Nothing Special   »   [go: up one dir, main page]

WO2020088608A1 - 同源二聚体型双特异性抗体及其制备方法和用途 - Google Patents

同源二聚体型双特异性抗体及其制备方法和用途 Download PDF

Info

Publication number
WO2020088608A1
WO2020088608A1 PCT/CN2019/114818 CN2019114818W WO2020088608A1 WO 2020088608 A1 WO2020088608 A1 WO 2020088608A1 CN 2019114818 W CN2019114818 W CN 2019114818W WO 2020088608 A1 WO2020088608 A1 WO 2020088608A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
seq
sequences
substitutions
highly similar
Prior art date
Application number
PCT/CN2019/114818
Other languages
English (en)
French (fr)
Inventor
李强
马心鲁
贾世香
严源
张玉华
周利
孙日龙
崔雪原
余灵菊
闫玉洁
金莹莹
熊耀
李媛丽
陈思
刘雪梅
刁家升
Original Assignee
安源医药科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安源医药科技(上海)有限公司 filed Critical 安源医药科技(上海)有限公司
Priority to KR1020217016755A priority Critical patent/KR102688281B1/ko
Priority to JP2021523492A priority patent/JP7308560B2/ja
Priority to EP19877895.3A priority patent/EP3875489A4/en
Priority to US17/290,651 priority patent/US20210371526A1/en
Priority to CN201980071467.6A priority patent/CN112996817B/zh
Priority to CA3118238A priority patent/CA3118238C/en
Priority to AU2019370758A priority patent/AU2019370758B2/en
Publication of WO2020088608A1 publication Critical patent/WO2020088608A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/461Igs containing Ig-regions, -domains or -residues form different species
    • C07K16/462Igs containing a variable region (Fv) from one specie and a constant region (Fc) from another
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2809Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2878Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2887Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against CD20
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3007Carcino-embryonic Antigens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/303Liver or Pancreas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3076Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells against structure-related tumour-associated moieties
    • C07K16/3092Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells against structure-related tumour-associated moieties against tumour-associated mucins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/12Animals modified by administration of exogenous cells
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0331Animal model for proliferative diseases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • A61K2039/507Comprising a combination of two or more separate antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/35Valency
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/524CH2 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/526CH3 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/53Hinge
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/626Diabody or triabody
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/94Stability, e.g. half-life, pH, temperature or enzyme-resistance
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/03Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment

Definitions

  • the present invention relates to the field of immunology, and more specifically, to an anti-CD3 bispecific antibody that mediates T cell killing, and the use of such antibodies, particularly in the treatment of cancer.
  • T cells T cells to kill tumor cells.
  • the first signal comes from the binding of the MHC-antigen complex on the antigen-presenting cells to the T cell receptor TCR-CD3, and the second signal is the mutual stimulation of the co-stimulatory molecules expressed by the T cells and the antigen-presenting cells.
  • Non-antigen-specific costimulatory signal generated after the action. Because the expression of MHC on the surface of most tumor cells is down-regulated or even missing, tumor cells escape immune killing.
  • Bispecific antibodies can be divided into double-signal blocking type and cell-mediated function type from the mechanism of action.
  • cell-functional bispecific antibodies refer to anti-CD3 bispecific antibodies that mediate T cell killing.
  • the CD3 molecule is expressed on the surface of all mature T cells and non-covalently binds to the TCR to form a complete TCR-CD3 complex. Together, it participates in the immune response to antigen stimulation. It is currently the most widely used in bispecific antibodies. Trigger molecules on the surface of successful immune effector cells.
  • Bispecific antibodies targeting CD3 can respectively bind CD3 on the surface of T cells and antigens on the surface of tumor cells, thereby shortening the distance between cytotoxic T cells (Tc or CTL) and tumor cells, and directly activating T cells.
  • Tc or CTL cytotoxic T cells
  • T cells Induce T cells to directly kill cancer cells without relying on the dual activation signals of traditional T cells.
  • the agonistic antibody targeting T cell antigen CD3 for example, the first generation of clinical monoclonal antibody OKT3 targeting human CD3 (Kung P et al., Science, 206: 347-349,1979)
  • T cells are excessively activated to release a large number of inflammatory factors, such as interleukin-2 (IL-2), TNF- ⁇ , IFN- ⁇ and interleukin-6 (IL-6), which can cause serious "cytokine storm synthesis Syndrome ”(Hirsch R et al., J.
  • bispecific antibodies In recent years, in order to solve the problem of correct assembly of two different half antibodies, scientists have designed and developed bispecific antibodies with various structures. In summary, there are two major categories.
  • One type of bispecific antibody does not contain an Fc region.
  • the advantage of this type of structured double antibody is that it has a small molecular weight and can be expressed in prokaryotic cells without having to consider the problem of correct assembly; the disadvantage is that because there is no antibody Fc segment, the molecular weight is lower, which leads to a shorter half-life, and this form of double antibody It is extremely easy to polymerize, has poor stability and low expression, so its clinical application is limited.
  • Such bispecific antibodies that have been reported so far include BiTE, DART, TrandAbs, bi-Nanobody and so on.
  • bispecific antibodies retains the Fc domain.
  • Such double antibodies form an IgG-like structure with a larger molecular structure, and the endocytosis and recycling processes mediated by FcRn have a longer half-life; while retaining some or all of the effector functions mediated by Fc, Such as antibody-dependent cell-mediated cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC) and antibody-dependent cell phagocytosis (ADCP).
  • ADCC antibody-dependent cell-mediated cytotoxicity
  • CDC complement-dependent cytotoxicity
  • ADCP antibody-dependent cell phagocytosis
  • Such bispecific antibodies that have been reported so far include Triomabs, kih IgG, Cross-mab, orthoFab IgG, DVD IgG, IgG scFv, scFv 2 -Fc and so on.
  • anti-CD3 bispecific antibodies except for TandAb and scFv-Fv-scFv configurations, the design of other anti-CD3 bispecific antibodies widely uses monovalent anti-CD3 forms, mainly because bivalent anti-CD3 bispecific antibodies are easy It leads to excessive activation and induces T cell apoptosis and the instantaneous release of a large number of cytokines (Kuhn C et al., Immunotherapy, 8: 889-906, 2016), and more seriously, it may also trigger the activation of T cells in an antigen-independent manner. Break the immune balance. Therefore, the anti-CD3 bispecific antibodies in the prior art mostly avoid the introduction of bivalent anti-CD3 antibodies.
  • the bispecific antibodies of triFab-Fc, DART-Fc and BiTE-Fc configurations all adopt an asymmetric design (i.e. different Source dimer type double antibody) (Z Wu et al., Pharmacology and Therapeutics, 182: 161-175, 2018), but this brings many challenges to its downstream production, such as the production of undesirable homodimers or faults
  • the matching impurity molecules increase the difficulty of double antibody expression and purification.
  • knock-into-holes technology solves the problem of heavy chain mismatch between heterodimeric diabody molecules to a certain extent, "light chain / heavy chain mismatch” brings another challenge. .
  • One strategy to prevent heavy-light chain mismatch is to exchange the light chain of one of the Fab of the bispecific antibody and the partial domain of the heavy chain to form a Crossmab (hybrid antibody).
  • This method can allow light chain / heavy chain Selective pairing between chains.
  • the disadvantage of these methods is that the generation of mismatch products cannot be completely eliminated, and the residual fractions of any mismatch molecules are difficult to separate from the products, and this method requires a large number of genetic engineering modifications such as mutations for the two antibody sequences. , Can not achieve simple and universal purpose.
  • bispecific antibodies with CD3-specific IgG-like structures due to their Fc ⁇ R binding ability, it may lead to unlimited long-term T cell activation, and this activation is non-target cell-restricted, whether or not it binds to the target antigen
  • FcyR for example, in hematopoietic, lymphatic, and reticuloendothelial systems
  • activated T cells are found. This systemic activation of T cells will be accompanied by a large amount of cytokine release, which is a serious adverse reaction during the therapeutic application of T cell activation cytokines or antibodies.
  • the purpose of the present invention is to provide a tetravalent, homodimeric bispecific antibody molecule targeting immune effector cell antigen CD3 and tumor-associated antigen (Tumor-Associated Antigen, TAA), which can be used in vivo Significantly inhibit or kill tumor cells, but the non-specific killing effect on normal cells with low expression of TAA is significantly reduced, and at the same time it has the control of toxic and side effects that may be caused by excessive activation of effector cells, and its physical and chemical and in vivo stability are significantly improved.
  • TAA tumor-associated Antigen
  • a bispecific antibody is provided.
  • the bispecific antibody molecule is composed of two identical polypeptide chains covalently bonded to form a tetravalent homodimer, each polypeptide chain extending from the N-terminus to The C-terminus contains a first single-chain Fv (anti-TAA scFv) that specifically binds to a tumor-associated antigen, a second single-chain Fv (anti-CD3 scFv) that specifically binds to effector cell antigen CD3, and an Fc fragment;
  • the second single-chain Fv is connected through a connecting peptide, and the second single-chain Fv is directly connected to the Fc fragment or through the connecting peptide, and the Fc fragment does not have an effector function.
  • the first single-chain Fv is specific for tumor-associated antigens, and the VH and VL domains contained therein are connected by a linking peptide (L1), and the VH, L1, and VL are VH-L1-VL or VL-
  • L1-VH is arranged, and the amino acid sequence of the connecting peptide L1 is (GGGGX) n , X includes Ser or Ala, X is preferably Ser; n is a natural number of 1-5, n is preferably 3;
  • the tumor-associated antigens include but are not limited to: CD19, CD20, CD22, CD25, CD30, CD33, CD38, CD39, CD40, CD47, CD52, CD73, CD74, CD123, CD133, CD138, BCMA, CA125, CEA, CS1, DLL3, DLL4, EGFR, EpCAM, FLT3, gpA33, GPC-3, Her2, MEGE-A3, NYESO1, PSMA, TAG-72, CIX, folate binding protein, GD2, GD3, GM2, VEGF, VEGFR2, VEGFR3, Cadherin, Integrin, Mesothelin, Claudin18, ⁇ V ⁇ 3, ⁇ 5 ⁇ 1, ERBB3, c-MET, IGF1R, EPHA3, TRAILR1, TRAILR2, RANKL, B7 protein family, Mucin family, Mucin, FAP and Tenascin; preferably, the tumor-associated antigens are CD19, CD20, CD22,
  • Table 6-1 of the present invention exemplifies the amino acid sequences of some preferred VH domains and complementarity determining regions (HCDR1, HCDR2, and HCDR3) of the first single-chain Fv against tumor-associated antigens, and VL The amino acid sequence of the domain and its complementarity determining regions (LCDR1, LCDR2, and LCDR3).
  • the first single-chain Fv specifically binds to CD19, which is selected from the group consisting of:
  • the HCDR1, HCDR2, and HCDR3 contained in the VH domain are shown in SEQ ID NO: 9, 10, and 11, respectively, or are substantially the same as any of the above sequences (eg, at least 80%, 85%, 90%, 92 %, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g.
  • VL domain contains LCDR1, LCDR2 and LCDR3 respectively As shown in SEQ ID NO: 12, 13 and 14, or substantially the same as any of the above sequences (eg at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or Sequences that are more highly similar or have one or more amino acid substitutions (eg, conservative substitutions));
  • HCDR1, HCDR2, and HCDR3 contained in the VH domain are shown in SEQ ID NOs: 17, 18, and 19, respectively, or are substantially the same as any of the above sequences (eg, at least 80%, 85%, 90%, 92 %, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g.
  • VL domain contains LCDR1, LCDR2 and LCDR3 respectively As shown in SEQ ID NO: 20, 21 and 22, or substantially the same as any of the above sequences (eg at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or Sequences that are more highly similar or have one or more amino acid substitutions (eg, conservative substitutions));
  • HCDR1, HCDR2, and HCDR3 contained in the VH domain are shown in SEQ ID NOs: 25, 26, and 27, respectively, or are substantially the same as any of the above sequences (eg, at least 80%, 85%, 90%, 92 %, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g.
  • VL domain contains LCDR1, LCDR2 and LCDR3 respectively As shown in SEQ ID NO: 28, 29 and 30, or substantially the same as any of the above sequences (eg at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or Sequences that are more highly similar or have one or more amino acid substitutions (eg, conservative substitutions));
  • the HCDR1, HCDR2, and HCDR3 contained in the VH domain are shown in SEQ ID NOs: 33, 34, and 35, respectively, or are substantially the same as any of the above sequences (eg, at least 80%, 85%, 90%, 92 %, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g.
  • VL domain contains LCDR1, LCDR2 and LCDR3 respectively As shown in SEQ ID NO: 36, 37 and 38, or substantially the same as any of the above sequences (eg at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or Sequences that are more highly similar or have one or more amino acid substitutions (eg, conservative substitutions).
  • the first single-chain Fv specifically binds to CD20, which is selected from the group consisting of:
  • the HCDR1, HCDR2, and HCDR3 contained in the VH domain are shown in SEQ ID NOs: 41, 42, and 43, respectively, or are substantially the same as any of the above sequences (eg, at least 80%, 85%, 90%, 92 %, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g.
  • VL domain contains LCDR1, LCDR2 and LCDR3 respectively As shown in SEQ ID NO: 44, 45 and 46, or substantially the same as any of the above sequences (eg at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or Sequences that are more highly similar or have one or more amino acid substitutions (eg, conservative substitutions));
  • HCDR1, HCDR2 and HCDR3 contained in the VH domain are shown in SEQ ID NOs: 49, 50 and 51, respectively, or are substantially the same as any of the above sequences (eg at least 80%, 85%, 90%, 92 %, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g.
  • VL domain contains LCDR1, LCDR2 and LCDR3 respectively As shown in SEQ ID NO: 52, 53, and 54, or substantially the same as any of the above sequences (eg at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or Sequences that are more highly similar or have one or more amino acid substitutions (eg, conservative substitutions));
  • HCDR1, HCDR2, and HCDR3 contained in the VH domain are shown in SEQ ID NOs: 57, 58, and 59, respectively, or are substantially the same as any of the above sequences (eg, at least 80%, 85%, 90%, 92 %, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g.
  • VL domain contains LCDR1, LCDR2 and LCDR3 respectively As shown in SEQ ID NO: 60, 61 and 62, or substantially the same as any of the above sequences (eg at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or Sequences that are more highly similar or have one or more amino acid substitutions (eg, conservative substitutions));
  • the HCDR1, HCDR2, and HCDR3 contained in the VH domain are shown in SEQ ID NOs: 65, 66, and 67, respectively, or are substantially the same as any of the above sequences (eg, at least 80%, 85%, 90%, 92 %, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g.
  • VL domain contains LCDR1, LCDR2 and LCDR3 respectively As shown in SEQ ID NO: 68, 69 and 70, or substantially the same as any of the above sequences (eg at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or Sequences that are more highly similar or have one or more amino acid substitutions (eg, conservative substitutions).
  • the first single-chain Fv specifically binds to CD22, which is selected from the group consisting of:
  • the HCDR1, HCDR2, and HCDR3 contained in the VH domain are shown in SEQ ID NOs: 73, 74, and 75, respectively, or are substantially the same as any of the above sequences (eg, at least 80%, 85%, 90%, 92 %, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g.
  • VL domain contains LCDR1, LCDR2 and LCDR3 respectively As shown in SEQ ID NO: 76, 77 and 78, or substantially the same as any of the above sequences (eg at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or Sequences that are more highly similar or have one or more amino acid substitutions (eg, conservative substitutions));
  • HCDR1, HCDR2, and HCDR3 contained in the VH domain are shown in SEQ ID NOs: 81, 82, and 83, respectively, or are substantially the same as any of the above sequences (eg, at least 80%, 85%, 90%, 92 %, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g.
  • VL domain contains LCDR1, LCDR2 and LCDR3 respectively As shown in SEQ ID NO: 84, 85 and 86, or substantially the same as any of the above sequences (eg at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or Sequences that are more highly similar or have one or more amino acid substitutions (eg, conservative substitutions).
  • the first single-chain Fv specifically binds to CD30, which is selected from the group consisting of:
  • the HCDR1, HCDR2, and HCDR3 contained in the VH domain are shown in SEQ ID NO: 89, 90, and 91, respectively, or are substantially the same as any of the above sequences (eg, at least 80%, 85%, 90%, 92 %, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g.
  • VL domain contains LCDR1, LCDR2 and LCDR3 respectively As shown in SEQ ID NO: 92, 93 and 94, or substantially the same as any of the above sequences (eg at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or Sequences that are more highly similar or have one or more amino acid substitutions (eg, conservative substitutions));
  • HCDR1, HCDR2, and HCDR3 contained in the VH domain are shown in SEQ ID NO: 97, 98, and 99, respectively, or are substantially the same as any of the above sequences (eg, at least 80%, 85%, 90%, 92 %, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g.
  • VL domain contains LCDR1, LCDR2 and LCDR3 respectively As shown in SEQ ID NO: 100, 101 and 102, or substantially the same as any of the above sequences (eg at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or Sequences that are more highly similar or have one or more amino acid substitutions (eg, conservative substitutions).
  • the first single-chain Fv specifically binds EpCAM, which is selected from the group consisting of:
  • the HCDR1, HCDR2, and HCDR3 contained in the VH domain are shown in SEQ ID NOs: 105, 106, and 107, respectively, or are substantially the same as any of the above sequences (eg, at least 80%, 85%, 90%, 92 %, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g.
  • VL domain contains LCDR1, LCDR2 and LCDR3 respectively As shown in SEQ ID NO: 108, 109 and 110, or substantially the same as any of the above sequences (eg at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or Sequences that are more highly similar or have one or more amino acid substitutions (eg, conservative substitutions));
  • HCDR1, HCDR2 and HCDR3 contained in the VH domain are shown in SEQ ID NOs: 113, 114 and 115, respectively, or are substantially the same as any of the above sequences (eg at least 80%, 85%, 90%, 92 %, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g.
  • VL domain contains LCDR1, LCDR2 and LCDR3 respectively As shown in SEQ ID NO: 116, 117 and 118, or substantially the same as any of the above sequences (eg at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or Sequences that are more highly similar or have one or more amino acid substitutions (eg, conservative substitutions).
  • the first single-chain Fv specifically binds to CEA, which is selected from the group consisting of:
  • the HCDR1, HCDR2, and HCDR3 contained in the VH domain are shown in SEQ ID NO: 121, 122, and 123, respectively, or are substantially the same as any of the above sequences (eg, at least 80%, 85%, 90%, 92 %, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g.
  • VL domain contains LCDR1, LCDR2 and LCDR3 respectively As shown in SEQ ID NO: 124, 125 and 126, or substantially the same as any of the above sequences (eg at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or Sequences that are more highly similar or have one or more amino acid substitutions (eg, conservative substitutions));
  • HCDR1, HCDR2, and HCDR3 contained in the VH domain are shown in SEQ ID NOs: 129, 130, and 131, respectively, or are substantially the same as any of the above sequences (eg, at least 80%, 85%, 90%, 92 %, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g.
  • VL domain contains LCDR1, LCDR2 and LCDR3 respectively As shown in SEQ ID NO: 132, 133 and 134, or substantially the same as any of the above sequences (eg at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or Sequences that are more highly similar or have one or more amino acid substitutions (eg, conservative substitutions));
  • HCDR1, HCDR2, and HCDR3 contained in the VH domain are shown in SEQ ID NO: 137, 138, and 139, respectively, or are substantially the same as any of the above sequences (eg, at least 80%, 85%, 90%, 92 %, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g.
  • VL domain contains LCDR1, LCDR2 and LCDR3 respectively As shown in SEQ ID NO: 140, 141 and 142, or substantially the same as any of the above sequences (eg at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or Sequences that are more highly similar or have one or more amino acid substitutions (eg, conservative substitutions).
  • the first single-chain Fv specifically binds Her2, which is selected from the group consisting of:
  • the HCDR1, HCDR2, and HCDR3 contained in the VH domain are shown in SEQ ID NOs: 145, 146, and 147, respectively, or are substantially the same as any of the above sequences (eg, at least 80%, 85%, 90%, 92 %, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g.
  • VL domain contains LCDR1, LCDR2 and LCDR3 respectively As shown in SEQ ID NO: 148, 149 and 150, or substantially the same as any of the above sequences (eg at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or Sequences that are more highly similar or have one or more amino acid substitutions (eg, conservative substitutions));
  • HCDR1, HCDR2, and HCDR3 contained in the VH domain are shown in SEQ ID NOs: 153, 154, and 155, respectively, or are substantially the same as any of the above sequences (eg, at least 80%, 85%, 90%, 92 %, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g.
  • VL domain contains LCDR1, LCDR2 and LCDR3 respectively As shown in SEQ ID NO: 156, 157 and 158, or substantially the same as any of the above sequences (eg at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or Sequences that are more highly similar or have one or more amino acid substitutions (eg, conservative substitutions));
  • HCDR1, HCDR2, and HCDR3 contained in the VH domain are shown in SEQ ID NOs: 161, 162, and 163, respectively, or are substantially the same as any of the above sequences (eg, at least 80%, 85%, 90%, 92 %, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g.
  • VL domain contains LCDR1, LCDR2 and LCDR3 respectively As shown in SEQ ID NO: 164, 165 and 166, or substantially the same as any of the above sequences (eg at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or Sequences that are more highly similar or have one or more amino acid substitutions (eg, conservative substitutions).
  • the first single-chain Fv specifically binds EGFR, which is selected from the group consisting of:
  • the HCDR1, HCDR2, and HCDR3 contained in the VH domain are shown in SEQ ID NOs: 169, 170, and 171, respectively, or are substantially the same as any of the above sequences (eg, at least 80%, 85%, 90%, 92 %, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g.
  • VL domain contains LCDR1, LCDR2 and LCDR3 respectively As shown in SEQ ID NO: 172, 173 and 174, or substantially the same as any of the above sequences (eg at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or Sequences that are more highly similar or have one or more amino acid substitutions (eg, conservative substitutions));
  • HCDR1, HCDR2, and HCDR3 contained in the VH domain are shown in SEQ ID NOs: 177, 178, and 179, respectively, or are substantially the same as any of the above sequences (eg, at least 80%, 85%, 90%, 92 %, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g.
  • VL domain contains LCDR1, LCDR2 and LCDR3 respectively As shown in SEQ ID NO: 180, 181 and 182, or substantially the same as any of the above sequences (eg at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or Sequences that are more highly similar or have one or more amino acid substitutions (eg, conservative substitutions));
  • HCDR1, HCDR2, and HCDR3 contained in the VH domain are shown in SEQ ID NOs: 185, 186, and 187, respectively, or are substantially the same as any of the above sequences (eg, at least 80%, 85%, 90%, 92 %, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g.
  • VL domain contains LCDR1, LCDR2 and LCDR3 respectively As shown in SEQ ID NO: 188, 189 and 190, or substantially the same as any of the above sequences (eg at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or Sequences that are more highly similar or have one or more amino acid substitutions (eg, conservative substitutions).
  • the first single-chain Fv specifically binds to GPC-3, and the HCDR1, HCDR2, and HCDR3 contained in the VH domain thereof are shown in SEQ ID NOs: 193, 194, and 195, respectively, or are substantially the same as any of the above sequences Are identical (e.g. at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or have one or more amino acid substitutions (e.g.
  • the first single-chain Fv specifically binds Mesothelin
  • the HCDR1, HCDR2, and HCDR3 contained in the VH domain thereof are shown in SEQ ID NOs: 201, 202, and 203, respectively, or are substantially the same as any of the above sequences (For example, a sequence of at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (eg, conservative substitutions));
  • the LCDR1, LCDR2, and LCDR3 contained in the VL domain are shown in SEQ ID NO: 204, 205, and 206, respectively, or are substantially the same as any of the above sequences (eg, at least 80%, 85%, 90%, 92% , 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (eg, conservative substitutions)).
