Nothing Special   »   [go: up one dir, main page]

WO2020143689A1 - 一种参考信号传输方法及装置 - Google Patents

一种参考信号传输方法及装置 Download PDF

Info

Publication number
WO2020143689A1
WO2020143689A1 PCT/CN2020/070995 CN2020070995W WO2020143689A1 WO 2020143689 A1 WO2020143689 A1 WO 2020143689A1 CN 2020070995 W CN2020070995 W CN 2020070995W WO 2020143689 A1 WO2020143689 A1 WO 2020143689A1
Authority
WO
WIPO (PCT)
Prior art keywords
prb
moments
reference signal
terminal device
frequency domain
Prior art date
Application number
PCT/CN2020/070995
Other languages
English (en)
French (fr)
Inventor
刘建琴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020143689A1 publication Critical patent/WO2020143689A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to the field of communication technology, and in particular, to a reference signal transmission method and device.
  • LTE long term evolution
  • LTE-advanced, LTE-A advanced long term evolution
  • the user's uplink channel measurement is achieved by sending sounding reference signals (SRS).
  • SRS sounding reference signals
  • the device obtains upstream channel state information by measuring the received SRS.
  • SRS signal transmission adopts a continuous physical resource block (PRB) resource allocation method.
  • PRB physical resource block
  • SRS signal transmission uses PRB interleaved resource allocation.
  • the entire system bandwidth is divided into multiple interleaved PRB clusters.
  • each PRB cluster itself has The discrete comb teeth occupy the entire system bandwidth, so the traditional SRS frequency hopping scheme and design principles are no longer applicable.
  • the present application provides a reference signal transmission method and device for implementing frequency hopping transmission of a reference signal when using a PRB interleaved resource allocation method.
  • a reference signal transmission method includes: a terminal device receives first configuration information from an access network device, where the first configuration information is used to instruct the terminal device to transmit a reference signal in the frequency domain at least two moments Resources, the at least two moments may refer to at least two transmission time points of the reference signal, which may be represented by radio frames, subframes, time slots, or OFDM symbols, etc.
  • the reference signal may be a demodulation reference signal, The channel sounding reference signal, or the preamble signal of the random access channel, etc.; the terminal device determines the physical resource block PRB cluster corresponding to each moment in at least two moments according to the first configuration information, where one PRB cluster consists of equal intervals and A plurality of discontinuous PRBs; the terminal device sends the reference signal to the access network device on the PRB cluster corresponding to each moment.
  • the PRB interleaved resource allocation method when the PRB interleaved resource allocation method is adopted, the frequency hopping transmission of the reference signal can be realized, thereby reducing the delay of channel quality measurement, reducing the power consumption of the terminal device, and achieving the effect of power saving.
  • the first configuration information includes at least one of the following information: a frequency domain resource index, a PRB cluster corresponding to at least two moments, and a PRB corresponding to each moment in at least two moments Cluster, the first moment of at least two moments (the first moment can be any moment of at least two moments, for example, the first moment is the starting moment of at least two moments), or the PRB cluster Frequency interval (optionally, the frequency hopping interval may also be agreed in advance by the access network device and the terminal device, or defined by standards, etc.).
  • the foregoing possible implementation manners can improve the flexibility and diversity of the first configuration information configured by the access network device for the terminal device.
  • the frequency hopping interval is at least one PRB cluster, that is, the frequency hopping interval is at least one PRB cluster may be one or more PRB clusters.
  • the above possible implementation manner provides a simple and effective frequency hopping interval, so that the terminal device can quickly determine the PRB cluster corresponding to each moment according to the first configuration information, thereby improving the efficiency of the terminal device in transmitting the reference signal.
  • the first moment is a starting moment in at least two moments.
  • the terminal device can directly determine the corresponding PRB cluster in the starting time according to the first configuration information, thereby improving the corresponding of the terminal device in the starting time The efficiency of PRB cluster sending reference signal.
  • any two adjacent PRB clusters among the at least three PRB clusters are equally spaced.
  • at least three PRB clusters corresponding to each moment can be evenly dispersed, so that reference signals are sent on the dispersed PRB clusters, thereby improving the accuracy of channel quality measurement.
  • the frequency domain resource indicated by the first configuration information is related to a candidate frequency domain resource of uplink data, and the candidate frequency domain resource of the uplink data is predefined for uplink data transmission. At least one PRB cluster.
  • the PRB cluster corresponding to the first moment in at least two moments is a subset of the PRB clusters corresponding to at least two moments.
  • the relevance of the terminal device transmitting the reference signal in the frequency hopping manner can be improved.
  • a reference signal transmission method includes: an access network device sends first configuration information to a terminal device, where the first configuration information is used to instruct the terminal device to transmit a frequency domain resource of the reference signal at at least two moments
  • the access network device determines the physical resource block PRB cluster corresponding to each moment in at least two moments, where one PRB cluster is composed of multiple PRBs that are equally spaced and discontinuous;
  • the PRB cluster corresponding to the moment receives the reference signal sent by the terminal device.
  • the first configuration information includes at least one of the following information: frequency domain resource index, PRB cluster corresponding to at least two moments, and PRB corresponding to each moment in at least two moments A cluster, a PRB cluster corresponding to a first moment in at least two moments, or a frequency hopping interval.
  • the frequency hopping interval is at least one PRB cluster.
  • the above possible implementation manner provides a simple and effective frequency hopping interval, so that the terminal device can quickly determine the PRB cluster corresponding to each moment according to the first configuration information, thereby improving the efficiency of the terminal device in transmitting the reference signal.
  • the first moment is a starting moment in at least two moments.
  • the terminal device can directly determine the corresponding PRB cluster in the starting time according to the first configuration information, thereby improving the corresponding of the terminal device in the starting time The efficiency of PRB cluster sending reference signal.
  • any two adjacent PRB clusters among the at least three PRB clusters are equally spaced.
  • at least three PRB clusters corresponding to each moment can be evenly dispersed, so that reference signals are sent on the dispersed PRB clusters, thereby improving the accuracy of channel quality measurement.
  • the frequency domain resource indicated by the first configuration information is related to the candidate frequency domain resource of the uplink data, and the candidate frequency domain resource of the uplink data is at least predefined for uplink data transmission.
  • a PRB cluster the accuracy of the channel quality measured by the access network device according to the received reference signal can be improved.
  • the PRB cluster corresponding to the first moment in at least two moments is a subset of the PRB clusters corresponding to at least two moments.
  • the relevance of the terminal device transmitting the reference signal in the frequency hopping manner can be improved.
  • a reference signal transmission apparatus includes: a receiving unit configured to receive first configuration information from an access network device, where the first configuration information is used to instruct a terminal device to transmit a reference signal at at least two moments The frequency domain resource; the processing unit, used to determine the PRB cluster corresponding to each moment in at least two moments according to the first configuration information, where a PRB cluster is composed of multiple PRBs that are equally spaced and discontinuous; the sending unit, It is used to send the reference signal to the access network device on the PRB cluster corresponding to each moment.
  • the first configuration information includes at least one of the following information: frequency domain resource index, PRB cluster corresponding to at least two moments, and PRB corresponding to each moment in at least two moments A cluster, a PRB cluster corresponding to a first moment in at least two moments, or a frequency hopping interval.
  • the frequency hopping interval is at least one PRB cluster.
  • the first moment is a starting moment in at least two moments.
  • any two adjacent PRB clusters among the at least three PRB clusters are equally spaced.
  • the frequency domain resource indicated by the first configuration information is related to the candidate frequency domain resource of the uplink data
  • the candidate frequency domain resource of the uplink data is at least a predefined frequency domain used for uplink data transmission.
  • a PRB cluster is related to the candidate frequency domain resource of the uplink data
  • the candidate frequency domain resource of the uplink data is at least a predefined frequency domain used for uplink data transmission.
  • the PRB cluster corresponding to the first moment in at least two moments is a subset of the PRB clusters corresponding to at least two moments.
  • a reference signal transmission apparatus includes: a sending unit for sending first configuration information to a terminal device, where the first configuration information is used to instruct the terminal device to transmit the frequency of the reference signal at at least two moments Domain resources; a processing unit for determining PRB clusters corresponding to physical resource blocks at each of at least two moments, where a PRB cluster is composed of multiple PRBs that are equally spaced and discontinuous; a receiving unit is used for The PRB cluster corresponding to each moment receives the reference signal sent by the terminal device.
  • the first configuration information includes at least one of the following information: frequency domain resource index, PRB cluster corresponding to at least two moments, and PRB corresponding to each moment in at least two moments A cluster, a PRB cluster corresponding to a first moment in at least two moments, or a frequency hopping interval.
  • the frequency hopping interval is at least one PRB cluster.
  • the first moment is a starting moment in at least two moments.
  • any two adjacent PRB clusters among the at least three PRB clusters are equally spaced.
  • the frequency domain resource indicated by the first configuration information is related to the candidate frequency domain resource of the uplink data, and the candidate frequency domain resource of the uplink data is at least predefined for uplink data transmission.
  • a PRB cluster is related to the candidate frequency domain resource of the uplink data, and the candidate frequency domain resource of the uplink data is at least predefined for uplink data transmission.
  • the PRB cluster corresponding to the first moment in at least two moments is a subset of the PRB clusters corresponding to at least two moments.
  • a reference signal transmission device which is a terminal device or a chip built in the terminal device, the device includes: a memory, and a processor coupled to the memory, and the memory stores codes and data, The processor running the code in the memory causes the device to execute the reference signal transmission method provided in the first aspect or any possible implementation manner of the first aspect.
  • a reference signal transmission device is provided.
  • the device is an access network device or a chip built in the access network device.
  • the device includes: a memory, and a processor coupled to the memory.
  • the memory stores Code and data.
  • the processor runs the code in the memory to cause the device to execute the reference signal transmission method provided in the second aspect or any possible implementation manner of the second aspect.
  • a communication system in yet another aspect of the present application, includes an access network device and a terminal device; wherein the terminal device is the terminal device provided in any of the above aspects, and is used to perform the first aspect or the first aspect
  • the reference signal transmission method provided in any possible implementation manner of the Internet access device; the access network device is the access network device provided in any of the above aspects, and is used to perform the second aspect or any possible implementation manner of the second aspect Provided reference signal transmission method.
  • a computer-readable storage medium in which instructions are stored in a computer-readable storage medium, which when executed on a computer, causes the computer to perform the first aspect or the first aspect Reference signal transmission method provided by any possible implementation manner.
  • a computer-readable storage medium in which instructions are stored in a computer-readable storage medium, which when executed on a computer, causes the computer to perform the second aspect or the second aspect Reference signal transmission method provided by any possible implementation manner.
  • a computer program product that, when the computer program product runs on a computer, causes the computer to perform the reference signal transmission provided by the first aspect or any possible implementation manner of the first aspect method.
  • a computer program product that, when the computer program product runs on a computer, causes the computer to perform the reference signal transmission provided by the second aspect or any possible implementation manner of the second aspect method.
  • any device, communication system, computer storage medium, or computer program product of any of the reference signal transmission methods provided above is used to perform the corresponding method provided above, and therefore, the beneficial effects it can achieve Refer to the beneficial effects in the corresponding methods provided above, which will not be repeated here.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a reference signal transmission method according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a wireless frame provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a PRB cluster provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram of a frequency hopping interval provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of a candidate frequency domain resource of uplink data provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a terminal device according to an embodiment of this application.
  • FIG. 8 is a first schematic structural diagram of a reference signal transmission device according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an access network device according to an embodiment of this application.
  • FIG. 10 is a second schematic structural diagram of a reference signal transmission device according to an embodiment of the present application.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the relationship of the related objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, B exists alone, where A, B can be singular or plural.
  • “At least one of the following” or similar expressions refers to any combination of these items, including any combination of single items or plural items.
  • at least one (a) of a, b, or c may represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, and c may be single or multiple.
  • the character "/" generally indicates that the related object is a "or” relationship.
  • the words “first” and “second” do not limit the number and the execution order.
  • the reference signal transmission method provided in the embodiments of the present application can be applied to various communication systems, such as: global mobile communication system (global system for mobile communications, GSM), general packet radio service (general packet radio service, GPRS) system, and code Code division multiple access (CDMA) system, CDMA2000 system, wideband code division multiple access (WCDMA) system, long term evolution (LTE) system, long-term evolution follow-up evolution (LTE -advanced, LTE-A) system, and various other communication systems.
  • GSM global system for mobile communications
  • general packet radio service general packet radio service
  • CDMA Code Division multiple access
  • CDMA2000 CDMA2000 system
  • WCDMA wideband code division multiple access
  • LTE long term evolution
  • LTE-advanced LTE -advanced
  • LTE-A long-term evolution follow-up evolution
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • the communication system includes an access network device 101 and a terminal device 102.
  • the access network device is a device deployed in a wireless access network to provide wireless communication functions for terminal devices.
  • the access network equipment may include various forms of macro base stations (BS), micro base stations (also called small stations), relay stations, or access points.
  • BS macro base stations
  • micro base stations also called small stations
  • relay stations or access points.
  • the names of devices with wireless access functions may be different.
  • eNB evolved Node B
  • eNodeB evolved Node B
  • Node B Node B
  • Node B Node B
  • it is simply referred to as an access network device, and sometimes referred to as a base station.
  • the terminal devices involved in the embodiments of the present application may include various handheld devices with wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to a wireless modem.
  • the terminal device may be called a wireless device, and may also be called a mobile station (mobile station, MS for short), a terminal, a user equipment (UE), and so on.
  • MS mobile station
  • UE user equipment
  • the terminal device may include a subscriber unit (subscriber unit), a cellular phone (cellular), a smart phone (smart phone), a wireless data card, a personal digital assistant (personal digital assistant (PDA) computer, a tablet computer, a modem ( modem or modem processor, handheld device, handheld computer, laptop computer, netbook, cordless phone or cordless local loop (WLL) station, Bluetooth device , Machine type communication (machine type communication, MTC) terminal, etc.
  • subscriber unit subscriber unit
  • cellular phone cellular
  • smart phone smart phone
  • wireless data card a personal digital assistant (personal digital assistant (personal digital assistant (PDA) computer
  • PDA personal digital assistant
  • modem modem or modem processor
  • handheld device handheld computer
