Nothing Special   »   [go: up one dir, main page]

WO2020144097A1 - Procede d'hydrocraquage en deux etapes comprenant une etape d'hydrogenation en aval de la deuxieme etape d'hydrocraquage pour la production de distillats moyens - Google Patents

Procede d'hydrocraquage en deux etapes comprenant une etape d'hydrogenation en aval de la deuxieme etape d'hydrocraquage pour la production de distillats moyens Download PDF

Info

Publication number
WO2020144097A1
WO2020144097A1 PCT/EP2020/050016 EP2020050016W WO2020144097A1 WO 2020144097 A1 WO2020144097 A1 WO 2020144097A1 EP 2020050016 W EP2020050016 W EP 2020050016W WO 2020144097 A1 WO2020144097 A1 WO 2020144097A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrocracking
hydrogen
temperature
liter
hydrogenation
Prior art date
Application number
PCT/EP2020/050016
Other languages
English (en)
Inventor
Anne-Claire Dubreuil
Gerhard Pirngruber
Emmanuelle Guillon
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Priority to US17/420,511 priority Critical patent/US20220081628A1/en
Priority to CN202080008677.3A priority patent/CN113557289B/zh
Priority to KR1020217020261A priority patent/KR20210111763A/ko
Publication of WO2020144097A1 publication Critical patent/WO2020144097A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • C10G45/46Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
    • C10G45/48Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • C10G45/46Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
    • C10G45/52Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/72Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/14Inorganic carriers the catalyst containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/36Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1074Vacuum distillates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4081Recycling aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/06Gasoil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/08Jet fuel

