semiconductor layer 11 may include, for example, at least one n-type semiconductor layer.
- the first conductive semiconductor layer 11 includes any one of InAlGaN, GaN, AlGaN, InGaN, AlN, and InN semiconductor materials, and n-type doped with a first conductive dopant such as Si, Ge, Sn, etc. It may include a semiconductor layer.
- the material constituting the first conductive semiconductor layer 11 is not limited thereto, and the first conductive semiconductor layer 11 may be formed of various materials.
- the active layer 12 may be formed of a single or multiple quantum well structure.
- a cladding layer (not shown) doped with a conductive dopant may be further formed on upper and/or lower portions of the active layer 12.
- the cladding layer may be formed of an AlGaN layer or an InAlGaN layer. Materials such as AlGaN and AlInGaN may be used to form the active layer 12, and in addition, various materials may constitute the active layer 12.
- the second conductive semiconductor layer 13 may include a semiconductor layer of a different type from the first conductive semiconductor layer 11.
- the second conductive semiconductor layer 13 may include at least one p-type semiconductor layer.
- the second conductive semiconductor layer 13 includes at least one semiconductor material of InAlGaN, GaN, AlGaN, InGaN, AlN, InN, and includes a p-type semiconductor layer doped with a second conductive dopant such as Mg. can do.
- the material constituting the second conductive semiconductor layer 13 is not limited thereto, and various materials may also constitute the second conductive semiconductor layer 13.
- An electrode layer 15 may be further disposed at one end of the light emitting stack pattern 10.
- the drawing shows that the electrode layer 15 is disposed on the second conductive semiconductor layer 13, and in the following examples, the first conductive semiconductor layer 11, the active layer 12, and the second conductive semiconductor layer 13 And the electrode layer 15 is referred to as a light emitting layered pattern 10.
- the electrode layer 15 may be an ohmic contact electrode electrically connected to the second conductive semiconductor layer 13, but is not limited thereto.
- the electrode layer 15 may be made of a transparent or opaque material. To this end, the electrode layer 15 may be used alone or by mixing a metal material such as Cr, Ti, Al, Au, Ni, or a transparent conductive oxide such as ITO, IZO, ITZO, or the like.
- the light emitting stack pattern 10 When a predetermined voltage is applied to both ends of the light emitting stack pattern 10 as described above, the light emitting stack pattern 10 emits light while electrons and holes are combined in the active layer 12. By using this principle, the light emitting stack pattern 10 can be used as a light source for a display device.
- the light emitting stack pattern 10 is formed in a circular column shape, and the outer surface 10a of the light emitting stack pattern 10 may be circular.
- the first conductive semiconductor layer 11, the active layer 12, the second conductive semiconductor layer 13 and the electrode layer 15 have a circular column shape.
- the light emitting stack pattern 10 may have an elliptical columnar shape or a polygonal columnar shape.
- the first conductive semiconductor layer 11, the active layer 12, the second conductive semiconductor layer 13 and the electrode layer 15 may have an elliptical columnar shape or a polygonal columnar shape.
- the light emitting laminate pattern 10 as described above may be a structure wrapped by the insulating film 14.
- the insulating film 14 prevents the active layer 12 from coming into contact with conductive materials other than the first conductive semiconductor layer 11 and the second conductive semiconductor layer 13, and at the same time, minimizes surface defects of the light emitting laminate pattern 10 It is to do.
- the insulating film 14 may include various materials having insulating properties, for example, may include one or more insulating materials selected from the group consisting of SiO 2 , Si 3 N 4 , Al 2 O 3 and TiO 2 , , But is not limited to this.
- the insulating film 14 may have a structure surrounding only a part of the light emitting laminate pattern 10. In this case, the insulating film 14 completely covers the active layer 12 and may partially expose the first conductive semiconductor layer 11, the second conductive semiconductor layer 13, and the electrode layer 15.
- the light emitting device LD including the light emitting stack pattern 10 and the insulating film 14 is a very small light emitting device LD having a very small nano size, and the light emitting device LD is used as a light source for a display device.
- the light emitting elements LD may be arranged in each pixel of the display device.
- a solution in which light emitting elements LD are dispersed may be applied to each pixel area to use the light emitting elements LD as a light source for a display device.
- the light emitting elements LD are very small, and may be disposed to be adjacent to or bundled with each other in the pixel.
- the light-emitting elements LD adjacent to each other are in contact with each other, so that the insulating films 14 of the light-emitting elements LD adjacent to each other can be in contact with each other.
- a portion of the insulating film 14 of the portion where the light emitting elements LD contact is removed, so that a short may occur.
- the light emitting device of the embodiment of the present invention comprises an insulating film 14 having an outer surface 14a different from the shape of the outer surface 10a of the light emitting laminate pattern 10, so that the thickness of the insulating film 14 It may not be constant.
- the cross-section of the circular pillar-shaped light emitting laminate pattern 10, that is, the outer surface 10a of the light emitting laminate pattern 10 is circular, but the outer surface 14a of the insulating film 14 may be oval. . Therefore, the insulating film 14 is not constant in thickness, and may include a relatively thick first thickness T1 and a relatively thin second thickness T2.
- the thickness of the insulating film 14 is non-uniform, even if the light emitting devices LD are bundled or disposed adjacent to each other, the light emitting devices adjacent to each other through the non-uniform thickness of the insulating film 14 ( The light-emitting stacked pattern 10 of LD) secures a sufficient separation distance from each other, thereby preventing agglomeration of light-emitting elements LD adjacent to each other.
- the light-emitting stacked pattern 10 of LD secures a sufficient separation distance from each other, thereby preventing agglomeration of light-emitting elements LD adjacent to each other.
- even a portion of the insulating film 14 is removed from adjacent portions of the light emitting elements LD, since the thickness of the insulating film 14 is different, it is possible to prevent the light emitting laminate pattern 10 from being exposed to the outside.
- FIGS. 2A to 2D are perspective views of light emitting devices according to another embodiment of the present invention.
- the light emitting device includes the outer surface of the insulating film 14 surrounding the outer surface 10a of the light emitting laminate pattern 10 having a circular columnar shape.
- the side surface 14a may be a polygon surrounded by three or more line segments.
- the insulating film 14 is not constant in thickness, and may include a relatively thick first thickness T1 and a relatively thin second thickness T2.
- 3A to 3C are perspective views of light emitting devices according to still another embodiment of the present invention.
- the outer surface 14a of the insulating film 14 may include at least one protrusion 14a_2. Therefore, even if the light emitting elements (LD in FIG. 1A) are disposed adjacently, the gap between adjacent light emitting elements (LD in 1a) can be sufficiently secured through the protrusions 14a_2, and the light emitting elements (LD in FIG. 1A) are Even if the protruding portion 14a_2 is damaged in an adjacent portion, it is possible to effectively prevent the light emitting laminate pattern 10 from being exposed to the outside.
- the outer surface 14a of the insulating film 14 includes a protrusion 14a_2, and the remaining area 14a_1 of the outer surface 14a of the insulating film 14 excluding the protrusion 14a_2 ) May have the same shape as the outer surface 10a of the light emitting layered pattern 10.
- the insulating film 14 has the thickest portion corresponding to the protrusion 14a_2. That is, when the outer surface 14a of the insulating film 14 includes a protrusion 14a_2, the difference between the first thickness T1 and the relatively thin second thickness T2 of the insulating film 14 It is large, it is possible to effectively prevent the light-emitting elements (LD) adjacent to each other are agglomerated.
- the remaining areas 14a_1 of the outer surface 14a of the insulating film 14 except for the protrusions 14a_2 may also be different from the outer surface 10a of the light emitting laminate pattern 10.
- the protrusions 14a_2 are provided to sufficiently secure the distance between the light emitting stack patterns 10 in the light emitting elements (LD in FIG. 1A) adjacent to each other, and the outer surface 14a of the insulating film 14 has at least two protrusions.
- (14a_2) is included, a gap between the light emitting elements (LD in FIG. 1A) can be stably secured.
- the outer surface 14a of the insulating film 14 includes four protrusions 14a_2, as shown in FIG. 3C, a gap between the light emitting elements (LD of FIG. 1A) can be stably secured. have.
- the width or length of the protrusion 14a_2 can be easily changed.
- 4A to 4O are cross-sectional views showing a method of manufacturing the light emitting device of FIG. 1A.
- the substrate 1 is prepared, and a sacrificial layer 3 is formed on the substrate 1.
- the substrate 1 may be a GaAs, GaP or InP substrate.
- the substrate 1 may be a wafer for epitaxial growth.
- the substrate 1 may include a ZnO substrate having a GaAs layer on its surface.
- a Ge substrate having a GaAs layer on the surface and a Si substrate having a GaAs layer with a buffer layer therebetween on the Si wafer can also be applied.
- the substrate 1 a commercially available single crystal substrate manufactured by a known manufacturing method can be used.
- the selectivity for manufacturing the light emitting device (LD in FIG. 1A) is satisfied and epitaxial growth can be smoothly performed, the material of the substrate 1 is not limited thereto.
- the substrate 1 is described as being a GaAs substrate made of GaAs.
- the surface of the substrate 1 to be epitaxially grown is flat.
- the substrate 1 may have a different size and diameter depending on the product to which the substrate 1 is applied, and may be manufactured in a form capable of reducing warpage due to a stacked structure due to epitaxial growth.
- the shape of the substrate 1 is not limited to a circular shape and may be a polygonal shape such as a rectangle.
- the sacrificial layer 3 may be formed on the substrate 1 by MOCVD, MBE, VPE, LPE, or the like.
- the sacrificial layer 3 may be formed of GaAs, AlAs or AlGaAs. In the following examples, it will be described that the sacrificial layer 3 is made of GaAs.
- the substrate 1 and the sacrificial layer 3 may be disposed in contact with each other.
- the sacrificial layer 3 is positioned between the light emitting device LD and the substrate 1 in the process of manufacturing the light emitting device (LD in FIG. 1A) to physically separate the light emitting device (LD in FIG. 1A) and the substrate 1. I can do it.
- the sacrificial layer 3 may have various types of structures, and may have a single layer structure or a multi-layer structure.
- the sacrificial layer 3 may be a layer removed in the final manufacturing process of forming the light emitting device (LD in FIG. 1A ). When the sacrificial layer 3 is removed, separation between layers positioned on the upper and lower portions of the sacrificial layer 3 may be performed.
- a light emitting laminate 10' is formed on the sacrificial layer 3.
- the light emitting laminate 10 ′ includes forming the first conductive semiconductor layer 11 on the sacrificial layer 3, forming the active layer 12 on the first conductive semiconductor layer 11, and the active layer 12 ) Forming the second conductive semiconductor layer 13 and forming the electrode layer 15 on the second conductive semiconductor layer 13.
- the first conductive semiconductor layer 11 may be formed through epitaxial growth like the sacrificial layer 3, and may be formed by MOCVD, MBE, VPE, LPE, or the like. According to an embodiment, an additional semiconductor layer for improving crystallinity, such as a buffer layer and a non-doped semiconductor layer, may be further formed between the first conductive semiconductor layer 11 and the sacrificial layer 3.
- the first conductive semiconductor layer 11 may include a semiconductor material composed of a group III (Ga, Al, In)-V (P, As), doped with a first conductive dopant such as Si, Ge, Sn, etc. It may include a semiconductor layer.
- the first conductive semiconductor layer 11 may include at least one semiconductor material of GaP, GaAs, GaInP, and AlGaInP doped with Si. That is, the first conductive semiconductor layer 11 may include at least one n-type semiconductor layer.
- the material constituting the first conductive semiconductor layer 11 is not limited thereto, and various other materials may constitute the first conductive semiconductor layer 11.
- the active layer 12 is a region in which electrons and holes are recombined, and transitions to a low energy level as electrons and holes recombine, and emits light having a wavelength corresponding thereto.
- the active layer 12 may be formed on the first conductive semiconductor layer 11 and may be formed in a single or multiple quantum well structure. The position of the active layer 12 may be variously changed according to the type of the light emitting device LD.
- the active layer 12 may include at least one material of GaInP, AlGaInP, GaAs, AlGaAs, InGaAs, InGaAsP, InP, InAs.
- the active layer 12 may emit light having a wavelength of 400 nm to 900 nm.
- the active layer 12 may use a double heterostructure.
- a cladding layer (not shown) doped with a conductive dopant may be further formed on the upper surface and/or the lower surface of the active layer 12.
- the second conductive semiconductor layer 13 may include a semiconductor layer of a different type from the first conductive semiconductor layer 11.
- the second conductive semiconductor layer 13 may include a semiconductor material composed of a group III (Ga, Al, In)-V (P, As), and a semiconductor layer doped with a second conductive dopant such as Mg. can do.
- the second conductive semiconductor layer 13 may include at least one semiconductor material of GaP, GaAs, GaInP, and AlGaInP doped with Mg. That is, the second conductive semiconductor layer 13 may include a p-type semiconductor layer.
- the material constituting the second conductive semiconductor layer 13 is not limited thereto.
- the electrode layer 15 is formed on the second conductive semiconductor layer 13.
- the electrode layer 15 may include metal or metal oxide.
- the electrode layer 15 may be used alone or in combination of Cr, Ti, Al, Au, Ni, ITO, IZO, ITZO and their oxides or alloys.
- the electrode layer 15 minimizes the loss of light generated from the active layer 12 and emitted to the outside of the light emitting device (LD in FIG. 1A) and spreads current to the second conductive semiconductor layer 13 ( It may be made of a transparent metal oxide such as indium tin oxide (ITO) to improve the spreading effect, but is not limited thereto.
- ITO indium tin oxide
- the first conductive semiconductor layer 11, the active layer 12, the second conductive semiconductor layer 13 and the electrode layer 15 sequentially stacked on the substrate 1 may constitute a light emitting laminate 10 ′.
- the electrode layer 15 it is not necessary to form the electrode layer 15.
- the first conductive semiconductor layer 11, the active layer 12, and the second conductive semiconductor layer 13 may constitute the light emitting laminate 10 ′.
- the first resin R1 is coated on the light emitting laminate 10'.
- the first resin R1 may be applied on the light emitting laminate 10' in the form of dots.
- the first resin R1 may include a photo-curing material.
- the first mold M1 including the plurality of first grooves H1 is connected to the upper surface of the light emitting laminate 10'.
- the first mold M1 is a soft mold, and a plurality of first grooves H1 of the first mold M1 may be closely adhered to the light emitting laminate 10' using a roll laminating process.
- the first mold (M1) is made of a transparent material, and in the future, when a process such as UV curing is performed to cure the first resin (R1), the UV passes through the transparent first mold (M1) and the first resin ( R1) can be cured.
- FIG. 5A is a perspective view of the first mold M1 disclosed in FIG. 4D
- FIG. 5B is a plan view of the first mold M1 of FIG. 5A as viewed from below.
- the first mold M1 includes a plurality of first grooves H1 formed on one surface. At this time, the first groove H1 fills the first resin (R1 in FIG. 4C) formed on the light emitting laminate (10' in FIG. 4D), and the first resin in the shape of the first groove H1 (FIG. 4C) To form R1).
- the first resin (R1 in FIG. 4C) formed in the shape of the first groove H1 is used as a mask for patterning the light emitting laminate (10' in FIG. 4D).
- the first groove H1 may be circular.
- the light emitting laminate pattern (10 in FIG. 1A) may be formed to a micro size or a nano size.
- the first groove H1 may be polygonal in order to form the light emission lamination pattern (10 in FIG. 1A) in a polygonal column shape.
- the first resin R1 when the first mold M1 as described above is contacted from the upper surface of the light emitting laminate 10 ′, the first resin R1 may be filled in the first grooves H1. Then, in the state where the first resin R1 is filled in the first grooves H1, the first resin R1 is cured using UV or the like. Meanwhile, when the first resin R1 includes a thermosetting material, curing of the first resin R1 may be performed through heat.
- first fine patterns MP1 have a circular edge along the shape of the first groove H1, and the first fine patterns MP1 also have the same width W1 as the first groove H1.
- the light emitting laminate (10′ in FIG. 4F) may be etched vertically using the first fine pattern MP1 as a mask to form a plurality of light emitting laminate patterns 10.
- a plurality of light emitting stacks by etching the electrode layer 15, the second conductive semiconductor layer 13, the active layer 12 and the first conductive semiconductor layer 11 in the region exposed by the first fine pattern MP1 Patterns 10 may be formed.
- the etching may be performed by dry etching such as reactive ion etching (RIE), reactive ion bEMA etching (RIBE), or inductively coupled plasma reactive ion etching (ICP-RIE). Etching may be used. Unlike the wet etching method, the dry etching method is capable of unilateral etching, and thus is suitable for forming the light emitting laminate patterns 10. However, the etching method is not limited to this and can be variously changed.
- RIE reactive ion etching
- RIBE reactive ion bEMA etching
- ICP-RIE inductively coupled plasma reactive ion etching
- an insulating coating pattern 14P surrounding the outer surface of the light emitting laminate pattern 10 including the first fine pattern MP1 is formed.
- the drawing shows that the insulating coating pattern 14P completely surrounds the outer surface of the light emitting laminate pattern 10, the insulating coating pattern 14P is formed to expose a part of the light emitting laminate pattern 10, as described above. It may be.
- the outer surface of the insulating coating pattern 14P may also be circular to surround the circular outer surface of the circular pillar-shaped light-emitting stack pattern 10. That is, the shape of the outer surface of the light emitting laminate pattern 10 and the shape of the outer surface of the insulating coating pattern 14P are the same.
- the insulating coating pattern 14P may include various materials having insulating properties, for example, one or more insulating materials selected from the group consisting of SiO 2 , Si 3 N 4 , Al 2 O 3 and TiO 2 . And is not limited to this.
- the second resin R2 is applied on the light emitting laminate pattern 10.
- the second resin R2 may be applied on each light emitting layered pattern 10 in the form of dots.
- the second resin R2 may also include a photo-curing material, like the first resin (R1 in FIG. 4K).
- the second mold M2 having the plurality of second grooves H2 is brought into contact with the upper surfaces of the light emitting stack patterns 10.
- the second mold M2 is a soft mold, and a plurality of second grooves H2 of the second mold M2 may be closely adhered to the light emitting laminate pattern 10 using a roll laminating process.
- the second mold (M2) is also made of a transparent material, in the future, when a process such as UV curing to cure the second resin (R2), UV passes through the transparent second mold (M2) to the second The resin (R2) can be cured.
- FIG. 6A is a perspective view of the second mold M2 disclosed in FIG. 4K
- FIG. 6B is a plan view of the second mold M2 of FIG. 6A as viewed from below
- 7A to 7G are diagrams showing various shapes of the second groove disclosed in FIG. 6B.
- the second mold M2 includes a plurality of second grooves H2 formed on one surface.
- the second groove H2 is for partially removing the insulating coating patterns (14P in FIG. 4K) surrounding the outer surface of the light emitting laminate pattern 10. Therefore, it is preferable that the width W2 of the second groove H2 is wider than the width W1 of the first groove H1 of the first mold M1 of FIGS. 5A and 5B.
- the second groove H2 may be elliptical to form an outer surface of the insulating film (14 in FIG. 1A) in an elliptical shape, as shown in FIGS. 2A to 2D and 3A to 3C,
- the shape of the second groove H2 may be various shapes as illustrated in FIGS. 7A to 7G. Therefore, as shown in FIGS. 7A to 7G, when using the second mold M2 including the second groove H2, such as an oval, a polygon, a mixture of an oval and a polygon, a shape having a protrusion, etc., the second groove A second fine pattern MP2 having the same shape as (H2) can be formed.
- the second resin R2 is the second groove H2 of the second mold M2. Can be filled in. Then, the second resin R2 is cured using UV or the like while the second grooves H2 are filled with the second resin R2.
- the second mold M2 may be separated from the emission stack patterns 10 to form a plurality of second micro patterns MP2 on the emission stack patterns 10.
- the second fine patterns MP2 have a width W2 that is wider than the width W1 of the first fine pattern MP1 in FIG. 4F, so that the second fine pattern MP2 is the light emitting stack pattern 10. It may also be disposed on the insulating film pattern 14P surrounding the outer surface.
- the insulating film pattern 14P surrounding the outer surface of each light emitting layer pattern 10 is etched in the vertical direction using the second fine pattern MP2 as a mask to form the insulating film 14 can do. Accordingly, the insulating film 14 has a structure in which at least a portion of the insulating film pattern 14P is removed, and the insulating film 14 may include a region thinner than the insulating film pattern 14P.
- the outer surface of the insulating film pattern 14P is circular as the outer surface of the light emitting laminate pattern 10, but the outer surface 14a of the insulating film 14 is light emitting laminate as shown in FIG. 1A. It is an oval outer surface 14a different from the outer surface 10a of the pattern 10.
- the second fine pattern MP2 may be removed to form light emitting devices LD including the light emitting stack pattern 10 surrounded by the insulating film 14.
- the light emitting elements LD are separated from the substrate 1.
- the light emitting devices LD may be separated from the substrate 1 using a chemical lift-off (CLO) method.
- CLO chemical lift-off
- the sacrificial layer 3 is removed to separate the light emitting elements LD from the substrate 1.
- the manufacturing method of the light emitting device forms the light emitting stack patterns 10 using the first fine pattern, and uses the second fine pattern different from the first fine pattern to form the light emitting stack pattern 10 )
- an insulating coating 14 may be formed.