  • the first single-chain Fv specifically binds Mucin1, which is selected from the group consisting of:
  • the HCDR1, HCDR2, and HCDR3 contained in the VH domain are shown in SEQ ID NOs: 209, 210, and 211, respectively, or are substantially the same as any of the above sequences (eg, at least 80%, 85%, 90%, 92 %, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g.
  • VL domain contains LCDR1, LCDR2 and LCDR3 respectively As shown in SEQ ID NO: 212, 213 and 214, or substantially the same as any of the above sequences (eg at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or Sequences that are more highly similar or have one or more amino acid substitutions (eg, conservative substitutions));
  • HCDR1, HCDR2, and HCDR3 contained in the VH domain are shown in SEQ ID NOs: 217, 218, and 219, respectively, or are substantially the same as any of the above sequences (eg, at least 80%, 85%, 90%, 92 %, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g.
  • VL domain contains LCDR1, LCDR2 and LCDR3 respectively As shown in SEQ ID NO: 220, 221 and 222, or substantially the same as any of the above sequences (eg at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or Sequences that are more highly similar or have one or more amino acid substitutions (eg, conservative substitutions).
  • the first single-chain Fv specifically binds to CA125, and its VH domain contains HCDR1, HCDR2, and HCDR3 as shown in SEQ ID NO: 225, 226, and 227, respectively, or is substantially the same as any of the above sequences (For example, a sequence of at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (eg, conservative substitutions));
  • the LCDR1, LCDR2, and LCDR3 contained in the VL domain are shown in SEQ ID NOs: 228, 229, and 230, respectively, or are substantially the same as any of the above sequences (eg, at least 80%, 85%, 90%, 92% , 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (eg, conservative substitutions)).
  • the first single-chain Fv specifically binds BCMA
  • the HCDR1, HCDR2, and HCDR3 contained in the VH domain thereof are shown in SEQ ID NOs: 233, 234, and 235, respectively, or are substantially the same as any of the above sequences (For example, a sequence of at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (eg, conservative substitutions));
  • the LCDR1, LCDR2, and LCDR3 contained in the VL domain are shown in SEQ ID NOs: 236, 237, and 238, respectively, or are substantially the same as any of the above sequences (eg, at least 80%, 85%, 90%, 92% , 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (eg, conservative substitutions)).
  • the first single-chain Fv specifically binds to CD19, which is selected from the group consisting of:
  • the VH domain contains the amino acid sequence shown in SEQ ID NO: 15, or is substantially identical to any of the above sequences (eg, at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (eg, conservative substitutions)); and its VL domain contains the amino acid sequence shown in SEQ ID NO: 16, or the above Any of the sequences are substantially identical (e.g. at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or have one or more amino acid substitutions (e.g. conservative sexual substitution)) sequence;
  • the VH domain contains the amino acid sequence shown in SEQ ID NO: 23, or is substantially identical to any of the above sequences (eg, at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g. conservative substitutions)); and its VL domain contains the amino acid sequence shown in SEQ ID NO: 24, or the above Any of the sequences are substantially identical (e.g. at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or have one or more amino acid substitutions (e.g. conservative sexual substitution)) sequence;
  • the VH domain contains the amino acid sequence shown in SEQ ID NO: 31, or is substantially identical to any of the above sequences (eg, at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (eg, conservative substitutions)); and its VL domain contains the amino acid sequence shown in SEQ ID NO: 32, or the above Any of the sequences are substantially identical (e.g. at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or have one or more amino acid substitutions (e.g. conservative sexual substitution)) sequence;
  • the VH domain contains the amino acid sequence shown in SEQ ID NO: 39, or is substantially identical to any of the above sequences (eg, at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (for example, conservative substitutions)); and its VL domain contains the amino acid sequence shown in SEQ ID NO: 40, or the above Any of the sequences are substantially identical (e.g. at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or have one or more amino acid substitutions (e.g. conservative sexual substitution)) sequence.
  • the first single-chain Fv specifically binds CD20, which is selected from the group consisting of:
  • the VH domain contains the amino acid sequence shown in SEQ ID NO: 47, or is substantially identical to any of the above sequences (eg, at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g. conservative substitutions)); and its VL domain contains the amino acid sequence shown in SEQ ID NO: 48, or the above Any of the sequences are substantially identical (e.g. at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or have one or more amino acid substitutions (e.g. conservative sexual substitution)) sequence;
  • the VH domain contains the amino acid sequence shown in SEQ ID NO: 55, or is substantially identical to any of the above sequences (eg, at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g. conservative substitutions)); and its VL domain contains the amino acid sequence shown in SEQ ID NO: 56, or the above Any of the sequences are substantially identical (e.g. at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or have one or more amino acid substitutions (e.g. conservative sexual substitution)) sequence;
  • the VH domain contains the amino acid sequence shown in SEQ ID NO: 63, or is substantially identical to any of the above sequences (eg, at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (eg, conservative substitutions)); and its VL domain contains the amino acid sequence shown in SEQ ID NO: 64, or the above Any of the sequences are substantially identical (e.g. at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or have one or more amino acid substitutions (e.g. conservative sexual substitution)) sequence;
  • the VH domain contains the amino acid sequence shown in SEQ ID NO: 71, or is substantially identical to any of the above sequences (eg, at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (eg, conservative substitutions)); and its VL domain contains the amino acid sequence shown in SEQ ID NO: 72, or the above Any of the sequences are substantially identical (e.g. at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or have one or more amino acid substitutions (e.g. conservative sexual substitution)) sequence.
  • the first single-chain Fv specifically binds to CD22, which is selected from the group consisting of:
  • the VH domain contains the amino acid sequence shown in SEQ ID NO: 79, or is substantially identical to any of the above sequences (eg, at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (for example, conservative substitutions)); and its VL domain contains the amino acid sequence shown in SEQ ID NO: 80, or the above Any of the sequences are substantially identical (e.g. at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or have one or more amino acid substitutions (e.g. conservative sexual substitution)) sequence;
  • the VH domain contains the amino acid sequence shown in SEQ ID NO: 87, or is substantially identical to any of the above sequences (eg, at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (for example, conservative substitutions)); and its VL domain contains the amino acid sequence shown in SEQ ID NO: 88, or the above Any of the sequences are substantially identical (e.g. at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or have one or more amino acid substitutions (e.g. conservative Sexual substitution)) sequence.
  • the first single-chain Fv specifically binds to CD30, which is selected from the group consisting of:
  • the VH domain contains the amino acid sequence shown in SEQ ID NO: 95, or is substantially identical to any of the above sequences (eg, at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (eg, conservative substitutions)); and its VL domain contains the amino acid sequence shown in SEQ ID NO: 96, or the above Any of the sequences are substantially identical (e.g. at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or have one or more amino acid substitutions (e.g. conservative sexual substitution)) sequence;
  • the VH domain contains the amino acid sequence shown in SEQ ID NO: 103, or is substantially identical to any of the above sequences (eg, at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (eg, conservative substitutions)); and its VL domain contains the amino acid sequence shown in SEQ ID NO: 104, or the above Any of the sequences are substantially identical (e.g. at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or have one or more amino acid substitutions (e.g. conservative Sexual substitution)) sequence.
  • the first single-chain Fv specifically binds EpCAM, which is selected from the group consisting of:
  • the VH domain contains the amino acid sequence shown in SEQ ID NO: 111, or is substantially identical to any of the above sequences (eg, at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (for example, conservative substitutions)); and its VL domain contains the amino acid sequence shown in SEQ ID NO: 112, or the above Any of the sequences are substantially identical (e.g. at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or have one or more amino acid substitutions (e.g. conservative sexual substitution)) sequence;
  • the VH domain contains the amino acid sequence shown in SEQ ID NO: 119, or is substantially identical to any of the above sequences (for example, at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (such as conservative substitutions)); and its VL domain contains the amino acid sequence shown in SEQ ID NO: 120, or the above Any of the sequences are substantially identical (e.g. at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or have one or more amino acid substitutions (e.g. conservative Sexual substitution)) sequence.
  • the first single-chain Fv specifically binds to CEA, which is selected from the group consisting of:
  • the VH domain contains the amino acid sequence shown in SEQ ID NO: 127, or is substantially identical to any of the above sequences (eg, at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (eg, conservative substitutions)); and its VL domain contains the amino acid sequence shown in SEQ ID NO: 128, or the above Any of the sequences are substantially identical (e.g. at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or have one or more amino acid substitutions (e.g. conservative sexual substitution)) sequence;
  • the VH domain contains the amino acid sequence shown in SEQ ID NO: 135, or is substantially identical to any of the above sequences (eg, at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (for example, conservative substitutions)); and its VL domain contains the amino acid sequence shown in SEQ ID NO: 136, or the above Any of the sequences are substantially identical (e.g. at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or have one or more amino acid substitutions (e.g. conservative sexual substitution)) sequence;
  • the VH domain contains the amino acid sequence shown in SEQ ID NO: 143, or is substantially identical to any of the above sequences (eg, at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (for example, conservative substitutions)); and its VL domain contains the amino acid sequence shown in SEQ ID NO: 144, or the above Any of the sequences are substantially identical (e.g. at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or have one or more amino acid substitutions (e.g. conservative Sexual substitution)) sequence.
  • the first single-chain Fv specifically binds Her2, which is selected from the group consisting of:
  • the VH domain contains the amino acid sequence shown in SEQ ID NO: 151, or is substantially identical to any of the above sequences (eg, at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g. conservative substitutions)); and its VL domain contains the amino acid sequence shown in SEQ ID NO: 152, or the above Any of the sequences are substantially identical (e.g. at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or have one or more amino acid substitutions (e.g. conservative sexual substitution)) sequence;
  • the VH domain contains the amino acid sequence shown in SEQ ID NO: 159, or is substantially identical to any of the above sequences (for example, at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (such as conservative substitutions)); and its VL domain contains the amino acid sequence shown in SEQ ID NO: 160, or the above Any of the sequences are substantially identical (e.g. at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or have one or more amino acid substitutions (e.g. conservative sexual substitution)) sequence;
  • the VH domain contains the amino acid sequence shown in SEQ ID NO: 167, or is substantially identical to any of the above sequences (eg, at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (eg, conservative substitutions)); and its VL domain contains the amino acid sequence shown in SEQ ID NO: 168, or the above Any of the sequences are substantially identical (e.g. at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or have one or more amino acid substitutions (e.g. conservative Sexual substitution)) sequence.
  • the first single-chain Fv specifically binds EGFR, which is selected from the group consisting of:
  • the VH domain contains the amino acid sequence shown in SEQ ID NO: 175, or is substantially identical to any of the above sequences (eg, at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (eg, conservative substitutions)); and its VL domain contains the amino acid sequence shown in SEQ ID NO: 176, or the above Any of the sequences are substantially identical (e.g. at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or have one or more amino acid substitutions (e.g. conservative sexual substitution)) sequence;
  • the VH domain contains the amino acid sequence shown in SEQ ID NO: 183, or is substantially identical to any of the above sequences (eg, at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g. conservative substitutions)); and its VL domain contains the amino acid sequence shown in SEQ ID NO: 184, or the above Any of the sequences are substantially identical (e.g. at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or have one or more amino acid substitutions (e.g. conservative sexual substitution)) sequence;
  • the VH domain contains the amino acid sequence shown in SEQ ID NO: 191, or is substantially identical to any of the above sequences (eg, at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (for example, conservative substitutions)); and its VL domain contains the amino acid sequence shown in SEQ ID NO: 192, or the above Any of the sequences are substantially identical (e.g. at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or have one or more amino acid substitutions (e.g. conservative sexual substitution)) sequence.
  • the first single-chain Fv specifically binds GPC-3
  • the VH domain thereof includes the amino acid sequence shown in SEQ ID NO: 199, or is substantially the same as any of the above sequences (eg, at least 80% , 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (eg conservative substitutions)); and its VL domain Contains the amino acid sequence shown in SEQ ID NO: 200, or is substantially the same as any of the above sequences (eg at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or Sequences that are more highly similar or have one or more amino acid substitutions (eg, conservative substitutions).
  • the first single-chain Fv specifically binds Mesothelin
  • its VH domain contains the amino acid sequence shown in SEQ ID NO: 207, or is substantially the same as any of the above sequences (eg, at least 80%, 85 %, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g., conservative substitutions)); and its VL domain contains such as SEQ ID NO:
  • the first single-chain Fv specifically binds Mucin1, which is selected from the group consisting of:
  • the VH domain contains the amino acid sequence shown in SEQ ID NO: 215, or is substantially identical to any of the above sequences (eg, at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g. conservative substitutions)); and its VL domain contains the amino acid sequence shown in SEQ ID NO: 216, or the above Any of the sequences are substantially identical (e.g. at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or have one or more amino acid substitutions (e.g. conservative sexual substitution)) sequence;
  • the VH domain contains the amino acid sequence shown in SEQ ID NO: 223, or is substantially identical to any of the above sequences (eg, at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g. conservative substitutions)); and its VL domain contains the amino acid sequence shown in SEQ ID NO: 224, or the above Any of the sequences are substantially identical (e.g. at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or have one or more amino acid substitutions (e.g. conservative sexual substitution)) sequence.
  • the first single-chain Fv specifically binds to CA125, and its VH domain contains the amino acid sequence shown in SEQ ID NO: 231, or is substantially the same as any of the above sequences (eg, at least 80%, 85 %, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g., conservative substitutions)); and its VL domain contains such as SEQ ID NO: Amino acid sequence shown in 232, or substantially the same as any of the above sequences (eg at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more) Sequences that are similar or have one or more amino acid substitutions (eg, conservative substitutions).
  • the first single-chain Fv specifically binds to BCMA
  • the VH domain thereof includes the amino acid sequence shown in SEQ ID NO: 239, or is substantially the same as any of the above sequences (eg, at least 80%, 85 %, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g., conservative substitutions)); and its VL domain contains such as SEQ ID NO: the amino acid sequence shown in 240, or substantially the same as any of the above sequences (eg at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more) Sequences that are similar or have one or more amino acid substitutions (eg, conservative substitutions).
  • the connecting peptide (L2) connecting the first single-chain Fv and the second single-chain Fv of the present invention is composed of a flexible peptide and a rigid peptide.
  • the flexible peptide contains 2 or more amino acids, and is preferably selected from the following amino acids: Gly (G), Ser (S), Ala (A), and Thr (T). More preferably, the flexible peptide contains G and S residues.
  • the structural formula of the amino acid composition of the flexible peptide is G x S y (GGGGS) z , where x, y and z are integers greater than or equal to 0, and x + y + z ⁇ 1.
  • the amino acid sequence of the flexible peptide is G 2 (GGGGS) 3 .
  • the rigid peptide is derived from the full-length sequence consisting of amino acids 118 to 145 of the carboxy terminus of the natural human chorionic gonadotropin ⁇ subunit (as shown in SEQ ID NO: 257) or a truncated fragment thereof (hereinafter collectively referred to as For CTP).
  • the CTP rigid peptide comprises 10 amino acids at the N-terminus of SEQ ID NO: 257, namely SSSSKAPPPS (CTP 1 ); or the CTP rigid peptide comprises 14 amino acids at the C-terminus of SEQ ID NO: 257, namely SRLPGPSDTPILPQ (CTP 2 );
  • the CTP rigid peptide includes 16 amino acids at the N-terminus of SEQ ID NO: 257, that is, SSSSKAPPPSLPSPSR (CTP 3 ); in another embodiment, the CTP rigid peptide includes 28 amino acids It starts at the 118th position of human chorionic gonadotropin ⁇ subunit and ends at the 145th position, namely SSSSKAPPPSLPSPSRLPGPSDTPILPQ (CTP 4 ).
  • Table 6-3 of the present invention exemplifies some preferred amino acid sequences of the connecting peptide L2 connecting the first and second single chain Fv.
  • the amino acid sequence of the connecting peptide is shown in SEQ ID NO: 258, the amino acid composition of its flexible peptide is G 2 (GGGGS) 3 , and the amino acid composition of its rigid peptide is SSSSKAPPPS ( That is CTP 1 ).
  • the second single-chain Fv is specific for the immune effector cell antigen CD3, and the VH domain and the VL domain contained therein are connected by a connecting peptide (L3), and the VH, L3, and VL are VH-L3-VL or The sequence of VL-L3-VH is arranged, and the amino acid sequence of the connecting peptide L3 is (GGGGX) n , X includes Ser or Ala, X is preferably Ser; n is a natural number of 1-5, n is preferably 3;
  • the second single-chain Fv of the bispecific antibody binds to effector cells with an EC 50 value of greater than about 50 nM, or greater than 100 nM, or greater than 300 nM, or greater than 500 nM in an in vitro FACS binding analysis assay; more preferably
  • the second single chain Fv of the bispecific antibody can not only bind to human CD3, but also specifically bind to CD3 of cynomolgus monkey or rhesus monkey.
  • the bispecific antibody specifically binds to effector cells with an EC 50 value of 132.3 nM.
  • Table 6-2 of the present invention exemplifies the amino acid sequences of some preferred anti-CD3 scFv VH domains and their complementarity determining regions (HCDR1, HCDR2 and HCDR3), and VL domains and their complementarity determining The amino acid sequence of the regions (LCDR1, LCDR2 and LCDR3).
  • the second single-chain Fv specifically binds to CD3, and the VH domain contains HCDR1, HCDR2, and HCDR3 as shown in SEQ ID NO: 241, 242, and 243, respectively, or is substantially the same as any of the above sequences (For example, a sequence of at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (eg, conservative substitutions));
  • the LCDR1, LCDR2, and LCDR3 contained in the VL domain are shown in SEQ ID NO: 244, 245, and 246, respectively, or are substantially the same as any of the above sequences (eg, at least 80%, 85%, 90%, 92% , 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (eg, conservative substitutions)).
  • the second single-chain Fv specifically binds CD3, and the VH domain contains HCDR1, HCDR2, and HCDR3 as shown in SEQ ID NO: 249, 250, and 251, respectively, or is substantially the same as any of the above sequences (For example, a sequence of at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (eg, conservative substitutions));
  • the LCDR1, LCDR2, and LCDR3 contained in the VL domain are shown in SEQ ID NOs: 252, 253, and 254, respectively, or are substantially the same as any of the above sequences (eg, at least 80%, 85%, 90%, 92% , 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (eg, conservative substitutions)).
  • the second single-chain Fv specifically binds to CD3, and the VH domain thereof includes the amino acid sequence shown in SEQ ID NO: 247, or is substantially the same as any of the above sequences (eg, at least 80%, 85 %, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g., conservative substitutions)); and its VL domain contains such as SEQ ID NO: the amino acid sequence shown in 248, or substantially the same as any of the above sequences (eg at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more) Sequences that are similar or have one or more amino acid substitutions (eg, conservative substitutions).
  • the second single-chain Fv specifically binds to CD3, and the VH domain thereof includes the amino acid sequence shown in SEQ ID NO: 255, or is substantially the same as any of the above sequences (eg, at least 80%, 85 %, 90%, 92%, 95%, 97%, 98%, 99% or more highly similar or having one or more amino acid substitutions (e.g., conservative substitutions)); and its VL domain contains such as SEQ ID NO: the amino acid sequence shown in 256, or substantially the same as any of the above sequences (eg at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more) Sequences that are similar or have one or more amino acid substitutions (eg, conservative substitutions).
  • the Fc fragment is directly connected to the second single-chain Fv.
  • the Fc fragment of the present invention comprises a hinge region derived from the constant region of a human immunoglobulin heavy chain, CH2 and CH3 domains.
  • the Fc fragment of the present invention is derived from, for example, selected Heavy chain constant regions from human IgG1, IgG2, IgG3, IgG4, IgM, IgA1, IgA2, IgD, and IgE; specifically selected from, for example, human IgG1, IgG2, IgG3, and IgG4 heavy chain constant regions, and more particularly from human The heavy chain constant region of IgG1 or IgG4; and, the Fc fragment has one or more amino acid substitutions, deletions, or additions compared to the natural sequence from which it is derived (eg, up to 20, up to 15, up to 10 , Or up to 5 substitutions, deletions or additions).
  • the Fc fragment is altered, for example, mutated, to modify the properties of the bispecific antibody molecule of the invention (eg, alter one or more of the following characteristics: Fc receptor binding, antibody Glycosylation, effector cell function or complement function).
  • the bispecific antibodies provided by the present invention comprise Fc variants having amino acid substitutions, deletions, or additions with altered effector functions (eg, reduction or elimination).
  • the Fc region of an antibody mediates several important effector functions, such as ADCC, ADCP, and CDC.
  • Methods for changing the affinity of an antibody to effector ligands (such as Fc ⁇ R or complement C1q) by replacing amino acid residues in the Fc region of an antibody, thereby changing the effector function are known in the art (see, for example, EP 388,151A1 ; US564,8260; US562,4821; Natsume A, etc., Cancer Res., 68: 3863-3872, 2008; Idusogie EE, etc., J.
  • amino acid L235 (EU numbering) on the constant region of the antibody is modified to alter the Fc receptor interaction, such as L235E or L235A.
  • amino acids 234 and 235 on the constant region of the antibody are modified simultaneously, such as L234A and L235A (L234A / L235A) (EU numbering).
  • the bispecific antibodies provided by the present invention may include Fc variants with amino acid substitutions, deletions, or additions that have an extended circulating half-life.
  • Fc variants with amino acid substitutions, deletions, or additions that have an extended circulating half-life.
  • M252Y / S254T / T256E, M428L / N434S or T250Q / M428L can extend the half-life of antibodies in primates.
  • More mutation sites included in Fc variants with enhanced binding affinity to neonatal receptors (FcRn) can be found in Chinese invention patents CN 201280066663.2, US 2005 / 0014934A1, WO 97/43316, US 5,869,046, US 5,747,03, WO 96/32478.
  • amino acid M428 (EU numbering) on the antibody constant region is modified to enhance the binding affinity of the FcRn receptor, such as M428L.
  • amino acids 250 and 428 (EU numbering) on the constant region of the antibody are modified simultaneously, such as T250Q and M428L (T250Q / M428L).
  • the bispecific antibodies provided by the present invention may also include Fc variants having amino acid substitutions, deletions, or additions that can reduce or eliminate Fc glycosylation.
  • Fc variants contain reduced glycosylation of N-linked glycans normally present at amino acid position 297 (EU numbering).
  • EU numbering amino acid position 297
  • the glycosylation at position N297 has a great influence on the activity of IgG. If the glycosylation at this site is removed, it will affect the conformation of the upper half of CH2 of the IgG molecule, thereby losing the binding ability to Fc ⁇ Rs and affecting antibody-related organisms. active.
  • the amino acid N297 (EU numbering) on the human IgG constant region is modified to avoid glycosylation of the antibody, such as N297A.
  • the bispecific antibodies provided by the present invention may also include Fc variants with amino acid substitutions, deletions, or additions that eliminate charge heterogeneity.
  • Fc variants with amino acid substitutions, deletions, or additions that eliminate charge heterogeneity.
  • Various post-translational modifications that occur during the expression of engineered cells can cause charge heterogeneity in monoclonal antibodies, and the heterogeneity of lysine at the C-terminus of IgG antibodies is one of the main reasons. Lysine at the C-terminus of heavy chains Acid K may be lost in a certain proportion during antibody production, resulting in charge heterogeneity, which affects the stability, effectiveness, immunogenicity or pharmacokinetics of the antibody.
  • K447 (EU numbering) at the C-terminus of the IgG antibody is removed or deleted to eliminate the charge heterogeneity of the antibody and improve the uniformity of the expressed product.
  • the amino acid sequences of some preferred Fc fragments are exemplified in Table 6-4 of the present invention.
  • the Fc fragment contained in the bispecific antibody provided by the present invention shows reduced affinity for at least one of human Fc ⁇ Rs (Fc ⁇ RI, Fc ⁇ RIIa, or Fc ⁇ RIIIa) and C1q , With reduced effector cell function or complement function.
  • the Fc fragment contained in the bispecific antibody is derived from human IgG1 and has L234A and L235A substitutions (L234A / L235A), showing reduced binding ability to Fc ⁇ RI; in addition, the present invention provides
  • the Fc fragment contained in the bispecific antibody may also contain amino acid substitutions that have altered one or several other characteristics (eg, the ability to bind to the FcRn receptor, antibody glycosylation or antibody charge heterogeneity, etc.).
