Nothing Special   »   [go: up one dir, main page]

WO2020179278A1 - Heat treatment device and heat treatment method - Google Patents

Heat treatment device and heat treatment method Download PDF

Info

Publication number
WO2020179278A1
WO2020179278A1 PCT/JP2020/002579 JP2020002579W WO2020179278A1 WO 2020179278 A1 WO2020179278 A1 WO 2020179278A1 JP 2020002579 W JP2020002579 W JP 2020002579W WO 2020179278 A1 WO2020179278 A1 WO 2020179278A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat treatment
change
unit
plate member
Prior art date
Application number
PCT/JP2020/002579
Other languages
French (fr)
Japanese (ja)
Inventor
恵 林
茂宏 後藤
正晃 古川
徳市 中島
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2020179278A1 publication Critical patent/WO2020179278A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Definitions

  • the present invention relates to a heat treatment apparatus and a heat treatment method for performing heat treatment on a substrate.
  • FPD Fluorescence Display
  • semiconductor substrates semiconductor substrates
  • optical disk substrates magnetic disk substrates
  • magneto-optical disk substrates photomask substrates used in liquid crystal display devices or organic EL (Electro Luminescence) display devices, etc.
  • photomask substrates used in liquid crystal display devices or organic EL (Electro Luminescence) display devices, etc.
  • a heat treatment apparatus is used to perform heat treatment on various substrates such as a ceramic substrate or a solar cell substrate.
  • the heat treatment is performed by, for example, supporting the substrate on a plate member held at a preset heat treatment temperature for a predetermined time.
  • a common heat treatment temperature is not always set for the plurality of substrates.
  • different heat treatment temperatures are set for the two substrates to be heat-treated sequentially, it is necessary to change the temperature of the plate member after the heat treatment of one substrate and before the heat treatment of the other substrate.
  • the temperature of the plate member can be changed in various ways.
  • the temperature of the bake plate portion can be raised or lowered by adjusting the driving state of the heater layer included in the bake plate portion (plate member). It is possible. Further, in the temperature changing system, the passive cooling plate cooled by the active cooling plate comes into contact with the bake plate portion via the thermal pad, so that the temperature of the bake plate portion can be significantly lowered. ing. Patent No. 5658083
  • the operating conditions for changing the temperature of the plate member are predetermined according to the two temperatures before and after the change.
  • An object of the present invention is to provide a heat treatment apparatus and a heat treatment method capable of suppressing a decrease in heat treatment efficiency due to a change in heat treatment temperature.
  • a heat treatment apparatus is a heat treatment apparatus that performs heat treatment on a substrate, and performs heat treatment by passing a plate member on which the substrate is placed and a plate member on the substrate placed on the plate member.
  • the storage unit that stores the operating condition of the heat treatment unit when changing the temperature of the plate member from the set first temperature to the set second temperature
  • An operation control unit that operates the heat treatment unit, a temperature detector that detects the temperature of the plate member, and a change in temperature detected by the temperature detector when the heat treatment unit operates according to the operating conditions are converted into a predetermined reference waveform.
  • a condition changing unit for changing the operating conditions stored in the storage unit is provided so as to approach the storage unit.
  • the substrate is placed on the plate member adjusted to the first temperature, so that the placed substrate is heat-treated.
  • the substrate is placed on the plate member adjusted to the second temperature, so that the placed substrate is heat-treated.
  • the heat treatment section When the temperature of the plate member is changed from the first temperature to the second temperature, the heat treatment section operates according to the operating conditions stored in the storage section. At this time, a change in the temperature of the plate member is detected, and the operating condition stored in the storage unit is changed so that the detected change in the temperature approaches the reference waveform.
  • the heat treatment section operates according to the operating conditions changed at the previous temperature change.
  • the temperature change of the plate member from the first temperature to the second temperature approaches the reference waveform as compared with the previous temperature change.
  • the operating condition is changed every time the temperature of the plate member is changed from the first temperature to the second temperature, so that the plate at the time of changing the temperature from the first temperature to the second temperature is changed.
  • the temperature change of the component is gradually corrected appropriately. Therefore, the adjustment time of the heat treatment apparatus due to the change of the heat treatment temperature of the substrate can be appropriately shortened. As a result, it is possible to suppress a decrease in heat treatment efficiency due to a change in heat treatment temperature.
  • the operating condition includes a value of one or a plurality of control parameters, and the condition changing unit controls one or a plurality of control parameters stored in the storage unit so that the detected change in temperature approaches the reference waveform. At least one of them may be changed.
  • the temperature change of the plate member from the first temperature to the second temperature can be adjusted by a simple process of changing at least one value of the one or more control parameters.
  • the heat treatment unit is configured to be switchable between a first state in which the plate member is heated or cooled and a second state in which the plate member is not heated and cooled, and one or a plurality of controls are performed.
  • the parameter may include the switching timing of the first and second states of the heat treatment unit.
  • the temperature change of the plate member from the first temperature to the second temperature can be greatly adjusted by changing the switching timing between the first and second states of the heat treatment section.
  • the heat treatment unit is configured to be capable of PID control, and the one or more control parameters are proportional and integral parameters of PID control for changing the temperature of the plate member from the first temperature to the second temperature. And at least one of the differential parameters.
  • the temperature change of the plate member from the first temperature to the second temperature can be adjusted by changing at least one of the values of the proportional parameter, the integral parameter and the derivative parameter.
  • the one or more control parameters may include the upper limit of the output of the heat treatment section.
  • the temperature change of the plate member from the first temperature to the second temperature can be finely adjusted by changing the upper limit of the output of the heat treatment section.
  • the condition changing unit is configured such that the rate of change in temperature detected by the temperature detector at a specific time point during the period in which the temperature of the plate member changes from the first temperature to the second temperature is the specific time point in the reference waveform.
  • the operating conditions may be changed so as to approach the rate of change in temperature of the portion corresponding to.
  • the temperature change of the plate member from the first temperature to the second temperature is appropriately adjusted based on the rate of change of the plate member temperature.
  • the condition changing unit determines that the value of the temperature detected by the temperature detector at a specific time point during the period in which the temperature of the plate member changes from the first temperature to the second temperature is at the specific time point in the reference waveform.
  • the operating condition may be changed so as to approach the temperature value of the corresponding portion.
  • the temperature change of the plate member from the first temperature to the second temperature is appropriately adjusted based on the value of the temperature of the plate member.
  • the condition changing unit may change the operating condition so that the amount of overshoot or undershoot with respect to the second temperature generated in the detected temperature waveform becomes small.
  • the temperature change of the plate member from the first temperature to the second temperature is appropriately adjusted based on the overshoot amount or the undershoot amount with respect to the second temperature.
  • a heat treatment method is a heat treatment method of performing heat treatment on a substrate, which comprises a step of placing the substrate on a plate member, and a heat treatment unit that passes the plate member through the placed substrate And a step of storing the operating condition of the heat treatment section when changing the temperature of the plate member from the set first temperature to the set second temperature in the storage section, and storing in the storage section.
  • the step of operating the heat treatment unit according to the operating condition, the step of detecting the temperature of the plate member by the temperature detector, and the change in the temperature detected by the temperature detector when the heat treatment unit operates according to the operating condition are predetermined. It includes a step of changing the operating conditions stored in the storage unit so as to approach the reference waveform.
  • the substrate is placed on the plate member adjusted to the first temperature, so that the placed substrate is heat-treated.
  • the substrate is placed on the plate member adjusted to the second temperature, so that the placed substrate is heat-treated.
  • the heat treatment section When the temperature of the plate member is changed from the first temperature to the second temperature, the heat treatment section operates according to the operating conditions stored in the storage section. At this time, a change in the temperature of the plate member is detected, and the operating condition stored in the storage unit is changed so that the detected change in the temperature approaches the reference waveform.
  • the heat treatment section operates according to the operating conditions changed at the previous temperature change.
  • the temperature change of the plate member from the first temperature to the second temperature approaches the reference waveform as compared with the previous temperature change.
  • the operating condition is changed every time the temperature of the plate member is changed from the first temperature to the second temperature, so that the plate at the time of changing the temperature from the first temperature to the second temperature is changed.
  • the temperature change of the component is gradually corrected appropriately. Therefore, the adjustment time of the heat treatment apparatus due to the change of the heat treatment temperature of the substrate can be appropriately shortened. As a result, it is possible to suppress a decrease in heat treatment efficiency due to a change in heat treatment temperature.
  • the operating condition includes a value of one or a plurality of control parameters
  • the step of changing the operating condition includes one or a plurality of values stored in the storage unit so that the detected change in temperature approaches the reference waveform. It may include changing the value of at least one of the control parameters.
  • the temperature change of the plate member from the first temperature to the second temperature can be adjusted by a simple process of changing at least one value of the one or more control parameters.
  • FIG. 1 is a schematic side view showing the configuration of a heat treatment apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of the temperature change of the heat treatment plate when the heat treatment is sequentially performed on a plurality of substrates.
  • FIG. 3 is a diagram showing an example of changing operation conditions set for each combination of two set temperatures among a plurality of set temperatures.
  • FIG. 4 is a diagram for explaining a modification example of the modification operation condition for increasing the temperature of the heat treatment plate from the low start temperature to the high target temperature.
  • FIG. 5 is a diagram for explaining a modification example of the modification operation condition for decreasing the temperature of the heat treatment plate from the high start temperature to the low target temperature.
  • FIG. 6 is a diagram for explaining an experimental result of changing the set temperature.
  • FIG. 7 is a flowchart showing an example of the set temperature change process executed in the control device of FIG.
  • FIG. 8 is a schematic block diagram showing an example of a substrate processing apparatus including the heat treatment apparatus of FIG.
  • a substrate is an FPD (Flat Panel Display) substrate used in a liquid crystal display device or an organic EL (Electro Luminescence) display device, a semiconductor substrate, an optical disc substrate, a magnetic disc substrate, a magneto-optical disc.
  • FPD Fluorescence Panel Display
  • a heat treatment apparatus that heat-treats a substrate will be described as an example of the heat treatment apparatus.
  • FIG. 1 is a schematic side view showing a configuration of a heat treatment device according to an embodiment of the present invention.
  • the heat treatment apparatus 100 includes a heat treatment plate 10, an active cooling plate 20, a passive cooling plate 30, an elevating device 40, and a control device 50.
  • the heat treatment plate 10 is a metal heat transfer plate having a flat columnar shape, and has flat upper and lower surfaces.
  • the upper surface of the heat treatment plate 10 has an outer diameter larger than the outer diameter of the substrate W to be heat-treated.
  • the substrate W placed on the heat treatment plate 10 is shown by a alternate long and short dash line.
  • the heat treatment plate 10 is provided with a main heater 11, a booster heater 12, and a temperature sensor 19.
  • the temperature sensor 19 detects the temperature of the upper surface of the heat treatment plate 10 and outputs a detection signal corresponding to the detected temperature to the temperature acquisition unit 55 described later.
  • Each of the main heater 11 and the booster heater 12 is composed of, for example, a mica heater or a Peltier element.
  • a heat generating drive unit 13 is connected to the main heater 11 and the booster heater 12.
  • the heat generation drive unit 13 drives the main heater 11 so that the temperature of the heat treatment plate 10 is maintained at a preset temperature (set temperature), for example. Further, the heat generation driving unit 13 drives the booster heater 12 so that the temperature of the heat treatment plate 10 rises in a short time, for example.
  • the active cooling plate 20 is arranged at a position lower than the heat treatment plate 10 and separated from the lower surface of the heat treatment plate 10 by a predetermined distance.
  • the active cooling plate 20 has an upper surface facing the heat treatment plate 10.
  • a thermal conductive sheet (not shown) having a high thermal conductivity is provided on the upper surface of the active cooling plate 20.
  • the active cooling plate 20 is provided with a cooling mechanism 21.
  • the cooling mechanism 21 is composed of, for example, a cooling water passage formed in the active cooling plate 20, a Peltier element, or the like.
  • a cooling drive unit 22 is connected to the cooling mechanism 21.
  • the cooling driving unit 22 drives the cooling mechanism 21 so that the temperature of the upper surface of the active cooling plate 20 becomes lower than the temperature of the heat treatment plate 10.
  • the passive cooling plate 30 is supported by the elevating device 40 in the space between the heat treatment plate 10 and the active cooling plate 20 (see the white arrows in FIG. 1).
  • the passive cooling plate 30 is a metal disc-shaped member having an upper surface and a lower surface.
  • the upper surface of the passive cooling plate 30 faces the lower surface of the heat treatment plate 10, and the lower surface of the passive cooling plate 30 faces the upper surface of the active cooling plate 20.
  • a heat conductive sheet (not shown) having a high heat conductivity is provided on the upper surface of the passive cooling plate 30.
  • the lifting device 40 is composed of, for example, an air cylinder.
  • a lifting drive unit 41 is connected to the lifting device 40.
  • the elevating/lowering drive unit 41 drives the elevating/lowering device 40 such that the passive cooling plate 30 contacts the active cooling plate 20, for example. In this case, the passive cooling plate 30 is cooled by the active cooling plate 20. Further, the lifting drive unit 41 drives the lifting device 40 such that the passive cooling plate 30 contacts the heat treatment plate 10, for example. In this case, the heat treatment plate 10 is cooled by the passive cooling plate 30.
  • the control device 50 controls the operation of each component of the heat treatment apparatus 100 including the heat generation drive unit 13, the cooling drive unit 22, and the elevation drive unit 41. Details of the control device 50 will be described later.
  • the heat treatment apparatus 100 is further provided with a transfer mechanism (not shown) for transferring the substrate W between the heat treatment plate 10 and an external device (for example, a transfer robot) of the heat treatment apparatus 100. ..
  • FIG. 2 is a diagram showing an example of a temperature change of the heat treatment plate 10 when heat treatment is sequentially performed on a plurality of substrates W.
  • the vertical axis represents the temperature of the heat treatment plate 10 and the horizontal axis represents time. Further, the temperature change of the heat treatment plate 10 is shown by a thick solid line. In this example, the content of the heat treatment is changed for each of the four substrates W for the 28 substrates W. Therefore, the set temperature of the heat treatment plate 10 is changed for each of the four substrates W.
  • the heat treatment of the substrate W is performed while the temperature of the heat treatment plate 10 is maintained at the set temperature 90° C. Is done. Further, during the period from time t3 to t4, the period from time t7 to t8, and the period from time t11 to t12, the heat treatment of the substrate W is performed while the temperature of the heat treatment plate 10 is maintained at the set temperature 115°C. Further, during the period from time t9 to time t10, the heat treatment of the substrate W is performed while the temperature of the heat treatment plate 10 is maintained at the set temperature 140° C.
  • the temperature of the heat treatment plate 10 slightly decreases, as shown by the white arrow in FIG. 2, for example. After that, the temperature of the heat treatment plate 10 returns to the set temperature in a relatively minute time by the main heater 11 of FIG. 1 being continuously driven.
  • the temperature of the heat treatment plate 10 is largely changed in accordance with the change of the set temperature so as to be surrounded by the one-dot chain line in FIG. 2, it is difficult to change the temperature in a short time only by adjusting the output of the main heater 11. In some cases. Therefore, in this example, when the set temperature rises, the booster heater 12 is driven immediately after the start of the change. Further, PID (proportional-integral-derivative) control for the main heater 11 is performed based on the detection signal of the temperature sensor 19. Further, the upper limit of the output of the main heater 11 is adjusted. On the other hand, when the set temperature drops, the heat treatment plate 10 is cooled by the passive cooling plate 30 immediately after the start of the change. Further, PID control of the main heater 11 is performed based on the detection signal of the temperature sensor 19.
  • the operating condition of the heat treatment apparatus 100 for changing the temperature of the heat treatment plate 10 from one preset temperature to another preset temperature can be obtained by simulation or experiment. Therefore, in the heat treatment plate 10, an operating condition when changing the set temperature (hereinafter, referred to as a changed operating condition) is preset for each combination of two set temperatures among the plurality of set temperatures.
  • FIG. 3 is a diagram showing an example of changing operation conditions set for each combination of two set temperatures among a plurality of set temperatures.
  • the set temperature before the change will be appropriately called the start temperature
  • the set temperature after the change will be appropriately called the target temperature.
  • Changed operation conditions include the value of the heating stop parameter.
  • the heating stop parameter is a control parameter for the booster heater 12, and indicates the temperature of the heat treatment plate 10 at which heating should be stopped.
  • the value of the heating stop parameter indicates the timing at which the booster heater 12 should generate heat when the set temperature is changed (when it rises) to the off state in which the booster heater 12 does not generate heat.
  • the heating stop parameter is described as “heating stop”.
  • the value of the heating stop parameter in FIG. 3 is indicated by a value obtained by subtracting the temperature at which heating should be stopped from the target temperature.
  • the changed operating conditions include the values of the PID control parameters for the main heater 11.
  • the changed operation condition includes the value of the upper limit parameter indicating the upper limit of the output of the main heater 11.
  • the upper limit parameter is described as “heater upper limit”.
  • the value of the upper limit parameter is represented by, for example, the ratio (%) of the upper limit of the output allowed to the rated output of the main heater 11.
  • the changed operating conditions include the value of the cooling stop parameter.
  • the cooling stop parameter is a control parameter for the lifting device 40, and indicates the temperature of the heat treatment plate 10 at which cooling should be stopped.
  • the value of the cooling stop parameter changes from the contact state in which the passive cooling plate 30 contacts the heat treatment plate 10 when the set temperature is changed (during fall) to the non-contact state in which the passive cooling plate 30 separates from the heat treatment plate 10. Indicates the timing to switch.
  • the cooling stop parameter is described as “cooling stop”.
  • the value of the cooling stop parameter in FIG. 3 is indicated by a value obtained by subtracting the target temperature from the temperature of the heat treatment plate 10 at which cooling should be stopped.
  • the change operation condition corresponding to the change from the starting temperature of 90° C. to the target temperature of 115° C. is the heating stop parameter “5”, the proportional parameter “0.2”, the integral parameter “15”, the derivative Includes parameter “3” and upper bound parameter “80” (%).
  • the change operation condition corresponding to the change from the starting temperature of 115° C. to the target temperature of 90° C. is the cooling stop parameter “5”, the proportional parameter “0.2”, the integral parameter “15”, the differential parameter “3” and the upper limit. It includes the parameter “80” (%).
  • the preset changing operating conditions are not always appropriate. Therefore, in the present embodiment, every time the set temperature of heat treatment plate 10 is changed, the change operation condition is changed so that the temperature change of heat treatment plate 10 at the time of the change approaches the ideal reference waveform.