- FIGS. 8A and 8B are perspective views of a light emitting device according to another embodiment of the present invention.
- the outer surface 10a of the light emitting laminate pattern 10 and the outer surface 14a of the insulating film 14 may be formed in the same shape. And may be selected from various shapes other than a circle.
- the outer surface of the light emitting laminate pattern 10 and the outer surface of the insulating film 14 may have the same polygonal shape.
- the outer surface of the light emitting laminate pattern 10 and the insulating film 14 show that the outer surfaces are both triangular or rectangular, in this case also, the insulating film 14 surrounding the outer surface of the light emitting laminate pattern 10.
- the thickness of may not be constant. That is, the insulating film 14 may include a relatively thick first thickness T1 and a relatively thin second thickness T2.
- the light emitting device LD of another embodiment of the present invention as described above forms a light emitting stack pattern 10 having an outer surface of various shapes except a circle by using the second mold M2 of FIGS. 6B and 7A to 7G. It is possible to form an insulating film 14 surrounding the outer surface of the light emitting layered pattern 10 and having the same outer surface as the outer surface of the light emitting layered pattern 10.
- FIG. 9 illustrates a display device according to an exemplary embodiment of the present invention, and is a schematic plan view of the display device using the light emitting device shown in FIG. 1A as a light emitting source.
- the structure of the display device is briefly illustrated around the display area where the image is displayed.
- at least one driving circuit unit for example, a scanning driving unit and a data driving unit
- a plurality of signal wires not illustrated may be further disposed on the display device.
- a display device includes a plurality of pixels provided on a substrate SUB and a substrate SUB and including at least one light emitting device (LD in FIG. 1A ). It may include (PXL), a driving unit (not shown) provided on the substrate SUB and driving the pixels PXL, and a wiring unit (not shown) connecting the pixels PXL and the driving unit.
- PXL light emitting device
- the display device may be classified into a passive matrix display device and an active matrix display device according to a method of driving a light emitting element (LD in FIG. 1A).
- each of the pixels PXL may include a driving transistor that controls the amount of current supplied to the light emitting element LD, a switching transistor that transfers a data signal to the driving transistor, and the like.
- the type display device may also use components (for example, first and second electrodes) for driving the light emitting element (LD in FIG. 1A ).
- the substrate SUB may include a display area DA and a non-display area NDA.
- the display area DA may be an area in which pixels PXL displaying an image are provided.
- the non-display area NDA may be an area in which a driving unit for driving the pixels PXL and a part of a wiring unit connecting the pixels PXL and the driving unit are provided.
- the display area DA is disposed in the central area of the display device
- the non-display area NDA is disposed in the edge area of the display device to surround the display area DA, but is not limited thereto. Can be changed.
- the display area DA may have various shapes.
- the display area DA includes various shapes such as a closed polygon including a straight side, a circular shape including a curved side, an ellipse, a semicircle including a straight and curved side, and a semi-ellipse. Can be provided.
- the non-display area NDA may be provided on at least one side of the display area DA. In the drawing, a structure in which the non-display area NDA surrounds the display area DA is not limited thereto.
- the substrate SUB may be a rigid substrate or a flexible substrate, but is not limited thereto.
- the substrate SUB may be a rigid substrate composed of glass or tempered glass, or a flexible substrate composed of a thin film made of plastic or metal.
- the substrate SUB may be a transparent substrate, but is not limited thereto.
- the substrate SUB may be a translucent substrate, an opaque substrate, or a reflective substrate.
- the pixels PXL may be provided in the display area DA on the substrate SUB. Each of the pixels PXL may be provided in a plurality as a minimum unit for displaying an image.
- Each of the pixels PXL may include a light emitting device (LD in FIG. 1A) driven by a scan signal and a data signal.
- the light emitting device (LD in FIG. 1A) has a size as small as a micro size or a nano size, and may be connected to light emitting devices (LD in FIG. 1A) disposed in parallel with each other.
- the light emitting element (LD in FIG. 1A) may constitute a light source of each pixel PXL.
- each of the pixels PXL may include a plurality of sub-pixels.
- each pixel PXL may include a first sub-pixel SP1, a second sub-pixel SP2, and a third sub-pixel SP3 that emit light of different colors.
- the first sub-pixel SP1 may be a red sub-pixel that emits red light
- the second sub-pixel SP2 may be a green sub-pixel that emits green light
- the third sub-pixel (SP3) may be a blue sub-pixel that emits blue light.
- the color, type, and/or number of sub-pixels constituting each pixel PXL are not limited thereto.
- FIG. 9 illustrates that pixels PXL in the display area DA are arranged in a matrix form along the first direction DR1 and the second direction DR2 different from the first direction DR1.
- PXL may be arranged in various ways without being limited thereto.
- the arrangement of the plurality of sub-pixels of each pixel PXL can also be variously changed.
- the driving unit may control driving of each pixel PXL by providing a driving signal to each pixel PXL through the wiring unit.
- a wiring unit is omitted for convenience of description.
- the driver includes a scan driver providing scan signals to pixels PXL through a scan line, a light emitting driver providing light emission control signals to pixels PXL through a light emission control line, and pixels PXL through data lines. It may include a data driver for providing a data signal and a timing controller. The timing control unit may control the scan driver, the light emitting driver, and the data driver.
- 10A to 10C are circuit diagrams illustrating a unit emission area of the display device of FIG. 9 according to various embodiments.
- each of the first to third sub-pixels may be configured as an active pixel.
- the type, structure, and/or driving method of each of the first to third sub-pixels is not particularly limited.
- each of the first to third sub-pixels may be composed of pixels of a passive or active display device having various structures currently known.
- the first to third sub-pixels may have substantially the same or similar structure.
- the first sub-pixel SP1 among the first to third sub-pixels will be described.
- the first sub-pixel SP1 includes a light-emitting area EMA generating light having a luminance corresponding to a data signal and a pixel driving circuit for driving the light-emitting area EMA ( 144).
- the light emitting area EMA may include a plurality of light emitting devices LD connected in parallel between the first driving power VDD and the second driving power VSS.
- the first driving power supply VDD and the second driving power supply VSS may have different potentials.
- the first driving power supply VDD may be set as a high potential power supply
- the second driving power supply VSS may be set as a low potential power supply.
- the potential difference between the first and second driving power sources VDD and VSS may be set to be equal to or higher than a threshold voltage of the light emitting elements LD during the light emission period of the first sub-pixel SP1.
- the first electrode (eg, anode electrode) of each of the light emitting elements LD is connected to the first driving power source VDD via the pixel driving circuit 144, and the second electrode of each of the light emitting elements LD is connected.
- the electrode (eg, cathode electrode) is connected to the second driving power source VSS. Therefore, each of the light emitting elements LD may emit light with a luminance corresponding to the driving current controlled by the pixel driving circuit 144.
- FIGS. 10A to 10C an embodiment in which the light emitting elements LD are connected in parallel in the same direction (for example, forward direction) between the first and second driving power sources VDD and VSS is illustrated.
- the present invention is not limited to this.
- some of the light emitting elements LD may be connected in the forward direction between the first and second driving power sources VDD and VSS, and the other parts may be connected in the reverse direction.
- One of the first and second driving power sources VDD and VSS may be supplied in the form of an AC voltage.
- the light emitting elements LD may alternately emit light in groups having the same connection direction.
- the first sub-pixel SP1 may include only a single light emitting element LD.
- the pixel driving circuit 144 may include first and second transistors T1 and T2 and a storage capacitor Cst. However, the structure of the pixel driving circuit 144 is not limited to the embodiment illustrated in FIG. 10A.
- the first electrode of the first transistor T1 (switching transistor) is connected to the data line Dj, and the second electrode is connected to the first node N1.
- the first electrode and the second electrode of the first transistor T1 are different electrodes, for example, if the first electrode is a source electrode, the second electrode may be a drain electrode.
- the gate electrode of the first transistor T1 is connected to the scan line Si.
- the first transistor T1 is turned on when a scan signal of a voltage (for example, a low voltage) at which the first transistor T1 can be turned on is supplied from the scan line Si, thereby turning on the data.
- the line Dj is electrically connected to the first node N1.
- the data signal of the corresponding frame is supplied to the data line Dj, and accordingly, the data signal is transmitted to the first node N1.
- the data signal transferred to the first node N1 is charged in the storage capacitor Cst.
- the first electrode of the second transistor T2 (the driving transistor) is connected to the first driving power source VDD, and the second electrode is electrically connected to the first electrode of each of the light emitting elements LD.
- the gate electrode of the second transistor T2 is connected to the first node N1.
- the second transistor T2 controls the amount of driving current supplied to the light emitting elements LD in response to the voltage of the first node N1.
- One electrode of the storage capacitor Cst is connected to the first driving power source VDD, and the other electrode is connected to the first node N1.
- the storage capacitor Cst charges the voltage corresponding to the data signal supplied to the first node N1 and maintains the charged voltage until the data signal of the next frame is supplied.
- the first transistor T1 for transferring the data signal into the first sub-pixel SP1 the storage capacitor Cst for storing the data signal, and the driving current corresponding to the data signal
- a pixel driving circuit 144 having a relatively simple structure including a second transistor T2 for supplying light emitting elements LD is illustrated.
- the present invention is not limited thereto, and the structure of the pixel driving circuit 144 may be variously changed.
- the pixel driving circuit 144 emits light of the transistor element for compensating the threshold voltage of the second transistor T2, the transistor element for initializing the first node N1, and/or the light emitting elements LD.
- the pixel driving circuit 144 may further include at least one transistor element such as a transistor element for controlling time, or other circuit elements such as a boosting capacitor for boosting the voltage of the first node N1.
- transistors included in the pixel driving circuit 144 for example, first and second transistors T1 and T2 are both shown as P-type transistors, but the present invention is not limited thereto. Does not. That is, at least one of the first and second transistors T1 and T2 included in the pixel driving circuit 144 may be changed to an N-type transistor.
- the first and second transistors T1 and T2 may be implemented as N-type transistors.
- the pixel driving circuit 144 illustrated in FIG. 10B is similar to the pixel driving circuit 144 of FIG. 10A except for a change in a connection location of some components due to a change in transistor type. Therefore, detailed description thereof will be omitted.
- the configuration of the pixel driving circuit 144 is not limited to the embodiments shown in FIGS. 10A and 10B.
- the pixel driving circuit 144 may be configured as in the embodiment shown in FIG. 10C.
- the pixel driving circuit 144 may be connected to the scan line Si and the data line Dj of the first sub-pixel SP1.
- the pixel driving circuit 144 of the first sub-pixel SP1 is disposed in the display area DA. It may be connected to the i-th scan line Si and the j-th data line Dj.
- the pixel driving circuit 144 may be further connected to at least one other scan line.
- the first sub-pixel SP1 disposed in the i-th row of the display area DA is in the i-1th scan line Si-1 and/or the i+1th scan line Si+1. It can be further connected.
- the pixel driving circuit 144 may be further connected to a third power source in addition to the first and second driving power sources VDD and VSS.
- the pixel driving circuit 144 may also be connected to the initialization power source Vint.
- the pixel driving circuit 144 may include first to seventh transistors T1 to T7 and a storage capacitor Cst.
- One electrode of the first transistor T1 (the driving transistor), for example, the source electrode is connected to the first driving power source VDD via the fifth transistor T5, and the other electrode, for example, the drain electrode. Silver may be connected to one end of the light emitting elements LD via the sixth transistor T6.
- the gate electrode of the first transistor T1 may be connected to the first node N1.
- the first transistor T1 corresponds to the voltage of the first node N1, and a driving current flowing between the first driving power VDD and the second driving power VSS via the light emitting elements LD. To control.
- the second transistor T2 (switching transistor) is connected between the j-th data line Dj connected to the first sub-pixel SP1 and the source electrode of the first transistor T1.
- the gate electrode of the second transistor T2 is connected to the i-th scan line Si connected to the first sub-pixel SP1.
- the second transistor T2 is turned on when the scan signal of the gate-on voltage (eg, low voltage) is supplied from the i-th scan line Si to turn the j-th data line Dj into the first. It is electrically connected to the source electrode of the transistor T1. Therefore, when the second transistor T2 is turned on, the data signal supplied from the j-th data line Dj is transferred to the first transistor T1.
- the scan signal of the gate-on voltage eg, low voltage
- the third transistor T3 is connected between the drain electrode of the first transistor T1 and the first node N1.
- the gate electrode of the third transistor T3 is connected to the i-th scan line Si.
- the third transistor T3 is turned on when the scan signal of the gate-on voltage is supplied from the i-th scan line Si to electrically discharge the drain electrode and the first node N1 of the first transistor T1. Connect with. Therefore, when the third transistor T3 is turned on, the first transistor T1 is connected in the form of a diode.
- the fourth transistor T4 is connected between the first node N1 and the initialization power source Vint. Further, the gate electrode of the fourth transistor T4 is connected to the previous scan line, for example, the i-1th scan line Si-1. The fourth transistor T4 is turned on when the scan signal of the gate-on voltage is supplied to the i-1th scan line Si-1 to turn the voltage of the initialization power supply Vint into the first node N1. To pass.
- the initialization power supply Vint may have a voltage equal to or less than the minimum voltage of the data signal.
- the fifth transistor T5 is connected between the first driving power source VDD and the first transistor T1. Further, the gate electrode of the fifth transistor T5 is connected to a corresponding emission control line, for example, the i-th emission control line Ei. The fifth transistor T5 is turned off when the emission control signal of the gate-off voltage is supplied to the i-th emission control line Ei, and is turned on in other cases.
- the sixth transistor T6 is connected between the first transistor T1 and one end of the light emitting elements LD.
- the gate electrode of the sixth transistor T6 is connected to the i-th emission control line Ei.
- the sixth transistor T6 is turned off when a light emission control signal having a gate-off voltage is supplied to the i-th light emission control line Ei, and is turned on in other cases.
- the seventh transistor T7 is connected between one end of the light emitting elements LD and the initialization power source Vint. Further, the gate electrode of the seventh transistor T7 is connected to any one of the scan lines of the next stage, for example, the i+1th scan line (Si+1). The seventh transistor T7 is turned on when the scan signal of the gate-on voltage is supplied to the i+1th scan line Si+1 to turn on the voltage of the initialization power source Vint of the light emitting elements LD. Feed to one end.
- the storage capacitor Cst is connected between the first driving power source VDD and the first node N1.
- the storage capacitor Cst stores a data signal supplied to the first node N1 in each frame period and a voltage corresponding to the threshold voltage of the first transistor T1.
- all of the first to seventh transistors T1 to T7 are illustrated as P-type transistors, but the present invention is not limited thereto.
- at least one of the first to seventh transistors T1 to T7 included in the pixel driving circuit 144 is changed to an N-type transistor, or all of the first to seventh transistors T1 to T7 are It can also be changed to an N-type transistor.
- FIG. 11 is a plan view schematically illustrating first to third sub-pixels included in one of the pixels illustrated in FIG. 9.
- 12A is a cross-sectional view along IIIIII of FIG. 11, and
- FIG. 12B is a cross-sectional view along IVIV of FIG. 11.
- FIGS. 11, 12A, and 12B although the structure of one pixel is simplified by showing each electrode as a single electrode layer, the present invention is not limited thereto.
- one pixel PXL may include first to third sub-pixels SP1 to SP3.
- Each of the first to third sub-pixels SP1 to SP3 may include a light emitting area EMA emitting light and a peripheral area PPA positioned around the light emitting area EMA.
- the first to third sub-pixels SP1 to SP3 may include a pixel circuit unit PCL disposed on the substrate SUB and a display element layer DPL disposed on the pixel circuit unit PCL.
- the pixel circuit unit PCL of each of the first to third sub-pixels SP1 to SP3 includes a buffer layer BFL disposed on the substrate SUB and first and second transistors disposed on the buffer layer BFL ( T1, T2), a driving voltage line DVL, and first and second transistors T1, T2 and a protective layer PSV provided on the driving voltage line DVL.
- the substrate SUB may include an insulating material such as glass, organic polymer, and crystal.
- the substrate SUB may be made of a material having flexibility to bend or fold, and may have a single-layer structure or a multi-layer structure.
- the buffer layer BFL is provided on the substrate SUB, and it is possible to prevent diffusion of impurities into the first and second transistors T1 and T2.
- the buffer layer BFL may be omitted depending on the material and process conditions of the substrate SUB.
- the first transistor T1 is a driving transistor electrically connected to some of the light emitting elements LD provided in the display element layer DPL of the corresponding sub-pixel to drive the light emitting elements LD, and the second transistor ( T2) may be a switching transistor that switches the first transistor T1.
- Each of the first and second transistors T1 and T2 may include a semiconductor layer SCL, a gate electrode GE, and source and drain electrodes SE and DE.
- the semiconductor layer SCL may be disposed on the buffer layer BFL.
- the semiconductor layer SCL may include a source region contacting the source electrode SE and a drain region contacting the drain electrode DE.
- the region between the source region and the drain region may be a channel region.
- the semiconductor layer SCL may be a semiconductor pattern made of polysilicon, amorphous silicon, oxide semiconductor, or the like.
- the channel region is a semiconductor pattern that is not doped with impurities, and may be an intrinsic semiconductor.
- the source region and the drain region may be semiconductor patterns doped with impurities.
- the gate electrode GE may be provided on the semiconductor layer SCL with the gate insulating layer GI interposed therebetween.
- each of the source electrode SE and the drain electrode DE may contact the source region and the drain region of the semiconductor layer SCL through a contact hole passing through the interlayer insulating layer ILD and the gate insulating layer GI. have.
- the driving voltage wiring DVL may be provided on the interlayer insulating layer ILD, but the present invention is not limited thereto, and according to an embodiment, on one of the insulating layers included in the pixel circuit unit PCL Can be provided on.
- a second driving power source (see VSS in FIG. 10A) may be applied to the driving voltage line DVL.
- the protective layer PSV includes a first contact hole CH1 exposing a portion of the drain electrode DE of the first transistor T1 and a second contact hole CH2 exposing a portion of the driving voltage line DVL. It can contain.
- the display element layer DPL of each of the first to third sub-pixels SP1 to SP3 includes a partition wall PW provided on the protective layer PSV, first and second electrodes REL1 and REL2, and
- the second connection wires CNL1 and CNL2 may include a plurality of light emitting devices LD and first and second contact electrodes CNE1 and CNE2.
- the partition wall PW may be provided on the protective layer PSV in the emission area EMA of each of the first to third sub-pixels SP1 to SP3.
- a pixel defining layer (or a dam portion) made of the same material as the partition wall PW is disposed in a peripheral area PPA between adjacent sub-pixels to define a light emitting area EMA of each sub-pixel. Can be.
- the partition wall PW may be spaced apart from the partition wall WW disposed adjacently on the protective layer PSV.
- the adjacent two partition walls PW may be spaced apart on the protective layer PSV over the length (L in FIG. 1A) of one light emitting element LD.
- the partition wall PW may include a curved surface having a cross section such as a semi-circle or a semi-ellipse, which narrows as it goes upward from one surface of the protective layer PSV, as shown in FIG. 12A, but the present invention is limited to this. It is not.
- the partition wall PW may have a trapezoidal cross section in which the width becomes narrower as it goes upward from one surface of the protective layer PSV.
- the shape of the partition wall PW is not limited to the above-described embodiments, and may be variously changed within a range capable of improving the efficiency of light emitted from each of the light emitting elements LD.
- the two adjacent partition walls PW may be disposed on the same plane on the protective layer PSV, and may have the same height.
- the light emitting elements LD may be disposed in each of the first to third sub pixels SP1 to SP3 in the light emitting area EMA. Specifically, the light emitting elements LD may be disposed on the first insulating layer INS1 disposed between the partition walls PW adjacent to each other.
- Each of the light-emitting elements LD may be a light-emitting element LD of FIG. 1A having a small size, such as nano- or micro-sized, using an inorganic crystal structure material.
- Each of the light emitting elements LD has a first conductive semiconductor layer 11, an active layer 12, a second conductive semiconductor layer 13, and an electrode layer along the length of each light emitting element LD (L in FIG. 1A). 15) may include a light emitting stack pattern 10 sequentially stacked and an insulating film 14 surrounding the outer surface 10a of the light emitting stack pattern 10.
- the drawing shows that the insulating film 14 is disposed to completely surround the outer surface of the light emitting laminate pattern 10, the insulating film 14 exposes a part of the outer surface 10a of the light emitting laminate pattern 10. It may be arranged. In this case, the insulating film 14 is disposed to completely surround the active layer 12, and may expose a portion of the first and second conductive semiconductor layers 11 and 13 and the electrode layer 15.
- the insulating film 14 may not have a constant thickness, and for this purpose, the insulating film 14 may have an outer surface different from the outer surface of the light emitting laminate pattern 10.
- the outer surface 14a of the insulating film 14 may be an elliptical shape, a polygonal shape, or a mixture of oval and polygonal shapes. It is shown that the outer surface 14a of the insulating film 14 is oval.
- the light emitting device LD as described above may have a first end EP1 and a second end EP2 along a length (L in FIG. 1A ).
- the first conductive semiconductor layer 11 may be disposed on the first end EP1 of each light emitting element LD, and the electrode layer 15 may be disposed on the second end EP2.