  • laptop computer netbook
  • cordless phone or cordless local loop (WLL) station Bluetooth device
  • Machine type communication machine type communication, MTC terminal, etc.
  • MTC Machine type communication
  • Terminal equipment can support one or more wireless technologies for wireless communication, such as 5G, LTE, WCDMA, CDMA 1X, time division-synchronous code division multiple access (time division-synchronous code division multiple access, TS-SCDMA), GSM , 802.11 and so on.
  • the terminal equipment may also support carrier aggregation technology.
  • Multiple terminal devices can perform the same or different services. For example, mobile broadband services, enhanced mobile broadband (enhanced mobile broadband, eMBB) services, terminal equipment extremely high reliability and low latency communication (ultra-reliable and low-latency communication, URLLC) services, and so on.
  • mobile broadband services enhanced mobile broadband (enhanced mobile broadband, eMBB) services
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable and low-latency communication
  • the access network device 101 has a shared channel scheduling function, and has a function of establishing scheduling based on the history of packet data sent to the terminal device 102. Scheduling is when multiple terminal devices 102 share transmission resources, a mechanism is needed to Effectively allocate physical layer resources to obtain statistical multiplexing gain.
  • multiple terminal devices 102 may be located in the serving cell of the access network device 101.
  • the serving cell of the access network device 101 may include one or more, and the serving cell may also be referred to as a cell.
  • the terminal device 102 has a function of transmitting and receiving data through the communication channel established with the access network device 101.
  • the terminal device 102 performs a shared channel transmission or reception process according to the information transmitted by the access network device 101 through the scheduling control channel.
  • the access network device 101 and the terminal device 102 receive and send data through a communication channel.
  • the communication channel may be a wireless communication channel.
  • the wireless communication channels at least a shared channel and a scheduling control channel exist. Packets are sent and received to be shared among multiple terminal devices 102, and the scheduling control channel is used to transmit shared channel assignments, and corresponding scheduling results.
  • the terminal device 102 may send a reference signal (reference signal, RS) to the access network device 101, and the reference signal may be used for measuring channel quality, or for coherent detection and data for the terminal device 102 Demodulation, etc.
  • the terminal device 102 may send a reference signal according to the instruction of the access network device 101, and the access network device 101 may determine the uplink channel state information of the terminal device 102 according to the received reference signal, and perform corresponding actions according to the obtained channel state information. Frequency domain selection scheduling, power control and other operations.
  • the communication system may also include other network elements.
  • the communication system may further include a serving gateway (serving gateway (SGW), a packet data gateway (packet gateway, PGW), and a mobility management entity (MME) and the home subscriber server (home subscriber) (HSS) are not specifically limited in the embodiments of the present application.
  • serving gateway serving gateway
  • PGW packet data gateway
  • MME mobility management entity
  • HSS home subscriber server
  • FIG. 2 is a schematic flowchart of a reference signal transmission method provided by an embodiment of the present application. The method can be applied to the communication system shown in FIG. 1 described above. Referring to FIG. 2, the method includes the following steps.
  • the access network device sends first configuration information to the terminal device, where the first configuration information is used to instruct the terminal device to transmit the frequency domain resource of the reference signal at at least two moments.
  • the at least two moments refer to at least two transmission moments of the reference signal, that is, the moments when the terminal device transmits the reference signal in a frequency hopping manner, at least two moments may correspond to at least two hops, that is, each hop transmission corresponds to one time.
  • the at least two moments may include two or more than two moments, and each moment may be represented by a time domain resource.
  • the time domain resource corresponding to each moment may be represented by a radio frame, subframe, time slot, or orthogonal frequency division multiplexing (OFDM) symbol.
  • OFDM orthogonal frequency division multiplexing
  • the number of time slots included in each subframe varies with system parameters Different, for example, at 15kHz, a subframe is equivalent to a slot, and at 30kHz, a subframe includes 2 slots, at 60kHz a subframe includes 4 slots, etc.
  • the frame includes 2 time slots as an example. If at least two times include time 1 and time 2, the time domain resource corresponding to time 1 may be time slot #0, and the time domain resource corresponding to time 2 may be other than time slot #3 or any other non-time slot #0
  • the time slots and the like are not specifically limited in this embodiment of the present application.
  • Slot #0 here is a slot with index number 0, and slot #3 is a slot with index number 3.
  • the reference signal may refer to a signal used for measuring channel quality, or used for signal detection or data demodulation.
  • the reference signal may be a demodulation reference signal (DMRS), a channel sounding reference signal (SRS) and a random access channel (RACH) preamble signal.
  • DMRS demodulation reference signal
  • SRS channel sounding reference signal
  • RACH random access channel
  • SRS transmission uses a physical resource block (PRB) interleaved resource allocation method.
  • the entire system bandwidth is divided into multiple PRB clusters in an interleaved manner.
  • Each PRB cluster includes multiple PRB clusters dispersed Distributed across the entire system bandwidth.
  • the access network device may send the first configuration information to the terminal device, and the first configuration information may be used to indicate that the terminal device is in The frequency domain resource of the SRS is transmitted at least two moments, that is, the access network device instructs the terminal device to transmit the frequency domain resource of the SRS through frequency hopping through the first configuration information.
  • the first configuration information is used to instruct the terminal device to transmit some frequency hopping related parameters of the SRS, such as the frequency hopping start position, frequency hopping interval, frequency hopping pattern, etc., which is not specific in the embodiments of the present application. limited. It should be understood that the first configuration information may not explicitly indicate the SRS frequency domain resource location information at each of the at least two moments, but the terminal device implicitly determines each of the at least two moments according to the first configuration information
  • the SRS frequency domain resources are within the scope of protection of this application.
  • the access network device may send the first configuration information to the terminal device through high-level signaling, for example, the high-level signaling may be radio resource control (RRC) signaling, etc.; or, the access network device
  • the first configuration information may be sent to the terminal device through physical layer signaling, for example, the physical layer signaling may be downlink control information, or the like; or, the access network device may send the first configuration through high layer signaling and physical layer signaling together
  • the information is sent to the terminal device, which is not specifically limited in this embodiment of the present application.
  • the terminal device receives the first configuration information from the access network device.
  • the first configuration information is consistent with the first configuration information in S201 above. For details, refer to the description about the first configuration information as described below.
  • the terminal device determines the PRB cluster corresponding to each moment in at least two moments according to the first configuration information.
  • the terminal device may determine the PRB cluster corresponding to each time in at least two moments according to the first configuration information, and each PRB cluster is composed of multiple PRBs that are equally spaced and discontinuous.
  • the PRB cluster includes 4 PRBs, and the interval between any two adjacent PRBs is 2 PRBs.
  • the PRB cluster specifically includes PRB1, PRB4, PRB7, and PRB10. Taking the system bandwidth of 20 MHz as an example, the number of PRB clusters into which the entire system bandwidth is divided under different subcarrier intervals and the candidate values of the number of PRBs included in each PRB cluster are shown in Table 1 below.
  • the number of PRBs included in different PRB clusters may be non-uniform.
  • some of the 12 PRB clusters include The number of PRBs is 8, and the number of PRBs included in some PRB clusters is 9.
  • the PRBs constituting the PRB cluster may be unequally spaced.
  • the first configuration information may include at least one of the following information: frequency domain resource index, PRB cluster corresponding to at least two moments, PRB cluster corresponding to each moment of at least two moments, and The PRB cluster or frequency hopping interval corresponding to the first moment.
  • the information that the first configuration information may include a frequency domain resource index and a PRB cluster corresponding to the first moment in at least two moments.
  • the information that the first configuration information may include at least two PRB clusters corresponding to the moment, and a PRB cluster corresponding to the first moment among the at least two moments.
  • the first configuration information may include information including a PRB cluster and a frequency hopping interval corresponding to the first moment in at least two moments.
  • the information that the first configuration information may include is a PRB cluster corresponding to each moment in at least two moments.
  • the first configuration information may include information on a frequency domain resource index, PRB clusters corresponding to at least two moments and PRB clusters corresponding to a first moment among at least two moments.
  • the frequency hopping interval may be configured by the access network device to the terminal device through the first configuration information, or may be a predefined value, for example, a certain value specified in the standard, access The network device and the terminal device agree on a certain value, etc., which is not specifically limited in this embodiment of the present application.
  • the access network device may send the plurality of different information to the terminal device at one time, or may send the plurality of different information to the terminal device by multiple times, each time One or more of many different messages can be sent. The following describes each type of information above.
  • the frequency domain resource index may also be referred to as an SRS frequency domain resource index, which is used to index the frequency domain resources transmitting SRS, and the SRS frequency domain resource index may be used to indicate the SRS frequency domain resources configured at the cell level.
  • Each cell-level SRS frequency domain resource may correspond to one or more user-level SRS frequency domain resources.
  • C SRS can represent the SRS frequency domain resource index configured at the cell level
  • B SRS can represent the SRS frequency domain resource index configured at the user level.
  • m SRS represents the SRS frequency domain resource corresponding to the SRS frequency domain resource index.
  • a set of (4) user-level SRS frequency domain resources can be determined through C SRS , and the SRS frequency domain resources configured for the terminal device can be determined according to B SRS as a specific One.
  • the SRS frequency domain resource index may be used to indicate the maximum frequency domain resource of SRS frequency hopping configured at the user level, and the maximum frequency domain resource of SRS frequency hopping configured at each user level corresponds to the target SRS frequency to be measured by the user Domain resource, the maximum frequency domain resource of SRS frequency hopping configured at each user level corresponds to the starting SRS frequency domain resource of several candidate SRS frequency hopping.
  • the terminal device performs frequency hopping from the starting SRS frequency domain resource index according to the first configuration information until traversing the maximum frequency domain resource of the SRS frequency hopping.
  • the starting SRS frequency domain resource of SRS frequency hopping is a resource composed of PRB cluster 1, PRB cluster 5 and PRB cluster 11, and the maximum frequency domain resource of SRS frequency hopping is A resource consisting of PRB clusters 1-12, where 1-12 is the sequence number of the PRB cluster.
  • the terminal device transmits the SRS on the PRB cluster 1, PRB cluster 5, and PRB cluster 11 at the time of the first SRS transmission, and at the time of the second SRS transmission, the SRS is at
  • the PRB clusters corresponding to at least two moments may refer to a set of PRB clusters corresponding to each moment in at least two moments.
  • the PRB clusters corresponding to at least two moments may also be the upper-level SRS frequency domain resource, and the lower-level SRS frequency domain resource may be a subset of the upper-level SRS frequency domain resource, that is, at least two moments.
  • the PRB cluster corresponding to the first moment is a subset of the PRB clusters corresponding to the second moment or the third moment in at least two moments.
  • the PRB cluster corresponding to at least two moments may be 6 (1, 3, 5, 7, 9, 11), at least two moments Including the first moment, the second moment and the third moment, the PRB cluster corresponding to the first moment can be 1(1), the PRB cluster corresponding to the second moment can be 3(1,5,11), and the third moment corresponds to The PRB cluster can be 6 (1, 3, 5, 7, 9, 11).
  • 6 in the above 6 (1, 3, 5, 7, 9, 11) represents the number of PRB clusters, that is, 6 PRB clusters; 1, 3, 5, 7, 9, and 11 are 6
  • the serial numbers of the PRB clusters namely PRB cluster 1, PRB cluster 3, PRB cluster 5, PRB cluster 7, PRB cluster 9 and PRB cluster 11.
  • the first moment of the at least two moments may refer to any one of the at least two moments; optionally, the first moment may be the starting moment, that is, the moment when the terminal device transmits the SRS for the first time in a round of SRS frequency hopping.
  • the frequency hopping interval may refer to the interval between PRB clusters that transmit SRS two times adjacently; optionally, the frequency hopping interval may be at least one PRB cluster, that is, the frequency hopping interval may be one PRB cluster or multiple PRB clusters. For example, if the PRB clusters transmitting the SRS twice are 3 (1, 5, 9) and 3 (3, 7, 11), the frequency hopping interval may be 2, that is, the frequency hopping interval is two PRB clusters.
  • the first configuration information may include: a PRB cluster corresponding to at least two moments and a PRB cluster corresponding to the first moment, then when the terminal device receives the first configuration information, the terminal device may The PRB cluster corresponding to each moment is determined according to information such as the number of PRB clusters corresponding to at least two moments, the number of PRB clusters included in the PRB cluster corresponding to the first moment, and the interval between adjacent PRB clusters.
  • At least two moments include the first moment and the second moment
  • the PRB cluster corresponding to at least two moments is 6 (1, 3, 5, 7, 9, 11)
  • the PRB cluster corresponding to the first moment is 3 ( 1,5,11)
  • the PRB cluster corresponding to the second moment can be determined to be 3(3,7,9).
  • the first configuration information may include: a PRB cluster corresponding to each time in at least two moments, then when the terminal device receives the first configuration information, the terminal device may directly know each The PRB cluster corresponding to the moment. For example, if at least two moments include the first moment and the second moment, the first configuration information may include that the PRB cluster corresponding to the first moment is 3 (1, 5, 11), and the PRB cluster corresponding to the second moment is 3 (3 ,7,9).
  • the first configuration information may include: a PRB cluster and a frequency hopping interval corresponding to the first time, then when the terminal device receives the first configuration information, the terminal device may correspond to the first time
  • the PRB cluster and frequency hopping interval determine the corresponding PRB cluster at each moment.
  • the PRB cluster corresponding to the first moment included in the first configuration information is represented as a PRB cluster x and the frequency hopping interval is p PRB clusters, then the PRB cluster corresponding to the next moment may be x+ p.
  • the PRB cluster corresponding to the next time can be x+2p, and so on.
  • the remainder can be taken, that is (x+mp) modN, where N can represent the total number of PRB clusters included in the entire system bandwidth, and mod represents the remainder operation , M represents the sequence number of frequency hopping, for example, the mth frequency hopping.
  • the PRB cluster corresponding to the first moment is 3 (1, 5, 9)
  • the frequency hopping interval is 2
  • the corresponding PRB clusters become PRB cluster 3, PRB cluster 7 and PRB cluster 11.
  • any two adjacent PRB clusters among the at least three PRB clusters are equally spaced .
  • the frequency domain resource indicated by the first configuration information is related to a candidate frequency domain resource of uplink data
  • the candidate frequency domain resource of uplink data is a predefined at least one PRB cluster used for uplink data transmission.
  • the terminal device may determine the PRB cluster corresponding to each moment according to the relationship between the frequency domain resource indicated by the first configuration information and the candidate frequency domain resource of the uplink data.
  • the transmission of uplink data (for example, the physical uplink shared channel PUSCH) is also implemented based on the PRB cluster.
  • Some frequency domain resources can be predefined for the transmission of uplink data in advance.
  • the predefined frequency domain resources can include: One or more PRB clusters. Since the channel quality measurement result of the SRS is mainly used for subsequent resource allocation of the uplink data channel, the access network device can use the first configuration information to compare the frequency domain resource for transmitting the SRS with the predefined frequency domain resource for transmitting the uplink data Binding, so that the channel quality measurement can maximize the future transmission of uplink data.