  • the amino acid sequence of the Fc fragment is shown in SEQ ID NO: 263, which has L234A / L235A / T250Q / N297A / P331S / M428L compared to the natural sequence from which it was derived Amino acid substitutions or substitutions, and K447 was deleted or deleted.
  • the bispecific antibody molecule of the present invention is composed of two identical polypeptide chains joined by an interchain disulfide bond in the hinge region of the Fc fragment to form a tetravalent homodimer, and each polypeptide chain is sequentially from the N-terminus to the C-terminus.
  • -TAA scFv, connecting peptide, anti-CD3 scFv and Fc fragments; for example, the amino acid sequences of some preferred bispecific antibodies are exemplified in Table 6-5 of the present invention.
  • the bispecific antibody binds to human CD19 and CD3, and its amino acid sequence is as follows:
  • sequence shown in SEQ ID NO: 264 has at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, A sequence of at least 97%, at least 98%, at least 99%, or 100% sequence identity;
  • substitutions described in (ii) are conservative substitutions.
  • the bispecific antibody binds to human CD19 and CD3, and its amino acid sequence is as follows:
  • substitutions described in (ii) are conservative substitutions.
  • the bispecific antibody binds to human CD20 and CD3, and its amino acid sequence is as follows:
  • sequence shown in SEQ ID NO: 266 has at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, A sequence of at least 97%, at least 98%, at least 99%, or 100% sequence identity;
  • substitutions described in (ii) are conservative substitutions.
  • the bispecific antibody binds to human CD22 and CD3, and its amino acid sequence is as follows:
  • sequence shown in SEQ ID NO: 268 has at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, A sequence of at least 97%, at least 98%, at least 99%, or 100% sequence identity;
  • substitutions described in (ii) are conservative substitutions.
  • the bispecific antibody binds to human CD30 and CD3, and its amino acid sequence is as follows:
  • substitutions described in (ii) are conservative substitutions.
  • the bispecific antibody binds to human EpCAM and CD3, and its amino acid sequence is as follows:
  • sequence shown in SEQ ID NO: 272 has at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, A sequence of at least 97%, at least 98%, at least 99%, or 100% sequence identity;
  • substitutions described in (ii) are conservative substitutions.
  • the bispecific antibody binds to human CEA and CD3, and its amino acid sequence is as follows:
  • substitutions described in (ii) are conservative substitutions.
  • the bispecific antibody binds to human Her2 and CD3, and its amino acid sequence is as follows:
  • sequence shown in SEQ ID NO: 8 has at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, A sequence of at least 97%, at least 98%, at least 99%, or 100% sequence identity;
  • substitutions described in (ii) are conservative substitutions.
  • the bispecific antibody binds to human EGFR and CD3, and its amino acid sequence is as follows:
  • (iii) has at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96% with the sequence shown in SEQ ID NO: 277 A sequence of at least 97%, at least 98%, at least 99%, or 100% sequence identity;
  • substitutions described in (ii) are conservative substitutions.
  • the bispecific antibody binds to human GPC-3 and CD3, and its amino acid sequence is as follows:
  • substitutions described in (ii) are conservative substitutions.
  • the bispecific antibody binds to human Mesothelin and CD3, and its amino acid sequence is as follows:
  • substitutions described in (ii) are conservative substitutions.
  • the bispecific antibody binds to human Mucin1 and CD3, and its amino acid sequence is as follows:
  • substitutions described in (ii) are conservative substitutions.
  • a DNA molecule encoding the above-mentioned bispecific antibody is provided.
  • the DNA molecule encoding the bispecific antibody is represented by the nucleotide sequence shown in SEQ ID NO: 265.
  • the DNA molecule encoding the bispecific antibody is represented by the nucleotide sequence shown in SEQ ID NO: 267.
  • the DNA molecule encoding the bispecific antibody is represented by the nucleotide sequence shown in SEQ ID NO: 269.
  • the DNA molecule encoding the bispecific antibody is represented by the nucleotide sequence shown in SEQ ID NO: 271.
  • the DNA molecule encoding the bispecific antibody is represented by the nucleotide sequence shown in SEQ ID NO: 273.
  • the DNA molecule encoding the bispecific antibody is represented by the nucleotide sequence shown in SEQ ID NO: 275.
  • the DNA molecule encoding the bispecific antibody is represented by the nucleotide sequence shown in SEQ ID NO: 276.
  • the DNA molecule encoding the bispecific antibody is represented by the nucleotide sequence shown in SEQ ID NO: 278.
  • the DNA molecule encoding the bispecific antibody is represented by the nucleotide sequence shown in SEQ ID NO: 280.
  • the DNA molecule encoding the bispecific antibody is represented by the nucleotide sequence shown in SEQ ID NO: 282.
  • the DNA molecule encoding the bispecific antibody is represented by the nucleotide sequence shown in SEQ ID NO: 284.
  • the DNA molecule encoding the bispecific antibody is represented by the nucleotide sequence shown in SEQ ID NO: 286.
  • a vector comprising the above DNA molecule is provided.
  • a host cell comprising the above vector;
  • the host cell comprises prokaryotic cells, yeast or mammalian cells, such as CHO cells, NS0 cells or other mammalian cells, preferably CHO cells;
  • a pharmaceutical composition comprising the above bispecific antibody and a pharmaceutically acceptable excipient, carrier or diluent.
  • the sixth aspect of the present invention also provides a method for preparing the bispecific antibody of the present invention, which includes: (a) obtaining a fusion gene of the bispecific antibody and constructing an expression vector of the bispecific antibody; (b) by Genetic engineering methods transfect the above expression vector into host cells; (c) cultivate the above host cells under conditions allowing the production of the bispecific antibody; (d) isolate and purify the produced antibodies.
  • the expression vector in step (a) is selected from one or more of plasmids, bacteria and viruses, preferably, the expression vector is PCDNA3.1;
  • the constructed vector is transfected into a host cell by a genetic engineering method, and the host cell includes prokaryotic cells, yeast, or mammalian cells, such as CHO cells, NS0 cells, or other mammalian cells, preferably CHO cells.
  • the host cell includes prokaryotic cells, yeast, or mammalian cells, such as CHO cells, NS0 cells, or other mammalian cells, preferably CHO cells.
  • step (d) uses conventional immunoglobulin purification methods, including protein A affinity chromatography and ion exchange, hydrophobic chromatography or molecular sieve methods to separate and purify the bispecific antibody.
  • the seventh aspect of the present invention provides the use of the bispecific antibody in the preparation of drugs for treating, preventing or alleviating tumors;
  • examples of the cancer include but are not limited to mesothelioma, squamous cell tumor, myeloma, Osteosarcoma, glioblastoma, glioma, malignant epithelial tumor, adenocarcinoma, melanoma, sarcoma, acute and chronic leukemia, lymphoma and meningioma, Hodgkin's disease, Sezale's syndrome, multiple Myeloma, lung cancer, non-small cell lung cancer, small cell lung cancer, laryngeal cancer, breast cancer, head and neck cancer, bladder cancer, uterine cancer, skin cancer, prostate cancer, cervical cancer, vaginal cancer, gastric cancer, renal cell cancer, kidney cancer, Pancreatic cancer, colorectal cancer, endometrial cancer, esophageal cancer, hepatobili
  • a method for enhancing or stimulating an immune response or function of the bispecific antibody which comprises administering to the patient / subject individual a therapeutically effective amount of the bispecific antibody.
  • a method of using the bispecific antibody to treat a tumor, delay its progression, and reduce / suppress its recurrence which comprises administering or administering an effective amount of the bispecific antibody to the Individuals with the above diseases or conditions;
  • tumors include but are not limited to mesothelioma, squamous cell tumor, myeloma, osteosarcoma, glioblastoma, glioma, malignant epithelial tumor, adenocarcinoma , Melanoma, sarcoma, acute and chronic leukemia, lymphoma and meningioma, Hodgkin's disease, Sezale's syndrome, multiple myeloma, lung cancer, non-small cell lung cancer, small cell lung cancer, laryngeal cancer, breast cancer, Head and neck cancer, bladder cancer, uterine cancer, skin cancer, prostate cancer, cervical cancer, vaginal cancer, gastric cancer, renal cell
  • the anti-TAA scFv contained in the bispecific antibody provided by the present invention is located at the N-terminus of the dual antibody, the spatial conformation changes, and the binding ability with TAA may be weakened under certain conditions, especially difficult to bind weak or low expression Normal cells of TAA have reduced non-specific killing, but the binding specificity of cells overexpressing or highly expressing TAA has not decreased significantly, showing good killing effect in vivo.
  • the target antigen when the target antigen is only expressed on tumor cells or the bispecific antibody of the present invention only specifically binds to tumor cells overexpressing the target antigen, the immune effector cells are restricted to only within the target cell tissue Activation, which allows the non-specific killing of normal cells by the bispecific antibody and the accompanying release of cytokines can be minimized, reducing their toxic and side effects in clinical treatment.
  • the anti-CD3 scFv selected by the bispecific antibody provided by the present invention specifically binds to effector cells with weak binding affinity (EC 50 value greater than about 50 nM, or greater than 100 nM, or greater than 300 nM, or greater than 500 nM).
  • the CTP rigid peptide and the Fc fragment located at the C-terminus of the connecting peptide L3 at the N-terminus embedded in the anti-TAA scFv and Fc are partially "covered” or “shielded” by the anti-CD3 scFv antigen
  • the binding domain this steric hindrance effect makes it bind to CD3 with weaker binding affinity (eg, greater than 1 ⁇ M), which weakens the activation stimulation ability of T cells, thus limiting the excessive release of cytokines, so High safety;
  • the anti-CD3 scFv used in the present invention can simultaneously bind to the CD3 natural antigens of human and cynomolgus monkeys and / or rhesus monkeys, so that the preclinical toxicology evaluation does not require the construction of replacement molecules, and The effective dose, toxic dose and toxic side effects are more objective and accurate, and the clinical dose can be directly converted to reduce the risk of clinical research.
  • the bispecific antibody provided by the present invention creatively uses a bivalent anti-CD3 scFv, which makes the bispecific antibody circumvent the heterodimer type commonly used in the prior art in terms of configuration design (
  • the included anti-CD3 scFv is monovalent), so there is no problem of mismatch between heavy chains, which simplifies the downstream purification steps; and unexpectedly, no anti-CD3 scFv was observed in the in vitro cell binding assay Non-specific binding with T cells, and the degree of cell activation (release of IL-2 and other cytokines) is controlled within a safe and effective range, that is, the bivalent anti-CD3 scFv structure used in the present invention does not cause non-antigen-dependent Induces excessive activation of T cells, and for other bispecific antibodies containing bivalent anti-CD3 domains, it is common for T cells to be uncontrollably overactivated, so anti-CD3 bispecific antibodies are designed Generally avoid introducing divalent anti-CD3 structure.
  • the modified Fc fragment contained in the bispecific antibody provided by the present invention does not have Fc ⁇ R binding ability, avoiding systemic activation of T cells mediated by Fc ⁇ R, thus allowing immune effector cells to be restricted only to target cells Is activated within the organization.
  • the bispecific antibody provided by the present invention is a homodimer type, there is no problem of heavy chain and light chain mismatch, the downstream production process is stable, the purification step is simple and efficient, the expression product is uniform, and its physical and chemical and in vivo stability Have improved significantly.
  • the bispecific antibody provided by the present invention has a longer circulation half-life in vivo due to the inclusion of Fc fragments. Pharmacokinetic tests have shown that the circulation half-life in mice and cynomolgus monkeys is about 40h and 8h respectively, which will greatly Reduce its frequency of clinical administration.
  • FR antibody framework region the immunoglobulin variable region excluding the CDR region
  • V region IgG chain segment with variable sequence between different antibodies. It extends to Kabat residue 109 in the light chain and 113 residue in the heavy chain.
  • the scientific and technical terms used herein have the meaning commonly understood by those skilled in the art.
  • the antibodies or fragments thereof used in the present invention can be further modified by using conventional techniques known in the art, such as amino acid deletion, insertion, substitution, addition, and / or recombination, and / or other modification methods, alone or in combination. Methods for introducing such modifications in the DNA sequence of an antibody based on its amino acid sequence are well known to those skilled in the art; see, for example, Sambrook, Molecular Cloning: An Experimental Manual, Cold Spring Harbor Laboratory (1989) N.Y. The modifications referred to are preferably performed at the nucleic acid level. Meanwhile, in order to better understand the present invention, definitions and explanations of related terms are provided below.
  • CD19 is a differentiation cluster 19 polypeptide, a single channel type I transmembrane glycoprotein, which contains two Ig-like C2 type (immunoglobulin-like) domains and a relatively large cytoplasmic tail, in mammalian species Highly conservative. CD19 is expressed in almost all B lineage cells and follicular cells, is necessary for B lymphocyte differentiation, and functions as a key B cell co-receptor with CD21, CD81, and CD225. Therefore, CD19 is often used as a biodiagnostic marker for B-lymphocyte development, B-cell lymphoma, and B-lymphocytic leukemia. In addition, mutations in CD19 are associated with severe immunodeficiency syndrome.
  • the indications for the CD19 target also include other related diseases or conditions discovered in the prior art and discovered in the future.
  • the term also includes any variants, isoforms, derivatives, and species homologs of CD19 that are expressed naturally by cells, including tumor cells, or by cells transfected with CD19 gene or cDNA.
  • CD20 is a differentiation cluster 20 polypeptide, which belongs to the 4th transmembrane protein. It is a unique differentiation antigen on the surface of B lymphocytes. It is expressed in more than 90% of B lymphoma cells and normal B lymphocytes. In hematopoietic stem cells and original B lymphocytes No expression on cells, normal blood cells and other tissues, no significant internalization and shedding after binding to antibodies, no antigen decay, can be used as an ideal target for the treatment of B-cell lymphoma. CD20 exerts its anti-tumor effect mainly through the functions of ADCC and CDC.
  • indications for CD20 targets have been continuously expanded to include, for example, autoimmune diseases (including multiple sclerosis (MS), Crohn's disease (CD)), and inflammatory diseases (such as ulcerative colitis (UC) )Wait.
  • the indications for the CD20 target also include other related diseases or conditions discovered in the prior art and discovered in the future.
  • the term also includes any variants, isoforms, derivatives and species homologs of CD20, which are expressed naturally by cells-including tumor cells-or by cells transfected with CD20 gene or cDNA.
  • CD22 is a differentiation cluster 22 polypeptide, has an Ig domain, and is a transmembrane receptor on the surface of mature B cells. In humans, CD22 mainly inhibits the excessive activation of B cell surface receptors, reducing the risk of autoimmune diseases (eg, systemic lupus erythematosus). Indications related to CD22 include, for example, B cell lymphoma, acute and chronic leukemia, and other B cell dysplasia and B cell dependent autoimmune diseases. The indications for the CD22 target also include other related diseases or conditions discovered in the prior art and discovered in the future. The term also includes any variants, isoforms, derivatives and species homologs of CD22, which are expressed naturally by cells-including tumor cells-or by cells transfected with CD22 gene or cDNA.
  • CD30 is a member of the tumor necrosis factor (TNF) receptor superfamily, which belongs to type I transmembrane glycoprotein and is physiologically expressed as activated B and T lymphocytes.
  • CD30 is mainly expressed in tumors of lymphoid origin, such as all Hodgkin's lymphoma (HL), certain B-cell lymphomas, certain T-cell lymphomas, and NK-cell lymphomas, and is lowly expressed in non-pathologically activated T
  • the surface of cells and B cells is not expressed in normal cells, so it can be used as a corresponding tumor marker and disease diagnosis index.
  • the indications for the CD30 target also include other related diseases or conditions discovered in the prior art and discovered in the future.
  • the term CD30 also includes any variants, isoforms, derivatives and species homologues of CD30 that are expressed naturally by cells-including tumor cells-or by cells transfected with CD30 gene or cDNA.
  • EpCAM Epidermal Cell Adhesion Molecule
  • EpCAM Epidermal Cell Adhesion Molecule
  • EpCAM is overexpressed to varying degrees in most human tumors, including lung cancer, esophageal cancer, gastric cancer, breast cancer, colorectal cancer, liver cancer, prostate cancer, and ovarian cancer, which are closely related to tumor diagnosis and prognosis.
  • the overexpression of EpCAM has been developed and applied in clinical trials of EpCAM antibodies and tumor-related vaccines.
  • Indications for EpCAM targets also include other related diseases or conditions discovered in the prior art and discovered in the future.
  • the term also includes any variants, isoforms, derivatives and species homologs of EpCAM, which are expressed naturally by cells-including tumor cells-or by cells transfected with EpCAM genes or cDNA.
  • CEA Carcinoembryonic Antigen
  • Her2 human epidermal growth factor receptor 2
  • Her2 human epidermal growth factor receptor 2
  • the upregulation of her2 can also activate two downstream signal transduction pathways, triggering a cascading chain reaction, promoting unlimited cell proliferation, and ultimately leading to cancer.
  • her2 can initiate a variety of metastasis-related mechanisms to increase the metastatic capacity of tumor cells.
  • the amplification or overexpression of the Her2 gene occurs in various tumors such as breast cancer, ovarian cancer, gastric cancer, lung adenocarcinoma, prostate cancer, aggressive uterine cancer, and the like.
  • the indications for the Her2 target also include other related diseases or conditions discovered in the prior art and discovered in the future.
  • the term also includes any variants, isoforms, derivatives and species homologues of Her2, which are expressed naturally by cells-including tumor cells-or by cells transfected with Her2 gene or cDNA.
  • Species homologues include rhesus monkey Her2.
  • EGFR Epidermal Growth Factor Receptor
  • epidermal Growth Factor Receptor is a member of the Epidermal Growth Factor Receptor family, widely distributed on the cell surface of mammalian epithelial cells, fibroblasts, glial cells, keratinocytes, etc., and is associated with the proliferation of tumor cells, angiogenesis, Tumor invasion, metastasis and inhibition of apoptosis. Mutation or overexpression of EGFR generally triggers tumors. High expression or abnormal expression of EGFR is present in many solid tumors including tissues such as glial cells, kidney cancer, lung cancer, prostate cancer, pancreatic cancer, breast cancer and other tissues. Indications for EGFR targets also include other related diseases or conditions discovered in the prior art and discovered in the future. The term also includes any variants, isoforms, derivatives, and species homologs of EGFR that are expressed naturally by cells, including tumor cells, or by cells transfected with EGFR genes or cDNA.
  • GPC-3 (Glypican 3) is a member of the Glypican family, which is highly expressed in most embryonic tissues and is an inhibitor of cell proliferation.
  • the absence of GPC-3 can cause SGBS (overgrowth syndrome), and it is overexpressed in the early tissues of HCC, and is associated with various cancers such as hepatocellular carcinoma (HCC), melanoma, ovarian cancer, and prostate cancer.
  • GPC-3 is silent in malignant tumors such as malignant mesothelioma, breast cancer, lung cancer, gastric cancer, and ovarian cell carcinoma, but not expressed or low expressed in normal tissues, so it can be used as a biological agent for the treatment and diagnosis of various tumors. Mark.
  • the indications for the GPC-3 target also include other related diseases or conditions discovered in the prior art and discovered in the future.
  • the term also includes any variants, isoforms, derivatives and species homologs of GPC-3, which are naturally expressed by cells-including tumor cells-or by cells transfected with GPC-3 gene or cDNA .
  • Mesothelin belongs to the mesothelin family, is a prokaryotic megakaryocyte enhancer, which can be proteolytically cleaved into two chains by the protease invertase: megakaryocyte enhancer (MPF) and mesothelin.
  • MPF megakaryocyte enhancer
  • Mesothelin is a tumor differentiation antigen, usually found in mesothelial cells lining the pleura, peritoneum, and pericardium.
  • Mesothelin is overexpressed in various tumors such as mesothelioma, ovarian cancer, lung cancer, pancreatic cancer and other tumors and has immunogenicity, so it can be used as a tumor marker or an antigen target for therapeutic cancer vaccines.
  • Indications for Mesothelin targets also include other related diseases or conditions discovered in the prior art and discovered in the future.
  • the term also includes any variants, isoforms, derivatives, and species homologs of Mesothelin, which are naturally expressed by cells, including tumor cells, or by cells transfected with Mesothelin genes or cDNA.
  • Mucin1 (cell surface-associated mucin 1) is a member of the mucin family and is expressed on the apical surface of epithelial cells including tissues and organs such as lung, breast, stomach and pancreas. Mucin1 overexpression, abnormal intracellular localization and glycosylation changes are all related to cancer, including but not limited to colon cancer, breast cancer, ovarian cancer, lung cancer and pancreatic cancer. Through immunohistochemical techniques, Mucin1 can be identified in a wide range of secretory epithelial cells, mesenchymal tumors (such as synovial sarcoma and ovarian granulosa cell tumors), and their tumor equivalents.
  • mesenchymal tumors such as synovial sarcoma and ovarian granulosa cell tumors
  • Mucin1 can distinguish mesothelioma (limited to cell membrane and related microvilli) derived from adenocarcinoma and caused by cytoplasmic spread. Therefore, Mucin1 can be used to diagnose and treat the above related diseases or disorders and other related diseases or disorders discovered in the prior art and discovered in the future.
  • the term also includes any variants, isoforms, and species homologs of Mucin1 that are expressed naturally by cells, including tumor cells, or by cells transfected with Mucin1 gene or cDNA.
  • CA125 Carbohydrate Antigen 125
  • ovarian cancer-associated antigen that originates from the epithelial tissue of fetal body cavity and is generally distributed on the surface of mesothelial tissue cells such as pleura, pericardium, peritoneum, endometrium, reproductive tract, and amniotic membrane. When malignant lesions occur in these parts or are stimulated by inflammation, the level of CA125 in serum will increase significantly. As the most studied ovarian cancer marker, CA125 has been reported in the application research of early screening, diagnosis, treatment and prognosis of ovarian cancer. In the puncture fluid of ovarian cancer benign cyst tumors and malignant cystic epithelioma, CA125 levels can be significantly increased.
  • Serum CA125 levels also increase in gastrointestinal malignancies (such as pancreatic cancer, liver cancer, gastric cancer, and intestinal cancer) as well as chronic pancreatitis, chronic hepatitis, cirrhosis, lung adenocarcinoma, pelvic inflammatory lesions, and endometriosis high.
  • gastrointestinal malignancies such as pancreatic cancer, liver cancer, gastric cancer, and intestinal cancer
  • chronic pancreatitis such as pancreatic cancer, liver cancer, gastric cancer, and intestinal cancer
  • chronic pancreatitis such as pancreatic cancer, liver cancer, gastric cancer, and intestinal cancer
  • chronic pancreatitis such as pancreatic cancer, liver cancer, gastric cancer, and intestinal cancer
  • chronic pancreatitis such as pancreatic cancer, liver cancer, gastric cancer, and intestinal cancer
  • chronic pancreatitis such as pancreatic cancer, liver cancer, gastric cancer, and intestinal cancer
  • chronic pancreatitis such as pancreatic cancer, liver cancer, gastric cancer, and intestinal
  • BCMA B cell maturation antigen
  • B cell maturation antigen is a member of the tumor necrosis factor receptor superfamily, and is preferentially expressed in mature B lymphocytes and on the surface of plasmablasts (ie, plasma cell precursors) and plasma cells.
  • BCMA RNA can be detected in the spleen, lymph nodes, thymus, adrenal glands, and liver, and the level of BCMA mRNA also increases after multiple B cell lines mature.
  • BCMA is associated with leukemia, lymphoma (such as Hodgkin's lymphoma), multiple myeloma, autoimmune diseases (such as systemic lupus erythematosus) and other diseases, so it can be used as a potential target for related B-cell diseases.
  • BCMA targets also include other related diseases or conditions discovered in the prior art and discovered in the future.