- both ends EP1 and EP2 of each light emitting element LD may be electrically connected to the first and second electrodes REL1 and REL2.
- the light emitting elements LD may be aligned in a horizontal direction in the first direction DR1 such that both ends are connected to the first and second electrodes REL1 and REL2.
- the light emitting elements LD may be disposed spaced apart from each other, or may be partially adjacent.
- Each of the first and second electrodes REL1 and REL2 is provided in each of the first to third sub-pixels SP1 to SP3 and the second direction DR2 intersecting the first direction DR1. It can be extended along.
- the first and second electrodes REL1 and REL2 are provided on the same plane and may be spaced apart at regular intervals.
- the first electrode REL1 includes the 1-1 electrode REL1_1 and the 1-2 electrode REL1_2 branched along the second direction DR2 from the first connection wire CNL1 extending in the first direction DR1. ).
- the 1-1 electrode REL1_1, the 1-2 electrode REL1_2, and the first connection wire CNL1 may be provided integrally and electrically and/or physically connected to each other.
- the 1-1 electrode REL1_1 and the 1-2 electrode REL1_2 are respectively the 1-1 contact electrode CNE1_1 through the 1-1 capping layer CPL1_1 and the 1-2 capping layer CPL1_2.
- the second electrode REL2 extends along the second direction DR2 and may be electrically connected to the second connection wire CNL2.
- the second electrode REL2 may be branched from the second connection wiring CNL2 along the second direction DR2. Accordingly, the second electrode REL2 and the second connection wire CNL2 may be integrally provided and electrically and/or physically connected to each other.
- the second electrode REL2 may also be electrically connected to the second contact electrode CNE2 through the second capping layer CPL2.
- the 1-1 capping layer (CPL1_1), the 1-2 capping layer (CPL1_2) and the second capping layer (CPL2) are damaged in the first electrode REL1 and the second electrode REL2 during the manufacturing process of the display device It is to prevent.
- the 1-1 electrode REL1_1 and the 1-2 electrode REL1_2 have the 1-1 contact electrode CNE1_1 without the 1-1 capping layer CPL1_1 and the 1-2 capping layer CPL1_2 and
- the first and second contact electrodes CNE1_2 may be electrically connected.
- the second electrode REL2 may also be directly connected to the second contact electrode CNE2.
- Each of the first and second electrodes REL1 and REL2 as described above functions as an alignment electrode for aligning the light emitting elements LD in each of the light emitting areas EMA of the first to third sub pixels SP1 to SP3. , After the light emitting elements LD are aligned, it may function as a driving electrode for driving the light emitting elements LD.
- the first electrode REL1 has a first connection wiring CNL1.
- One alignment voltage may be applied, and the second alignment voltage may be applied to the second electrode REL2 through the second connection line CNL2.
- the first alignment voltage and the second alignment voltage may have different voltage levels.
- a predetermined alignment voltage having a different voltage level is applied to each of the first electrode REL1 and the second electrode REL2, an electric field may be formed between the first electrode REL1 and the second electrode REL2.
- the light emitting elements LD may be arranged on the protective layer PSV between the first electrode REL1 and the second electrode REL2 by an electric field.
- the second electrode REL2 is provided between the first-1 electrode REL1_1 and the 1-2 electrode REL1_2, so that the second electrode REL2 is 1-1 and 1-2
- the electrodes REL1_1 and REL1_2 may be spaced apart from each other.
- the 1-1 electrode REL1_1, the 1-2 electrode REL1_2, and the second electrode REL2 may be alternately disposed on the protective layer PSV.
- the first and second electrodes REL1 and REL2 allow light emitted from both ends EP1 and EP2 of each of the light emitting elements LD to proceed in a direction in which an image of the display device is displayed (eg, a front direction). It can be made of a material having a constant reflectance.
- the first and second electrodes REL1 and REL2, the first connecting wire CNL1, and the second connecting wire CNL2 are provided on the same layer and may be made of the same material. .
- the first and second electrodes REL1 and REL2, the first connection wiring CNL1, and the second connection wiring CNL2 may be made of a conductive material having a constant reflectance.
- Conductive materials include Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, Ti, metals such as alloys, indium tin oxide (ITO), indium zinc oxide (IZO), zinc (ZnO) oxide), a conductive oxide such as ITZO (indium tin zinc oxide), and a conductive polymer such as PEDOT.
- Materials of the first and second electrodes REL1 and REL2, the first connection wiring CNL1, and the second connection wiring CNL2 are not limited to the above-described materials.
- first and second electrodes REL1 and REL2 may be formed of a single layer, but the present invention is not limited thereto.
- Fields, alloys, conductive oxides, two or more materials of the conductive polymer may be formed of a stacked multi-layer film.
- Each of the first and second electrodes REL1 and REL2, the first connection wiring CNL1, and the second connection wiring CNL2 transmits signals to both ends EP1 and EP2 of each of the light emitting elements LD.
- the first connection wiring CNL1 and the second connection wiring CNL2 transmits signals to both ends EP1 and EP2 of each of the light emitting elements LD.
- the first and second electrodes REL1 and REL2 have a shape corresponding to the shape of the partition wall PW, the light emitted from both ends EP1 and EP2 of each of the light emitting elements LD is first and first. Reflected by the two electrodes REL1 and REL2, it may further proceed in the front direction of the display device. Accordingly, efficiency of light emitted from each of the light emitting elements LD may be improved.
- the partition wall PW and the first and second electrodes REL1 and REL2 allow light emitted from each of the light emitting elements LD to advance in the front direction of the display device. It can function as a reflective member that improves the light emission efficiency of (LD).
- first and second electrodes REL1 and REL2 may be an anode electrode, and the other electrode may be a cathode electrode.
- first electrode REL1 may be an anode electrode
- second electrode REL2 may be a cathode electrode.
- the light emitting elements LD are a plurality of first light emitting elements LD1 and the second electrode REL2 arranged between the first-1 electrode REL1_1 and the second electrode REL2.
- the second and second electrodes REL1_2 may be divided into a plurality of second light emitting elements LD2.
- the first connection wiring CNL1 may be electrically connected to the drain electrode DE of the first transistor T1 through the first contact hole CH1 of the protective layer PSV. . Since the first connection wiring CNL1 is provided integrally with the first electrode REL1, the signal of the first transistor T1 applied to the first connection wiring CNL1 may be transmitted to the first electrode REL1. have.
- the first electrode REL1 is disposed adjacent to one of both ends EP1 and EP2 of each of the light emitting elements LD, and is electrically connected to each of the light emitting elements LD through the first contact electrode CNE1. Can be connected to. Accordingly, the signal of the first transistor T1 applied to the first electrode REL1 may be transmitted to each of the light emitting elements LD through the first contact electrode CNE1.
- the second connection wire CNL2 may be electrically connected to the driving voltage wire DVL through the second contact hole CH2 of the protective layer PSV. Since the second connection wiring CNL2 is provided integrally with the second electrode REL2, the second driving power supply VSS of the driving voltage wiring DVL applied to the second connection wiring CNL2 is the second electrode REL2. ).
- the second electrode REL2 is disposed adjacent to the other end of each of the ends EP1 and EP2 of each of the light emitting elements LD, and is electrically connected to each of the light emitting elements LD through the second contact electrode CNE2. Can be connected. Accordingly, the second driving power source VSS applied to the second electrode REL2 may be transmitted to each of the light emitting elements LD.
- a first contact electrode CNE1 which electrically and/or physically stably connects one end of each of the first electrode REL1 and the light emitting elements LD to both ends EP1 and EP2.
- the first contact electrode CNE1 is made of a transparent conductive material so that light emitted from each of the light emitting elements LD and reflected in the front direction of the display device by the first electrode REL1 can proceed in the front direction without loss. Can be.
- the first contact electrode CNE1 covers the first electrode REL1 when viewed on a plane and may overlap the first electrode REL1. Also, the first contact electrode CNE1 may partially overlap one end of each of the ends EP1 and EP2 of the light emitting elements LD.
- the first contact electrode CNE1 is provided on the 1-1 contact electrode CNE1_1 and the 1-2 capping layer CPL1_2 provided on the 1-1 capping layer CPL1_1. It may include the provided 1-2 contact electrode (CNE1_2).
- a third insulating layer INS3 covering the first contact electrode CNE1 may be provided on the first contact electrode CNE1.
- the third insulating layer INS3 may prevent the first contact electrode CNE1 from being exposed to the outside, thereby preventing corrosion of the first contact electrode CNE1.
- the third insulating layer INS3 may include an inorganic insulating film made of an inorganic material or an organic insulating film made of an organic material.
- the third insulating layer INS3 may be formed of a single layer as illustrated in the drawings, but the present invention is not limited thereto.
- the third insulating layer INS3 may be made of multiple layers.
- the third insulating layer INS3 may have a structure in which a plurality of inorganic insulating layers or a plurality of organic insulating layers are alternately stacked.
- the third insulating layer INS3 may have a structure in which a first inorganic insulating layer, an organic insulating layer, and a second inorganic insulating layer are sequentially stacked.
- the second contact electrode CNE2 may be provided on the second electrode REL2.
- the second contact electrode CNE2 covers the second electrode REL2 when viewed on a plane and may overlap the second electrode REL2. Also, the second contact electrode CNE2 may overlap the second end EP2 of each of the first light emitting elements LD1 and the first end EP1 of each of the second light emitting elements LD2.
- the second contact electrode CNE2 may be made of the same material as the first contact electrode CNE1, but the present invention is not limited thereto.
- a fourth insulating layer INS4 covering the second contact electrode CNE2 may be provided on the second contact electrode CNE2.
- the fourth insulating layer INS4 may prevent the second contact electrode CNE2 from being exposed to the outside, thereby preventing corrosion of the second contact electrode CNE2.
- the fourth insulating layer INS4 may be formed of either an inorganic insulating film or an organic insulating film.
- An overcoat layer OC may be provided on the fourth insulating layer INS4.
- the overcoat layer OC mitigates the step caused by the partition wall PW, the first and second electrodes REL1 and REL2, and the first and second contact electrodes CNE1 and CNE2 disposed thereunder. It may be a planarization layer.
- the overcoat layer OC may be an encapsulation layer that prevents oxygen and moisture from penetrating the light emitting elements LD. Depending on the embodiment, the overcoat layer OC may be omitted.
- a predetermined voltage may be applied to both ends EP1 and EP2 of each of the light emitting elements LD through the first electrode REL1 and the second electrode REL2. Accordingly, while the electron-hole pair is combined in the active layer 12 of each of the light emitting elements LD, each of the light emitting elements LD may emit light.
- the active layer 12 may emit light in a wavelength range of 400 nm to 900 nm.
- a cross section of the light emitting element LD may be formed in a circular shape. That is, the outer surface 14a of the insulating film 14 may be circular.
- the thickness of the first and second contact electrodes CNE1 and CNE2 respectively connected to both ends EP1 and EP2 of the light emitting element LD while partially covering both ends of the light emitting element LD due to the characteristics of the original column Is not constant.
- portions of the first and second contact electrodes CNE1 and CNE2 are thinned or partially formed due to the cylindrical characteristics. This may exist.
- the thicknesses of the first and second contact electrodes CNE1 and CNE2 do not decrease even in the contact area.
- FIG. 12B a portion in which the 1-1 contact electrode CNE1_1 contacts the light emitting element LD is illustrated.
- the first and second contact electrodes CNE1 and CNE2 in the portion A where the light emitting element LD and the first insulating layer INS1 contact Can be effectively prevented from decreasing.
- FIG. 13A and 13B are cross-sectional views of IVIV of FIG. 11 including a light emitting device according to another embodiment of the present invention.
- the first-1 contact electrode CNE1_1 may be formed to have a sufficient thickness at the portion A where the light emitting element LD and the first insulating layer INS1 contact.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Led Devices (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
본 발명 실시 예의 발광 소자는 제 1 도전성 반도체층, 상기 제 1 도전성 반도체층 상에 배치된 활성층 및 상기 활성층 상에 배치된 제 2 도전성 반도체층을 포함하는 막대 형상의 발광 적층 패턴; 및 상기 발광 적층 패턴의 외측면을 둘러싸며, 두께가 일정하지 않은 절연 피막을 포함한다.
Description
본 발명은 발광 소자에 관한 것으로, 초소형의 발광 소자, 이의 제조 방법 및 발광 소자를 구비하는 표시 장치에 관한 것이다.
발광 다이오드(Light Emitting Diode)는 열악한 환경 조건에서도 비교적 양호한 내구성을 나타내며, 수명 및 휘도 측면에서도 우수한 성능을 보유한다. 최근, 이러한 발광 다이오드를 다양한 표시 장치에 적용하기 위한 연구가 활발히 진행되고 있다.
이러한 연구의 일환으로서, 무기 결정 구조, 예를 들어 질화물계 반도체를 성장시킨 구조를 이용하여 마이크로 크기나 나노 크기 정도로 작은 초소형의 발광 다이오드를 제작하는 기술이 개발되고 있다.
발광 다이오드는 표시 패널의 화소 등을 구성할 수 있을 정도로 작은 크기로 제작될 수 있다. 발광 다이오드는 기판에서 별도로 독립 성장시킨 후, 성장된 발광 다이오드를 분리하여 표시 패널 제작 등에 사용할 수 있다.
본 발명은 인접한 발광 소자들이 뭉치는 것을 방지할 수 있는 발광 소자, 이의 제조 방법 및 발광 소자를 구비한 표시 장치를 제공하는 것이다.
본 발명의 실시 예의 발광 소자는 제 1 도전성 반도체층, 상기 제 1 도전성 반도체층 상에 배치된 활성층 및 상기 활성층 상에 배치된 제 2 도전성 반도체층을 포함하는 막대 형상의 발광 적층 패턴; 및 상기 발광 적층 패턴의 외측면을 둘러싸며, 두께가 일정하지 않은 절연 피막을 포함한다.
본 발명의 실시 예에 있어서, 상기 발광 적층 패턴의 외측면과 상기 절연 피막의 외측면의 형상이 상이하다.
본 발명의 실시 예에 있어서, 상기 발광 적층 패턴은 일 방향을 따라 상기 제 1 도전성 반도체층, 상기 활성층 및 상기 제 2 도전성 반도체층이 차례로 적층된 원 기둥 형상이며, 상기 절연 피막의 외측면은 타원형, 다각형 또는 상기 타원형과 상기 다각형이 혼합된 형상이다.
본 발명의 실시 예에 있어서, 상기 절연 피막의 외측면은 적어도 하나의 돌출부를 포함한다.
본 발명의 실시 예에 있어서, 상기 발광 적층 패턴의 외측면의 형상과 상기 절연 피막의 외측면의 형상이 동일하다.
본 발명의 실시 예에 있어서, 상기 발광 적층 패턴 및 상기 절연 피막의 외측면이 다각형이다.
본 발명 실시 예의 발광 소자의 제조 방법은 기판을 제공하는 단계; 상기 기판 상에 막대 형상의 발광 적층 패턴을 형성하는 단계; 상기 발광 적층 패턴의 외측면을 둘러싸며, 두께가 일정하지 않은 절연 피막을 형성하는 단계; 및 상기 절연 피막에 둘러싸인 상기 발광 적층 패턴을 상기 기판으로부터 분리하여 복수의 발광 소자들을 형성하는 단계를 포함한다.
본 발명의 실시 예에 있어서, 상기 절연 피막을 형성하는 단계는, 상기 발광 적층 패턴의 외측면과 동일한 형상의 외측면을 갖는 절연 피막 패턴을 형성하는 단계; 및 상기 절연 피막 패턴을 일부 제거하여 상기 발광 적층 패턴의 외측면과 상이한 외측면을 갖는 절연 피막을 형성하는 단계를 포함한다.
본 발명의 실시 예에 있어서, 상기 절연 피막을 형성하는 단계는, 원 기둥 형상의 상기 발광 적층 패턴의 외측면을 감싸도록 타원형, 다각형 또는 상기 타원형과 상기 다각형이 혼합된 형상의 외측면을 갖도록 상기 절연 피막을 형성한다.
본 발명의 실시 예에 있어서, 상기 절연 피막을 형성하는 단계는, 상기 절연 피막의 외측면이 적어도 하나의 돌출부를 갖도록 형성한다.
본 발명의 실시 예에 있어서, 상기 발광 적층 패턴을 형성하는 단계는, 상기 기판 상에 제 1 도전성 반도체층, 활성층, 제 2 도전성 반도체층을 차례로 형성하여 발광 적층체를 형성하는 단계; 상기 발광 적층체 상에 복수의 제 1 미세 패턴들을 형성하는 단계; 및 상기 복수의 제 1 미세 패턴들을 따라 상기 발광 적층체를 식각하고, 상기 복수의 제 1 미세 패턴들을 제거하여 복수의 상기 발광 적층 패턴들을 형성하는 단계를 포함한다.
본 발명의 실시 예에 있어서, 상기 복수의 제 1 미세 패턴을 형성하는 단계는, 상기 발광 적층체 상에 복수의 제 1 레진들을 형성하는 단계; 상기 제 1 레진들이 복수의 제 1 홈들을 구비하는 제 1 몰드의 상기 복수의 제 1 홈들을 충진하도록 하는 단계; 및 상기 제 1 몰드를 제거하여, 상기 발광 적층체 상에 복수의 제 1 미세 패턴들을 형성하는 단계를 포함한다.
본 발명의 실시 예에 있어서, 상기 절연 피막을 형성하는 단계는, 상기 발광 적층 패턴과 상기 절연 피막 패턴 상에 복수의 제 2 미세 패턴들을 형성하는 단계; 상기 복수의 제 2 미세 패턴들을 따라 상기 절연 피막 패턴을 식각하여 상기 절연 피막을 형성한다.
본 발명의 실시 예에 있어서, 상기 복수의 제 2 미세 패턴을 형성하는 단계는, 상기 발광 적층 패턴 및 상기 발광 적층 패턴의 외측면을 감싸는 상기 절연 피막 패턴 상에 복수의 제 2 레진들을 형성하는 단계; 상기 제 2 레진들이 복수의 제 2 홈들을 구비하는 제 2 몰드의 상기 복수의 제 2 홈들을 충진하도록 하는 단계; 및 상기 제 2 몰드를 제거하여, 상기 발광 적층 패턴 및 상기 발광 적층 패턴의 외측면을 감싸는 상기 절연 피막 패턴 상에 복수의 제 2 미세 패턴들을 형성하는 단계를 포함한다.
본 발명의 실시 예에 있어서, 상기 제 1 몰드의 상기 제 1 홈의 형상과 상기 제 2 몰드의 상기 제 2 홈의 형상이 상이하다.
본 발명의 실시 예에 있어서, 상기 절연 피막을 형성하는 단계는, 상기 발광 적층 패턴의 외측면과 동일한 외측면을 갖도록 상기 절연 피막을 형성한다.
본 발명의 실시 예에 있어서, 상기 발광 적층 패턴 및 상기 절연 피막의 외측면을 다각형으로 형성한다.
본 발명의 일 실시 예의 표시 장치는 표시 영역 및 비표시 영역을 포함한 기판; 및 상기 기판의 상기 표시 영역에 제공되며, 복수의 서브 화소들을 각각 구비한 복수의 화소들을 포함하고, 각 서브 화소는, 적어도 하나의 트랜지스터를 포함한 화소 회로부 및 광을 출사하는 단위 발광 영역을 구비한 표시 소자층을 포함하고, 상기 표시 소자층은, 상기 기판 상에 제공되며 광을 출사하는 적어도 하나의 발광 소자와, 상기 발광 소자를 사이에 두고 일정 간격으로 이격된 제 1 및 제 2 전극과, 상기 제 1 전극과 상기 발광 소자의 제 1 단부를 전기적으로 연결하는 제 1 컨택 전극 및 상기 제 2 전극과 상기 발광 소자의 제 2 단부를 전기적으로 연결하는 제 2 컨택 전극을 포함하고, 상기 발광 소자는, 제 1 도전성 반도체층, 상기 제 1 도전성 반도체층 상에 배치된 활성층, 상기 활성층 상에 배치된 제 2 도전성 반도체층을 포함하는 발광 적층 패턴; 및 상기 발광 적층 패턴의 외측면을 둘러싸며, 두께가 일정하지 않은 절연 피막을 포함한다.
본 발명의 실시 예에 있어서, 상기 발광 적층 패턴의 외측면과 상기 절연 피막의 외측면의 형상이 상이하다.
본 발명의 발광 소자는 발광 적층 패턴 및 발광 적층 패턴의 외측면을 감싸며, 두께가 일정하지 않은 절연 피막을 포함하여 이루어져, 인접한 발광 소자들의 뭉침을 방지할 수 있다.
따라서, 본 발명의 발광 소자를 포함하는 표시 장치의 발광 특성이 저하되는 것을 방지할 수 있다.
도 1a는 본 발명 실시 예의 발광 소자의 사시도이다.
도 1b는 도 1a의 ⅠⅠ의 단면도이다.
도 1c는 도 1a의 ⅡⅡ의 단면도이다.
도 2a 내지 도 2d는 본 발명의 다른 실시 예의 발광 소자의 사시도이다.
도 3a 내지 도 3c는 본 발명의 또 다른 실시 예의 발광 소자의 사시도이다.