Definitions

  • the invention relates to a two-step hydrocracking process for removing heavy polycyclic aromatic compounds (HPNA) without reducing the yield of recoverable products.
  • HPNA heavy polycyclic aromatic compounds
  • Hydrocracking processes are commonly used in refineries to transform hydrocarbon mixtures into easily recoverable products. These methods can be used to transform light cuts such as, for example, essences into lighter cuts (LPG). However, they are usually rather used to convert heavier charges (such as heavy petroleum or synthetic cuts, for example gas oils from vacuum distillation or effluents from a Fischer-Tropsch unit) into petrol or naphtha, kerosene, gas oil .
  • LPG lighter cuts
  • heavier charges such as heavy petroleum or synthetic cuts, for example gas oils from vacuum distillation or effluents from a Fischer-Tropsch unit
  • Certain hydrocracking processes also make it possible to obtain a highly purified residue which can constitute excellent bases for oils.
  • One of the effluents particularly targeted by the hydrocracking process is the middle distillate (fraction which contains the diesel cut and the kerosene cut), that is to say cuts with an initial boiling point of at least 150 ° C. and with a final boiling point lower than the initial boiling point of the residue, for example less than 340 ° C, or even less than 370 ° C.
  • Hydrocracking is a process which derives its flexibility from three main elements which are, the operating conditions used, the types of catalysts used and the fact that hydrocracking of hydrocarbon feedstocks can be carried out in one or in two stages.
  • the hydrocracking of vacuum distillates or DSV makes it possible to produce light cuts (Gasoil, Kerosene, Naphtas, ...) more valuable than the DSV itself.
  • This catalytic process does not entirely transform the DSV into light cuts.
  • UCO UnConverted Oil according to the English terminology.
  • this unconverted fraction can be recycled at the inlet of the hydrotreatment reactor or at the inlet of the hydrocracking reactor in the case where it is of a hydrocracking process in 1 step or at the inlet of a second hydrocracking reactor treating the fraction not converted at the end of the fractionation step, in the case where it is a 2-step hydrocracking process.
  • said purge can be between 0 and 5% by weight of the unconverted heavy fraction (UCO) relative to the incoming DSV mother charge, and preferably between 0.5% and 3% by weight.
  • UCO unconverted heavy fraction
  • HPNA compounds are defined as polycyclic or polynuclear aromatic compounds which therefore comprise several condensed benzene rings or rings. They are usually called PNA, Polynuclear Aromatics according to the English terminology, for the lightest of them, and HPA or HPNA, Heavy PolyNuclear Aromatics according to the English terminology, for compounds comprising at least seven aromatic rings (such as for example Coronene, compound with 7 aromatic rings). These compounds formed during undesirable side reactions, are stable and very difficult to hydrocrack.
  • PNA Polynuclear Aromatics
  • HPA or HPNA Heavy PolyNuclear Aromatics according to the English terminology, for compounds comprising at least seven aromatic rings (such as for example Coronene, compound with 7 aromatic rings).
  • US Pat. No. 4,931,165 describes a one-step hydrocracking process with recycle comprising a hydrogenation step on the gas recycle loop.
  • the patent US4618412 describes a hydrocracking process in one step in which the unconverted effluent from the hydrocracking step containing HPNA is sent in a hydrogenation step on a catalyst based on Iron and alkali metals or alkaline earth, at temperatures between 225 and 430 ° C before being recycled in the hydrocracking step.
  • the patent US5007998 describes a hydrocracking process in one step in which the unconverted effluent from the hydrocracking step containing HPNA is sent in a hydrogenation step on a zeolitic hydrogenation catalyst (zeolite with sizes of pores between 8 and 15 A) also comprising a hydrogenation component and a clay.
  • zeolitic hydrogenation catalyst zeolite with sizes of pores between 8 and 15 A
  • the patent US5139644 describes a process similar to that of the patent US5007998 with coupling to a step of adsorption of HPNA on an adsorbent.
  • Patent US5364514 describes a conversion process comprising a first hydrocracking step, the effluent from this first step is then split into two effluents. Part of the effluent from the first hydrocracking step is sent in a second hydrocracking step while the other part of the effluent from the first hydrocracking step is sent simultaneously in an aromatic hydrogenation step using a catalyst comprising at least one noble metal from group VIII on an amorphous or crystalline support. The effluents produced in said hydrogenation and second hydrocracking step are then sent to the same separation step or to dedicated separation steps.
  • the patent application US2017 / 362516 describes a hydrocracking process in two stages comprising a first hydrocracking stage followed by the fractionation of the hydrocracked stream producing an unconverted effluent comprising HPNA which is recycled and called recycle stream.
  • This recycle stream is then sent in a hydrotreatment step which allows saturation by hydrogenation of the aromatic HPNA compounds.
  • This hydrotreatment step produces a hydrogenated stream which is then sent to a second hydrocracking step.
  • the essential criterion of the invention of US2017 / 362516 lies in the fact that the hydrotreatment step allowing the hydrogenation of HPNA is located upstream of the second hydrocracking step.
  • the hydrotreating step and the second hydrocracking step can be carried out in two different reactors or in the same reactor. In the case where they are carried out in the same reactor, said reactor comprises a first catalytic bed comprising the hydrotreating catalyst allowing the saturation of the aromatics, followed by catalytic beds comprising the second stage hydrocracking catalyst.
  • the hydrotreatment catalyst used is a catalyst comprising at least one group VIII metal and preferably a group VIII noble metal comprising rhenium, ruthenium, rhodium, palladium, silver, osmium, l iridium, platinum and / or gold, said catalyst possibly optionally also comprising at least one non-noble metal and preferably cobalt, nickel, vanadium, molybdenum and / or tungsten, preferably supported on the alumina.
  • Other zeolitic catalysts and / or unsupported hydrogenation catalysts can be used.
  • the present invention resides in the implementation of a hydrocracking process in 2 stages comprising a hydrogenation stage placed downstream from the second hydrocracking stage, the hydrogenation stage treating the effluent from the 2nd hydrocracking step in the presence of a specific hydrogenation catalyst.
  • the hydrogenation steps and the second hydrocracking step are carried out under specific operating conditions and in particular under very specific temperature conditions.
  • the present invention relates to a process for producing medium distillates from hydrocarbon feedstocks containing at least 20% by volume, and preferably at least 80% by volume, of compounds boiling above 340 ° C., said process comprising and preferably consisting of at least the following steps: a) A step of hydrotreating said charges in the presence of hydrogen and at least one hydrotreatment catalyst, at a temperature between 200 and 450 ° C., under a pressure between 2 and 25 MPa, at a space speed between 0.1 and 6 h 1 and at a quantity of hydrogen introduced such that the volume ratio liter of hydrogen / liter of hydrocarbon is between 100 and 2000 NL / L, b) a hydrocracking step of at least part of the effluent from step a), the hydrocracking step b) operating, in the presence of hydrogen and at least one hydrocracking catalyst, at a temperature between 250 and 480 ° C, under com pressure taken between 2 and 25 MPa, at a space speed between 0.1 and 6 h 1 and at a
  • At least one petrol fraction having at least 80% by volume of products boiling at a temperature below 150 ° C
  • At least one middle distillary fraction having at least 80% by volume of products having a boiling point of between 150 and 380 ° C, preferably between 150 and 370 ° C, and preferably between 150 and 350 ° C ,
  • step f) operating in the presence of hydrogen and at least one second hydrocracking catalyst, at a temperature TR1 of between 250 and 480 ° C, under a pressure of between 2 and 25 MPa, at a space speed of between 0.1 and 6 h 1 and with a quantity of hydrogen introduced such that the ratio volume liter of hydrogen / liter of hydrocarbon is between 80 and 2000 NL /
  • the temperature expressed for each step is preferably a weighted average temperature over the whole of the catalytic bed or beds, or the WABT temperature according to English terminology, for example as defined in the work (Hydroprocessing of Heavy Oils and Residua , Jorge Ancheyta, James G. Speight - 2007 - Science).
  • the present invention relates to a process for hydrocracking hydrocarbon feedstocks called mother feedstock, containing at least 20% by volume, and preferably at least 80% by volume, of compounds boiling above 340 ° C., preferably above 350 ° C and preferably between 350 and 580 ° C (that is to say corresponding to compounds containing at least 15 to 20 carbon atoms).
  • Said hydrocarbon feedstocks can advantageously be chosen from VGOs (Vacuum gas oil) according to English terminology or vacuum distillate (DSV) or gas oils, such as for example gas oils obtained from the direct distillation of crude oil or from conversion such as FCC (for example LCO or Light Cycle Oil according to English terminology), coker or visbreaking as well as fillers from aromatic extraction units from lubricating oil bases or from solvent dewaxing of the lubricating oil bases, or of the distillates originating from desulphurization or hydroconversion of RAT (atmospheric residues) and / or RSV (residues under vacuum), or the filler can advantageously be a deasphalted oil, or fillers from biomass or any mixture of the previously mentioned fillers and preferably VGOs.
  • VGOs Vauum gas oil
  • DSV vacuum distillate
  • gas oils such as for example gas oils obtained from the direct distillation of crude oil or from conversion such as FCC (for example LCO or Light Cycle Oil according to English terminology), coker
  • Paraffins from the Fischer-Tropsch process are excluded.
  • the nitrogen content of the mother feeds treated in the process according to the invention is usually greater than 500 ppm by weight, preferably between 500 and 10,000 ppm by weight, more preferably between 700 and 4,000 ppm by weight and even more preferably between 1000 and 4000 ppm weight.
  • the sulfur content of the mother feeds treated in the process according to the invention is usually between 0.01 and 5% by weight, preferably between 0.2 and 4% by weight and even more preferably between 0.5 and 3% weight.
  • the charge may optionally contain metals.
  • the cumulative nickel and vanadium content of the charges treated in the process according to the invention is preferably less than 1 ppm by weight.
  • the charge may optionally contain asphaltenes.
  • the asphaltenes content is generally less than 3000 ppm by weight, preferably less than 1000 ppm by weight, even more preferably less than 200 ppm by weight.
  • the feed contains compounds of the resins and / or asphaltenes type
  • the method comprises a step a) of hydrotreating said feedstocks in the presence of hydrogen and at least one hydrotreatment catalyst, at a temperature between 200 and 450 ° C, under a pressure between 2 and 25 MPa, at a space speed between 0.1 and 6 h 1 and at a quantity of hydrogen introduced such that the volume ratio liter of hydrogen / liter of hydrocarbon is between 100 and 2000 NL / L.
  • the operating conditions such as temperature, pressure, hydrogen recycling rate, hourly space velocity, can be very variable depending on the nature of the feed, the quality of the desired products and the facilities available to the refiner.
  • the hydrotreatment stage a) operates at a temperature between 250 and 450 ° C, very preferably between 300 and 430 ° C, under a pressure between 5 and 20 MPa, at a space speed between 0.2 and 5 h 1 , and at an amount of hydrogen introduced such that the volume ratio liter of hydrogen / liter of hydrocarbon is between 300 and 1500 NL / L.
  • Conventional hydrotreatment catalysts can advantageously be used, preferably which contain at least one amorphous support and at least one hydro-dehydrogenating element chosen from at least one element from non-noble groups VIB and VIII, and most often at least one element of group VIB and at least one non-noble element of group VIII.
  • the amorphous support is alumina or silica-alumina.
  • Preferred catalysts are chosen from NiMo, NiW or CoMo catalysts on alumina and NiMo or NiW catalysts on silica-alumina.
  • the effluent from the hydrotreating step and part of which enters the hydrocracking step b) generally comprises a nitrogen content preferably less than 300 ppm by weight and preferably less than 50 ppm by weight.
  • Step b) the method comprises a step b) of hydrocracking at least part of the effluent from step a), and preferably all of said step b) operating, presence of hydrogen and at least one hydrocracking catalyst, at a temperature between 250 and 480 ° C, under a pressure between 2 and 25 MPa, at a space speed between 0.1 and 6 h 1 and at a quantity of hydrogen introduced such that the volume ratio of liter of hydrogen / liter of hydrocarbon is between 80 and 2000 NL / L.
  • step b) of hydrocracking according to the invention operates at a temperature between 320 and 450 ° C, very preferably between 330 and 435 ° C, under a pressure between 3 and 20 MPa, at a space speed between 0.2 and 4 h 1 , and at a quantity of hydrogen introduced such that the volume ratio liter of hydrogen / liter of hydrocarbon is between 200 and 2000 NL / L.
  • the operating conditions used in the method according to the invention generally make it possible to achieve conversions by pass, into products having at least 80% by volume of products having dots '' boiling below 380 ° C, preferably below 370 ° C and preferably less than 350 ° C, more than 15% by weight and even more preferably between 20 and 95% by weight.
  • the hydrocracking step b) covers the pressure and conversion domains ranging from mild hydrocracking to high pressure hydrocracking.
  • Mild hydrocracking is understood to mean hydrocracking leading to moderate conversions, generally less than 40%, and operating at low pressure, preferably between 2 MPa and 6 MPa.
  • High pressure hydrocracking is generally carried out at higher pressures between 5 MPa and 25 MPa, so as to obtain conversions greater than 50%.
  • the hydrotreatment stage a) and the hydrocracking stage b) can advantageously be carried out in the same reactor or in different reactors.
  • the reactor comprises several catalytic beds, the first catalytic beds comprising the hydrotreatment catalyst (s) and the following catalytic beds comprising the hydrocracking catalyst (s).
  • step b) of hydrocracking operates in the presence of at least one hydrocracking catalyst.
  • the hydrocracking catalyst (s) used in hydrocracking step b) are conventional hydrocracking catalysts known to those skilled in the art, of the bifunctional type combining an acid function with a hydro- dehydrogenating and optionally at least one binding matrix.
  • the acid function is provided by large surface supports (150 to 800 m2.g 1 generally) having a surface acidity, such as halogenated aluminas (chlorinated or fluorinated in particular), combinations of boron and aluminum oxides, amorphous silica-aluminas and zeolites.
  • the hydro-dehydrogenating function is provided by at least one metal from group VIB of the periodic table and / or at least one metal from group VIII.
  • the hydrocracking catalyst (s) used in step b) comprise a hydro-dehydrogenating function comprising at least one group VIII metal chosen from iron, cobalt, nickel, ruthenium, rhodium, palladium and platinum, and preferably from cobalt and nickel.
  • the said catalyst (s) also comprise at least one metal from group VIB chosen from chromium, molybdenum and tungsten, alone or as a mixture, and preferably from molybdenum and tungsten.
  • Hydro-dehydrogenating functions of the NiMo, NiMoW, NiW type are preferred.
  • the content of group VIII metal in the hydrocracking catalyst (s) is advantageously between 0.5 and 15% by weight and preferably between 1 and 10% by weight, the percentages being expressed in percentage by weight d 'oxides based on the total mass of catalyst.
  • the content of group VIB metal in the hydrocracking catalyst (s) is advantageously between 5 and 35% by weight, and preferably between 10 and 30% by weight, the percentages being expressed as a percentage by weight of oxides relative to the total mass of catalyst.
  • the hydrocracking catalyst (s) used in step b) can also optionally comprise at least one promoter element deposited on the catalyst and chosen from the group formed by phosphorus, boron and silicon, optionally at least one element of group VIIA (preferred chlorine, fluorine), optionally at least one element of group VIIB (preferred manganese), and optionally at least one element of group VB (preferred niobium).
  • the hydrocracking catalyst (s) used in step b) comprise at least one porous amorphous or poorly crystallized mineral matrix of the oxide type chosen from aluminas, silicas, silica-aluminas, aluminates, alumina-boron oxide, magnesia, silica-magnesia, zirconia, titanium oxide, clay, alone or as a mixture, and preferably aluminas or silica-aluminas, alone or as a mixture.
  • the silica-alumina contains more than 50% by weight of alumina, preferably more than 60% by weight of alumina.
  • the hydrocracking catalyst (s) used in step b) also optionally comprise a zeolite chosen from Y zeolites, preferably from USY zeolites, alone or in combination, with other zeolites from beta zeolites, ZSM-12, IZM-2, ZSM-22, ZSM-23, SAPO-1 1, ZSM-48, ZBM-30, alone or as a mixture.
  • a zeolite chosen from Y zeolites, preferably from USY zeolites, alone or in combination, with other zeolites from beta zeolites, ZSM-12, IZM-2, ZSM-22, ZSM-23, SAPO-1 1, ZSM-48, ZBM-30, alone or as a mixture.
  • the zeolite is the USY zeolite alone.
  • the zeolite content in the hydrocracking catalyst (s) is advantageously between 0.1 and 80% by weight, of preferably between 3 and 70% by weight, the percentages being expressed as a percentage of zeolite relative to the total mass of catalyst.
  • a preferred catalyst comprises and preferably consists of at least one group VIB metal and optionally at least one non-noble group VIII metal, at least one promoter element, and preferably phosphorus, of at least one Y zeolite and at least one alumina binder.
  • An even more preferred catalyst comprises, and preferably consists of, nickel, molybdenum, phosphorus, a USY zeolite, and optionally also a beta zeolite, and alumina.
  • Another preferred catalyst comprises, and preferably consists of, nickel, tungsten, alumina and silica-alumina.
  • Another preferred catalyst comprises, and preferably consists of, nickel, tungsten, a USY zeolite, alumina and silica-alumina.
  • Step c) the method comprises a step c) of high pressure separation comprising a separation means such as for example a series of high pressure separator tanks operating between 2 and 25 MPa, the aim of which is to produce a stream of hydrogen which is recycled via a compressor to at least one of steps a), b), f) and / or g), and a hydrocarbon effluent produced in step b) of hydrocracking which is preferably sent to a steam stripping step preferably operating at a pressure between 0.5 and 2 MPa, which aims to achieve a separation of hydrogen sulfide (H 2 S) dissolved in at least said hydrocarbon effluent produced in step b).
  • a separation means such as for example a series of high pressure separator tanks operating between 2 and 25 MPa, the aim of which is to produce a stream of hydrogen which is recycled via a compressor to at least one of steps a), b), f) and / or g
  • Stage c) allows the production of a liquid hydrocarbon effluent which is then sent to stage d) of distillation.
  • the method comprises a step d) of distilling the effluent from step c) into at least one light gas fraction C1 -C4, at least one gasoline fraction having at least 80% by volume, preferably at least 95% by volume of products boiling at a temperature below 150 ° C, at least a middle distillary fraction (kerosene and diesel) having at least 80% by volume, and preferably at least 95% by volume, of compounds boiling between 150 and 380 ° C, preferably between 150 and 370 ° C, and preferably between 150 and 350 ° C, and a heavy liquid fraction not converted in steps a) and b), having at least 80% by volume, and preferably at least 95% by volume, of products having a boiling point higher than 350 ° C, preferably higher than 370 ° C, more preferably higher than 380 ° C.
  • a diesel fraction and a kerosene fraction can advantageously then be separated.
  • the process may optionally include a step e) of purging at least part of said unconverted heavy liquid fraction containing HPNAs, obtained from the distillation step d).
  • Said purge is between 0 to 5% by weight of the heavy liquid fraction not converted with respect to the feedstock entering said process, and preferably between 0 to 3% by weight and very preferably between 0 and 2% by weight.
  • the method comprises a second step f) of hydrocracking of said heavy unconverted liquid fraction from step d) and optionally purged in step e) operating in the presence of hydrogen and a hydrocracking catalyst, at a temperature TR1 of between 250 and 480 ° C, under a pressure of between 2 and 25 MPa, at a space velocity of between 0.1 and 6 h 1 and at an amount of hydrogen introduced such that the volume ratio of liter of hydrogen / liter of hydrocarbon is between 80 and 2000 NL / L.
  • the hydrocracking step f) operates at a temperature TR1 of between 320 and 450 ° C, very preferably between 330 and 435 ° C, under a pressure of between 3 and 20 MPa, and very preferably between 9 and 20 MPa, at a space speed between 0.2 and 3 h 1 , and at a quantity of hydrogen introduced such that the volume ratio liter of hydrogen / liter of hydrocarbon is between 200 and 2000 NL / L.
  • the nitrogen content in stage f), whether the organic nitrogen dissolved in said unconverted heavy liquid fraction or the NH 3 present in the gas phase, is low, preferably less than 200 ppm by weight, preferably less than 100 ppm by weight, more preferably less than 50 ppm by weight.
  • the partial pressure of H 2 S of step f) is low, preferably the equivalent sulfur content is less than 800 ppm by weight, preferably between 10 and 500 ppm by weight, more preferably between 20 and 400 ppm weight.
  • step f) of the process according to the invention generally make it possible to achieve conversions by pass, in products having at least 80% by volume of compounds having boiling points below 380 ° C., of preferably less than 370 ° C and more preferably less than 350 ° C, more than 15% by weight and even more preferably between 20 and 80% by weight. Nevertheless, the conversion by pass in step f) is kept moderate in order to maximize the selectivity of the process in product having boiling points between 150 and 380 ° C (middle distillates). Pass conversion is limited by the use of a high recycle rate on the hydrocracking second stage loop. This rate is defined as the ratio between the feed rate of step f) and the rate of feed from step a), preferably this ratio is between 0.2 and 4, preferably between 0, 5 and 2.5.