  • the candidate resources of the predefined uplink data may be as shown in Table 3 below.
  • Table 3 shows eight types of candidate frequency domain resources of uplink data (that is, indexes 0 to 7), and the same subband identifies the corresponding candidate frequency domain resources
  • Different PRB clusters may be included, and candidate frequency domain resources corresponding to different subband identifiers may include the same PRB cluster, where subband (subband) may refer to at least one frequency domain resource subunit that does not overlap each other and divides the system bandwidth
  • Each subband is further composed of at least one continuous or discontinuous PRB or PRB cluster.
  • the entire system bandwidth is divided into 5 subbands, and each subband is composed of 10 PRBs, where index 0 identifies
  • the candidate frequency domain resource of the uplink data is a PRB cluster composed of PRB0 and PRB5 on subband 0, and the candidate frequency domain of the uplink data identified by index 1 is composed of PRB0, PRB1, PRB5, and PRB6 on subband 0 A PRB cluster.
  • the candidate frequency domain of the uplink data identified by index 2 is a PRB cluster composed of PRB0 and PRB5 on subband 1.
  • the system bandwidth may also be directly divided into a plurality of predefined PRB clusters, and the candidate resource of the predefined uplink data is at least one of the predefined PRB clusters.
  • the candidate resource of the predefined uplink data is the candidate resource corresponding to any one of the configuration indexes in Table 4 below. Taking configuration index 2 as an example, the corresponding candidate resource of the uplink data is a PRB cluster (0,1,2 ,5,6,7).
  • index Candidate resource (number of PRB cluster) 0 (0,5) 1 (0,1,5,6) 2 (0,1,2,5,6,7) 3 (0,1,2,3,5,6,7,8)
  • the frequency domain resource for transmitting the SRS may be the same as or related to the candidate frequency domain resource of the uplink data.
  • the frequency domain resource for transmitting the SRS is determined by shifting the PRB of the candidate frequency domain resource of the uplink data by different amounts. For example, as shown in FIG. 6, for a subband (including 10 PRBs, the corresponding labels are respectively represented as 0-9), if the PRB for transmitting uplink data is 0, 1, 5, and 6, the offset When the amount is 0 PRBs, the PRB for transmitting SRS can be 0, 1, 5, and 6, when the offset is 1 PRB, the PRB for transmitting SRS can be 1, 2, 6, and 7, and the offset is When there are 2 PRBs, the PRB for transmitting SRS can be 2, 3, 7, and 8.
  • the PRB for transmitting SRS can be 3, 4, 8, and 9.
  • the access network device may configure the index of the candidate frequency domain resource of the uplink data to the terminal device, and at the same time configure the offset of the frequency domain resource of the SRS relative to the candidate frequency domain resource of the uplink data to the terminal device, such as ,
  • the access network device configures index 5 in Table 2 above to the terminal device, and at the same time configures a PRB offset of the SRS frequency domain resource relative to the candidate frequency domain resource of the uplink data corresponding to the index, so that the terminal device can be based on the above information
  • the frequency domain resource for launching SRS is a PRB cluster consisting of PRB sets (1,2,3,6,7,8) on subband 2, PRB set refers to a set consisting of multiple PRBs, PRB set (1,2 ,3,6,7,8) refers to the set consisting of PRBs denoted by 1, 2, 3, 6, 7, and 8, that is, the PRB set (1,2,3,6,7,
  • the access network device may send the first configuration information to the terminal device through high layer signaling, for example, the high layer signaling may be RRC signaling, or the like; or, the access network device may send the above configuration information through physical layer signaling.
  • the first configuration information is sent to the terminal device, for example, the physical layer signaling may be downlink control information, etc.; or, the access network device may send the first configuration information to the terminal device through higher layer signaling and physical layer signaling together, This embodiment of the present application does not specifically limit this.
  • the frequency domain resources for transmitting the SRS can be directly predefined as shown in Table 5.1 and Table 5.2 below.
  • S204 The access network device determines the PRB cluster corresponding to each moment in at least two moments.
  • steps S204 and S201-203 are in no particular order, and the parallel execution of S204 and 203 in FIG. 2 of this application is used as an example for description, but the application is not limited to this.
  • the access network device may first determine the PRB cluster corresponding to each time in at least two moments, and then send the first configuration to the terminal device Information, at this time S204 is located before S201. Or, when the access network device sends the first configuration information to the terminal device, the access network device has not yet determined the PRB cluster corresponding to each of the at least two moments. At this time, S204 is located after S201, and S204 and S202 -S203 can be in no particular order.
  • the specific process for the access network device to determine the PRB cluster corresponding to each moment in at least two moments is similar to the specific process for the terminal device in S203 to determine the PRB cluster corresponding to each moment in at least two moments, This embodiment of the present application will not repeat them here.
  • the terminal device sends the reference signal to the access network device on the PRB cluster corresponding to each moment.
  • the terminal device may send the SRS on the PRB cluster corresponding to each moment.
  • at least two moments are time slot #0 and time slot #3 in the radio frame shown in FIG. 3 respectively
  • the PRB cluster corresponding to time slot #0 is 3 (1, 5, 11)
  • time slot #3 corresponds to The PRB cluster of is 3 (3, 7, 9)
  • the terminal device can send SRS to the access network device through the three PRB clusters of PRB cluster 1, PRB cluster 5 and PRB cluster 11 in time slot #0.
  • SRS is sent to the access network device through the three PRB clusters of PRB cluster 3, PRB cluster 7 and PRB cluster 9 in time slot #3.
  • time slot #0 here is a time slot with index number 0
  • time slot #3 is a time slot with index number 3.
  • 3 in 3(1,5,11) here represents the number of PRB clusters, that is, 3 PRB clusters, 1, 5, and 11 are the sequence numbers of 3 PRB clusters, that is, PRB cluster 1, PRB cluster 5 and PRB Cluster 11. The meanings of other similar expressions are consistent with them, which will not be repeated in the embodiments of the present application.
  • the access network device receives the reference signal sent by the terminal device on the PRB cluster corresponding to each moment.
  • the access network device may receive the SRS sent by the terminal device on the PRB cluster corresponding to each moment. After the access network device receives the SRS sent by the terminal device, the access network device may perform channel quality measurement based on the SRS, and then perform subsequent resource allocation and other operations based on the channel quality measurement result. For example, at least two moments are time slot #0 and time slot #3 in the radio frame shown in FIG.
  • the PRB cluster corresponding to time slot #0 is 3 (1, 5, 11)
  • time slot #3 corresponds to The PRB cluster of is 3 (3, 7, 9)
  • the access network device can receive the SRS sent by the terminal device through the 3 PRB clusters identified by 1, 5, and 11 on time slot #0, in time slot #3 Receive the SRS sent by the terminal device through the 3 PRB clusters identified by 3, 7, and 9.
  • the access network device configures the first configuration information for the terminal device, and when receiving the first configuration information, the terminal device determines the PRB cluster corresponding to each time in at least two moments according to the first configuration information , So that the reference signal is sent to the access network device on the PRB cluster corresponding to each moment, so that the terminal device can transmit the reference signal in a frequency hopping manner in the unlicensed frequency band, and then the channel quality measurement in the unlicensed frequency band is realized.
  • the access network device can also reduce the power consumption of the terminal device, achieve the effect of power saving, and reduce the delay of channel quality measurement.
  • the frequency domain resource and uplink of the reference signal are transmitted
  • the candidate frequency domain resources of the data are related, the channel quality measurement result can also be utilized to the maximum.
  • the embodiments of the present application may divide the function modules of the terminal device and the access network device according to the above method example, for example, each function module may be divided corresponding to each function, or two or more functions may be integrated into one module .
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of the modules in the embodiments of the present application is schematic, and is only a division of logical functions. In actual implementation, there may be another division manner. The following uses the corresponding function to divide each function module as an example:
  • FIG. 7 shows a possible structural schematic diagram of the reference signal transmission device involved in the foregoing embodiment.
  • the reference signal transmission device may be a terminal device.
  • the reference signal transmission device includes: a receiving unit 701, a processing unit 702, and a sending unit 703.
  • the receiving unit 701 is used to support the reference signal transmission device to execute S202 in the above method embodiment
  • the processing unit 702 is used to support the reference signal transmission device to execute S203 in the above method embodiment, and/or used for the description herein Other processes of the technology
  • the sending unit 703 is used to support the reference signal transmission device to perform S205 in the above method embodiment. All relevant content of the steps involved in the above method embodiments can be referred to the function description of the corresponding function module, which will not be repeated here.
  • the processing unit 702 in this application may be a processor of a reference signal transmission device
  • the receiving unit 701 may be a receiver of the reference signal transmission device
  • the sending unit 703 may be a transmitter of the reference signal transmission device
  • the transmitter can be integrated with the receiver as a transceiver, and the specific transceiver can also be called a communication interface.
  • FIG. 8 is a schematic diagram of a possible logical structure of the reference signal transmission device involved in the foregoing embodiment provided by an embodiment of the present application.
  • the reference signal transmission device may be a terminal device or a chip built in the terminal device.
  • the reference signal transmission device includes: a processor 802 and a communication interface 803.
  • the processor 802 is used to control and manage the action of the reference signal transmission device.
  • the processor 802 is used to support the reference signal transmission device to perform S203 in the foregoing method embodiment, and/or other techniques used in the technology described herein. process.
  • the reference signal transmission device may further include a memory 801 and a bus 804, and the processor 802, the communication interface 803, and the memory 801 are connected to each other through the bus 804; the communication interface 803 is used to support the communication of the reference signal transmission device; the memory 801 is used to Store the program code and data of the reference signal transmission device.
  • the processor 802 may be a central processor unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules and circuits described in conjunction with the disclosure of the present application.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a digital signal processor and a microprocessor, and so on.
  • the bus 804 may be a peripheral component interconnection standard (Peripheral Component Interconnect, PCI) bus or an extended industry standard architecture (Extended Industry Standard Architecture, EISA) bus, or the like.
  • PCI peripheral component interconnection standard
  • EISA Extended Industry Standard Architecture
  • FIG. 9 shows a possible structural schematic diagram of the reference signal transmission device involved in the foregoing embodiment.
  • the reference signal transmission device may be an access network device.
  • the reference signal transmission device includes: a sending unit 901, a processing unit 902, and a receiving unit 903.
  • the sending unit 901 is used to support the reference signal transmission device to perform S201 in the above method embodiment
  • the processing unit 902 is used to support the reference signal transmission device to perform S204 in the above method embodiment, and/or according to the received reference signal The steps of measuring channel quality, etc.
  • the receiving unit 903 is used to support the reference signal transmission device to execute S206 in the above method embodiment. All relevant content of the steps involved in the above method embodiments can be referred to the function description of the corresponding function module, which will not be repeated here.
  • the processing unit 902 in this application may be a processor of a reference signal transmission device
  • the sending unit 901 may be a transmitter of the reference signal transmission device
  • the receiving unit 903 may be a receiver of the reference signal transmission device
  • the transmitter can be integrated with the receiver as a transceiver, and the specific transceiver can also be called a communication interface.
  • FIG. 10 is a schematic diagram of a possible logical structure of the reference signal transmission device involved in the foregoing embodiment provided by an embodiment of the present application.
  • the reference signal transmission device may be an access network device or a chip built in the access network device.
  • the reference signal transmission device includes: a processor 1002 and a communication interface 1003.
  • the processor 1002 is used to control and manage the operation of the reference signal transmission device.
  • the processor 1002 is used to support the reference signal transmission device to perform step S204 in the foregoing method embodiment, and measure the channel quality according to the received reference signal, and /Or other processes used in the techniques described herein.
  • the reference signal transmission device further includes a memory 1001 and a bus 1004, the processor 1002, the communication interface 1003, and the memory 1001 are connected to each other through the bus 1004; the communication interface 1003 is used to support the reference signal transmission device to communicate; the memory 1001 is used to store Program code and data of the reference signal transmission device.
  • the processor 1002 may be a central processor unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules and circuits described in conjunction with the disclosure of the present application.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a digital signal processor and a microprocessor, and so on.
  • the bus 1004 may be a peripheral component interconnection standard (PCI) bus or an extended industry standard architecture (EISA) bus, or the like.
  • PCI peripheral component interconnection standard
  • EISA extended industry standard architecture
  • a readable storage medium stores computer-executable instructions.
  • a device which may be a single-chip microcomputer, chip, etc.
  • processor executes the above method embodiments The steps of the terminal device in the provided reference signal transmission method.
  • the foregoing readable storage medium may include various media that can store program codes, such as a U disk, a mobile hard disk, a read-only memory, a random access memory, a magnetic disk, or an optical disk.
  • a readable storage medium stores computer-executable instructions.
  • a device which may be a single-chip microcomputer, chip, etc.
  • processor executes the above method embodiments Steps of accessing network equipment in the provided reference signal transmission method.
  • the foregoing readable storage medium may include various media that can store program codes, such as a U disk, a mobile hard disk, a read-only memory, a random access memory, a magnetic disk, or an optical disk.
  • a computer program product in another embodiment of the present application, includes computer-executable instructions, which are stored in a computer-readable storage medium; at least one processor of the device may be accessible from the computer
  • the read storage medium reads the computer-executed instruction, and at least one processor executes the computer-executed instruction to cause the device to perform the steps of the terminal device in the reference signal transmission method provided by the foregoing method embodiments.
  • a computer program product includes computer-executable instructions, which are stored in a computer-readable storage medium; at least one processor of the device may be accessible from the computer
  • the read storage medium reads the computer-executed instruction, and at least one processor executes the computer-executed instruction to cause the device to implement the steps of the access network device in the reference signal transmission method provided by the above method.
  • a communication system is further provided.
  • the communication system includes an access network device and a terminal device; wherein, the terminal device or the chip built in the terminal device may be the reference provided in FIG. 7 or FIG. 8 A signal transmission device, and used to perform the steps of the terminal device in the above method embodiments; and/or, the access network device or the chip built in the access network device is the reference signal transmission device provided in FIG. 9 or FIG. 10, and is used To perform the steps of the access network device in the above method embodiments.
  • the access network device configures the first configuration information for the terminal device, and when receiving the first configuration information, the terminal device determines the PRB cluster corresponding to each time in at least two moments according to the first configuration information , So that the reference signal is sent to the access network device on the PRB cluster corresponding to each moment, so that the terminal device can transmit the reference signal in a frequency hopping manner in the unlicensed frequency band, and then the channel quality measurement in the unlicensed frequency band is realized.
  • the access network device can also reduce the power consumption of the terminal device, achieve the effect of power saving, and reduce the delay of channel quality measurement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种参考信号传输方法及装置,涉及通信技术领域,用于在采用PRB交织的资源分配方式时,实现参考信号的跳频传输。所述方法包括:终端设备接收来自接入网设备的第一配置信息,所述第一配置信息用于指示所述终端设备在至少两个时刻传输参考信号的频域资源;所述终端设备根据所述第一配置信息,确定所述至少两个时刻中每个时刻对应的物理资源块PRB簇,其中,一个PRB簇由等间隔且不连续的多个PRB组成;所述终端设备在所述每个时刻对应的PRB簇上向所述接入网设备发送所述参考信号。