  • the ideal reference waveform is determined based on, for example, the configuration of the heat treatment plate 10, the heat generation capacities of the main heater 11 and the booster heater 12, and the cooling capacities of the active cooling plate 20 and the passive cooling plate 30.
  • the change operation condition is changed so as to reduce the overshoot.
  • the heat treatment apparatus 100 operates according to the changed operation condition after the change.
  • the time required to change the set temperature is shortened as compared with the time required to change the set temperature during the period from time t2 to t3.
  • the change operation condition is changed similarly to the change of the set temperature during the period from time t2 to t3.
  • the set temperature of 90° C. is changed to the set temperature of 115° C. after the time point t7, the time required for the change is further shortened.
  • the change operation condition is changed so as to reduce the undershoot.
  • the heat treatment apparatus 100 operates according to the changed operation condition after the change. As a result, the time required to change the set temperature is shortened compared to the time required to change the set temperature in the period from time t4 to t5.
  • the change operation condition is changed similarly to the change of the set temperature during the period from time t4 to t5. Accordingly, when the change from the starting temperature of 115° C. to the target temperature of 90° C. occurs after the time t13, the time required for the change is further shortened.
  • the change operation condition is changed every time the set temperature of the heat treatment plate 10 is changed.
  • the time required to change the set temperature is sequentially reduced.
  • the decrease in heat treatment efficiency due to the change in heat treatment temperature is suppressed.
  • FIG. 4 is a diagram for explaining a change example of the change operating condition for raising the temperature of the heat treatment plate 10 from a low start temperature ST to a high target temperature TT. ..
  • the change in temperature of the heat treatment plate 10 detected when the set temperature is changed is shown by a thick solid line.
  • a predetermined reference waveform corresponding to the change in the set temperature is indicated by a alternate long and short dash line. In this example, it is desired that the set temperature is changed from the time point t20 to the time point t22 as shown in the reference waveform.
  • the rate of change of the temperature of the heat treatment plate 10 at a predetermined specific time point (in this example, an intermediate time point between the time points t20 and t22) t21 in the period from the time point t20 to the time point t22 ( In the example, the rising speed) is acquired.
  • the acquired rate of change is compared with the rate of change of the reference waveform at the specific time point t21.
  • the temperature value of the heat treatment plate 10 at the specific time point t21 is acquired, and the acquired temperature value is compared with the temperature value of the reference waveform at the specific time point t21. Further, the overshoot amount OS of the temperature of the heat treatment plate 10 is acquired.
  • the change operation condition is changed so that the amount of heat supplied to the heat treatment plate 10 becomes large. There is a need.
  • the change operation condition is changed so that the amount of heat supplied to the heat treatment plate 10 becomes smaller. There is a need.
  • the acquired overshoot amount OS exceeds the predetermined allowable range for the overshoot amount, it is desirable to change the change operation condition. Therefore, when the overshoot amount OS exceeds the allowable range, it is necessary to change the changing operation condition so that the heat amount supplied to the heat treatment plate 10 becomes small.
  • the state of the booster heater 12 according to the preset change operation condition is shown in the middle part of FIG.
  • the booster heater 12 is maintained in the on state from the time point t20 to the time point t22.
  • the timing of switching the booster heater 12 to the off state can be advanced by changing the value of the heating stop parameter, as indicated by the outlined arrow a11 in FIG. Just do it.
  • the timing of switching the booster heater 12 to the off state is changed by changing the value of the heating stop parameter, as indicated by the outlined arrow a12 in FIG. You can slow it down.
  • the output waveform of the main heater 11 according to the preset changing operation condition is shown.
  • the main heater 11 increases the output in order to raise the temperature of the heat treatment plate 10 from the time t20.
  • the output is adjusted according to the temperature of the heat treatment plate 10 by PID control according to the changed operating conditions.
  • the output waveform of the main heater 11 is entirely changed by largely changing the proportional parameter of PID control, for example, as shown by the outline arrow a13 in FIG. You can lower it.
  • the upper limit of the output of the main heater 11 may be lowered by changing the upper limit parameter to be smaller.
  • the output waveform of the main heater 11 is entirely changed by changing the proportional parameter of PID control to a small value, for example, as shown by an outline arrow a15 in FIG. It should be high.
  • the upper limit of the output of the main heater 11 may be increased by, for example, changing the upper limit parameter significantly.
  • FIG. 5 is a diagram for explaining an example of changing the changing operating conditions for lowering the temperature of the heat treatment plate 10 from the high start temperature ST to the low target temperature TT.
  • a change in the temperature of the heat treatment plate 10 detected when the set temperature is changed is indicated by a thick solid line.
  • a predetermined reference waveform corresponding to the change in the set temperature is indicated by a alternate long and short dash line. In this example, as shown by the reference waveform, it is desired that the temperature of the heat treatment plate 10 be changed from time t30 to time t32.
  • the rate of change of the temperature of the heat treatment plate 10 at a predetermined specific time point (in this example, an intermediate time point between the time points t30 and t32) t31 in the period from the time point t30 to the time point t32 In the example, the descending speed) is acquired.
  • the acquired rate of change is compared with the rate of change of the reference waveform at the specific time point t31.
  • the temperature value of the heat treatment plate 10 at the specific time point t31 is acquired, and the acquired temperature value is compared with the temperature value of the reference waveform at the specific time point t31.
  • the undershoot amount US of the temperature of the heat treatment plate 10 is acquired.
  • the amount of heat removed from the heat treatment plate 10 may be reduced. It is necessary to change the operating conditions.
  • the change operation condition is changed so that the amount of heat removed from the heat treatment plate 10 becomes large. There is a need.
  • the acquired undershoot amount US exceeds the predetermined allowable range for the undershoot amount, it is desirable to change the change operation condition. Therefore, if the undershoot amount US exceeds the allowable range, it is necessary to change the changing operation condition so that the amount of heat removed from the heat treatment plate 10 becomes small.
  • the state of the passive cooling plate 30 in accordance with the preset changed operating condition is shown in the middle part of FIG.
  • the passive cooling plate 30 is maintained in the contact state from time t30 to time t32.
  • the timing of switching the passive cooling plate 30 to the non-contact state is changed by changing the value of the cooling stop parameter, as shown by the outlined arrow a21 in FIG. You can do it earlier.
  • the passive cooling plate 30 is switched to the non-contact state by changing the value of the cooling stop parameter, as shown by the outlined arrow a22 in FIG. You can delay the timing.
  • the output waveform of the main heater 11 according to the preset changing operation condition is shown.
  • the main heater 11 lowers the output in order to lower the temperature of the heat treatment plate 10 from the time t30.
  • the output is adjusted according to the temperature of the heat treatment plate 10 by PID control according to the changed operating conditions.
  • the output waveform of the main heater 11 is entirely changed by largely changing the proportional parameter of the PID control, for example, as shown by an outline arrow a23 in FIG. You can lower it.
  • the output waveform of the main heater 11 is entirely changed by changing the proportional parameter of the PID control to a small value, for example, as shown by an outline arrow a24 in FIG. It should be high.
  • FIG. 6 is a diagram for explaining the experimental results regarding the change of the set temperature.
  • the inventor changed the set temperature of the heat treatment plate 10 from 90° C. to 140° C. by operating the heat treatment apparatus 100 based on the changed operation condition of FIG.
  • the temperature of the heat treatment plate 10 increased at a substantially constant speed from time t40 to time t41 along the reference waveform indicated by the alternate long and short dash line.
  • a relatively large overshoot occurred after time t41.
  • the present inventor sets the value of the heating stop parameter from “1” among the changing operation conditions corresponding to the change from the starting temperature of 90° C. to the target temperature of 140° C. in FIG. Changed to "5".
  • This change means that after turning on the booster heater 12 in order to raise the temperature of the heat treatment plate 10, the timing of switching the booster heater 12 to the off state is accelerated.
  • the set temperature of the heat treatment plate 10 was changed from 90 ° C. to 140 ° C. by operating the heat treatment apparatus 100 again based on the changed operating conditions after the change.
  • the temperature of the heat treatment plate 10 changed along the reference waveform, and the amount of overshoot was reduced.
  • the control device 50 includes a storage unit 51, a heat generation control unit 52, a cooling control unit 53, an elevating control unit 54, a temperature acquisition unit 55, and a condition change unit 56 as functional units.
  • the control device 50 is composed of a CPU (central processing unit), a RAM (random access memory), and a ROM (read-only memory). Each of the above functional units is realized by the CPU executing a computer program stored in a ROM or another storage medium. It should be noted that some or all of the functional components of the control device 50 may be realized by hardware such as an electronic circuit.
  • the storage unit 51 stores a plurality of change operation conditions set for each combination of two set temperatures among a plurality of set temperatures.
  • the heat generation control unit 52 controls the heat generation drive unit 13 so as to operate according to the changed operation condition stored in the storage unit 51 when changing when raising the set temperature of the heat treatment plate 10.
  • the cooling control unit 53 controls the cooling drive unit 22 so that the active cooling plate 20 is cooled while the power of the heat treatment apparatus 100 is turned on.
  • the elevating control unit 54 controls the elevating device 40 so that it operates according to the changed operating conditions stored in the storage unit 51 when the set temperature of the heat treatment plate 10 is changed.
  • the temperature acquisition unit 55 acquires the temperature of the heat treatment plate 10 when the set temperature is changed, based on the detection signal output from the temperature sensor 19. More specifically, the temperature acquisition unit 55 acquires a change in temperature by sampling the detection signal output from the temperature sensor 19 at a constant cycle.
  • the condition changing unit 56 is stored in the storage unit 51 so that the change in the temperature detected and obtained by the temperature sensor 19 when the set temperature of the heat treatment plate 10 is changed approaches a predetermined reference waveform. Change Change the operating conditions.
  • the heat treatment apparatus 100 includes an operation unit (not shown).
  • the user can store the initial change operation condition in the storage unit 51 by operating the operation unit. That is, the user can set the initial change operation condition.
  • FIG. 7 is a flowchart showing an example of the set temperature change process executed by the control device 50 of FIG. In the following description, the overshoot amount and the undershoot amount are collectively referred to as the shoot amount.
  • the set temperature changing process is started when the power of the heat treatment apparatus 100 is turned on.
  • the heat generation control unit 52 and the elevation control unit 54 in FIG. 1 determine whether or not the set temperature of the heat treatment plate 10 should be changed (step S11). This determination is performed based on, for example, whether or not any of the heat generation control unit 52 and the elevating control unit 54 receives a signal instructing the change of the set temperature from the outside of the heat treatment apparatus 100.
  • step S12 If the set temperature should not be changed, the heat generation control unit 52 and the elevating control unit 54 return to the process of step S11. On the other hand, when the set temperature should be changed, the heat generation control unit 52 or the elevating control unit 54 reads the change operation condition corresponding to the change of the set temperature from the storage unit 51 of FIG. 1 (step S12).
  • the heat generation control unit 52 or the elevation control unit 54 adjusts the temperature of the heat treatment plate 10 by controlling the heat generation drive unit 13 or the elevation drive unit 41 based on the changed operation condition (step S13).
  • the temperature acquisition unit 55 acquires a change in the temperature of the heat treatment plate 10 when the set temperature of the heat treatment plate 10 is changed (step S14).
  • the condition changing unit 56 based on the change of the acquired temperature, the rate of change of the temperature at the specific time point during the change of the set temperature is outside the predetermined allowable range. It is determined whether or not (step S15).
  • the condition changing unit 56 calculates the difference between the rate of change of the temperature acquired at the specific time point and the rate of change of the reference waveform based on the acquired temperature change. (Step S16). On the other hand, when the temperature change rate is within the allowable range, the condition changing unit 56 determines whether the temperature value at the specific time point during the change of the set temperature is out of the predetermined allowable range based on the acquired temperature change. It is determined whether or not (step S17).
  • the condition changing unit 56 calculates the difference between the temperature value acquired at the specific time point and the temperature value of the reference waveform based on the acquired temperature change (step S18). .. On the other hand, when the temperature value is within the allowable range, the condition changing unit 56 determines whether the amount of shoots generated during the change of the set temperature is outside the predetermined allowable range based on the acquired temperature change. Is determined (step S19).
  • the condition changing unit 56 calculates the difference between the acquired shoot amount and the shoot amount of the reference waveform based on the acquired temperature change (step S20). On the other hand, when the shoot amount is within the allowable range, the heat generation control unit 52 and the elevating control unit 54 return to the process of step S11.
  • the condition changing unit 56 determines the parameter to be changed among the changing operation conditions based on the calculated change rate, the temperature value, or the difference in the shoot amount (step S21). ). For example, the condition changing unit 56 determines a parameter to be changed according to the calculated difference level. Specifically, the condition changing unit 56 determines the heating stop parameter or the cooling stop parameter as the parameter to be changed when the difference level is high. In addition, the condition changing unit 56 determines the proportional parameter of the PID control as the parameter to be changed when the level of the difference is medium. Further, the condition changing unit 56 determines the upper limit parameter as a parameter to be changed when the difference level is low.
  • condition changing unit 56 changes the determined parameter according to a predetermined method (step S22). For example, the condition changing unit 56 changes the parameter for the determined parameter by a predetermined value. After that, the heat generation control unit 52 and the elevation control unit 54 return to the process of step S11.
  • steps S15, S17 and S19 may be omitted.
  • the difference calculation process associated with the omitted process is also omitted.
  • the heat treatment apparatus 100 operates according to the change operation conditions stored in the storage unit 51. At this time, a change in the temperature of the heat treatment plate 10 is detected, and the change operating condition is changed so that the change in the detected temperature approaches the reference waveform corresponding to the change from the one set temperature to the other set temperature. ..
  • the heat treatment apparatus 100 operates according to the changed operating condition changed at the previous temperature change.
  • the temperature change of the heat treatment plate 10 approaches the reference waveform as compared with the time when the set temperature was changed last time.
  • FIG. 8 is a schematic block diagram showing an example of the substrate processing apparatus including the heat treatment apparatus 100 of FIG.
  • the substrate processing device 400 is provided adjacent to the exposure device 500, and includes a control unit 410, a coating processing unit 420, a developing processing unit 430, a heat treatment unit 440, and a substrate transporting device 450.
  • the heat treatment unit 440 includes a plurality of heat treatment devices 100 of FIG. 1 that heat-treat the substrate W, and a plurality of cooling plates (not shown) that perform only a cooling treatment on the substrate W.
  • the control unit 410 includes, for example, a CPU and a memory, or a microcomputer, and controls the operations of the coating processing unit 420, the developing processing unit 430, the heat treatment unit 440, and the substrate transfer device 450.
  • the substrate transfer apparatus 450 transfers the substrate W among the coating processing section 420, the development processing section 430, the thermal processing section 440, and the exposure apparatus 500 when the substrate processing apparatus 400 processes the substrate W.
  • the coating processing unit 420 forms a resist film on one surface of the unprocessed substrate W (coating processing).
  • the coating process W on which the resist film is formed is exposed by the exposure apparatus 500.
  • the development processing unit 430 performs the development processing on the substrate W by supplying the developing solution to the substrate W after the exposure processing by the exposure device 500.
  • the thermal processing section 440 performs thermal processing on the substrate W before and after the coating processing by the coating processing section 420, the developing processing by the developing processing section 430, and the exposure processing by the exposure apparatus 500.
  • the coating processing unit 420 may form an antireflection film on the substrate W.
  • the heat treatment section 440 may be provided with a processing unit for performing an adhesion strengthening process for improving the adhesion between the substrate W and the antireflection film.
  • the coating processing section 420 may form a resist cover film on the substrate W for protecting the resist film formed on the substrate W.
  • the above set temperature changing process is performed.
  • the temperature of the heat treatment plate 10 can be appropriately adjusted in a short time.
  • the manufacturing efficiency of the substrate W is improved.
  • the heat treatment apparatus 100 having a configuration for heating and a configuration for cooling the heat treatment plate 10 has been described, but the present invention is not limited thereto.
  • the heat treatment apparatus 100 does not have to have a configuration for cooling the heat treatment plate 10 (in the above example, the active cooling plate 20, the passive cooling plate 30, and the elevating device 40).
  • the heat treatment apparatus 100 does not have to have a configuration for heating the heat treatment plate 10 (in the above example, the main heater 11 and the booster heater 12). Also in this case, the time required for adjustment when raising or lowering the set temperature of the heat treatment apparatus 100 is shortened.
  • the upper surface of the heat treatment plate 10 may be divided into a plurality of regions, respectively, and a structure for heating the portion may be provided so as to correspond to each region. That is, the main heater 11, the booster heater 12, and the heat generation driving unit 13 may be provided for each of the plurality of regions of the heat treatment plate 10. Alternatively, the main heater 11 and the booster heater 12 may be provided for each of the plurality of regions of the heat treatment plate 10, and the heat generation drive unit 13 may be configured to be able to independently drive the plurality of main heaters 11 and the booster heater 12.
  • the storage unit 51 may store changed operation conditions for each of the plurality of regions of the heat treatment plate 10. Further, the condition changing unit 56 changes a plurality of parameters of the changing operation conditions corresponding to all the regions so that the temperature changes of the plurality of regions of the heat treatment plate 10 at the time of changing the set temperature approach the reference waveform, for example. You may. With such a configuration, it is possible to perform more detailed temperature adjustment on the plurality of regions on the upper surface of the heat treatment plate 10. In this example, a change in temperature acquired when changing the set temperature for one of the plurality of areas may be used as the reference waveform.
  • the heat treatment plate 10 is provided with the main heater 11 and the booster heater 12, but the present invention is not limited to this.
  • the booster heater 12 may not be provided.
  • the heat treatment apparatus 100 is an example of the heat treatment apparatus
  • the heat treatment plate 10 is an example of the plate member
  • the elevating device 40 is an example of a heat treatment unit
  • the storage unit 51 is an example of a storage unit
  • the heat generation control unit 52, the cooling control unit 53 and the elevating control unit 54 are examples of an operation control unit
  • the temperature sensor 19 is It is an example of a temperature detector
  • the temperature acquisition unit 55 and the condition change unit 56 are examples of the condition change unit.
  • the booster heater 12 being in the ON state or the passive cooling plate 30 being in the contact state is an example of the heat treatment section being in the first state. Further, the booster heater 12 being in the off state and the passive cooling plate 30 being in the non-contact state is an example of the heat treatment section being in the second state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Disintegrating Or Milling (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