  • step f) of hydrocracking operates in the presence of at least one hydrocracking catalyst.
  • the second stage hydrocracking catalyst is chosen from the conventional hydrocracking catalysts known to those skilled in the art, such as those described above in step b) of hydrocracking.
  • the hydrocracking catalyst used in said step f) may be the same or different from that used in step b) and preferably different.
  • the hydrocracking catalyst used in step f) comprises a hydro-dehydrogenating function comprising at least one noble metal from group VIII chosen from palladium and platinum, alone or as a mixture.
  • the content of noble metal from group VIII is advantageously between 0.01 and 5% by weight and preferably between 0.05 and 3% by weight, the percentages being expressed as percentage by weight of oxides relative to the total mass of catalyst.
  • the method comprises a step g) of hydrogenation of at least part of the effluent from step f) operating in the presence of hydrogen and a hydrogenation catalyst, to a temperature TR2 between 150 and 470 ° C, under a pressure between 2 and 25 MPa, at a space speed between 0.1 and 50 h 1 and at a quantity of hydrogen introduced such as the volume ratio liter of hydrogen / liter of hydrocarbon is between 100 and 4000 NL / L
  • said hydrogenation catalyst comprising, and preferably consisting of, at least one metal from group VIII of the periodic classification of the element chosen from nickel, cobalt , iron, palladium, platinum, rhodium, ruthenium, osmium and iridium, alone or as a mixture and not comprising any metal of group VIB and of a support chosen from refractory oxide supports, and in which the temperature TR2 of step g) of hydrogenation is at least 10 ° C lower than the TR1 temperature of hydrocracking step f).
  • said hydrogenation step g) operates at a temperature TR2 of between 150 and 380 ° C, preferably between 180 and 320 ° C, under a pressure of between 3 and 20 MPa, and very preferably between 9 and 20 MPa, at a space speed between 0.2 and 10 h 1 and at a quantity of hydrogen introduced such that the volume ratio of liter of hydrogen / liter of hydrocarbon is between 200 and 3000 NL / L.
  • the volume ratio of liter of hydrogen / liter of hydrocarbon in step g) is higher than that in step f) of hydrocracking.
  • step g) is carried out at a temperature TR2 at least 20 ° C lower than the temperature TR1, preferably at least 50 ° C and more preferably at least 70 ° C.
  • the temperatures TR1 and TR2 are chosen in the intervals mentioned above so as to respect the temperature delta according to the present invention, namely that TR2 must be at least 10 ° C lower than the temperature TR1 , preferably at least 20 ° C, preferably at least 50 ° C and even more preferably at least 70 ° C.
  • step g) of hydrogenation is carried out according to any implementation known to a person skilled in the art, for example by injection, in ascending or descending current, of the hydrocarbon charge originating from the step f) and hydrogen in at minus a fixed bed reactor.
  • Said reactor can be of the isothermal type or of the adiabatic type.
  • An adiabatic reactor is preferred.
  • the hydrocarbon charge can advantageously be diluted by one or more re-injection (s) of the effluent, coming from said reactor where the hydrogenation reaction takes place, at various points of the reactor, situated between the inlet and the outlet of the reactor in order to limit the temperature gradient in the reactor.
  • the hydrogen flow can be introduced at the same time as the feed to be hydrogenated and / or at one or more different points of the reactor.
  • the group VIII metal used in the hydrogenation catalyst is chosen from nickel, palladium and platinum, alone or as a mixture, and preferably nickel and platinum, alone or as a mixture.
  • said hydrogenation catalyst does not comprise molybdenum or tungsten.
  • the content of metallic element of group VIII in said catalyst is advantageously between 5 and 65% by weight, more preferably between 8 and 55% by weight , and even more preferably between 12 and 40% by weight, and even more preferably between 15 and 30% by weight, the percentages being expressed as a percentage by weight of metallic element relative to the total mass of the catalyst.
  • the group VIII metal is a noble metal, preferably palladium and platinum
  • the content of group VIII metal element is advantageously between 0.01 and 5% by weight, preferably between 0.05 and 3% by weight, and even more preferably between 0.08 and 1.5% by weight, the percentages being expressed as a percentage by weight of metallic element relative to the total mass of the catalyst.
  • Said hydrogenation catalyst can also comprise at least one additional metal chosen from group VIII metals, group IB metals and / or tin.
  • the additional metal from group VIII is chosen from platinum, ruthenium and rhodium, as well as palladium (in the case of a nickel-based catalyst) and nickel or palladium (in the case of '' a platinum-based catalyst).
  • the additional metal of group IB is chosen from copper, gold and silver.
  • the said additional metal (s) of group VIII and / or group IB is (are) preferably present in a content representing from 0.01 to 20% by weight of the mass of the catalyst, preferably from 0.05 to 10% by weight of the mass of the catalyst and even more preferably from 0.05 to 5% by weight of the mass of said catalyst.
  • Tin is preferably present in a content representing from 0.02 to 15% by weight of the mass of the catalyst, so that the Group VIII Sn / metal (ux) ratio is between 0.01 and 0.2, preferably between 0.025 and 0.055, and even more preferably between 0.03 and 0.05.
  • the support for said hydrogenation catalyst is advantageously formed from at least one refractory oxide preferably chosen from metal oxides of groups MA, INB, IVB, NIA and IVA according to the CAS notation of the periodic classification of the elements.
  • said support is formed of at least one simple oxide chosen from alumina (AI2O3), silica (Si0 2 ), titanium oxide (Ti0 2 ), cerine (Ce0 2 ), zirconia (Zr0 2 ) or P 2 0 5 .
  • said support is chosen from aluminas, silicas and silica-aluminas, alone or as a mixture.
  • said support is an alumina or a silica-alumina, alone or as a mixture, and even more preferably an alumina.
  • the silica-alumina contains more than 50% by weight of alumina, preferably more than 60% by weight of alumina.
  • Alumina can be present in all possible crystallographic forms: alpha, delta, theta, chi, rho, eta, kappa, gamma, etc., taken alone or as a mixture.
  • the support is chosen from delta, theta, gamma alumina.
  • the catalyst for step g) of hydrogenation can optionally comprise a zeolite chosen from Y zeolites, preferably USY zeolites, alone or in combination with other zeolites from beta, ZSM-12, IZM-2 zeolites, ZSM-22, ZSM-23, SAPO-1 1, ZSM-48, ZBM-30, alone or as a mixture.
  • a zeolite chosen from Y zeolites, preferably USY zeolites, alone or in combination with other zeolites from beta, ZSM-12, IZM-2 zeolites, ZSM-22, ZSM-23, SAPO-1 1, ZSM-48, ZBM-30, alone or as a mixture.
  • the zeolite is the USY zeolite alone.
  • the catalyst of step g) does not contain a zeolite.
  • a preferred catalyst is a catalyst comprising, and preferably consisting of, nickel and alumina.
  • Another preferred catalyst is a catalyst comprising, and preferably consisting of, platinum and alumina.
  • the catalyst of step g) of hydrogenation is different from that used in step a) of hydrotreatment and those used in steps b) and f) of hydrocracking.
  • the hydrocracking stage f) and the hydrogenation stage g) can advantageously be carried out in the same reactor or in different reactors.
  • the reactor comprises several catalytic beds, the first catalytic beds comprising the hydrocracking catalyst (s) and the following catalytic beds (that is to say downstream) comprising the hydrogenation catalyst (s).
  • step f) and step g) are carried out in the same reactor.
  • the temperature difference between the two stages f) and g) can advantageously be managed by one or more heat exchangers or by one or more quench (such as for example hydrogen or liquid injection quench) in order to have a temperature of at least 10 ° C difference with the temperature of step f).
  • quench such as for example hydrogen or liquid injection quench
  • the main objective of the hydrogenation step g) using a hydrogenation catalyst under operating conditions favorable to the hydrogenation reactions is to hydrogenate part of the aromatic or polyaromatic compounds contained in the effluent from step f) and in particular to decrease the content of HPNA compounds.
  • desulfurization, denitrogenation, olefin hydrogenation or mild hydrocracking reactions are not excluded.
  • the conversion of aromatic or polyaromatic compounds is generally greater than 20%, preferably greater than 40%, more preferably greater than 80%, and particularly preferably greater than 90% of the aromatic or polyaromatic compounds contained in the effluent from step f).
  • the conversion is calculated by dividing the difference between the quantities of aromatic or polyaromatic compounds in the hydrocarbon charge and in the product by the quantities of aromatic or polyaromatic compounds in the hydrocarbon charge (the hydrocarbon charge being the effluent from step f) and the product being the effluent from step g).
  • the hydrocracking process has an extended cycle time and / or an improved distillery yield.
  • the diesel fraction obtained (consisting of at least 80% by volume of products having a boiling point between 150 and 380 ° C) has an improved cetane number.
  • the method comprises a step h) of high pressure separation of the effluent from step g) of hydrogenation to produce at least one gaseous effluent and one liquid hydrocarbon effluent.
  • Said step h) of separation advantageously comprises a separation means such as for example a series of high pressure separator flasks operating between 2 and 25 MPa, the aim of which is to produce a flow of hydrogen which is recycled via '' a compressor to at least one of steps a), b), f) and / or g), and a hydrocarbon effluent produced in step g) of hydrogenation
  • Stage h) allows the production of a liquid hydrocarbon effluent which is then recycled in stage d) of distillation.
  • step h) is implemented in a single and same step as step c) or in a separate step.
  • the method comprises a step i) of recycling in said step d) of distillation, at least part of the liquid hydrocarbon effluent from step h).
  • the VGO type charge is sent via line (1) in a step a) of hydrotreatment.
  • the effluent from step a) is sent via line (2) in a first hydrocracking step b).
  • the effluent from step b) is sent via line (3) in a step c) of high pressure separation to produce at least one gaseous effluent (not shown in the figure) and one liquid hydrocarbon effluent which is sent via line (4) in stage d) of distillation. It is withdrawn from stage d) of distillation:
  • the heavy, unconverted liquid fraction that may be purged is sent via line (10) in the second hydrocracking step f).
  • the effluent from step f) is sent via line (1 1) in a step g) of hydrogenation.
  • the hydrogenated effluent from step g) is sent via line (12) in a high pressure separation step h) to produce at least one gaseous effluent (not shown in the figure) and a liquid hydrocarbon effluent which is recycled via line (13) in stage d) of distillation.
  • a hydrocracking unit processes a vacuum diesel fuel charge (VGO) described in Table 1:
  • VGO feedstock is injected in a preheating step and then into a hydrotreatment reactor under the following conditions set out in Table 2:
  • R1 and R2 constitute the first hydrocracking step
  • the effluent from R2 is then sent to a separation step composed of a heat recovery train then of high pressure separation including a recycle compressor and allowing to separate on the one hand hydrogen, hydrogen sulfide and ammonia and on the other hand the liquid hydrocarbon effluent feeding a stripper then an atmospheric distillation column in order to separate flows concentrated in H 2 S, a gasoline cut , a medium distillate cut (kerosene and diesel), and a heavy unconverted liquid fraction (UCO).
  • a purge corresponding to 2% by mass of the flow rate of the VGO charge is taken at the bottom of the distillation on said heavy liquid fraction that is not converted.
  • Said heavy unconverted liquid fraction is injected into a hydrocracking reactor R3 constituting the second hydrocracking step. This R3 reactor is operated under the following conditions set out in Table 4:
  • This second hydrocracking step is carried out in the presence of 100 ppm equivalent sulfur and 5 ppm equivalent nitrogen, which originate from H 2 S and NH 3 present in the hydrogen and sulfur and nitrogen compounds still present in said heavy liquid fraction not converted.
  • the R3 effluent from the second hydrocracking step is then injected into the high pressure separation step downstream from the first hydrocracking step and then into the distillation step.
  • Example 2 is in accordance with the invention insofar as it is a hydrocracking process in two stages in which the effluent from the second hydrocracking stage is sent in a hydrogenation stage in presence of a hydrogenation catalyst comprising Ni and an alumina support and in which the temperature TR2 in the hydrogenation stage is at least 10 ° C. lower than the temperature TR1 in the second hydrocracking stage.
  • the hydrotreatment steps in R1, the first hydrocracking step in R2 and the second hydrocracking step in R3 are carried out on the same charge and under the same conditions as in Example 1.
  • a purge corresponding to 2% by mass of flow rate of the VGO charge is also taken at the bottom of the distillation on the unconverted heavy liquid fraction.
  • a step of hydrogenation of the effluent from R3 is carried out in a reactor R4 downstream of R3.
  • the operating conditions for R4 are set out in Table 5.
  • TR2 is 60 ° C lower than TR1.
  • the catalyst used in reactor R4 has the following composition: 28% w / w Ni on gamma alumina.
  • the hydrogenated effluent from R4 is then sent to a high pressure separation stage before being recycled to the distillation stage.
  • Example 3 is in accordance with the invention insofar as it is a hydrocracking process in two stages in which the effluent from the second hydrocracking stage is sent in a hydrogenation stage in presence of a hydrogenation catalyst comprising Pt and an alumina support and in which the temperature TR2 in the hydrogenation stage is at least 10 ° C. lower than the temperature TR1 in the second hydrocracking stage.
  • the hydrotreatment steps in R1, the first hydrocracking step in R2 and the second hydrocracking step in R3 are carried out on the same charge and under the same conditions as in Example 1.
  • a purge corresponding to 2% by mass of the flow rate of the VGO charge is also taken at the bottom of the distillation on the heavy liquid fraction that is not converted.
  • a step of hydrogenation of the effluent from R3 is carried out in a reactor R4 downstream of R3.
  • the operating conditions of R4 are set out in Table 6. In this case, TR2 is 80 ° C lower than TR1.
  • the catalyst used in reactor R4 has the following composition: 0.3% by weight Pt on gamma alumina.
  • the hydrogenated effluent from R4 is then sent to a high pressure separation stage before being recycled to the distillation stage.
  • Example No. 4 not in accordance with the invention
  • Example 4 is not in accordance with the invention insofar as it is a hydrocracking process in two stages in which a hydrogenation stage in the presence of a hydrogenation catalyst comprising Pt and an alumina support is used upstream of the second hydrocracking stage and in which the temperature TR2 in the hydrogenation stage is equal to the temperature TR1 in the second stage of hydrocracking.
  • the hydrotreatment steps in R1, the first hydrocracking step in R2 and the second hydrocracking step in R3 are carried out on the same charge and under the same conditions as in Example 1.
  • a purge corresponding to 2% by mass of the flow rate of the VGO charge is also taken at the bottom of the distillation on the heavy liquid fraction that is not converted.
  • the unconverted heavy liquid fraction from the distillation is first sent to a hydrogenation stage implemented in a reactor R4 upstream of R3.
  • TR2 in the hydrogenation step is equal to the temperature TR1 in the second hydrocracking step and is 340 ° C.
  • the operating conditions of R4 are set out in Table 7.
  • the catalyst used in reactor R4 has the following composition: 0.3% by weight Pt on gamma alumina.
  • the hydrogenated effluent from R4 is then sent in the second hydrocracking step carried out in the reactor R3 before being sent to the high pressure separation and then to be recycled in the distillation step.
  • Example No. 5 in conformity Example 5 is in accordance with the invention insofar as it is a hydrocracking process in two stages in which the effluent from the second hydrocracking stage is sent to a hydrogenation stage in the presence of a hydrogenation catalyst comprising Pt and an alumina support and in which the temperature TR2 in the hydrogenation stage is at least 10 ° C lower than the temperature TR1 in the second stage hydrocracking.
  • the hydrotreatment steps in R1, the first hydrocracking step in R2 and the second hydrocracking step in R3 are carried out on the same charge and under the same conditions as in Example 1.
  • a purge corresponding to 2% by mass of the flow rate of the VGO charge is also taken at the bottom of the distillation on the heavy liquid fraction that is not converted.
  • a step of hydrogenation of the effluent from R3 is carried out in a reactor R4 downstream of R3.
  • the operating conditions of R4 are set out in Table 8. In this case, TR2 is 60 ° C lower than TR1.
  • the catalyst used in reactor R4 has the following composition: 0.3% by weight Pt on gamma alumina.
  • the hydrogenated effluent from R4 is then sent to a high pressure separation stage before being recycled to the distillation stage.
  • Example 6 not in conformity Example 6 is not in accordance with the invention insofar as it is a hydrocracking process in two stages in which a hydrogenation stage in the presence of a catalyst hydrogenation comprising Pt and an alumina support is implemented upstream of the second hydrocracking step and in which the temperature TR2 in the hydrogenation step is lower than the temperature TR1 in the second hydrocracking step of 60 ° vs.
  • the hydrotreatment steps in R1, the first hydrocracking step in R2 and the second hydrocracking step in R3 are carried out on the same charge and under the same conditions as in Example 1.
  • a purge corresponding to 2% by mass of the flow rate of the VGO charge is also taken at the bottom of the distillation on the heavy liquid fraction that is not converted.
  • the unconverted heavy liquid fraction from the distillation is first sent to a hydrogenation stage implemented in a reactor R4 upstream of R3.
  • TR2 in the hydrogenation step is less than the temperature TR1 in the second hydrocracking step of 60 ° C and is 280 ° C.
  • the operating conditions of R4 are set out in Table 9.
  • the catalyst used in reactor R4 has the following composition: 0.3% by weight Pt on gamma alumina.
  • the hydrogenated effluent from R4 is then sent in the second hydrocracking step carried out in the reactor R3 before being sent to the high pressure separation and then to be recycled in the distillation step.
  • Example n ° 7 conforming Example 7 is in accordance with the invention insofar as it is a hydrocracking process in two stages in which the effluent from the second hydrocracking stage is sent to a hydrogenation stage in the presence of a hydrogenation catalyst comprising Ni and an alumina support and in which the temperature TR2 in the hydrogenation stage is at least 10 ° C lower than the temperature TR1 in the second stage hydrocracking.
  • the hydrotreating steps in R1, the first hydrocracking step in R2 and the second hydrocracking step in R3 are carried out on the same charge and under the same conditions as in Example 1. This time, a purge corresponding to 1% by mass of the flow rate of the VGO charge is taken at the bottom of the distillation on the heavy liquid fraction that is not converted.
  • a step of hydrogenation of the effluent from R3 is carried out in a reactor R4 downstream of R3.
  • the operating conditions for R4 are set out in Table 10. In this case, TR2 is 60 ° C lower than TR1.
  • the catalyst used in reactor R4 has the following composition: 28% w / w Ni on gamma alumina.
  • the hydrogenated effluent from R4 is then sent to a high pressure separation stage before being recycled to the distillation stage.
  • Example 9 Process performance Table 1 1 summarizes the performance of the processes described in Examples 1 to 7 in terms of yield of middle distillates, cycle time of the process, cetane number of the diesel fraction obtained and conversion overall process. The conversion of coronene (HPNA with 7 aromatic rings) carried out in the hydrogenation stage is also postponed.
  • the conversion of coronene is calculated by dividing the difference of the quantities of coronene measured upstream and downstream of the hydrogenation reactor by the amount of coronene measured upstream of this same reactor.
  • the amount of coronene is measured by high pressure liquid chromatography coupled to a UV detector (HPLC-UV), at a wavelength of 302 nm for which the coronene has maximum absorption.
  • Example 2 With the process of Example 2 using a hydrogenation reactor downstream from the second hydrocracking step, the cycle time is extended by 6 months compared to a process without a hydrogenation reactor (illustrated by Example 1) and the cetane number of the diesel fraction is increased by 4 points.
  • the Ni / alumina hydrogenation catalyst makes it possible to strongly convert the aromatics and in particular the HPNAs. The deactivation of the second hydrocracking stage catalyst is therefore slowed down, which allows a longer cycle. Since the aromatics in the diesel fraction are hydrogenated, the cetane index is improved.
  • Examples 3 and 5 show the effect of the temperature of the hydrogenation reactor on the conversion of aromatics and HPNAs, with their impact on the cycle time and the quality of the diesel obtained.
  • the performances are much worse: the hydrogenation reactor located upstream from the second hydrocracking reactor makes it possible to convert the HPNAs (with a strong dependence on temperature) but hydrocarbon feedstock processed in this reactor having not yet been cracked, the effect on the hydrogenation of the aromatics of the diesel fraction is not found and the cetane number is not improved.
  • Example 7 illustrates that the process according to the invention also makes it possible to reduce the purging rate, since the HPNAs are hydrogenated in the hydrogenation reactor, which leads to an increase in the overall conversion and in the yield of middle distillates, while maintaining an extended cycle time and an improved cetane number.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