  • the term also includes any variants, isoforms, and species homologs of BCMA, which are expressed naturally by cells-including tumor cells-or by cells transfected with BCMA genes or cDNA.
  • the CD3 molecule is an important differentiation antigen on the T cell membrane and a characteristic marker of mature T cells. It is composed of 6 peptide chains.
  • the TCR-CD3 complex is composed of a non-covalent bond and a T cell antigen receptor (TCR).
  • TCR T cell antigen receptor
  • the TCR-CD3 complex is assembled in the cytoplasm and transmits antigen stimulation signals through the immunoreceptor tyrosine-based activation motif (ITAM) in the cytoplasmic region of each polypeptide chain.
  • ITAM immunoreceptor tyrosine-based activation motif
  • the main function of the CD3 molecule is to stabilize the TCR structure and transmit T cell activation signals.
  • TCR specifically recognizes and binds to the antigen
  • CD3 participates in transducing the signal into the T cell cytoplasm as the first signal to induce T cell activation. It plays an extremely important role in T cell antigen recognition and immune response generation.
  • CD3 refers to being a part of the T cell receptor complex, consisting of three different chains CD3 ⁇ , CD3 ⁇ , and CD3 ⁇ . Clustering of CD3 on T cells by, for example, the immobilization of anti-CD3 antibodies on it, results in T cell activation, similar to T cell receptor-mediated activation, but does not depend on the specificity of TCR clones. Most anti-CD3 antibodies recognize the CD3 epsilon chain.
  • the second functional domain of the present invention that specifically recognizes the CD3 receptor on the surface of T cells is not particularly limited, as long as it can specifically recognize CD3, such as but not limited to the CD3 antibody mentioned in the following patents: US7,994,289, US6,750,325; US6,706,265; US5,968,509; US8,076,459; US7,728,114; US20100183615.
  • the anti-human CD3 antibody used in the present invention is cross-reactive with cynomolgus monkey and / or rhesus monkey, such as but not limited to the anti-human CD3 antibody mentioned in the following patents: WO2016130726, US20050176028, WO2007042261 Or WO2008119565.
  • the term also includes any CD3 variants, isoforms, derivatives and species homologues, which are naturally expressed by the cell or expressed on cells transfected with the gene or cDNA encoding the aforementioned chain.
  • variable region or “CDR region” or “complementarity determining region” refers to the antibody amino acid residues responsible for antigen binding, which are non-contiguous amino acid sequences.
  • the CDR region sequence can be defined by the IMGT, Kabat, Chothia, and AbM methods or the amino acid residues in the variable region identified by any CDR region sequence determination method well known in the art.
  • a hypervariable region contains the following amino acid residues: amino acid residues from the "complementarity determining region" or "CDR" defined by sequence alignment, for example, 24-34 (L1), 50- of the light chain variable domain 56 (L2) and 89-97 (L3) residues and heavy chain variable domains 31-35 (H1), 50-65 (H2) and 95-102 (H3) residues, see Kabat et al., 1991, Sequences of Proteins of Immunological Interest, 5th edition, Public Health, Service, National Institutes of Health, Bethesda, Md .; and / or from “hypervariable loops” defined by structure ( HVL) residues, for example, residues 26-32 (L1), 50-52 (L2), and 91-96 (L3) of the light chain variable domain and 26-32 (heavy chain variable domain) H1), 53-55 (H2) and 96-101 (H3) residues, see Chothia and Leskl, J.
  • CDR complementarity
  • “Framework” residues or "FR” residues are variable domain residues other than hypervariable region residues as defined herein.
  • the CDRs contained in the antibody or antigen-binding fragment of the invention are preferably determined by the Kabat, Chothia, or IMGT numbering system. Those skilled in the art can explicitly assign each system to any variable domain sequence without relying on any experimental data beyond the sequence itself. For example, the numbering of Kabat residues for a given antibody can be determined by comparing the antibody sequence with each "standard” numbering sequence to the homology region. Based on the numbering of the sequences provided herein, determining the numbering scheme for any variable region sequence in the sequence listing is well within the ordinary skill of those in the art.
  • single-chain Fv antibody refers to an antibody fragment comprising the VH and VL domains of an antibody, and is a heavy chain variable region (VH) and a light chain variable region connected by a linker
  • the recombinant protein of (VL), a linker that cross-links these two domains to form an antigen binding site, and the linker sequence generally consists of a flexible peptide, such as but not limited to G 2 (GGGGS) 3 .
  • the size of scFv is generally 1/6 of a complete antibody.
  • the single chain antibody is preferably an amino acid chain sequence encoded by a nucleotide chain.
  • Fab fragment consists of a light chain and a heavy chain CH1 and variable regions.
  • the heavy chain of a Fab molecule cannot form a disulfide bond with another heavy chain molecule.
  • the size of the "Fab antibody” is 1/3 of the intact antibody, and it contains only one antigen binding site.
  • Fab 'fragment contains a light chain and a heavy chain between the VH domain and the CH1 domain and the constant region between the CH1 and CH2 domains.
  • F (ab ') 2 fragment contains two light chains and two heavy chains, the VH domain and the CH1 domain, and the constant region portion between the CH1 and CH2 domains, thereby forming between the two heavy chains Interchain disulfide bond. Therefore, the F (ab ') 2 fragment consists of two Fab' fragments held together by disulfide bonds between the two heavy chains.
  • Fc region refers to an antibody heavy chain constant region fragment, which comprises at least the hinge region, CH2 and CH3 domains.
  • Fv region includes variable regions from both heavy and light chains, but lacks constant regions, and is the smallest fragment that contains a complete antigen recognition and binding site.
  • antibody fragment refers to an antigen-binding fragment and antibody analog of an antibody that retains the specific binding ability to an antigen (eg, Her2), which usually includes at least part of the antigen binding of the parent antibody (Parental Antibody) Zone or variable zone.
  • Antibody fragments retain at least some of the binding specificity of the parent antibody. Generally, when the activity is expressed in moles, antibody fragments retain at least 10% of the maternal binding activity. Preferably, the antibody fragments retain at least 20%, 50%, 70%, 80%, 90%, 95% or 100% of the binding affinity of the parent antibody to the target.
  • Antibody fragments include, but are not limited to: Fab fragments, Fab 'fragments, F (ab') 2 fragments, Fv fragments, Fd fragments, complementarity determining region (CDR) fragments, disulfide bond stable proteins (dsFv), etc .; linear antibodies ( Linear Antibody), single chain antibodies (such as scFv monoclonal antibodies) (technology from Genmab), bivalent single chain antibodies, single chain phage antibodies, single domain antibodies (Single Domain Antibody) (such as VH domain antibodies), domain antibodies ( Technology from AbIynx); multispecific antibodies formed by antibody fragments (eg, three-chain antibodies, tetra-chain antibodies, etc.); and engineered antibodies such as chimeric antibodies (Chimeric Antibody) (eg, humanized murine antibodies), heteroconjugation Antibodies (Heteroconjugate Antibody), etc. These antibody fragments are obtained by conventional techniques known to those skilled in the art, and these fragments are screened for utility by the same
  • connecting peptide refers to a peptide connecting two polypeptides, wherein the connecting peptide may be two immunoglobulin variable regions or one variable region.
  • the linker peptide can be 0-30 amino acids or 0-40 amino acids in length. In some embodiments, the linker peptide may be 0-25, 0-20, or 0-18 amino acids in length. In some embodiments, the linker peptide may be a peptide no longer than 14, 13, 12, 11, 10, 9, 8, 7, 6, or 5 amino acids long. In other embodiments, the linker peptide may be 0-25, 5-15, 10-20, 15-20, 20-30, or 30-40 amino acids long.
  • the linker peptide may be about 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 , 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 amino acids long.
  • Linking peptides are known to those skilled in the art.
  • the linker peptide can be prepared by any method in the art.
  • the linker peptide may be of synthetic origin.
  • heavy chain constant region includes amino acid sequences from immunoglobulin heavy chains.
  • the heavy chain constant region-containing polypeptide includes at least one of the following: CH1 domain, hinge (eg, upper hinge region, middle hinge region, and / or lower hinge region) domain, CH2 domain, CH3 domain, or a variant thereof Body or fragment.
  • the antigen-binding polypeptide used in the present application may include a polypeptide chain having a CH1 domain; a polypeptide having a CH1 domain, at least a part of a hinge domain and a CH2 domain; a polypeptide chain having a CH1 domain and a CH3 domain; A polypeptide chain having a CH1 domain, at least a part of a hinge domain, and a CH3 domain, or a polypeptide chain having a CH1 domain, at least a part of a hinge structure, a CH2 domain, and a CH3 domain.
  • the polypeptide of the present application includes a polypeptide chain having a CH3 domain.
  • the antibodies used in this application may lack at least a portion of the CH2 domain (eg, all or a portion of the CH2 domain).
  • the heavy chain constant regions may be modified so that they differ in amino acid sequence from naturally occurring immunoglobulin molecules.
  • light chain constant region includes the amino acid sequence from the light chain of an antibody.
  • the light chain constant region includes at least one of a constant kappa domain and a constant lambda domain.
  • VH domain includes the amino-terminal variable domain of an immunoglobulin heavy chain
  • CH1 domain includes the first (mostly amino-terminal) constant region of an immunoglobulin heavy chain.
  • the CH1 domain is adjacent to the VH domain and is the amino terminus of the hinge region of immunoglobulin heavy chain molecules.
  • Binding defines the affinity interaction between a specific epitope on an antigen and its corresponding antibody, and is generally understood as “specific recognition”.
  • Specific recognition means that the bispecific antibody of the invention does not cross-react with any polypeptide other than the target antigen.
  • the degree of specificity can be judged by immunological techniques, including but not limited to immunoblotting, immunoaffinity chromatography, flow cytometry, etc.
  • the specific recognition is preferably determined by flow cytometry, and the standard of specific recognition may be judged by a person of ordinary skill in the art based on the common knowledge in the art.
  • in vivo half-life refers to the biological half-life of the polypeptide of interest in the circulation of a given animal and represents the time required for the animal to clear half of the amount present in the circulation of the animal from the circulation and / or other tissues.
  • identity is used to refer to the sequence matching between two polypeptides or between two nucleic acids.
  • a position in two compared sequences is occupied by the same base or amino acid monomer subunit (for example, a position in each of two DNA molecules is occupied by adenine, or two A certain position in each of the polypeptides is occupied by lysine)
  • each molecule is the same at this position.
  • the "percent identity” between two sequences is a function of the number of matching positions shared by the two sequences divided by the number of positions for comparison x 100. For example, if 6 of the 10 positions of the two sequences match, the two sequences have 60% identity.
  • the DNA sequences CTGACT and CAGGTT share 50% identity (3 out of 6 positions match).
  • comparisons are made when two sequences are aligned to produce maximum identity.
  • Such an alignment can be achieved by using, for example, the method of Needleman et al. (1970) J. Mol. Biol., 48: 443-453, which is conveniently performed by a computer program such as the Align program (DNAstar, Inc.). You can also use the algorithms of E. Meyers and W. Miller (Comput. Appl.
  • Fc region or “Fc fragment” refers to the C-terminal region of an immunoglobulin heavy chain, which contains at least a portion of the hinge region, the CH2 domain and the CH3 domain, which mediate the interaction between the immunoglobulin and the host tissue or factor Binding, including binding to Fc receptors located on various cells of the immune system (eg, effector cells) or to the first component (C1q) of the classical complement system, includes the native sequence Fc region and the variant Fc region.
  • the Fc region of the human IgG heavy chain is the segment from the amino acid residue at the position of Cys226 or Pro230 to the carboxyl terminal, but the boundary may vary.
  • the C-terminal lysine (residue 447 according to the EU numbering system) of the Fc region may or may not be present.
  • Fc can also refer to this isolated region, or in the case of Fc-containing protein polypeptides, such as "binding proteins containing Fc regions", also known as "Fc fusion proteins” (eg, antibodies or immunoadhesins).
  • the native sequence Fc region of the antibody of the present invention includes mammalian (eg, human) IgG1, IgG2 (IgG2A, IgG2B), IgG3, and IgG4.
  • mammalian eg, human
  • the substitution, insertion, and / or deletion of a single amino acid having about 10 amino acids per 100 amino acids in the amino acid sequences of the two Fc polypeptide chains relative to the sequence of the mammalian Fc polypeptide amino acid sequence.
  • the above differences may be changes in Fc that extend half-life, changes that increase FcRn binding, changes that inhibit Fc ⁇ receptor (Fc ⁇ R) binding, and / or changes that reduce or remove ADCC and CDC.
  • Fc receptor refers to a receptor that binds to the Fc region of an immunoglobulin.
  • the FcR may be a natural sequence human FcR, or it may be an FcR (gamma receptor) that binds an IgG antibody, as well as allelic variants and alternative splicing forms of these receptors.
  • the FcyR family consists of three activated receptors (FcyRI, FcyRIII and FcyRIV in mice; FcyRIA, FcyRIIA and FcyRIIIA in humans) and an inhibitory receptor (FcyRIIb or equivalent FcyRIIB).
  • FcyRII receptors include FcyRIIA ("activated receptor") and FcyRIIB ("inhibited receptor”), which have similar amino acid sequences.
  • the cytoplasmic domain of FcyRIIA contains an immunoreceptor tyrosine-based activation motif (ITAM).
  • the cytoplasmic domain of FcyRIIB contains an immunoreceptor tyrosine-based inhibitory motif (ITIM) (see M. Annu. Rev. Immunol., 15: 203-234 (1997)).
  • NK cells selectively express an activated Fc receptor (Fc ⁇ RIII in mice and Fc ⁇ RIIIA in humans), but mice and The inhibitory Fc ⁇ RIIb is not expressed in humans.
  • Human IgG1 binds to most human Fc receptors and is considered equivalent to murine IgG2a in terms of the type of activated Fc receptors it binds.
  • the term "FcR" encompasses other FcRs herein, including those that will be identified in the future.
  • Fc receptor or "FcR” also includes the neonatal receptor FcRn, which is responsible for the transfer of maternal IgG to the fetus (Guyer RL et al., J. Immunol., 117: 587, 1976) and (Kim YJ et al., J. Immunol., 24: 249, 1994)).
  • humanized antibody refers to a genetically engineered non-human antibody whose amino acid sequence has been modified to increase the sequence homology with the human antibody. Most or all amino acids outside the CDR domain of non-human antibodies, such as mouse antibodies, are replaced with corresponding amino acids from human immunoglobulins, while most or all amino acids in one or more CDR regions are unchanged. The addition, deletion, insertion, substitution or modification of small molecule amino acids is allowed, as long as they do not eliminate the antibody's ability to bind a specific antigen. "Humanized” antibodies retain antigen specificity similar to the original antibody.
  • the source of the CDR is not particularly limited, and can be derived from any animal.
  • antibodies derived from mouse antibodies, rat antibodies, rabbit antibodies, or non-human primates can be used.
  • human frameworks that can be used in this disclosure are KOL, NEWM, REI, EU, TUR, TEI, LAY, and POM (Kabat et al., Supra).
  • KOL and NEWM can be used for the heavy chain
  • REI can be used for the light chain and EU
  • LAY and POM can be used for both the heavy chain and the light chain.
  • human germline sequences can be used; these are available at the following URL: http://www2.mrc-lmb.cam.ac.uk/vbase/list2.php.
  • the receptor heavy and light chains do not necessarily need to be derived from the same antibody, and if necessary, may comprise a composite chain having framework regions derived from different chains.
  • cytokine generally refers to a protein released by a cell population that acts as an intercellular medium on another cell or has autocrine effects on cells that produce the protein.
  • cytokines include lymphokines, mononuclear factors; interleukins (“IL”), such as IL-2, IL-6, IL-17A-F; tumor necrosis factors, such as TNF- ⁇ or TNF- ⁇ ; and Other polypeptide factors, such as leukemia inhibitory factor ("LIF").
  • immunobinding and “immunobinding properties” refer to a non-covalent interaction that occurs between an immunoglobulin molecule and an antigen (for which the immunoglobulin is specific).
  • the strength or affinity of the immune binding interaction can be expressed by the equilibrium dissociation constant (K D ) of the interaction, where the smaller the K D value, the higher the affinity.
  • K D equilibrium dissociation constant
  • the immunological binding properties of the selected polypeptide can be quantified using methods known in the art. One method involves measuring the rate of antigen binding site / antigen complex formation and dissociation. Both "association rate constant" (K a or K on ) and “dissociation rate constant” (K d or K off ) can be calculated from the concentration and the actual rate of association and dissociation.
  • cross-reactivity refers to the ability of the antibodies described herein to bind tumor-associated antigens from different species.
  • the antibodies described herein that bind to human TAA can also bind TAA from other species (eg, cynomolgus monkey TAA).
  • Cross-reactivity can be measured by detecting specific reactivity with purified antigens in binding assays (eg, SPR, ELISA), or binding to or physiologically interacting with TAA-expressing cells or otherwise functionally interacting with TAA-expressing cell functions .
  • binding assays eg, SPR, ELISA
  • binding to or physiologically interacting with TAA-expressing cells or otherwise functionally interacting with TAA-expressing cell functions include surface plasmon resonance (eg, Biacore) or similar techniques (eg, Kinexa or Octet).
  • EC 50 refers to the maximum response of the concentration of an antibody or antigen-binding fragment that induces a 50% response in an in vitro or in vivo assay using an antibody or antigen-binding fragment thereof, that is, half between the maximum response and the baseline .
  • “Effector cell” refers to a cell of the immune system that expresses one or more FcRs and mediates one or more effector functions.
  • the cell expresses at least one type of activating Fc receptor, such as human Fc ⁇ RIII, and performs ADCC effector function.
  • human leukocytes that mediate ADCC include peripheral blood mononuclear cells (PBMC), NK cells, monocytes, macrophages, neutrophils, and eosinophils.
  • Effector cells also include, for example, T cells. They can be derived from any organism including but not limited to humans, mice, rats, rabbits and monkeys.
  • effector function refers to those biological activities that can be attributed to the Fc region of an antibody (native sequence Fc region or amino acid sequence variant Fc region), and it varies with the antibody isotype.
  • antibody effector functions include, but are not limited to: Fc receptor binding affinity, ADCC, ADCP, CDC, down regulation of cell surface receptors (eg, B cell receptors), B cell activation, cytokine secretion, antibodies, and antigens -Half-life / clearance rate of antibody complexes, etc.
  • Methods for changing the effector function of antibodies are known in the art, for example, by introducing mutations in the Fc region.
  • ADCC antibody-dependent cell-mediated cytotoxicity
  • Ig binds to FcR present on cytotoxic cells (such as NK cells, neutrophils, or macrophages) to make These cytotoxic effector cells specifically bind to the target cells to which the antigen is attached, and then kill the target cells by secreting cytotoxin.
  • cytotoxic cells such as NK cells, neutrophils, or macrophages
  • Methods for detecting ADCC activity of antibodies are known in the art, and can be evaluated, for example, by measuring the binding activity between the antibody to be tested and FcR (eg, CD16a).
  • ADCP antibody-dependent cell-mediated phagocytosis
  • complement dependent cytotoxicity refers to a form of cytotoxicity that activates the complement cascade by binding the complement component C1q to the antibody Fc.
  • Methods for detecting the CDC activity of antibodies are known in the art, and can be evaluated, for example, by measuring the binding activity between the antibody to be tested and the Fc receptor (eg, Clq).
  • pharmaceutically acceptable carrier and / or excipient and / or stabilizer refers to a carrier and / or excipient that is pharmacologically and / or physiologically compatible with the subject and the active ingredient and / or Stabilizers, which are non-toxic to the cells or mammals exposed to them at the dosages and concentrations employed.
  • a carrier and / or excipient that is pharmacologically and / or physiologically compatible with the subject and the active ingredient and / or Stabilizers, which are non-toxic to the cells or mammals exposed to them at the dosages and concentrations employed.
  • pH adjusting agents include but are not limited to phosphate buffer.
  • Surfactants include but are not limited to cationic, anionic or nonionic surfactants, such as Tween-80.
  • Ionic strength enhancers include but are not limited to sodium chloride.
  • Preservatives include but are not limited to various antibacterial and antifungal agents, such as parabens, chlorobutanol, phenol, sorbic acid and the like.
  • Agents for maintaining osmotic pressure include but are not limited to sugar, NaCl and the like.
  • Agents that delay absorption include but are not limited to monostearate and gelatin.
  • Diluents include but are not limited to water, aqueous buffers (such as buffered saline), alcohols and polyols (such as glycerin), and the like.
  • Preservatives include but are not limited to various antibacterial and antifungal agents, such as thimerosal, 2-phenoxyethanol, parabens, chlorobutanol, phenol, sorbic acid, and the like.
  • Stabilizers have the meaning commonly understood by those skilled in the art, which can stabilize the desired activity of the active ingredients in the medicine, including but not limited to sodium glutamate, gelatin, SPGA, sugars (such as sorbitol, mannitol, starch, sucrose , Lactose, dextran, or glucose), amino acids (such as glutamic acid, glycine), proteins (such as dried whey, albumin or casein) or their degradation products (such as lactalbumin hydrolysate) and so on.
  • an effective amount to prevent disease means that when used alone or in combination with another therapeutic agent or agents, it is sufficient to prevent, prevent, or delay the occurrence of disease (eg, tumor or infection)
  • the amount effective to treat a disease refers to an amount, when used alone or in combination with another therapeutic agent or agents, sufficient to cure or at least partially prevent the disease and its complications in patients who already have the disease. It is well within the ability of those skilled in the art to determine such an effective amount.
  • the amount effective for therapeutic use will depend on the severity of the disease to be treated, the overall state of the patient's own immune system, the general condition of the patient such as age, weight and gender, the mode of administration of the drug, and other treatments administered simultaneously and many more.
  • the terms "effective” and “effective” with regard to treatment include both pharmacological effectiveness and physiological safety.
  • Pharmacological effectiveness refers to the ability of a drug to promote the resolution of a patient's condition or symptoms.
  • Physiological safety refers to the level of toxicity or other adverse physiological effects (adverse effects) at the level of cells, organs and / or organisms due to drug administration.
  • Treatment or “therapy” for a subject means to reverse, alleviate, ameliorate, inhibit, slow down, or prevent the appearance, progression, development, severity, or recurrence of disease-related symptoms, complications, disorders, or biochemical indicators Subjects are subjected to any type of intervention or treatment for the purpose, or to administer active agents to them.
  • T cell receptor is a special receptor that exists on the surface of T cells, that is, T lymphocytes.
  • T cell receptors in the body exist as a complex of several proteins.
  • T cell receptors usually have two separate peptide chains, usually T cell receptor ⁇ and ⁇ (TCR ⁇ and TCR ⁇ ) chains, and on some T cells T cell receptor ⁇ and ⁇ (TCR ⁇ and TCR ⁇ ).
  • the other proteins in the complex are CD3 proteins: CD3 ⁇ and CD3 ⁇ heterodimers, and most importantly, CD3 ⁇ homodimers with six ITAM motifs.
  • the ITAM motif on CD3 ⁇ can be phosphorylated by Lck, which in turn recruits ZAP-70.
  • Lck and / or ZAP-70 can also phosphorylate tyrosine on many other molecules, especially CD28, LAT and SLP-76, which allows the aggregation of signaling complexes surrounding these proteins.
  • bispecific antibody refers to a bispecific antibody of the present invention, for example, an anti-Her2 antibody or antigen-binding fragment thereof can be derivatized or linked to another functional molecule, such as another peptide or protein (such as TAA, Cytokines and cell surface receptors) to generate bispecific molecules that bind to at least two different binding sites or target molecules.
  • another functional molecule such as another peptide or protein (such as TAA, Cytokines and cell surface receptors) to generate bispecific molecules that bind to at least two different binding sites or target molecules.
  • the antibody of the invention can be functionally linked (eg, by chemical coupling, gene fusion, non-covalent binding, or other means) to one or more other binding molecules, such as another An antibody, antibody fragment, peptide, or binding mimetics to produce a bispecific molecule.