Description

一种参考信号传输方法及装置
本申请要求于2019年01月10日提交国家知识产权局、申请号为201910024527.0、申请名称为“一种参考信号传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种参考信号传输方法及装置。
背景技术
在长期演进(long term evolution,LTE)或者高级长期演进(LTE-advanced,LTE-A)系统中,用户的上行信道测量是通过发送探测参考信号(sounding reference signal,SRS)实现的,接入网设备通过测量接收到的SRS,获取上行的信道状态信息。目前,在LTE/LTE-A系统中,SRS信号传输采用连续物理资源块(physical resource block,PRB)的资源分配方式,不同系统带宽下有不同的SRS传输带宽配置,当配置的SRS传输带宽小于待测量信道带宽时,可通过多次跳频来完成对待测信道带宽的信道质量测量。
但是,在非授权频段中,SRS信号传输采用PRB交织的资源分配方式,整个系统带宽被分成多个交织的PRB簇,与传统连续PRB的SRS信号传输方案不同,每个PRB簇本身就已经以离散梳齿状占据了整个系统带宽,因此传统的SRS跳频方案和设计原理已不再适用。
发明内容
本申请提供一种参考信号传输方法及装置,用于在采用PRB交织的资源分配方式时,实现参考信号的跳频传输。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种参考信号传输方法,该方法包括:终端设备接收来自接入网设备的第一配置信息,第一配置信息用于指示终端设备在至少两个时刻传输参考信号的频域资源,这的至少两个时刻可以是指参考信号的至少两个传输时刻点,该时刻点可以通过无线帧、子帧、时隙或者OFDM符号等来表示,参考信号可以为解调参考信号、信道探测参考信号、或者随机接入信道的前导信号等;该终端设备根据第一配置信息,确定至少两个时刻中每个时刻对应的物理资源块PRB簇,其中,一个PRB簇由等间隔且不连续的多个PRB组成;该终端设备在所述每个时刻对应的PRB簇上向该接入网设备发送所述参考信号。上述技术方案中,能够在采用PRB交织的资源分配方式时,实现参考信号的跳频传输,从而降低信道质量测量的时延,降低终端设备的功耗、达到省电的效果。
在第一方面的一种可能的实现方式中,第一配置信息包括以下信息中至少一项:频域资源索引、至少两个时刻对应的PRB簇、至少两个时刻中每个时刻对应的PRB簇、至少两个时刻中的第一时刻(第一时刻可以是至少两个时刻中的任一时刻,比如,第一时刻是至少两个时刻中的起始时刻)对应的PRB簇、或者跳频间隔(可选的,跳频间隔也可以由接入网设备和终端设备事先约定、或者由标准定义等)。上述可能的 实现方式,能够提高接入网设备为终端设备配置第一配置信息的灵活性和多样性。
在第一方面的一种可能的实现方式中,跳频间隔为至少一个PRB簇,即跳频间隔为至少一个PRB簇可以为一个或者多个PRB簇。上述可能的实现方式,提供了一种简单有效的跳频间隔,从而能够使得终端设备快速地根据第一配置信息确定每个时刻对应的PRB簇,进而提高终端设备传输参考信号的效率。
在第一方面的一种可能的实现方式中,第一时刻为至少两个时刻中的起始时刻。上述可能的实现方式中,当第一时刻为起始时刻时,终端设备能够直接根据第一配置信息确定起始时刻中的对应的PRB簇,从而提高了终端设备在起始时刻中的对应的PRB簇发送参考信号的效率。
在第一方面的一种可能的实现方式中,当至少两个时刻中的每个时刻对应至少三个PRB簇时,至少三个PRB簇中任意相邻的两个PRB簇是等间隔的。上述可能的实现方式中,能够使得每个时刻对应至少三个PRB簇均匀地分散开,从而在分散的PRB簇上发送参考信号,进而提高信道质量测量的准确度。
在第一方面的一种可能的实现方式中,第一配置信息指示的频域资源与上行数据的候选频域资源相关,所述上行数据的候选频域资源为预定义的用于上行数据传输的至少一个PRB簇。上述可能的实现方式中,能够提高接入网设备根据接收到的参考信号测量信道质量的准确性。
在第一方面的一种可能的实现方式中,至少两个时刻中第一时刻对应的PRB簇是至少两个时刻对应的PRB簇的子集。上述可能的实现方式中,能够提高终端设备通过跳频方式传输参考信号的关联性。
第二方面,提供一种参考信号传输方法,该方法包括:接入网设备向终端设备发送第一配置信息,第一配置信息用于指示终端设备在至少两个时刻传输参考信号的频域资源;该接入网设备确定至少两个时刻中每个时刻对应的物理资源块PRB簇,其中,一个PRB簇由等间隔且不连续的多个PRB组成;该接入网设备在所述每个时刻对应的PRB簇上接收终端设备发送的所述参考信号。上述技术方案中,能够在采用PRB交织的资源分配方式时,实现参考信号的跳频传输,从而降低信道质量测量的时延,降低终端设备的功耗、达到省电的效果。
在第二方面的一种可能的实现方式中,第一配置信息包括以下信息中至少一项:频域资源索引、至少两个时刻对应的PRB簇、至少两个时刻中每个时刻对应的PRB簇、至少两个时刻中的第一时刻对应的PRB簇、或者跳频间隔。上述可能的实现方式,能够提高接入网设备为终端设备配置第一配置信息的灵活性和多样性。
在第二方面的一种可能的实现方式中,跳频间隔为至少一个PRB簇。上述可能的实现方式,提供了一种简单有效的跳频间隔,从而能够使得终端设备快速地根据第一配置信息确定每个时刻对应的PRB簇,进而提高终端设备传输参考信号的效率。
在第二方面的一种可能的实现方式中,第一时刻为至少两个时刻中的起始时刻。上述可能的实现方式中,当第一时刻为起始时刻时,终端设备能够直接根据第一配置信息确定起始时刻中的对应的PRB簇,从而提高了终端设备在起始时刻中的对应的PRB簇发送参考信号的效率。
在第二方面的一种可能的实现方式中,当至少两个时刻中的每个时刻对应至少三 个PRB簇时,至少三个PRB簇中任意相邻的两个PRB簇是等间隔的。上述可能的实现方式中,能够使得每个时刻对应至少三个PRB簇均匀地分散开,从而在分散的PRB簇上发送参考信号,进而提高信道质量测量的准确度。
在第二方面的一种可能的实现方式中,第一配置信息指示的频域资源与上行数据的候选频域资源相关,上行数据的候选频域资源为预定义的用于上行数据传输的至少一个PRB簇。上述可能的实现方式中,能够提高接入网设备根据接收到的参考信号测量信道质量的准确性。
在第二方面的一种可能的实现方式中,至少两个时刻中第一时刻对应的PRB簇是至少两个时刻对应的PRB簇的子集。上述可能的实现方式中,能够提高终端设备通过跳频方式传输参考信号的关联性。
第三方面,提供一种参考信号传输装置,该装置包括:接收单元,用于接收来自接入网设备的第一配置信息,第一配置信息用于指示终端设备在至少两个时刻传输参考信号的频域资源;处理单元,用于根据第一配置信息,确定至少两个时刻中每个时刻对应的PRB簇,其中,一个PRB簇由等间隔且不连续的多个PRB组成;发送单元,用于在所述每个时刻对应的PRB簇上向接入网设备发送所述参考信号。
在第三方面的一种可能的实现方式中,第一配置信息包括以下信息中至少一项:频域资源索引、至少两个时刻对应的PRB簇、至少两个时刻中每个时刻对应的PRB簇、至少两个时刻中的第一时刻对应的PRB簇、或者跳频间隔。
在第三方面的一种可能的实现方式中,跳频间隔为至少一个PRB簇。
在第三方面的一种可能的实现方式中,第一时刻为至少两个时刻中的起始时刻。
在第三方面的一种可能的实现方式中,当至少两个时刻中的每个时刻对应三个PRB簇时,至少三个PRB簇中任意相邻的两个PRB簇是等间隔的。
在第三方面的一种可能的实现方式中,第一配置信息指示的频域资源与上行数据的候选频域资源相关,上行数据的候选频域资源为预定义的用于上行数据传输的至少一个PRB簇。
在第三方面的一种可能的实现方式中,至少两个时刻中第一时刻对应的PRB簇是至少两个时刻对应的PRB簇的子集。
第四方面,提供一种参考信号传输装置,该装置包括:发送发单元,用于向终端设备发送第一配置信息,第一配置信息用于指示终端设备在至少两个时刻传输参考信号的频域资源;处理单元,用于确定至少两个时刻中每个时刻对应的物理资源块PRB簇,其中,一个PRB簇由等间隔且不连续的多个PRB组成;接收单元,用于在所述每个时刻对应的PRB簇上接收终端设备发送的所述参考信号。
在第四方面的一种可能的实现方式中,第一配置信息包括以下信息中至少一项:频域资源索引、至少两个时刻对应的PRB簇、至少两个时刻中每个时刻对应的PRB簇、至少两个时刻中的第一时刻对应的PRB簇、或者跳频间隔。
在第四方面的一种可能的实现方式中,跳频间隔为至少一个PRB簇。
在第四方面的一种可能的实现方式中,第一时刻为至少两个时刻中的起始时刻。
在第四方面的一种可能的实现方式中,当至少两个时刻中的每个时刻对应至少三个PRB簇时,至少三个PRB簇中任意相邻的两个PRB簇是等间隔的。
在第四方面的一种可能的实现方式中,第一配置信息指示的频域资源与上行数据的候选频域资源相关,上行数据的候选频域资源为预定义的用于上行数据传输的至少一个PRB簇。
在第四方面的一种可能的实现方式中,至少两个时刻中第一时刻对应的PRB簇是至少两个时刻对应的PRB簇的子集。
在本申请的又一方面,提供一种参考信号传输装置,该装置为终端设备或者内置于终端设备的芯片,该装置包括:存储器、以及与存储器耦合的处理器,存储器中存储代码和数据,处理器运行存储器中的代码使得该装置执行第一方面或第一方面的任一种可能的实现方式所提供的参考信号传输方法。
在本申请的又一方面,提供一种参考信号传输装置,该装置为接入网设备或者内置于接入网设备的芯片,该装置包括:存储器、以及与存储器耦合的处理器,存储器中存储代码和数据,处理器运行存储器中的代码使得装置执行第二方面或第二方面的任一种可能的实现方式所提供的参考信号传输方法。
在本申请的又一方面,提供一种通信系统,该通信系统包括接入网设备和终端设备;其中,终端设备为上述任一方面提供的终端设备,用于执行第一方面或第一方面的任一种可能的实现方式所提供的参考信号传输方法;接入网设备为上述任一方面提供的接入网设备,用于执行第二方面或第二方面的任一种可能的实现方式所提供的参考信号传输方法。
在本申请的又一方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得所述计算机执行第一方面或第一方面的任一种可能的实现方式所提供的参考信号传输方法。
在本申请的又一方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得所述计算机执行第二方面或第二方面的任一种可能的实现方式所提供的参考信号传输方法。
在本申请的又一方面,提供一种计算机程序产品,当计算机程序产品在计算机上运行时,使得该计算机执行第一方面或第一方面的任一种可能的实现方式所提供的参考信号传输方法。
在本申请的又一方面,提供一种计算机程序产品,当计算机程序产品在计算机上运行时,使得该计算机执行第二方面或第二方面的任一种可能的实现方式所提供的参考信号传输方法。
可以理解地,上述提供的任一种参考信号传输方法的装置、通信系统、计算机存储介质或者计算机程序产品均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种通信系统的结构示意图;
图2为本申请实施例提供的一种参考信号传输方法的流程示意图;
图3为本申请实施例提供的一种无线帧的结构示意图;
图4为本申请实施例提供的一种PRB簇的示意图;
图5为本申请实施例提供的一种跳频间隔的示意图;
图6为本申请实施例提供的一种上行数据的候选频域资源的示意图;
图7为本申请实施例提供的一种终端设备的结构示意图;
图8为本申请实施例提供的一种参考信号传输装置的结构示意图一;
图9为本申请实施例提供的一种接入网设备的结构示意图;
图10为本申请实施例提供的一种参考信号传输装置的结构示意图二。
具体实施方式
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c或a-b-c,其中a、b和c可以是单个,也可以是多个。字符“/”一般表示前后关联对象是一种“或”的关系。另外,在本申请的实施例中,“第一”、“第二”等字样并不对数量和执行次序进行限定。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例提供的参考信号传输方法可应用于各种通信系统中,例如:全球移动通信系统(global system for mobile communications,GSM)、通用分组无线业务(general packet radio service,GPRS)系统、码分多址(code division multiple access,CDMA)系统、CDMA2000系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、长期演进(long term evolution,LTE)系统、长期演进的后续演进(LTE-advanced,LTE-A)系统、以及其他各种通信系统等。
图1为本申请实施例提供的一种通信系统的结构示意图,参见图1,该通信系统包括接入网设备101和终端设备102。
本申请中,所述接入网设备是一种部署在无线接入网中用以为终端设备提供无线通信功能的装置。所述接入网设备可以包括各种形式的宏基站(base station,BS),微基站(也称为小站),中继站,或接入点等。在采用不同的无线接入技术的系统中,具备无线接入功能的设备的名称可能会有所不同,例如,在LTE系统中,称为演进的节点B(evolved NodeB,eNB或者eNodeB),在第三代(3rd generation,3G)系统中,称为节点B(Node B)等。为方便描述,为方便描述,本申请中,简称为接入网设备,有时也称为基站。