도 4a 내지 도 4o는 도 1a의 발광 소자의 제조 방법을 나타낸 단면도이다.
도 5a는 도 4d에서 개시하는 제 1 몰드의 사시도이다.
도 5b는 도 5a의 제 1 몰드를 아래에서 바라본 평면도이다.
도 6a는 도 4k에서 개시하는 제 2 몰드의 사시도이다.
도 6b는 도 6a의 제 2 몰드를 아래에서 바라본 평면도이다.
도 7a 내지 도 7g는 도 6b에서 개시하는 제 2 홈의 다양한 형상을 도시한 도면이다.
도 8a 및 도 8b는 본 발명의 다른 실시 예의 발광 소자의 사시도이다.
도 9는 본 발명의 일 실시 예에 따른 표시 장치를 도시한 것으로, 도 1a에 도시된 발광 소자를 발광원으로 사용한 표시 장치의 개략적인 평면도이다.
도 10a 내지 도 10c는 도 9의 표시 장치의 단위 발광 영역을 다양한 실시 예에 따라 나타낸 회로도들이다.
도 11은 도 9에 도시된 화소들 중 하나의 화소에 포함된 제 1 내지 제 3 서브 화소를 개략적으로 도시한 평면도이다.
도 12a는 도 11의 ⅢⅢ에 따른 단면도이다.
도 12b는 도 11의 ⅣⅣ에 따른 단면도이다.
도 13a 및 도 13b는 본 발명의 다른 실시 예에 따른 발광 소자를 포함하는 도 11의 ⅣⅣ에 따른 단면도이다.
동일한 도면부호는 동일한 구성요소를 지칭한다. 또한, 도면들에 있어서, 구성요소들의 두께, 비율 및 치수는 기술적 내용의 효과적인 설명을 위해 과장된 것이다. "및/또는"은 연관된 구성들이 정의할 수 있는 하나 이상의 조합을 모두 포함한다.
제 1, 제 2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제 1 구성요소는 제 2 구성요소로 명명될 수 있고, 유사하게 제 2 구성요소도 제 1 구성요소로 명명될 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
또한, "아래에", "하측에", "위에", "상측에" 등의 용어는 도면에 도시된 구성들의 연관관계를 설명하기 위해 사용된다. 상기 용어들은 상대적인 개념으로, 도면에 표시된 방향을 기준으로 설명된다.
"포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
도 1a는 본 발명 실시 예의 발광 소자를 위에서 바라본 사시도이다. 도 1b는 도 1a의 ⅠⅠ의 단면도이며, 도 1c는 도 1a의 ⅡⅡ의 단면도이다.
도 1a, 도 1b 및 도 1c와 같이, 본 발명의 실시 예의 발광 소자(LD)는 발광 적층 패턴(10)과, 발광 적층 패턴(10)의 외측면(10a)을 둘러싸는 절연 피막(14)을 포함한다. 이 때, 발광 적층 패턴(10)은 원 기둥 형상으로 이루어질 수 있으며, 절연 피막(14)은 두께가 일정하지 않다. 이를 위해, 발광 적층 패턴(10)의 외측면(10a)의 형상과 절연 피막(14)의 외측면(14a)의 형상이 상이할 수 있다.
발광 적층 패턴(10)은 제 1 도전성 반도체층(11), 활성층(12) 및 제 2 도전성 반도체층(13)을 포함할 수 있다. 발광 적층 패턴(10)은 발광 소자(LD)의 길이(L) 방향으로 제 1 도전성 반도체층(11), 활성층(12) 및 제 2 도전성 반도체층(13)이 순차적으로 적층된 적층 구조를 포함할 수 있다. 상기와 같은 발광 적층 패턴(10)을 포함하는 발광 소자(LD)는 일 방향을 따라 연장된 막대 형상으로 제공될 수 있다. 막대 형상이라 함은 길이(L) 방향으로 긴(즉, 종횡비가 1보다 큰) 로드 형상(rod-like shape), 또는 바 형상(bar-like shape)을 포괄한다.
발광 적층 패턴(10)은 발광 소자(LD)의 길이(L) 방향을 따라 제 1 도전성 반도체층(11), 활성층(12) 및 제 2 도전성 반도체층(13)이 차례로 적층된 막대 형상으로, 활성층(12)을 기준으로 일측 단부와 타측 단부를 가질 수 있다. 발광 적층 패턴(10)의 일측 단부에는 제 1 도전성 반도체층(11) 또는 제 2 도전성 반도체층(13) 중 하나가 배치되며, 발광 적층 패턴(10)의 타측 단부에는 나머지 하나가 배치될 수 있다.
상기와 같은 발광 소자(LD)는 나노 크기 내지 마이크로 크기 정도로 작은 크기, 예를 들어 각각 나노 크기 또는 마이크로 크기 범위의 직경 및/또는 길이를 가질 수 있다. 다만, 본 발명에서 발광 소자(LD)의 크기가 이에 한정되지는 않는다. 예를 들어, 발광 소자(LD)를 이용한 발광 장치를 광원으로 이용하는 각종 장치, 예를 들어 표시 장치 등의 설계 조건에 따라 발광 소자(LD)의 크기는 다양하게 변경될 수 있다.
제 1 도전성 반도체층(11)은 예를 들어 적어도 하나의 n형 반도체층을 포함할 수 있다. 예를 들어, 제 1 도전성 반도체층(11)은 InAlGaN, GaN, AlGaN, InGaN, AlN, InN 중 어느 하나의 반도체 재료를 포함하며, Si, Ge, Sn 등과 같은 제 1 도전성 도펀트가 도핑된 n형 반도체층을 포함할 수 있다. 다만, 제 1 도전성 반도체층(11)을 구성하는 물질이 이에 한정되는 것은 아니며, 이 외에도 다양한 물질로 제 1 도전성 반도체층(11)을 구성할 수 있다.
활성층(12)은 단일 또는 다중 양자 우물 구조로 형성될 수 있다. 도시하지는 않았으나, 활성층(12)의 상부 및/또는 하부에는 도전성 도펀트가 도핑된 클래드층(미도시)이 더 형성될 수도 있다. 예를 들어, 클래드층은 AlGaN층 또는 InAlGaN층으로 형성될 수 있다. AlGaN, AlInGaN 등의 물질이 활성층(12)을 형성하는 데에 이용될 수 있으며, 이 외에도 다양한 물질이 활성층(12)을 구성할 수 있다.
제 2 도전성 반도체층(13)은 제 1 도전성 반도체층(11)과 상이한 타입의 반도체층을 포함할 수 있다. 예를 들어, 제 2 도전성 반도체층(13)은 적어도 하나의 p형 반도체층을 포함할 수 있다. 예를 들어, 제 2 도전성 반도체층(13)은 InAlGaN, GaN, AlGaN, InGaN, AlN, InN 중 적어도 하나의 반도체 재료를 포함하며, Mg 등과 같은 제 2 도전성 도펀트가 도핑된 p형 반도체층을 포함할 수 있다. 다만, 제 2 도전성 반도체층(13)을 구성하는 물질이 이에 한정되는 것은 아니며, 이 외에도 다양한 물질이 제 2 도전성 반도체층(13)을 구성할 수 있다.
발광 적층 패턴(10)의 일측 단부에는 전극층(15)이 더 배치될 수 있다. 도면에서는 전극층(15)이 제 2 도전성 반도체층(13) 상에 배치된 것을 도시하였으며, 이하의 실시 예에서 제 1 도전성 반도체층(11), 활성층(12), 제 2 도전성 반도체층(13) 및 전극층(15)을 포함하는 적층 구조를 발광 적층 패턴(10)으로 지칭한다.
전극층(15)은 제 2 도전성 반도체층(13)에 전기적으로 연결되는 오믹(Ohmic) 컨택 전극일 수 있으나, 이에 한정되지는 않는다. 전극층(15)은 투명 또는 불투명한 물질을 포함하여 이루어질 수 있다. 이를 위해, 전극층(15)은 Cr, Ti, Al, Au, Ni 등의 금속 물질 또는 ITO, IZO, ITZO 등의 투명 전도성 산화물 등을 단독 또는 혼합하여 사용할 수 있다.
상기와 같은 발광 적층 패턴(10)은 양측 단부에 소정의 전압을 인가하면, 활성층(12)에서 전자와 정공이 결합하면서 발광 적층 패턴(10)이 발광하게 된다. 이러한 원리를 이용하여 발광 적층 패턴(10)을 표시 장치의 광원으로 사용할 수 있다.
발광 적층 패턴(10)은 원 기둥 형상으로 이루어져 발광 적층 패턴(10)의 외측면(10a)이 원형일 수 있다. 이 경우, 제 1 도전성 반도체층(11), 활성층(12), 제 2 도전성 반도체층(13) 및 전극층(15)이 원 기둥 형상을 갖는다. 또한, 도시하지는 않았으나, 발광 적층 패턴(10)은 타원 기둥 형상이거나 다각 기둥 형상일 수도 있다. 이 경우, 제 1 도전성 반도체층(11), 활성층(12), 제 2 도전성 반도체층(13) 및 전극층(15)이 타원 기둥 형상을 갖거나, 다각 기둥 형상을 가질 수 있다.
상기와 같은 발광 적층 패턴(10)은 절연 피막(14)에 의해 감싸진 구조일 수 있다. 절연 피막(14)은 활성층(12)이 제 1 도전성 반도체층(11) 및 제 2 도전성 반도체층(13) 외의 도전성 물질과 접촉하는 것을 방지하고, 동시에 발광 적층 패턴(10)의 표면 결함을 최소화하기 위한 것이다. 절연 피막(14)은 절연성을 갖는 다양한 재료를 포함할 수 있으며, 예를 들어, SiO2, Si3N4, Al2O3 및 TiO2로 이루어지는 군으로부터 선택된 하나 이상의 절연물질을 포함할 수 있으며, 이에 한정하지는 않는다.
도면에서는 절연 피막(14)이 발광 적층 패턴(10)의 외측면을(10a) 완전히 감싸는 것을 도시하였으나, 절연 피막(14)은 발광 적층 패턴(10)의 일부만 감싸는 구조일 수 있다. 이 경우, 절연 피막(14)은 활성층(12)은 완전히 감싸며 제 1 도전성 반도체층(11), 제 2 도전성 반도체층(13) 및 전극층(15)의 일부는 노출시킬 수도 있다.
상기와 같이 발광 적층 패턴(10)과 절연 피막(14)을 포함하는 발광 소자(LD)는 나노 크기 정도로 매우 작은 초소형의 발광 소자(LD)로, 발광 소자(LD)를 표시 장치의 광원 등으로 사용하기 위해 발광 소자(LD)들을 표시 장치의 각 화소들에 배열시킬 수 있다. 예를 들어, 발광 소자(LD)들이 분산된 용액을 각 화소 영역에 도포하여 발광 소자(LD)들을 표시 장치의 광원으로 사용할 수 있다.
그런데, 발광 소자(LD)들이 매우 작아, 화소 내에서 서로 인접하거나 뭉치도록 배치될 수 있다. 이 경우, 서로 인접한 발광 소자(LD)이 서로 닿아, 서로 인접한 발광 소자(LD)의 절연 피막(14)이 서로 접할 수 있다. 그리고, 발광 소자(LD)들이 닿는 부분의 절연 피막(14)의 일부가 제거되어 쇼트(short)가 발생할 수 있다.
따라서, 본 발명 실시 예의 발광 소자는 발광 적층 패턴(10)의 외측면(10a)의 형상과 상이한 외측면(14a)을 갖는 절연 피막(14)을 포함하여 이루어져, 절연 피막(14)의 두께가 일정하지 않을 수 있다.
구체적으로, 원 기둥 형상의 발광 적층 패턴(10)의 단면, 즉, 발광 적층 패턴(10)의 외측면(10a)은 원형이나, 절연 피막(14)의 외측면(14a)은 타원형일 수 있다. 따라서, 절연 피막(14)은 두께가 일정하지 않고, 상대적으로 두꺼운 제 1 두께(T1)와 상대적으로 얇은 제 2 두께(T2)를 포함할 수 있다.
반면에, 본 발명의 발광 소자는 절연 피막(14)의 두께가 불균일하므로, 발광 소자(LD)들이 서로 뭉치거나 인접하게 배치되더라도, 두께가 불균일한 절연 피막(14)을 통해 서로 인접한 발광 소자(LD)의 발광 적층 패턴(10)이 서로 충분한 이격 간격을 확보하여 서로 인접한 발광 소자(LD)들의 뭉침을 방지할 수 있다. 또한, 발광 소자(LD)들이 인접한 부분에서 절연 피막(14)의 일부가 제거되더라도, 절연 피막(14)의 두께가 상이하므로 발광 적층 패턴(10)이 외부로 노출되는 것을 방지할 수 있다.
이하, 첨부된 도면을 참조하여, 본 발명의 다른 실시 예에 따른 발광 소자들을 설명하면 다음과 같다.
도 2a 내지 도 2d는 본 발명의 다른 실시 예의 발광 소자의 사시도이다.
도 2a, 도 2b, 도 2c 및 도 2d와 같이, 본 발명의 다른 실시 예의 발광 소자는 원 기둥 형상으로 이루어진 발광 적층 패턴(10)의 외측면(10a)을 둘러싸는 절연 피막(14)의 외측면(14a)이 세 개 이상의 선분으로 둘러싸인 다각형일 수 있다. 이 경우 절연 피막(14)은 두께가 일정하지 않고, 상대적으로 두꺼운 제 1 두께(T1)와 상대적으로 얇은 제 2 두께(T2)를 포함할 수 있다.
도 3a 내지 도 3c는 본 발명의 또 다른 실시 예의 발광 소자의 사시도이다.
본 발명의 또 다른 실시 예의 발광 소자는 절연 피막(14)의 외측면(14a)이 적어도 하나의 돌출부(14a_2)를 포함할 수 있다. 따라서, 발광 소자(도 1a의 LD)들이 인접하게 배치되더라도, 돌출부(14a_2)를 통해 인접한 발광 소자(1a의 LD)들 사이의 간격을 충분히 확보할 수 있으며, 발광 소자(도 1a의 LD)들이 인접한 부분에서 돌출부(14a_2)가 손상되더라도, 발광 적층 패턴(10)이 외부로 노출되는 것을 효율적으로 방지할 수 있다.
구체적으로, 도 3a와 같이, 절연 피막(14)의 외측면(14a)은 돌출부(14a_2)를 포함하며, 절연 피막(14)의 외측면(14a) 중 돌출부(14a_2)를 제외한 나머지 영역(14a_1)은 발광 적층 패턴(10)의 외측면(10a)과 동일한 형태일 수 있다. 이 경우, 절연 피막(14)는 돌출부(14a_2)에 대응되는 부분의 두께가 가장 두껍다. 즉, 절연 피막(14)의 외측면(14a)이 돌출부(14a_2)를 포함하는 경우, 절연 피막(14)의 상대적으로 두꺼운 제 1 두께(T1)와 상대적으로 얇은 제 2 두께(T2)의 차이가 커, 서로 인접한 발광 소자(LD)들이 뭉치는 것을 효율적으로 방지할 수 있다. 또한, 도 3b와 같이, 절연 피막(14)의 외측면(14a) 중 돌출부(14a_2)를 제외한 나머지 영역(14a_1) 역시 발광 적층 패턴(10)의 외측면(10a)과 상이할 수 있다.
돌출부(14a_2)는 서로 인접한 발광 소자(도 1a의 LD)에 있어서 발광 적층 패턴(10)들 사이의 간격을 충분히 확보하기 위한 것으로, 절연 피막(14)의 외측면(14a)이 적어도 2 개의 돌출부(14a_2)를 포함하는 경우, 발광 소자(도 1a의 LD)들 사이의 간격을 안정적으로 확보할 수 있다. 예를 들어, 도 3c 와 같이, 절연 피막(14)의 외측면(14a)이 4 개의 돌출부(14a_2)를 포함하는 경우, 발광 소자(도 1a의 LD)들 사이의 간격을 안정적으로 확보할 수 있다. 이 때, 돌출부(14a_2)의 폭이나 길이는 용이하게 변경 가능하다.
이하, 첨부된 도면을 참조하여, 본 발명 실시 예의 발광 소자를 제조하는 방법을 구체적으로 설명하면 다음과 같다.
도 4a 내지 도 4o는 도 1a의 발광 소자의 제조 방법을 나타낸 단면도이다.
도 4a와 같이, 기판(1)을 준비하고, 기판(1) 상에 희생층(3)을 형성한다. 기판(1)은 GaAs, GaP 또는 InP 기판일 수 있다. 기판(1)은 에피택셜 성장을 위한 웨이퍼일 수 있다. 예를 들어, 기판(1)은 표면 상에 GaAs 층을 갖는 ZnO 기판을 포함할 수 있다. 또한, 표면 상에 GaAs 층을 갖는 Ge 기판 및 Si 웨이퍼 상에 버퍼층을 사이에 두고 GaAs 층을 갖는 Si 기판도 적용될 수 있다.
기판(1)은 공지의 제법으로 제작된 시판품의 단결정 기판을 사용할 수 있다. 발광 소자(도 1a의 LD)를 제조하기 위한 선택비를 만족하고 에피택셜 성장이 원활히 이루어질 수 있는 경우, 기판(1)의 재료는 이에 제한되지 않는다. 이하의 실시 예에서, 기판(1)은 GaAs로 이루어진 GaAs 기판인 것으로 설명한다.
기판(1)의 에피택셜 성장시키는 표면은 평평한 것이 바람직하다. 기판(1)은 상기 기판(1)이 적용되는 제품에 따라 크기와 직경이 달라질 수 있으며, 에피택셜 성장으로 인한 적층 구조에 의한 휨을 저감할 수 있는 형태로 제조될 수 있다. 기판(1)의 형상은 원형에 한정되지 않고 직사각형 등 다각형의 형상일 수 있다.
희생층(3)은 기판(1) 상에 MOCVD 방법, MBE 방법, VPE 방법, LPE 방법 등으로 형성될 수 있다. 희생층(3)은 GaAs, AlAs 또는 AlGaAs로 형성될 수 있다. 이하의 실시 예에서, 희생층(3)은 GaAs로 이루어진 것으로 설명한다.
기판(1)과 희생층(3)은 서로 접촉하여 배치될 수 있다. 희생층(3)은 발광 소자(도 1a의 LD)를 제조하는 과정에서 발광 소자(LD)와 기판(1) 사이에 위치하여 발광 소자(도 1a의 LD)와 기판(1)을 물리적으로 이격시킬 수 있다.
희생층(3)은 다양한 형태의 구조를 가질 수 있으며, 단일 층 구조 또는 다층 구조로 이루어질 수 있다. 희생층(3)은 발광 소자(도 1a의 LD)를 형성하는 최종 제조 공정에서 제거되는 층일 수 있다. 희생층(3)이 제거되는 경우, 희생층(3)의 상부 및 하부에 위치하는 층간 분리가 이루어질 수 있다.
도 4b와 같이, 희생층(3) 상에 발광 적층체(10')를 형성한다. 발광 적층체(10')는 희생층(3) 상에 제 1 도전성 반도체층(11)을 형성하는 단계, 제 1 도전성 반도체층(11) 상에 활성층(12)을 형성하는 단계, 활성층(12) 상에 제 2 도전성 반도체층(13)을 형성하는 단계 및 제 2 도전성 반도체층(13) 상에 전극층(15)을 형성하는 단계를 포함하여 형성될 수 있다.
제 1 도전성 반도체층(11)은 희생층(3)과 마찬가지로 에피택셜 성장을 통하여 형성될 수 있고, MOCVD 방법, MBE 방법, VPE 방법, LPE 방법 등으로 형성될 수 있다. 실시 예에 따라, 제 1 도전성 반도체층(11)과 희생층(3) 사이에는 버퍼층, 비도핑 반도체층 등 결정성 향상을 위한 추가의 반도체층이 더 형성될 수 있다.
제 1 도전성 반도체층(11)은 III(Ga, Al, In)-V(P, As)족으로 구성되는 반도체 재료를 포함할 수 있으며, Si, Ge, Sn 등과 같은 제 1 도전성 도펀트가 도핑된 반도체층을 포함할 수 있다. 예를 들어, 제 1 도전성 반도체층(11)은 Si로 도핑된 GaP, GaAs, GaInP, AlGaInP 중 적어도 하나의 반도체 재료를 포함할 수 있다. 즉, 제 1 도전성 반도체층(11)은 적어도 하나의 n형 반도체층을 포함할 수 있다. 제 1 도전성 반도체층(11)을 구성하는 물질이 이에 한정되는 것은 아니며, 이 외에도 다양한 물질이 제 1 도전성 반도체층(11)을 구성할 수 있다.
활성층(12)은 전자와 정공이 재결합되는 영역으로, 전자와 정공이 재결합함에 따라 낮은 에너지 준위로 천이하며, 그에 상응하는 파장을 가지는 광을 방출할 수 있다.
활성층(12)은 제 1 도전성 반도체층(11) 상에 형성될 수 있으며, 단일 또는 다중 양자 우물 구조로 형성될 수 있다. 활성층(12)의 위치는 발광 소자(LD)의 종류에 따라 다양하게 변경될 수 있다.