In this heat treatment device, heat treatment is performed on a substrate by placing the substrate on a heat treatment plate held at a set temperature. Change operation conditions of the heat treatment device when changing the set temperature of the heat treatment plate are stored in advance in a storage unit. When the set temperature is changed, a main heater and a booster heater are operated according to the stored change operation conditions. At this time, a temperature change in the heat treatment plate is detected, and the change operation conditions stored in the storage unit are changed so that the detected temperature change approaches a predetermined reference waveform.

Description

熱処理装置および熱処理方法Heat treatment apparatus and heat treatment method
 本発明は、基板に熱処理を行う熱処理装置および熱処理方法に関する。 The present invention relates to a heat treatment apparatus and a heat treatment method for performing heat treatment on a substrate.
 従来より、液晶表示装置または有機EL(Electro Luminescence)表示装置等に用いられるFPD(Flat Panel Display)用基板、半導体基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板または太陽電池用基板等の各種基板に熱処理を行うために、熱処理装置が用いられている。 Conventionally, FPD (Flat Panel Display) substrates, semiconductor substrates, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, photomask substrates used in liquid crystal display devices or organic EL (Electro Luminescence) display devices, etc. 2. Description of the Related Art A heat treatment apparatus is used to perform heat treatment on various substrates such as a ceramic substrate or a solar cell substrate.
 熱処理装置においては、例えば予め設定された熱処理温度に保持されたプレート部材上で基板が所定時間支持されることにより熱処理が行われる。複数の基板に対して順次熱処理が行われる場合、それらの複数の基板には、共通の熱処理温度が設定されるとは限らない。順次熱処理される2枚の基板について、互いに異なる熱処理温度が設定される場合には、一方の基板の熱処理後他方の基板の熱処理前にプレート部材の温度を変更する必要がある。 In the heat treatment apparatus, the heat treatment is performed by, for example, supporting the substrate on a plate member held at a preset heat treatment temperature for a predetermined time. When heat treatment is sequentially performed on a plurality of substrates, a common heat treatment temperature is not always set for the plurality of substrates. When different heat treatment temperatures are set for the two substrates to be heat-treated sequentially, it is necessary to change the temperature of the plate member after the heat treatment of one substrate and before the heat treatment of the other substrate.
 プレート部材の温度は、種々の方法で変更される。例えば、特許文献1に記載された温度変更システムにおいては、ベークプレート部(プレート部材)に含まれるヒータ層の駆動状態が調整されることにより、当該ベークプレート部の温度を上昇または下降させることが可能となっている。さらに、その温度変更システムにおいては、能動冷却プレートにより冷却された受動冷却プレートが、サーマルパッドを介してベークプレート部に接触することにより、当該ベークプレート部の温度を大きく下降させることが可能となっている。
特許第5658083号
The temperature of the plate member can be changed in various ways. For example, in the temperature changing system described in Patent Document 1, the temperature of the bake plate portion can be raised or lowered by adjusting the driving state of the heater layer included in the bake plate portion (plate member). It is possible. Further, in the temperature changing system, the passive cooling plate cooled by the active cooling plate comes into contact with the bake plate portion via the thermal pad, so that the temperature of the bake plate portion can be significantly lowered. ing.
Patent No. 5658083
 通常、熱処理装置においては、プレート部材の温度を変更するための動作条件が変更前後の2つの温度に応じて予め定められている。しかしながら、熱処理装置が設けられる空間の温度または熱処理装置の個体差等によっては、予め定められた動作条件に従って熱処理装置を動作させても、正確な温度変更が困難な場合がある。この場合、プレート部材の温度を正確に変更するために微調整を繰り返すと、温度変更に要する時間が長くなり、熱処理効率が低下する。 Normally, in the heat treatment device, the operating conditions for changing the temperature of the plate member are predetermined according to the two temperatures before and after the change. However, depending on the temperature of the space in which the heat treatment apparatus is provided or the individual difference of the heat treatment apparatus, it may be difficult to accurately change the temperature even if the heat treatment apparatus is operated according to a predetermined operating condition. In this case, if the fine adjustment is repeated in order to accurately change the temperature of the plate member, the time required for changing the temperature becomes long and the heat treatment efficiency decreases.
 本発明の目的は、熱処理温度の変更に伴なう熱処理効率の低下を抑制することを可能にする熱処理装置および熱処理方法を提供することである。 An object of the present invention is to provide a heat treatment apparatus and a heat treatment method capable of suppressing a decrease in heat treatment efficiency due to a change in heat treatment temperature.
 (1)本発明の一局面に従う熱処理装置は、基板に熱処理を行う熱処理装置であって、基板が載置されるプレート部材と、プレート部材上に載置された基板にプレート部材を通して熱処理を行う熱処理部と、プレート部材の温度を設定された第1の温度から設定された第2の温度へ変更する際の熱処理部の動作条件を記憶する記憶部と、記憶部に記憶された動作条件に従って熱処理部を動作させる動作制御部と、プレート部材の温度を検出する温度検出器と、動作条件に従って熱処理部が動作する際に温度検出器により検出された温度の変化が予め定められた基準波形に近づくように、記憶部に記憶された動作条件を変更する条件変更部とを備える。 (1) A heat treatment apparatus according to one aspect of the present invention is a heat treatment apparatus that performs heat treatment on a substrate, and performs heat treatment by passing a plate member on which the substrate is placed and a plate member on the substrate placed on the plate member. According to the operating condition stored in the heat treatment unit, the storage unit that stores the operating condition of the heat treatment unit when changing the temperature of the plate member from the set first temperature to the set second temperature, An operation control unit that operates the heat treatment unit, a temperature detector that detects the temperature of the plate member, and a change in temperature detected by the temperature detector when the heat treatment unit operates according to the operating conditions are converted into a predetermined reference waveform. A condition changing unit for changing the operating conditions stored in the storage unit is provided so as to approach the storage unit.
 その熱処理装置においては、第1の温度に調整されたプレート部材上に基板が載置されることにより、載置された基板に熱処理が行われる。または、第2の温度に調整されたプレート部材上に基板が載置されることにより、載置された基板に熱処理が行われる。複数の基板が順次熱処理されることにより第1の温度に対応する熱処理および第2の温度に対応する熱処理がこの順で行われる。この場合、第1の温度に対応する熱処理後第2の温度に対応する熱処理前にプレート部材の温度を第1の温度から第2の温度に変更する必要がある。 In the heat treatment apparatus, the substrate is placed on the plate member adjusted to the first temperature, so that the placed substrate is heat-treated. Alternatively, the substrate is placed on the plate member adjusted to the second temperature, so that the placed substrate is heat-treated. By sequentially heat-treating the plurality of substrates, the heat treatment corresponding to the first temperature and the heat treatment corresponding to the second temperature are performed in this order. In this case, it is necessary to change the temperature of the plate member from the first temperature to the second temperature after the heat treatment corresponding to the first temperature and before the heat treatment corresponding to the second temperature.
 第1の温度から第2の温度へのプレート部材の温度変更時には、記憶部に記憶された動作条件に従って熱処理部が動作する。このとき、プレート部材の温度の変化が検出され、検出された温度の変化が基準波形に近づくように記憶部に記憶された動作条件が変更される。 When the temperature of the plate member is changed from the first temperature to the second temperature, the heat treatment section operates according to the operating conditions stored in the storage section. At this time, a change in the temperature of the plate member is detected, and the operating condition stored in the storage unit is changed so that the detected change in the temperature approaches the reference waveform.
 複数の基板が順次処理されることによりプレート部材の温度が再度第1の温度から第2の温度へ変更される際には、前回の温度変更時に変更された動作条件に従って熱処理部が動作する。それにより、第1の温度から第2の温度へのプレート部材の温度変化が前回の温度変更時に比べて基準波形に近づく。 When the temperature of the plate member is changed from the first temperature to the second temperature again by sequentially processing a plurality of substrates, the heat treatment section operates according to the operating conditions changed at the previous temperature change. As a result, the temperature change of the plate member from the first temperature to the second temperature approaches the reference waveform as compared with the previous temperature change.
 このように、第1の温度から第2の温度へのプレート部材の温度変更が行われるごとに動作条件が変更されることにより、第1の温度から第2の温度への温度変更時におけるプレート部材の温度変化が漸次適切に修正される。したがって、基板の熱処理温度の変更に伴う熱処理装置の調整時間を適切に短縮することができる。その結果、熱処理温度の変更に伴なう熱処理効率の低下を抑制することが可能になる。 In this way, the operating condition is changed every time the temperature of the plate member is changed from the first temperature to the second temperature, so that the plate at the time of changing the temperature from the first temperature to the second temperature is changed. The temperature change of the component is gradually corrected appropriately. Therefore, the adjustment time of the heat treatment apparatus due to the change of the heat treatment temperature of the substrate can be appropriately shortened. As a result, it is possible to suppress a decrease in heat treatment efficiency due to a change in heat treatment temperature.
 (2)動作条件は、一または複数の制御パラメータの値を含み、条件変更部は、検出された温度の変化が基準波形に近づくように、記憶部に記憶された一または複数の制御パラメータのうち少なくとも1つの値を変更してもよい。 (2) The operating condition includes a value of one or a plurality of control parameters, and the condition changing unit controls one or a plurality of control parameters stored in the storage unit so that the detected change in temperature approaches the reference waveform. At least one of them may be changed.
 この場合、一または複数の制御パラメータのうち少なくとも1つの値を変更する簡単な処理で、第1の温度から第2の温度へのプレート部材の温度変化を調整することができる。 In this case, the temperature change of the plate member from the first temperature to the second temperature can be adjusted by a simple process of changing at least one value of the one or more control parameters.
 (3)熱処理部は、プレート部材に対して加熱または冷却を行う第1の状態とプレート部材に対して加熱および冷却を行わない第2の状態とに切り替え可能に構成され、一または複数の制御パラメータは、熱処理部の第1および第2の状態の切替タイミングを含んでもよい。 (3) The heat treatment unit is configured to be switchable between a first state in which the plate member is heated or cooled and a second state in which the plate member is not heated and cooled, and one or a plurality of controls are performed. The parameter may include the switching timing of the first and second states of the heat treatment unit.
 この場合、熱処理部の第1および第2の状態の切替タイミングを変更することにより、第1の温度から第2の温度へのプレート部材の温度変化を大きく調整することができる。 In this case, the temperature change of the plate member from the first temperature to the second temperature can be greatly adjusted by changing the switching timing between the first and second states of the heat treatment section.
 (4)熱処理部は、PID制御が可能に構成され、一または複数の制御パラメータは、プレート部材の温度を第1の温度から第2の温度へ変更するためのPID制御の比例パラメータ、積分パラメータおよび微分パラメータのうち少なくとも1つを含んでもよい。 (4) The heat treatment unit is configured to be capable of PID control, and the one or more control parameters are proportional and integral parameters of PID control for changing the temperature of the plate member from the first temperature to the second temperature. And at least one of the differential parameters.
 この場合、比例パラメータ、積分パラメータおよび微分パラメータの値のうち少なくとも1つを変更することにより、第1の温度から第2の温度へのプレート部材の温度変化を調整することができる。 In this case, the temperature change of the plate member from the first temperature to the second temperature can be adjusted by changing at least one of the values of the proportional parameter, the integral parameter and the derivative parameter.
 (5)一または複数の制御パラメータは、熱処理部の出力の上限を含んでもよい。 (5) The one or more control parameters may include the upper limit of the output of the heat treatment section.
 この場合、熱処理部の出力の上限を変更することにより、第1の温度から第2の温度へのプレート部材の温度変化を微調整することができる。 In this case, the temperature change of the plate member from the first temperature to the second temperature can be finely adjusted by changing the upper limit of the output of the heat treatment section.
 (6)条件変更部は、プレート部材の温度が第1の温度から第2の温度へ変化する期間のうち特定時点に温度検出器により検出された温度の変化率が、基準波形のうち特定時点に対応する部分の温度の変化率に近づくように動作条件の変更を行ってもよい。 (6) The condition changing unit is configured such that the rate of change in temperature detected by the temperature detector at a specific time point during the period in which the temperature of the plate member changes from the first temperature to the second temperature is the specific time point in the reference waveform. The operating conditions may be changed so as to approach the rate of change in temperature of the portion corresponding to.
 この場合、プレート部材の温度の変化率に基づいて、第1の温度から第2の温度へのプレート部材の温度変化が適切に調整される。 In this case, the temperature change of the plate member from the first temperature to the second temperature is appropriately adjusted based on the rate of change of the plate member temperature.
 (7)条件変更部は、プレート部材の温度が第1の温度から第2の温度へ変化する期間のうち特定時点に温度検出器により検出された温度の値が、基準波形のうち特定時点に対応する部分の温度の値に近づくように動作条件の変更を行ってもよい。 (7) The condition changing unit determines that the value of the temperature detected by the temperature detector at a specific time point during the period in which the temperature of the plate member changes from the first temperature to the second temperature is at the specific time point in the reference waveform. The operating condition may be changed so as to approach the temperature value of the corresponding portion.
 この場合、プレート部材の温度の値に基づいて、第1の温度から第2の温度へのプレート部材の温度変化が適切に調整される。 In this case, the temperature change of the plate member from the first temperature to the second temperature is appropriately adjusted based on the value of the temperature of the plate member.
 (8)条件変更部は、検出された温度の波形に発生する、第2の温度に対するオーバーシュート量またはアンダーシュート量が小さくなるように動作条件の変更を行ってもよい。 (8) The condition changing unit may change the operating condition so that the amount of overshoot or undershoot with respect to the second temperature generated in the detected temperature waveform becomes small.
 この場合、第2の温度に対するオーバーシュート量またはアンダーシュート量に基づいて、第1の温度から第2の温度へのプレート部材の温度変化が適切に調整される。 In this case, the temperature change of the plate member from the first temperature to the second temperature is appropriately adjusted based on the overshoot amount or the undershoot amount with respect to the second temperature.
 (9)本発明の他の局面に従う熱処理方法は、基板に熱処理を行う熱処理方法であって、プレート部材上に基板を載置するステップと、載置された基板にプレート部材を通して熱処理部による熱処理を行うステップと、プレート部材の温度を設定された第1の温度から設定された第2の温度へ変更する際の熱処理部の動作条件を記憶部に記憶するステップと、記憶部に記憶された動作条件に従って熱処理部を動作させるステップと、プレート部材の温度を温度検出器により検出するステップと、動作条件に従って熱処理部が動作する際に温度検出器により検出された温度の変化が予め定められた基準波形に近づくように、記憶部に記憶された動作条件を変更するステップとを含む。 (9) A heat treatment method according to another aspect of the present invention is a heat treatment method of performing heat treatment on a substrate, which comprises a step of placing the substrate on a plate member, and a heat treatment unit that passes the plate member through the placed substrate And a step of storing the operating condition of the heat treatment section when changing the temperature of the plate member from the set first temperature to the set second temperature in the storage section, and storing in the storage section. The step of operating the heat treatment unit according to the operating condition, the step of detecting the temperature of the plate member by the temperature detector, and the change in the temperature detected by the temperature detector when the heat treatment unit operates according to the operating condition are predetermined. It includes a step of changing the operating conditions stored in the storage unit so as to approach the reference waveform.
 その熱処理方法においては、第1の温度に調整されたプレート部材上に基板が載置されることにより、載置された基板に熱処理が行われる。または、第2の温度に調整されたプレート部材上に基板が載置されることにより、載置された基板に熱処理が行われる。複数の基板が順次熱処理されることにより第1の温度に対応する熱処理および第2の温度に対応する熱処理がこの順で行われる。この場合、第1の温度に対応する熱処理後第2の温度に対応する熱処理前にプレート部材の温度を第1の温度から第2の温度に変更する必要がある。 In the heat treatment method, the substrate is placed on the plate member adjusted to the first temperature, so that the placed substrate is heat-treated. Alternatively, the substrate is placed on the plate member adjusted to the second temperature, so that the placed substrate is heat-treated. By sequentially heat-treating the plurality of substrates, the heat treatment corresponding to the first temperature and the heat treatment corresponding to the second temperature are performed in this order. In this case, it is necessary to change the temperature of the plate member from the first temperature to the second temperature after the heat treatment corresponding to the first temperature and before the heat treatment corresponding to the second temperature.
 第1の温度から第2の温度へのプレート部材の温度変更時には、記憶部に記憶された動作条件に従って熱処理部が動作する。このとき、プレート部材の温度の変化が検出され、検出された温度の変化が基準波形に近づくように記憶部に記憶された動作条件が変更される。 When the temperature of the plate member is changed from the first temperature to the second temperature, the heat treatment section operates according to the operating conditions stored in the storage section. At this time, a change in the temperature of the plate member is detected, and the operating condition stored in the storage unit is changed so that the detected change in the temperature approaches the reference waveform.
 複数の基板が順次処理されることによりプレート部材の温度が再度第1の温度から第2の温度へ変更される際には、前回の温度変更時に変更された動作条件に従って熱処理部が動作する。それにより、第1の温度から第2の温度へのプレート部材の温度変化が前回の温度変更時に比べて基準波形に近づく。 When the temperature of the plate member is changed from the first temperature to the second temperature again by sequentially processing a plurality of substrates, the heat treatment section operates according to the operating conditions changed at the previous temperature change. As a result, the temperature change of the plate member from the first temperature to the second temperature approaches the reference waveform as compared with the previous temperature change.
 このように、第1の温度から第2の温度へのプレート部材の温度変更が行われるごとに動作条件が変更されることにより、第1の温度から第2の温度への温度変更時におけるプレート部材の温度変化が漸次適切に修正される。したがって、基板の熱処理温度の変更に伴う熱処理装置の調整時間を適切に短縮することができる。その結果、熱処理温度の変更に伴なう熱処理効率の低下を抑制することが可能になる。 In this way, the operating condition is changed every time the temperature of the plate member is changed from the first temperature to the second temperature, so that the plate at the time of changing the temperature from the first temperature to the second temperature is changed. The temperature change of the component is gradually corrected appropriately. Therefore, the adjustment time of the heat treatment apparatus due to the change of the heat treatment temperature of the substrate can be appropriately shortened. As a result, it is possible to suppress a decrease in heat treatment efficiency due to a change in heat treatment temperature.
 (10)動作条件は、一または複数の制御パラメータの値を含み、動作条件を変更するステップは、検出された温度の変化が基準波形に近づくように、記憶部に記憶された一または複数の制御パラメータのうち少なくとも1つの値を変更することを含んでもよい。 (10) The operating condition includes a value of one or a plurality of control parameters, and the step of changing the operating condition includes one or a plurality of values stored in the storage unit so that the detected change in temperature approaches the reference waveform. It may include changing the value of at least one of the control parameters.
 この場合、一または複数の制御パラメータのうち少なくとも1つの値を変更する簡単な処理で、第1の温度から第2の温度へのプレート部材の温度変化を調整することができる。 In this case, the temperature change of the plate member from the first temperature to the second temperature can be adjusted by a simple process of changing at least one value of the one or more control parameters.
 本発明によれば、熱処理温度の変更に伴なう熱処理効率の低下を抑制することが可能になる。 According to the present invention, it is possible to suppress a decrease in heat treatment efficiency due to a change in heat treatment temperature.
図1は本発明の一実施の形態に係る熱処理装置の構成を示す模式的側面図である。FIG. 1 is a schematic side view showing the configuration of a heat treatment apparatus according to an embodiment of the present invention. 図2は複数の基板について順次加熱処理が行われる場合の熱処理プレートの温度変化の一例を示す図である。FIG. 2 is a diagram showing an example of the temperature change of the heat treatment plate when the heat treatment is sequentially performed on a plurality of substrates. 図3は複数の設定温度のうち2つの設定温度の組み合わせごとに設定される変更動作条件の一例を示す図である。FIG. 3 is a diagram showing an example of changing operation conditions set for each combination of two set temperatures among a plurality of set temperatures. 図4は低い開始温度から高い目標温度にかけて熱処理プレートの温度を上昇させるための変更動作条件の変更例を説明するための図である。FIG. 4 is a diagram for explaining a modification example of the modification operation condition for increasing the temperature of the heat treatment plate from the low start temperature to the high target temperature. 図5は高い開始温度から低い目標温度にかけて熱処理プレートの温度を下降させるための変更動作条件の変更例を説明するための図である。FIG. 5 is a diagram for explaining a modification example of the modification operation condition for decreasing the temperature of the heat treatment plate from the high start temperature to the low target temperature. 図6は設定温度の変更についての実験結果を説明するための図である。FIG. 6 is a diagram for explaining an experimental result of changing the set temperature. 図7は図1の制御装置において実行される設定温度変更処理の一例を示すフローチャートである。FIG. 7 is a flowchart showing an example of the set temperature change process executed in the control device of FIG. 図8は図1の熱処理装置を備える基板処理装置の一例を示す模式的ブロック図である。FIG. 8 is a schematic block diagram showing an example of a substrate processing apparatus including the heat treatment apparatus of FIG.