本申请实施例中所涉及到的终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。所述终端设备可以称为无线设备,也可以称为移动台(mobile station,简称MS),终端(terminal),用户设备(user equipment,UE)等。所述终端设备可以是包括用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、调制解 调器(modem)或调制解调器处理器(modem processor)、手持设备(handheld)、膝上型电脑(laptop computer)、上网本、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、蓝牙设备、机器类型通信(machine type communication,MTC)终端等。为方便描述,本申请中,简称为终端设备或UE。
终端设备可以支持用于无线通信的一种或多种无线技术,例如5G,LTE,WCDMA,CDMA 1X,时分-同步码分多址(time division-synchronous code division multiple access,TS-SCDMA),GSM,802.11等等。终端设备也可以支持载波聚合技术。
多个终端设备可以执行相同或者不同的业务。例如,移动宽带业务,增强移动宽带(enhanced mobile broadband,eMBB)业务,终端设备极高可靠极低时延通信(ultra-reliable and low-latency communication,URLLC)业务等等。
其中,接入网设备101具有共享信道的调度功能,具有基于发送到终端设备102的分组数据的历史来建立调度的功能,调度就是在多个终端设备102共用传输资源时,需要有一种机制来有效地分配物理层资源,以获得统计复用增益。另外,多个终端设备102可以位于该接入网设备101的服务小区中,接入网设备101的服务小区可以包括一个或者多个,服务小区也可以称为小区。终端设备102具有通过与接入网设备101之间建立的通信信道而发送和接收数据的功能。终端设备102根据接入网设备101通过调度控制信道发送的信息,进行共享信道的发送或接收处理。接入网设备101与终端设备102之间通过通信信道进行数据的接收和发送,该通信信道可以是无线通信信道,且在无线通信信道中,至少存在共享信道和调度控制信道,共享信道是为了发送和接收分组而在多个终端设备102之间公用,调度控制信道用于发送共享信道的分配、以及相应的调度结果等。
在本申请实施例中,终端设备102可以向接入网设备101发送参考信号(reference signal,RS),该参考信号可用于对信道质量进行测量、或者用于对终端设备102进行相干检测和数据解调等。具体地,终端设备102可以按照接入网设备101的指示发送参考信号,接入网设备101可以根据接收到的参考信号判断终端设备102上行的信道状态信息,并根据得到的信道状态信息进行相应的频域选择调度、功率控制等操作。
进一步的,该通信系统还可以包括其他网元,比如在LTE通信系统中,该通信系统还可以包括服务网关(serving gateway,SGW)、分组数据网关(packet gateway,PGW)、移动性管理实体(mobility management entity,MME)和归属签约用户服务器(home subscriber,HSS)等,本申请实施例对此不作具体限定。
图2为本申请实施例提供的一种参考信号传输方法的流程示意图,该方法可应用于上述图1所示的通信系统中,参见图2,该方法包括以下几个步骤。
S201:接入网设备向终端设备发送第一配置信息,第一配置信息用于指示该终端设备在至少两个时刻传输参考信号的频域资源。
其中,至少两个时刻是指参考信号的至少两个传输时刻点,即终端设备以跳频方式传输参考信号的时刻点,至少两个时刻可以对应至少两跳,即每一跳的传输对应一个时刻。至少两个时刻可以包括两个或者两个以上的时刻,每个时刻可通过时域资源来表示。可选的,每个时刻对应的时域资源可以通过无线帧、子帧、时隙、或者正交频分复用(orthogonal frequency division multiplexing,OFDM)符号来表示。比如,如 图3所示,以LTE系统的一种无线帧结构为例,该无线帧的长度为10ms,每1ms为一个子帧,每个子帧包括的时隙个数随着系统参数的不同而不同,比如,15kHz时,一个子帧即等价于一个时隙,而30kHz时,一个子帧包括2个时隙,60kHz时一个子帧包括4个时隙等,图3中以一个子帧包括2个时隙为例进行说明。若至少两个时刻包括时刻1和时刻2,时刻1对应的时域资源可以为时隙#0、时刻2对应的时域资源可以为时隙#3或任意其他非时隙#0之外的时隙等,本申请实施例对此不作具体限定。这里的时隙#0是指标号为0的时隙,时隙#3是指标号为3的时隙。
另外,该参考信号可以是指用于对信道质量进行测量、或者用于进行信号检测或数据解调的信号。可选的,该参考信号可以是解调参考信号(demodulation reference signal,DMRS)、信道探测参考信号(sounding reference signal,SRS)和随机接入信道(random access channel,RACH)的前导信号等。为便于描述,下文中以SRS为例进行说明,但是本申请并不局限于此。
在非授权频段中,SRS传输采用的是物理资源块(physical resource block,PRB)交织的资源分配方式,整个系统带宽以交织的方式分成多个PRB簇,每个PRB簇包括的多个PRB分散地分布在整个系统带宽上。具体的,在非授权频段中,当终端设备通过跳频方式向接入网设备传输SRS时,接入网设备可以向终端设备发送第一配置信息,第一配置信息可用于指示该终端设备在至少两个时刻传输SRS的频域资源,即接入网设备通过第一配置信息指示该终端设备通过跳频方式传输SRS的频域资源。可选地,第一配置信息用于指示该终端设备传输SRS的一些跳频相关的参数,比如,跳频的起始位置,跳频间隔,跳频图样等,本申请实施例对此不作具体限定。应理解,第一配置信息中可以不显式指示至少两个时刻中每个时刻的SRS频域资源位置信息,而是由终端设备根据第一配置信息隐式确定至少两个时刻中每个时刻的SRS频域资源,均在本申请的保护范围内。
可选地,接入网设备可通过高层信令将第一配置信息发送给终端设备,比如该高层信令可以为无线资源控制(radio resource control,RRC)信令等;或者,接入网设备可以通过物理层信令将第一配置信息发送给终端设备,比如该物理层信令可以为下行控制信息等;或者,接入网设备可以通过高层信令和物理层信令一起将第一配置信息发送给终端设备,本申请实施例对此不作具体限定。
S202:终端设备接收来自接入网设备的第一配置信息。其中,第一配置信息与上述S201中的第一配置信息一致,具体参见关于第一配置信息的描述可以参见下文所述。
S203:终端设备根据第一配置信息,确定至少两个时刻中每个时刻对应的PRB簇。
当终端设备接收到第一配置信息时,终端设备可以根据第一配置信息,确定至少两个时刻中每个时刻对应的PRB簇,每个PRB簇由等间隔且不连续的多个PRB组成。比如,在图4所示一种PRB簇的示意图,该PRB簇包括4个PRB,且任意相邻的两个PRB之间的间隔为2个PRB,该PRB簇具体包括PRB1、PRB4、PRB7和PRB10。以20MHz的系统带宽为例,不同子载波间隔下整个系统带宽被分成的PRB簇的个数M和每个PRB簇包括的PRB个数N的候选值详见下面的表1所示。从N的取值可知,不同PRB簇包括的PRB个数可以是非均匀的,以子载波间隔为15kHz、M=12为例, 从表1中最后一列可知12个PRB簇中有的PRB簇包括的PRB个数是8,有的PRB簇包括的PRB个数是9。
表1
Figure PCTCN2020070995-appb-000001
应理解,可以存在一个PRB簇,组成此PRB簇的PRB可以是非等间隔的,比如,当系统带宽包含的PRB个数不能被PRB簇的总数整除时,此时可以允许存在至少一个PRB簇是由非等间隔的不连续的多个PRB组成的。可选的,第一配置信息可以包括以下信息中至少一项:频域资源索引、至少两个时刻对应的PRB簇、至少两个时刻中每个时刻对应的PRB簇、至少两个时刻中的第一时刻对应的PRB簇、或者跳频间隔。
一种实施方式中,上述第一配置信息可以包括的信息有频域资源索引、至少两个时刻中的第一时刻对应的PRB簇。
可选的,另一种实施方式中,上述第一配置信息可以包括的信息有至少两个时刻对应的PRB簇、至少两个时刻中的第一时刻对应的PRB簇。
可选的,另一种实施方式中,上述第一配置信息可以包括的信息有至少两个时刻中的第一时刻对应的PRB簇和跳频间隔。
可选的,另一种实施方式中,上述第一配置信息可以包括的信息有至少两个时刻中每个时刻对应的PRB簇。
可选的,另一种实施方式中,上述第一配置信息可以包括的信息有频域资源索引、至少两个时刻对应的PRB簇和至少两个时刻中的第一时刻对应的PRB簇。
需要说明的是,对于跳频间隔可以是接入网设备通过第一配置信息配置给该终端设备的,也可以是某个预定义的值,比如,标准中规定好的某个数值,接入网设备和终端设备约定好的某个值等,本申请实施例对此不作具体限定。另外,当第一配置信息包括多个不同信息时,接入网设备可以将多个不同信息一次性地发送给终端设备,也可以通过分多次将多个不同信息发送给终端设备,每次可以发送多个不同信息中的 一个或者多个。下面分别对上述每种信息进行介绍说明。
以参考信号为SRS为例,频域资源索引也可以称为SRS频域资源索引,用于索引传输SRS的频域资源,SRS频域资源索引可以用于指示小区级配置的SRS频域资源,每个小区级配置的SRS频域资源可以对应一个或者多个用户级配置的SRS频域资源。比如,在如下表2.1和表2.2所示的预定义的SRS频域资源配置中,C SRS可以表示小区级配置的SRS频域资源索引,B SRS可以表示用户级配置的SRS频域资源索引,m SRS表示SRS频域资源索引对应的SRS频域资源。表2.1中示出了索引B SRS=0和B SRS=1对应的SRS频域资源,表2.2中示出了索引B SRS=2和B SRS=3对应的SRS频域资源,N b可以是指本索引对应的频域资源相对于上一级索引对应的频域资源的切分粒度。在如下表2.1和表2.2中,通过C SRS可以确定一组(4个)用户级配置的SRS频域资源,根据B SRS可以确定为该终端设备配置的SRS频域资源具体为该组的某一个。
可选地,SRS频域资源索引可以用于指示用户级配置的SRS跳频的最大频域资源,每个用户级配置的SRS跳频的最大频域资源对应了该用户待测量的目标SRS频域资源,每个用户级配置的SRS跳频的最大频域资源对应了几种候选的SRS跳频的起始SRS频域资源。终端设备根据第一配置信息从起始SRS频域资源索引开始进行跳频,直至遍历完成SRS跳频的最大频域资源。同样以表2.1和表2.2为例,接入网设备可配置SRS跳频的起始SRS频域资源索引为B SRS=2,而SRS频域资源索引为0。则根据表2.1和表2.2所示,可知,SRS跳频的起始SRS频域资源为由PRB簇1、PRB簇5和PRB簇11组成的资源,而SRS跳频的最大频域资源为由PRB簇1-12组成的资源,其中1-12为PRB簇的序号。终端设备根据接入网设备的第一配置信息,第一次SRS发送的时刻点,SRS在PRB簇1、PRB簇5和PRB簇11上进行发送,第二次SRS发送的时刻点,SRS在B SRS=1对应的SRS频域资源减掉B SRS=2对应的SRS频域资源后剩余的资源上进行发送,即PRB簇3、PRB簇7和PRB簇9。第三次SRS发送的时刻点,SRS在B SRS=0对应的SRS频域资源减掉B SRS=1对应的SRS频域资源后剩余的资源上进行发送,即PRB簇2、PRB簇4、PRB簇6、PRB簇8、PRB簇10和PRB簇12。
表2.1
Figure PCTCN2020070995-appb-000002
Figure PCTCN2020070995-appb-000003
表2.2
Figure PCTCN2020070995-appb-000004
需要说明的是,上述表2.1和表2.2所示的SRS频域资源仅为示例性的,并不对本申请实施例构成限定。至少两个时刻对应的PRB簇可以是指至少两个时刻中每个时刻对应的PRB簇组成的集合。可选的,至少两个时刻对应的PRB簇还可以是上一级SRS频域资源,且下一级SRS频域资源可以是上一级SRS频域资源的子集,即至少两个时刻中第一时刻对应的PRB簇是至少两个时刻中第二时刻或第三时刻对应的PRB簇的子集。比如,以上述表2.1和表2.2中的SRS频域资源索引等于0为例,至少两个时刻对应的PRB簇可以为6(1,3,5,7,9,11)、至少两个时刻包括第一时刻、第二时刻和第三时刻,则第一时刻对应的PRB簇可以为1(1),第二时刻对应的PRB簇可以为3(1,5,11),第三时刻对应的PRB簇为可以6(1,3,5,7,9,11)。
需要说明的是,上述6(1,3,5,7,9,11)中的6表示PRB簇的数量,即6个PRB簇;1、3、5、7、9和11分别为6个PRB簇的序号,即PRB簇1、PRB簇3、PRB簇5、PRB簇7、PRB簇9和PRB簇11。其他类似的表示方式的含义与其一致,本申请实施例对此不再赘述。