La présente invention réside dans la mise en œuvre d'un procédé d'hydrocraquage en étapes comprenant une étape d'hydrogénation placée en aval de la deuxième étape d'hydrocraquage, l'étape d'hydrogénation traitant l'effluent issu de la 2eme étape d'hydrocraquage en présence d'un catalyseur d'hydrogénation spécifique. De plus, les étapes d'hydrogénation et de deuxième étape d'hydrocraquage sont mises en œuvre dans des conditions opératoires spécifiques et en particulier dans des conditions de température bien spécifiques.

Description

PROCEDE D’HYDROCRAQUAGE EN DEUX ETAPES COMPRENANT UNE ETAPE D'HYDROGENATION EN AVAL DE LA DEUXIEME ETAPE D’HYDROCRAQUAGE POUR
LA PRODUCTION DE DISTILLATS MOYENS
Domaine technique
L'invention concerne un procédé d’hydrocraquage en deux étapes permettant d’éliminer les composés aromatiques polycycliques lourds (HPNA) sans diminuer le rendement en produits valorisables.
Les procédés d’hydrocraquage sont couramment utilisés en raffinerie pour transformer des mélanges hydrocarbonés en produits aisément valorisables. Ces procédés peuvent être utilisés pour transformer des coupes légères telles que par exemple des essences en coupes plus légères (LPG). Ils sont toutefois habituellement plutôt utilisés pour convertir des charges plus lourdes (telles que des coupes pétrolières ou synthétiques lourdes, par exemple des gasoils issus de distillation sous vide ou des effluents d’une unité Fischer- Tropsch) en essence ou naphta, kérosène, gasoil.
Certains procédés d'hydrocraquage permettent d'obtenir également un résidu fortement purifié pouvant constituer d'excellentes bases pour huiles. Un des effluents particulièrement ciblé par le procédé d’hydrocraquage est le distillât moyen (fraction qui contient la coupe gazole et la coupe kérosène), c'est-à-dire des coupes à point d'ébullition initial d'au moins 150°C et à point d’ébullition final inférieur au point d'ébullition initial du résidu, par exemple inférieur à 340°C, ou encore à 370°C.
L’hydrocraquage est un procédé qui tire sa flexibilité de trois éléments principaux qui sont, les conditions opératoires utilisées, les types de catalyseurs employés et le fait que l’hydrocraquage de charges hydrocarbonées peut être réalisé en une ou en deux étapes.
En particulier, l’hydrocraquage des distillais sous vide ou DSV permet de produire des coupes légères (Gasoil, Kérosène, Naphtas,...) plus valorisables que le DSV lui-même. Ce procédé catalytique ne permet pas de transformer entièrement le DSV en coupes légères. Après fractionnement, il reste donc une proportion plus ou moins importante de fraction de DSV non convertie nommée UCO ou UnConverted Oil selon la terminologie anglo-saxonne. Pour augmenter la conversion, cette fraction non convertie peut être recyclée à l’entrée du réacteur d’hydrotraitement ou à l’entrée du réacteur d’hydrocraquage dans le cas où il s’agit d’un procédé d’hydrocraquage en 1 étape ou à l’entrée d’un deuxième réacteur d’hydrocraquage traitant la fraction non convertie à l’issue de l’étape de fractionnement, dans le cas où il s’agit d’un procédé d’hydrocraquage en 2 étapes.
Il est connu que le recycle de ladite fraction non convertie issue de l’étape de fractionnement vers la deuxième étape d’hydrocraquage d’un procédé en 2 étapes conduit à la formation de composés aromatiques lourds (polycycliques) nommé HPNA durant les réactions de craquage et ainsi à l’accumulation indésirable desdits composés dans la boucle de recyclage, conduisant à la dégradation des performances du catalyseur de la 2ème étape d’hydrocraquage et/ou à son encrassement. Une purge est généralement installée sur le recycle de ladite fraction non convertie, en général sur la ligne en fond de fractionnement, afin de déconcentrer la boucle de recycle en composés HPNA, le débit de purge étant ajusté de manière à équilibrer leur débit de formation. En effet, plus les HPNA sont lourds, plus ils ont tendance à rester dans cette boucle, à s’accumuler, et à s’alourdir.
Or, la conversion globale d’un procédé d’hydrocraquage en deux étapes est directement liée à la quantité de produits lourds purgés en même temps que les HPNA. Cette purge mène donc à une perte en produits valorisables qui sont également extraits avec les HPNA via cette purge.
En fonction des conditions opératoires du procédé, ladite purge peut être comprise entre 0 et 5% poids de la fraction lourde non convertie (UCO) par rapport à la charge mère DSV entrante, et de préférence entre 0,5% et 3%poids. Le rendement en produits valorisables est donc réduit d’autant, ce qui constitue une perte économique non négligeable pour le raffineur.
Dans toute la suite du texte, les composés HPNA sont définis comme des composés aromatiques polycycliques ou polynucléaires qui comprennent donc plusieurs noyaux ou cycles benzéniques condensés. On les nomme habituellement PNA, Polynuclear Aromatics selon la terminologie anglo-saxonne, pour les plus légers d’entre eux, et HPA ou HPNA, Heavy PolyNuclear Aromatics selon la terminologie anglo-saxonne, pour les composés comprenant au moins sept noyaux aromatiques (tels que par exemple le Coronène, composé à 7 cycles aromatiques). Ces composés formés lors de réactions secondaires indésirables, sont stables et très difficiles à hydrocraquer. Technique antérieure
Il existe différents brevets qui concernent des procédés qui cherchent à traiter spécifiquement le problème lié aux HPNA de manière à ce qu’ils ne nuisent pas au procédé à la fois en terme de performances, de durée de cycle, et d’opérabilité. Certains brevets revendiquent l’élimination des composés HPNA par fractionnement, distillation, extraction au solvant ou adsorption sur une masse de captation (WO2016/102302, US8852404 US9580663, US5464526 et US4775460).
Une autre technique consiste à hydrogéner les effluents contenant les HPNA afin de limiter leur formation et accumulation dans la boucle de recycle. Le brevet US3929618 décrit un procédé pour hydrogéner et ouvrir les cycles de charges hydrocarbonées contenant des hydrocarbures polycycliques condensés en présence d’un catalyseur à base de zéolithe NaY et échangé au Nickel.
Le brevet US4931 165 décrit un procédé d’hydrocraquage en une étape avec recycle comprenant une étape d’hydrogénation sur la boucle de recycle des gaz. Le brevet US4618412 décrit un procédé d’hydrocraquage en une étape dans lequel l’effluent non converti issu de l’étape d’hydrocraquage contenant des HPNA est envoyé dans une étape d’hydrogénation sur un catalyseur à base de Fer et de métaux alcalins ou alcalino- terreux, à des températures comprises entre 225 et 430°C avant d’être recyclé dans l’étape d’hydrocraquage. Le brevet US5007998 décrit un procédé d’hydrocraquage en une étape dans lequel l’effluent non converti issu de l’étape d’hydrocraquage contenant des HPNA est envoyé dans une étape d’hydrogénation sur un catalyseur zéolithique d’hydrogénation (zéolithe avec des tailles de pores entre 8 et 15 A) comprenant également un composant d’hydrogénation et une argile. Le brevet US5139644 décrit un procédé similaire à celui du brevet US5007998 avec un couplage à une étape d’adsorption des HPNA sur un adsorbant.
Le brevet US5364514 décrit un procédé de conversion comprenant une première étape d’hydrocraquage, l’effluent issu de cette première étape étant ensuite scindé en deux effluents. Une partie de l’effluent issu de la première étape d’hydrocraquage est envoyée dans une deuxième étape d’hydrocraquage pendant que l’autre partie de l’effluent issu de la première étape d’hydrocraquage est envoyée simultanément dans une étape d’hydrogénation d’aromatiques utilisant un catalyseur comprenant au moins un métal noble du groupe VIII sur un support amorphe ou cristallin. Les effluents produits dans lesdites étapes d’hydrogénation et de deuxième étape d’hydrocraquage sont ensuite envoyée dans une même étape de séparation ou dans des étapes de séparation dédiées.
La demande de brevet US2017/362516 décrit un procédé d’hydrocraquage en deux étapes comprenant une première étape d’hydrocraquage suivi du fractionnement du flux hydrocraqué produisant un effluent non converti comprenant des HPNA qui est recyclé et appelé flux de recycle. Ce flux de recycle est ensuite envoyé dans une étape d’hydrotraitement qui permet la saturation par hydrogénation des composés aromatiques HPNA. Cette étape d’hydrotraitement produit un flux hydrogéné qui est ensuite envoyé dans une deuxième étape d’hydrocraquage.
Le critère essentiel de l’invention de US2017/362516 réside dans le fait que l’étape d’hydrotraitement permettant l’hydrogénation des HPNA est située en amont de la deuxième étape d’hydrocraquage. L’étape d’hydrotraitement et la deuxième étape d’hydrocraquage peuvent être réalisées dans deux réacteurs différents ou dans un même réacteur. Dans le cas où elles sont réalisées dans un même réacteur, ledit réacteur comprend un premier lit catalytique comprenant le catalyseur d’hydrotraitement permettant la saturation des aromatiques, suivi de lits catalytiques comprenant le catalyseur d’hydrocraquage de deuxième étape.
Le catalyseur d’hydrotraitement mis en oeuvre est un catalyseur comprenant au moins un métal du groupe VIII et de préférence un métal noble du groupe VIII comprenant le rhénium, le ruthénium, le rhodium, le palladium, l’argent, l’osmium, l’iridium, le platine et/ou l’or, ledit catalyseur pouvant optionnellement comprendre également au moins un métal non noble et de préférence le cobalt, le nickel, le vanadium, le molybdène et/ou le tungstène, supporté de préférence sur l’alumine. D’autres catalyseurs zéolithiques et/ou des catalyseurs d’hydrogénation non supportés peuvent être utilisés.
Les travaux de recherche effectués par le demandeur l'ont conduit à découvrir une mise en oeuvre améliorée du procédé d’hydrocraquage qui permet de limiter la formation de HPNA dans la 2ème étape d’un schéma d’hydrocraquage en 2 étapes et donc d’augmenter la durée de cycle du procédé en limitant la désactivation du catalyseur d’hydrocraquage. Un autre avantage de la présente invention permet de minimiser la purge et donc de maximiser les produits valorisables et également d’améliorer la qualité des produits en sortie du procédé et en particulier de produire un gazole présentant un indice de cétane amélioré.
La présente invention réside dans la mise en oeuvre d’un procédé d’hydrocraquage en 2 étapes comprenant une étape d’hydrogénation placée en aval de la deuxième étape d’hydrocraquage, l’étape d’hydrogénation traitant l’effluent issu de la 2eme étape d’hydrocraquage en présence d’un catalyseur d’hydrogénation spécifique. De plus, les étapes d’hydrogénation et de deuxième étape d’hydrocraquage sont mises en oeuvre dans des conditions opératoires spécifiques et en particulier dans des conditions de température bien spécifiques.
Résumé de l’invention
En particulier, la présente invention concerne un procédé de production de distillais moyens à partir de charges hydrocarbonées contenant au moins 20% en volume, et de préférence au moins 80% en volume, de composés bouillant au-dessus de 340°C, ledit procédé comprenant et de préférence constitué d’au moins les étapes suivantes : a) Une étape d’hydrotraitement desdites charges en présence d'hydrogène et d’au moins un catalyseur d’hydrotraitement, à une température comprise entre 200 et 450°C, sous une pression comprise entre 2 et 25 MPa, à une vitesse spatiale comprise entre 0,1 et 6 h 1 et à une quantité d’hydrogène introduite telle que le rapport volumique litre d’hydrogène/litre d’hydrocarbure soit compris entre 100 et 2000 NL/L, b) une étape d’hydrocraquage d’au moins une partie de l’effluent issu de l’étape a), l’étape b) d’hydrocraquage opérant, en présence d'hydrogène et d’au moins un catalyseur d’hydrocraquage, à une température comprise entre 250 et 480°C, sous une pression comprise entre 2 et 25 MPa, à une vitesse spatiale comprise entre 0,1 et 6 h 1 et à une quantité d’hydrogène introduite telle que le rapport volumique litre d’hydrogène/litre d’hydrocarbure soit compris entre 80 et 2000 NL/L, c) une étape de séparation à haute pression de l’effluent issu de l’étape b) d’hydrocraquage pour produire au moins un effluent gazeux et un effluent hydrocarboné liquide, d) une étape de distillation d’au moins une partie de l’effluent hydrocarboné liquide issu de l’étape c) mise en oeuvre dans au moins une colonne de distillation, étape de laquelle il est soutiré :
- une fraction gazeuse,
- au moins une fraction essence ayant au moins 80% en volume de produits bouillant à une température inférieure à 150°C,
- au moins une fraction distillais moyens ayant au moins 80% en volume de produits ayant un point d’ébullition compris entre 150 et 380°C, de préférence compris entre 150 et 370°C, et de manière préférée entre 150 et 350°C,
- une fraction liquide lourde non convertie ayant au moins 80% en volume de produits ayant un point d’ébullition supérieur à 350°C, de préférence supérieur à 370°C, de manière préférée supérieur à 380°C, e) éventuellement une purge d’au moins une partie de ladite fraction liquide lourde non convertie contenant des HPNA, ayant au moins 80% en volume de produits ayant un point d’ébullition supérieur à 350°C, avant son introduction dans l’étape f), f) une deuxième étape d’hydrocraquage d’au moins une partie de la fraction liquide lourde non convertie ayant au moins 80% en volume de produits ayant un point d’ébullition supérieur à 350°C, issue de l’étape d) et éventuellement purgée, ladite étape f) opérant en présence d'hydrogène et d’au moins un deuxième catalyseur d’hydrocraquage, à une température TR1 comprise entre 250 et 480°C, sous une pression comprise entre 2 et 25 MPa, à une vitesse spatiale comprise entre 0,1 et 6 h 1 et à une quantité d’hydrogène introduite telle que le rapport volumique litre d’hydrogène/litre d’hydrocarbure soit compris entre 80 et 2000 NL/L, g) une étape d’hydrogénation d’au moins une partie de l’effluent issu de l’étape f) opérant en présence d'hydrogène et d’un catalyseur d’hydrogénation, à une température TR2 comprise entre 150 et 470°C, sous une pression comprise entre 2 et 25 MPa, à une vitesse spatiale comprise entre 0,1 et 50 h 1 et à une quantité d’hydrogène introduite telle que le rapport volumique litre d’hydrogène/litre d’hydrocarbure soit compris entre 100 et 4000 NL/L, ledit catalyseur d’hydrogénation comprenant au moins un métal du groupe VIII choisi parmi le nickel, le cobalt, le fer, le palladium, le platine, le rhodium, le ruthénium, l’osmium et l’iridium seul ou en mélange et ne contenant pas de métal du groupe VIB et d’un support choisi parmi les supports oxydes réfractaires, et dans laquelle la température TR2 est inférieure d’au moins 10°C à la température TR1 , h) une étape de séparation à haute pression de l’effluent issu de l’étape g) d’hydrogénation pour produire au moins un effluent gazeux et un effluent hydrocarboné liquide, i) le recyclage dans ladite étape d) de distillation, d’au moins une partie de l’effluent hydrocarboné liquide issu de l’étape h).
La température exprimée pour chaque étape est de préférence une température moyenne pondérée sur l’ensemble du ou des lits catalytiques, ou la température WABT selon la terminologie anglo-saxonne, par exemple telle que définie dans l’ouvrage (Hydroprocessing of Heavy Oils and Residua, Jorge Ancheyta, James G. Speight - 2007 - Science).
Description des modes de réalisation
Charges
La présente invention concerne un procédé d'hydrocraquage de charges hydrocarbonées appelées charge mère, contenant au moins 20% en volume, et de préférence au moins 80% en volume, de composés bouillant au-dessus de 340°C, de préférence au-dessus de 350°C et de manière préférée entre 350 et 580 °C (c'est-à-dire correspondant à des composés contenant au moins 15 à 20 atomes de carbone).
Lesdites charges hydrocarbonées peuvent avantageusement être choisies parmi les VGO (Vacuum gas oil) selon la terminologie anglo-saxonne ou distillais sous vide (DSV) ou les gazoles, tels que par exemple les gazoles issus de la distillation directe du brut ou d'unités de conversion telles que le FCC (par exemple le LCO ou Light Cycle Oil selon la terminologie anglo-saxonne), le coker ou la viscoréduction ainsi que des charges provenant d'unités d'extraction d'aromatiques des bases d’huile lubrifiante ou issues du déparaffinage au solvant des bases d'huile lubrifiante, ou encore des distillais provenant de désulfuration ou d'hydroconversion de RAT (résidus atmosphériques) et/ou de RSV (résidus sous vide), ou encore la charge peut avantageusement être une huile désasphaltée, ou des charges issues de la biomasse ou encore tout mélange des charges précédemment citées et de préférence, les VGO.
Les paraffines issues du procédé Fischer-Tropsch sont exclues. La teneur en azote des charges mères traitées dans le procédé selon l’invention est usuellement supérieure à 500 ppm poids, de préférence comprise entre 500 et 10000 ppm poids, de manière plus préférée entre 700 et 4000 ppm poids et de manière encore plus préférée entre 1000 et 4000 ppm poids. La teneur en soufre des charges mères traitées dans le procédé selon l’invention est usuellement comprise entre 0,01 et 5% poids, de manière préférée comprise entre 0,2 et 4% poids et de manière encore plus préférée entre 0,5 et 3 % poids.
La charge peut éventuellement contenir des métaux. La teneur cumulée en nickel et vanadium des charges traitées dans le procédé selon l'invention est de préférence inférieure à 1 ppm poids.
La charge peut éventuellement contenir des asphaltènes. La teneur en asphaltènes est généralement inférieure à 3000 ppm poids, de manière préférée inférieure à 1000 ppm poids, de manière encore plus préférée inférieure à 200 ppm poids.
Dans le cas où la charge contient des composés de type résines et/ou asphaltènes, il est avantageux de faire passer au préalable la charge sur un lit de catalyseur ou d'adsorbant différent du catalyseur d'hydrocraquage ou d'hydrotraitement.
Etape a)
Conformément à l’invention, le procédé comprend une étape a) d’hydrotraitement desdites charges en présence d'hydrogène et d’au moins un catalyseur d’hydrotraitement, à une température comprise entre 200 et 450°C, sous une pression comprise entre 2 et 25 MPa, à une vitesse spatiale comprise entre 0,1 et 6 h 1 et à une quantité d’hydrogène introduite telle que le rapport volumique litre d’hydrogène/litre d’hydrocarbure soit compris entre 100 et 2000 NL/L.
Les conditions opératoires telles que température, pression, taux de recyclage d’hydrogène, vitesse spatiale horaire, pourront être très variables en fonction de la nature de la charge, de la qualité des produits désirés et des installations dont dispose le raffineur.
De préférence, l’étape a) d’hydrotraitement selon l'invention opère à une température comprise entre 250 et 450°C, de manière très préférée entre 300 et 430°C, sous une pression comprise entre 5 et 20 MPa, à une vitesse spatiale comprise entre 0,2 et 5 h 1 , et à une quantité d’hydrogène introduite telle que le rapport volumique litre d’hydrogène/litre d’hydrocarbure est compris entre 300 et 1500 NL/L.
Des catalyseurs d’hydrotraitement classiques peuvent avantageusement être utilisés, de préférence qui contiennent au moins un support amorphe et au moins un élément hydro- déshydrogénant choisi parmi au moins un élément des groupes VIB et VIII non noble, et le plus souvent au moins un élément du groupe VIB et au moins un élément du groupe VIII non noble.
De préférence, le support amorphe est de l’alumine ou de la silice-alumine.