 以下、本発明の実施の形態に係る熱処理装置および熱処理方法について図面を参照しつつ説明する。以下の説明において、基板とは、液晶表示装置または有機EL(Electro Luminescence)表示装置等に用いられるFPD(Flat Panel Display)用基板、半導体基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板または太陽電池用基板等をいう。以下の説明においては、熱処理装置の一例として基板に加熱処理を行う熱処理装置を説明する。 Hereinafter, a heat treatment apparatus and a heat treatment method according to an embodiment of the present invention will be described with reference to the drawings. In the following description, a substrate is an FPD (Flat Panel Display) substrate used in a liquid crystal display device or an organic EL (Electro Luminescence) display device, a semiconductor substrate, an optical disc substrate, a magnetic disc substrate, a magneto-optical disc. A substrate, a photomask substrate, a ceramic substrate, a solar cell substrate, or the like. In the following description, a heat treatment apparatus that heat-treats a substrate will be described as an example of the heat treatment apparatus.
 (1)熱処理装置の構成
 図1は本発明の一実施の形態に係る熱処理装置の構成を示す模式的側面図である。図1に示すように、熱処理装置100は、熱処理プレート10、能動冷却プレート20、受動冷却プレート30、昇降装置40および制御装置50を含む。
(1) Configuration of Heat Treatment Device FIG. 1 is a schematic side view showing a configuration of a heat treatment device according to an embodiment of the present invention. As shown in FIG. 1, the heat treatment apparatus 100 includes a heat treatment plate 10, an active cooling plate 20, a passive cooling plate 30, an elevating device 40, and a control device 50.
 熱処理プレート10は、扁平な円柱形状を有する金属製の伝熱プレートであり、平坦な上面および下面を有する。熱処理プレート10の上面は、加熱処理の対象となる基板Wの外径よりも大きい外径を有する。熱処理プレート10の上面には、基板Wの下面を支持する複数のプロキシミティボール等が設けられている。図1では、熱処理プレート10上に載置される基板Wが一点鎖線で示される。 The heat treatment plate 10 is a metal heat transfer plate having a flat columnar shape, and has flat upper and lower surfaces. The upper surface of the heat treatment plate 10 has an outer diameter larger than the outer diameter of the substrate W to be heat-treated. On the upper surface of the heat treatment plate 10, a plurality of proximity balls and the like that support the lower surface of the substrate W are provided. In FIG. 1, the substrate W placed on the heat treatment plate 10 is shown by a alternate long and short dash line.
 熱処理プレート10には、メインヒータ11、ブースターヒータ12および温度センサ19が設けられている。温度センサ19は、熱処理プレート10の上面の温度を検出し、検出した温度に対応する検出信号を後述する温度取得部55へ出力する。 The heat treatment plate 10 is provided with a main heater 11, a booster heater 12, and a temperature sensor 19. The temperature sensor 19 detects the temperature of the upper surface of the heat treatment plate 10 and outputs a detection signal corresponding to the detected temperature to the temperature acquisition unit 55 described later.
 メインヒータ11およびブースターヒータ12の各々は、例えばマイカヒータまたはペルチェ素子等で構成される。メインヒータ11およびブースターヒータ12には、発熱駆動部13が接続されている。発熱駆動部13は、例えば熱処理プレート10の温度が予め設定された温度(設定温度)で保持されるようにメインヒータ11を駆動する。また、発熱駆動部13は、例えば熱処理プレート10の温度が短時間で上昇するようにブースターヒータ12を駆動する。 Each of the main heater 11 and the booster heater 12 is composed of, for example, a mica heater or a Peltier element. A heat generating drive unit 13 is connected to the main heater 11 and the booster heater 12. The heat generation drive unit 13 drives the main heater 11 so that the temperature of the heat treatment plate 10 is maintained at a preset temperature (set temperature), for example. Further, the heat generation driving unit 13 drives the booster heater 12 so that the temperature of the heat treatment plate 10 rises in a short time, for example.
 能動冷却プレート20は、熱処理プレート10よりも下方の位置で、熱処理プレート10の下面から所定距離、離れるように配置されている。能動冷却プレート20は、熱処理プレート10に向く上面を有する。能動冷却プレート20の上面には、高い熱伝導率を有する熱伝導シート(図示せず)が設けられている。 The active cooling plate 20 is arranged at a position lower than the heat treatment plate 10 and separated from the lower surface of the heat treatment plate 10 by a predetermined distance. The active cooling plate 20 has an upper surface facing the heat treatment plate 10. A thermal conductive sheet (not shown) having a high thermal conductivity is provided on the upper surface of the active cooling plate 20.
 能動冷却プレート20には、冷却機構21が設けられている。冷却機構21は、例えば能動冷却プレート20内に形成される冷却水通路またはペルチェ素子等で構成される。冷却機構21には、冷却駆動部22が接続されている。冷却駆動部22は、能動冷却プレート20の上面の温度が熱処理プレート10の温度よりも低くなるように冷却機構21を駆動する。 The active cooling plate 20 is provided with a cooling mechanism 21. The cooling mechanism 21 is composed of, for example, a cooling water passage formed in the active cooling plate 20, a Peltier element, or the like. A cooling drive unit 22 is connected to the cooling mechanism 21. The cooling driving unit 22 drives the cooling mechanism 21 so that the temperature of the upper surface of the active cooling plate 20 becomes lower than the temperature of the heat treatment plate 10.
 受動冷却プレート30は、熱処理プレート10と能動冷却プレート20との間の空間で、昇降装置40により昇降可能に支持されている(図1の白抜きの矢印参照)。受動冷却プレート30は、金属製の円板状部材であり、上面および下面を有する。受動冷却プレート30の上面は熱処理プレート10の下面に対向し、受動冷却プレート30の下面は能動冷却プレート20の上面に対向する。受動冷却プレート30の上面には、高い熱伝導率を有する熱伝導シート(図示せず)が設けられている。 The passive cooling plate 30 is supported by the elevating device 40 in the space between the heat treatment plate 10 and the active cooling plate 20 (see the white arrows in FIG. 1). The passive cooling plate 30 is a metal disc-shaped member having an upper surface and a lower surface. The upper surface of the passive cooling plate 30 faces the lower surface of the heat treatment plate 10, and the lower surface of the passive cooling plate 30 faces the upper surface of the active cooling plate 20. A heat conductive sheet (not shown) having a high heat conductivity is provided on the upper surface of the passive cooling plate 30.
 昇降装置40は、例えばエアシリンダで構成される。昇降装置40には、昇降駆動部41が接続されている。昇降駆動部41は、例えば受動冷却プレート30が能動冷却プレート20に接するように昇降装置40を駆動する。この場合、受動冷却プレート30が能動冷却プレート20により冷却される。また、昇降駆動部41は、例えば受動冷却プレート30が熱処理プレート10に接するように昇降装置40を駆動する。この場合、熱処理プレート10が受動冷却プレート30により冷却される。 The lifting device 40 is composed of, for example, an air cylinder. A lifting drive unit 41 is connected to the lifting device 40. The elevating/lowering drive unit 41 drives the elevating/lowering device 40 such that the passive cooling plate 30 contacts the active cooling plate 20, for example. In this case, the passive cooling plate 30 is cooled by the active cooling plate 20. Further, the lifting drive unit 41 drives the lifting device 40 such that the passive cooling plate 30 contacts the heat treatment plate 10, for example. In this case, the heat treatment plate 10 is cooled by the passive cooling plate 30.
 制御装置50は、発熱駆動部13、冷却駆動部22および昇降駆動部41を含む熱処理装置100の各構成要素の動作を制御する。制御装置50の詳細は後述する。なお、上記の熱処理装置100には、熱処理プレート10と熱処理装置100の外部装置(例えば搬送ロボット)との間で基板Wの受渡を行うための受け渡し機構(図示せず)がさらに設けられている。 The control device 50 controls the operation of each component of the heat treatment apparatus 100 including the heat generation drive unit 13, the cooling drive unit 22, and the elevation drive unit 41. Details of the control device 50 will be described later. The heat treatment apparatus 100 is further provided with a transfer mechanism (not shown) for transferring the substrate W between the heat treatment plate 10 and an external device (for example, a transfer robot) of the heat treatment apparatus 100. ..
 (2)熱処理装置100における複数の基板Wの熱処理
 図1の熱処理装置100においては、複数の基板Wがそれぞれの熱処理の内容に応じた設定温度で順次加熱処理される。図2は、複数の基板Wについて順次加熱処理が行われる場合の熱処理プレート10の温度変化の一例を示す図である。
(2) Heat treatment of a plurality of substrates W in the heat treatment apparatus 100 In the heat treatment apparatus 100 of FIG. 1, the plurality of substrates W are sequentially heat-treated at a set temperature according to the content of each heat treatment. FIG. 2 is a diagram showing an example of a temperature change of the heat treatment plate 10 when heat treatment is sequentially performed on a plurality of substrates W.
 図2に示すグラフにおいては、縦軸が熱処理プレート10の温度を表し、横軸が時間を表す。また、熱処理プレート10の温度変化が太い実線で示される。本例では、28枚の基板Wについて、4枚の基板Wごとに熱処理の内容が変更される。そのため、熱処理プレート10の設定温度は4枚の基板Wごとに変更されている。 In the graph shown in FIG. 2, the vertical axis represents the temperature of the heat treatment plate 10 and the horizontal axis represents time. Further, the temperature change of the heat treatment plate 10 is shown by a thick solid line. In this example, the content of the heat treatment is changed for each of the four substrates W for the 28 substrates W. Therefore, the set temperature of the heat treatment plate 10 is changed for each of the four substrates W.
 具体的には、時点t1~t2の期間、時点t5~t6の期間および時点t13~t14の期間の各々において、熱処理プレート10の温度が設定温度90℃に保持された状態で基板Wの加熱処理が行われる。また、時点t3~t4の期間、時点t7~t8の期間および時点t11~t12の期間において、熱処理プレート10の温度が設定温度115℃に保持された状態で基板Wの加熱処理が行われる。さらに、時点t9~t10の期間において、熱処理プレート10の温度が設定温度140℃に保持された状態で基板Wの加熱処理が行われる。 Specifically, in each of the period from time t1 to t2, the period from time t5 to t6, and the period from time t13 to t14, the heat treatment of the substrate W is performed while the temperature of the heat treatment plate 10 is maintained at the set temperature 90° C. Is done. Further, during the period from time t3 to t4, the period from time t7 to t8, and the period from time t11 to t12, the heat treatment of the substrate W is performed while the temperature of the heat treatment plate 10 is maintained at the set temperature 115°C. Further, during the period from time t9 to time t10, the heat treatment of the substrate W is performed while the temperature of the heat treatment plate 10 is maintained at the set temperature 140° C.
 設定温度に保持された熱処理プレート10上に未処理の基板Wが載置される際には、例えば図2に白抜きの矢印で示すように、熱処理プレート10の温度はわずかに低下する。その後、熱処理プレート10の温度は、図1のメインヒータ11が継続して駆動されることにより設定温度まで比較的微小時間で復帰する。 When the unprocessed substrate W is placed on the heat treatment plate 10 held at the set temperature, the temperature of the heat treatment plate 10 slightly decreases, as shown by the white arrow in FIG. 2, for example. After that, the temperature of the heat treatment plate 10 returns to the set temperature in a relatively minute time by the main heater 11 of FIG. 1 being continuously driven.
 図2に一点鎖線で取り囲むように設定温度の変更に伴って熱処理プレート10の温度を大きく変化させる場合には、メインヒータ11の出力を調整するのみでは、温度変更を短時間で行うことが難しい場合がある。そのため、本例では、設定温度の上昇時に、変更開始直後からブースターヒータ12が駆動される。また、温度センサ19の検出信号に基づいてメインヒータ11についてのPID(比例積分微分)制御が行われる。さらに、メインヒータ11の出力の上限が調整される。一方、設定温度の下降時に、変更開始直後から熱処理プレート10が受動冷却プレート30により冷却される。また、温度センサ19の検出信号に基づいてメインヒータ11についてのPID制御が行われる。 In the case where the temperature of the heat treatment plate 10 is largely changed in accordance with the change of the set temperature so as to be surrounded by the one-dot chain line in FIG. 2, it is difficult to change the temperature in a short time only by adjusting the output of the main heater 11. In some cases. Therefore, in this example, when the set temperature rises, the booster heater 12 is driven immediately after the start of the change. Further, PID (proportional-integral-derivative) control for the main heater 11 is performed based on the detection signal of the temperature sensor 19. Further, the upper limit of the output of the main heater 11 is adjusted. On the other hand, when the set temperature drops, the heat treatment plate 10 is cooled by the passive cooling plate 30 immediately after the start of the change. Further, PID control of the main heater 11 is performed based on the detection signal of the temperature sensor 19.
 予め定められた複数の設定温度が存在する場合、一の設定温度から他の設定温度まで熱処理プレート10の温度を変更するための熱処理装置100の動作条件はシミュレーションまたは実験等により求めることができる。そこで、熱処理プレート10においては、複数の設定温度のうち2つの設定温度の組み合わせごとに、設定温度の変更時における動作条件(以下、変更動作条件と呼ぶ。)が予め設定されている。 When there are a plurality of preset temperatures, the operating condition of the heat treatment apparatus 100 for changing the temperature of the heat treatment plate 10 from one preset temperature to another preset temperature can be obtained by simulation or experiment. Therefore, in the heat treatment plate 10, an operating condition when changing the set temperature (hereinafter, referred to as a changed operating condition) is preset for each combination of two set temperatures among the plurality of set temperatures.
 図3は、複数の設定温度のうち2つの設定温度の組み合わせごとに設定される変更動作条件の一例を示す図である。以下の説明では、変更前の設定温度を適宜開始温度と呼び、変更後の設定温度を適宜目標温度と呼ぶ。 FIG. 3 is a diagram showing an example of changing operation conditions set for each combination of two set temperatures among a plurality of set temperatures. In the following description, the set temperature before the change will be appropriately called the start temperature, and the set temperature after the change will be appropriately called the target temperature.
 変更動作条件には、加熱停止パラメータの値が含まれる。加熱停止パラメータは、ブースターヒータ12についての制御パラメータであって、加熱を停止すべき熱処理プレート10の温度を示す。換言すれば、加熱停止パラメータの値は、設定温度の変更時(上昇時)にブースターヒータ12が発熱するオン状態からブースターヒータ12が発熱しないオフ状態に切り替わるべきタイミングを示す。図3では加熱停止パラメータが「加熱停止」と表記されている。図3の加熱停止パラメータの値は、目標温度から加熱を停止すべき温度を減算した値で示される。 Changed operation conditions include the value of the heating stop parameter. The heating stop parameter is a control parameter for the booster heater 12, and indicates the temperature of the heat treatment plate 10 at which heating should be stopped. In other words, the value of the heating stop parameter indicates the timing at which the booster heater 12 should generate heat when the set temperature is changed (when it rises) to the off state in which the booster heater 12 does not generate heat. In FIG. 3, the heating stop parameter is described as “heating stop”. The value of the heating stop parameter in FIG. 3 is indicated by a value obtained by subtracting the temperature at which heating should be stopped from the target temperature.
 また、変更動作条件には、メインヒータ11についてのPID制御のパラメータの値が含まれる。また、変更動作条件には、メインヒータ11の出力の上限を示す上限パラメータの値が含まれる。図3では上限パラメータが「ヒータ上限」と表記されている。上限パラメータの値は、例えばメインヒータ11の定格出力に対して許容される出力の上限の比率(%)で表される。 Further, the changed operating conditions include the values of the PID control parameters for the main heater 11. Further, the changed operation condition includes the value of the upper limit parameter indicating the upper limit of the output of the main heater 11. In FIG. 3, the upper limit parameter is described as “heater upper limit”. The value of the upper limit parameter is represented by, for example, the ratio (%) of the upper limit of the output allowed to the rated output of the main heater 11.
 さらに、変更動作条件には、冷却停止パラメータの値が含まれる。冷却停止パラメータは、昇降装置40についての制御パラメータであって、冷却を停止すべき熱処理プレート10の温度を示す。換言すれば、冷却停止パラメータの値は、設定温度の変更時(下降時)に受動冷却プレート30が熱処理プレート10に接触する接触状態から受動冷却プレート30が熱処理プレート10から離間する非接触状態に切り替わるべきタイミングを示す。図3では冷却停止パラメータが「冷却停止」と表記されている。図3の冷却停止パラメータの値は、冷却を停止すべき熱処理プレート10の温度から目標温度を減算した値で示される。 Furthermore, the changed operating conditions include the value of the cooling stop parameter. The cooling stop parameter is a control parameter for the lifting device 40, and indicates the temperature of the heat treatment plate 10 at which cooling should be stopped. In other words, the value of the cooling stop parameter changes from the contact state in which the passive cooling plate 30 contacts the heat treatment plate 10 when the set temperature is changed (during fall) to the non-contact state in which the passive cooling plate 30 separates from the heat treatment plate 10. Indicates the timing to switch. In FIG. 3, the cooling stop parameter is described as “cooling stop”. The value of the cooling stop parameter in FIG. 3 is indicated by a value obtained by subtracting the target temperature from the temperature of the heat treatment plate 10 at which cooling should be stopped.
 図3の例によれば、開始温度90℃から目標温度115℃への変更に対応する変更動作条件は、加熱停止パラメータ「5」、比例パラメータ「0.2」、積分パラメータ「15」、微分パラメータ「3」および上限パラメータ「80」(%)を含む。また、開始温度115℃から目標温度90℃への変更に対応する変更動作条件は、冷却停止パラメータ「5」、比例パラメータ「0.2」、積分パラメータ「15」、微分パラメータ「3」および上限パラメータ「80」(%)を含む。 According to the example of FIG. 3, the change operation condition corresponding to the change from the starting temperature of 90° C. to the target temperature of 115° C. is the heating stop parameter “5”, the proportional parameter “0.2”, the integral parameter “15”, the derivative Includes parameter "3" and upper bound parameter "80" (%). Further, the change operation condition corresponding to the change from the starting temperature of 115° C. to the target temperature of 90° C. is the cooling stop parameter “5”, the proportional parameter “0.2”, the integral parameter “15”, the differential parameter “3” and the upper limit. It includes the parameter “80” (%).
 ところで、熱処理装置100が設けられる空間の温度または熱処理装置100の個体差等によっては、予め設定された変更動作条件が適切であるとは限らない。そこで、本実施の形態では、熱処理プレート10の設定温度が変更されるごとに、その変更時の熱処理プレート10の温度変化が理想的な基準波形に近づくように変更動作条件が変更される。理想的な基準波形は、例えば熱処理プレート10の構成、メインヒータ11およびブースターヒータ12の発熱能力および能動冷却プレート20および受動冷却プレート30の冷却能力に基づいて定められる。 By the way, depending on the temperature of the space where the heat treatment apparatus 100 is provided or the individual difference of the heat treatment apparatus 100, the preset changing operating conditions are not always appropriate. Therefore, in the present embodiment, every time the set temperature of heat treatment plate 10 is changed, the change operation condition is changed so that the temperature change of heat treatment plate 10 at the time of the change approaches the ideal reference waveform. The ideal reference waveform is determined based on, for example, the configuration of the heat treatment plate 10, the heat generation capacities of the main heater 11 and the booster heater 12, and the cooling capacities of the active cooling plate 20 and the passive cooling plate 30.
 図2の例では、例えば時点t2~t3の期間における設定温度の変更時に熱処理プレート10の温度変化に大きなオーバーシュートが発生した場合、当該オーバーシュートが小さくなるように変更動作条件が変更される。その後、時点t6~t7の期間における設定温度の変更時には、変更後の変更動作条件に従って熱処理装置100が動作する。それにより、設定温度の変更に要する時間が、時点t2~t3の期間における設定温度の変更時に比べて短縮される。さらに、時点t6~t7の期間における設定温度の変更時においても、時点t2~t3の期間における設定温度の変更時と同様に、変更動作条件が変更される。それにより、時点t7よりも後の時点で、設定温度90℃から設定温度115℃への変更が生じる場合には、その変更に要する時間がさらに短縮される。 In the example of FIG. 2, for example, when a large overshoot occurs in the temperature change of the heat treatment plate 10 when the set temperature is changed in the period of time t2 to t3, the change operation condition is changed so as to reduce the overshoot. After that, when the set temperature is changed in the period from time t6 to time t7, the heat treatment apparatus 100 operates according to the changed operation condition after the change. As a result, the time required to change the set temperature is shortened as compared with the time required to change the set temperature during the period from time t2 to t3. Further, even when the set temperature is changed during the period from time t6 to t7, the change operation condition is changed similarly to the change of the set temperature during the period from time t2 to t3. As a result, when the set temperature of 90° C. is changed to the set temperature of 115° C. after the time point t7, the time required for the change is further shortened.
 また、図2の例では、例えば時点t4~t5の期間における設定温度の変更時に熱処理プレート10の温度変化に大きなアンダーシュートが発生した場合、当該アンダーシュートが小さくなるように変更動作条件が変更される。その後、時点t12~t13の期間における設定温度の変更時には、変更後の変更動作条件に従って熱処理装置100が動作する。それにより、設定温度の変更に要する時間が、時点t4~t5の期間における設定温度の変更時に比べて短縮される。さらに、時点t12~t13の期間における設定温度の変更時においても、時点t4~t5の期間における設定温度の変更時と同様に、変更動作条件が変更される。それにより、時点t13よりも後の時点で、開始温度115℃から目標温度90℃への変更が生じる場合には、その変更に要する時間がさらに短縮される。 Further, in the example of FIG. 2, for example, when a large undershoot occurs in the temperature change of the heat treatment plate 10 at the time of changing the set temperature in the period of time t4 to t5, the change operation condition is changed so as to reduce the undershoot. To. After that, when the set temperature is changed in the period from time t12 to time t13, the heat treatment apparatus 100 operates according to the changed operation condition after the change. As a result, the time required to change the set temperature is shortened compared to the time required to change the set temperature in the period from time t4 to t5. Further, even when the set temperature is changed during the period from time t12 to t13, the change operation condition is changed similarly to the change of the set temperature during the period from time t4 to t5. Accordingly, when the change from the starting temperature of 115° C. to the target temperature of 90° C. occurs after the time t13, the time required for the change is further shortened.