至少两个时刻中的第一时刻可以是指至少两个时刻中的任意一个时刻;可选的,第一时刻可以为起始时刻,即一轮SRS跳频中终端设备首次传输SRS的时刻。
跳频间隔可以是指相邻两次传输SRS的PRB簇之间的间隔;可选的,跳频间隔可以为至少一个PRB簇,即跳频间隔可以为一个PRB簇或者多个PRB簇。比如,相邻两次传输SRS的PRB簇分别为3(1,5,9)和3(3,7,11),则跳频间隔可以为2,即跳频间隔为两个PRB簇。
在一种可能的实施例中,第一配置信息可以包括:至少两个时刻对应的PRB簇和第一时刻对应的PRB簇,则当该终端设备接收到第一配置信息时,该终端设备可以根据至少两个时刻对应的PRB簇、以及第一时刻对应的PRB簇中包括的PRB簇的数量和相邻PRB簇之间的间隔等信息,确定每个时刻对应的PRB簇。比如,至少两个时刻包括第一时刻和第二时刻,至少两个时刻对应的PRB簇为6(1,3,5,7,9,11),若第一时刻对应的PRB簇为3(1,5,11),则可以确定第二时刻对应的PRB簇为3(3,7,9)。
在一种可能的实施例中,第一配置信息可以包括:至少两个时刻中每个时刻对应的PRB簇,则当该终端设备接收到第一配置信息时,该终端设备可直接获知每个时刻对应的PRB簇。比如,至少两个时刻包括第一时刻和第二时刻,则第一配置信息可以包括第一时刻对应的PRB簇为3(1,5,11)、第二时刻对应的PRB簇为3(3,7,9)的信息。
在一种可能的实施例中,第一配置信息可以包括:第一时刻对应的PRB簇和跳频间隔,则当该终端设备接收到第一配置信息时,该终端设备可以根据第一时刻对应的PRB簇和跳频间隔确定每个时刻对应的PRB簇。示例性的,如图5所示,第一配置信息包括的第一时刻对应的PRB簇表示为PRB簇x、跳频间隔为p个PRB簇,则下一时刻对应的PRB簇可以为x+p、下下时刻对应的PRB簇可以为x+2p,以此类推。当某一时刻对应的PRB簇的序号超过PRB簇的总数时,可以对其取余,即(x+mp)modN,这里N可以表示整个系统带宽包括的PRB簇的总数,mod表示取余操作,m表示跳频的序号,比如,第m次跳频等。比如,至少两个时刻包括第一时刻和第二时刻,第一时刻对应的PRB簇为3(1,5,9)、跳频间隔为2,则第二时刻对应的PRB簇可以为3(1+2,5+2,9+2)=3(3,7,11),即第一时刻的PRB簇1、PRB簇5、PRB簇9经过2个间隔的跳频,在第二时刻对应的PRB簇变为了PRB簇3、PRB簇7和PRB簇11。
可选的,在上述三种可能的实施例中,当至少两个时刻中的每个时刻对应至少三个PRB簇时,至少三个PRB簇中任意相邻的两个PRB簇是等间隔的。比如,假设某一时刻对应k个PRB簇,k为整数,且k≥3。k个PRB簇分别表示为y(1)、y(2)、…、y(k),则y(k)-y(k-1)=y(k-1)-y(k-2)=…=y(2)-y(1)。
在一种可能的实施例中,第一配置信息指示的频域资源与上行数据的候选频域资源相关,上行数据的候选频域资源为预定义的用于上行数据传输的至少一个PRB簇。当该终端设备接收到第一配置信息时,该终端设备可以根据第一配置信息指示的频域资源与上行数据的候选频域资源之间的关系,确定每个时刻对应的PRB簇。
其中,在非授权频段,上行数据(比如,物理上行共享信道PUSCH)的传输也是基于PRB簇来实现的,事先可以为上行数据的传输预定义一些频域资源,预定义的频域资源可以包括一个或者多个PRB簇。由于SRS的信道质量测量结果主要可用于后续上行数据信道的资源分配,因此,接入网设备可以通过第一配置信息将传输SRS的频域资源与预定义的用于传输上行数据的频域资源绑定,这样可以使得信道质量的测量最大限度的匹配未来上行数据的传输。
比如,预定义的上行数据的候选资源可以如下表3所示,表3中示出了8种上行数据的候选频域资源(即索引0至7),同一子带标识对应的候选频域资源可以包括不同的PRB簇,不同的子带标识对应的候选频域资源可以包括相同的PRB簇,这里的子带(subband)可以是指将系统带宽分成的至少一个相互不重叠的频域资源子集, 每个子带进一步由至少一个连续或不连续的PRB或PRB簇组成,比如,在如下表3中整个系统带宽被分成5个子带,每个子带由10个PRB组成,其中,索引0标识的上行数据的候选频域资源为子带0上的由PRB0和PRB5组成的一个PRB簇,索引1标识的上行数据的候选频域为子带0上的由PRB0,PRB1,PRB5和PRB6组成的一个PRB簇。而索引2标识的上行数据的候选频域为子带1上的由PRB0和PRB5组成的一个PRB簇。
表3
索引 子带标识 候选资源(PRB的序号)
0 0 (0,5)
1 0 (0,1,5,6)
2 1 (0,5)
3 1 (0,1,2,3,5,6,7,8)
4 2 (0,5)
5 2 (0,1,2,5,6,7)
6 3 (0,5)
7 4 (0,5)
应理解,也可以直接将系统带宽分成预定义的多个PRB簇,预定义的上行数据的候选资源是预定义的多个PRB簇中的至少一个。比如,预定义的上行数据的候选资源为下表4中的任意一个配置索引所对应的候选资源,以配置索引2为例,其对应的上行数据的候选资源为PRB簇(0,1,2,5,6,7)。
表4
索引 候选资源(PRB簇的序号)
0 (0,5)
1 (0,1,5,6)
2 (0,1,2,5,6,7)
3 (0,1,2,3,5,6,7,8)
具体的,传输SRS的频域资源可以与上行数据的候选频域资源相同或有关,传输SRS的频域资源是上行数据的候选频域资源通过偏移不同数量的PRB来确定的。比如,如图6所示,对于一个子带(包括10个PRB,对应的标号分别表示为0-9)来说,若传输上行数据的PRB为0、1、5和6,则在偏移量为0个PRB时,传输SRS的PRB可以为0、1、5和6,在偏移量为1个PRB时,传输SRS的PRB可以为1、2、6和7,在偏移量为2个PRB时,传输SRS的PRB可以为2、3、7和8,在偏移量为3个PRB时,传输SRS的PRB可以为3、4、8和9。可选地,接入网设备可配置上行数据的候选频域资源的索引给终端设备,并同时配置SRS的频域资源相对于此上行数据的候选频域资源的偏移量给终端设备,比如,接入网设备配置上述表2中索引5给终端设备,同时配置SRS频域资源相对于该索引对应的上行数据的候选频域资源的偏移量1个PRB,从而终端设备可基于上述信息推出SRS的频域资源为子带2上的PRB集合(1,2,3,6,7,8)组成的PRB簇,PRB集合是指由多个PRB组成的集合,PRB集合 (1,2,3,6,7,8)是指由标号为1、2、3、6、7和8所表示的PRB组成的集合,即PRB集合(1,2,3,6,7,8)包括PRB1、PRB2、PRB3、PRB6、PRB7和PRB8。
可选地,接入网设备可通过高层信令将上述第一配置信息发送给终端设备,比如该高层信令可以为RRC信令等;或者,接入网设备可以通过物理层信令将上述第一配置信息发送给终端设备,比如该物理层信令可以为下行控制信息等;或者,接入网设备可以通过高层信令和物理层信令一起将上述第一配置信息发送给终端设备,本申请实施例对此不作具体限定。
相应的,基于上述上行数据的候选资源,可以直接预定义传输SRS的频域资源如下表5.1和表5.2所示。比如,在SRS频域资源索引为0-3、B SRS=1时,传输SRS的频域资源分别为由PRB集合(0,1,2,5,6,7)组成的PRB簇、由PRB集合(1,2,3,6,7,8)组成的PRB簇、由PRB集合(2,3,4,7,8,9)组成的PRB簇和由PRB集合(3,4,5,8,9,0)组成的PRB簇,与上述表2中上行数据的候选资源的PRB集合(0,1,2,5,6,7)相比,对应的偏移量分别为0个PRB、1个PRB、2个PRB和3个PRB;在SRS频域资源索引为0-3、B SRS=2时,传输SRS的频域资源分别为由PRB集合(0,1,5,6)组成的PRB簇、由PRB集合(1,2,6,7)组成的PRB簇、由PRB集合(2,3,7,8)组成的PRB簇和由PRB集合(3,4,8,9)组成的PRB簇,与上述表2中上行数据的候选资源的PRB集合(0,1,5,6)相比,对应的偏移量分别为0个PRB、1个PRB、2个PRB和3个PRB;在SRS频域资源索引为0-3、B SRS=3时,传输SRS的频域资源分别为由PRB集合(0,5)组成的PRB簇、由PRB集合(1,6)组成的PRB簇、由PRB集合(2,7)组成的PRB簇和由PRB集合(3,8)组成的PRB簇,与上述表2中的上行数据的候选资源的PRB集合(0,5)相比,对应的偏移量分别为0个PRB、1个PRB、2个PRB和3个PRB。
表5.1
Figure PCTCN2020070995-appb-000005
表5.2
Figure PCTCN2020070995-appb-000006
需要说明的是,上述表3和表4所示的上行数据的候选频域资源、以及表5.1和表5.2所示的传输SRS的频域资源仅为示例性的,并不对本申请实施例构成限制。
S204:接入网设备确定至少两个时刻中每个时刻对应的PRB簇。可选的,步骤 S204与S201-203不分先后顺序,本申请图2中以S204与203并列执行为例进行说明,但本申请并不局限于此。
具体的,在接入网设备向该终端设备发送第一配置信息之前,该接入网设备可以先确定至少两个时刻中每个时刻对应的PRB簇,之后再向该终端设备发送第一配置信息,此时S204位于S201之前。或者,在接入网设备向该终端设备发送第一配置信息时,接入网设备还未确定出至少两个时刻中每个时刻对应的PRB簇,此时S204位于S201之后、且S204与S202-S203可以不分先后顺序。
需要说明的是,接入网设备确定至少两个时刻中每个时刻对应的PRB簇的具体过程与上述S203中该终端设备确定至少两个时刻中每个时刻对应的PRB簇的具体过程类似,本申请实施例对此不再赘述。
S205:该终端设备在每个时刻对应的PRB簇上向接入网设备发送该参考信号。
具体的,当终端设备确定至少两个时刻中每个时刻对应的PRB簇后,该终端设备可以在每个时刻对应的PRB簇上发送SRS。比如,至少两个时刻分别为图3所示的无线帧中的时隙#0和时隙#3,时隙#0对应的PRB簇为3(1,5,11)、时隙#3对应的PRB簇为3(3,7,9),则该终端设备可以在时隙#0上通过PRB簇1、PRB簇5和PRB簇11这3个PRB簇向接入网设备发送SRS,在时隙#3上通过PRB簇3、PRB簇7和PRB簇9这3个PRB簇向接入网设备发送SRS。
需要说明的是,这里的时隙#0是指标号为0的时隙,时隙#3是指标号为3的时隙。另外,这里的3(1,5,11)中的3表示PRB簇的数量,即3个PRB簇,1、5和11分别为3个PRB簇的序号,即PRB簇1、PRB簇5和PRB簇11。其他类似的表示方式的含义与其一致,本申请实施例对此不再赘述。
S206:接入网设备在每个时刻对应的PRB簇上接收该终端设备发送的参考信号。
具体的,接入网设备可以在每个时刻对应的PRB簇上接收该终端设备发送的SRS。当接入网设备接收到该终端设备发送的SRS后,接入网设备可以基于该SRS进行信道质量测量,进而基于信道质量测量结果进行后续的资源分配等操作。比如,至少两个时刻分别为图3所示的无线帧中的时隙#0和时隙#3,时隙#0对应的PRB簇为3(1,5,11)、时隙#3对应的PRB簇为3(3,7,9),则接入网设备可以在时隙#0上接收该终端设备通过1、5和11标识的3个PRB簇发送的SRS,在时隙#3上接收该终端设备通过3、7和9标识的3个PRB簇发送的SRS。
在本申请实施例中,接入网设备通过为终端设备配置第一配置信息,终端设备在接收到第一配置信息时,根据第一配置信息确定至少两个时刻中每个时刻对应的PRB簇,从而在每个时刻对应的PRB簇上向接入网设备发送参考信号,从而使得终端设备能够在非授权频段中以跳频方式传输参考信号,进而实现非授权频段中信道质量的测量。此外,接入网设备通过为终端设备配置第一配置信息,还可以降低终端设备的功耗、达到省电的效果,以及降低信道质量测量的时延,当传输参考信号的频域资源与上行数据的候选频域资源相关时,还可以最大化的利用信道质量测量结果。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如终端设备和接入网设备。为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结 合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端设备和接入网设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明:
在采用集成的单元的情况下,图7示出了上述实施例中所涉及的参考信号传输装置的一种可能的结构示意图。该参考信号传输装置可以为终端设备,该参考信号传输装置包括:接收单元701、处理单元702和发送单元703。其中,接收单元701用于支持该参考信号传输装置执行上述方法实施例中的S202;处理单元702用于支持该参考信号传输装置执行上述方法实施例中的S203,和/或用于本文所描述的技术的其他过程;发送单元703用于支持该参考信号传输装置执行上述方法实施例中的S205。上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用硬件实现的基础上,本申请中的处理单元702可以为参考信号传输装置的处理器,接收单元701可以为参考信号传输装置的接收器,发送单元703可以为参考信号传输装置的发送器,发送器通常可以和接收器集成在一起用作收发器,具体的收发器还可以称为通信接口。