  • bispecific antibody refers to the inclusion of two variable domains or scFv units so that the resulting antibody recognizes two different antigens.
  • Many different forms and uses of bispecific antibodies are known in the art (Chames P, et al, Curr. Opin. Drug, Disc. Dev., 12: .276, 2009; Spiess C, et al., Mol. Immunol., 67: 95- 106,2015).
  • hCG- ⁇ carboxy terminal peptide is a short peptide derived from the carboxy terminal of the ⁇ -subunit of human chorionic gonadotropin (hCG).
  • FSH follicle stimulating hormone
  • LH luteinizing hormone
  • TSH thyrotropin
  • hCG chorionic gonadotropin
  • CTP contains 37 amino acid residues, it has 4 O-glycosylation sites, and the sugar side chain terminal is a sialic acid residue. Negatively charged, highly sialylated CTP can resist renal clearance, thereby prolonging the half-life of the protein in the body (Fares FA et al., Proc. Natl. Acad. Sci. USA, 89: 4304-4308, 1992).
  • glycosylation means that oligosaccharides (carbohydrates containing two or more monosaccharides linked together, for example 2 to about 12 monosaccharides linked together) are attached to form glycoproteins. Oligosaccharide side chains are usually connected to the backbone of glycoproteins via N- or O-linkages. The oligosaccharides of the antibodies disclosed herein are usually CH2 domains attached to the Fc region as N-linked oligosaccharides. "N-linked glycosylation” refers to the attachment of carbohydrate moieties to asparagine residues of glycoprotein chains.
  • the technician can recognize that each of the CH2 domains of murine IgG1, IgG2a, IgG2b, and IgG3 and human IgG1, IgG2, IgG3, IgG4, IgA, and IgD has a residue for N-linked glycosylation at residue 297 Single place.
  • the heavy chain and light chain variable regions of the antibody of the present invention contain amino acid sequences that are homologous to the amino acid sequences of the preferred antibodies described herein, and wherein the antibody retains the present invention, such as Her2 ⁇ Desired functional properties of the CD3 bispecific antibody.
  • conservative modification is intended to mean that the amino acid modification does not significantly affect or change the binding characteristics of the antibody containing the amino acid sequence. Such conservative modifications include amino acid substitutions, additions and deletions. Modifications can be introduced into the antibodies of the invention by standard techniques known in the art, such as site-directed mutagenesis and PCR-mediated advantages. Conservative amino acid substitution refers to the replacement of amino acid residues with amino acid residues having similar side chains.
  • the family of amino acid residues with similar side chains has been described in detail in the art. These families include those with basic side chains (e.g. lysine, arginine, histidine), acidic side chains (e.g. aspartic acid, glutamic acid), and uncharged polar side chains (e.g.
  • glycine Asparagine, glutamine, serine, threonine, tyrosine, cysteine, tryptophan
  • non-polar side chains e.g. alanine, valine, leucine, isoleucine , Proline, phenylalanine, methionine
  • ⁇ -branched side chains such as threonine, valine, isoleucine
  • aromatic side chains such as tyrosine, phenylalanine , Tryptophan, histidine. Therefore, one or more amino acid residues in the CDR regions of the antibody of the invention can be replaced with other amino acid residues from the same side chain family.
  • Fc variants with altered binding affinity to neonatal receptors (FcRn)
  • FcRn refers to a protein that binds to at least part of the Fc region of an IgG antibody encoded by the FcRn gene.
  • FcRn can be derived from any organism including but not limited to humans, mice, rats, rabbits and monkeys.
  • the functional FcRn protein contains two polypeptides often referred to as heavy and light chains.
  • the light chain is ⁇ -2-microglobulin, and the heavy chain is encoded by the FcRn gene.
  • the present invention relates to antibodies whose binding to FcRn is regulated (modulation includes increasing and decreasing binding). For example, in some cases, increased binding can cause cells to recycle antibodies and thereby prolong, for example, the half-life of therapeutic antibodies. Sometimes, it is desirable to reduce FcRn binding, for example, as a diagnostic or therapeutic antibody containing a radiolabel. In addition, antibodies that show increased binding to FcRn, while binding to other Fc receptors, such as Fc ⁇ Rs, can be used in the present invention.
  • the present application relates to antibodies containing amino acid modifications that modulate the binding force to FcRn. It is of special significance that at lower pH, the binding affinity for FcRn shows an increase, while at higher pH, the binding basically does not show a change.
  • the antibody or functional change that contains the Fc region minimally body.
  • Fc variants with enhanced binding affinity to neonatal receptors (FcRn)
  • the plasma half-life of IgG depends on its binding to FcRn. It generally binds at pH 6.0 and dissociates at pH 7.4 (plasma pH). By studying the binding sites of the two, the binding site of IgG on FcRn was modified to increase its binding capacity at pH 6.0. It has been shown that mutation of some residues of the human Fc ⁇ domain important for binding FcRn can increase serum half-life. It has been reported that mutations in T250, M252, S254, T256, V308, E380, M428, and N434 (EU numbering) can increase or decrease FcRn binding affinity (Roopenian DC et al., Nat. Rev. Immunol., 7: 715-725, 2007 ). Korean Patent No.
  • KR 10-1027427 discloses trastuzumab (Herceptin, Genentech) variants with increased binding affinity for FcRn, and these variants comprise selected from 257C, 257M, 257L, 257N, 257Y, 279Q, One or more amino acid modifications of 279Y, 308F and 308Y.
  • Korean Patent Publication No. KR 2010-0099179 provides bevacizumab (Avastin, Genentech) variants and these variants show increased in vivo by amino acid modifications contained in N434S, M252Y / M428L, M252Y / N434S and M428L / N434S half life.
  • Hinton et al also found that T250Q and M428L 2 mutants increased the binding to FcRn by 3 and 7 times, respectively. Mutation of 2 sites at the same time increases the binding by 28-fold. In rhesus monkeys, M428L or T250QM / 428L mutants showed a 2-fold increase in plasma half-life (Hinton PR et al., J. Immunol., 176: 346-356, 2006). More mutation sites included in Fc variants with enhanced binding affinity to neonatal receptors (FcRn) can be found in the Chinese invention patent CN 201280066663.2.
  • Other antibodies cause enhanced affinity to FcRn in the present invention include, but are not limited to point mutations following amino acid modifications: 226,227,230,233,239,241,243,246,259,264,265,267,269,270,276,284,285,288,289,290,291,292,294,298,299,301,302,303,305,307,309,311,315,317,320,322,325,327,330,332,334,335,338,340,342,343,345,347,350,352,354,355,356,359,360,361,362,369,370,371,375,378,382,383,384,385,386,387,389,390,392,393,394,395,396,397,398,399,400,401,403,404,408,411,412,414,415,416,418,419,420,421,422,424,426,433,438,439,440,443,444,44
  • Fc variants with enhanced binding affinity to FcRn also include all other known amino acid modification sites and amino acid modification sites that have not yet been discovered.
  • IgG variants can be optimized to have increased or decreased FcRn affinity, as well as increased or decreased human Fc ⁇ R, including but not limited to Fc ⁇ RI, Fc ⁇ RIIa, Fc ⁇ RIIb, Fc ⁇ RIIc, Fc ⁇ RIIIa, and alleles including them Gene variant Fc ⁇ RIIIb affinity.
  • the Fc ligand specificity of the IgG variant will determine its therapeutic application.
  • the use of a given IgG variant for therapeutic purposes will depend on the epitope or form of the target antigen, and the disease or indication to be treated.
  • enhanced FcRn binding may be more preferred, as enhanced FcRn binding can lead to an increase in serum half-life. Longer serum half-life allows for lower frequency and dose administration during treatment. This property may be particularly preferred when the therapeutic agent is administered in response to an indication requiring repeated administration.
  • reduced FcRn affinity may be particularly preferred when variant Fc is required to have increased clearance or decreased serum half-life, such as when Fc polypeptides are used as imaging agents or radiotherapy agents.
  • the affinity of the polypeptide for FcRn can be evaluated by methods known in the art. For example, those skilled in the art can perform appropriate ELISA assays. As explained in Example 5.6, an appropriate ELISA assay enables comparison of the binding strength of variants and parents to FcRn. At a pH of 7.0, comparing the specific signal detected for the variant and the parent polypeptide, if the specific signal of the variant is at least 1.9 times weaker than the specific signal of the parent polypeptide, it is the preferred variant of the present invention, It is more suitable for clinical application.
  • FcRn can come from any organism including but not limited to humans, mice, rats, rabbits and monkeys.
  • inhibiting changes in Fc [gamma] R binding refers to one or more insertions, deletions, or substitutions in the Fc polypeptide chain that inhibit the binding of Fc [gamma] RIIA, Fc [gamma] RIIB, and / or Fc [gamma] RIIIA, such as by, for example, based on a competitive binding experiment , Waltham, MA) determination.
  • Fc ⁇ receptor (Fc ⁇ R) binding include L234A, L235A, or any change that inhibits glycosylation at position N297, including any substitution at N297.
  • the bispecific antibody provided by the present invention inhibits changes in Fc ⁇ R binding.
  • the Fc fragments contained therein exhibit reduced affinity for at least one of human Fc ⁇ Rs (Fc ⁇ RI, Fc ⁇ RIIa, or Fc ⁇ RIIIa) and C1q, with reduced effector cell function or complement Features.
  • Fc [gamma] R can be from any organism including but not limited to humans, mice, rats, rabbits and monkeys.
  • half-life extending Fc change refers to a change in the half-life of an Fc polypeptide chain that prolongs the in vivo half-life of a protein that contains an altered Fc polypeptide chain compared to the half-life of an identical Fc protein that contains the same Fc polypeptide, but it does not include the altered .
  • the alteration can be included in the Fc polypeptide chain as part of the bispecific antibody.
  • M428L and N434S are half-life Fc changes and can be used in combination, alone or in any combination. These changes and others are described in detail in US Patent Application Publication 2010/0234575 and US Patent 7,670,600. Portions describing this change in US Patent Application Publication 2010/0234575 and US Patent 7,670,600 are incorporated herein by reference.
  • any substitution at one of the following sites can be considered as a half-life extending Fc change: 250, 251, 252, 259, 307, 308, 332, 378, 380, 428, 430, 434 , 436.
  • Each of these changes or a combination of these changes can be used to extend the half-life of the bispecific antibodies described herein.
  • Other changes that can be used to extend half-life are described in detail in International Application PCT / US2012 / 070146 (Publication No. WO 2013/096221) filed on December 17, 2012. The part of this application describing the above changes is incorporated herein by reference.
  • Fc changes that extend half-life also include sites and modifications that include well-known techniques and may be discovered in the future.
  • Fc can come from any organism including but not limited to humans, mice, rats, rabbits and monkeys.
  • the bispecific antibodies of the invention can be prepared by any method known in the art. Early methods for constructing bispecific antibodies include chemical cross-linking methods or hybrid hybridoma or tetravalent tumor methods (eg, Staerz UD et al., Nature, 314: 628-31, 1985; Milstein C et al., Nature, 305: 537 -540, 1983; Karpovsky B et al., J. Exp. Med., 160: 1686-1701, 1984).
  • the chemical coupling method is to connect two different monoclonal antibodies by chemical coupling to prepare a bispecific monoclonal antibody. For example, chemical binding of two different monoclonal antibodies, or, for example, chemical binding of two antibody fragments such as two Fab fragments.
  • the hybrid-hybridoma method is to produce bispecific monoclonal antibodies through the method of cell hybridization or ternary hybridoma. These cell hybridomas or ternary hybridomas are fused through the established hybridoma, or the established hybridoma and childhood The lymphocytes obtained from mice are fused. Although these techniques are used to manufacture BiAbs, various production problems make such complexes difficult to use, such as producing mixed populations containing different combinations of antigen binding sites, difficulties in protein expression, the need to purify the target BiAb, low yields, production The cost is high.
  • Recent methods utilize genetically engineered constructs that can produce a homogeneous product of a single BiAb without thorough purification to remove unwanted by-products.
  • Such constructs include tandem scFv, diabody, tandem diabody, dual variable domain antibodies, and heterodimerization using motifs such as Ch1 / Ck domain or DNLTM (Chames & Baty, Curr. Opin. Drug.Discov. Devel., 12: 276-83, 2009; Chames & Baty, mAbs, 1: 539-47).
  • Related purification techniques are well known.
  • tumor surface antigen refers to an antigen that is or can be presented on a surface on or in a tumor cell. Some cancer cell antigens are also expressed on the surface of some normal cells, which can be called tumor-associated antigens. These tumor-associated antigens can be overexpressed on tumor cells when compared to normal cells, or because tumor tissues are less compact than normal tissues, the antigens can easily bind to antibodies in tumor cells. These antigens can be presented only by tumor cells, but not by normal cells. Tumor antigens can also be expressed only on tumor cells or can represent tumor-specific mutations compared to normal cells. The corresponding antigen may be referred to as a tumor-specific antigen.
  • Tumor-associated antigens can trigger an immune response in the host, be used to identify tumor cells, and be used as possible candidates in cancer therapy.
  • This antigen may include normal proteins that evade the immune system well, proteins that are usually produced in very small amounts, proteins that are usually produced only at certain stages of development, or proteins whose structure is modified due to mutations.
  • tumor antigens include: ⁇ -fetoprotein (AFP), ⁇ -actinin-4, A3, antigens specific for A33 antibodies, ART-4, B7, Ba733, BAGE, BrE3-antigen , CA125, CAMEL, CAP-1, carbonic anhydrase IX, CASP-8 / m, CCCL19, CCCL21, CD1, CD1a, CD2, CD3, CD4, CD5, CD8, CD11A, CD14, CD15, CD16, CD18, CD19, CD20, CD21, CD22, CD23, CD25, CD29, CD30, CD32b, CD33, CD37, CD38, CD40, CD40L, CD44, CD45, CD46, CD47, CD52, CD54, CD55, CD59, CD64, CD66a-e, CD67, CD70, CD70L, CD74, CD79a,
  • AFP ⁇ -fetoprotein
  • ⁇ -actinin-4 A3 antigens specific for A33 antibodies
  • the TAA of the present invention is CD19, CD20, CD22, CD30, CD38, BCMA, CS1, EpCAM, CEA, Her2, EGFR, Mucin1, CA125, GPC-3 and Mesothelin.
  • the term also includes any variants, isoforms, derivatives and species homologs of TAA, which are expressed naturally by cells-including tumor cells-or by cells transfected with TAA genes or cDNA.
  • TAA can be from any organism including but not limited to humans, mice, rats, rabbits and monkeys, preferably TAA from humans.
  • Target cells and target cell proteins expressed on target cells are Target cells and target cell proteins expressed on target cells
  • bispecific antibodies can bind to effector cell proteins and target cell proteins.
  • the target cell protein can be expressed on the surface of cancer cells, pathogen-infected cells, or cells that mediate diseases (eg, inflammatory, autoimmune diseases).
  • the target cell protein is highly expressed on the surface of the target cell, although high levels of expression are not necessary.
  • the target cell protein is not expressed or underexpressed on the surface of the target cell.
  • the bispecific antibody of the homodimer as described herein can bind to the cancer cell antigen as described above.
  • Cancer cell antigens can be human proteins or proteins derived from other species.
  • the target cell protein may be a protein that is selectively expressed or overexpressed or not expressed on the surface of tumor cells.
  • the target cell protein may be a cell surface protein that mediates diseases related to the lymphatic system.
  • the target cell may be a cell that mediates an autoimmune disease or an inflammatory disease.
  • human eosinophils in asthma can be target cells, in which case, for example, EGF-like motif-containing mucin-like hormone receptor (EMR1) can be used as the target cell protein.
  • EGF-like motif-containing mucin-like hormone receptor (EMR1) can be used as the target cell protein.
  • excess human B cells can be used as target cells in patients with systemic lupus erythematosus, in this case, such as CD19 or CD20 can be used as target cell proteins.
  • excessive human Th2T cells can be used as target cells, in this case, such as CCR4 can be used as target cell protein.
  • the target cell may be mediated such as atherosclerosis, chronic obstructive pulmonary disease (COPD), cirrhosis, scleroderma, renal transplantation fibrosis, renal allograft nephropathy, or pulmonary fibrosis (including idiopathic) Fibrotic cells of chronic pulmonary fibrosis and / or idiopathic pulmonary hypertension).
  • COPD chronic obstructive pulmonary disease
  • scleroderma scleroderma
  • renal transplantation fibrosis fibrosis
  • renal allograft nephropathy or pulmonary fibrosis (including idiopathic) Fibrotic cells of chronic pulmonary fibrosis and / or idiopathic pulmonary hypertension.
  • pulmonary fibrosis including idiopathic Fibrotic cells of chronic pulmonary fibrosis and / or idiopathic pulmonary hypertension.
  • FAP ⁇ fibroblast activation protein alpha
  • the target cell protein may be a protein that is selectively expressed on the surface of infected cells.
  • the target cell protein may be an envelope protein of HBV or HCV expressed on the surface of the infected cell.
  • the target cell protein may be gp120 encoded by human immunodeficiency virus (HIV) on HIV-infected cells.
  • the target cells may be cells that mediate infection and infectious-related diseases.
  • the target cells may be cells that mediate diseases related to immunodeficiency.
  • the target cells may be cells that mediate other related diseases, including well-known technologies and possible future developments.
  • Bispecific antibodies can bind to target cell proteins from mice, rats, rabbits, New World monkeys, and / or Old World monkey species.
  • the species include but are not limited to the following species: Musmusculus; Rattus rattus; Rattus norvegicus; Crab-eating macaque, Macacafascicularis; Hamadryasbaboon, Egyptian baboon (Papiohamadryas); big baboon (Guineababoon), Guinea baboon (Papiopapio); olive baboon (olivebaboon), east African baboon (Papioanubis); yellow baboon (yellowbaboon), grassland baboon (Papiocynocephalus); (Papioursinus), common marmoset (Callithrixjacchus), tamarind tamarin (Saguinus Oedipus) and squirrel monkey (Saimirisciureus).
  • cancer refers to a large class of diseases characterized by the uncontrolled growth of abnormal cells in the body.
  • Cancer includes benign and malignant cancers and dormant tumors or micrometastasis. Cancer includes primary malignant cells or tumors (e.g., tumors that have not migrated to a site other than the original malignant disease or tumor site in the subject) and secondary malignant cells or tumors (e.g., tumors resulting from metastasis, metastasized to malignant Cells or tumor cells migrate to a secondary site that is different from the original tumor site). Cancer also includes hematological malignancies. "Hematological malignancies” include lymphomas, leukemias, myeloma or lymphoid malignancies, as well as splenic and lymph node tumors.
  • the bispecific antibody of the present invention or the nucleic acid or polynucleotide or immunoconjugate or pharmaceutical composition or combination therapy encoding the antibody of the present application is useful for the treatment, prevention or remission of cancer.
  • cancer include, but are not limited to, carcinoma, lymphoma, glioblastoma, melanoma, sarcoma, and leukemia, myeloma, or lymphocytic malignancies.
  • squamous cell carcinoma eg, epithelial squamous cell carcinoma
  • Ewing's sarcoma e.g. Ewing's sarcoma
  • Wilms' tumor astrocytoma
  • lung cancer including small cell lung cancer, Non-small cell lung cancer, lung adenocarcinoma and lung squamous cell carcinoma
  • peritoneal cancer hepatocellular carcinoma
  • gastric cancer or gastric cancer including gastrointestinal cancer
  • pancreatic cancer glioblastoma multiforme
  • cervical cancer ovarian cancer Cancer
  • liver cancer bladder cancer
  • hepatocellular carcinoma hepatocellular carcinoma
  • neuroendocrine tumor medullary thyroid carcinoma
  • differentiated thyroid cancer breast cancer, ovarian cancer, colon cancer
  • rectal cancer endometrial cancer or uterine cancer
  • salivary adenocarcinoma Kidney or kidney cancer, prostate cancer, vulvar cancer, anal cancer, penile cancer and head and neck cancer.
  • cancer or malignant diseases include, but are not limited to: acute childhood lymphoblastic leukemia, acute lymphoblastic leukemia, acute lymphocytic leukemia, acute myelogenous leukemia, adrenocortical carcinoma, adult (primary) hepatocytes Cancer, adult (primary) liver cancer, adult acute lymphocytic leukemia, adult acute myeloid leukemia, adult Hodgkin's lymphoma, adult lymphocytic lymphoma, adult non-Hodgkin's lymphoma, adult primary Liver cancer, adult soft tissue sarcoma, AIDS-related lymphoma, AIDS-related malignant disease, anal cancer, astrocytoma, cholangiocarcinoma, bladder cancer, bone cancer, brain stem glioma, brain tumor, breast cancer, renal pelvis And ureteral cancer, central nervous system (primary) lymphoma, central nervous system lymphoma, cerebellar astrocytoma, cerebral
  • the present invention encompasses that bispecific antibodies or nucleic acids or polynucleotides or immunoconjugates or pharmaceutical compositions encoding antibodies of the present application may be combined with one or more active therapeutic agents (e.g. chemotherapeutic agents) or other modes of prevention or treatment (e.g. , Radiation) combined use.
  • active therapeutic agents e.g. chemotherapeutic agents
  • other modes of prevention or treatment e.g. , Radiation
  • combination therapies include therapeutic agents that affect the immune response (eg, enhance or activate the response) and therapeutic agents that affect (eg, inhibit or kill) tumors / cancer cells.
  • Combination therapy can reduce the possibility of drug-resistant cancer cells.
  • Combination therapy may allow the dose of one or more of the agents to be reduced to reduce or eliminate the adverse effects associated with one or more of the agents.
  • Such combination therapy may have a synergistic treatment or prevention effect on the underlying disease, disorder or condition.
  • “Combination” includes therapies that can be administered separately, for example, formulated separately for single administration (eg, can be provided in a kit), and therapies that can be administered together in a single formulation (ie, "co-formulation").
  • the bispecific antibodies of the present invention or the nucleic acids or polynucleotides encoding the antibodies of the present application or immunoconjugates or pharmaceutical compositions can be administered sequentially.
  • the bispecific antibody or nucleic acid or polynucleotide encoding the antibody of the present application or immunoconjugate or pharmaceutical composition can be administered simultaneously.
  • the bispecific antibody of the present invention or the nucleic acid or polynucleotide or immunoconjugate or pharmaceutical composition encoding the antibody of the present application may be used in any combination with at least one other (active) agent.
  • Treatment with the bispecific antibody of the invention can be combined with other treatments that can be effective against the condition to be treated.
  • Non-limiting examples of antibody combination therapy of the present invention include surgery, chemotherapy, radiotherapy, immunotherapy, gene therapy, DNA therapy, RNA therapy, nanotherapy, viral therapy, and adjuvant therapy.
  • the combination therapy also includes all other known technologies and possible future development.
  • FIG. 1-1 The configurations of the bispecific antibodies AB7K, AB7K4, AB7K5, AB7K6, AB7K7, and AB7K8 are shown as a, b, c, d, e, and f, respectively.
  • Figure 1-2 shows the map of the bispecific antibody AB7K7 expression plasmid.
  • the expression plasmid is 9293bp in length and contains 9 major gene fragments, including 1.hCMV promoter; 2. target gene; 3. EMCVIRES; 4. mDHFR screening gene; 5. Syn termination sequence; 6. SV40 promoter; 7 . Karamycin resistance gene; 8. SV40 termination sequence; 9. PUC replicon.
  • Figure 1-3 SEC-HPLC detection results of AB7K7 purified samples.
  • Figure 1-4 SDS-PAGE electrophoresis results of AB7K7 purified samples.
  • Figure 1-6 SDS-PAGE results of AB7K7 in freeze-thaw experiments.
  • FIG. 2-1 FACS tests the ability of bispecific antibodies AB7K and AB7K4 to bind to tumor cells BT474.
  • FIG. 2-2 FACS detects the ability of bispecific antibodies AB7K and AB7K5 to bind to tumor cells BT474.
  • FIG. 1 FACS detects the ability of bispecific antibodies AB7K and AB7K6 to bind to tumor cells BT474.