활성층(12)은 GaInP, AlGaInP, GaAs, AlGaAs, InGaAs, InGaAsP, InP, InAs 중 적어도 하나의 물질을 포함할 수 있다. 활성층(12)은 400nm 내지 900nm의 파장을 갖는 광을 방출할 수 있다. 활성층(12)은 이중 헤테로 구조(double heterostructure)를 사용할 수 있다. 실시 예에 따라, 활성층(12)의 상부 면 및/또는 하부 면에는 도전성 도펀트가 도핑된 클래드층(미도시)이 더 형성될 수 있다.
제 2 도전성 반도체층(13)은 제 1 도전성 반도체층(11)과 상이한 타입의 반도체층을 포함할 수 있다. 제 2 도전성 반도체층(13)은 III(Ga, Al, In)-V(P, As)족으로 구성되는 반도체 재료를 포함할 수 있으며, Mg 등과 같은 제 2 도전성 도펀트가 도핑된 반도체층을 포함할 수 있다. 예를 들어, 제 2 도전성 반도체층(13)은 Mg로 도핑된 GaP, GaAs, GaInP, AlGaInP 중 적어도 하나의 반도체 재료를 포함할 수 있다. 즉, 제 2 도전성 반도체층(13)은 p형 반도체층을 포함할 수 있다. 그러나, 제 2 도전성 반도체층(13)을 구성하는 물질은 이에 한정하지 않는다.
제 2 도전성 반도체층(13) 상에 전극층(15)을 형성한다. 전극층(15)은 금속 또는 금속 산화물을 포함할 수 있다. 예를 들어, 전극층(15)은 Cr, Ti, Al, Au, Ni, ITO, IZO, ITZO 및 이들의 산화물 또는 합금 등을 단독 또는 혼합하여 사용할 수 있다. 본 발명의 일 실시 예에서, 전극층(15)은 활성층(12)에서 생성되어 발광 소자(도 1a의 LD)의 외부로 방출되는 광의 손실을 최소화하며 제 2 도전성 반도체층(13)으로 전류 퍼짐(spreading) 효과를 향상시키기 위해 인듐 주석 산화물(ITO)과 같이 투명한 금속 산화물로 이루어질 수 있으나, 이에 한정하지 않는다.
기판(1) 상에 순차적으로 적층된 제 1 도전성 반도체층(11), 활성층(12), 제 2 도전성 반도체층(13) 및 전극층(15)은 발광 적층체(10')를 구성할 수 있다. 그러나, 전극층(15)을 형성하지 않아도 무방하다. 이 경우, 제 1 도전성 반도체층(11), 활성층(12) 및 제 2 도전성 반도체층(13)이 발광 적층체(10')를 구성할 수 있다.
도 4c와 같이, 발광 적층체(10') 상에 제 1 레진(R1)을 도포한다. 제 1 레진(R1)은 도트 형태로 발광 적층체(10') 상에 도포될 수 있다. 제 1 레진(R1)은 광 경화 물질을 포함할 수 있다. 그리고, 도 4d와 같이, 복수의 제 1 홈(H1)들을 포함하는 제 1 몰드(M1)를 발광 적층체(10')의 상부면에 접속시킨다. 이 때, 제 1 몰드(M1)는 소프트 몰드로, 롤 라미네이팅 공정을 이용하여 제 1 몰드(M1)의 복수의 제 1 홈(H1)들을 발광 적층체(10') 상에 밀착시킬 수 있다. 제 1 몰드(M1)는 투명한 물질을 포함하여 이루어져, 향후 제 1 레진(R1)을 경화하기 위해 UV 경화 등의 공정을 진행할 때, UV가 투명한 제 1 몰드(M1)를 통과하여 제 1 레진(R1)을 경화할 수 있다.
이하, 첨부된 도면을 참조하여 제 1 몰드를 구체적으로 설명하면 다음과 같다.
도 5a는 도 4d에서 개시하는 제 1 몰드(M1)의 사시도이며, 도 5b는 도 5a의 제 1 몰드(M1)를 아래에서 바라본 평면도이다.
도 5a 및 도 5b와 같이, 제 1 몰드(M1)는 일 면에 형성된 복수의 제 1 홈(H1)들을 포함한다. 이 때, 제 1 홈(H1)은 발광 적층체(도 4d의 10') 상에 형성된 제 1 레진(도 4c의 R1)을 채워, 제 1 홈(H1)의 형상으로 제 1 레진(도 4c의 R1)을 형성하기 위한 것이다.
본 발명 실시 예는 제 1 홈(H1)의 형상대로 형성된 제 1 레진(도 4c의 R1)을 발광 적층체(도 4d의 10')를 패터닝하기 위한 마스크로 사용하는 바, 도 1a와 같이 발광 적층 패턴(도 1a의 10)을 원 기둥 형상으로 형성하기 위해, 제 1 홈(H1)은 원형일 수 있다. 이 때, 제 1 홈(H1)의 폭(W1)을 조절하여 발광 적층 패턴(도 1a의 10)을 마이크로 크기 혹은 나노 크기 정도로 형성할 수 있다. 또한, 도시하지는 않았으나, 발광 적층 패턴(도 1a의 10)을 다각 기둥 형상으로 형성하기 위해서는 제 1 홈(H1)이 다각형일 수 있다.
다시, 도 4d를 참조하면, 상기와 같은 제 1 몰드(M1)를 발광 적층체(10') 상부면에서 접촉시키면, 제 1 레진(R1)이 제 1 홈(H1)들에 채워질 수 있다. 그리고, 제 1 홈(H1)들에 제 1 레진(R1)이 채워진 상태에서 UV 등을 이용하여 제 1 레진(R1)을 경화한다. 한편, 제 1 레진(R1)이 열 경화 물질을 포함하는 경우, 제 1 레진(R1)의 경화는 열을 통해 이루어질 수도 있다.
그리고 도 4e와 같이, 제 1 몰드(M1)를 발광 적층체(10')로부터 분리하여, 도 4f와 같이, 발광 적층체(10') 상에 복수의 제 1 미세 패턴(MP1)들을 형성할 수 있다. 제 1 미세 패턴(MP1)들은 제 1 홈(H1)의 형상을 따라 가장자리가 원형이며, 제 1 미세 패턴(MP1)들 역시 제 1 홈(H1)과 같은 폭(W1)을 갖는다.
이어, 도 4g와 같이, 제 1 미세 패턴(MP1)을 마스크로 이용하여 발광 적층체(도 4F의 10')를 수직 방향으로 식각하여 복수의 발광 적층 패턴(10)들을 형성할 수 있다.
구체적으로, 제 1 미세 패턴(MP1)에 의해 노출된 영역의 전극층(15), 제 2 도전성 반도체층(13), 활성층(12) 및 제 1 도전성 반도체층(11)을 식각하여 복수의 발광 적층 패턴(10)들을 형성할 수 있다.
상기와 같은 식각은 RIE(reactive ion etching: 반응성 이온 에칭), RIBE(reactive ion bEMA etching: 반응성 이온 빔 에칭) 또는 ICP-RIE(inductively coupled plasma reactive ion etching: 유도 결합 플라즈마 반응성 이온 에칭)과 같은 건식 식각법이 이용될 수 있다. 이러한 건식 식각법은 습식 식각법과 달리, 일방성 식각이 가능하여 발광 적층 패턴(10)들을 형성하기에 적합하다. 그러나, 식각 방법은 이에 한정하지 않고 다양하게 변경 가능하다.
이어, 도 4h와 같이, 제 1 미세 패턴(MP1)을 포함한 발광 적층 패턴(10)의 외측면을 감싸는 절연 피막 패턴(14P)을 형성한다. 도면에서는 절연 피막 패턴(14P)이 발광 적층 패턴(10)의 외측면을 완전히 감싸는 것을 도시하였으나, 절연 피막 패턴(14P)은 상술한 바와 같이, 발광 적층 패턴(10)의 일부를 노출시키도록 형성될 수도 있다. 이 때, 원 기둥 형상의 발광 적층 패턴(10)의 원형의 외측면을 감싸도록 절연 피막 패턴(14P)의 외측면 역시 원형일 수 있다. 즉, 발광 적층 패턴(10)의 외측면의 형상과 절연 피막 패턴(14P)의 외측면의 형상은 동일하다.
절연 피막 패턴(14P)은 절연성을 갖는 다양한 재료를 포함할 수 있으며, 예를 들어, SiO2, Si3N4, Al2O3 및 TiO2로 이루어지는 군으로부터 선택된 하나 이상의 절연물질을 포함할 수 있으며, 이에 한정하지는 않는다.
그리고, 도 4i와 같이, 각 발광 적층 패턴(10)의 상부면에 남아있는 제 1 미세 패턴(MP1)을 제거하여, 각 발광 적층 패턴(10)의 전극층(15)을 노출시킨다.
이어, 도 4j와 같이, 발광 적층 패턴(10) 상에 제 2 레진(R2)을 도포한다. 제 2 레진(R2)은 도트 형태로 각 발광 적층 패턴(10) 상에 도포될 수 있다. 제 2 레진(R2) 역시 제 1 레진(도 4k의 R1)과 같이, 광 경화물질을 포함할 수 있다. 이어, 도 4k와 같이, 복수의 제 2 홈(H2)을 갖는 제 2 몰드(M2)를 발광 적층 패턴(10)들의 상부면에 접촉시킨다. 이 때, 제 2 몰드(M2)는 소프트 몰드로, 롤 라미네이팅 공정을 이용하여 제 2 몰드(M2)의 복수의 제 2 홈(H2)들을 발광 적층 패턴(10) 상에 밀착시킬 수 있다. 특히, 제 2 몰드(M2) 역시 투명한 물질을 포함하여 이루어져, 향후 제 2 레진(R2)을 경화하기 위해 UV 경화 등의 공정을 진행할 때, UV가 투명한 제 2 몰드(M2)를 통과하여 제 2 레진(R2)을 경화할 수 있다.
이하, 첨부된 도면을 참조하여 제 2 몰드를 구체적으로 설명하면 다음과 같다.
도 6a는 도 4k에서 개시하는 제 2 몰드(M2)의 사시도이며, 도 6b는 도 6a의 제 2 몰드(M2)를 아래에서 바라본 평면도이다. 또한, 도 7a 내지 도 7g는 도 6b에서 개시하는 제 2 홈의 다양한 형상을 도시한 도면이다.
도 6a 및 도 6b와 같이, 제 2 몰드(M2)는 일면에 형성된 복수의 제 2 홈(H2)들을 포함한다. 이 때, 제 2 홈(H2)은 발광 적층 패턴(10)의 외측면을 감싸는 절연 피막 패턴(도 4k의 14P)들을 일부 제거하기 위한 것이다. 따라서, 제 2 홈(H2)의 폭(W2)은 도 5a 및 도 5b의 제 1 몰드(M1)의 제 1 홈(H1)의 폭(W1)보다 넓은 것이 바람직하다.
또한, 도 1a와 같이, 절연 피막(도 1a의 14)의 외측면을 타원형으로 형성하기 위해 제 2 홈(H2)은 타원형일 수 있으며, 도 2a 내지 도 2d 및 도 3a 내지 도 3c와 같이, 외측면이 다양한 절연 피막(14)을 형성하기 위해 제 2 홈(H2)의 형상은 도 7a 내지 도 7g와 같이 다양한 형상일 수 있다. 따라서, 도 7a 내지 도 7g와 같이, 타원형, 다각형, 타원형과 다각형이 혼합된 형상, 돌출부를 갖는 형상 등의 제 2 홈(H2)을 포함하는 제 2 몰드(M2)를 이용하면, 제 2 홈(H2)과 동일한 형상의 제 2 미세 패턴(MP2)을 형성할 수 있다.
다시, 도 4k를 참조하면, 상기와 같은 제 2 몰드(M2)를 발광 적층 패턴(10) 상부면에서 가압하면, 제 2 레진(R2)이 제 2 몰드(M2)의 제 2 홈(H2)에 채워질 수 있다. 그리고, 제 2 홈(H2)들에 제 2 레진(R2)이 채워진 상태에서 UV 등을 이용하여 제 2 레진(R2)을 경화한다.
그리고, 도 4l과 같이, 제 2 몰드(M2)를 발광 적층 패턴(10)들로부터 분리하여, 발광 적층 패턴(10)들 상에 복수의 제 2 미세 패턴(MP2)들을 형성할 수 있다. 이 때, 제 2 미세 패턴(MP2)들은 도 4f의 제 1 미세 패턴(MP1)의 폭(W1)보다 넓은 폭(W2)을 가져, 제 2 미세 패턴(MP2)이 발광 적층 패턴(10)의 외측면을 감싸는 절연 피막 패턴(14P) 상에도 배치될 수 있다.
이어, 도 4m과 같이, 제 2 미세 패턴(MP2)을 마스크로 이용하여 각 발광 적층 패턴(10)의 외측면을 감싸는 절연 피막 패턴(14P)을 수직 방향으로 식각하여 절연 피막(14)을 형성할 수 있다. 따라서, 절연 피막(14)은 절연 피막 패턴(14P)의 적어도 일부가 제거된 구조로, 절연 피막(14)은 절연 피막 패턴(14P)보다 두께가 얇은 영역을 포함할 수 있다.
구체적으로, 도 4l와 같이, 절연 피막 패턴(14P)의 외측면은 발광 적층 패턴(10)의 외측면과 같이 원형이나, 절연 피막(14)의 외측면(14a)은 도 1a와 같이 발광 적층 패턴(10)의 외측면(10a)와 상이한 타원형의 외측면(14a)이다.
그리고, 도 4n과 같이, 제 2 미세 패턴(MP2)을 제거하여, 절연 피막(14)에 둘러싸인 발광 적층 패턴(10)을 포함하는 발광 소자(LD)들을 형성할 수 있다.
이어, 도 4o와 같이, 발광 소자(LD)들을 기판(1)으로부터 분리한다. 예를 들어, 화학적 분리(Chemical lift-off; CLO) 방식을 이용하여 발광 소자(LD)들을 기판(1)으로부터 분리할 수 있다. 예를 들어, 희생층(3)을 제거하여 발광 소자(LD)들이 기판(1)으로부터 분리될 수 있다.
즉, 상기와 같은 본 발명 실시 예의 발광 소자의 제조 방법은 제 1 미세 패턴을 이용하여 발광 적층 패턴(10)들을 형성하고, 제 1 미세 패턴과 상이한 제 2 미세 패턴을 이용하여 발광 적층 패턴(10)의 외측면을 감싸는 절연 피막 패턴(14P)을 선택적으로 제거하여 절연 피막(14)을 형성할 수 있다.
이하, 첨부된 도면을 참조하여, 본 발명 다른 실시 예의 발광 소자들을 설명하면 다음과 같다.
도 8a 및 도 8b는 본 발명의 다른 실시 예의 발광 소자의 사시도이다.
도 8a 및 도 8b와 같이, 본 발명의 다른 실시 예의 발광 소자(LD)는 발광 적층 패턴(10)의 외측면(10a)과 절연 피막(14)의 외측면(14a)은 동일한 형상으로 이루어질 수 있으며, 원형을 제외한 다양한 형상에서 선택될 수 있다.
예를 들어, 도 8a 및 도 8b와 같이, 발광 적층 패턴(10)의 외측면과 절연 피막(14)이 외측면이 동일한 다각형 형상일 수 있다. 도면에서는 발광 적층 패턴(10)의 외측면과 절연 피막(14)이 외측면이 모두 삼각형이거나 모두 사각형인 것을 도시하였다 이 경우에도, 발광 적층 패턴(10)의 외측면을 감싸는 절연 피막(14)의 두께가 일정하지 않을 수 있다. 즉, 절연 피막(14)은 상대적으로 두꺼운 제 1 두께(T1)와 상대적으로 얇은 제 2 두께(T2)를 포함할 수 있다.
상기와 같은 본 발명 다른 실시 예의 발광 소자(LD)는 도 6b 및 도 7a 내지 도 7g의 제 2 몰드(M2)를 이용하여 원형을 제외한 다양한 형상의 외측면을 갖는 발광 적층 패턴(10)을 형성할 수 있으며, 상기와 같은 발광 적층 패턴(10)의 외측면을 감싸며, 발광 적층 패턴(10)의 외측면과 동일한 외측면을 갖는 절연 피막(14)을 형성할 수 있다.
이하, 첨부된 도면을 참조하여, 본 발명 실시 예의 발광 소자를 구비하는 표시 장치를 구체적으로 설명하면 다음과 같다.
도 9는 본 발명의 일 실시 예에 따른 표시 장치를 도시한 것으로, 도 1a에 도시된 발광 소자를 발광원으로 사용한 표시 장치의 개략적인 평면도이다.
도 9에 있어서, 편의를 위하여 영상이 표시되는 표시 영역을 중심으로 표시 장치의 구조를 간략하게 도시하였다. 다만, 실시 예에 따라서 도시되지 않은 적어도 하나의 구동 회로부(예를 들어, 주사 구동부 및 데이터 구동부) 및/또는 복수의 신호 배선들이 표시 장치에 더 배치될 수도 있다.
도 1a 및 도 9를 참조하면, 본 발명의 일 실시 예에 따른 표시 장치는 기판(SUB), 기판(SUB) 상에 제공되며 적어도 하나의 발광 소자(도 1a의 LD)를 포함하는 복수의 화소(PXL)들, 기판(SUB) 상에 제공되며 화소(PXL)들을 구동하는 구동부(미도시) 및 화소(PXL)들과 구동부를 연결하는 배선부(미도시)를 포함할 수 있다.
표시 장치는 발광 소자(도 1a의 LD)를 구동하는 방식에 따라 패시브 매트릭스형 표시 장치와 액티브 매트릭스형 표시 장치로 분류될 수 있다. 표시 장치가 액티브 매트릭스형으로 구현되는 경우, 화소(PXL)들 각각은 발광 소자(LD)에 공급되는 전류량을 제어하는 구동 트랜지스터와 구동 트랜지스터로 데이터 신호를 전달하는 스위칭 트랜지스터 등을 포함할 수 있다.
최근 해상도, 콘트라스트, 동작 속도의 관점에서 각 화소(PXL)마다 선택하여 점등하는 액티브 매트릭스형 표시 장치가 주류가 되고 있으나 본 발명이 이에 한정되는 것은 아니며 화소(PXL) 그룹별로 점등이 수행되는 패시브 매트릭스형 표시 장치 또한 발광 소자(도 1a의 LD)를 구동하기 위한 구성 요소들(예를 들어, 제 1 및 제 2 전극 등)을 사용할 수 있다.
기판(SUB)은 표시 영역(DA) 및 비표시 영역(NDA)을 포함할 수 있다. 표시 영역(DA)은 영상을 표시하는 화소(PXL)들이 제공되는 영역일 수 있다. 비표시 영역(NDA)은 화소(PXL)들을 구동하기 위한 구동부 및 화소(PXL)들과 구동부를 연결하는 배선부의 일부가 제공되는 영역일 수 있다.
도면에서는 표시 영역(DA)이 표시 장치의 중앙 영역에 배치되고, 비표시 영역(NDA)은 표시 영역(DA)을 둘러싸도록 표시 장치의 가장 자리 영역에 배치된 것을 도시하였으나, 이에 한정하지 않고 위치는 변경될 수 있다.
표시 영역(DA)은 다양한 형상을 가질 수 있다. 예를 들어, 표시 영역(DA)은 직선으로 이루어진 변을 포함하는 닫힌 형태의 다각형, 곡선으로 이루어진 변을 포함하는 원, 타원 등, 직선과 곡선으로 이루어진 변을 포함하는 반원, 반타원 등 다양한 형상으로 제공될 수 있다. 비표시 영역(NDA)은 표시 영역(DA)의 적어도 일측에 제공될 수 있다. 도면에서는 비표시 영역(NDA)이 표시 영역(DA)을 둘러싸는 구조를 도시하였으나, 이에 한정하지 않는다.
기판(SUB)은 경성 기판 또는 가요성 기판일 수 있으며, 이에 한정하지 않는다. 예를 들어, 기판(SUB)은 유리 또는 강화 유리로 구성된 경성 기판, 또는 플라스틱 또는 금속 재질의 박막 필름으로 구성된 가요성 기판일 수 있다. 또한, 기판(SUB)은 투명 기판일 수 있으나 이에 한정되지는 않는다. 또한, 기판(SUB)은 반투명 기판, 불투명 기판, 또는 반사성 기판일 수도 있다.
화소(PXL)들은 기판(SUB) 상의 표시 영역(DA) 내에 제공될 수 있다. 화소(PXL)들 각각은 영상을 표시하는 최소 단위로서 복수 개로 제공될 수 있다.
화소(PXL)들 각각은 스캔 신호 및 데이터 신호에 의해 구동되는 발광 소자(도 1a의 LD)를 포함할 수 있다. 발광 소자(도 1a의 LD)는 마이크로 크기 혹은 나노 크기 정도로 작은 크기를 가지며 인접하게 배치된 발광 소자(도 1a의 LD)들과 서로 병렬로 연결될 수 있다. 발광 소자(도 1a의 LD)는 각 화소(PXL)의 광원을 구성할 수 있다.