 上記のように、熱処理装置100においては、熱処理プレート10の設定温度が変更されるごとに変更動作条件が変更される。それにより、設定温度の変更に要する時間が順次短縮される。その結果、熱処理温度の変更に伴なう熱処理効率の低下が抑制される。 As described above, in the heat treatment apparatus 100, the change operation condition is changed every time the set temperature of the heat treatment plate 10 is changed. As a result, the time required to change the set temperature is sequentially reduced. As a result, the decrease in heat treatment efficiency due to the change in heat treatment temperature is suppressed.
 (3)変更動作条件の具体的な変更例
 図4は、低い開始温度STから高い目標温度TTにかけて熱処理プレート10の温度を上昇させるための変更動作条件の変更例を説明するための図である。図4の上段のグラフには、設定温度の変更時に検出される熱処理プレート10の温度の変化が太い実線で示される。また、当該設定温度の変更に対応して予め定められた基準波形が一点鎖線で示される。本例では、基準波形に示されるように、時点t20から時点t22にかけて設定温度の変更が行われることが望まれる。
(3) Specific Change Example of Change Operating Condition FIG. 4 is a diagram for explaining a change example of the change operating condition for raising the temperature of the heat treatment plate 10 from a low start temperature ST to a high target temperature TT. .. In the upper graph of FIG. 4, the change in temperature of the heat treatment plate 10 detected when the set temperature is changed is shown by a thick solid line. In addition, a predetermined reference waveform corresponding to the change in the set temperature is indicated by a alternate long and short dash line. In this example, it is desired that the set temperature is changed from the time point t20 to the time point t22 as shown in the reference waveform.
 変更動作条件を変更するために、時点t20から時点t22までの期間のうち予め定められた特定時点(本例では、時点t20,t22の中間時点)t21における熱処理プレート10の温度の変化率(本例では、上昇速度)が取得される。取得された変化率が、特定時点t21における基準波形の変化率と対比される。また、特定時点t21における熱処理プレート10の温度値が取得され、取得された温度値が、特定時点t21における基準波形の温度値と対比される。さらに、熱処理プレート10の温度のオーバーシュート量OSが取得される。 In order to change the change operation condition, the rate of change of the temperature of the heat treatment plate 10 at a predetermined specific time point (in this example, an intermediate time point between the time points t20 and t22) t21 in the period from the time point t20 to the time point t22 ( In the example, the rising speed) is acquired. The acquired rate of change is compared with the rate of change of the reference waveform at the specific time point t21. Further, the temperature value of the heat treatment plate 10 at the specific time point t21 is acquired, and the acquired temperature value is compared with the temperature value of the reference waveform at the specific time point t21. Further, the overshoot amount OS of the temperature of the heat treatment plate 10 is acquired.
 変化率の対比の結果、取得された変化率と基準波形の変化率との差分が、その変化率について予め定められた許容範囲外にある場合には変更動作条件を変更することが望ましい。そこで、変化率の差分が許容範囲外にありかつ取得された変化率の絶対値が基準波形の変化率の絶対値よりも低い場合には、熱処理プレート10に供給される熱量が大きくなるように変更動作条件を変更する必要がある。一方、変化率の差分が許容範囲外にありかつ取得された変化率の絶対値が基準波形の変化率の絶対値よりも高い場合には、熱処理プレート10に供給される熱量が小さくなるように変更動作条件を変更する必要がある。 As a result of comparing change rates, if the difference between the acquired change rate and the change rate of the reference waveform is outside the predetermined allowable range for that change rate, it is desirable to change the change operation condition. Therefore, when the difference in change rate is outside the allowable range and the absolute value of the obtained change rate is lower than the absolute value of the change rate of the reference waveform, the heat quantity supplied to the heat treatment plate 10 is increased. Change operation conditions need to be changed. On the other hand, when the difference between the change rates is outside the allowable range and the absolute value of the obtained change rate is higher than the absolute value of the change rate of the reference waveform, the amount of heat supplied to the heat treatment plate 10 is reduced. Change operation conditions need to be changed.
 また、温度値の対比の結果、取得された温度値と基準波形の温度値との差分が、その温度値について予め定められた許容範囲外にある場合には変更動作条件を変更することが望ましい。そこで、温度値の差分が許容範囲外にありかつ取得された温度値が基準波形の温度値よりも低い場合には、熱処理プレート10に供給される熱量が大きくなるように変更動作条件を変更する必要がある。一方、温度値の差分が許容範囲外にありかつ取得された温度値が基準波形の温度値よりも高い場合には、熱処理プレート10に供給される熱量が小さくなるように変更動作条件を変更する必要がある。 Further, as a result of the comparison of the temperature values, if the difference between the acquired temperature value and the temperature value of the reference waveform is outside the predetermined allowable range for that temperature value, it is desirable to change the change operation condition. .. Therefore, when the difference between the temperature values is outside the allowable range and the acquired temperature value is lower than the temperature value of the reference waveform, the change operation condition is changed so that the amount of heat supplied to the heat treatment plate 10 becomes large. There is a need. On the other hand, when the difference between the temperature values is outside the allowable range and the acquired temperature value is higher than the temperature value of the reference waveform, the change operation condition is changed so that the amount of heat supplied to the heat treatment plate 10 becomes smaller. There is a need.
 さらに、取得されたオーバーシュート量OSが、オーバーシュート量について予め定められた許容範囲を超える場合には変更動作条件を変更することが望ましい。そこで、オーバーシュート量OSが許容範囲を超える場合には、熱処理プレート10に供給される熱量が小さくなるように変更動作条件を変更する必要がある。 Furthermore, when the acquired overshoot amount OS exceeds the predetermined allowable range for the overshoot amount, it is desirable to change the change operation condition. Therefore, when the overshoot amount OS exceeds the allowable range, it is necessary to change the changing operation condition so that the heat amount supplied to the heat treatment plate 10 becomes small.
 図4の中段に、予め設定された変更動作条件に従うブースターヒータ12の状態が示される。本例では、ブースターヒータ12は、時点t20から時点t22にかけてオン状態で維持される。熱処理プレート10に供給される熱量を小さくする場合には、図4に白抜きの矢印a11で示すように、加熱停止パラメータの値を変更することによりブースターヒータ12をオフ状態に切り替えるタイミングを早めればよい。一方、熱処理プレート10に供給される熱量を大きくする場合には、図4に白抜きの矢印a12で示すように、加熱停止パラメータの値を変更することによりブースターヒータ12をオフ状態に切り替えるタイミングを遅くすればよい。 The state of the booster heater 12 according to the preset change operation condition is shown in the middle part of FIG. In this example, the booster heater 12 is maintained in the on state from the time point t20 to the time point t22. When reducing the amount of heat supplied to the heat treatment plate 10, the timing of switching the booster heater 12 to the off state can be advanced by changing the value of the heating stop parameter, as indicated by the outlined arrow a11 in FIG. Just do it. On the other hand, when increasing the amount of heat supplied to the heat treatment plate 10, the timing of switching the booster heater 12 to the off state is changed by changing the value of the heating stop parameter, as indicated by the outlined arrow a12 in FIG. You can slow it down.
 図4の下段に、予め設定された変更動作条件に従うメインヒータ11の出力波形が示される。本例では、メインヒータ11は、時点t20から熱処理プレート10の温度を上昇させるために出力を増大させる。その後、変更動作条件に従うPID制御により熱処理プレート10の温度に応じて出力が調整される。熱処理プレート10に供給される熱量を小さくする場合には、図4に白抜きの矢印a13で示すように、例えばPID制御の比例パラメータを大きく変更することによりメインヒータ11の出力波形を全体的に低くすればよい。あるいは、図4に白抜きの矢印a14で示すように、例えば上限パラメータを小さく変更することにより、メインヒータ11の出力の上限を低くすればよい。 In the lower part of FIG. 4, the output waveform of the main heater 11 according to the preset changing operation condition is shown. In this example, the main heater 11 increases the output in order to raise the temperature of the heat treatment plate 10 from the time t20. After that, the output is adjusted according to the temperature of the heat treatment plate 10 by PID control according to the changed operating conditions. When the amount of heat supplied to the heat treatment plate 10 is reduced, the output waveform of the main heater 11 is entirely changed by largely changing the proportional parameter of PID control, for example, as shown by the outline arrow a13 in FIG. You can lower it. Alternatively, as shown by an outline arrow a14 in FIG. 4, for example, the upper limit of the output of the main heater 11 may be lowered by changing the upper limit parameter to be smaller.
 一方、熱処理プレート10に供給される熱量を大きくする場合には、図4に白抜きの矢印a15で示すように、例えばPID制御の比例パラメータを小さく変更することによりメインヒータ11の出力波形を全体的に高くすればよい。あるいは、図4に白抜きの矢印a16で示すように、例えば上限パラメータを大きく変更することにより、メインヒータ11の出力の上限を高くすればよい。 On the other hand, when the amount of heat supplied to the heat treatment plate 10 is increased, the output waveform of the main heater 11 is entirely changed by changing the proportional parameter of PID control to a small value, for example, as shown by an outline arrow a15 in FIG. It should be high. Alternatively, as shown by the white arrow a16 in FIG. 4, the upper limit of the output of the main heater 11 may be increased by, for example, changing the upper limit parameter significantly.
 図5は、高い開始温度STから低い目標温度TTにかけて熱処理プレート10の温度を下降させるための変更動作条件の変更例を説明するための図である。図5の上段のグラフには、図4の例と同様に、設定温度の変更時に検出される熱処理プレート10の温度の変化が太い実線で示される。また、当該設定温度の変更に対応して予め定められた基準波形が一点鎖線で示される。本例では、基準波形に示されるように、時点t30から時点t32にかけて熱処理プレート10の温度の変更が行われることが望まれる。 FIG. 5 is a diagram for explaining an example of changing the changing operating conditions for lowering the temperature of the heat treatment plate 10 from the high start temperature ST to the low target temperature TT. In the upper graph of FIG. 5, as in the example of FIG. 4, a change in the temperature of the heat treatment plate 10 detected when the set temperature is changed is indicated by a thick solid line. In addition, a predetermined reference waveform corresponding to the change in the set temperature is indicated by a alternate long and short dash line. In this example, as shown by the reference waveform, it is desired that the temperature of the heat treatment plate 10 be changed from time t30 to time t32.
 変更動作条件を変更するために、時点t30から時点t32までの期間のうち予め定められた特定時点(本例では、時点t30,t32の中間時点)t31における熱処理プレート10の温度の変化率(本例では、下降速度)が取得される。取得された変化率が、特定時点t31における基準波形の変化率と対比される。また、特定時点t31における熱処理プレート10の温度値が取得され、取得された温度値が、特定時点t31における基準波形の温度値と対比される。さらに、熱処理プレート10の温度のアンダーシュート量USが取得される。 In order to change the change operation condition, the rate of change of the temperature of the heat treatment plate 10 at a predetermined specific time point (in this example, an intermediate time point between the time points t30 and t32) t31 in the period from the time point t30 to the time point t32 In the example, the descending speed) is acquired. The acquired rate of change is compared with the rate of change of the reference waveform at the specific time point t31. Further, the temperature value of the heat treatment plate 10 at the specific time point t31 is acquired, and the acquired temperature value is compared with the temperature value of the reference waveform at the specific time point t31. Further, the undershoot amount US of the temperature of the heat treatment plate 10 is acquired.
 変化率の対比の結果、変化率の差分が許容範囲外にありかつ取得された変化率の絶対値が基準波形の変化率の絶対値よりも低い場合には、熱処理プレート10から除去される熱量が大きくなるように変更動作条件を変更する必要がある。一方、変化率の差分が許容範囲外にありかつ取得された変化率の絶対値が基準波形の変化率の絶対値よりも高い場合には、熱処理プレート10から除去される熱量が小さくなるように変更動作条件を変更する必要がある。 As a result of the comparison of the rate of change, when the difference between the rate of change is outside the allowable range and the absolute value of the obtained rate of change is lower than the absolute value of the rate of change of the reference waveform, the amount of heat removed from the heat treatment plate 10. It is necessary to change the change operation condition so that On the other hand, when the difference between the change rates is outside the allowable range and the absolute value of the obtained change rate is higher than the absolute value of the change rate of the reference waveform, the amount of heat removed from the heat treatment plate 10 is reduced. Change operation conditions need to be changed.
 また、温度値の対比の結果、温度値の差分が許容範囲外にありかつ取得された温度値が基準波形の温度値よりも低い場合には、熱処理プレート10から除去される熱量が小さくなるように変更動作条件を変更する必要がある。一方、温度値の差分が許容範囲外にありかつ取得された温度値が基準波形の温度値よりも高い場合には、熱処理プレート10から除去される熱量が大きくなるように変更動作条件を変更する必要がある。 Further, as a result of comparing the temperature values, if the difference between the temperature values is outside the allowable range and the acquired temperature value is lower than the temperature value of the reference waveform, the amount of heat removed from the heat treatment plate 10 may be reduced. It is necessary to change the operating conditions. On the other hand, when the difference between the temperature values is outside the allowable range and the acquired temperature value is higher than the temperature value of the reference waveform, the change operation condition is changed so that the amount of heat removed from the heat treatment plate 10 becomes large. There is a need.
 さらに、取得されたアンダーシュート量USが、アンダーシュート量について予め定められた許容範囲を超える場合には変更動作条件を変更することが望ましい。そこで、アンダーシュート量USが許容範囲を超える場合には、熱処理プレート10から除去される熱量が小さくなるように変更動作条件を変更する必要がある。 Furthermore, when the acquired undershoot amount US exceeds the predetermined allowable range for the undershoot amount, it is desirable to change the change operation condition. Therefore, if the undershoot amount US exceeds the allowable range, it is necessary to change the changing operation condition so that the amount of heat removed from the heat treatment plate 10 becomes small.
 図5の中段に、予め設定された変更動作条件に従う受動冷却プレート30の状態が示される。本例では、受動冷却プレート30は、時点t30から時点t32にかけて接触状態で維持される。熱処理プレート10から除去される熱量を小さくする場合には、図5に白抜きの矢印a21で示すように、冷却停止パラメータの値を変更することにより受動冷却プレート30を非接触状態に切り替えるタイミングを早めればよい。一方、熱処理プレート10から除去される熱量を大きくする場合には、図5に白抜きの矢印a22で示すように、冷却停止パラメータの値を変更することにより受動冷却プレート30を非接触状態に切り替えるタイミングを遅くすればよい。 The state of the passive cooling plate 30 in accordance with the preset changed operating condition is shown in the middle part of FIG. In this example, the passive cooling plate 30 is maintained in the contact state from time t30 to time t32. When reducing the amount of heat removed from the heat treatment plate 10, the timing of switching the passive cooling plate 30 to the non-contact state is changed by changing the value of the cooling stop parameter, as shown by the outlined arrow a21 in FIG. You can do it earlier. On the other hand, when increasing the amount of heat removed from the heat treatment plate 10, the passive cooling plate 30 is switched to the non-contact state by changing the value of the cooling stop parameter, as shown by the outlined arrow a22 in FIG. You can delay the timing.
 図5の下段に、予め設定された変更動作条件に従うメインヒータ11の出力波形が示される。本例では、メインヒータ11は、時点t30から熱処理プレート10の温度を下降させるために出力を低下させる。その後、変更動作条件に従うPID制御により熱処理プレート10の温度に応じて出力が調整される。熱処理プレート10に供給される熱量を小さくする場合には、図5に白抜きの矢印a23で示すように、例えばPID制御の比例パラメータを大きく変更することによりメインヒータ11の出力波形を全体的に低くすればよい。 In the lower part of FIG. 5, the output waveform of the main heater 11 according to the preset changing operation condition is shown. In this example, the main heater 11 lowers the output in order to lower the temperature of the heat treatment plate 10 from the time t30. After that, the output is adjusted according to the temperature of the heat treatment plate 10 by PID control according to the changed operating conditions. When the amount of heat supplied to the heat treatment plate 10 is reduced, the output waveform of the main heater 11 is entirely changed by largely changing the proportional parameter of the PID control, for example, as shown by an outline arrow a23 in FIG. You can lower it.
 一方、熱処理プレート10に供給される熱量を大きくする場合には、図5に白抜きの矢印a24で示すように、例えばPID制御の比例パラメータを小さく変更することによりメインヒータ11の出力波形を全体的に高くすればよい。 On the other hand, when the amount of heat supplied to the heat treatment plate 10 is increased, the output waveform of the main heater 11 is entirely changed by changing the proportional parameter of the PID control to a small value, for example, as shown by an outline arrow a24 in FIG. It should be high.
 図6は、設定温度の変更についての実験結果を説明するための図である。本発明者は、図3の変更動作条件に基づいて熱処理装置100を動作させることにより熱処理プレート10の設定温度を90℃から140℃に変更させた。その結果、図6の上段に太い実線で示すように、熱処理プレート10の温度は、一点鎖線で示される基準波形に沿って時点t40から時点t41までの間ほぼ一定速度で上昇した。しかしながら、時点t41以降に比較的大きなオーバーシュートが発生した。 FIG. 6 is a diagram for explaining the experimental results regarding the change of the set temperature. The inventor changed the set temperature of the heat treatment plate 10 from 90° C. to 140° C. by operating the heat treatment apparatus 100 based on the changed operation condition of FIG. As a result, as indicated by the thick solid line in the upper part of FIG. 6, the temperature of the heat treatment plate 10 increased at a substantially constant speed from time t40 to time t41 along the reference waveform indicated by the alternate long and short dash line. However, a relatively large overshoot occurred after time t41.
 そこで、本発明者は、図6の中段に示すように、図3の開始温度90℃から目標温度140℃への変更に対応する変更動作条件のうち、加熱停止パラメータの値を「1」から「5」に変更した。この変更は、熱処理プレート10の温度を上昇させるためにブースターヒータ12をオン状態にした後、ブースターヒータ12をオフ状態に切り替えるタイミングを早めることを意味する。 Therefore, as shown in the middle part of FIG. 6, the present inventor sets the value of the heating stop parameter from “1” among the changing operation conditions corresponding to the change from the starting temperature of 90° C. to the target temperature of 140° C. in FIG. Changed to "5". This change means that after turning on the booster heater 12 in order to raise the temperature of the heat treatment plate 10, the timing of switching the booster heater 12 to the off state is accelerated.
 その後、変更後の変更動作条件に基づいて熱処理装置100を再度動作させることにより熱処理プレート10の設定温度を90℃から140℃に変更させた。その結果、図6の下段に示すように、熱処理プレート10の温度は、基準波形に沿って変化し、オーバーシュート量が低減された。 After that, the set temperature of the heat treatment plate 10 was changed from 90 ° C. to 140 ° C. by operating the heat treatment apparatus 100 again based on the changed operating conditions after the change. As a result, as shown in the lower part of FIG. 6, the temperature of the heat treatment plate 10 changed along the reference waveform, and the amount of overshoot was reduced.
 (4)制御装置50
 図1に示すように、制御装置50は、機能部として、記憶部51、発熱制御部52、冷却制御部53、昇降制御部54、温度取得部55および条件変更部56を有する。制御装置50は、CPU(中央演算処理装置)、RAM(ランダムアクセスメモリ)およびROM(リードオンリメモリ)により構成される。CPUがROMまたは他の記憶媒体に記憶されたコンピュータプログラムを実行することにより、上記の各機能部が実現される。なお、制御装置50の機能的な構成要素の一部または全てが電子回路等のハードウェアにより実現されてもよい。
(4) Control device 50
As shown in FIG. 1, the control device 50 includes a storage unit 51, a heat generation control unit 52, a cooling control unit 53, an elevating control unit 54, a temperature acquisition unit 55, and a condition change unit 56 as functional units. The control device 50 is composed of a CPU (central processing unit), a RAM (random access memory), and a ROM (read-only memory). Each of the above functional units is realized by the CPU executing a computer program stored in a ROM or another storage medium. It should be noted that some or all of the functional components of the control device 50 may be realized by hardware such as an electronic circuit.
 記憶部51は、複数の設定温度のうち2つの設定温度の組み合わせごとに設定された複数の変更動作条件を記憶する。発熱制御部52は、熱処理プレート10の設定温度を上昇させる際の変更時に、記憶部51に記憶された変更動作条件に従って動作するように発熱駆動部13を制御する。冷却制御部53は、熱処理装置100の電源がオンされている間、能動冷却プレート20が冷却されるように冷却駆動部22を制御する。昇降制御部54は、熱処理プレート10の設定温度を下降させる際の変更時に、記憶部51に記憶された変更動作条件に従って動作するように昇降装置40を制御する。 The storage unit 51 stores a plurality of change operation conditions set for each combination of two set temperatures among a plurality of set temperatures. The heat generation control unit 52 controls the heat generation drive unit 13 so as to operate according to the changed operation condition stored in the storage unit 51 when changing when raising the set temperature of the heat treatment plate 10. The cooling control unit 53 controls the cooling drive unit 22 so that the active cooling plate 20 is cooled while the power of the heat treatment apparatus 100 is turned on. The elevating control unit 54 controls the elevating device 40 so that it operates according to the changed operating conditions stored in the storage unit 51 when the set temperature of the heat treatment plate 10 is changed.