Des catalyseurs préférés sont choisis parmi les catalyseurs NiMo, NiW ou CoMo sur alumine et NiMo ou NiW sur silice-alumine.
L’effluent issu de l’étape d’hydrotraitement et dont une partie entre dans l’étape b) d’hydrocraquage comprend généralement une teneur en azote de préférence inférieure à 300 ppm poids et de préférence inférieure à 50 ppm poids.
Etape b) Conformément à l’invention, le procédé comprend une étape b) d’hydrocraquage d’au moins une partie de l’effluent issu de l’étape a), et de préférence la totalité, ladite étape b) opérant, en présence d'hydrogène et d’au moins un catalyseur d’hydrocraquage, à une température comprise entre 250 et 480°C, sous une pression comprise entre 2 et 25 MPa, à une vitesse spatiale comprise entre 0,1 et 6 h 1 et à une quantité d’hydrogène introduite telle que le rapport volumique litre d’hydrogène/litre d’hydrocarbure soit compris entre 80 et 2000 NL/L.
De préférence, l’étape b) d’hydrocraquage selon l'invention opère à une température comprise entre 320 et 450°C, de manière très préférée entre 330 et 435°C, sous une pression comprise entre 3 et 20 MPa, à une vitesse spatiale comprise entre 0,2 et 4 h 1, et à une quantité d’hydrogène introduite telle que le rapport volumique litre d’hydrogène/litre d’hydrocarbure est compris entre 200 et 2000 NL/L.
Dans un mode de réalisation permettant de maximiser la production de distillais moyens, les conditions opératoires utilisées dans le procédé selon l’invention permettent généralement d’atteindre des conversions par passe, en produits ayant au moins 80% en volume de produits ayant des points d’ébullition inférieurs à 380°C, de préférence inférieurs à 370°C et de manière préférée inférieurs à 350°C, supérieures à 15% poids et de manière encore plus préférée comprises entre 20 et 95% poids.
L’étape b) d’hydrocraquage selon l’invention couvre les domaines de pression et de conversion allant de l’hydrocraquage doux à l’hydrocraquage haute pression. On entend par hydrocraquage doux, un hydrocraquage conduisant à des conversions modérées, généralement inférieures à 40%, et fonctionnant à basse pression, de préférence entre 2 MPa et 6 MPa. L’hydrocraquage haute pression est généralement réalisé à des pressions plus fortes comprises entre 5 MPa et 25 MPa, de manière à obtenir des conversion supérieures à 50%.
L’étape a) d’hydrotraitement et l’étape b) d’hydrocraquage peuvent avantageusement être réalisées dans un même réacteur ou dans des réacteurs différents. Dans le cas où elles sont réalisées dans un même réacteur, le réacteur comprend plusieurs lits catalytiques, les premiers lits catalytiques comprenant le ou les catalyseurs d’hydrotraitement et les lits catalytiques suivants comprenant le ou les catalyseurs d’hydrocraquage.
Figure imgf000012_0001
Conformément à l’invention, l’étape b) d’hydrocraquage opère en présence d’au moins un catalyseur d’hydrocraquage.
Le ou les catalyseur(s) d’hydrocraquage utilisé(s) dans l’étape b) d’hydrocraquage sont des catalyseurs classiques d’hydrocraquage connus de l'Homme du métier, de type bifonctionnel associant une fonction acide à une fonction hydro-déshydrogénante et éventuellement au moins une matrice liante. La fonction acide est apportée par des supports de grande surface (150 à 800 m2.g 1 généralement) présentant une acidité superficielle, telles que les alumines halogénées (chlorées ou fluorées notamment), les combinaisons d’oxydes de bore et d’aluminium, les silice-alumines amorphes et les zéolithes. La fonction hydro- déshydrogénante est apportée par au moins un métal du groupe VIB de la classification périodique et/ou au moins un métal du groupe VIII.
De préférence, le ou les catalyseurs d’hydrocraquage utilisés dans l’étape b) comprennent une fonction hydro-déshydrogénante comprenant au moins un métal du groupe VIII choisi parmi le fer, le cobalt, le nickel, le ruthénium, le rhodium, le palladium et le platine, et de préférence parmi le cobalt et le nickel. De préférence, le(s)dit(s) catalyseurs comprennent également au moins un métal du groupe VIB choisi parmi le chrome, le molybdène et le tungstène, seul ou en mélange, et de préférence parmi le molybdène et le tungstène. Des fonctions hydro-déshydrogénantes de type NiMo, NiMoW, NiW sont préférées.
De préférence, la teneur en métal du groupe VIII dans le ou les catalyseur(s) d’hydrocraquage est avantageusement comprise entre 0,5 et 15% poids et de préférence entre 1 et 10% poids, les pourcentages étant exprimés en pourcentage poids d’oxydes par rapport à la masse totale de catalyseur.
De préférence, la teneur en métal du groupe VIB dans le ou les catalyseur(s) d’hydrocraquage est avantageusement comprise entre 5 et 35% poids, et de préférence entre 10 et 30% poids, les pourcentages étant exprimés en pourcentage poids d’oxydes par rapport à la masse totale de catalyseur.
Le ou les catalyseur(s) d’hydrocraquage utilisés dans l’étape b) peuvent également comprendre éventuellement au moins un élément promoteur déposé sur le catalyseur et choisi dans le groupe formé par le phosphore, le bore et le silicium, éventuellement au moins un élément du groupe VIIA (chlore, fluor préférés), éventuellement au moins un élément du groupe VIIB (manganèse préféré), et éventuellement au moins un élément du groupe VB (niobium préféré).
De préférence, le ou les catalyseur(s) d’hydrocraquage utilisés dans l’étape b) comprennent au moins une matrice minérale poreuse amorphe ou mal cristallisée de type oxyde choisie parmi les alumines, les silices, les silice-alumines, les aluminates, l’alumine-oxyde de bore, la magnésie, la silice-magnésie, le zircone, l’oxyde de titane, l’argile, seuls ou en mélange, et de préférence les alumines ou les silice-alumines, seules ou en mélange.
De préférence, la silice-alumine contient plus de 50% poids d’alumine, de préférence plus de 60% poids d’alumine.
De préférence, le ou les catalyseur(s) d’hydrocraquage utilisés dans l’étape b) comprennent également éventuellement une zéolithe choisie parmi les zéolithes Y, de préférence parmi les zéolithes USY, seules ou en combinaison, avec d’autres zéolithes parmi les zéolithes beta, ZSM-12, IZM-2, ZSM-22, ZSM-23, SAPO-1 1 , ZSM-48, ZBM-30, seules ou en mélange. De manière préférée la zéolithe est la zéolithe USY seule.
Dans le cas où ledit catalyseur comprend une zéolithe, la teneur en zéolithe dans le ou les catalyseur(s) d’hydrocraquage est avantageusement comprise entre 0,1 et 80% poids, de préférence comprise entre 3 et 70% poids, les pourcentages étant exprimés en pourcentage de zéolithe par rapport à la masse totale de catalyseur.
Un catalyseur préféré comprend, et est de préférence constitué, d’au moins un métal du groupe VIB et éventuellement d’au moins un métal du groupe VIII non noble, d’au moins un élément promoteur, et de préférence le phosphore, d’au moins une zéolithe Y et d’au moins un liant alumine.
Un catalyseur encore plus préféré comprend, et est de préférence constitué, du nickel, du molybdène, du phosphore, d’une zéolithe USY, et éventuellement aussi une zéolithe béta, et de l’alumine. Un autre catalyseur préféré comprend, et est de préférence constitué, du nickel, du tungstène, de l’alumine et de la silice-alumine.
Un autre catalyseur préféré comprend, et est de préférence constitué, du nickel, du tungstène, d’une zéolithe USY, de l’alumine et de la silice-alumine.
Etape c) Conformément à l’invention, le procédé comprend une étape c) de séparation à haute pression comprenant un moyen de séparation tel que par exemple un enchaînement de ballons séparateurs à haute pression opérant entre 2 et 25 MPa, dont le but est de produire un flux d’hydrogène qui est recyclé par l’intermédiaire d’un compresseur vers au moins une des étapes a), b), f) et/ou g), et un effluent hydrocarboné produit dans l’étape b) d’hydrocraquage qui est préférentiellement envoyé vers une étape de stripage à la vapeur opérant de préférence à une pression comprise entre 0,5 et 2 MPa, qui a pour but de réaliser une séparation de l’hydrogène sulfuré (H2S) dissous dans au moins ledit effluent hydrocarboné produit dans l’étape b).
L’étape c) permet la production d’un effluent liquide hydrocarboné qui est ensuite envoyé dans l’étape d) de distillation.
Etape d)
Conformément à l’invention, le procédé comprend une étape d) de distillation de l’effluent issu de l’étape c) en au moins une fraction gaz légers C1 -C4, au moins une fraction essence ayant au moins 80% en volume, de préférence au moins 95% en volume, de produits bouillant à une température inférieure à 150°C, au moins une fraction distillais moyens (kérosène et gazole) ayant au moins 80% en volume, et de préférence au moins 95% en volume, de composés bouillant entre 150 et 380°C, de préférence entre 150 et 370°C, et de manière préférée entre 150 et 350°C, et une fraction liquide lourde non convertie dans les étapes a) et b), ayant au moins 80% en volume, et de préférence au moins 95% en volume, de produits ayant un point d’ébullition supérieur à 350°C, de préférence supérieur à 370°C, de manière préférée supérieur à 380°C.
Une fraction gazole et une fraction kérosène peuvent avantageusement être ensuite séparées.
Etape e) optionnelle
Le procédé peut éventuellement comprendre une étape e) de purge d’au moins une partie de ladite fraction liquide lourde non convertie contenant des HPNA, issue de l’étape de distillation d).
Ladite purge est comprise entre 0 à 5% poids de la fraction liquide lourde non convertie par rapport à la charge entrante dans ledit procédé, et de préférence entre 0 à 3%poids et de manière très préférée entre 0 et 2% poids.
Etape f)
Conformément à l’invention, le procédé comprend une deuxième étape f) d’hydrocraquage de ladite fraction liquide lourde non convertie issue de l’étape d) et éventuellement purgée dans l’étape e) opérant en présence d’hydrogène et d’un catalyseur d’hydrocraquage, à une température TR1 comprise entre 250 et 480°C, sous une pression comprise entre 2 et 25 MPa, à une vitesse spatiale comprise entre 0,1 et 6 h 1 et à une quantité d’hydrogène introduite telle que le rapport volumique litre d’hydrogène/litre d’hydrocarbure soit compris entre 80 et 2000 NL/L.
De préférence, l’étape f) d’hydrocraquage selon l’invention opère à une température TR1 comprise entre 320 et 450°C, de manière très préférée entre 330 et 435°C, sous une pression comprise entre 3 et 20 MPa, et de manière très préférée entre 9 et 20 MPa, à une vitesse spatiale comprise entre 0,2 et 3 h 1 , et à une quantité d’hydrogène introduite telle que le rapport volumique litre d’hydrogène/litre d’hydrocarbure est compris entre 200 et 2000 NL/L. De préférence, la teneur en azote dans l’étape f), que ce soit l’azote organique dissous dans ladite fraction liquide lourde non convertie ou le NH3 présent dans la phase gaz, est faible, de préférence inférieure à 200 ppm poids, de préférence inférieure à 100 ppm poids, de manière encore préférée inférieure à 50 ppm poids.
De préférence la pression partielle en H2S de l’étape f) est faible, de préférence la teneur en soufre équivalent est inférieure à 800 ppm poids, de préférence comprise entre 10 et 500 ppm poids, de manière encore préférée comprise entre 20 et 400 ppm poids.
Ces conditions opératoires utilisées dans l’étape f) du procédé selon l’invention permettent généralement d’atteindre des conversions par passe, en produits ayant au moins 80% en volume de composés ayant des points d’ébullition inférieurs à 380°C, de préférence inférieurs à 370°C et de manière préférée inférieurs à 350°C, supérieures à 15% poids et de manière encore plus préférée comprises entre 20 et 80% poids. Néanmoins, la conversion par passe dans l’étape f) est maintenue modérée afin de maximiser la sélectivité du procédé en produit ayant des points d’ébullitions compris entre 150 et 380°C (distillais moyens). La conversion par passe est limitée par l’utilisation d’un taux de recycle élevé sur la boucle de deuxième étape d’hydrocraquage. Ce taux est défini comme le ratio entre le débit d’alimentation de l’étape f) et le débit de la charge de l’étape a), préférentiellement ce ratio est compris entre 0,2 et 4, de manière préférée entre 0,5 et 2,5.
Conformément à l’invention, l’étape f) d’hydrocraquage opère en présence d’au moins un catalyseur d’hydrocraquage. De préférence, le catalyseur d’hydrocraquage de deuxième étape est choisi parmi les catalyseurs classiques d’hydrocraquage connus de l'Homme du métier, tels que ceux décrits ci-dessus dans l’étape b) d’hydrocraquage. Le catalyseur d’hydrocraquage utilisé dans ladite étape f) peut être identique ou différent de celui utilisé dans l’étape b) et de préférence différent.
Dans une variante, le catalyseur d’hydrocraquage mis en oeuvre dans l’étape f) comprend une fonction hydro-déshydrogénante comprenant au moins un métal noble du groupe VIII choisi parmi le palladium et le platine, seul ou en mélange. La teneur en métal noble du groupe VIII est avantageusement comprise entre 0,01 et 5% poids et de préférence entre 0,05 et 3% poids, les pourcentages étant exprimés en pourcentage poids d’oxydes par rapport à la masse totale de catalyseur. Etape a)
Conformément à l’invention, le procédé comprend une étape g) d’hydrogénation d’au moins une partie de l’effluent issu de l’étape f) opérant en présence d’hydrogène et d’un catalyseur d’hydrogénation, à une température TR2 comprise entre 150 et 470°C, sous une pression comprise entre 2 et 25 MPa, à une vitesse spatiale comprise entre 0,1 et 50 h 1 et à une quantité d’hydrogène introduite telle que le rapport volumique litre d’hydrogène/litre d’hydrocarbure soit compris entre 100 et 4000 NL/L, ledit catalyseur d’hydrogénation comprenant, et étant de préférence constitué, d’au moins un métal du groupe VIII de la classification périodique des élément choisi parmi le nickel, le cobalt, le fer, le palladium, le platine, le rhodium, le ruthénium, l’osmium et l’iridium, seul ou en mélange et ne comprenant pas de métal du groupe VIB et d’un support choisi parmi les supports oxydes réfractaires, et dans laquelle la température TR2 de l’étape g) d’hydrogénation est inférieure d’au moins 10°C à la température TR1 de l’étape f) d’hydrocraquage.
De préférence, ladite étape g) d’hydrogénation opère à une température TR2 comprise entre 150 et 380°C, de préférence entre 180 et 320°C, sous une pression comprise entre 3 et 20 MPa, et de manière très préférée entre 9 et 20 MPa, à une vitesse spatiale comprise entre 0,2 et 10h 1 et à une quantité d’hydrogène introduite telle que le rapport volumique litre d’hydrogène/litre d’hydrocarbure soit compris entre 200 et 3000 NL/L.
De préférence le rapport volumique litre d’hydrogène/litre d’hydrocarbure de l’étape g) est supérieur à celui de l’étape f) d’hydrocraquage.
De préférence, l’étape g) est mise en oeuvre à une température TR2 inférieure d’au moins 20°C à la température TR1 , de préférence d’au moins 50°C et de manière préférée d’au moins 70°C.
Il est important de noter que les températures TR1 et TR2 sont choisies dans les intervalles mentionnés ci-dessus de manière à respecter le delta de température selon la présente invention à savoir que TR2 doit être inférieure d’au moins 10°C à la température TR1 , de préférence d’au moins 20°C, de manière préférée d’au moins 50°C et de manière encore plus préférée d’au moins 70°C.
La mise en oeuvre technologique de l’étape g) d’hydrogénation est réalisée selon toute mise en oeuvre connue de l’Homme du métier, par exemple par injection, en courant ascendant ou descendant, de la charge d'hydrocarbures issue de l’étape f) et de l’hydrogène dans au moins un réacteur à lit fixe. Ledit réacteur peut être de type isotherme ou de type adiabatique. Un réacteur adiabatique est préféré. La charge d'hydrocarbures peut avantageusement être diluée par une ou plusieurs ré-injection(s) de l'effluent, issu dudit réacteur où se produit la réaction d'hydrogénation, en divers points du réacteur, situés entre l'entrée et la sortie du réacteur afin de limiter le gradient de température dans le réacteur. Le flux d'hydrogène peut être introduit en même temps que la charge à hydrogéner et/ou en un ou plusieurs points différents du réacteur.
De préférence, le métal du groupe VIII utilisé dans le catalyseur d’hydrogénation est choisi parmi le nickel, le palladium et le platine, seul ou en mélange, et de préférence le nickel et le platine, seul ou en mélange. De préférence, ledit catalyseur d’hydrogénation ne comprend pas de molybdène ou de tungstène.
De manière préférée, lorsque le métal du groupe VIII est un métal non noble, de préférence le nickel, la teneur en élément métallique du groupe VIII dans ledit catalyseur est avantageusement comprise entre 5 et 65 % poids, plus préférentiellement entre 8 et 55 % poids, et encore plus préférentiellement entre 12 et 40% poids, et de manière encore plus préférée entre 15 et 30 % poids, les pourcentages étant exprimés en pourcentage poids d’élément métallique par rapport à la masse totale du catalyseur. De manière préférée, lorsque le métal du groupe VIII est un métal noble, de préférence le palladium et le platine, la teneur en élément métallique du groupe VIII est avantageusement comprise entre 0,01 et 5 % poids, de préférence entre 0,05 et 3 % poids, et de manière encore plus préférée entre 0,08 et 1 ,5 % poids les pourcentages étant exprimés en pourcentage poids d’élément métallique par rapport à la masse totale du catalyseur.
Ledit catalyseur d’hydrogénation peut comprendre en outre au moins un métal additionnel choisi parmi les métaux du groupe VIII, les métaux du groupe IB et/ou de l'étain. De manière préférée, le métal additionnel du groupe VIII est choisi parmi le platine, le ruthénium et le rhodium, ainsi que le palladium (dans le cas d'un catalyseur à base de nickel) et le nickel ou le palladium (dans le cas d'un catalyseur à base de platine). Avantageusement, le métal additionnel du groupe IB est choisi parmi le cuivre, l'or et l'argent. Le(s)dit(s) métal(ux) additionnel(s) du groupe VIII et/ou du groupe IB est(sont) préférentiellement présent(s) dans une teneur représentant de 0,01 à 20 % poids de la masse du catalyseur, de préférence de 0,05 à 10 % poids de la masse du catalyseur et de manière encore plus préférée de 0,05 à 5 % poids de la masse dudit catalyseur. L'étain est préférentiellement présent dans une teneur représentant de 0,02 à 15 % poids de la masse du catalyseur, de telle sorte que le ratio Sn/métal(ux) du groupe VIII soit compris entre 0,01 et 0,2, de préférence entre 0,025 à 0,055, et de manière encore plus préférée entre 0,03 à 0,05.
Le support dudit catalyseur d’hydrogénation est avantageusement formé d'au moins un oxyde réfractaire préférentiellement choisi parmi les oxydes de métaux des groupes MA, INB, IVB, NIA et IVA selon la notation CAS de la classification périodique des éléments. De manière préférée, ledit support est formé d'au moins un oxyde simple choisi parmi l'alumine (AI2O3), la silice (Si02), l'oxyde de titane (Ti02), la cérine (Ce02), la zircone (Zr02) ou le P205. De manière préférée, ledit support est choisi parmi les alumines, les silices et les silices- alumines, seules ou en mélange. De manière très préférée, ledit support est une alumine ou une silice-alumine, seule ou en mélange, et de manière encore plus préférée une alumine. De préférence, la silice-alumine contient plus de 50% poids d’alumine, de préférence plus de 60% poids d’alumine. L’alumine peut être présente sous toutes les formes cristallographiques possibles : alpha, delta, thêta, chi, rho, eta, kappa, gamma, etc., prises seules ou en mélange. De manière préférée le support est choisi parmi l’alumine delta, thêta, gamma.