또한, 화소(PXL)들 각각은 복수의 서브 화소들을 포함할 수 있다. 예를 들어, 각 화소(PXL)는 서로 다른 색의 빛을 방출하는 제 1 서브 화소(SP1), 제 2 서브 화소(SP2) 및 제 3 서브 화소(SP3)를 포함할 수 있다. 예를 들어, 제 1 서브 화소(SP1)는 적색의 광을 방출하는 적색 서브 화소일 수 있고, 제 2 서브 화소(SP2)는 녹색의 광을 방출하는 녹색 서브 화소일 수 있으며, 제 3 서브 화소(SP3)는 청색의 광을 방출하는 청색 서브 화소일 수 있다. 그러나, 각 화소(PXL)를 구성하는 서브 화소들의 색상, 종류 및/또는 개수 등은 이에 한정하지 않는다.
또한, 도 9에서는 표시 영역(DA)에서 화소(PXL)들이 제 1 방향(DR1) 및 제 1 방향(DR1)과 상이한 제 2 방향(DR2)을 따라 매트릭스 형태로 배치된 것을 도시하였으나, 화소(PXL)들의 배치는 이에 한정하지 않고 다양하게 배치 가능하다. 또한, 각 화소(PXL)들의 복수의 서브 화소들의 배치 역시 다양하게 변경 가능하다.
구동부는 배선부를 통해 각 화소(PXL)에 구동 신호를 제공하여 각 화소(PXL)의 구동을 제어할 수 있다. 도 9에서는 설명의 편의를 위해 배선부가 생략되었다.
구동부는 스캔 라인을 통해 화소(PXL)들에 스캔 신호를 제공하는 스캔 구동부, 발광 제어 라인을 통해 화소(PXL)들에 발광 제어 신호를 제공하는 발광 구동부, 및 데이터 라인을 통해 화소(PXL)들에 데이터 신호를 제공하는 데이터 구동부 및 타이밍 제어부를 포함할 수 있다. 타이밍 제어부는 스캔 구동부, 발광 구동부, 및 데이터 구동부를 제어할 수 있다.
도 10a 내지 도 10c는 도 9의 표시 장치의 단위 발광 영역을 다양한 실시 예에 따라 나타낸 회로도들이다.
도 10a 내지 도 10c에 있어서, 제 1 내지 제 3 서브 화소 각각은 능동형 화소로 구성될 수 있다. 다만, 제 1 내지 제 3 서브 화소 각각의 종류, 구조 및/또는 구동 방식이 특별히 한정되지는 않는다. 예를 들어, 제 1 내지 제 3 서브 화소 각각은 현재 공지된 다양한 구조의 수동형 또는 능동형 표시 장치의 화소로 구성될 수도 있다.
또한, 도 10a 내지 도 10c에 있어서, 제 1 내지 제 3 서브 화소는 실질적으로 동일 또는 유사한 구조를 가질 수 있다. 이하에서는, 편의를 위하여 제 1 내지 제 3 서브 화소 중 제 1 서브 화소(SP1)를 대표하여 설명하기로 한다.
도 1a, 도 9 및 도 10a를 참조하면, 제 1 서브 화소(SP1)는 데이터 신호에 대응하는 휘도의 광을 생성하는 발광 영역(EMA)과 발광 영역(EMA)을 구동하기 위한 화소 구동 회로(144)를 포함할 수 있다.
실시 예에 따라, 발광 영역(EMA)은 제 1 구동 전원(VDD)과 제 2 구동 전원(VSS) 사이에 병렬로 연결된 복수의 발광 소자(LD)들을 포함할 수 있다. 여기서, 제 1 구동 전원(VDD)과 제 2 구동 전원(VSS)은 서로 다른 전위를 가질 수 있다. 예를 들어, 제 1 구동 전원(VDD)은 고전위 전원으로 설정되고, 제 2 구동 전원(VSS)은 저전위 전원으로 설정될 수 있다. 제 1 및 제 2 구동 전원(VDD, VSS)들의 전위 차는 제 1 서브 화소(SP1)의 발광 기간 동안 발광 소자(LD)들의 문턱 전압 이상으로 설정될 수 있다.
발광 소자(LD)들 각각의 제 1 전극(예를 들어, 애노드 전극)은 화소 구동 회로(144)를 경유하여 제 1 구동 전원(VDD)에 접속되고, 발광 소자(LD)들 각각의 제 2 전극(예를 들어, 캐소드 전극)은 제 2 구동 전원(VSS)에 접속된다. 따라서, 발광 소자(LD)들 각각은 화소 구동 회로(144)에 의해 제어되는 구동 전류에 상응하는 휘도로 발광할 수 있다.
한편, 도 10a 내지 도 10c에 있어서, 발광 소자(LD)들이 제 1 및 제 2 구동 전원(VDD, VSS)의 사이에 서로 동일한 방향(예를 들어, 순방향)으로 병렬 연결된 실시 예를 도시하였으나, 본 발명이 이에 한정되지는 않는다. 예를 들어, 다른 실시 예에서는 발광 소자(LD)들 중 일부는 제 1 및 제 2 구동 전원(VDD, VSS)의 사이에 순방향으로 연결되고, 다른 일부는 역방향으로 연결될 수 있다. 제 1 및 제 2 구동 전원(VDD, VSS) 중 하나는 교류 전압의 형태로 공급될 수 있다. 이 경우, 발광 소자(LD)들은 연결 방향이 동일한 그룹 별로 교번적으로 발광할 수 있다. 또는, 또 다른 실시 예에서는, 제 1 서브 화소(SP1)가 단일의 발광 소자(LD)만을 포함할 수도 있다.
화소 구동 회로(144)는 제 1 및 제 2 트랜지스터(T1, T2)와 스토리지 커패시터(Cst)를 포함할 수 있다. 다만, 화소 구동 회로(144)의 구조가 도 10a에 도시된 실시 예에 한정되지는 않는다.
제 1 트랜지스터(T1; 스위칭 트랜지스터)의 제 1 전극은 데이터 라인(Dj)에 접속되고, 제 2 전극은 제 1 노드(N1)에 접속된다. 여기서, 제 1 트랜지스터(T1)의 제 1 전극과 제 2 전극은 서로 다른 전극으로, 예를 들어 제 1 전극이 소스 전극이면 제 2 전극은 드레인 전극일 수 있다. 그리고, 제 1 트랜지스터(T1)의 게이트 전극은 스캔 라인(Si)에 접속된다.
상기와 같은 제 1 트랜지스터(T1)는 스캔 라인(Si)으로부터 제 1 트랜지스터(T1)가 턴-온될 수 있는 전압(예를 들어, 로우 전압)의 스캔신호가 공급될 때 턴-온되어, 데이터 라인(Dj)과 제 1 노드(N1)를 전기적으로 연결한다. 이때, 데이터 라인(Dj)으로는 해당 프레임의 데이터 신호가 공급되고, 이에 따라 제 1 노드(N1)로 데이터 신호가 전달된다. 제 1 노드(N1)로 전달된 데이터 신호는 스토리지 커패시터(Cst)에 충전된다.
제 2 트랜지스터(T2; 구동 트랜지스터)의 제 1 전극은 제 1 구동 전원(VDD)에 접속되고, 제 2 전극은 발광 소자(LD)들 각각의 제 1 전극에 전기적으로 연결된다. 제 2 트랜지스터(T2)의 게이트 전극은 제 1 노드(N1)에 접속된다. 이와 같은 제 2 트랜지스터(T2)는 제 1 노드(N1)의 전압에 대응하여 발광 소자(LD)들로 공급되는 구동 전류의 양을 제어한다.
스토리지 커패시터(Cst)의 일 전극은 제 1 구동 전원(VDD)에 접속되고, 다른 전극은 제 1 노드(N1)에 접속된다. 이와 같은 스토리지 커패시터(Cst)는 제 1 노드(N1)로 공급되는 데이터 신호에 대응하는 전압을 충전하고, 다음 프레임의 데이터 신호가 공급될 때까지 충전된 전압을 유지한다.
편의상, 도 10a에서는 데이터 신호를 제 1 서브 화소(SP1) 내부로 전달하기 위한 제 1 트랜지스터(T1)와, 데이터 신호의 저장을 위한 스토리지 커패시터(Cst)와, 상기 데이터 신호에 대응하는 구동 전류를 발광 소자(LD)들로 공급하기 위한 제 2 트랜지스터(T2)를 포함한 비교적 단순한 구조의 화소 구동 회로(144)를 도시하였다.
하지만, 본 발명이 이에 한정되는 것은 아니며 화소 구동 회로(144)의 구조는 다양하게 변경 실시될 수 있다. 예를 들어, 화소 구동 회로(144)는 제 2 트랜지스터(T2)의 문턱전압을 보상하기 위한 트랜지스터 소자, 제 1 노드(N1)를 초기화하기 위한 트랜지스터 소자, 및/또는 발광 소자(LD)들의 발광 시간을 제어하기 위한 트랜지스터 소자 등과 같은 적어도 하나의 트랜지스터 소자나, 제 1 노드(N1)의 전압을 부스팅하기 위한 부스팅 커패시터 등과 같은 다른 회로소자들을 추가적으로 더 포함할 수 있음을 물론이다.
또한, 도 10a에서는 화소 구동 회로(144)에 포함되는 트랜지스터들, 예를 들어 제 1 및 제 2 트랜지스터들(T1, T2)을 모두 P타입의 트랜지스터들로 도시하였으나, 본 발명이 이에 한정되지는 않는다. 즉, 화소 구동 회로(144)에 포함되는 제 1 및 제 2 트랜지스터들(T1, T2) 중 적어도 하나는 N타입의 트랜지스터로 변경될 수도 있다.
다음으로, 도 1a, 도 9 및 도 10b를 참조하면, 본 발명의 일 실시 예에 따르면 제 1 및 제 2 트랜지스터들(T1, T2)은 N타입의 트랜지스터로 구현될 수 있다. 도 10b에 도시된 화소 구동 회로(144)는 트랜지스터 타입 변경으로 인한 일부 구성요소들의 접속 위치 변경을 제외하고는 그 구성이나 동작이 도 10a의 화소 구동 회로(144)와 유사하다. 따라서, 이에 대한 상세한 설명은 생략하기로 한다.
본 발명의 일 실시 예에 있어서, 화소 구동 회로(144)의 구성은 도 10a 및 도 10b에 도시된 실시 예에 한정되지 않는다. 예를 들어, 화소 구동 회로(144)는 도 10c에 도시된 실시 예와 같이 구성될 수 있다.
도 1a, 도 9 및 도 10c를 참조하면, 화소 구동 회로(144)는 제 1 서브 화소(SP1)의 스캔 라인(Si) 및 데이터 라인(Dj)에 연결될 수 있다. 예를 들어, 제 1 서브 화소(SP1)가 표시 영역(DA)의 i번째 행 및 j번째 열에 배치된 경우, 제 1 서브 화소(SP1)의 화소 구동 회로(144)는 표시 영역(DA)의 i번째 스캔 라인(Si) 및 j번째 데이터 라인(Dj)에 연결될 수 있다.
또한, 실시 예에 따라, 화소 구동 회로(144)는 적어도 하나의 다른 스캔 라인에 더 연결될 수도 있다. 예를 들어, 표시 영역(DA)의 i번째 행에 배치된 제 1 서브 화소(SP1)는 i-1번째 스캔 라인(Si-1) 및/또는 i+1번째 스캔 라인(Si+1)에 더 연결될 수 있다.
또한, 실시 예에 따라, 화소 구동 회로(144)는 제 1 및 제 2 구동 전원(VDD, VSS) 외에도 제 3의 전원에 더 연결될 수 있다. 예를 들어, 화소 구동 회로(144)는 초기화 전원(Vint)에도 연결될 수 있다.
화소 구동 회로(144)는 제 1 내지 제 7 트랜지스터(T1 ~ T7)와 스토리지 커패시터(Cst)를 포함할 수 있다.
제 1 트랜지스터(T1; 구동 트랜지스터)의 일 전극, 예를 들어, 소스 전극은 제 5 트랜지스터(T5)를 경유하여 제 1 구동 전원(VDD)에 접속되고, 다른 일 전극, 예를 들어, 드레인 전극은 제 6 트랜지스터(T6)를 경유하여 발광 소자(LD)들의 일측 단부에 접속될 수 있다. 그리고, 제 1 트랜지스터(T1)의 게이트 전극은 제 1 노드(N1)에 접속될 수 있다. 이러한 제 1 트랜지스터(T1)는, 제 1 노드(N1)의 전압에 대응하여, 발광 소자(LD)들을 경유하여 제 1 구동 전원(VDD)과 제 2 구동 전원(VSS)의 사이에 흐르는 구동 전류를 제어한다.
제 2 트랜지스터(T2; 스위칭 트랜지스터)는 제 1 서브 화소(SP1)에 연결된 j번째 데이터 라인(Dj)과 제 1 트랜지스터(T1)의 소스 전극 사이에 접속된다. 그리고, 기 제 2 트랜지스터(T2)의 게이트 전극은 제 1 서브 화소(SP1)에 연결된 i번째 스캔 라인(Si)에 접속된다. 이와 같은 제 2 트랜지스터(T2)는 i번째 스캔 라인(Si)으로부터 게이트-온 전압(예를 들어, 로우 전압)의 주사 신호가 공급될 때 턴-온되어 j번째 데이터 라인(Dj)을 제 1 트랜지스터(T1)의 소스 전극에 전기적으로 연결한다. 따라서, 제 2 트랜지스터(T2)가 턴-온되면, j번째 데이터 라인(Dj)으로부터 공급되는 데이터 신호가 제 1 트랜지스터(T1)로 전달된다.
제 3 트랜지스터(T3)는 제 1 트랜지스터(T1)의 드레인 전극과 제 1 노드(N1) 사이에 접속된다. 그리고, 제 3 트랜지스터(T3)의 게이트 전극은 i번째 스캔 라인(Si)에 접속된다. 이와 같은 제 3 트랜지스터(T3)는 i번째 스캔 라인(Si)으로부터 게이트-온 전압의 주사 신호가 공급될 때 턴-온되어 제 1 트랜지스터(T1)의 드레인 전극과 제 1 노드(N1)를 전기적으로 연결한다. 따라서, 제 3 트랜지스터(T3)가 턴-온될 때 제 1 트랜지스터(T1)는 다이오드 형태로 접속된다.
제 4 트랜지스터(T4)는 제 1 노드(N1)와 초기화 전원(Vint) 사이에 접속된다. 그리고, 제 4 트랜지스터(T4)의 게이트 전극은 이전 주사선, 예를 들어 i-1번째 스캔 라인(Si-1)에 접속된다. 이와 같은 제 4 트랜지스터(T4)는 i-1번째 스캔 라인(Si-1)으로 게이트-온 전압의 주사 신호가 공급될 때 턴-온되어 초기화 전원(Vint)의 전압을 제 1 노드(N1)로 전달한다. 여기서, 초기화 전원(Vint)은 데이터 신호의 최저 전압 이하의 전압을 가질 수 있다.
제 5 트랜지스터(T5)는 제 1 구동 전원(VDD)과 제 1 트랜지스터(T1) 사이에 접속된다. 그리고, 제 5 트랜지스터(T5)의 게이트 전극은 대응하는 발광 제어 라인, 예를 들어 i번째 발광 제어 라인(Ei)에 접속된다. 이와 같은 제 5 트랜지스터(T5)는 i번째 발광 제어 라인(Ei)으로 게이트-오프 전압의 발광 제어신호가 공급될 때 턴-오프되고, 그 외의 경우에 턴-온된다.
제 6 트랜지스터(T6)는 제 1 트랜지스터(T1)와 발광 소자(LD)들의 일 단부 사이에 접속된다. 그리고, 제 6 트랜지스터(T6)의 게이트 전극은 i번째 발광 제어 라인(Ei)에 접속된다. 이와 같은 제 6 트랜지스터(T6)는 i번째 발광 제어 라인(Ei)으로 게이트-오프 전압의 발광 제어신호가 공급될 때 턴-오프되고, 그 외의 경우에 턴-온된다.
제 7 트랜지스터(T7)는 발광 소자(LD)들의 일 단부와 초기화 전원(Vint) 사이에 접속된다. 그리고, 제 7 트랜지스터(T7)의 게이트 전극은 다음 단의 스캔 라인들 중 어느 하나, 예를 들어 i+1번째 스캔 라인(Si+1)에 접속된다. 이와 같은 제 7 트랜지스터(T7)는 i+1번째 스캔 라인(Si+1)으로 게이트-온 전압의 주사 신호가 공급될 때 턴-온되어 초기화 전원(Vint)의 전압을 발광 소자(LD)들의 일 단부로 공급한다.
스토리지 커패시터(Cst)는 제 1 구동 전원(VDD)과 제 1 노드(N1) 사이에 접속된다. 이와 같은 스토리지 커패시터(Cst)는 각 프레임 기간에 제 1 노드(N1)로 공급되는 데이터 신호 및 제 1 트랜지스터(T1)의 문턱전압에 대응하는 전압을 저장한다.
편의를 위하여, 도 10c에서는 제 1 내지 제 7 트랜지스터(T1 ~ T7) 모두를 P타입의 트랜지스터로 도시하였으나, 본 발명이 이에 한정되지는 않는다. 예를 들어, 화소 구동 회로(144)에 포함되는 제 1 내지 제 7 트랜지스터들(T1 ~ T7) 중 적어도 하나가 N타입의 트랜지스터로 변경되거나 상기 제 1 내지 제 7 트랜지스터(T1 ~ T7) 전부가 N타입의 트랜지스터로 변경될 수도 있다.
이하, 첨부된 도면을 참조하여 도 9의 표시 장치의 화소를 구체적으로 설명하면 다음과 같다.
도 11은 도 9에 도시된 화소들 중 하나의 화소에 포함된 제 1 내지 제 3 서브 화소를 개략적으로 도시한 평면도이다. 도 12a는 도 11의 ⅢⅢ에 따른 단면도이며, 도 12b는 도 11의 ⅣⅣ에 따른 단면도이다.
도 11은 편의를 위하여 발광 소자(LD)들에 연결되는 트랜지스터 및 트랜지스터에 연결된 신호 배선들의 도시를 생략하였다. 그리고, 도 11, 도 12a 및 도 12b에서는 각각의 전극을 단일의 전극층으로만 도시하는 등 하나의 화소의 구조를 단순화하여 도시하였으나, 본 발명이 이에 한정되는 것은 아니다.
도 11, 도 12a 및 도 12b와 같이, 한 화소(PXL)는 제 1 내지 제 3 서브 화소(SP1 ~ SP3)를 포함할 수 있다. 제 1 내지 제 3 서브 화소(SP1 ~ SP3) 각각은 광을 방출하는 발광 영역(EMA)과 발광 영역(EMA)의 주변에 위치하는 주변 영역(PPA)을 포함할 수 있다.
제 1 내지 제 3 서브 화소(SP1 ~ SP3)는 기판(SUB) 상에 배치된 화소 회로부(PCL) 및 화소 회로부(PCL) 상에 배치된 표시 소자층(DPL)을 포함할 수 있다.
제 1 내지 제 3 서브 화소들(SP1 ~ SP3) 각각의 화소 회로부(PCL)는 기판(SUB) 상에 배치된 버퍼층(BFL)과, 버퍼층(BFL) 상에 배치된 제 1 및 제 2 트랜지스터(T1, T2)와, 구동 전압 배선(DVL) 및 제 1 및 제 2 트랜지스터(T1, T2)와 구동 전압 배선(DVL) 상에 제공된 보호층(PSV)을 포함할 수 있다.
기판(SUB)은 유리, 유기 고분자, 수정 등과 같은 절연성 재료를 포함할 수 있다. 또한, 기판(SUB)은 휘거나 접힘이 가능하도록 가요성(flexibility)을 갖는 재료로 이루어질 수 있고, 단층 구조나 다층 구조를 가질 수 있다.
버퍼층(BFL)은 기판(SUB) 상에 제공되며, 제 1 및 제 2 트랜지스터(T1, T2)에 불순물이 확산되는 것을 방지할 수 있다. 버퍼층(BFL)은 기판(SUB)의 재료 및 공정 조건에 따라 생략될 수도 있다.
제 1 트랜지스터(T1)는 대응하는 서브 화소의 표시 소자층(DPL)에 구비된 발광 소자(LD)들 중 일부에 전기적으로 연결되어 발광 소자(LD)들을 구동하는 구동 트랜지스터이고, 제 2 트랜지스터(T2)는 제 1 트랜지스터(T1)를 스위칭하는 스위칭 트랜지스터일 수 있다.
제 1 및 제 2 트랜지스터(T1, T2) 각각은 반도체층(SCL), 게이트 전극(GE), 소스 및 드레인 전극(SE, DE)을 포함할 수 있다.
반도체층(SCL)은 버퍼층(BFL) 상에 배치될 수 있다. 반도체층(SCL)은 소스 전극(SE)에 접촉되는 소스 영역과 드레인 전극(DE)에 접촉되는 드레인 영역을 포함할 수 있다. 소스 영역과 상기 드레인 영역 사이의 영역은 채널 영역일 수 있다.
반도체층(SCL)은 폴리 실리콘, 아몰퍼스 실리콘, 산화물 반도체 등으로 이루어진 반도체 패턴일 수 있다. 채널 영역은 불순물로 도핑되지 않는 반도체 패턴으로서, 진성 반도체일 수 있다. 소스 영역 및 드레인 영역은 불순물이 도핑된 반도체 패턴일 수 있다.