 温度取得部55は、温度センサ19から出力される検出信号に基づいて、設定温度の変更時における熱処理プレート10の温度を取得する。より具体的には、温度取得部55は、温度センサ19から出力される検出信号を一定周期でサンプリングすることにより温度の変化を取得する。 The temperature acquisition unit 55 acquires the temperature of the heat treatment plate 10 when the set temperature is changed, based on the detection signal output from the temperature sensor 19. More specifically, the temperature acquisition unit 55 acquires a change in temperature by sampling the detection signal output from the temperature sensor 19 at a constant cycle.
 条件変更部56は、熱処理プレート10の設定温度が変更される際に温度センサ19により検出されて取得された温度の変化が予め定められた基準波形に近づくように、記憶部51に記憶された変更動作条件を変更する。 The condition changing unit 56 is stored in the storage unit 51 so that the change in the temperature detected and obtained by the temperature sensor 19 when the set temperature of the heat treatment plate 10 is changed approaches a predetermined reference waveform. Change Change the operating conditions.
 なお、熱処理装置100は、図示しない操作部を備える。使用者は、操作部を操作することにより、記憶部51に初期の変更動作条件を記憶させることができる。すなわち、使用者は、初期の変更動作条件の設定を行うことができる。 The heat treatment apparatus 100 includes an operation unit (not shown). The user can store the initial change operation condition in the storage unit 51 by operating the operation unit. That is, the user can set the initial change operation condition.
 (5)設定温度変更処理
 変更動作条件の変更を伴う熱処理装置100の動作は、図1の制御装置50が下記の設定温度変更処理を実行することにより行われる。図7は、図1の制御装置50において実行される設定温度変更処理の一例を示すフローチャートである。以下の説明では、オーバーシュート量およびアンダーシュート量をシュート量と総称する。設定温度変更処理は、熱処理装置100の電源がオンされることにより開始される。
(5) Set temperature change process The operation of the heat treatment apparatus 100 accompanied by the change of the change operating conditions is performed by the control device 50 of FIG. 1 executing the following set temperature change process. FIG. 7 is a flowchart showing an example of the set temperature change process executed by the control device 50 of FIG. In the following description, the overshoot amount and the undershoot amount are collectively referred to as the shoot amount. The set temperature changing process is started when the power of the heat treatment apparatus 100 is turned on.
 まず、図1の発熱制御部52および昇降制御部54は、熱処理プレート10の設定温度を変更すべきか否かを判定する(ステップS11)。この判定は、例えば、発熱制御部52および昇降制御部54のいずれかが、熱処理装置100の外部から設定温度の変更を指令する信号を受けたか否かに基づいて行われる。 First, the heat generation control unit 52 and the elevation control unit 54 in FIG. 1 determine whether or not the set temperature of the heat treatment plate 10 should be changed (step S11). This determination is performed based on, for example, whether or not any of the heat generation control unit 52 and the elevating control unit 54 receives a signal instructing the change of the set temperature from the outside of the heat treatment apparatus 100.
 設定温度を変更すべきでない場合、発熱制御部52および昇降制御部54は、ステップS11の処理に戻る。一方、設定温度を変更すべきである場合、発熱制御部52または昇降制御部54は、当該設定温度の変更に対応する変更動作条件を図1の記憶部51から読込む(ステップS12)。 If the set temperature should not be changed, the heat generation control unit 52 and the elevating control unit 54 return to the process of step S11. On the other hand, when the set temperature should be changed, the heat generation control unit 52 or the elevating control unit 54 reads the change operation condition corresponding to the change of the set temperature from the storage unit 51 of FIG. 1 (step S12).
 次に、発熱制御部52または昇降制御部54は、その変更動作条件に基づいて発熱駆動部13または昇降駆動部41を制御することにより熱処理プレート10の温度を調整する(ステップS13)。温度取得部55は、熱処理プレート10の設定温度が変更される際の熱処理プレート10の温度の変化を取得する(ステップS14)。 Next, the heat generation control unit 52 or the elevation control unit 54 adjusts the temperature of the heat treatment plate 10 by controlling the heat generation drive unit 13 or the elevation drive unit 41 based on the changed operation condition (step S13). The temperature acquisition unit 55 acquires a change in the temperature of the heat treatment plate 10 when the set temperature of the heat treatment plate 10 is changed (step S14).
 熱処理プレート10の設定温度の変更が完了すると、条件変更部56は、取得された温度の変化に基づいて、設定温度変更中の特定時点における温度の変化率が予め定められた許容範囲外であるか否かを判定する(ステップS15)。 When the change of the set temperature of the heat treatment plate 10 is completed, the condition changing unit 56, based on the change of the acquired temperature, the rate of change of the temperature at the specific time point during the change of the set temperature is outside the predetermined allowable range. It is determined whether or not (step S15).
 温度の変化率が許容範囲から外れている場合、条件変更部56は、取得された温度変化に基づいて、特定時点における取得された温度の変化率と基準波形の変化率との差分を算出する(ステップS16)。一方、温度の変化率が許容範囲内にある場合、条件変更部56は、取得された温度変化に基づいて、設定温度変更中の特定時点における温度値が予め定められた許容範囲外であるか否かを判定する(ステップS17)。 When the rate of change of temperature is out of the allowable range, the condition changing unit 56 calculates the difference between the rate of change of the temperature acquired at the specific time point and the rate of change of the reference waveform based on the acquired temperature change. (Step S16). On the other hand, when the temperature change rate is within the allowable range, the condition changing unit 56 determines whether the temperature value at the specific time point during the change of the set temperature is out of the predetermined allowable range based on the acquired temperature change. It is determined whether or not (step S17).
 温度値が許容範囲から外れている場合、条件変更部56は、取得された温度変化に基づいて、特定時点における取得された温度値と基準波形の温度値との差分を算出する(ステップS18)。一方、温度値が許容範囲内にある場合、条件変更部56は、取得された温度変化に基づいて、設定温度の変更中に発生したシュート量が予め定められた許容範囲外であるか否かを判定する(ステップS19)。 When the temperature value is out of the allowable range, the condition changing unit 56 calculates the difference between the temperature value acquired at the specific time point and the temperature value of the reference waveform based on the acquired temperature change (step S18). .. On the other hand, when the temperature value is within the allowable range, the condition changing unit 56 determines whether the amount of shoots generated during the change of the set temperature is outside the predetermined allowable range based on the acquired temperature change. Is determined (step S19).
 シュート量が許容範囲から外れている場合、条件変更部56は、取得された温度変化に基づいて、取得されたシュート量と基準波形のシュート量との差分を算出する(ステップS20)。一方、シュート量が許容範囲内にある場合、発熱制御部52および昇降制御部54は、ステップS11の処理に戻る。 If the shoot amount is out of the allowable range, the condition changing unit 56 calculates the difference between the acquired shoot amount and the shoot amount of the reference waveform based on the acquired temperature change (step S20). On the other hand, when the shoot amount is within the allowable range, the heat generation control unit 52 and the elevating control unit 54 return to the process of step S11.
 上記のステップS16,S18,S20の処理後、条件変更部56は、算出された変化率、温度値またはシュート量の差分に基づいて、変更動作条件のうち変更すべきパラメータを決定する(ステップS21)。例えば、条件変更部56は、算出された差分のレベルに応じて変更すべきパラメータを決定する。具体的には、条件変更部56は、差分のレベルが高い場合に加熱停止パラメータまたは冷却停止パラメータを変更すべきパラメータとして決定する。また、条件変更部56は、差分のレベルが中程度である場合にPID制御の比例パラメータを変更すべきパラメータとして決定する。さらに、条件変更部56は、差分のレベルが低い場合に上限パラメータを変更すべきパラメータとして決定する。 After the processing of steps S16, S18, and S20 described above, the condition changing unit 56 determines the parameter to be changed among the changing operation conditions based on the calculated change rate, the temperature value, or the difference in the shoot amount (step S21). ). For example, the condition changing unit 56 determines a parameter to be changed according to the calculated difference level. Specifically, the condition changing unit 56 determines the heating stop parameter or the cooling stop parameter as the parameter to be changed when the difference level is high. In addition, the condition changing unit 56 determines the proportional parameter of the PID control as the parameter to be changed when the level of the difference is medium. Further, the condition changing unit 56 determines the upper limit parameter as a parameter to be changed when the difference level is low.
 次に、条件変更部56は、決定されたパラメータについて、予め定められた方法に従って当該パラメータを変更する(ステップS22)。例えば、条件変更部56は、決定されたパラメータについて、予め定められた値分パラメータを変更する。その後、発熱制御部52および昇降制御部54は、ステップS11の処理に戻る。 Next, the condition changing unit 56 changes the determined parameter according to a predetermined method (step S22). For example, the condition changing unit 56 changes the parameter for the determined parameter by a predetermined value. After that, the heat generation control unit 52 and the elevation control unit 54 return to the process of step S11.
 上記の設定温度変更処理において、ステップS15,S17,S19のうち一部の処理は省略されてもよい。この場合、省略される処理に付随する差分の算出処理も省略される。 In the set temperature changing process, some of steps S15, S17 and S19 may be omitted. In this case, the difference calculation process associated with the omitted process is also omitted.
 (6)効果
 上記のように、熱処理装置100は、熱処理プレート10について一の設定温度から他の設定温度に変更する際に、記憶部51に記憶された変更動作条件に従って動作する。このとき、熱処理プレート10の温度の変化が検出され、検出された温度の変化が当該一の設定温度から他の設定温度への変更に対応する基準波形に近づくように変更動作条件が変更される。
(6) Effect As described above, when the heat treatment plate 10 is changed from one set temperature to another set temperature, the heat treatment apparatus 100 operates according to the change operation conditions stored in the storage unit 51. At this time, a change in the temperature of the heat treatment plate 10 is detected, and the change operating condition is changed so that the change in the detected temperature approaches the reference waveform corresponding to the change from the one set temperature to the other set temperature. ..
 それにより、熱処理プレート10の温度が一の設定温度から他の設定温度へ再度変更される際には、前回の温度変更時に変更された変更動作条件に従って熱処理装置100が動作する。それにより、熱処理プレート10の温度変化が前回の設定温度の変更時に比べて基準波形に近づく。 As a result, when the temperature of the heat treatment plate 10 is changed from one set temperature to another set temperature again, the heat treatment apparatus 100 operates according to the changed operating condition changed at the previous temperature change. As a result, the temperature change of the heat treatment plate 10 approaches the reference waveform as compared with the time when the set temperature was changed last time.
 このように、熱処理プレート10の設定温度の変更が行われるごとに、設定温度の変更時における熱処理プレート10の温度変化が漸次適切に修正される。したがって、基板Wの熱処理温度の変更に伴う熱処理装置100の調整時間を適切に短縮することができる。これらの結果、熱処理温度の変更に伴なう熱処理効率の低下を抑制することが可能になる。 In this way, each time the set temperature of the heat treatment plate 10 is changed, the temperature change of the heat treatment plate 10 at the time of changing the set temperature is gradually and appropriately corrected. Therefore, the adjustment time of the heat treatment apparatus 100 due to the change of the heat treatment temperature of the substrate W can be appropriately shortened. As a result, it becomes possible to suppress a decrease in heat treatment efficiency due to a change in heat treatment temperature.
 (7)図1の熱処理装置100を備える基板処理装置
 図8は、図1の熱処理装置100を備える基板処理装置の一例を示す模式的ブロック図である。図8に示すように、基板処理装置400は、露光装置500に隣接して設けられ、制御部410、塗布処理部420、現像処理部430、熱処理部440および基板搬送装置450を備える。熱処理部440は、基板Wに加熱処理を行う複数の図1の熱処理装置100と、基板Wに冷却処理のみを行う複数のクーリングプレート(図示せず)とを含む。
(7) Substrate processing apparatus including the heat treatment apparatus 100 of FIG. 1 FIG. 8 is a schematic block diagram showing an example of the substrate processing apparatus including the heat treatment apparatus 100 of FIG. As shown in FIG. 8, the substrate processing device 400 is provided adjacent to the exposure device 500, and includes a control unit 410, a coating processing unit 420, a developing processing unit 430, a heat treatment unit 440, and a substrate transporting device 450. The heat treatment unit 440 includes a plurality of heat treatment devices 100 of FIG. 1 that heat-treat the substrate W, and a plurality of cooling plates (not shown) that perform only a cooling treatment on the substrate W.
 制御部410は、例えばCPUおよびメモリ、またはマイクロコンピュータを含み、塗布処理部420、現像処理部430、熱処理部440および基板搬送装置450の動作を制御する。 The control unit 410 includes, for example, a CPU and a memory, or a microcomputer, and controls the operations of the coating processing unit 420, the developing processing unit 430, the heat treatment unit 440, and the substrate transfer device 450.
 基板搬送装置450は、基板処理装置400による基板Wの処理時に、基板Wを塗布処理部420、現像処理部430、熱処理部440および露光装置500の間で搬送する。 The substrate transfer apparatus 450 transfers the substrate W among the coating processing section 420, the development processing section 430, the thermal processing section 440, and the exposure apparatus 500 when the substrate processing apparatus 400 processes the substrate W.
 塗布処理部420は、未処理の基板Wの一面上にレジスト膜を形成する(塗布処理)。レジスト膜が形成された塗布処理後の基板Wには、露光装置500において露光処理が行われる。現像処理部430は、露光装置500による露光処理後の基板Wに現像液を供給することにより、基板Wの現像処理を行う。熱処理部440は、塗布処理部420による塗布処理、現像処理部430による現像処理、および露光装置500による露光処理の前後に基板Wの熱処理を行う。 The coating processing unit 420 forms a resist film on one surface of the unprocessed substrate W (coating processing). The coating process W on which the resist film is formed is exposed by the exposure apparatus 500. The development processing unit 430 performs the development processing on the substrate W by supplying the developing solution to the substrate W after the exposure processing by the exposure device 500. The thermal processing section 440 performs thermal processing on the substrate W before and after the coating processing by the coating processing section 420, the developing processing by the developing processing section 430, and the exposure processing by the exposure apparatus 500.
 なお、塗布処理部420は、基板Wに反射防止膜を形成してもよい。この場合、熱処理部440には、基板Wと反射防止膜との密着性を向上させるための密着強化処理を行うための処理ユニットが設けられてもよい。また、塗布処理部420は、基板W上に形成されたレジスト膜を保護するためのレジストカバー膜を基板Wに形成してもよい。 The coating processing unit 420 may form an antireflection film on the substrate W. In this case, the heat treatment section 440 may be provided with a processing unit for performing an adhesion strengthening process for improving the adhesion between the substrate W and the antireflection film. Further, the coating processing section 420 may form a resist cover film on the substrate W for protecting the resist film formed on the substrate W.
 上記のように、熱処理部440の複数の熱処理装置100においては、上記の設定温度変更処理が行われる。それにより、複数の基板Wに異なる設定温度で順次熱処理が行われる際に、熱処理プレート10の温度を短時間で適切に調整することができる。その結果、基板Wの製造効率が向上する。 As described above, in the plurality of heat treatment devices 100 of the heat treatment unit 440, the above set temperature changing process is performed. Thereby, when the plurality of substrates W are sequentially subjected to the heat treatment at different set temperatures, the temperature of the heat treatment plate 10 can be appropriately adjusted in a short time. As a result, the manufacturing efficiency of the substrate W is improved.
 (8)他の実施の形態
 (a)上記実施の形態においては、熱処理プレート10を加熱する構成および冷却する構成を有する熱処理装置100について説明したが、本発明はこれに限定されない。熱処理装置100は、熱処理プレート10を冷却する構成(上記の例では、能動冷却プレート20、受動冷却プレート30および昇降装置40)を有さなくてもよい。あるいは、熱処理装置100は、熱処理プレート10を加熱する構成(上記の例では、メインヒータ11およびブースターヒータ12)を有さなくてもよい。この場合においても、熱処理装置100の設定温度を上昇または下降させるときの調整に要する時間が短縮される。
(8) Other Embodiments (a) In the above-described embodiment, the heat treatment apparatus 100 having a configuration for heating and a configuration for cooling the heat treatment plate 10 has been described, but the present invention is not limited thereto. The heat treatment apparatus 100 does not have to have a configuration for cooling the heat treatment plate 10 (in the above example, the active cooling plate 20, the passive cooling plate 30, and the elevating device 40). Alternatively, the heat treatment apparatus 100 does not have to have a configuration for heating the heat treatment plate 10 (in the above example, the main heater 11 and the booster heater 12). Also in this case, the time required for adjustment when raising or lowering the set temperature of the heat treatment apparatus 100 is shortened.
 (b)熱処理装置100においては、熱処理プレート10の上面が複数の領域にそれぞれ分割されるとともに、各領域に対応するように当該部分を加熱するための構成が設けられてもよい。すなわち、熱処理プレート10の複数の領域の各々についてメインヒータ11、ブースターヒータ12および発熱駆動部13が設けられてもよい。または、熱処理プレート10の複数の領域の各々についてメインヒータ11およびブースターヒータ12が設けられかつ発熱駆動部13が複数のメインヒータ11およびブースターヒータ12を独立して駆動可能に構成されてもよい。 (B) In the heat treatment apparatus 100, the upper surface of the heat treatment plate 10 may be divided into a plurality of regions, respectively, and a structure for heating the portion may be provided so as to correspond to each region. That is, the main heater 11, the booster heater 12, and the heat generation driving unit 13 may be provided for each of the plurality of regions of the heat treatment plate 10. Alternatively, the main heater 11 and the booster heater 12 may be provided for each of the plurality of regions of the heat treatment plate 10, and the heat generation drive unit 13 may be configured to be able to independently drive the plurality of main heaters 11 and the booster heater 12.
 この場合、記憶部51には、熱処理プレート10の複数の領域の各々について変更動作条件が記憶されてもよい。また、条件変更部56は、例えば設定温度の変更時における熱処理プレート10の複数の領域の温度の変化が基準波形に近づくように、全ての領域にそれぞれ対応する変更動作条件の複数のパラメータを変更してもよい。このような構成によれば、熱処理プレート10の上面の複数の領域についてより詳細な温度調整を行うことが可能になる。なお、本例では、複数の領域のうち一の領域について設定温度の変更時に取得される温度の変化を基準波形としてもよい。 In this case, the storage unit 51 may store changed operation conditions for each of the plurality of regions of the heat treatment plate 10. Further, the condition changing unit 56 changes a plurality of parameters of the changing operation conditions corresponding to all the regions so that the temperature changes of the plurality of regions of the heat treatment plate 10 at the time of changing the set temperature approach the reference waveform, for example. You may. With such a configuration, it is possible to perform more detailed temperature adjustment on the plurality of regions on the upper surface of the heat treatment plate 10. In this example, a change in temperature acquired when changing the set temperature for one of the plurality of areas may be used as the reference waveform.
 (c)上記実施の形態においては、熱処理プレート10にメインヒータ11およびブースターヒータ12が設けられるが、本発明はこれに限定されない。メインヒータ11が熱処理プレート10の温度を短時間で上昇させることが可能に構成される場合、ブースターヒータ12は設けられなくてもよい。 (C) In the above embodiment, the heat treatment plate 10 is provided with the main heater 11 and the booster heater 12, but the present invention is not limited to this. When the main heater 11 is configured to be able to raise the temperature of the heat treatment plate 10 in a short time, the booster heater 12 may not be provided.
 (9)請求項の各構成要素と実施の形態の各要素との対応関係
 以下、請求項の各構成要素と実施の形態の各要素との対応の例について説明する。上記実施の形態では、熱処理装置100が熱処理装置の例であり、熱処理プレート10がプレート部材の例であり、メインヒータ11、ブースターヒータ12、発熱駆動部13、能動冷却プレート20、受動冷却プレート30および昇降装置40が熱処理部の例であり、記憶部51が記憶部の例であり、発熱制御部52、冷却制御部53および昇降制御部54が動作制御部の例であり、温度センサ19が温度検出器の例であり、温度取得部55および条件変更部56が条件変更部の例である。
(9) Correspondence relationship between each component of the claim and each element of the embodiment The example of correspondence between each component of the claim and each element of the embodiment will be described below. In the above embodiment, the heat treatment apparatus 100 is an example of the heat treatment apparatus, the heat treatment plate 10 is an example of the plate member, and the main heater 11, the booster heater 12, the heat generation drive unit 13, the active cooling plate 20, and the passive cooling plate 30. The elevating device 40 is an example of a heat treatment unit, the storage unit 51 is an example of a storage unit, the heat generation control unit 52, the cooling control unit 53 and the elevating control unit 54 are examples of an operation control unit, and the temperature sensor 19 is It is an example of a temperature detector, and the temperature acquisition unit 55 and the condition change unit 56 are examples of the condition change unit.
 また、上記実施の形態においては、ブースターヒータ12がオン状態にあることまたは受動冷却プレート30が接触状態にあることが、熱処理部が第1の状態にあることの例である。また、ブースターヒータ12がオフ状態にありかつ受動冷却プレート30が非接触状態にあることが、熱処理部が第2の状態にあることの例である。 Further, in the above embodiment, the booster heater 12 being in the ON state or the passive cooling plate 30 being in the contact state is an example of the heat treatment section being in the first state. Further, the booster heater 12 being in the off state and the passive cooling plate 30 being in the non-contact state is an example of the heat treatment section being in the second state.
 請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。 As each constituent element of the claim, it is possible to use various other elements having the configurations or functions described in the claim.