Le catalyseur de l’étape g) d’hydrogénation peut éventuellement comprendre une zéolithe choisie parmi les zéolithes Y, de préférence les zéolithes USY, seules ou en combinaison avec d’autres zéolithes parmi les zéolithes beta, ZSM-12, IZM-2, ZSM-22, ZSM-23, SAPO- 1 1 , ZSM-48, ZBM-30, seules ou en mélange. De manière préférée la zéolithe est la zéolithe USY seule.
De préférence , le catalyseur de l’étape g) ne contient pas de zéolithe.
Un catalyseur préféré est un catalyseur comprenant, et de préférence constitué, de nickel et d’alumine.
Un autre catalyseur préféré est un catalyseur comprenant, et de préférence constitué, de platine et d’alumine.
De préférence, le catalyseur de l’étape g) d’hydrogénation est différent de celui mis en oeuvre dans l’étape a) d’hydrotraitement et de ceux mis en oeuvre dans les étapes b) et f) d’hydrocraquage.
L’étape f) d’hydrocraquage et l’étape g) d’hydrogénation peuvent avantageusement être réalisées dans un même réacteur ou dans des réacteurs différents. Dans le cas où elles sont réalisées dans un même réacteur, le réacteur comprend plusieurs lits catalytiques, les premiers lits catalytiques comprenant le ou les catalyseurs d’hydrocraquage et les lits catalytiques suivants (c’est-à-dire en aval) comprenant le ou les catalyseurs d’hydrogénation. Dans un mode de réalisation préféré de l’invention, l’étape f) et l’étape g) sont réalisées dans le même réacteur.
L’écart de température entre les deux étapes f) et g) peut être avantageusement géré par un ou plusieurs échangeurs thermiques ou par un ou plusieurs quench (tels que par exemple des quench d’injection d’hydrogène ou de liquide) afin d’avoir une température d’au moins 10°C d’écart avec la température de l’étape f).
L’étape g) d’hydrogénation utilisant un catalyseur d’hydrogénation dans des conditions opératoires favorables aux réactions d’hydrogénation a pour objectif principal d’hydrogéner une partie des composés aromatiques ou polyaromatiques contenus dans l’effluent de l’étape f) et en particulier de diminuer la teneur en composés HPNA. Cependant, des réactions de désulfuration, de déazotation, d’hydrogénation des oléfines ou d’hydrocraquage doux ne sont pas exclues .La conversion des composés aromatiques ou polyaromatiques est généralement supérieure à 20%, de préférence supérieure à 40%, de manière plus préférée supérieure à 80%, et de manière particulièrement préférée supérieure à 90% des composés aromatiques ou polyaromatiques contenus dans l’effluent de l’étape f). La conversion se calcule en divisant la différence entre les quantités des composés aromatiques ou polyaromatiques dans la charge d'hydrocarbures et dans le produit par les quantités des composés aromatiques ou polyaromatiques dans la charge d'hydrocarbures (la charge d’hydrocarbures étant l’effluent de l’étape f) et le produit étant l’effluent de l’étape g).
En présence de l’étape g) d’hydrogénation selon l’invention, le procédé d’hydrocraquage présente une durée de cycle allongée et/ou un rendement en distillais moyens amélioré. De plus, la fraction gazole obtenue (constituée d’au moins 80% en volume de produits ayant un point d’ébullition compris entre 150 et 380°C) présente un indice de cétane amélioré.
Etape h)
Conformément à l’invention, le procédé comprend une étape h) de séparation à haute pression de l’effluent issu de l’étape g) d’hydrogénation pour produire au moins un effluent gazeux et un effluent hydrocarboné liquide. Ladite étape h) de séparation comprend avantageusement un moyen de séparation tel que par exemple un enchaînement de ballons séparateurs à haute pression opérant entre 2 et 25 MPa, dont le but est de produire un flux d’hydrogène qui est recyclé par l’intermédiaire d’un compresseur vers au moins une des étapes a), b), f) et/ou g), et un effluent hydrocarboné produit dans l’étape g) d’hydrogénation
L’étape h) permet la production d’un effluent liquide hydrocarboné qui est ensuite recyclé dans l’étape d) de distillation.
Avantageusement, ladite étape h) est mise en oeuvre dans une seule et même étape que l’étape c) ou dans une étape distincte. Etape i)
Conformément à l’invention, le procédé comprend une étape i) de recyclage dans ladite étape d) de distillation, d’au moins une partie de l’effluent hydrocarboné liquide issu de l’étape h).
Liste des figures La figure 1 illustre un mode de réalisation de l’invention.
La charge de type VGO est envoyé via la conduite (1 ) dans une étape a) d’hydrotraitement. L’effluent issu de l’étape a) est envoyé via la conduite (2) dans une première étape d’hydrocraquage b). L’effluent issu de l’étape b) est envoyé via la conduite (3) dans une étape c) de séparation à haute pression pour produire au moins un effluent gazeux (non représenté sur la figure) et un effluent hydrocarboné liquide qui est envoyé via la conduite (4) dans l’étape d) de distillation. Il est soutiré de l’étape d) de distillation :
- une fraction gazeuse (5),
- au moins une fraction essence ayant au moins 80% en volume de produits bouillant à une température inférieure à 150°C (6),
- au moins une fraction distillais moyens ayant au moins 80% en volume de produits ayant un point d’ébullition compris entre 150 et 380°C (7), et
- une fraction liquide lourde non convertie ayant au moins 80% en volume de produits ayant un point d’ébullition supérieur à 350°C (8). Eventuellement une partie de la fraction liquide lourde non convertie contenant des HPNA est purgée dans une étape e) via la conduite (9).
La fraction liquide lourde non convertie éventuellement purgée est envoyée via la conduite (10) dans la deuxième étape d’hydrocraquage f). L’effluent issu de l’étape f) est envoyé via la conduite (1 1 ) dans une étape g) d’hydrogénation. L’effluent hydrogéné issu de l’étape g) est envoyé via la conduite (12) dans une étape h) de séparation à haute pression pour produire au moins un effluent gazeux (non représenté sur la figure) et un effluent hydrocarboné liquide qui est recyclé via la conduite (13) dans l’étape d) de distillation.
Exemples Les exemples suivants illustrent l’invention sans en limiter la portée.
Exemple n°1 non conforme à l’invention
Une unité d’hydrocraquage traite une charge gazole sous vide (VGO) décrite dans le tableau 1 :
Figure imgf000022_0001
Tableau 1 La charge VGO est injectée dans une étape de préchauffe puis dans un réacteur d’hydrotraitement dans les conditions suivantes énoncées dans le tableau 2 :
Figure imgf000023_0001
Tableau 2
L’effluent de ce réacteur est ensuite injecté dans un second réacteur dit d’hydrocraquage R2 opérant dans les conditions du tableau 3 :
Figure imgf000023_0002
Tableau 3 R1 et R2 constituent la première étape d’hydrocraquage, l’effluent de R2 est ensuite envoyé dans une étape de séparation composée d’un train de récupération de chaleur puis de séparation à haute pression incluant un compresseur de recycle et permettant de séparer d’une part l’hydrogène, le sulfure d’hydrogène et l’ammoniaque et d’autre part l’effluent hydrocarboné liquide alimentant un strippeur puis une colonne de distillation atmosphérique afin de séparer des flux concentré en H2S, une coupe essence, une coupe distillât moyen (keroséne et gazole), et une fraction liquide lourde non convertie (UCO). Une purge correspondant à 2% massique du débit de la charge VGO est prise en fond de distillation sur ladite fraction liquide lourde non convertie. Ladite fraction liquide lourde non convertie est injectée dans un réacteur d’hydrocraquage R3 constituant la seconde étape d’hydrocraquage. Ce réacteur R3 est mis en oeuvre dans les conditions suivantes énoncées dans le tableau 4 :
Figure imgf000024_0001
Tableau 4 Cette seconde étape d’hydrocraquage est effectuée en présence de 100 ppm Soufre équivalent et de 5 ppm Azote équivalent, qui proviennent de l’H2S et de NH3 présents dans l’hydrogène et des composés soufrés et azotés encore présents dans ladite fraction liquide lourde non convertie.
L’effluent de R3 issu de la seconde étape d’hydrocraquage est ensuite injecté dans l’étape de séparation à haute pression en aval de la première étape d’hydrocraquage puis dans l’étape de distillation.
Exemple n°2 conforme à l’invention
L’exemple 2 est conforme à l’invention dans la mesure où il s’agit d’un procédé d’hydrocraquage en deux étapes dans lequel l’effluent issu de la deuxième étape d’hydrocraquage est envoyé dans une étape d’hydrogénation en présence d’un catalyseur d’hydrogénation comprenant du Ni et un support alumine et dans lequel la température TR2 dans l’étape d’hydrogénation est inférieure d’au moins 10°C à la température TR1 dans la deuxième étape d’hydrocraquage.
Les étapes d’hydrotraitement dans R1 , de première étape d’hydrocraquage dans R2 et de deuxième étape d’hydrocraquage dans R3 sont mises en oeuvre sur la même charge et dans les mêmes conditions que dans l’exemple 1 . Une purge correspondant à 2% massique du débit de la charge VGO est également prise en fond de distillation sur la fraction liquide lourde non convertie.
Une étape d’hydrogénation de l’effluent issu de R3 est réalisée dans un réacteur R4 en aval de R3. Les conditions opératoires de R4 sont énoncées dans le tableau 5. Dans ce cas, TR2 est inférieure de 60°C à TR1.
Figure imgf000025_0001
Tableau 5
Le catalyseur mis en oeuvre dans le réacteur R4 a la composition suivante : 28 %pds Ni sur alumine gamma.
L’effluent hydrogéné issu de R4 est ensuite envoyé dans une étape de séparation haute pression avant d’être recyclé dans l’étape de distillation.
Exemple n°3 conforme à l’invention
L’exemple 3 est conforme à l’invention dans la mesure où il s’agit d’un procédé d’hydrocraquage en deux étapes dans lequel l’effluent issu de la deuxième étape d’hydrocraquage est envoyé dans une étape d’hydrogénation en présence d’un catalyseur d’hydrogénation comprenant du Pt et un support alumine et dans lequel la température TR2 dans l’étape d’hydrogénation est inférieure d’au moins 10°C à la température TR1 dans la deuxième étape d’hydrocraquage.
Les étapes d’hydrotraitement dans R1 , de première étape d’hydrocraquage dans R2 et de deuxième étape d’hydrocraquage dans R3 sont mises en oeuvre sur la même charge et dans les mêmes conditions que dans l’exemple 1 . Une purge correspondant à 2% massique du débit de la charge VGO est également prise en fond de distillation sur la fraction liquide lourde non convertie. Une étape d’hydrogénation de l’effluent issu de R3 est réalisée dans un réacteur R4 en aval de R3. Les conditions opératoires de R4 sont énoncées dans le tableau 6. Dans ce cas, TR2 est inférieure de 80°C à TR1.
Figure imgf000026_0001
Tableau 6 Le catalyseur mis en oeuvre dans le réacteur R4 a la composition suivante : 0,3 %pds Pt sur alumine gamma.
L’effluent hydrogéné issu de R4 est ensuite envoyé dans une étape de séparation haute pression avant d’être recyclé dans l’étape de distillation.
Exemple n°4 non conforme à l’invention L’exemple 4 est non conforme à l’invention dans la mesure où il s’agit d’un procédé d’hydrocraquage en deux étapes dans lequel une étape d’hydrogénation en présence d’un catalyseur d’hydrogénation comprenant du Pt et un support alumine est mise en oeuvre en amont de la deuxième étape d’hydrocraquage et dans lequel la température TR2 dans l’étape d’hydrogénation est égale à la température TR1 dans la deuxième étape d’hydrocraquage.
Les étapes d’hydrotraitement dans R1 , de première étape d’hydrocraquage dans R2 et de deuxième étape d’hydrocraquage dans R3 sont mises en oeuvre sur la même charge et dans les mêmes conditions que dans l’exemple 1 . Une purge correspondant à 2% massique du débit de la charge VGO est également prise en fond de distillation sur la fraction liquide lourde non convertie. Cette fois, la fraction liquide lourde non convertie issue de la distillation est envoyée d’abord dans une étape d’hydrogénation mise en oeuvre dans un réacteur R4 en amont de R3. Dans ce cas, TR2 dans l’étape d’hydrogénation est égale à la température TR1 dans la deuxième étape d’hydrocraquage et est de 340°C. Les conditions opératoires de R4 sont énoncées dans le tableau 7.
Figure imgf000027_0001
Tableau 7
Le catalyseur mis en oeuvre dans le réacteur R4 a la composition suivante : 0,3 %pds Pt sur alumine gamma.
L’effluent hydrogéné issu de R4 est ensuite envoyé dans la deuxième étape d’hydrocraquage opérée dans le réacteur R3 avant d’être envoyé dans la séparation haute pression puis d’être recyclé dans l’étape de distillation.
Exemple n°5 conforme L’exemple 5 est conforme à l’invention dans la mesure où il s’agit d’un procédé d’hydrocraquage en deux étapes dans lequel l’effluent issu de la deuxième étape d’hydrocraquage est envoyé dans une étape d’hydrogénation en présence d’un catalyseur d’hydrogénation comprenant du Pt et un support alumine et dans lequel la température TR2 dans l’étape d’hydrogénation est inférieure d’au moins 10°C à la température TR1 dans la deuxième étape d’hydrocraquage.
Les étapes d’hydrotraitement dans R1 , de première étape d’hydrocraquage dans R2 et de deuxième étape d’hydrocraquage dans R3 sont mises en oeuvre sur la même charge et dans les mêmes conditions que dans l’exemple 1 . Une purge correspondant à 2% massique du débit de la charge VGO est également prise en fond de distillation sur la fraction liquide lourde non convertie. Une étape d’hydrogénation de l’effluent issu de R3 est réalisée dans un réacteur R4 en aval de R3. Les conditions opératoires de R4 sont énoncées dans le tableau 8. Dans ce cas, TR2 est inférieure de 60°C à TR1.
Figure imgf000028_0001
Tableau 8 Le catalyseur mis en oeuvre dans le réacteur R4 a la composition suivante : 0,3 %pds Pt sur alumine gamma.
L’effluent hydrogéné issu de R4 est ensuite envoyé dans une étape de séparation haute pression avant d’être recyclé dans l’étape de distillation.
Exemple n°6 non conforme L’exemple 6 est non conforme à l’invention dans la mesure où il s’agit d’un procédé d’hydrocraquage en deux étapes dans lequel une étape d’hydrogénation en présence d’un catalyseur d’hydrogénation comprenant du Pt et un support alumine est mise en oeuvre en amont de la deuxième étape d’hydrocraquage et dans lequel la température TR2 dans l’étape d’hydrogénation est inférieure à la température TR1 dans la deuxième étape d’hydrocraquage de 60°C.
Les étapes d’hydrotraitement dans R1 , de première étape d’hydrocraquage dans R2 et de deuxième étape d’hydrocraquage dans R3 sont mises en oeuvre sur la même charge et dans les mêmes conditions que dans l’exemple 1 . Une purge correspondant à 2% massique du débit de la charge VGO est également prise en fond de distillation sur la fraction liquide lourde non convertie. Cette fois, la fraction liquide lourde non convertie issue de la distillation est envoyée d’abord dans une étape d’hydrogénation mise en oeuvre dans un réacteur R4 en amont de R3. Dans ce cas, TR2 dans l’étape d’hydrogénation est inférieure à la température TR1 dans la deuxième étape d’hydrocraquage de 60°C et est de 280°C. Les conditions opératoires de R4 sont énoncées dans le tableau 9.
Figure imgf000029_0001
Tableau 9
Le catalyseur mis en oeuvre dans le réacteur R4 a la composition suivante : 0,3 %pds Pt sur alumine gamma.
L’effluent hydrogéné issu de R4 est ensuite envoyé dans la deuxième étape d’hydrocraquage opérée dans le réacteur R3 avant d’être envoyé dans la séparation haute pression puis d’être recyclé dans l’étape de distillation.
Exemple n°7 conforme L’exemple 7 est conforme à l’invention dans la mesure où il s’agit d’un procédé d’hydrocraquage en deux étapes dans lequel l’effluent issu de la deuxième étape d’hydrocraquage est envoyé dans une étape d’hydrogénation en présence d’un catalyseur d’hydrogénation comprenant du Ni et un support alumine et dans lequel la température TR2 dans l’étape d’hydrogénation est inférieure d’au moins 10°C à la température TR1 dans la deuxième étape d’hydrocraquage.
Les étapes d’hydrotraitement dans R1 , de première étape d’hydrocraquage dans R2 et de deuxième étape d’hydrocraquage dans R3 sont mises en oeuvre sur la même charge et dans les mêmes conditions que dans l’exemple 1. Cette fois, une purge correspondant à 1 % massique du débit de la charge VGO est prise en fond de distillation sur la fraction liquide lourde non convertie. Une étape d’hydrogénation de l’effluent issu de R3 est réalisée dans un réacteur R4 en aval de R3. Les conditions opératoires de R4 sont énoncées dans le tableau 10. Dans ce cas, TR2 est inférieure de 60°C à TR1 .
Figure imgf000030_0001
Tableau 10 Le catalyseur mis en oeuvre dans le réacteur R4 a la composition suivante : 28 %pds Ni sur alumine gamma.
L’effluent hydrogéné issu de R4 est ensuite envoyé dans une étape de séparation haute pression avant d’être recyclé dans l’étape de distillation.
Exemple 9 : Performances du procédé Le tableau 1 1 récapitule les performances des procédés décrits dans les exemples 1 à 7 en terme de rendement en distillais moyens, de durée de cycle du procédé, d’indice de cétane de la fraction gazole obtenue et de conversion globale du procédé. La conversion du coronène (HPNA à 7 cycles aromatiques) réalisée dans l’étape d’hydrogénation est également reportée.
Figure imgf000031_0001
Tableau 11
(1 )La conversion du coronène est calculée en divisant la différence des quantités de coronène mesurées en amont et en aval du réacteur d’hydrogénation par la quantité de coronène mesurée en amont de ce même réacteur. La quantité de coronène est mesurée par chromatographie liquide haute pression couplée à un détecteur UV (HPLC-UV), à une longueur d’onde de 302 nm pour laquelle le coronène a une absorption maximale. Ces exemples illustrent l’intérêt du procédé selon l’invention qui permet d’obtenir des performances améliorées en terme de rendement en distillais moyens, de durée de cycle, de conversion globale du procédé ou d’indice de cétane de la fraction gazole obtenue.
Ainsi, avec le procédé de l’exemple 2 mettant en oeuvre un réacteur d’hydrogénation en aval de la deuxième étape d’hydrocraquage, la durée de cycle est allongée de 6 mois par rapport à un procédé sans réacteur d’hydrogénation (illustré par l’exemple 1 ) et l’indice de cétane de la fraction gazole est augmenté de 4 points. En effet, à 280°C, le catalyseur Ni / alumine d’hydrogénation permet de convertir fortement les aromatiques et en particulier les HPNA. La désactivation du catalyseur de deuxième étape d’hydrocraquage est donc ralentie, ce qui permet un cycle plus long. Les aromatiques de la fraction gazole étant hydrogénés, l’indice de cétane est amélioré.
Les exemples 3 et 5 montrent l’effet de la température du réacteur d’hydrogénation sur la conversion des aromatiques et des HPNA, avec leur impact sur la durée de cycle et la qualité du gazole obtenu. Au contraire, avec les procédés non conformes des exemples 4 et 6 les performances sont beaucoup moins bonnes : le réacteur d’hydrogénation situé en amont du deuxième réacteur d’hydrocraquage permet de convertir les HPNA (avec une forte dépendance à la température) mais la charge hydrocarbonée processée dans ce réacteur n’ayant pas encore été craquée, on ne retrouve pas l’effet sur l’hydrogénation des aromatiques de la fraction gazole et l’indice de cétane n’est pas amélioré.
L’exemple 7 illustre que le procédé selon l’invention permet aussi de diminuer le taux de purge, puisque les HPNA sont hydrogénés dans le réacteur d’hydrogénation, ce qui conduit à une augmentation de la conversion globale et du rendement en distillais moyens, tout en conservant une durée de cycle allongée et un indice de cétane amélioré.