  • FIG. 2-4 FACS detects the ability of bispecific antibodies AB7K and AB7K7 to bind to tumor cells BT474.
  • FIG. 1 FACS detects the ability of bispecific antibody AB7K8 to bind to tumor cells BT474.
  • FIG. 1 FACS detects the ability of bispecific antibodies AB7K and AB7K4 to bind to effector cell CIK.
  • FIG. 1-7 FACS detects the ability of bispecific antibodies AB7K and AB7K5 to bind to effector cell CIK.
  • FIG. 1 FACS detects the ability of bispecific antibody AB7K6 to bind to effector cell CIK.
  • FIG. 1 FACS detects the ability of bispecific antibodies AB7K and AB7K7 to bind to effector cell CIK.
  • FIG. 1 FACS detects the ability of bispecific antibody AB7K8 to bind to effector cell CIK.
  • FIG. 1 FACS test the ability of bispecific antibody AB7K to bind to cynomolgus monkey T cells.
  • ELISA detects the ability of five Anti-Her2 ⁇ CD3 bispecific antibodies to bind to CD3 and Her2 molecules.
  • FIG. 1 A microplate reader detects the ability of five Anti-Her2 ⁇ CD3 bispecific antibodies to activate the reporter cell line Jurkat T cells.
  • Figure 2-15 Modeling of GS linker peptide and anti-CD3 scFv VH structure.
  • Figure 2-16 Molecular docking model of anti-CD3 Fv and CD3 epsilon chain.
  • Figure 3-1 In vivo antitumor effect of double antibodies AB7K4 and AB7K7 in a transplanted tumor model in which human CIK cells and HCC1954 cells were co-inoculated subcutaneously in NCG mice.
  • Figure 3-2 In vivo anti-tumor effect of double antibody AB7K7 in a transplanted tumor model in which NPG mice were co-inoculated with human CIK cells and human breast cancer cells HCC1954.
  • Figure 3-3 In vivo anti-tumor effect of double antibodies AB7K7 and AB7K8 in a transplanted tumor model in which NCI mice were co-inoculated with human CIK cells and human breast cancer cells HCC1954 under subcutaneous administration.
  • Figure 3-4 In vivo antitumor effect of double antibody AB7K7 in a transplanted tumor model in which NCI mice were co-inoculated with human CIK cells and SK-OV-3 cells.
  • Figure 3-5 In vivo antitumor effect of the dual antibody AB7K7 in a transplanted tumor model in which NPG mice were co-inoculated with human CIK cells and HT-29 cells.
  • Figure 3-6 In vivo antitumor effect of double antibody AB7K7 in a transplanted tumor model in which CD34 immune reconstructed NPG mice were subcutaneously inoculated with human breast cancer HCC1954 cells.
  • Figure 3-7 The anti-tumor effect of the double antibody AB7K7 in a transplanted tumor model inoculated with human breast cancer HCC1954 cells in NPG mice immunized with PBMC.
  • Figure 4-1 Anti-tumor effect of dual antibodies AB7K4 and AB7K7 in a transplanted tumor model in which NCG mice were co-inoculated with human CIK cells and human Burkkit ’s lymphoma Raji cells
  • Figure 4-3 The weight change curve of normal cynomolgus monkeys with multiple antibodies AB7K7 and AB7K8.
  • Figure 5-1 The drug-time curve of the dual antibody AB7K7 in SD rats when detected by two ELISA methods.
  • Figure 5-2 The drug-time curve of the dual antibody AB7K8 in SD rats detected by two ELISA methods.
  • Figure 5-3 Drug-time curves of the dual antibodies AB7K7 and AB7K8 in cynomolgus monkeys.
  • Figure 5-4 Determination of the binding ability of the dual antibodies AB7K, AB7K5 and AB7K7 to FcRn at pH 6.0.
  • Figure 5-5 Determination of the binding ability of the dual antibodies AB7K, AB7K5 and AB7K7 to FcRn at pH 7.0.
  • Figure 6-1 The antitumor effect of double antibody AB9K in a transplanted tumor model in which NOD-SCID mice were co-inoculated with human PBMC cells and Huh-7 cells.
  • Figure 6-2 In vivo anti-tumor effect of double antibody AB9K in a transplanted tumor model in which CD34 immune reconstructed NPG mice were subcutaneously inoculated with human liver cancer Huh-7 cells.
  • Figure 6-3 In vivo antitumor effect of double antibody AB9K in a transplanted tumor model in which CD34 immune reconstructed NPG mice were subcutaneously inoculated with human liver cancer Huh-7 cells.
  • Figure 7-1 Flow cytometry to detect the ability of bispecific antibody AB2K to bind to CD20 positive tumor cells.
  • FIG. 7-2 The bispecific antibodies AB2K and AB7K7 mediate the ability of effector cells to kill Raji-luc cells.
  • the reporter gene method detects the ability of bispecific antibodies AB2K and AB7K7 to activate Jurkat NFATRE Luc cells.
  • Figure 7-4 In vivo anti-tumor effect of double antibody AB2K co-vaccinated with human CIK cells and human Burkkit ’s lymphoma Raji cell transplantation tumors in NPG mice.
  • Figure 7-5 In vivo anti-tumor effect of double antibody AB2K co-inoculated subcutaneously with human CIK cells and human Burkkit ’s lymphoma Daudi cell transplantation tumors in NPG mice.
  • Figure 8 Changes of white blood cells and lymphocytes in normal cynomolgus monkeys after multiple administrations of double antibody AB2K.
  • FIG. 9-1 FACS detects the ability of Anti-CD19 ⁇ CD3 bispecific antibody to bind to tumor cells Raji.
  • FIG. 9-2 FACS detects the ability of Anti-CD19 ⁇ CD3 bispecific antibody to bind to effector cell CIK.
  • FIG. 9-3 FACS detects the ability of bispecific antibodies AB1K2 and AB23P10 to bind to cynomolgus monkey T cells.
  • FIG. 9-4 ELISA detects the ability of four Anti-CD19 ⁇ CD3 bispecific antibodies to bind to CD3 and CD19 molecules.
  • FIG. 9-5 The microplate reader detects the ability of AB1K2 and AB23P8 bispecific antibodies to activate the reporter cell line Jurkat T cells.
  • FIG. 9-6 A microplate reader detects the ability of four Anti-CD19 ⁇ CD3 bispecific antibodies to activate the reporter cell line Jurkat T cells.
  • Figure 10-1 Binding of AB11K to tumor cells highly expressing Mucin1 antigen and human or cynomolgus monkey primary T cells.
  • FIG. 10-3 AB11K mediates the ability of PBMC to kill tumor cells.
  • FIG. 10-4 Ab11K's ability to specifically activate T cells.
  • Figure 11 In vivo anti-tumor effect of double antibody AB8K in NPG mouse subcutaneously co-vaccinated with human CIK cells and human skin cancer A431 cell transplanted tumor model.
  • Example 1 Design and preparation of Anti-Her2 ⁇ CD3 bispecific antibodies with different structures
  • bispecific antibodies with different configurations for Her2 and CD3, among which AB7K5, AB7K6 and AB7K8 are single-chain bivalent antibodies, AB7K, AB7K4 and AB7K7 is a double-chain tetravalent bispecific antibody (see Figure 1-1), of which only AB7K8 does not contain an Fc fragment.
  • Table 1-1 the configurations of the above four configurations of bispecific antibodies and their composition from the N-terminus to the C-terminus and their amino acid sequence numbers are shown in Table 1-1. The specific structural characteristics of the six bispecific antibodies are described as follows:
  • the bispecific antibody AB7K is composed of the C-terminus of the two heavy chains of the full-length anti-Her2 antibody connected to an anti-CD3 scFv domain through a connecting peptide (L1).
  • L1 connecting peptide
  • the connecting peptide L1 is composed of a flexible peptide and a rigid peptide, and the flexible peptide is composed of GS (GGGGS) 3 and the rigid peptide is SSSSKAPPPSLPSPSRLPGPSDTPILPQ; wherein the connecting peptide L2 between the VH and VL of the anti-CD3 scFv is (GGGGS) 3 .
  • the bispecific antibody AB7K4 is composed of the C-terminus of the two light chains of the full-length antibody against Her2 connected to an anti-CD3 scFv domain by a connecting peptide (L1).
  • L1 connecting peptide
  • the monoclonal antibody for the amino acid sequence of the heavy chain variable region of the complete antibody against Her2 included in AB7K4 Variable region sequence the light chain amino acid sequence of monoclonal antibody Light chain amino acid sequence (IMGT database INN 7637).
  • the Fc fragment contained in the AB7K4 heavy chain is derived from human IgG1, and has multiple amino acid substitutions / substitutions, namely L234A, L235A, T250Q, N297A, P331S, and M428L (EU numbering), and also deletes / deletes the C-terminal of the Fc fragment K447 (EU number).
  • the connecting peptide L1 is composed of a flexible peptide and a rigid peptide, and the flexible peptide is composed of G 2 (GGGGS) 3 and the rigid peptide is SSSSKAPPPS; wherein the connecting peptide L2 between the VH and VL of the anti-CD3 scFv is (GGGGS) 3 .
  • the bispecific antibody AB7K5 is composed of anti-Her2 scFv, Fc fragment, connecting peptide L2 and anti-CD3 scFv in series, and the internal VH and VL of anti-Her2 scFv and anti-CD3 scFv are respectively connected by connecting peptides L1 and L3 connection.
  • the Fc fragment contained in AB7K5 is derived from human IgG1 and has multiple amino acid substitutions / replacements, namely C226S, C229S, L234A, L235A, T250Q, N297A, P331S, T366R, L368H, K409T, and M428L (EU numbering).
  • mutations at the five positions of C226S, C229S, T366R, L368H, and K409T can prevent the polymerization of Fc fragments, thereby promoting the formation of single-chain bivalent bispecific antibodies;
  • Fc fragments carrying L234A / L235A / P331S mutations Removed ADCC and CDC activities;
  • carrying the T250Q / M428L mutation can enhance the binding affinity of the Fc fragment to the receptor FcRn, thereby extending its half-life;
  • the N297A mutation avoids antibody glycosylation and loses its ability to bind Fc ⁇ Rs.
  • the connecting peptide (L2) is composed of a flexible peptide and a rigid peptide, and the flexible peptides are both G 2 (GGGGS) 3 and the rigid peptide is SSSSKAPPPS.
  • the composition of the connecting peptides L1 and L3 in each scFv is (GGGGS) 3 .
  • the bispecific antibody AB7K6 is composed of anti-Her2 scFv, connecting peptide L2, anti-CD3 scFv and Fc fragments in series, and the anti-Her2 scFv and anti-CD3 scFv internally are connected by connecting peptides L1 and L3 connection.
  • the Fc fragment contained in AB7K6 is derived from human IgG1 and has multiple amino acid substitutions / substitutions, namely C226S, C229S, L234A, L235A, T250Q, N297A, P331S, T366R, L368H, K409T, and M428L (EU numbering).
  • mutations at the five positions of C226S, C229S, T366R, L368H, and K409T can prevent the polymerization of Fc fragments, thereby promoting the formation of single-chain bivalent bispecific antibodies;
  • Fc fragments carrying L234A / L235A / P331S mutations Removed ADCC and CDC activities;
  • carrying the T250Q / M428L mutation can enhance the binding affinity of the Fc fragment to the receptor FcRn, thereby extending its half-life;
  • the N297A mutation avoids antibody glycosylation and loses its ability to bind Fc ⁇ Rs.
  • the connecting peptide (L2) is composed of a flexible peptide and a rigid peptide, and the flexible peptides are both G 2 (GGGGS) 3 and the rigid peptide is SSSSKAPPPS.
  • the composition of the connecting peptides L1 and L3 in each scFv is (GGGGS) 3 .
  • the bispecific antibody AB7K7 is composed of anti-Her2 scFv, linker peptide L2, anti-CD3 scFv and Fc fragments in series, and the anti-Her2 scFv and anti-CD3 scFv are internally connected by linker peptides L1 and L3 connection.
  • linker peptides L1 and L3 connection Refer to the monoclonal antibody for the amino acid sequence of the scFv against Her2 contained in AB7K7 Variable region sequence.
  • the Fc fragment contained in AB7K7 is derived from human IgG1 and has multiple amino acid substitutions / substitutions, namely L234A, L235A, T250Q, N297A, P331S, and M428L (EU numbering), and also deletes / deletes K447 at the C-terminus of the Fc fragment (EU number).
  • the connecting peptide (L2) is composed of a flexible peptide and a rigid peptide, and the flexible peptides are both G 2 (GGGGS) 3 and the rigid peptide is SSSSKAPPPS.
  • the composition of the connecting peptides L1 and L3 in each scFv is (GGGGS) 3 .
  • the bispecific antibody AB7K8 is composed of anti-Her2 scFv, connecting peptide L2, anti-CD3 scFv and His tags in series, and the anti-Her2 scFv and anti-CD3 scFv internally are connected by connecting peptides L1 and L3 connection.
  • AB7K8 adds a His tag to the C-terminus of anti-CD3 scFv to form HHHHHHHH, which facilitates antibody purification.
  • the connecting peptide (L2) is composed of a flexible peptide and a rigid peptide, and the flexible peptides are both G 2 (GGGGS) 3 and the rigid peptide is SSSSKAPPPS.
  • the composition of the connecting peptides L1 and L3 in each scFv is (GGGGS) 3 .
  • the anti-CD3-scFv VH and VL amino acid sequences contained in the above six bispecific antibodies are shown in SEQ ID NO: 247 and SEQ ID NO: 248, respectively, and the VH and VL are connected by (GGGGS) 3 , the single The cloned antibody (named CD3-3) specifically binds to human and cynomolgus monkey CD3 antigens, and has weak binding affinity to CD3.
  • Table 1-1 Four different structures of bispecific antibodies against Her2 and CD3
  • Ln represents connecting peptides between different structural units
  • n is numbered in the order of arrangement of connecting peptides contained between different structural units from N-terminal to C-terminal of bispecific antibody.
  • the coding genes of the above five bispecific antibodies were synthesized according to conventional molecular biology methods, and the coding cDNAs of the obtained fusion genes were inserted between the corresponding restriction sites of the eukaryotic expression plasmid pCMAB2M modified by PCDNA3.1, Among them, the heavy and light chains of AB7K and AB7K4 can be constructed in one vector or on two different vectors.
  • the map of the AB7K7 expression plasmid is shown in Figure 1-2. This plasmid contains the cytomegalovirus early promoter, which is an enhancer required for high-level expression of foreign genes in mammalian cells.
  • Plasmid pCMAB2M also contains a selectable marker, so that it can have kanamycin resistance in bacteria and G418 resistance in mammalian cells.
  • the pCMAB2M expression vector contains the mouse dihydrofolate reductase (DHFR) gene, so that the target gene and DHFR gene can be co-amplified in the presence of methotrexate (MTX) (See US Patent 4,399,216).
  • DHFR mouse dihydrofolate reductase
  • MTX methotrexate
  • the expression plasmid constructed above is transfected into a mammalian host cell line to express the bispecific antibody.
  • the preferred host cell line is a DHFR enzyme-deficient CHO-cell (see US Pat. No. 4,818,679).
  • the host cell is CHO-derived cell line DXB11.
  • a preferred method of transfection is electroporation, but other methods can also be used, including calcium phosphate co-sedimentation, lipofection.
  • the DHFR gene inhibited by MTX In order to achieve higher levels of fusion protein expression, it is advisable to use the DHFR gene inhibited by MTX for co-amplification.
  • the transfected fusion protein gene was co-amplified with the DHFR gene.
  • Subclones positive for DHFR positive expression were gradually diluted, and the transfectants that could grow in MTX medium up to 6 ⁇ M were screened, the secretion rate was measured, and cell lines that highly expressed foreign proteins were selected.
  • Cell lines with a secretion rate exceeding about 5 (preferably about 15) ⁇ g / 106 (ie millions) cells / 24h are subjected to adaptive suspension culture using serum-free medium. Then, the cell supernatant was collected and the bispecific antibody was separated and purified.
  • Antibody purification generally adopts a three-step purification strategy: crude purification (sample capture), intermediate purification, and fine purification.
  • crude purification stage affinity chromatography is usually used to capture the antibody of interest, which can effectively remove a large amount of impurities in the sample, such as miscellaneous proteins and nucleic acids, endotoxins and viruses.
  • intermediate purification step hydrophobic chromatography or CHT hydroxyapatite chromatography is often used to remove most of the remaining impurity proteins and polymers.
  • ion exchange chromatography or gel filtration chromatography molecular sieve
  • the culture supernatant of the bispecific antibody AB7K8 fused with His-tag can be roughly purified by using a metal chelating affinity chromatography column (for example, HisTrap FF of GE Company).
  • Protein A / G affinity chromatography columns (such as Mabselect SURE from GE, etc.) can be used for crude purification of Fc-containing bispecific antibodies AB7K4, AB7K5, AB7K6, AB7K, and AB7K7.
  • the above crude product is then subjected to intermediate purification and fine purification steps to finally obtain a high-purity, high-quality purified target antibody, and then use a desalting column (such as HiTrap desaulting of GE Corporation) to replace the bispecific antibody storage buffer with PBS Or other suitable buffer.
  • a desalting column such as HiTrap desaulting of GE Corporation
  • the first step, affinity chromatography use MabSelect Sure affinity chromatography medium of GE company or other commercially available affinity medium (such as Diamond protein of Borgron company, etc.) for sample capture, concentration and partial contaminants Remove.
  • the second step hydrophobic chromatography: using Butyl HP from Boglong or other commercially available hydrophobic chromatography media (such as Butyl HP from GE) for intermediate purification to reduce polymer content.
  • Butyl HP from Boglong or other commercially available hydrophobic chromatography media such as Butyl HP from GE
  • hydrophobicity we use the difference in hydrophobicity to separate the two.
  • the second step is anion exchange chromatography
  • the isolated target protein was adjusted to conductance of 40-50ms / cm with 2M (NH4) 2SO4 solution, and then the sample was loaded, the load was controlled at ⁇ 20mg / ml; after the sample was completed, the balance buffer (20mM PB, 0.3M (NH4) was used 2SO4, pH 7.0), flush the chromatography column with 3-5 column volumes (CV) at a linear flow rate of 100-200 cm / h; finally elute the target protein, using the elution buffer (20 mM PB, pH 7.0), respectively 40%, 80% and 100% elution buffer, elute 3-5 column volumes (CV) at a linear flow rate not higher than 100 cm / h, collect the eluted components in
  • the third step, anion exchange chromatography use Q-HP from Boglong or other commercially available anion exchange chromatography media (such as GE ’s QHP, TOSOH ’s Toyopearl GigaCap Q-650, Tiandiren and DEAE Beads 6FF, Sepik Technology's Generik MC-Q, Merck's Fractogel EMD TMAE, Pall's Q Ceramic) HyperD) are used for fine purification to isolate structural variants and further remove contaminants such as HCP and DNA.
  • anion exchange chromatography media such as GE ’s QHP, TOSOH ’s Toyopearl GigaCap Q-650, Tiandiren and DEAE Beads 6FF, Sepik Technology's Generik MC-Q, Merck's Fractogel EMD TMAE, Pall's Q Ceramic) HyperD
  • the SEC-HPLC purity results and SDS-PAGE electrophoresis results of the samples are shown in Figures 1-3 and 1-4.
  • the SEC-HPLC results show that the main peak purity of the bispecific antibody after three-step chromatography is more than 95%, SDS -PAGE electrophoresis band pattern is as expected, non-reduced electrophoresis (180KDa), after the reduction can get a clear (90KDa) single-stranded band.
  • AB7K5 was purified by Protein A affinity chromatography and hydroxyapatite (CHT) chromatography. After SEC-HPLC detection, it was found to have low purity and low yield, and there was also a problem of extremely low expression yield.
  • CHT hydroxyapatite
  • AB7K6 Another single-chain bivalent bispecific antibody AB7K6 also has the problem of difficulty in process development.
  • AB7K6 was purified by Protein A affinity chromatography and molecular sieve chromatography Superdex 200 in two steps. After SEC-HPLC detection, it was found to be more pure Difficult to quantify, there is a "shoulder peak" in the main peak; in addition, its expression yield is extremely low and very unstable. After placing it in a refrigerator at 4 °C for 24h, it is found that the peak shape changes in its SEC-HPLC results. It becomes a main peak, which may be caused by the conversion from single-stranded to double-stranded structure according to the peak time. In summary, the current process development of AB7K6 is more difficult, and it is difficult to achieve process amplification and industrialization.
  • AB7K7 has significant advantages in process development, and has the advantages of high yield, simple and efficient purification methods, and stable downstream processes.
  • AB7K7 protein The stability of AB7K7 protein in citrate (20 mM citrate, pH 5.5) and histidine buffer system (20 mM histidine, pH 5.5) were investigated respectively.
  • the AB7K7 protein was stored under accelerated conditions at 25 ° C for 4 weeks to evaluate the stability of the protein.
  • the AB7K7 protein was changed into the above citrate (F2) and histidine (F3) buffers, and the concentration was adjusted to 0.5mg / mL. 8% sucrose (w / v) was added to the above two buffer systems ) And 0.02% PS80 (w / v) as auxiliary materials. Filter with 0.22 ⁇ m PES membrane needle filter, and aliquot them into 2mL vials, 0.8mL per vial, press and stopper capping immediately after the aliquoting. Put the samples into different stability boxes according to the scheme in Table 1-2. Take samples at each sampling point for testing and analysis. The testing items include sample appearance, concentration, SEC-HPLC test sample purity, HMW% and LMW%, and turbidity. Determination (A340).
  • the appearance, concentration, turbidity and SEC-HPLC test results of the two formulations stored at 25 °C for 0 to 4 weeks are shown in Tables 1-3 and 1-4, and the SDS-PAGE (reduced / non-reduced) results are shown in Figure 1. -5.
  • the appearance and concentration results of the two prescriptions did not change significantly; in the SEC-HPLC results, the SEC results of the F2 and F3 formulas did not change significantly, and the purity was 97.9% and 98.2% after 4 weeks, respectively.
  • the SDS-PAGE (reduced / non-reduced) results were basically consistent with the LMW% results, with slight changes in F2 and F3.
  • Tm unfolding temperature
  • Tmonset temperature at which the protein begins to unfold
  • T0 turbidity test sample is the sample after 1 round of freeze-thaw
  • Table 1-6 freeze-thaw experiment appearance, concentration, turbidity and SEC-HPLC results
  • T0 turbidity test samples are samples after 1 round of freeze-thaw.
  • Tumor cells BT-474 with positive Her2 expression were cultured, digested with 0.25% trypsin, and collected by centrifugation. The collected cells were resuspended with 1% PBSB, the cell density was adjusted to 2 ⁇ 10 6 cells / ml, placed in a 96-well plate, 100 ⁇ l (2 ⁇ 10 5 cells) per well, and blocked at 4 ° C. for 0.5 h. After blocking, the cells were centrifuged and the supernatant was discarded. A series of diluted bispecific antibodies were added and incubated at 4 ° C for 1 hour.
  • AF488-labeled goat anti-human IgG antibody or mouse anti-6 ⁇ His IgG antibody incubate at 4 ° C in the dark for 1 hour; centrifuge to remove supernatant, wash twice with 1% PBSB, and re-use 100 ⁇ l of 1% paraformaldehyde (PF) per well Suspended, flow cytometer to detect signal strength.
  • PF paraformaldehyde
  • FIGS 2-1 to 2-5 show the binding curves of bispecific antibodies with different structures and tumor cells BT-474. According about 5nM, AB7K7 tumor cell binding shown in Table, AB7K AB7K4 tumor cells and binding to EC 2-1 50 EC nearly 50 50nM, AB7K5 AB7K8 tumor cells and binding to EC 50 is 100nM, and the tumor AB7K6 The cell-bound EC 50 is as high as 200 nM or more.