게이트 전극(GE)은 게이트 절연층(GI)을 사이에 두고 반도체층(SCL) 상에 제공될 수 있다. 그리고, 소스 전극(SE)과 드레인 전극(DE) 각각은 층간 절연층(ILD)과 게이트 절연층(GI)을 관통하는 컨택 홀을 통해 반도체층(SCL)의 소스 영역 및 드레인 영역에 접촉될 수 있다.
구동 전압 배선(DVL)은 층간 절연층(ILD) 상에 제공될 수 있으나, 본 발명이 이에 한정되는 것은 아니며, 실시 예에 따라 화소 회로부(PCL) 내에 포함된 절연층 중 어느 하나의 절연층 상에 제공될 수 있다. 구동 전압 배선(DVL)에는 제 2 구동 전원(도 10a의 VSS 참고)이 인가될 수 있다.
보호층(PSV)은 제 1 트랜지스터(T1)의 드레인 전극(DE)의 일부를 노출하는 제 1 컨택 홀(CH1)과 구동 전압 배선(DVL)의 일부를 노출하는 제 2 컨택 홀(CH2)을 포함할 수 있다.
제 1 내지 제 3 서브 화소들(SP1 ~ SP3) 각각의 표시 소자층(DPL)은 보호층(PSV) 상에 제공된 격벽(PW), 제 1 및 제 2 전극(REL1, REL2), 제 1 및 제 2 연결 배선(CNL1, CNL2), 복수의 발광 소자(LD)들과, 제 1 및 제 2 컨택 전극(CNE1, CNE2)을 포함할 수 있다.
격벽(PW)은 제 1 내지 제 3 서브 화소(SP1 ~ SP3) 각각의 발광 영역(EMA) 내의 보호층(PSV) 상에 제공될 수 있다. 도면에 직접 도시하지 않았으나, 격벽(PW)과 동일한 물질로 구성된 화소 정의막(또는 댐부)이 인접한 서브 화소들 사이의 주변 영역(PPA)에 배치되어 각 서브 화소의 발광 영역(EMA)을 정의할 수 있다.
격벽(PW)은 보호층(PSV) 상에서 인접하게 배치된 격벽(PW)과 일정 간격 이격될 수 있다. 인접한 두 개의 격벽(PW)은 하나의 발광 소자(LD)의 길이(도 1a의 L) 이상으로 보호층(PSV) 상에서 이격될 수 있다. 격벽(PW)은 도 12a에 도시된 바와 같이 보호층(PSV)의 일면으로부터 상부로 향할수록 폭이 좁아지는 반원, 반타원 등의 단면을 가지는 곡면을 포함할 수 있으나, 본 발명이 이에 한정되는 것은 아니다. 예를 들어, 격벽(PW)은 보호층(PSV)의 일면으로부터 상부로 향할수록 폭이 좁아지는 사다리꼴의 단면을 가질 수도 있다.
단면 상에서 볼 때, 격벽(PW)의 형상은 상술한 실시 예들에 한정되는 것은 아니며 발광 소자(LD)들 각각에서 출사된 광의 효율을 향상시킬 수 있는 범위 내에서 다양하게 변경될 수 있다. 인접한 두 개의 격벽(PW)은 보호층(PSV) 상의 동일한 평면 상에 배치될 수 있으며, 동일한 높이를 가질 수 있다.
발광 소자(LD)들은 제 1 내지 제 3 서브 화소(SP1 ~ SP3) 각각의 발광 영역(EMA)에 배치될 수 있다. 구체적으로, 발광 소자(LD)들은 서로 인접한 격벽(PW) 사이에는 배치된 제 1 절연층(INS1) 상에 배치될 수 있다.
발광 소자(LD)들 각각은 무기 결정 구조의 재료를 이용한 초소형의, 예를 들면 나노 또는 마이크로 크기 정도로 작은 크기의 도 1a의 발광 소자(LD)일 수 있다.
발광 소자(LD)들 각각은 각 발광 소자(LD)의 길이(도 1a의 L) 방향을 따라 제 1 도전성 반도체층(11), 활성층(12), 제 2 도전성 반도체층(13) 및 전극층(15)이 순차적으로 적층된 발광 적층 패턴(10) 및 발광 적층 패턴(10)의 외측면(10a)을 감싸는 절연 피막(14)을 포함할 수 있다.
도면에서는 절연 피막(14)이 발광 적층 패턴(10)의 외측면을 완전히 감싸도록 배치된 것을 도시하였으나, 절연 피막(14)은 발광 적층 패턴(10)의 외측면(10a)의 일부를 노출시키도록 배치될 수도 있다. 이 경우, 절연 피막(14)은 활성층(12)을 완전히 감싸도록 배치되며, 제 1, 제 2 도전성 반도체층(11, 13) 및 전극층(15)의 일부를 노출시킬 수도 있다.
절연 피막(14)은 두께가 일정하지 않을 수 있으며, 이를 위해 절연 피막(14)은 발광 적층 패턴(10)의 외측면과 상이한 외측면을 가질 수 있다. 예를 들어, 발광 적층 패턴(10)의 외측면(10a)이 원형인 경우, 절연 피막(14)의 외측면(14a)은 타원형, 다각형 또는 타원형과 다각형이 혼합된 형상일 수 있으며, 도면에서는 절연 피막(14)의 외측면(14a)이 타원형인 것을 도시하였다.
상기와 같은 발광 소자(LD)는 길이(도 1a의 L) 방향을 따라 제 1 단부(EP1)와 제 2 단부(EP2)를 가질 수 있다. 예를 들어, 각 발광 소자(LD)의 제 1 단부(EP1)에는 제 1 도전성 반도체층(11)이 배치될 수 있고, 제 2 단부(EP2)에는 전극층(15)이 배치될 수 있다.
그리고, 각 발광 소자(LD)의 양 단부(EP1, EP2)는 제 1, 제 2 전극(REL1, REL2)과 전기적으로 연결될 수 있다. 이를 위해, 발광 소자(LD)들은 양측 단부가 제 1, 제 2 전극(REL1, REL2)과 연결되도록 제 1 방향(DR1)인 수평 방향으로 정렬될 수 있다. 이 때, 발광 소자(LD)들은 서로 이격되어 배치되거나, 부분적으로 인접하게 배치될 수도 있다.
제 1 및 제 2 전극(REL1, REL2) 각각은 제 1 내지 제 3 서브 화소(SP1 ~ SP3) 각각의 발광 영역(EMA)에 제공되며 제 1 방향(DR1)과 교차하는 제 2 방향(DR2)을 따라 연장될 수 있다. 제 1 및 제 2 전극(REL1, REL2)은 동일한 평면 상에 제공되며 일정 간격 이격될 수 있다.
제 1 전극(REL1)은 제 1 방향(DR1)으로 연장된 제 1 연결 배선(CNL1)으로부터 제 2 방향(DR2)을 따라 분기된 제 1-1 전극(REL1_1)과 제 1-2 전극(REL1_2)을 포함할 수 있다. 제 1-1 전극(REL1_1)과, 제 1-2 전극(REL1_2)과, 제 1 연결 배선(CNL1)은 일체로 제공되어 전기적 및/또는 물리적으로 서로 연결될 수 있다. 그리고, 제 1-1 전극(REL1_1) 및 제 1-2 전극(REL1_2)은 각각 제 1-1 캡핑층(CPL1_1)과 제 1-2 캡핑층(CPL1_2)을 통해 제 1-1 컨택 전극(CNE1_1) 및 제 1-2 컨택 전극(CNE1_2)과 전기적으로 연결될 수 있다.
제 2 전극(REL2)은 제 2 방향(DR2)을 따라 연장되며 제 2 연결 배선(CNL2)과 전기적으로 연결될 수 있다. 본 발명의 일 실시 예에 있어서, 제 2 전극(REL2)은 제 2 연결 배선(CNL2)으로부터 제 2 방향(DR2)을 따라 분기될 수 있다. 이에 따라, 제 2 전극(REL2)과 제 2 연결 배선(CNL2)은 일체로 제공되어, 전기적 및/또는 물리적으로 서로 연결될 수 있다. 그리고, 제 2 전극(REL2) 역시 제 2 캡핑층(CPL2)을 통해 제 2 컨택 전극(CNE2)과 전기적으로 연결될 수 있다.
제 1-1 캡핑층(CPL1_1), 제 1-2 캡핑층(CPL1_2) 및 제 2 캡핑층(CPL2)은 표시 장치의 제조 공정 시, 제 1 전극(REL1)과 제 2 전극(REL2)의 손상을 방지하기 위한 것이다. 그러나, 제 1-1 전극(REL1_1) 및 제 1-2 전극(REL1_2)이 제 1-1 캡핑층(CPL1_1)과 제 1-2 캡핑층(CPL1_2) 없이 제 1-1 컨택 전극(CNE1_1) 및 제 1-2 컨택 전극(CNE1_2)과 전기적으로 연결될 수 있다. 또한, 제 2 전극(REL2) 역시 제 2 컨택 전극(CNE2)과 직접 연결될 수도 있다.
상기와 같은 제 1 및 제 2 전극(REL1, REL2) 각각은 제 1 내지 제 3 서브 화소(SP1 ~ SP3) 각각의 발광 영역(EMA) 내에 발광 소자(LD)들을 정렬하기 위한 정렬 전극으로 기능하며, 발광 소자(LD)들이 정렬된 후에는 발광 소자(LD)들을 구동하기 위한 구동 전극으로 기능할 수 있다.
구체적으로, 제 1 내지 제 3 서브 화소(SP1 ~ SP3) 각각의 발광 영역(EMA) 내에 발광 소자(LD)들이 정렬되기 전, 제 1 전극(REL1)에는 제 1 연결 배선(CNL1)을 통해 제 1 정렬 전압이 인가되고, 제 2 전극(REL2)에는 제 2 연결 배선(CNL2)을 통해 제 2 정렬 전압이 인가될 수 있다. 제 1 정렬 전압과 제 2 정렬 전압은 서로 상이한 전압 레벨을 가질 수 있다. 제 1 전극(REL1)과 제 2 전극(REL2) 각각에 서로 상이한 전압 레벨을 갖는 소정의 정렬 전압이 인가됨에 따라 제 1 전극(REL1)과 제 2 전극(REL2) 사이에 전계가 형성될 수 있다. 전계에 의해 제 1 전극(REL1)과 제 2 전극(REL2) 사이의 보호층(PSV) 상에 발광 소자(LD)들이 정렬될 수 있다.
평면 상에서 볼 때, 제 2 전극(REL2)은 제 1-1 전극(REL1_1)과 제 1-2 전극(REL1_2) 사이에 제공되어, 제 2 전극(REL2)은 제 1-1 및 제 1-2 전극(REL1_1, REL1_2)과 일정 간격 이격될 수 있다. 제 1-1 전극(REL1_1)과, 제 1-2 전극(REL1_2)과, 제 2 전극(REL2)은 보호층(PSV) 상에서 서로 교번하여 배치될 수 있다.
제 1 및 제 2 전극(REL1, REL2)은 발광 소자(LD)들 각각의 양 단부(EP1, EP2)에서 출사되는 광을 표시 장치의 화상이 표시되는 방향(일 예로, 정면 방향)으로 진행되도록 일정한 반사율을 갖는 재료로 이루어질 수 있다.
본 발명의 일 실시 예에 있어서, 제 1 및 제 2 전극(REL1, REL2), 제 1 연결 배선(CNL1), 제 2 연결 배선(CNL2)은 동일한 층에 제공되며, 동일한 물질로 구성될 수 있다.
제 1 및 제 2 전극(REL1, REL2), 제 1 연결 배선(CNL1) 및 제 2 연결 배선(CNL2)은 일정한 반사율을 갖는 도전성 재료로 이루어질 수 있다. 도전성 재료로는 Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, Ti, 이들의 합금과 같은 금속, ITO(indium tin oxide), IZO(indium zinc oxide), ZnO(zinc oxide), ITZO(indium tin zinc oxide)와 같은 도전성 산화물, PEDOT와 같은 도전성 고분자 등이 포함될 수 있다. 제 1 및 제 2 전극(REL1, REL2)과, 제 1 연결 배선(CNL1)과, 제 2 연결 배선(CNL2)의 재료는 상술한 재료들에 한정되는 것은 아니다.
또한, 제 1 및 제 2 전극(REL1, REL2)과, 제 1 연결 배선(CNL1)과, 제 2 연결 배선(CNL2)은 단일막으로 형성될 수 있으나, 본 발명이 이에 한정되는 것은 아니며, 금속들, 합금들, 도전성 산화물들, 도전성 고분자들 중 둘 이상 물질이 적층된 다중막으로 형성될 수 있다.
제 1 및 제 2 전극(REL1, REL2)과, 제 1 연결 배선(CNL1)과, 제 2 연결 배선(CNL2) 각각은 발광 소자(LD)들 각각의 양 단부(EP1, EP2)로 신호를 전달할 때 신호 지연에 의한 전압 강하를 최소화하기 위해 다중막으로 형성될 수 있다.
제 1 및 제 2 전극(REL1, REL2)은 격벽(PW)의 형상에 대응되는 형상을 갖기 때문에, 발광 소자(LD)들 각각의 양 단부(EP1, EP2)에서 출사된 광은 제 1 및 제 2 전극(REL1, REL2)에 의해 반사되어 표시 장치의 정면 방향으로 더욱 진행될 수 있다. 따라서, 발광 소자(LD)들 각각에서 출사된 광의 효율이 향상될 수 있다.
본 발명의 일 실시 예에 있어서, 격벽(PW)과, 제 1 및 제 2 전극(REL1, REL2)은 발광 소자(LD)들 각각에서 출사된 광을 표시 장치의 정면 방향으로 진행되게 하여 발광 소자(LD)들의 출광 효율을 향상시키는 반사 부재로 기능할 수 있다.
제 1 및 제 2 전극(REL1, REL2) 중 어느 하나의 전극은 애노드 전극일 수 있으며, 나머지 하나의 전극은 캐소드 전극일 수 있다. 본 발명의 일 실시 예에 있어서, 제 1 전극(REL1)이 애노드 전극이고, 제 2 전극(REL2)이 캐소드 전극일 수 있다.
본 발명의 일 실시 예에 있어서, 발광 소자(LD)들은 제 1-1 전극(REL1_1)과 제 2 전극(REL2) 사이에 정렬된 복수의 제 1 발광 소자들(LD1) 및 제 2 전극(REL2)과 제 1-2 전극(REL1_2) 사이에 정렬된 복수의 제 2 발광 소자들(LD2)로 구분될 수 있다.
본 발명의 일 실시 예에 있어서, 제 1 연결 배선(CNL1)은 보호층(PSV)의 제 1 컨택 홀(CH1)을 통해 제 1 트랜지스터(T1)의 드레인 전극(DE)에 전기적으로 연결될 수 있다. 제 1 연결 배선(CNL1)은 제 1 전극(REL1)과 일체로 제공되므로, 상기 제 1 연결 배선(CNL1)으로 인가된 제 1 트랜지스터(T1)의 신호는 제 1 전극(REL1)으로 전달될 수 있다.
제 1 전극(REL1)은 발광 소자(LD)들 각각의 양 단부(EP1, EP2) 중 하나의 단부에 인접하게 배치되고, 제 1 컨택 전극(CNE1)을 통해 발광 소자(LD)들 각각에 전기적으로 연결될 수 있다. 이에 따라, 제 1 전극(REL1)으로 인가된 제 1 트랜지스터(T1)의 신호가 제 1 컨택 전극(CNE1)을 통해 발광 소자(LD)들 각각으로 전달될 수 있다.
본 발명의 일 실시 예에 있어서, 제 2 연결 배선(CNL2)은 보호층(PSV)의 제 2 컨택 홀(CH2)을 통해 구동 전압 배선(DVL)에 전기적으로 연결될 수 있다. 제 2 연결 배선(CNL2)은 제 2 전극(REL2)과 일체로 제공되므로, 제 2 연결 배선(CNL2)으로 인가된 구동 전압 배선(DVL)의 제 2 구동 전원(VSS)이 제 2 전극(REL2)으로 전달될 수 있다.
제 2 전극(REL2)은 발광 소자(LD)들 각각의 양 단부(EP1, EP2) 중 나머지 단부에 인접하게 배치되고, 제 2 컨택 전극(CNE2)을 통해 발광 소자(LD)들 각각에 전기적으로 연결될 수 있다. 이에 따라, 제 2 전극(REL2)으로 인가된 제 2 구동 전원(VSS)이 발광 소자(LD)들 각각으로 전달될 수 있다.
제 1 전극(REL1) 상에는 제 1 전극(REL1)과 발광 소자(LD)들 각각의 양 단부(EP1, EP2) 중 하나의 단부를 전기적 및/또는 물리적으로 안정되게 연결하는 제 1 컨택 전극(CNE1)이 제공될 수 있다. 제 1 컨택 전극(CNE1)은 발광 소자(LD)들 각각으로부터 출사되어 제 1 전극(REL1)에 의해 표시 장치의 정면 방향으로 반사된 광이 손실 없이 상기 정면 방향으로 진행할 수 있도록 투명한 도전성 재료로 구성될 수 있다.
제 1 컨택 전극(CNE1)은 평면 상에서 볼 때 제 1 전극(REL1)을 커버하며 제 1 전극(REL1)에 중첩될 수 있다. 또한, 제 1 컨택 전극(CNE1)은 발광 소자(LD)들 각각의 양 단부(EP1, EP2) 중 하나의 단부에 부분적으로 중첩될 수 있다.
본 발명의 일 실시 예에 있어서, 제 1 컨택 전극(CNE1)은 제 1-1 캡핑층(CPL1_1) 상에 제공된 제 1-1 컨택 전극(CNE1_1) 및 제 1-2 캡핑층(CPL1_2) 상에 제공된 제 1-2 컨택 전극(CNE1_2)을 포함할 수 있다.
제 1 컨택 전극(CNE1) 상에는 제 1 컨택 전극(CNE1)을 커버하는 제 3 절연층(INS3)이 제공될 수 있다. 제 3 절연층(INS3)은 제 1 컨택 전극(CNE1)을 외부로 노출되지 않게 하여 제 1 컨택 전극(CNE1)의 부식을 방지할 수 있다.
제 3 절연층(INS3)은 무기 재료로 이루어진 무기 절연막 또는 유기 재료로 이루어진 유기 절연막을 포함할 수 있다. 제 3 절연층(INS3)은 도면에 도시된 바와 같이 단일층으로 이루어질 수 있으나, 본 발명이 이에 한정되는 것은 아니다. 예를 들어, 제 3 절연층(INS3)은 다중층으로 이루어질 수도 있다. 제 3 절연층(INS3)이 다중층으로 이루어진 경우, 제 3 절연층(INS3)은 복수의 무기 절연막 또는 복수의 유기 절연막이 교번하여 적층된 구조를 가질 수 있다. 예를 들어, 제 3 절연층(INS3)은 제 1 무기 절연막, 유기 절연막, 및 제 2 무기 절연막이 순차적으로 적층된 구조를 가질 수 있다.
제 2 전극(REL2) 상에는 제 2 컨택 전극(CNE2)이 제공될 수 있다. 제 2 컨택 전극(CNE2)은 평면 상에서 볼 때 제 2 전극(REL2)을 커버하며 제 2 전극(REL2)에 중첩될 수 있다. 또한, 제 2 컨택 전극(CNE2)은 제 1 발광 소자들(LD1) 각각의 제 2 단부(EP2) 및 제 2 발광 소자들(LD2) 각각의 제 1 단부(EP1)에 각각 중첩될 수 있다. 제 2 컨택 전극(CNE2)은 제 1 컨택 전극(CNE1)과 동일한 물질로 구성될 수 있으나, 본 발명이 이에 한정되는 것은 아니다.
제 2 컨택 전극(CNE2) 상에는 제 2 컨택 전극(CNE2)을 커버하는 제 4 절연층(INS4)이 제공될 수 있다. 제 4 절연층(INS4)은 제 2 컨택 전극(CNE2)을 외부로 노출되지 않도록 하여 제 2 컨택 전극(CNE2)의 부식을 방지할 수 있다. 제 4 절연층(INS4)은 무기 절연막 또는 유기 절연막 중 어느 하나의 절연막으로 구성될 수 있다.
제 4 절연층(INS4) 상에는 오버 코트층(OC)이 제공될 수 있다. 오버 코트층(OC)은 그 하부에 배치된 격벽(PW), 제 1 및 제 2 전극들(REL1, REL2), 제 1 및 제 2 컨택 전극들(CNE1, CNE2) 등에 의해 발생된 단차를 완화시키는 평탄화층일 수 있다. 오버 코트층(OC)은 발광 소자(LD)들로 산소 및 수분 등이 침투하는 것을 방지하는 봉지층일 수 있다. 실시 예에 따라, 오버 코트층(OC)이 생략될 수 있다.
발광 소자(LD)들 각각의 양 단부(EP1, EP2)에는 제 1 전극(REL1)과 제 2 전극(REL2)을 통해 소정의 전압이 인가될 수 있다. 이에 따라, 발광 소자(LD)들 각각의 활성층(12)에서 전자-정공 쌍이 결합하면서 발광 소자(LD)들 각각은 광을 방출할 수 있다. 여기서, 활성층(12)은 400nm 내지 900nm 파장대의 광을 방출할 수 있다.