图8所示,为本申请的实施例提供的上述实施例中所涉及的参考信号传输装置的一种可能的逻辑结构示意图。该参考信号传输装置可以为终端设备或者终端设备内置的芯片,该参考信号传输装置包括:处理器802和通信接口803。处理器802用于对该参考信号传输装置动作进行控制管理,例如,处理器802用于支持该参考信号传输装置执行上述方法实施例中的S203,和/或用于本文所描述的技术的其他过程。此外,该参考信号传输装置还可以包括存储器801和总线804,处理器802、通信接口803以及存储器801通过总线804相互连接;通信接口803用于支持该参考信号传输装置进行通信;存储器801用于存储该参考信号传输装置的程序代码和数据。
其中,处理器802可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。总线804可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线 或一种类型的总线。
在采用集成的单元的情况下,图9示出了上述实施例中所涉及的参考信号传输装置的一种可能的结构示意图。该参考信号传输装置可以为接入网设备,该参考信号传输装置包括:发送单元901、处理单元902和接收单元903。其中,发送单元901用于支持该参考信号传输装置执行上述方法实施例中的S201;处理单元902用于支持该参考信号传输装置执行上述方法实施例中的S204,和/或根据接收的参考信号测量信道质量的步骤等;接收单元903用于支持该参考信号传输装置执行上述方法实施例中的S206。上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用硬件实现的基础上,本申请中的处理单元902可以为参考信号传输装置的处理器,发送单元901可以为参考信号传输装置的发送器,接收单元903可以为参考信号传输装置的接收器,发送器通常可以和接收器集成在一起用作收发器,具体的收发器还可以称为通信接口。
图10所示,为本申请的实施例提供的上述实施例中所涉及的参考信号传输装置的一种可能的逻辑结构示意图。该参考信号传输装置可以为接入网设备或者接入网设备内置的芯片,该参考信号传输装置包括:处理器1002和通信接口1003。处理器1002用于对该参考信号传输装置动作进行控制管理,例如,处理器1002用于支持该参考信号传输装置执行上述方法实施例中的S204、根据接收的参考信号测量信道质量的步骤,和/或用于本文所描述的技术的其他过程。此外,该参考信号传输装置还包括存储器1001和总线1004,处理器1002、通信接口1003以及存储器1001通过总线1004相互连接;通信接口1003用于支持该参考信号传输装置进行通信;存储器1001用于存储该参考信号传输装置的程序代码和数据。
其中,处理器1002可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。总线1004可以是外设部件互连标准(PCI)总线或扩展工业标准结构(EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请的另一实施例中,还提供一种可读存储介质,可读存储介质中存储有计算机执行指令,当一个设备(可以是单片机,芯片等)或者处理器执行上述方法实施例所提供的参考信号传输方法中终端设备的步骤。前述的可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请的另一实施例中,还提供一种可读存储介质,可读存储介质中存储有计算机执行指令,当一个设备(可以是单片机,芯片等)或者处理器执行上述方法实施例所提供的参考信号传输方法中接入网设备的步骤。前述的可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序 代码的介质。
在本申请的另一实施例中,还提供一种计算机程序产品,该计算机程序产品包括计算机执行指令,该计算机执行指令存储在计算机可读存储介质中;设备的至少一个处理器可以从计算机可读存储介质读取该计算机执行指令,至少一个处理器执行该计算机执行指令使得设备上述方法实施例所提供的参考信号传输方法中终端设备的步骤。
在本申请的另一实施例中,还提供一种计算机程序产品,该计算机程序产品包括计算机执行指令,该计算机执行指令存储在计算机可读存储介质中;设备的至少一个处理器可以从计算机可读存储介质读取该计算机执行指令,至少一个处理器执行该计算机执行指令使得设备上述方法实施所提供的参考信号传输方法中接入网设备的步骤。
在本申请的另一实施例中,还提供一种通信系统,该通信系统包括接入网设备和终端设备;其中,终端设备或者终端设备内置的芯片可以为图7或图8所提供的参考信号传输装置,且用于执行上述方法实施例中终端设备的步骤;和/或,接入网设备或者接入网设备内置的芯片为图9或图10所提供的参考信号传输装置,且用于执行上述方法实施例中接入网设备的步骤。
在本申请实施例中,接入网设备通过为终端设备配置第一配置信息,终端设备在接收到第一配置信息时,根据第一配置信息确定至少两个时刻中每个时刻对应的PRB簇,从而在每个时刻对应的PRB簇上向接入网设备发送参考信号,从而使得终端设备能够在非授权频段中以跳频方式传输参考信号,进而实现非授权频段中信道质量的测量。此外,接入网设备通过为终端设备配置第一配置信息,还可以降低终端设备的功耗、达到省电的效果,以及降低信道质量测量的时延。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种参考信号传输方法,其特征在于,所述方法包括:
    终端设备接收来自接入网设备的第一配置信息,所述第一配置信息用于指示所述终端设备在至少两个时刻传输参考信号的频域资源;
    所述终端设备根据所述第一配置信息,确定所述至少两个时刻中每个时刻对应的物理资源块PRB簇,其中,一个PRB簇由等间隔且不连续的多个PRB组成;
    所述终端设备在所述每个时刻对应的PRB簇上向所述接入网设备发送所述参考信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第一配置信息包括以下信息中至少一项:频域资源索引、所述至少两个时刻对应的PRB簇、所述至少两个时刻中每个时刻对应的PRB簇、所述至少两个时刻中的第一时刻对应的PRB簇、或者跳频间隔。
  3. 根据权利要求2所述的方法,其特征在于,所述跳频间隔为至少一个PRB簇。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一时刻为所述至少两个时刻中的起始时刻。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,当所述至少两个时刻中的每个时刻对应至少三个PRB簇时,所述至少三个PRB簇中任意相邻的两个PRB簇是等间隔的。
  6. 根据权利要求1所述的方法,其特征在于,所述第一配置信息指示的频域资源与上行数据的候选频域资源相关,所述上行数据的候选频域资源为预定义的用于上行数据传输的至少一个PRB簇。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述至少两个时刻中第一时刻对应的PRB簇是所述至少两个时刻对应的PRB簇的子集。
  8. 一种参考信号传输方法,其特征在于,所述方法包括:
    接入网设备向终端设备发送第一配置信息,所述第一配置信息用于指示所述终端设备在至少两个时刻传输参考信号的频域资源;
    所述接入网设备确定所述至少两个时刻中每个时刻对应的物理资源块PRB簇,其中,一个PRB簇由等间隔且不连续的多个PRB组成;
    所述接入网设备在所述每个时刻对应的PRB簇上接收所述终端设备发送的所述参考信号。
  9. 根据权利要求8所述的方法,其特征在于,所述第一配置信息包括以下信息中至少一项:频域资源索引、所述至少两个时刻对应的PRB簇、所述至少两个时刻中每个时刻对应的PRB簇、所述至少两个时刻中的第一时刻对应的PRB簇、或者跳频间隔。
  10. 根据权利要求9所述的方法,其特征在于,所述跳频间隔为至少一个PRB簇。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第一时刻为所述至少两个时刻中的起始时刻。
  12. 根据权利要求8-11任一项所述的方法,其特征在于,当所述至少两个时刻中 的每个时刻对应至少三个PRB簇时,所述至少三个PRB簇中任意相邻的两个PRB簇是等间隔的。
  13. 根据权利要求8所述的方法,其特征在于,所述第一配置信息指示的频域资源与上行数据的候选频域资源相关,所述上行数据的候选频域资源为预定义的用于上行数据传输的至少一个PRB簇。
  14. 根据权利要求8-13任一项所述的方法,其特征在于,所述至少两个时刻中第一时刻对应的PRB簇是所述至少两个时刻对应的PRB簇的子集。
  15. 一种终端设备,其特征在于,所述终端设备包括:
    接收单元,用于接收来自接入网设备的第一配置信息,所述第一配置信息用于指示所述终端设备在至少两个时刻传输参考信号的频域资源;
    处理单元,用于根据所述第一配置信息,确定所述至少两个时刻中每个时刻对应的PRB簇,其中,一个PRB簇由等间隔且不连续的多个PRB组成;
    发送单元,用于在所述每个时刻对应的PRB簇上向所述接入网设备发送所述参考信号。
  16. 根据权利要求15所述的终端设备,其特征在于,所述第一配置信息包括以下信息中至少一项:频域资源索引、所述至少两个时刻对应的PRB簇、所述至少两个时刻中每个时刻对应的PRB簇、所述至少两个时刻中的第一时刻对应的PRB簇、或者跳频间隔。
  17. 根据权利要求16所述的终端设备,其特征在于,所述跳频间隔为至少一个PRB簇。
  18. 根据权利要求16或17所述的终端设备,其特征在于,所述第一时刻为所述至少两个时刻中的起始时刻。
  19. 根据权利要求15-18任一项所述的终端设备,其特征在于,当所述至少两个时刻中的每个时刻对应三个PRB簇时,所述至少三个PRB簇中任意相邻的两个PRB簇是等间隔的。
  20. 根据权利要求15所述的终端设备,其特征在于,所述第一配置信息指示的频域资源与上行数据的候选频域资源相关,所述上行数据的候选频域资源为预定义的用于上行数据传输的至少一个PRB簇。
  21. 根据权利要求15-20任一项所述的终端设备,其特征在于,所述至少两个时刻中第一时刻对应的PRB簇是所述至少两个时刻对应的PRB簇的子集。
  22. 一种接入网设备,其特征在于,所述接入网设备包括:
    发送单元,用于向终端设备发送第一配置信息,所述第一配置信息用于指示所述终端设备在至少两个时刻传输参考信号的频域资源;
    处理单元,用于确定所述至少两个时刻中每个时刻对应的物理资源块PRB簇,其中,一个PRB簇由等间隔且不连续的多个PRB组成;
    接收单元,用于在所述每个时刻对应的PRB簇上接收所述终端设备发送的所述参考信号。
  23. 根据权利要求22所述的接入网设备,其特征在于,所述第一配置信息包括以下信息中至少一项:频域资源索引、所述至少两个时刻对应的PRB簇、所述至少两个 时刻中每个时刻对应的PRB簇、所述至少两个时刻中的第一时刻对应的PRB簇、或者跳频间隔。
  24. 根据权利要求23所述的接入网设备,其特征在于,所述跳频间隔为至少一个PRB簇。
  25. 根据权利要求23或24所述的接入网设备,其特征在于,所述第一时刻为所述至少两个时刻中的起始时刻。
  26. 根据权利要求22-25任一项所述的接入网设备,其特征在于,当所述至少两个时刻中的每个时刻对应至少三个PRB簇时,所述至少三个PRB簇中任意相邻的两个PRB簇是等间隔的。
  27. 根据权利要求22所述的接入网设备,其特征在于,所述第一配置信息指示的频域资源与上行数据的候选频域资源相关,所述上行数据的候选频域资源为预定义的用于上行数据传输的至少一个PRB簇。
  28. 根据权利要求22-27任一项所述的接入网设备,其特征在于,所述至少两个时刻中第一时刻对应的PRB簇是所述至少两个时刻对应的PRB簇的子集。
  29. 一种参考信号传输装置,其特征在于,所述参考信号传输装置为终端设备或者终端设备内置的芯片,所述装置包括:存储器、以及与所述存储器耦合的处理器,所述存储器中存储代码和数据,所述处理器运行所述存储器中的代码使得所述装置执行权利要求1-7任一项所述的参考信号传输方法。
  30. 一种参考信号传输装置,其特征在于,所述参考信号传输装置为接入网设备或者接入网设备内置的芯片,所述装置包括:存储器、以及与所述存储器耦合的处理器,所述存储器中存储代码和数据,所述处理器运行所述存储器中的代码使得所述装置执行权利要求8-14任一项所述的参考信号传输方法。
  31. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得所述计算机执行权利要求1-7任一项所述的参考信号传输方法。
  32. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得所述计算机执行权利要求8-14任一项所述的参考信号传输方法。
PCT/CN2020/070995 2019-01-10 2020-01-08 一种参考信号传输方法及装置 WO2020143689A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910024527.0A CN111490860B (zh) 2019-01-10 2019-01-10 一种参考信号传输方法及装置
CN201910024527.0 2019-01-10