Claims (10)

  1. 基板に熱処理を行う熱処理装置であって、
     基板が載置されるプレート部材と、
     前記プレート部材上に載置された基板に前記プレート部材を通して熱処理を行う熱処理部と、
     前記プレート部材の温度を設定された第1の温度から設定された第2の温度へ変更する際の前記熱処理部の動作条件を記憶する記憶部と、
     前記記憶部に記憶された動作条件に従って前記熱処理部を動作させる動作制御部と、
     前記プレート部材の温度を検出する温度検出器と、
     前記動作条件に従って前記熱処理部が動作する際に前記温度検出器により検出された温度の変化が予め定められた基準波形に近づくように、前記記憶部に記憶された動作条件を変更する条件変更部とを備える、熱処理装置。
    A heat treatment device that heat-treats a substrate.
    The plate member on which the substrate is placed and
    A heat treatment unit for performing heat treatment on the substrate placed on the plate member through the plate member;
    A storage unit that stores the operating conditions of the heat treatment unit when the temperature of the plate member is changed from the set first temperature to the set second temperature.
    An operation control unit that operates the heat treatment unit according to the operating conditions stored in the storage unit,
    A temperature detector that detects the temperature of the plate member and
    A condition changing unit that changes the operating conditions stored in the storage unit so that the temperature change detected by the temperature detector when the heat treatment unit operates according to the operating conditions approaches a predetermined reference waveform. And a heat treatment apparatus.
  2. 前記動作条件は、一または複数の制御パラメータの値を含み、
     前記条件変更部は、前記検出された温度の変化が前記基準波形に近づくように、前記記憶部に記憶された前記一または複数の制御パラメータのうち少なくとも1つの値を変更する、請求項1記載の熱処理装置。
    The operating condition includes values of one or more control parameters,
    The first aspect of the present invention, wherein the condition changing unit changes at least one value of the one or more control parameters stored in the storage unit so that the detected temperature change approaches the reference waveform. Heat treatment equipment.
  3. 前記熱処理部は、前記プレート部材に対して加熱または冷却を行う第1の状態と前記プレート部材に対して加熱および冷却を行わない第2の状態とに切り替え可能に構成され、
     前記一または複数の制御パラメータは、前記熱処理部の前記第1および第2の状態の切替タイミングを含む、請求項2記載の熱処理装置。
    The heat treatment unit is configured to be switchable between a first state in which the plate member is heated or cooled and a second state in which the plate member is not heated or cooled.
    The heat treatment apparatus according to claim 2, wherein the one or more control parameters include switching timings of the first and second states of the heat treatment unit.
  4. 前記熱処理部は、PID制御が可能に構成され、
     前記一または複数の制御パラメータは、前記プレート部材の温度を前記第1の温度から前記第2の温度へ変更するための前記PID制御の比例パラメータ、積分パラメータおよび微分パラメータのうち少なくとも1つを含む、請求項2または3記載の熱処理装置。
    The heat treatment unit is configured to be PID controllable,
    The one or more control parameters include at least one of the proportional, integral and differential parameters of the PID control for changing the temperature of the plate member from the first temperature to the second temperature. , The heat treatment apparatus according to claim 2 or 3.
  5. 前記一または複数の制御パラメータは、前記熱処理部の出力の上限を含む、請求項2~4のいずれか一項に記載の熱処理装置。 The heat treatment apparatus according to any one of claims 2 to 4, wherein the one or more control parameters include an upper limit of an output of the heat treatment unit.
  6. 前記条件変更部は、前記プレート部材の温度が前記第1の温度から前記第2の温度へ変化する期間のうち特定時点に前記温度検出器により検出された温度の変化率が、前記基準波形のうち前記特定時点に対応する部分の温度の変化率に近づくように前記動作条件の変更を行う、請求項1~5のいずれか一項に記載の熱処理装置。 The condition changing unit is configured such that a temperature change rate detected by the temperature detector at a specific time point during a period in which the temperature of the plate member changes from the first temperature to the second temperature is equal to that of the reference waveform. The heat treatment apparatus according to any one of claims 1 to 5, wherein the operating conditions are changed so as to approach the rate of change in temperature of the portion corresponding to the specific time point.
  7. 前記条件変更部は、前記プレート部材の温度が前記第1の温度から前記第2の温度へ変化する期間のうち特定時点に前記温度検出器により検出された温度の値が、前記基準波形のうち前記特定時点に対応する部分の温度の値に近づくように前記動作条件の変更を行う、請求項1~6のいずれか一項に記載の熱処理装置。 In the condition changing unit, the value of the temperature detected by the temperature detector at a specific time point during the period in which the temperature of the plate member changes from the first temperature to the second temperature is the reference waveform. The heat treatment apparatus according to any one of claims 1 to 6, wherein the operating condition is changed so as to approach a temperature value of a portion corresponding to the specific time point.
  8. 前記条件変更部は、前記検出された温度の波形に発生する、前記第2の温度に対するオーバーシュート量またはアンダーシュート量が小さくなるように前記動作条件の変更を行う、請求項1~7のいずれか一項に記載の熱処理装置。 8. The condition changing unit changes the operating condition so that an overshoot amount or an undershoot amount with respect to the second temperature generated in the detected temperature waveform becomes small. The heat treatment apparatus according to claim 1.
  9. 基板に熱処理を行う熱処理方法であって、
     プレート部材上に基板を載置するステップと、
     前記載置された基板に前記プレート部材を通して熱処理部による熱処理を行うステップと、
     前記プレート部材の温度を設定された第1の温度から設定された第2の温度へ変更する際の前記熱処理部の動作条件を記憶部に記憶するステップと、
     前記記憶部に記憶された動作条件に従って前記熱処理部を動作させるステップと、
     前記プレート部材の温度を温度検出器により検出するステップと、
     前記動作条件に従って前記熱処理部が動作する際に前記温度検出器により検出された温度の変化が予め定められた基準波形に近づくように、前記記憶部に記憶された動作条件を変更するステップとを含む、熱処理方法。
    A heat treatment method that heat-treats a substrate.
    Placing the substrate on the plate member,
    Performing a heat treatment by a heat treatment unit through the plate member on the substrate placed above,
    A step of storing the operating conditions of the heat treatment unit in the storage unit when changing the temperature of the plate member from the set first temperature to the set second temperature, and
    Operating the heat treatment unit according to the operating conditions stored in the storage unit;
    Detecting the temperature of the plate member by a temperature detector,
    A step of changing the operating conditions stored in the storage unit so that the temperature change detected by the temperature detector when the heat treatment unit operates according to the operating conditions approaches a predetermined reference waveform. Including heat treatment method.
  10. 前記動作条件は、一または複数の制御パラメータの値を含み、
     前記動作条件を変更するステップは、前記検出された温度の変化が前記基準波形に近づくように、前記記憶部に記憶された前記一または複数の制御パラメータのうち少なくとも1つの値を変更することを含む、請求項9記載の熱処理方法。
    The operating conditions include the values of one or more control parameters.
    The step of changing the operating conditions is to change at least one value of the one or more control parameters stored in the storage unit so that the detected temperature change approaches the reference waveform. The heat treatment method according to claim 9, which comprises:
PCT/JP2020/002579 2019-03-04 2020-01-24 Heat treatment device and heat treatment method WO2020179278A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-038356 2019-03-04
JP2019038356A JP7256034B2 (en) 2019-03-04 2019-03-04 Heat treatment apparatus and heat treatment method