Claims

REVENDICATIONS
1. Procédé de production de distillais moyens à partir de charges hydrocarbonées contenant au moins 20% en volume et de préférence au moins 80% en volume de composés bouillant au-dessus de 340°C, ledit procédé comprenant et de préférence constitué d’au moins les étapes suivantes :
a) Une étape d’hydrotraitement desdites charges en présence d'hydrogène et d’au moins un catalyseur d’hydrotraitement, à une température comprise entre 200 et 450°C, sous une pression comprise entre 2 et 25 MPa, à une vitesse spatiale comprise entre 0,1 et 6 h 1 et à une quantité d’hydrogène introduite telle que le rapport volumique litre d’hydrogène/litre d’hydrocarbure soit compris entre 100 et 2000 NL/L,
b) une étape d’hydrocraquage d’au moins une partie de l’effluent issu de l’étape a), l’étape b) d’hydrocraquage opérant, en présence d'hydrogène et d’au moins un catalyseur d’hydrocraquage, à une température comprise entre 250 et 480°C, sous une pression comprise entre 2 et 25 MPa, à une vitesse spatiale comprise entre 0,1 et 6 h 1 et à une quantité d’hydrogène introduite telle que le rapport volumique litre d’hydrogène/litre d’hydrocarbure soit compris entre 80 et 2000 NL/L,
c) une étape de séparation à haute pression de l’effluent issu de l’étape b) d’hydrocraquage pour produire au moins un effluent gazeux et un effluent hydrocarboné liquide,
d) une étape de distillation d’au moins une partie de l’effluent hydrocarboné liquide issu de l’étape c) mise en oeuvre dans au moins une colonne de distillation, étape de laquelle il est soutiré :
- une fraction gazeuse,
- au moins une fraction essence ayant au moins 80% en volume de produits bouillant à une température inférieure à 150°C,
- au moins une fraction distillais moyens ayant au moins 80% en volume de produits ayant un point d’ébullition compris entre 150 et 380°C, de préférence compris entre 150 et 370°C, et de manière préférée entre 150 et 350°C, - une fraction liquide lourde non convertie ayant au moins 80% en volume de produits ayant un point d’ébullition supérieur à 350°C, de préférence supérieur à 370°C, de manière préférée supérieur à 380°C,
e) éventuellement une purge d’au moins une partie de ladite fraction liquide lourde non convertie contenant des HPNA, ayant au moins 80% en volume de produits ayant un point d’ébullition supérieur à 350°C, avant son introduction dans l’étape f), f) une deuxième étape d’hydrocraquage d’au moins une partie de la fraction liquide lourde non convertie ayant au moins 80% en volume de produits ayant un point d’ébullition supérieur à 350°C, issue de l’étape d) et éventuellement purgée, ladite étape f) opérant en présence d'hydrogène et d’au moins un deuxième catalyseur d’hydrocraquage, à une température TR1 comprise entre 250 et 480°C, sous une pression comprise entre 2 et 25 MPa, à une vitesse spatiale comprise entre 0,1 et 6 h 1 et à une quantité d’hydrogène introduite telle que le rapport volumique litre d’hydrogène/litre d’hydrocarbure soit compris entre 80 et 2000 NL/L,
g) une étape d’hydrogénation d’au moins une partie de l’effluent issu de l’étape f) opérant en présence d'hydrogène et d’un catalyseur d’hydrogénation, à une température TR2 comprise entre 150 et 470°C, sous une pression comprise entre 2 et 25 MPa, à une vitesse spatiale comprise entre 0,1 et 50 h 1 et à une quantité d’hydrogène introduite telle que le rapport volumique litre d’hydrogène/litre d’hydrocarbure soit compris entre 100 et 4000 NL/L, ledit catalyseur d’hydrogénation comprenant au moins un métal du groupe VIII choisi parmi le nickel, le cobalt, le fer, le palladium, le platine, le rhodium, le ruthénium, l’osmium et l’iridium seul ou en mélange et ne contenant pas de métal du groupe VIB et d’un support choisi parmi les supports oxydes réfractaires, et dans laquelle la température TR2 est inférieure d’au moins 10°C à la température TR1 ,
h) une étape de séparation à haute pression de l’effluent issu de l’étape g) d’hydrogénation pour produire au moins un effluent gazeux et un effluent hydrocarboné liquide,
i) le recyclage dans ladite étape d) de distillation, d’au moins une partie de l’effluent hydrocarboné liquide issu de l’étape h).
2. Procédé selon la revendication 1 dans lequel lesdites charges hydrocarbonées sont choisies parmi les VGO selon la terminologie anglo-saxonne ou distillais sous vide (DSV) ou les gazoles, tels que les gazoles issus de la distillation directe du brut ou d'unités de conversion telles que le FCC, le coker ou la viscoréduction ainsi que des charges provenant d'unités d'extraction d'aromatiques des bases d’huile lubrifiante ou issues du déparaffinage au solvant des bases d'huile lubrifiante, ou encore des distillais provenant de désulfuration ou d'hydroconversion de RAT (résidus atmosphériques) et/ou de RSV (résidus sous vide), ou encore parmi les huiles désasphaltées, ou des charges issues de la biomasse ou encore tout mélange des charges précédemment citées.
3. Procédé selon l’une des revendications 1 ou 2 dans lequel l’étape a) d’hydrotraitement opère à une température comprise entre 300 et 430°C, sous une pression comprise entre 5 et 20 MPa, à une vitesse spatiale comprise entre 0,2 et 5 h-1 , et à une quantité d’hydrogène introduite telle que le rapport volumique litre d’hydrogène/litre d’hydrocarbure est compris entre 300 et 1500 NL/L.
4. Procédé selon l’une des revendications 1 à 3 dans lequel l’étape b) d’hydrocraquage opère à une température comprise entre 330 et 435°C, sous une pression comprise entre 3 et 20 MPa, à une vitesse spatiale comprise entre 0,2 et 4 h 1, et à une quantité d’hydrogène introduite telle que le rapport volumique litre d’hydrogène/litre d’hydrocarbure est compris entre 200 et 2000 NL/L.
5. Procédé selon l’une des revendications 1 à 4 dans lequel l’étape f) d’hydrocraquage selon l’invention opère à une température TR1 comprise entre 320 et 450°C, de manière très préférée entre 330 et 435°C, sous une pression comprise entre 9 et 20 MPa, à une vitesse spatiale comprise entre 0,2 et 3 h-1 , et à une quantité d’hydrogène introduite telle que le rapport volumique litre d’hydrogène/litre d’hydrocarbure est compris entre 200 et 2000 NL/L.
6. Procédé selon l’une des revendications 1 à 5 dans lequel, ladite étape g) d’hydrogénation opère à une température TR2 comprise entre 180 et 320°C, sous une pression comprise entre 9 et 20 MPa, à une vitesse spatiale comprise entre 0,2 et 10 h 1 et à une quantité d’hydrogène introduite telle que le rapport volumique litre d’hydrogène/litre d’hydrocarbure soit compris entre 200 et 3000 NL/L.
7. Procédé selon l’une des revendications 1 à 6 dans lequel l’étape g) est mise en oeuvre à une température TR2 inférieure d’au moins 20°C à la température TR1.
8. Procédé selon la revendication 7 dans lequel l’étape g) est mise en oeuvre à une température TR2 inférieure d’au moins 50°C à la température TR1.
9. Procédé selon la revendication 8 dans lequel l’étape g) est mise en oeuvre à une température TR2 inférieure d’au moins 70°C à la température TR1.
10. Procédé selon l’une des revendications 1 à 9 dans lequel l’étape g) d’hydrogénation est mise en oeuvre en présence d’un catalyseur comprenant, et de préférence constitué, de nickel et d’alumine.
1 1. Procédé selon l’une des revendications 1 à 9 dans lequel l’étape g) d’hydrogénation est mise en oeuvre en présence d’un catalyseur comprenant, et de préférence constitué, de platine et d’alumine.
PCT/EP2020/050016 2019-01-09 2020-01-02 Procede d'hydrocraquage en deux etapes comprenant une etape d'hydrogenation en aval de la deuxieme etape d'hydrocraquage pour la production de distillats moyens WO2020144097A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/420,511 US20220081628A1 (en) 2019-01-09 2020-01-02 Two-stage hydrocracking process comprising a hydrogenation stage downstream of the second hydrocracking stage, for the production of middle distillates
CN202080008677.3A CN113557289B (zh) 2019-01-09 2020-01-02 用于生产中间馏分油的包括第二氢化裂解步骤下游的氢化步骤的两步氢化裂解方法
KR1020217020261A KR20210111763A (ko) 2019-01-09 2020-01-02 중간 증류물의 생성을 위한, 제 2 수소화분해 단의 수소화 단 하류를 포함하는 2-단 수소화분해 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1900204 2019-01-09
FR1900204A FR3091535B1 (fr) 2019-01-09 2019-01-09 Procede d’hydrocraquage en deux etapes comprenant une etape d'hydrogenation en aval de la deuxieme etape d’hydrocraquage pour la production de distillats moyens