한편, 발광 소자(LD)가 원 기둥 형상인 경우, 발광 소자(LD)의 단면은 원형으로 이루어질 수 있다. 즉, 절연 피막(14)의 외측면(14a)이 원형일 수 있다. 이 경우, 원 기둥의 특성상 발광 소자(LD)의 양 끝단을 일부 감싸면서 발광 소자(LD)의 양 단부(EP1, EP2)와 각각 접속되는 제 1, 제 2 컨택 전극(CNE1, CNE2)의 두께가 일정하지 않다. 예를 들어, 발광 소자(LD)와 제 1 절연층(INS1)이 접하는 영역(A)에서는 원기둥 특성 상 제 1, 제 2 컨택 전극(CNE1, CNE2)의 두께가 얇아지거나, 일부 형성되지 않는 부분이 존재할 수 있다.
그러나, 본 발명 실시 예와 같이 발광 적층 패턴(10)의 외측면(10a)과 절연 피막(14)의 외측면(14a)의 형상이 상이한 경우, 발광 소자(LD)와 제 1 절연층(INS1)이 접하는 영역에서도 제 1, 제 2 컨택 전극(CNE1, CNE2)의 두께가 감소하지 않는다. 도 12b에서는, 제 1-1 컨택 전극(CNE1_1)과 발광 소자(LD)가 접촉하는 부분을 도시하였다.
더욱이, 절연 피막(14)의 외측면(14a)이 다각형 구조인 경우, 발광 소자(LD)와 제 1 절연층(INS1)이 접하는 부분(A)에서 제 1, 제 2 컨택 전극(CNE1, CNE2)의 두께 감소를 효율적으로 방지할 수 있다.
도 13a 및 도 13b는 본 발명의 다른 실시 예에 따른 발광 소자를 포함하는 도 11의 ⅣⅣ에 따른 단면도이다.
도 13a와 같이, 절연 피막(14)의 외측면(14a)이 삼각형이거나, 도 13b와 같이 사각형인 경우인 경우 발광 소자(LD)와 제 1 절연층(INS1)이 접하는 부분(A)에서도 제 1 절연층(INS1)이 충분히 노출된 구조이다. 따라서, 발광 소자(LD)와 제 1 절연층(INS1)이 접하는 부분(A)에서 제 1-1 컨택 전극(CNE1_1)이 충분한 두께를 갖도록 형성될 수 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시 예들을 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
Claims (19)
- 제 1 도전성 반도체층, 상기 제 1 도전성 반도체층 상에 배치된 활성층 및 상기 활성층 상에 배치된 제 2 도전성 반도체층을 포함하는 막대 형상의 발광 적층 패턴; 및상기 발광 적층 패턴의 외측면을 둘러싸며, 두께가 일정하지 않은 절연 피막을 포함하는 발광 소자.
- 제 1 항에 있어서,상기 발광 적층 패턴의 외측면과 상기 절연 피막의 외측면의 형상이 상이한 발광 소자.
- 제 2 항에 있어서,상기 발광 적층 패턴은 일 방향을 따라 상기 제 1 도전성 반도체층, 상기 활성층 및 상기 제 2 도전성 반도체층이 차례로 적층된 원 기둥 형상이며,상기 절연 피막의 외측면은 타원형, 다각형 또는 상기 타원형과 상기 다각형이 혼합된 형상인 발광 소자.
- 제 3 항에 있어서,상기 절연 피막의 외측면은 적어도 하나의 돌출부를 포함하는 발광 소자.
- 제 1 항에 있어서,상기 발광 적층 패턴의 외측면의 형상과 상기 절연 피막의 외측면의 형상이 동일한 발광 소자.
- 제 5 항에 있어서,상기 발광 적층 패턴 및 상기 절연 피막의 외측면이 다각형인 발광 소자.
- 기판을 제공하는 단계;상기 기판 상에 막대 형상의 발광 적층 패턴을 형성하는 단계;상기 발광 적층 패턴의 외측면을 둘러싸며, 두께가 일정하지 않은 절연 피막을 형성하는 단계; 및상기 절연 피막에 둘러싸인 상기 발광 적층 패턴을 상기 기판으로부터 분리하여 복수의 발광 소자들을 형성하는 단계를 포함하는 발광 소자의 제조 방법.
- 제 7 항에 있어서,상기 절연 피막을 형성하는 단계는,상기 발광 적층 패턴의 외측면과 동일한 형상의 외측면을 갖는 절연 피막 패턴을 형성하는 단계; 및상기 절연 피막 패턴을 일부 제거하여 상기 발광 적층 패턴의 외측면과 상이한 외측면을 갖는 절연 피막을 형성하는 단계를 포함하는 발광 소자의 제조 방법.
- 제 7 항에 있어서,상기 절연 피막을 형성하는 단계는,원 기둥 형상의 상기 발광 적층 패턴의 외측면을 감싸도록 타원형, 다각형 또는 상기 타원형과 상기 다각형이 혼합된 형상의 외측면을 갖도록 상기 절연 피막을 형성하는 발광 소자의 제조 방법.
- 제 9 항에 있어서,상기 절연 피막을 형성하는 단계는,상기 절연 피막의 외측면이 적어도 하나의 돌출부를 갖는 발광 소자의 제조 방법.
- 제 7 항에 있어서,상기 발광 적층 패턴을 형성하는 단계는,상기 기판 상에 제 1 도전성 반도체층, 활성층, 제 2 도전성 반도체층을 차례로 형성하여 발광 적층체를 형성하는 단계;상기 발광 적층체 상에 복수의 제 1 미세 패턴들을 형성하는 단계; 및상기 복수의 제 1 미세 패턴들을 따라 상기 발광 적층체를 식각하고, 상기 복수의 제 1 미세 패턴들을 제거하여 복수의 상기 발광 적층 패턴들을 형성하는 단계를 포함하는 발광 소자의 제조 방법.
- 제 11 항에 있어서,상기 복수의 제 1 미세 패턴을 형성하는 단계는,상기 발광 적층체 상에 복수의 제 1 레진들을 형성하는 단계;상기 제 1 레진들이 복수의 제 1 홈들을 구비하는 제 1 몰드의 상기 복수의 제 1 홈들을 충진하도록 하는 단계; 및상기 제 1 몰드를 제거하여, 상기 발광 적층체 상에 복수의 제 1 미세 패턴들을 형성하는 단계를 포함하는 발광 소자의 제조 방법.
- 제 12 항에 있어서,상기 절연 피막을 형성하는 단계는,상기 발광 적층 패턴과 상기 절연 피막 패턴 상에 복수의 제 2 미세 패턴들을 형성하는 단계;상기 복수의 제 2 미세 패턴들을 따라 상기 절연 피막 패턴을 식각하여 상기 절연 피막을 형성하는 발광 소자의 제조 방법.
- 제 13 항에 있어서,상기 복수의 제 2 미세 패턴을 형성하는 단계는,상기 발광 적층 패턴 및 상기 발광 적층 패턴의 외측면을 감싸는 상기 절연 피막 패턴 상에 복수의 제 2 레진들을 형성하는 단계;상기 제 2 레진들이 복수의 제 2 홈들을 구비하는 제 2 몰드의 상기 복수의 제 2 홈들을 충진하도록 하는 단계; 및상기 제 2 몰드를 제거하여, 상기 발광 적층 패턴 및 상기 발광 적층 패턴의 외측면을 감싸는 상기 절연 피막 패턴 상에 복수의 제 2 미세 패턴들을 형성하는 단계를 포함하는 발광 소자의 제조 방법.
- 제 14 항에 있어서,상기 제 1 몰드의 상기 제 1 홈의 형상과, 상기 제 2 몰드의 상기 제 2 홈의 형상이 상이한 발광 소자의 제조 방법.
- 제 7 항에 있어서,상기 절연 피막을 형성하는 단계는,상기 발광 적층 패턴의 외측면과 동일한 외측면을 갖도록 상기 절연 피막을 형성하는 발광 소자의 제조 방법.
- 제 16 항에 있어서,상기 발광 적층 패턴 및 상기 절연 피막의 외측면을 다각형으로 형성하는 발광 소자의 제조 방법.
- 표시 영역 및 비표시 영역을 포함한 기판; 및상기 기판의 상기 표시 영역에 제공되며, 복수의 서브 화소들을 각각 구비한 복수의 화소들을 포함하고,각 서브 화소는, 적어도 하나의 트랜지스터를 포함한 화소 회로부 및 광을 출사하는 단위 발광 영역을 구비한 표시 소자층을 포함하고,상기 표시 소자층은, 상기 기판 상에 제공되며 광을 출사하는 적어도 하나의 발광 소자와, 상기 발광 소자를 사이에 두고 일정 간격으로 이격된 제 1 및 제 2 전극과, 상기 제 1 전극과 상기 발광 소자의 제 1 단부를 전기적으로 연결하는 제 1 컨택 전극 및 상기 제 2 전극과 상기 발광 소자의 제 2 단부를 전기적으로 연결하는 제 2 컨택 전극을 포함하고,상기 발광 소자는,제 1 도전성 반도체층, 상기 제 1 도전성 반도체층 상에 배치된 활성층, 상기 활성층 상에 배치된 제 2 도전성 반도체층을 포함하는 발광 적층 패턴; 및상기 발광 적층 패턴의 외측면을 둘러싸며, 두께가 일정하지 않은 절연 피막을 포함하는 표시 장치.
- 제 18 항에 있어서,상기 발광 적층 패턴의 외측면과 상기 절연 피막의 외측면의 형상이 상이한 표시 장치.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19891128.1A EP3890034A4 (en) | 2018-11-27 | 2019-06-20 | ELECTROLUMINESCENT ELEMENT, METHOD FOR MANUFACTURING IT, AND DISPLAY DEVICE COMPRISING IT |
CN201980079397.9A CN113169254B (zh) | 2018-11-27 | 2019-06-20 | 发光元件及其制造方法以及具有发光元件的显示设备 |
CN202410728582.9A CN118676278A (zh) | 2018-11-27 | 2019-06-20 | 发光元件及其制造方法以及具有发光元件的显示设备 |
US17/297,870 US11984539B2 (en) | 2018-11-27 | 2019-06-20 | Light-emitting element, manufacturing method therefor, and display device having light-emitting element |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2018-0148788 | 2018-11-27 | ||
KR1020180148788A KR102701758B1 (ko) | 2018-11-27 | 2018-11-27 | 발광 소자, 이의 제조 방법 및 발광 소자를 구비한 표시 장치 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020111425A1 true WO2020111425A1 (ko) | 2020-06-04 |
Family
ID=70852528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/007465 WO2020111425A1 (ko) | 2018-11-27 | 2019-06-20 | 발광 소자, 이의 제조 방법 및 발광 소자를 구비한 표시 장치 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11984539B2 (ko) |
EP (1) | EP3890034A4 (ko) |
KR (2) | KR102701758B1 (ko) |
CN (2) | CN118676278A (ko) |
WO (1) | WO2020111425A1 (ko) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220026626A (ko) * | 2020-08-25 | 2022-03-07 | 삼성디스플레이 주식회사 | 표시 장치 및 그 제조 방법 |
CN113571619B (zh) * | 2021-06-30 | 2023-04-07 | 上海天马微电子有限公司 | 显示面板、显示装置及显示面板的制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070060970A (ko) * | 2005-12-09 | 2007-06-13 | 한국전자통신연구원 | 빛의 방출 효율을 향상시킬 수 있는 실리콘 발광 소자 및그 제조방법 |
KR20100054594A (ko) * | 2008-11-14 | 2010-05-25 | 삼성엘이디 주식회사 | 질화물 반도체 발광소자 및 그 제조방법 |
WO2011162715A1 (en) * | 2010-06-24 | 2011-12-29 | Glo Ab | Substrate with buffer layer for oriented nanowire growth |
KR20170074296A (ko) * | 2015-12-21 | 2017-06-30 | (재)한국나노기술원 | 질화물 반도체 발광소자 및 그 제조방법 |
KR20180058910A (ko) * | 2016-11-24 | 2018-06-04 | 엘지디스플레이 주식회사 | 액정표시패널 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4992282B2 (ja) * | 2005-06-10 | 2012-08-08 | ソニー株式会社 | 発光ダイオード、発光ダイオードの製造方法、発光ダイオードバックライト、発光ダイオード照明装置、発光ダイオードディスプレイおよび電子機器 |
KR100723230B1 (ko) * | 2006-03-31 | 2007-05-29 | 삼성전기주식회사 | 질화물 반도체 발광 다이오드 및 발광 다이오드 패키지 |
KR101391807B1 (ko) | 2007-01-03 | 2014-05-08 | 삼성디스플레이 주식회사 | 잉크젯 프린팅과 나노 임프린팅을 이용한 패턴 형성 방법 |
US20080175104A1 (en) | 2007-01-23 | 2008-07-24 | Microsoft Corporation | Flexible electronic calendar integrating tasks and appointments |
KR20110041401A (ko) | 2009-10-15 | 2011-04-21 | 샤프 가부시키가이샤 | 발광 장치 및 그 제조 방법 |
US8872214B2 (en) | 2009-10-19 | 2014-10-28 | Sharp Kabushiki Kaisha | Rod-like light-emitting device, method of manufacturing rod-like light-emitting device, backlight, illuminating device, and display device |
KR20150098246A (ko) * | 2010-09-01 | 2015-08-27 | 샤프 가부시키가이샤 | 발광 소자 및 그 제조 방법, 발광 장치의 제조 방법, 조명 장치, 백라이트, 표시 장치 및 다이오드 |
KR101682582B1 (ko) | 2010-12-16 | 2016-12-13 | 삼성전자주식회사 | 나노 임프린트 리소그래피 패턴 형성 방법 |
KR101244926B1 (ko) * | 2011-04-28 | 2013-03-18 | 피에스아이 주식회사 | 초소형 led 소자 및 그 제조방법 |
KR101901854B1 (ko) * | 2012-04-05 | 2018-09-27 | 엘지이노텍 주식회사 | 발광소자, 발광소자 패키지 및 라이트 유닛 |
WO2015005655A1 (ko) | 2013-07-09 | 2015-01-15 | 피에스아이 주식회사 | 초소형 led 전극어셈블리 및 이의 제조방법 |
KR101429095B1 (ko) | 2013-07-09 | 2014-08-12 | 피에스아이 주식회사 | 초소형 led 전극어셈블리를 이용한 led 램프 |
KR20150054383A (ko) * | 2013-11-12 | 2015-05-20 | 삼성전자주식회사 | 반도체 발광소자 |
KR102285786B1 (ko) * | 2014-01-20 | 2021-08-04 | 삼성전자 주식회사 | 반도체 발광 소자 |
KR102249624B1 (ko) * | 2014-07-01 | 2021-05-10 | 엘지이노텍 주식회사 | 발광구조물 및 이를 포함하는 발광소자 |
KR102164796B1 (ko) * | 2014-08-28 | 2020-10-14 | 삼성전자주식회사 | 나노구조 반도체 발광소자 |
US9825202B2 (en) * | 2014-10-31 | 2017-11-21 | eLux, Inc. | Display with surface mount emissive elements |
KR101672781B1 (ko) * | 2014-11-18 | 2016-11-07 | 피에스아이 주식회사 | 수평배열 어셈블리용 초소형 led 소자, 이의 제조방법 및 이를 포함하는 수평배열 어셈블리 |
US9484492B2 (en) | 2015-01-06 | 2016-11-01 | Apple Inc. | LED structures for reduced non-radiative sidewall recombination |
KR101789123B1 (ko) | 2015-11-17 | 2017-10-23 | 피에스아이 주식회사 | 초소형 led 전극어셈블리를 포함하는 디스플레이용 백라이트유닛 및 이를 포함하는 디스플레이 |
FR3044470B1 (fr) * | 2015-11-30 | 2018-03-23 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Dispositif optoelectronique comportant des structures semiconductrices tridimensionnelles en configuration axiale |
KR101721846B1 (ko) | 2015-12-30 | 2017-04-03 | (재)한국나노기술원 | 디스플레이용 초소형 질화물계 발광 다이오드 어레이의 제조방법 및 그에 의해 제조된 디스플레이용 초소형 질화물계 발광 다이오드 어레이 |
KR102707509B1 (ko) * | 2016-12-19 | 2024-09-23 | 삼성디스플레이 주식회사 | 발광장치 및 그의 제조방법 |
FR3064109A1 (fr) * | 2017-03-20 | 2018-09-21 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Structure a nanofils et procede de realisation d'une telle structure |
KR102608987B1 (ko) | 2018-09-07 | 2023-12-05 | 삼성디스플레이 주식회사 | 발광 소자, 그의 제조 방법, 및 발광 소자를 구비한 표시 장치 |
KR20210092871A (ko) * | 2020-01-16 | 2021-07-27 | 삼성디스플레이 주식회사 | 발광 소자, 발광 소자의 제조 방법, 및 발광 소자를 포함하는 조성물 |
-
2018
- 2018-11-27 KR KR1020180148788A patent/KR102701758B1/ko active IP Right Grant
-
2019
- 2019-06-20 CN CN202410728582.9A patent/CN118676278A/zh active Pending
- 2019-06-20 CN CN201980079397.9A patent/CN113169254B/zh active Active
- 2019-06-20 WO PCT/KR2019/007465 patent/WO2020111425A1/ko unknown
- 2019-06-20 EP EP19891128.1A patent/EP3890034A4/en active Pending
- 2019-06-20 US US17/297,870 patent/US11984539B2/en active Active
-
2024
- 2024-08-28 KR KR1020240116022A patent/KR20240134804A/ko unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070060970A (ko) * | 2005-12-09 | 2007-06-13 | 한국전자통신연구원 | 빛의 방출 효율을 향상시킬 수 있는 실리콘 발광 소자 및그 제조방법 |
KR20100054594A (ko) * | 2008-11-14 | 2010-05-25 | 삼성엘이디 주식회사 | 질화물 반도체 발광소자 및 그 제조방법 |
WO2011162715A1 (en) * | 2010-06-24 | 2011-12-29 | Glo Ab | Substrate with buffer layer for oriented nanowire growth |
KR20170074296A (ko) * | 2015-12-21 | 2017-06-30 | (재)한국나노기술원 | 질화물 반도체 발광소자 및 그 제조방법 |
KR20180058910A (ko) * | 2016-11-24 | 2018-06-04 | 엘지디스플레이 주식회사 | 액정표시패널 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3890034A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3890034A4 (en) | 2022-08-24 |
KR20200063411A (ko) | 2020-06-05 |
EP3890034A1 (en) | 2021-10-06 |
KR102701758B1 (ko) | 2024-09-04 |
CN113169254B (zh) | 2024-06-25 |
CN113169254A (zh) | 2021-07-23 |
US11984539B2 (en) | 2024-05-14 |
CN118676278A (zh) | 2024-09-20 |
US20220037562A1 (en) | 2022-02-03 |
KR20240134804A (ko) | 2024-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020009274A1 (ko) | 표시 장치 | |
WO2020022596A1 (ko) | 발광 장치, 그의 제조 방법, 및 이를 구비한 표시 장치 | |
WO2020122337A1 (ko) | 표시 장치 및 그의 제조 방법 | |
WO2017122891A1 (en) | Display device using semiconductor light emitting device and method for manufacturing | |
WO2020017712A1 (ko) | 표시 장치 | |
WO2020138610A1 (ko) | 표시 장치 및 그의 리페어 방법 | |
WO2016068418A1 (en) | Display device using semiconductor light emitting device and method of fabricating the same | |
WO2020022593A1 (ko) | 표시 장치 및 그 제조 방법 | |
WO2020027396A1 (ko) | 표시 장치 | |
WO2015093721A1 (en) | Display device using semiconductor light emitting device and method of fabricating the same | |
WO2015133709A1 (en) | Display device using semiconductor light emitting device | |
WO2020040384A1 (ko) | 발광 장치, 그의 제조 방법, 및 이를 구비한 표시 장치 | |
WO2017007215A1 (ko) | 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법 | |
WO2020149474A1 (ko) | 발광 장치, 이를 포함하는 표시 장치 및 표시 장치의 제조 방법 | |
WO2020075936A1 (ko) | 발광 장치, 그의 제조 방법, 및 이를 구비한 표시 장치 | |
WO2020149515A1 (ko) | 표시 장치 및 이의 제조 방법 | |
WO2021241937A1 (ko) | 표시 장치 및 이의 제조 방법 | |
WO2020149476A1 (ko) | 발광 장치, 이를 포함하는 표시 장치 | |
WO2020059987A1 (ko) | 발광 장치 및 이를 구비하는 표시 장치 | |
WO2020105824A1 (ko) | 발광 장치 및 이를 구비하는 표시 장치 | |
WO2022035163A1 (ko) | 화소 및 이를 구비한 표시 장치 | |
WO2020111425A1 (ko) | 발광 소자, 이의 제조 방법 및 발광 소자를 구비한 표시 장치 | |
WO2022080667A1 (ko) | 표시 장치 및 그 제조 방법 | |
WO2022050577A1 (ko) | 화소 및 이를 포함하는 표시 장치 | |
WO2022005208A1 (ko) | 표시 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19891128 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019891128 Country of ref document: EP Effective date: 20210628 |