  • PBMC peripheral blood mononuclear cells
  • CIK cells Cytokine-Induced Killer cells
  • the preparation and determination methods of the samples to be tested are the same as those in Example 2.1a).
  • the 1% PF detects the resuspended cells, mean fluorescence intensity, OriginPro 8 analyzed by software, calculate the bispecific antibodies to human EC cells CIK 50 binding value.
  • PBMC peripheral blood mononuclear cells
  • the bispecific antibody AB7K can also bind well to cynomolgus monkey T cells, and its ability to bind to cynomolgus monkey T cells is roughly equivalent to that of human T cells. Flow cytometry cytometry which bound EC 50 about 26nM.
  • the bispecific antibodies AB7K4, AB7K5, AB7K6, AB7K7 and AB7K8, like AB7K, can specifically bind to cynomolgus monkey T cells.
  • bispecific antibodies to soluble CD3 and Her2 was identified by double antigen sandwich ELISA.
  • the Her2 protein (Beijing Yiqiao Shenzhou, Catalog No. 10004-H08H4) was diluted with PBS to a concentration of 0.1 ⁇ g / ml, added to a 96-well plate, 100 ⁇ l / well, and coated at 4 ° C overnight. Then it was blocked with 1% skimmed milk powder for 1 hour at room temperature. Simultaneously dilute each bispecific antibody, a 4-fold gradient dilution, a total of 11 concentration gradients. Then wash the 96-well plate with PBST, add the diluted bispecific antibody, set the control well without antibody, and incubate for 1 hour at room temperature.
  • the unbound bispecific antibody was washed away with PBST, and the biotinylated CD3E & CD3D (ACRO Biosystem, Catalog No. CDD-H82W1) was mixed with 50 ng / ml streptavdin HRP (BD, Catalog No. 554066) into a 96-well plate, 100 ⁇ l / well , Incubate at room temperature for 1h. Thereafter, the 96-well plate was washed with PBST, TMB was added, 100 ⁇ l / well, and the color was developed at room temperature for 15 min, and then 0.2M H 2 SO 4 was added to stop the color reaction. Detect the absorbance of A450-620nm with a microplate reader. 8 were analyzed by the software OriginPro, EC 50 values were calculated with the two bispecific antibody antigen binding.
  • each bispecific antibody can specifically bind CD3 and Her2 molecules simultaneously, and exhibits a good dose dependence with changes in antibody concentration (Figure 2-12).
  • the binding capacity of several bispecific antibodies to soluble CD3 and Her2 is shown in Table 2-3, and their EC 50 values range from 0.03 nM to 3.8 nM, which differs by two orders of magnitude.
  • AB7K has the best binding activity
  • AB7K4 and AB7K7 differ by an order of magnitude
  • AB7K5 and AB7K8 have the weakest binding activity.
  • Jurkat T cells BPS Bioscience, Catalog No. 60621
  • NFAT RE gene can overexpress luciferase in the presence of bispecific antibodies and target cells, and quantify Jurkat T by detecting luciferase activity The degree of cell activation.
  • the concentration of the bispecific antibody is used as the X axis, and the fluorescein signal is used as the Y axis to fit the four-parameter curve.
  • the Her2 monoclonal antibody targeting Her2 cannot activate Jurkat T cells. Only when both antibodies are present will T cells be activated.
  • the ability of each antibody to activated Jurkat T cells are shown in Table 2-4, wherein the T cell activation ability AB7K4 strongest ability AB7K8 weakest T cell activation, which EC 50 values differ by an order of magnitude.
  • SK-BR-3, MCF-7, HCC1937, NCI-N87, and HCC1954 cells were digested with 0.25% trypsin to prepare single cells
  • the suspension was adjusted to a cell density of 2 ⁇ 10 5 cells / ml, added to a 96-well cell culture plate, 100 ⁇ l / well, and cultured overnight. Dilute the corresponding antibody according to the experimental design, 50 ⁇ l / well, and add the same volume of medium to the wells without antibody addition.
  • effector cells human PBMC or expanded cultured CIK cells
  • control well set the control well
  • the supernatant was discarded in a 96-well plate, washed 3 times with PBS, added with 10% CCK-8 complete medium, 100 ⁇ l / well, incubated at 37 ° C for 4h, and the absorbance value of A450-620nm was detected with a microplate reader.
  • the software OriginPro 8 was used to analyze, calculate and compare the ability of each bispecific antibody and the same target monoclonal antibody Herceptin to kill tumor cells.
  • EC 50 values of killing tumor cells bispecific antibody-mediated effector cells are summarized in Table 2-5, results are shown for each antibody specific for bis-Her2 tumor cells highly expressed (e.g. SK-BR-3, NCI- N87 and HCC1954) showed a very significant killing effect and were dose-dependent.
  • Each bispecific antibody (especially AB7K7) also showed a good killing effect on MCF-7 breast cancer cells with low Her2 expression.
  • Herceptin-resistant cell line HCC1954 each bispecific antibody also has a good killing effect, while for the cell line HCC1937 that is negative for Her2 expression (very small amount of expression), each bispecific antibody is only at the highest two concentrations Only showed a lethal effect.
  • means approximately equal to;-means no detection.
  • the computer software was used to model the structure of anti-CD3 scFv VH containing GS-CTP connecting peptide, and the spatial conformation of anti-CD3 scFv and its antigen CD3 epsilon chain was simulated and predicted.
  • the GS-CTP connecting peptide sequence between anti-Her2 scFv and anti-CD3 scFv in the dual antibody AB7K7 is (GGGGGGSGGGGSGGGGSSSSSKAPPPS), the first half is the GS flexible peptide (GGGGGGSGGGGSGGGGGGS), and the second half is the CTP rigid peptide (SSSSKAPPPS).
  • the rigid CTP part (SSSSKAPPPS) is connected to the N terminal of the anti-CD3 scFv VH.
  • the structural CTP peptide is overlaid on the CDR1 region of anti-CD3 scFv VH ( Figure 2-14), which may hinder or hinder the binding of the CD3 antibody to its antigen.
  • the VH of anti-CD3 scFv linked to the GS linker peptide was modeled in three dimensions using phyre2 software, and the GS linker peptide was found to be far from the CDR region ( Figure 2-15). Will affect the binding of antigen and antibody. Even if the GS linking peptide is close to the CDR region, due to its own flexibility, it can freely move away from the antigen-antibody binding region, so it will not affect the antigen-antibody binding.
  • Discovery Studio software was used to simulate the molecular docking of anti-CD3 scFv and its antigen CD3 epsilon chain. Since the structure of the double-stranded anti-CD3 FV and anti-CD3 scFv is highly similar, the use of the double-stranded anti-CD3 FV instead of anti-CD3 scFv for structural simulation.
  • the simulation results show that the antigen CD3 epsilon chain binds to the CDR2 and CDR3 of the anti-CD3 Fv VH and does not bind to the CDR1 region ( Figure 2-16), which seems to indicate that the CTP covering the VH CDR1 region does not interfere with the anti-CD3 scFv and Antigen binding.
  • the CD3 molecule is a compound, including a CD3 gamma chain, a CD3 delta chain, and two CD3 epsilon chains
  • the CD3 molecule together with the TCR and Zeta chains constitutes a T cell receptor complex.
  • the CTP peptide covering the anti-CD3 scFv VH CDR1 does not directly interfere with the binding of the anti-CD3 scFv to its antigen CD3 epsilon chain
  • the CTP peptide may be spaced by a component protein of the T cell receptor complex Structural contact indirectly affects the binding of anti-CD3 scFv to its antigen CD3 epsilon chain.
  • NCG mice were co-inoculated with human CIK cells and human breast cancer HCC1954 cell transplantation tumor model
  • Human breast cancer HCC1954 cells with positive Her2 expression were selected to observe the in vivo tumor suppressive effect of double antibody in the transplanted tumor model in which human CIK cells and HCC1954 cells were co-inoculated subcutaneously in NCG mice.
  • mice Seven- to eight-week-old female NCG mice (purchased from Jiangsu Jicui Yaokang Biotechnology Co., Ltd.) were selected to collect HCC1954 cells (ATCC) in the logarithmic growth phase, and 5 ⁇ 10 6 HCC1954 cells and 5 ⁇ 10 5 were collected. CIK cells were mixed and inoculated subcutaneously on the right back of NCG mice. After 1h, the mice were randomly divided into 7 groups according to their body weight, and 5 mice in each group were given the corresponding drugs intraperitoneally. The positive control group and the PBS control group were given twice a week for a total of 3 times.
  • Herceptin (Herceptin, Roche) was administered at doses of 1 mg / kg and 3 mg / kg, and the PBS control group was given the same volume of PBS solution.
  • the administration group was given double antibodies AB7K4 and AB7K7 every day at a dose of 0.1 mg / kg and 1 mg / kg, respectively, for a total of 10 times.
  • the average tumor volume of the PBS control group was 1494.61 ⁇ 500.28mm 3 ; the average tumor volume of the 1mg / kg Herceptin administration group was 1327.29 ⁇ 376.65mm 3 ; 3mg / kg
  • the average tumor volume of the Herceptin-administered group was 510.49 ⁇ 106.07 mm 3 and the TGI was 65.84%, which was not significantly different from that of the PBS control group.
  • the average tumor volume of the 0.1mg / kg and 1mg / kg AB7K4 administration groups was 304.10 ⁇ 108.50mm 3 and 79.70 ⁇ 58.14mm 3 respectively, and the TGI was 79.65% and 94.67%, respectively, which were significantly different from the PBS control group ( P ⁇ 0.05).
  • the average tumor volume of the 0.1mg / kg and 1mg / kg AB7K7 administration groups was 385.82 ⁇ 95.41mm 3 and 209.98 ⁇ 51.74mm 3 respectively, and the TGI was 74.19% and 85.95%, respectively, which were significantly different from the PBS control group ( P ⁇ 0.05).
  • NPG mice were co-inoculated with human CIK cells and human breast cancer HCC1954 cell transplantation tumor model
  • Human breast cancer HCC1954 cells positive for Her2 expression were selected to observe the in vivo tumor suppressive effect of double antibodies on transplanted tumor models of NPG mice subcutaneously co-inoculated with human CIK cells and human breast cancer cell HCC1954.
  • CIK cells were obtained according to the method in Example 3.1. Seven to eight-week-old female NPG mice (purchased from Beijing Viton Biotech Co., Ltd.) were selected to collect HCC1954 cells (ATCC) in the logarithmic growth phase, and 5 ⁇ 10 6 HCC1954 cells and 5 ⁇ 10 5 cells were collected. CIK cells were mixed and inoculated subcutaneously on the right back of NPG mice. After 6 days of tumor growth, the mice were randomly divided into 3 groups according to tumor volume and body weight. Each group had 6 mice, and the corresponding drugs were given intraperitoneally. Specifically, the dosage of the AB7K7 administration group was 0.1 mg / kg and 1 mg / kg, respectively.
  • the average tumor volume of the PBS control group was 821.73 ⁇ 201.82mm 3 ; the average tumor volume of the 0.1mg / kg AB7K7 administration group was 435.60 ⁇ 51.04mm 3 , TGI 50.83%, no significant difference compared with the control group; the average tumor volume of the AB7K7 administration group at 1 mg / kg was 40.98 ⁇ 12.64mm 3 , TGI was 95.37%, which was extremely significant compared to the control group (P ⁇ 0.01).
  • the double antibody AB7K7 still has a good therapeutic effect, and a low dose of 0.1 mg / kg has a 50% tumor suppressive effect, while 6 mice in the 1 mg / kg administration group Tumors of 4 mice completely regressed, and the tumor volume of the other 2 was also less than 100 mm 3 , which was smaller than the volume of the group (the average tumor volume of this group at the time of grouping was 161.37 ⁇ 18.98 mm 3 ).
  • the double antibody AB7K7 had a good treatment The role of tumors.
  • CIK cells were obtained according to the method described above. Seven to eight-week-old female NPG mice were selected, and 5 ⁇ 10 6 HCC1954 cells and 5 ⁇ 10 5 CIK cells were mixed and inoculated subcutaneously on the right back of NPG mice. After 1h, the mice were randomly divided into 6 groups according to body weight, and 6 mice in each group were given the corresponding drugs intraperitoneally.
  • the control group and the Herceptin administration group are administered twice a week, the dosage of Herceptin is 3mg / kg, the control group is administered the same volume of PBS solution; the administration dose of bispecific antibody AB7K7 is 1mg / kg The dosage of AB7K8 is 0.7mg / kg, and two dosage frequencies are set.
  • the QD group is given once a day for 10 consecutive days, and the BIW group is given twice a week.
  • the day of administration is recorded as day 0.
  • the maximum diameter (D) and minimum diameter (d) of the tumor are measured twice a week, and the tumor volume (mm 3 ) of each group and the tumor growth of each administration group are calculated according to the above formula Inhibition rate TGI (%).
  • the average tumor volume of the PBS control group was 1588.12 ⁇ 120.46 mm 3 ; the average tumor volume of the 3 mg / kg Herceptin administration group was 361.72 ⁇ 134.70 mm 3 ; AB7K7
  • the average tumor volume of the QD administration group and the BIW administration group were 260.18 ⁇ 45.96mm 3 and 239.39 ⁇ 40.62mm 3 , respectively, and the TGI was 83.62% and 84.93%, respectively, which were significantly different from the PBS control group (P ⁇ 0.01); the average tumor volume of the QD administration group and the BIW administration group of AB7K8 were 284.98 ⁇ 26.62mm 3 and 647.14 ⁇ 118.49mm 3 respectively, and the TGI was 82.06% and 59.25%, respectively, which were extremely significant compared to the PBS control group.
  • NPG mice were co-inoculated with human CIK cells and human ovarian cancer SK-OV-3 cell transplantation tumor model
  • Human ovarian cancer SK-OV-3 cells with positive Her2 expression were selected to observe the in vivo tumor suppressive effect of the double antibody in the transplanted tumor model in which NPG mice were co-inoculated with human CIK cells and SK-OV-3 cells.
  • mice Seven to eight-week-old female NPG mice were selected to collect SK-OV-3 cells in the logarithmic growth phase (purchased from the Shanghai Cell Bank of the Chinese Academy of Sciences), and 3 ⁇ 10 6 SK-OV-3 cells and 3 ⁇ 10 Five CIK cells were mixed and inoculated subcutaneously on the right back of NPG mice. After 1h of inoculation, the mice were randomly divided into 7 groups according to body weight, each group of 6 were given the corresponding drugs intraperitoneally. Herceptin and AB7K7 administration groups were given 1mg / kg, 0.2mg / kg and 0.04mg / kg, respectively. The drug frequency was given twice a week, and the control group was given the same volume of PBS. The day of administration is recorded as day 0. The maximum diameter (D) and minimum diameter (d) of the tumor are measured twice a week, and the tumor volume (mm 3 ) of each group and each administration are calculated according to the formula in Example 3.1 The tumor growth inhibition rate TGI (%) of the group.
  • the average tumor volume of the PBS control group was 834.09 ⁇ 45.64 mm 3 ; the average tumor volume of Herceptin at the doses of 1 mg / kg, 0.2 mg / kg, and 0.04 mg / kg They were 644.84 ⁇ 58.22mm 3 , 884.95 ⁇ 38.63mm 3 and 815.79 ⁇ 78.39mm 3 respectively ; the tumors of all AB7K7 administration groups completely regressed.
  • the above results show that in the ovarian cancer SK-OV-3 model, AB7K7 can still completely regress the tumor at a very low dose of 0.04 mg / kg, showing an excellent anti-tumor effect.
  • mice were subcutaneously co-inoculated with human CIK cells and human colon cancer cell HT-29 cell transplantation tumor model
  • Human colon cancer HT-29 cells with positive Her2 expression were selected to observe the antitumor effect of double antibody in the transplanted tumor model in which NPG mice were co-inoculated with human CIK cells and HT-29 cells.
  • CIK cells were obtained according to the method in Example 3.1. Seven- to eight-week-old female NPG mice were selected to collect HT-29 cells in the logarithmic growth phase (purchased from the Shanghai Cell Bank of the Chinese Academy of Sciences). 3 ⁇ 10 6 HT-29 cells and 3 ⁇ 10 6 CIK cells were collected. Mix and inoculate subcutaneously on the right back of NPG mice. After 1h of inoculation, the mice were randomly divided into 5 groups according to body weight, each group of 6 were given the corresponding drugs intraperitoneally. Specifically, the dose of Herceptin was 3mg / kg, and the dose of AB7K7 administration group was 3mg / kg, respectively.
  • the average tumor volume of the PBS control group was 1880.52 ⁇ 338.26mm 3 ; the average tumor volume of 3mg / kg Herceptin was 1461.36 ⁇ 177.94mm 3 ; AB7K7 at 3mg / kg,
  • the average tumor volume in the 1 mg / kg and 0.3 mg / kg dose groups was 13.94 ⁇ 7.06 mm 3 , 26.31 ⁇ 10.75 mm 3 and 10.47 ⁇ 6.71 mm 3 , of which 4 mice in the 0.3 mg / kg group had tumors Complete regression, tumors in 3 mice in the 1 mg / kg administration group completely resolved, and tumors in 4 mice in the 3 mg / kg administration group completely resolved.
  • the above results show that in the colon cancer HT-29 model, Herceptin has basically no effect on this tumor model, while AB7K7 has tumor regression in mice at all three doses, and very low doses also show excellent resistance The effect of tumor.
  • Human breast cancer HCC1954 cells with positive Her2 expression were selected to observe the antitumor effect of the double antibody in the transplanted tumor model in which CD34 immune reconstructed NPG mice were inoculated with human breast cancer HCC1954 cells subcutaneously.
  • CD34-positive selection magnetic beads purchased from Germany Mitani Biotechnology Co., Ltd.
  • CD34-positive hematopoietic stem cells obtained from fresh umbilical cord blood, and female NPG mice of three to four years of age (purchased from Beijing Viton Biotech) Co., Ltd.), injected CD34-positive hematopoietic stem cells in the tail vein to reconstruct the human immune system in mice.
  • blood was collected from the posterior orbital venous plexus of mice for flow cytometry. Mice with a proportion of human CD45 greater than 15% were regarded as successful in immune reconstruction.
  • HCC1954 cells in the logarithmic growth phase were collected, and 5 ⁇ 10 6 HCC1954 cells were inoculated subcutaneously on the right back of the immunized mice. After 1h, the mice were randomly divided into 3 groups according to body weight, 6 mice in each group. AB7K7 and Herceptin were administered intraperitoneally at a dose of 1 mg / kg, respectively.
  • the control group was given the same volume of PBS, twice a week for a total of 6 Times. The day of administration is recorded as day 0.
  • the maximum diameter (D) and minimum diameter (d) of the tumor are measured twice a week, and the tumor volume (mm 3 ) of each group and each administration are calculated according to the formula in Example 3.1
  • the average tumor volume of the PBS control group was 475.23 ⁇ 58.82mm 3 ; the average tumor volume of the Herceptin administration group was 293.27 ⁇ 66.35mm 3 , and the TGI was 38.29%, relative There was no significant difference between the control group; the average tumor volume of the AB7K7 administration group was 0.67 ⁇ 0.67mm 3 , TGI was 99.86%, all tumors had basically subsided, and there was a very significant difference compared with the control group (P ⁇ 0.01) .
  • the double antibody AB7K7 has an excellent anti-tumor effect in the CD34 immune reconstruction model.
  • the HCC1954 cells with positive Her2 expression were selected to observe the antitumor effect of the double antibody in a transplanted tumor model inoculated with human breast cancer HCC1954 cells in NPG mice immunized with PBMC.
  • mice Peripheral blood of normal people was taken and human PBMC cells were isolated by density gradient centrifugation. Five to six-week-old female NPG mice were selected and injected intraperitoneally with human PBMC cells to reconstruct the human immune system in the mice. Seven days after PBMC injection, HCC1954 cells in the logarithmic growth phase were collected, and 5 ⁇ 10 6 HCC1954 cells were inoculated subcutaneously on the right back of mice. Thirteen days after PBMC injection, blood was collected from the retro-orbital venous plexus for flow cytometry. Mice with a human CD45 ratio greater than 15% were considered successful in immune reconstruction. After 14 days of PBMC injection, the successfully immunized mice were randomly divided into 2 groups according to tumor volume and body weight.
  • Each group had 6 mice. AB7K7 was administered intraperitoneally at a dose of 1 mg / kg. The control group was given PBS three times a week. The day of administration is recorded as day 0. The maximum diameter (D) and minimum diameter (d) of the tumor are measured twice a week, and the tumor volume (mm 3 ) of each group and each administration are calculated according to the formula in Example 3.1 The tumor growth inhibition rate TGI (%) of the group.
  • the average tumor volume of the PBS control group was 1224.05 ⁇ 224.39mm 3 ; the average tumor volume of the AB7K7 administration group was 32.00 ⁇ 0.00mm 3 , and the TGI was 97.41%, all The tumors have subsided, and there is a very significant difference compared with the control group (P ⁇ 0.001).
  • the bifunctional specific antibody AB7K7 has an excellent anti-tumor effect in the PBMC immune reconstruction model.
  • Human Burkkit ’s lymphoma Raji cells with negative Her2 expression were selected to observe whether the double antibody would inhibit tumor growth in a transplanted tumor model in which NCG mice were co-inoculated with human CIK cells and human Burkkit ’s lymphoma Raji cells.
  • CIK cells were obtained according to the method in Example 3.1. Seven to eight-week-old female NCG mice were selected, Raji cells in the logarithmic growth phase (purchased from the Shanghai Cell Bank of the Chinese Academy of Sciences) were collected, 5 ⁇ 10 6 Raji cells and 2 ⁇ 10 6 CIK cells were mixed, and inoculated in NCG mice were subcutaneously on the right back. After 1h, the mice were randomly divided into 3 groups according to body weight, 5 in each group. The administration group was given AB7K4 and AB7K7 at a dose of 1 mg / kg intraperitoneally, respectively, and the control group was given the same volume of PBS solution, once a day. Medicine for 10 days. The day of administration is recorded as day 0. The maximum diameter (D) and minimum diameter (d) of the tumor are measured twice a week, and the tumor volume (mm 3 ) of each group and each administration are calculated according to the formula in Example 3.1 The tumor growth inhibition rate TGI (%) of the group.
  • TGI tumor growth inhibition rate
  • the average tumor volume of the PBS control group was 2439.88 ⁇ 193.66mm 3 ; the average tumor volume of the AB7K4 administration group was 2408.81 ⁇ 212.44mm 3 , the average of the AB7K7 administration group The tumor volume was 2598.11 ⁇ 289.35 mm 3 , and the average tumor volume of the two administration groups was not different from that of the control group.
  • the double antibodies AB7K4 and AB7K7 did not observe non-specific killing on Her2 negative cell lines, indicating that AB7K4 and AB7K7 will not mediate the killing of T cells against non-target tissues in vivo (ie specificity) Depending on the binding of the bispecific antibody to the corresponding target antigen), without off-target toxicity and high safety.
  • Human breast cancer HCC1954 cells with positive Her2 expression were selected to observe whether the double antibody inhibited tumor growth in a transplanted tumor model in which NPG mice were inoculated with human breast cancer HCC1954 cells alone.
  • mice Seven- to eight-week-old female NPG mice were selected, HCC1954 cells in the logarithmic growth phase were collected, and 5 ⁇ 10 6 HCC1954 cells and Matrigel matrigel (Corning, article number: 354234) were mixed in a volume ratio of 1: 1.
  • the drug group was given Herceptin at a dose of 3 mg / kg and AB7K7 at 1 mg / kg, and the control group was given the same volume PBS is given twice a week. The day of administration is recorded as day 0.
  • the maximum diameter (D) and minimum diameter (d) of the tumor are measured twice a week, and the tumor volume (mm 3 ) of each group and each administration are calculated according to the formula in Example 3.1
  • the average tumor volume of the PBS control group was 1311.35 ⁇ 215.70mm 3 ; the average tumor volume of the Herceptin administration group was 273.98 ⁇ 60.10mm 3 ; the average of the AB7K7 administration group The tumor volume was 1243.20 ⁇ 340.31mm 3 , which was no difference from the control group.