Publications (1)

Publication Number Publication Date
WO2020144097A1 true WO2020144097A1 (fr) 2020-07-16

Family

ID=66776527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/050016 WO2020144097A1 (fr) 2019-01-09 2020-01-02 Procede d'hydrocraquage en deux etapes comprenant une etape d'hydrogenation en aval de la deuxieme etape d'hydrocraquage pour la production de distillats moyens

Country Status (5)

Country Link
US (1) US20220081628A1 (fr)
KR (1) KR20210111763A (fr)
CN (1) CN113557289B (fr)
FR (1) FR3091535B1 (fr)
WO (1) WO2020144097A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4321600A1 (fr) 2022-08-11 2024-02-14 Shell Internationale Research Maatschappij B.V. Procédé de production de kérosène et/ou de diesel à partir de sources renouvelables

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3929618A (en) 1973-03-15 1975-12-30 Mitsubishi Petrochemical Co Process for the conversion of hydrocarbon fractions containing condensed-ring polycyclic aromatic hydrocarbon
US4618412A (en) 1985-07-31 1986-10-21 Exxon Research And Engineering Co. Hydrocracking process
US4775460A (en) 1987-12-24 1988-10-04 Uop, Inc. Hydrocracking process with feed pretreatment
US4931165A (en) 1989-05-04 1990-06-05 Uop Process for refractory compound rejection from a hydrocracker recycle liquid
US5007998A (en) 1990-03-26 1991-04-16 Uop Process for refractory compound conversion in a hydrocracker recycle liquid
US5139644A (en) 1991-04-25 1992-08-18 Uop Process for refractory compound conversion in a hydrocracker recycle liquid
US5364514A (en) 1992-04-14 1994-11-15 Shell Oil Company Hydrocarbon conversion process
US5464526A (en) 1994-05-27 1995-11-07 Uop Hydrocracking process in which the buildup of polynuclear aromatics is controlled
US20090050524A1 (en) * 2007-08-22 2009-02-26 Sk Energy Co., Ltd. Method for producing feedstocks of high quality lube base oil from unconverted oil
US8852404B2 (en) 2010-12-14 2014-10-07 Uop Llc Apparatus for removing heavy polynuclear aromatic compounds from a hydroprocessed stream
WO2016102302A1 (fr) 2014-12-22 2016-06-30 Axens Procede et dispositif pour la reduction des composes aromatiques polycycliques lourds dans les unites d'hydrocraquage
US9580663B2 (en) 2010-10-20 2017-02-28 Haldor Topsoe A/S Process for hydrocracking a hydrocarbon feedstock
US20170362516A1 (en) 2016-06-15 2017-12-21 Uop Llc Process and apparatus for hydrocracking a hydrocarbon stream in two stages with aromatic saturation
EP3415588A1 (fr) * 2017-06-16 2018-12-19 IFP Energies nouvelles Procede integre d'hydrocraquage deux etapes et d'un procede d'hydrotraitement

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3172835A (en) * 1965-03-09 Hours on stream
US3132086A (en) * 1961-01-23 1964-05-05 Union Oil Co Hydrocracking process with pre-hydrogenation
US4921595A (en) * 1989-04-24 1990-05-01 Uop Process for refractory compound conversion in a hydrocracker recycle liquid
US5232577A (en) * 1990-08-14 1993-08-03 Chevron Research And Technology Company Hydrocracking process with polycyclic aromatic dimer removal
US6217746B1 (en) * 1999-08-16 2001-04-17 Uop Llc Two stage hydrocracking process
US6379532B1 (en) * 2000-02-17 2002-04-30 Uop Llc Hydrocracking process
US20090045100A1 (en) * 2002-06-04 2009-02-19 Chevron U.S.A. Inc. Multi-stage hydrocracker with kerosene recycle
US8343334B2 (en) * 2009-10-06 2013-01-01 Saudi Arabian Oil Company Pressure cascaded two-stage hydrocracking unit
CN102639679B (zh) * 2009-12-01 2016-05-11 埃克森美孚研究工程公司 使用分隔壁塔分馏器的两阶段加氢加工
FR2984916B1 (fr) * 2011-12-23 2014-01-17 IFP Energies Nouvelles Procede ameliore de conversion d'une charge lourde en distillat moyen faisant appel a un pretraitement en amont de l'unite de craquage catalytique
KR20150140675A (ko) * 2013-03-15 2015-12-16 사우디 아라비안 오일 컴퍼니 다등급 윤활유 베이스 공급원료 생산을 위한 2단 수소화분해 공정 및 장치

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3929618A (en) 1973-03-15 1975-12-30 Mitsubishi Petrochemical Co Process for the conversion of hydrocarbon fractions containing condensed-ring polycyclic aromatic hydrocarbon
US4618412A (en) 1985-07-31 1986-10-21 Exxon Research And Engineering Co. Hydrocracking process
US4775460A (en) 1987-12-24 1988-10-04 Uop, Inc. Hydrocracking process with feed pretreatment
US4931165A (en) 1989-05-04 1990-06-05 Uop Process for refractory compound rejection from a hydrocracker recycle liquid
US5007998A (en) 1990-03-26 1991-04-16 Uop Process for refractory compound conversion in a hydrocracker recycle liquid
US5139644A (en) 1991-04-25 1992-08-18 Uop Process for refractory compound conversion in a hydrocracker recycle liquid
US5364514A (en) 1992-04-14 1994-11-15 Shell Oil Company Hydrocarbon conversion process
US5464526A (en) 1994-05-27 1995-11-07 Uop Hydrocracking process in which the buildup of polynuclear aromatics is controlled
US20090050524A1 (en) * 2007-08-22 2009-02-26 Sk Energy Co., Ltd. Method for producing feedstocks of high quality lube base oil from unconverted oil
US9580663B2 (en) 2010-10-20 2017-02-28 Haldor Topsoe A/S Process for hydrocracking a hydrocarbon feedstock
US8852404B2 (en) 2010-12-14 2014-10-07 Uop Llc Apparatus for removing heavy polynuclear aromatic compounds from a hydroprocessed stream
WO2016102302A1 (fr) 2014-12-22 2016-06-30 Axens Procede et dispositif pour la reduction des composes aromatiques polycycliques lourds dans les unites d'hydrocraquage
US20170362516A1 (en) 2016-06-15 2017-12-21 Uop Llc Process and apparatus for hydrocracking a hydrocarbon stream in two stages with aromatic saturation
EP3415588A1 (fr) * 2017-06-16 2018-12-19 IFP Energies nouvelles Procede integre d'hydrocraquage deux etapes et d'un procede d'hydrotraitement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JORGE ANCHEYTAJAMES G. SPEIGHT: "Hydroprocessing of Heavy Oils and Residua", SCIENCE, 2007

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4321600A1 (fr) 2022-08-11 2024-02-14 Shell Internationale Research Maatschappij B.V. Procédé de production de kérosène et/ou de diesel à partir de sources renouvelables

Also Published As

Publication number Publication date
CN113557289B (zh) 2023-07-04
FR3091535A1 (fr) 2020-07-10
FR3091535B1 (fr) 2021-01-08
CN113557289A (zh) 2021-10-26
US20220081628A1 (en) 2022-03-17
KR20210111763A (ko) 2021-09-13

Similar Documents

Publication Publication Date Title
EP3415588B1 (fr) Procede integre d'hydrocraquage deux etapes et d'un procede d'hydrotraitement
EP2106431B1 (fr) Procede de conversion de charges issues de sources renouvelables pour produire des bases carburants gazoles de faible teneur en soufre et de cetane ameliore
EP1278812B1 (fr) Procede flexible de production de bases huiles avec une zeolithe zsm-48
FR3067037A1 (fr) Procede de conversion comprenant un hydrotraitement en lit fixe, une separation d'un distillat sous vide, une etape d'hydrocraquage de distillat sous vide
WO2013093227A1 (fr) Procede ameliore de conversion d'une charge lourde en distillat moyen faisant appel a un pretraitement en amont de l'unite de craquage catalytique
WO2019134811A1 (fr) Procede d'hydrocraquage deux etapes comprenant au moins une etape de separation haute pression a chaud
FR3091533A1 (fr) Procede d’ hydrocraquage en deux etapes pour la production de naphta comprenant une etape d’hydrogenation mise en œuvre en amont de la deuxieme etape d’hydrocraquage
WO2020144095A1 (fr) Procede d' hydrocraquage en deux etapes pour la production de naphta comprenant une etape d'hydrogenation mise en œuvre en aval de la deuxieme etape d'hydrocraquage
EP2158303B1 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage d'une fraction lourde issue d'un effluent fischer-tropsch
WO2000027950A1 (fr) Procede flexible de production d'huiles medicinales et eventuellement de distillats moyens
WO2020144097A1 (fr) Procede d'hydrocraquage en deux etapes comprenant une etape d'hydrogenation en aval de la deuxieme etape d'hydrocraquage pour la production de distillats moyens
WO2020144096A1 (fr) Procede d'hydrocraquage en deux etapes comprenant une etape d'hydrogenation en amont de la deuxieme etape d'hydrocraquage pour la production de distillats moyens
FR3089518A1 (fr) Procede ameliore de conversion d’une charge lourde en distillats moyens faisant appel a un enchainement d’unites d’hydrocraquage, de vapocraquage et d’oligomerisation
FR3076297A1 (fr) Procede integre d’hydrocraquage deux etapes pour maximiser la production de naphta
EP3824049B1 (fr) Procede d'hydrocraquage en deux etapes utilisant une colonne de distillation a cloison
FR3091537A1 (fr) Procede d’hydrocraquage en une etape comprenant une etape d'hydrogenation en amont ou en aval de l’etape d’hydrocraquage pour la production de distillats moyens
FR3091536A1 (fr) Procede d’hydrocraquage en une etape comprenant une etape d'hydrogenation en amont ou en aval de l’etape d’hydrocraquage pour la production de naphta
FR3071847A1 (fr) Procede de production de distillats moyens par hydrocraquage de distillats sous vide comprenant un procede d'hydrotraitement/hydroisomerisation integre au procede d'hydrocraquage
FR3030566A1 (fr) Procede et dispositif de reduction des composes aromatiques polycycliques lourds dans les unites d'hydrocraquage
FR3083243A1 (fr) Procede integre d'hydrocraquage deux etapes et d'un procede d'hydrotraitement a circulation d'hydrogene inversee
FR3084372A1 (fr) Procede de traitement d'une charge hydrocarbonee lourde comprenant un hydrotraitement en lit fixe, deux desasphaltages et un hydrocraquage en lit bouillonnant de l'asphalte
EP1310544B1 (fr) Procédé de conversion de fractions lourdes pétrolières pour produire une charge de craquage catalytique et des distillats moyens de faible teneur en soufre
WO2023241930A1 (fr) Procédé d'hydrocraquage avec gestion du recyclage optimisée pour la production de naphta
FR3071846A1 (fr) Procede de production ameliore de distillats moyens par hydrocraquage de distillats sous vide comprenant un procede d'isomerisation integre au procede d'hydrocraquage
FR3071849A1 (fr) Procede de production amelioree de distillats moyens par hydrocraquage deux etapes de distillats sous vide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20700061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20700061

Country of ref document: EP

Kind code of ref document: A1