Publications (1)

Publication Number Publication Date
WO2020143689A1 true WO2020143689A1 (zh) 2020-07-16

Family

ID=71521450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070995 WO2020143689A1 (zh) 2019-01-10 2020-01-08 一种参考信号传输方法及装置

Country Status (2)

Country Link
CN (1) CN111490860B (zh)
WO (1) WO2020143689A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113994623A (zh) * 2021-09-17 2022-01-28 北京小米移动软件有限公司 临时参考信号的传输方法、装置、通信设备及存储介质
CN114080043A (zh) * 2020-08-12 2022-02-22 维沃移动通信有限公司 资源传输方法、装置及通信设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116963290A (zh) * 2022-04-12 2023-10-27 北京紫光展锐通信技术有限公司 资源配置方法、装置及设备
CN118828897A (zh) * 2023-04-07 2024-10-22 展讯半导体(南京)有限公司 定位参考信号的资源配置方法、装置、芯片及模组设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170318556A1 (en) * 2014-11-05 2017-11-02 Zte Corporation Method and Device for Enhancing Positioning
CN107733496A (zh) * 2016-08-12 2018-02-23 华为技术有限公司 数据发送方法、信令发送方法、装置及系统
WO2018128446A1 (en) * 2017-01-06 2018-07-12 Samsung Electronics Co., Ltd. Method and device for transmitting signals
CN108964856A (zh) * 2017-05-27 2018-12-07 中兴通讯股份有限公司 一种参考信号配置信息的应用方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2011005994A (es) * 2010-02-24 2011-10-28 Zte Usa Inc Metodos y sistemas para asignacion de recursos de csi-rs en sistemas de lte avanzada.
WO2012128545A2 (ko) * 2011-03-21 2012-09-27 엘지전자 주식회사 상향링크 신호 전송방법 및 수신방법과, 사용자기기 및 기지국
CN107294686A (zh) * 2016-04-01 2017-10-24 中兴通讯股份有限公司 探测参考信号发送、接收方法、装置、ue及基站
CN105933099A (zh) * 2016-06-06 2016-09-07 深圳市金立通信设备有限公司 一种传输信道探测参考信号srs的方法、终端及基站
CN113347719A (zh) * 2017-03-22 2021-09-03 华为技术有限公司 信息传输方法、装置及系统
CN108633021B (zh) * 2017-03-23 2024-01-19 华为技术有限公司 一种上行控制信道的资源映射方法及装置
US20180368188A1 (en) * 2017-06-15 2018-12-20 Sharp Laboratories Of America, Inc. User equipments, base stations and methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170318556A1 (en) * 2014-11-05 2017-11-02 Zte Corporation Method and Device for Enhancing Positioning
CN107733496A (zh) * 2016-08-12 2018-02-23 华为技术有限公司 数据发送方法、信令发送方法、装置及系统
WO2018128446A1 (en) * 2017-01-06 2018-07-12 Samsung Electronics Co., Ltd. Method and device for transmitting signals
CN108964856A (zh) * 2017-05-27 2018-12-07 中兴通讯股份有限公司 一种参考信号配置信息的应用方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114080043A (zh) * 2020-08-12 2022-02-22 维沃移动通信有限公司 资源传输方法、装置及通信设备
CN114080043B (zh) * 2020-08-12 2023-11-10 维沃移动通信有限公司 资源传输方法、装置及通信设备
CN113994623A (zh) * 2021-09-17 2022-01-28 北京小米移动软件有限公司 临时参考信号的传输方法、装置、通信设备及存储介质

Also Published As

Publication number Publication date
CN111490860A (zh) 2020-08-04
CN111490860B (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
EP3439332B1 (en) Time-frequency resource allocation method and apparatus
WO2020143689A1 (zh) 一种参考信号传输方法及装置
US10411842B2 (en) Data transmission method and device
US11206054B2 (en) Communication method and device
US11589357B2 (en) Detection window indication method and apparatus
CN108811116B (zh) 传输控制信道的方法、网络设备、网络控制器和终端设备
WO2020047922A1 (zh) 配置信息的传输方法和终端设备
CN109661846B (zh) 通信方法、终端设备和网络设备
WO2020025042A1 (zh) 资源配置的方法和终端设备
JP2020115689A (ja) リソース設定のための方法及び装置、並びに基地局
CN108023666A (zh) 无线通信的方法和装置
WO2020025040A1 (zh) 资源配置的方法和终端设备
US20210014023A1 (en) Data transmission method, terminal device, and network device
JP2024506479A (ja) 通信方法および装置
CN109995462B (zh) 一种数据传输格式的传输方法和装置
CN111511023B (zh) 信号传输方法及装置
WO2019157685A1 (zh) 一种物理上行共享信道pusch传输方法及装置
WO2023010340A1 (zh) 多小区物理下行控制信道监测能力的分配方法和装置
WO2024011632A1 (zh) 资源配置方法、装置、设备及存储介质
US12016048B2 (en) CSI measurement method and apparatus
WO2023164909A1 (zh) 发送srs的方法、接收srs的方法、装置、设备、介质及产品
WO2024007136A1 (zh) 无线通信方法、终端设备以及网络设备
WO2023130480A1 (zh) 无线通信方法、装置、设备、存储介质及程序产品
WO2024092686A1 (en) Channel structures for sidelink synchronization signal blocks in listen-before-talk operations
CN118414874A (zh) 用于在不同类型的带宽部分之间映射的系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20739187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20739187

Country of ref document: EP

Kind code of ref document: A1