Publications (1)

Publication Number Publication Date
WO2020179278A1 true WO2020179278A1 (en) 2020-09-10

Family

ID=72337545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002579 WO2020179278A1 (en) 2019-03-04 2020-01-24 Heat treatment device and heat treatment method

Country Status (3)

Country Link
JP (1) JP7256034B2 (en)
TW (1) TWI772745B (en)
WO (1) WO2020179278A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031152A (en) * 1998-07-10 2000-01-28 Kokusai Electric Co Ltd Substrate processor
JP2001522141A (en) * 1997-11-03 2001-11-13 エーエスエム アメリカ インコーポレイテッド Wafer processing method using low mass support
JP2002297245A (en) * 2001-03-30 2002-10-11 Omron Corp Controller and temperature control unit and heat treatment apparatus
JP2004164648A (en) * 2002-11-14 2004-06-10 Asm Internatl Nv Hybrid cascade model based predictive control system
JP2004193219A (en) * 2002-12-09 2004-07-08 Koyo Seiko Co Ltd Heat treatment apparatus and temperature control method therefor
JP2007521663A (en) * 2003-12-10 2007-08-02 アクセリス テクノロジーズ インコーポレーテッド A method for tracking and controlling the temperature of a wafer at a high ramp rate using a dynamically predicting thermal model
JP2010093096A (en) * 2008-10-09 2010-04-22 Hitachi Kokusai Electric Inc Temperature control method of heat treatment apparatus and heat treatment apparatus
JP2016183815A (en) * 2015-03-26 2016-10-20 株式会社Screenホールディングス Heat treatment equipment and heat treatment method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6072163A (en) * 1998-03-05 2000-06-06 Fsi International Inc. Combination bake/chill apparatus incorporating low thermal mass, thermally conductive bakeplate
JP3973853B2 (en) * 2001-03-28 2007-09-12 大日本スクリーン製造株式会社 Heat treatment equipment
JP4384538B2 (en) * 2003-06-16 2009-12-16 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method
JP4343151B2 (en) * 2004-08-11 2009-10-14 東京エレクトロン株式会社 Method for measuring temperature of heating plate, substrate processing apparatus, and computer program for measuring temperature of heating plate
JP4666473B2 (en) * 2005-05-12 2011-04-06 大日本スクリーン製造株式会社 Substrate heat treatment equipment
JP6864564B2 (en) 2017-06-09 2021-04-28 株式会社Screenホールディングス Heat treatment method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001522141A (en) * 1997-11-03 2001-11-13 エーエスエム アメリカ インコーポレイテッド Wafer processing method using low mass support
JP2000031152A (en) * 1998-07-10 2000-01-28 Kokusai Electric Co Ltd Substrate processor
JP2002297245A (en) * 2001-03-30 2002-10-11 Omron Corp Controller and temperature control unit and heat treatment apparatus
JP2004164648A (en) * 2002-11-14 2004-06-10 Asm Internatl Nv Hybrid cascade model based predictive control system
JP2004193219A (en) * 2002-12-09 2004-07-08 Koyo Seiko Co Ltd Heat treatment apparatus and temperature control method therefor
JP2007521663A (en) * 2003-12-10 2007-08-02 アクセリス テクノロジーズ インコーポレーテッド A method for tracking and controlling the temperature of a wafer at a high ramp rate using a dynamically predicting thermal model
JP2010093096A (en) * 2008-10-09 2010-04-22 Hitachi Kokusai Electric Inc Temperature control method of heat treatment apparatus and heat treatment apparatus
JP2016183815A (en) * 2015-03-26 2016-10-20 株式会社Screenホールディングス Heat treatment equipment and heat treatment method

Also Published As

Publication number Publication date
TW202040691A (en) 2020-11-01
TWI772745B (en) 2022-08-01
JP7256034B2 (en) 2023-04-11
JP2020145216A (en) 2020-09-10

Similar Documents

Publication Publication Date Title
US11622419B2 (en) Azimuthally tunable multi-zone electrostatic chuck
US10204809B2 (en) Method for thermal treatment using heat reservoir chamber
KR101314001B1 (en) Temperature control method, temperature controller, and heat treatment apparatus
US6905333B2 (en) Method of heating a substrate in a variable temperature process using a fixed temperature chuck
JP6075555B2 (en) Electrostatic chuck system and semiconductor manufacturing apparatus
JP6149827B2 (en) Vacuum processing apparatus, control method therefor, vacuum solder processing apparatus, and control method therefor
WO2005064254A1 (en) Vertical heat treatment device and method of controlling the same
CN107430985B (en) Heat treatment apparatus and heat treatment method
JP2017117852A (en) Thermal treatment equipment, method for thermal-processing substrate, and computer readable recording medium
JP3933765B2 (en) Substrate heat treatment method and apparatus
JP4781931B2 (en) Heat treatment method and heat treatment apparatus
WO2020179278A1 (en) Heat treatment device and heat treatment method
JP7198718B2 (en) Heat treatment apparatus and heat treatment method
JPH1022189A (en) Substrate heat-treating device
TWI753401B (en) Thermal processing apparatus, thermal processing system and thermal processing method
JP7376294B2 (en) Heat treatment equipment, heat treatment system and heat treatment method
JP6872914B2 (en) Heat treatment equipment and heat treatment method
JPH08236414A (en) Substrate cooler
KR20230011535A (en) Processing method of substrate
JP2018120978A (en) Thermal treatment device
JPH11243046A (en) Target-temperature determining method and substrate heat treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20766138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20766138

Country of ref document: EP

Kind code of ref document: A1