  • AB7K7 does not inhibit the growth of HCC1954 subcutaneous tumors in the absence of human immune cells, indicating that the double antibody AB7K7 needs to be mediated by immune effector cells to kill tumor cells, unlike Herceptin which mainly depends on Fc ⁇ R-mediated Mediated ADCC or CDC effects to kill tumor cells, proving that the Fc variants contained in AB7K7 cannot bind to Fc ⁇ R, it can avoid the systemic activation of T cells due to the widespread expression of its receptor Fc ⁇ R, so the drug is safer .
  • the cynomolgus monkeys in the AB7K8 administration group experienced drowsiness and pupil diminishment, and returned to normal the next day, with no abnormalities in the other groups; after D7 administration, the AB7K7 administration group cynomolgus monkeys 2-3h after administration Symptoms of vomiting appeared and returned to normal on the second day of administration. No abnormalities occurred in other groups; after D21 administration, cynomolgus monkeys in the AB7K7 administration group developed vomiting food symptoms 3 hours after administration and excreted jelly-like stool. Symptoms of vomiting food appeared 1 hour after administration.
  • Table 4-1 Acute toxicity assessment of cynomolgus monkeys
  • the different degrees of diarrhea observed during this experiment may be related to the expression of related receptors in the intestine. It is presumed that the double antibody inhibits the heterodimer of Her1 / Her2 or Her2 / Her3 and causes the imbalance of chloride ions in the intestine. , which is an extension of the pharmacological effect, can return to normal after 24 hours of administration.
  • AB7K7 reaches a high dose of 3mg / kg, cynomolgus monkeys are still well tolerated, and the results of pharmacodynamic experiments in mice show that low doses of AB7K7 show good anti-tumor effects, indicating that AB7K7 The treatment window is wider and the safety is higher.
  • AB7K7 was injected into 4 healthy SD rats (purchased from Shanghai Slake Experimental Animal Co., Ltd.) at a dose of 1 mg / kg via tail vein administration.
  • Blood sampling time points are: 1h, 3h, 6h, 24h, 72h, 96h, 120h, 168h, 216h and 264h. Take a certain amount of whole blood at each time point, separate the serum, and then use two ELISA methods to determine the drug concentration in the serum.
  • Method 1 Use anti-AB7K7 antibody A (Anyuan Pharmaceutical Technology (Shanghai) Co., Ltd., mouse-anti-herceptin) to coat the plate, the concentration of the plate is 0.5 ⁇ g / mL.
  • AB7K7 was configured according to 100 ng / mL, 50 ng / mL, 25 ng / mL, 12.5 ng / mL, 6.25 ng / mL, 3.125 ng / mL and 1.56 ng / mL and established a standard curve.
  • Anti-AB7K7 antibody B (Anyuan Pharmaceutical Technology (Shanghai) Co., Ltd., anti-herceptin-HRP) was labeled with HRP, the concentration was 1: 5000, and finally developed with TMB.
  • Method 2 Detect the drug concentration in the serum of SD rats. Plates were coated with anti-AB7K7 antibody A (Anyuan Pharmaceutical Technology (Shanghai) Co., Ltd., mouse-anti-herceptin) at a concentration of 0.5 ⁇ g / mL.
  • AB7K7 was configured at 5 ng / mL, 2.5 ng / mL, 1.25 ng / mL, 0.625 ng / mL, 0.3125 ng / mL, 0.156 ng / mL, and 0.078 ng / mL and established a standard curve.
  • mice anti-human IgG Fc-HRP Anyuan Pharmaceutical Technology (Shanghai) Co., Ltd.
  • PKSolver software was used to calculate the pharmacokinetic parameters. The specific parameters are shown in Table 5-2.
  • Figure 5-1 shows the detection of AB7K7 blood concentration in rats by two different detection methods, and the detection of AB7K7 concentration in blood by two different detection methods.
  • the obtained blood concentration is basically the same, and the calculated drug generation The parameters are roughly the same, indicating that AB7K7 can be metabolized in the form of a complete molecule in the body to ensure its biological function.
  • NPG mice purchased from Beijing Weitongda Biotechnology Co., Ltd.
  • HCC1954 cells purchased from the Institute of Chinese Academy of Sciences
  • CIK cells were resuscitated two days before the administration, and the cells were collected and injected into mice intravenously after 24 hours of culture.
  • the mice were randomly divided into three groups, with four mice in each group.
  • the dosages of the three administration groups are: 0.3 mg / kg, 1 mg / kg and 3 mg / kg.
  • Blood sampling time points were 1h, 3h, 6h, 24h, 48h, 72h, 96h, 120h, 168h, 216h and 264h. A certain amount of whole blood was collected at each time point, the serum was separated, and then the drug concentration in the serum was determined by ELISA.
  • AB7K7 Anti-AB7K7 antibody A (Anyuan Pharmaceutical Technology (Shanghai) Co., Ltd., mouse-anti-herceptin) at a concentration of 0.5 ⁇ g / mL.
  • AB7K7 was configured according to 100 ng / mL, 50 ng / mL, 25 ng / mL, 12.5 ng / mL, 6.25 ng / mL, 3.125 ng / mL and 1.56 ng / mL and established a standard curve.
  • Anti-AB7K7 antibody B (Anyuan Pharmaceutical Technology (Shanghai) Co., Ltd., mouse-anti-herceptin) was labeled with HRP at a concentration of 1: 5000, and finally developed with TMB for color development.
  • PKSolver software is used to calculate the pharmacokinetic parameters. The specific parameters are shown in Table 5-3. As can be seen from Table 5-3, the pharmacokinetic parameters of AB7K7 in NPG model mice are not significantly different from those in SD rats.
  • AB7K8 was injected into 3 healthy SD rats via tail vein administration at doses of 1 mg / kg and 3 mg / kg, respectively.
  • Blood sampling time points are: 0.25h, 0.5h, 1h, 2h, 3h, 4h, 5h and 7h. Take a certain amount of whole blood at each time point, separate the serum, and then use the ELISA method to detect the drug concentration in the serum.
  • AB7K8 obtained pharmacokinetic parameters T 1/2 that were basically consistent, indicating that it exhibited linear metabolic kinetics in SD rats. Because AB7K8 does not contain Fc, its T 1/2 is very short, which is about 20 times shorter than AB7K7.
  • AB7K was injected into 4 healthy SD rats via tail vein administration at a dose of 0.8 mg / kg.
  • Blood sampling time points are: 2h, 24h, 48h, 72h, 96h, 120h, 144h, 168h, 216h and 264h. Take a certain amount of whole blood at each time point, separate the serum, and then use two ELISA methods to determine the drug concentration in the serum.
  • Method one Encapsulate the plate with anti-AB7K antibody A (Anyuan Pharmaceutical Technology (Shanghai) Co., Ltd., mouse-anti-herceptin) at a concentration of 1 ⁇ g / mL.
  • AB7K was configured at 20 ng / mL, 10 ng / mL, 5 ng / mL, 2.5 ng / mL, 1.25 ng / mL, 0.625 ng / mL, and 0.3125 ng / mL and established a standard curve.
  • Add 25ng / mL biotin-labeled human CD3E & CD3D (Acro, Catalog No.
  • CDD-H82W0 CDD-H82W0
  • HRP-labeled streptavidin BD Pharmingen, Catalog No. 554066
  • TMB TMB
  • Method 2 Use anti-AB7K antibody A (Anyuan Pharmaceutical Technology (Shanghai) Co., Ltd., mouse-anti-herceptin) to coat the plate, the concentration of the plate is 1 ⁇ g / mL.
  • AB7K was configured at 20 ng / mL, 10 ng / mL, 5 ng / mL, 2.5 ng / mL, 1.25 ng / mL, 0.625 ng / mL, and 0.3125 ng / mL and established a standard curve.
  • Add mouse anti-human IgG Fc-HRP (1: 10000 dilution) Anyuan Pharmaceutical Technology (Shanghai) Co., Ltd.
  • incubate for 1h and finally develop color with TMB.
  • Figure 5-2 shows the detection of AB7K plasma concentration in rats by two different detection methods.
  • the results show that the results of the two detection methods are quite different.
  • the concentration of the first two points (2h, 1D) of the curve is still very close, but after the second day, the concentration measured by the two methods is very different, speculating that there may be between anti-CD3 scFv and anti-Her2 antibody heavy chain Of the connecting peptide is broken.
  • the structure of AB7K is unstable in the body, so that it cannot play its biological function, and the improved AB7K7 can be metabolized in a complete form in the body, so that it can normally play its biological function.
  • the cynomolgus monkey (purchased from Guangzhou Xiangguan Biotechnology Co., Ltd.) is divided into three groups, one in each group, female and female, weighing 3-4 kg.
  • the first group (G1-1) is the blank control group;
  • the second group (G2-1) AB7K7 is the administration group, the dosage is 0.3mg / kg;
  • the third group (G3-1) is the AB7K8 administration group,
  • the administered dose is 0.2 mg / kg.
  • Blood sampling time points were 15min, 1h, 3h, 6h, 24h, 48h, 72h, 96h, 144h, 192h, 240h and 288h, a total of 13 time points. Blood was collected to collect serum, frozen at -80 ° C, and then the drug concentration in the serum was determined by ELISA.
  • AB7K7 Anti-AB7K7 antibody A (Anyuan Pharmaceutical Technology (Shanghai) Co., Ltd., mouse-anti-herceptin) at a concentration of 0.5 ⁇ g / mL.
  • AB7K7 was configured according to 100 ng / mL, 50 ng / mL, 25 ng / mL, 12.5 ng / mL, 6.25 ng / mL, 3.125 ng / mL, and 1.56 ng / mL and established a standard curve.
  • Anti-AB7K7 antibody B (Anyuan Pharmaceutical Technology (Shanghai) Co., Ltd., mouse-anti-herceptin) was labeled with HRP at a concentration of 1: 5000, and finally developed with TMB for color development.
  • HRP a concentration of 1: 5000
  • TMB color development.
  • Figure 5-3 shows the blood concentration of AB7K7 in rats.
  • the T 1/2 of AB7K7 in normal cynomolgus monkeys is only about 8 hours.
  • AB7K8 cannot calculate the pharmacokinetic parameters due to too few points on the drug-time curve. However, it can be seen from the drug-time curve that AB7K7 has a much longer half-life than AB7K8 in normal cynomolgus monkeys.
  • Each antibody was diluted with PBS solution to a concentration of 10 ⁇ g / ml, added to a 96-well plate, 100 ⁇ l / well, and coated at 4 ° C overnight. Then it was blocked with 1% skimmed milk powder for 1 hour at room temperature.
  • the biotin biotin-labeled FcRn protein (ACRO Biosystem, Catalog No. FCM-H8286) was diluted with dilutions of pH 6.0 and 7.0, respectively, and was diluted 4 times in a total of 11 concentration gradients.
  • Table 5-7 Determination of the binding ability of the dual antibodies AB7K, AB7K5 and AB7K7 to FcRn at pH 6.0
  • Table 5-8 Determination of the binding ability of the dual antibodies AB7K, AB7K5 and AB7K7 to FcRn at pH 7.0
  • bispecific antibodies of scFv1-scFv2-Fc configuration such as AB7K7 are easy to prepare, the purification method is simple and efficient, and their preparation And good stability during storage. More beneficially, it has a weak non-specific killing effect on normal cells, and has significant advantages such as the control of toxic and side effects that may be caused by excessive activation of effector cells, and has good drug-forming properties.
  • bispecific antibody AB7K7 Referring to the configuration design and preparation method of bispecific antibody AB7K7 in Example 1, we constructed a series of bispecific antibody molecules targeting immune effector cell antigen CD3 molecules and tumor-associated antigens. Two identical polypeptide chains are joined by an interchain disulfide bond in the hinge region of the Fc fragment to form a tetravalent homodimer, and each polypeptide chain is sequentially composed of anti-TAA scFv, connecting peptide, and anti-CD3 from the N-terminus to the C-terminus. The composition of scFv and Fc fragments. The molecular composition of each structural unit of each bispecific antibody is described in detail below.
  • the tumor-associated antigens include but are not limited to: CD19, CD20, CD22, CD25, CD30, CD33, CD38, CD39, CD40, CD47, CD52, CD73, CD74, CD123, CD133, CD138, BCMA, CA125, CEA, CS1, DLL3, DLL4, EGFR, EpCAM, FLT3, gpA33, GPC-3, Her2, MEGE-A3, NYESO1, PSMA, TAG-72, CIX, folate binding protein, GD2, GD3, GM2, VEGF, VEGFR2, VEGFR3, Cadherin, Integrin, Mesothelin, Claudin18, ⁇ V ⁇ 3, ⁇ 5 ⁇ 1, ERBB3, c-MET, IGF1R, EPHA3, TRAILR1, TRAILR2, RANKL, B7 protein family, mucin Family (Mucin), FAP, and Tenascin; preferably, the tumor-associated antigens are CD19, CD20, CD22, CD
  • Table 6-1 lists some preferred amino acid sequences of the VH domain and its complementarity determining regions (HCDR1, HCDR2, and HCDR3) of the first single-chain Fv against tumor-associated antigens, and the VL domain and its complementarity determining region ( The amino acid sequence of the LCDR1, LCDR2 and LCDR3), the amino acid residues contained in the CDR regions are defined according to the Kabat rule.
  • the anti-CD3 scFv binds to the effector cells with an EC 50 value of greater than about 50 nM, or greater than 100 nM, or greater than 300 nM, or greater than 500 nM in the in vitro FACS binding analysis assay; more preferably, the bispecific antibody Two single-chain Fv can not only bind to human CD3, but also specifically bind to CD3 of cynomolgus monkey or rhesus monkey.
  • Table 6-2 exemplifies the amino acid sequences of some preferred anti-CD3 scFv VH domains and their complementarity determining regions (HCDR1, HCDR2 and HCDR3), and VL domains and their complementarity determining regions (LCDR1, LCDR2 and LCDR3 ),
  • the amino acid residues contained in the CDR regions are defined according to Kabat rules.
  • the connecting peptide connecting the anti-TAA scFv and the anti-CD3 scFv is composed of a flexible peptide and a rigid peptide; preferably, the amino acid composition of the flexible peptide has the general structural formula G x S y (GGGGS) z , where x, y and z Is an integer greater than or equal to 0, and x + y + z ⁇ 1.
  • the rigid peptide is derived from the full-length sequence consisting of amino acids 118 to 145 of the carboxy terminus of the natural human chorionic gonadotropin ⁇ subunit (as shown in SEQ ID NO: 257) or a truncated fragment thereof; preferably, the CTP
  • the rigid peptide composition is SSSSKAPPPS (CTP 1 ).
  • Table 6-3 exemplifies the amino acid sequences of some preferred connecting peptides connecting anti-TAA scFv and anti-CD3 scFv.
  • Table 6-3 Amino acid sequence of connecting peptides connecting anti-TAA scFv and anti-CD3 scFv
  • the Fc fragment is directly or through a connecting peptide connected to the anti-CD3 scFv
  • the Fc fragment is preferably selected from the heavy chain constant regions of human IgG1, IgG2, IgG3, and IgG4, more specifically selected from the heavy chain constant regions of human IgG1 or IgG4; and Fc is mutated to modify the properties of the bispecific antibody molecule, for example , Showing reduced affinity for at least one of human Fc ⁇ Rs (Fc ⁇ RI, Fc ⁇ RIIa or Fc ⁇ RIIIa) and C1q, with reduced effector cell function or complement function.
  • the Fc fragment may also include amino acid substitutions that alter one or several other characteristics (eg, ability to bind to the FcRn receptor, antibody glycosylation or antibody charge heterogeneity, etc.).
  • amino acid sequences of some Fc fragments with one or more amino acid mutations are exemplified in Table 6-4.
  • Table 6-5 exemplifies the amino acids and corresponding nucleotide sequences of some preferred bispecific antibodies.
  • Antibody code Target Amino acid sequence number Nucleotide sequence number AB1K1 Anti-CD19 ⁇ CD3 SEQ ID NO: 264 SEQ ID NO: 265 AB1K2 Anti-CD19 ⁇ CD3 SEQ ID NO: 283 SEQ ID NO: 284 AB2K Anti-CD20 ⁇ CD3 SEQ ID NO: 266 SEQ ID NO: 267 AB3K Anti-CD22 ⁇ CD3 SEQ ID NO: 268 SEQ ID NO: 269 AB4K Anti-CD30 ⁇ CD3 SEQ ID NO: 270 SEQ ID NO: 271 AB5K Anti-EpCAM ⁇ CD3 SEQ ID NO: 272 SEQ ID NO: 273 AB6K Anti-CEA ⁇ CD3 SEQ ID NO: 274 SEQ ID NO: 275 AB7K7 Anti-Her2 ⁇ CD3 SEQ ID NO: 8 SEQ ID NO: 276 AB8K Anti-EGFR ⁇ CD3 SEQ ID NO: 277 SEQ ID NO: 278
  • Example 7 Pharmacodynamic study of Anti-GPC-3 ⁇ CD3 bispecific antibody in mouse xenograft model
  • NOD-SCID mice were co-inoculated with human PBMC cells and human liver cancer Huh-7 cell transplanted tumor model
  • Human hepatocellular carcinoma Huh-7 cells positive for GPC-3 expression were selected to observe the antitumor effect of the double antibody in a transplanted tumor model in which NOD-SCID mice were co-inoculated with human PBMC cells and Huh-7 cells.
  • mice Peripheral blood of normal people was collected, and human PBMC cells were isolated by density gradient centrifugation. Seven to eight-week-old female NOD-SCID mice (purchased from Shanghai Lingchang Biotechnology Co., Ltd.) were collected to collect Huh-7 in the logarithmic growth phase. cell. 3 ⁇ 10 6 Huh-7 cells and 3 ⁇ 10 6 PBMC cells were mixed and inoculated subcutaneously on the right back of NOD-SCID mice. After 1h, the mice were randomly divided into 2 groups according to their body weight, with 6 mice in each group. The administration group was given 1 mg / kg AB9K intraperitoneally, and the control group was given the same volume of PBS solution once a day for 6 consecutive days. The day of administration is recorded as day 0. The maximum diameter (D) and minimum diameter (d) of the tumor are measured twice a week, and the tumor volume (mm 3 ) of each group and each administration are calculated according to the formula in Example 3.1 The tumor growth inhibition rate TGI (%) of the group.
  • the average tumor volume of the PBS control group was 1311.03 ⁇ 144.89mm 3 ; the average tumor volume of the AB9K administration group was 60.83 ⁇ 12.63mm 3 , and the TGI was 95.36%.
  • the tumor of one mouse completely regressed, and there was a very significant difference compared with the control group (P ⁇ 0.01).
  • the above results show that most of the PBMCs are unactivated primitive T cells.
  • the double antibody AB9K can activate primitive T cells in animals and shorten the distance between T cells and target cells Huh-7, so that T cells can directly kill tumor cells.
  • AB9K has a very good anti-tumor effect at a dose of 1 mg / kg.
  • NPG mice were co-inoculated with human CIK cells and human Burkkit ’s lymphoma Raji cell transplanted tumor model
  • Human Burkkit ’s lymphoma Raji cells with negative GPC-3 expression were selected to observe the in vivo tumor suppressive effect of the double antibody in the transplanted tumor model in which NCI mice were co-inoculated with human CIK cells and human Burkkit ’s lymphoma Raji cells.
  • CIK cells were obtained. Seven to eight-week-old female NPG mice were selected to collect Raji cells in the logarithmic growth phase. 5 ⁇ 10 6 Raji cells and 2 ⁇ 10 6 CIK cells were mixed. , Inoculated subcutaneously on the right back of NPG mice. After 1h, the mice were randomly divided into 3 groups according to body weight, 5 in each group, the administration group was given AB9K at a dose of 1 mg / kg intraperitoneally, and the control group was given the same volume of PBS solution, once a day for 10 consecutive doses day. The day of administration is recorded as day 0. The maximum diameter (D) and minimum diameter (d) of the tumor are measured twice a week, and the tumor volume (mm 3 ) of each group and each administration are calculated according to the formula in Example 3.1 The tumor growth inhibition rate TGI (%) of the group.
  • TGI tumor growth inhibition rate
  • Human hepatocellular carcinoma Huh-7 cells positive for GPC-3 expression were selected to observe the in vivo tumor suppressive effect of the double antibody in a transplanted tumor model in which CD34 immune reconstructed NPG mice were subcutaneously inoculated with human hepatoma Huh-7 cells.
  • CD34 immune reconstructed NPG mice were prepared according to the method in Example 3.5.
  • Huh-7 cells in the log phase were collected, and 2.5 ⁇ 10 6 Huh-7 cells were inoculated subcutaneously on the right back of the immunized mice.
  • the administration group was given 1 mg / kg AB9K intraperitoneally, and the PBS control group was given the same volume of PBS solution once a day until the end of the experiment. The day of administration is recorded as day 0.
  • the maximum diameter (D) and minimum diameter (d) of the tumor are measured twice a week, and the tumor volume (mm 3 ) of each group and each administration are calculated according to the formula in Example 3.1
  • the average tumor volume of the PBS control group was 2102.84 ⁇ 275.71mm 3 ; the average tumor volume of the 1 mg / kg AB9K administration group was 325.01 ⁇ 282.21mm 3 , and the TGI was In 86.53%, the tumors of 4 mice completely regressed, which were significantly different from the control group (P ⁇ 0.01).
  • the above results indicate that the double antibody AB9K has an excellent anti-tumor effect in the CD34 immune reconstruction model.
  • Example 8 In vitro biological function evaluation of Anti-CD20 ⁇ CD3 bispecific antibody and pharmacodynamic study in a mouse xenograft model
  • mice 109-545-088 or mouse anti-6 ⁇ his IgG antibody (R & D Systems, Cat. No. IC050P), incubated at 4 ° C in the dark for 1 h; centrifuge to remove supernatant, wash twice with 1% PBSB, each The wells were resuspended with 100 ⁇ l of 1% paraformaldehyde, and the signal intensity was detected by flow cytometry. Then the average fluorescence intensity of the Y-axis, X-axis antibody concentration was analyzed by GraphPad Software, EC values calculated AB2K 50 binding to Raji cells.
  • AB2K can be well reacted with CD20 positive cells, and the signal intensity is proportional to the antibody concentration, calculated AB2K Raji cells bound EC 50 value of about 69.97nM.
  • E6120 E6120 solution to each well, and leave it at room temperature for at least 3 min.
  • the microplate reader detects the cold luminescence value.
  • fluorescence intensity as a Y-axis X-axis antibody concentration was analyzed by GraphPad software, anti-50 values were calculated EC AB2K Raji-luc cells.
  • Figure 7-2 show, EC AB2K effector cell mediated killing of Raji-luc cells 50 only 42.8ng / ml, having a target-specific and, as a negative control 50 of the EC AB7K7 229.5ng / ml, for Raji- Luc cells have almost no killing effect.
  • Jurkat T cells BPS Bioscience, Catalog No. 60621
  • NFAT RE gene can overexpress luciferase in the presence of bispecific antibodies and CD20 positive Raji cells, and quantify by detecting luciferase activity The degree of activation of Jurkat T cells.
  • the concentration of the bispecific antibody is used as the X axis, and the fluorescein signal is used as the Y axis to fit the four-parameter curve.
  • AB2K can specifically activate Jurkat NFATRE Luc cells with an EC 50 value of 0.2006 ⁇ g / ml, and its concentration is proportional to the signal intensity, while AB7K7 as a negative control has little ability to activate T cells .
  • NPG mice were co-inoculated with human CIK cells and human Burkkit ’s lymphoma Raji cell transplanted tumor
  • Human Burkkit ’s lymphoma Raji cells positive for CD20 expression were selected, and the in vivo antitumor effect of the double antibody in the transplanted tumor model in which human CIK cells and human Burkkit ’s lymphoma Raji cells were co-inoculated subcutaneously in NPG mice was observed.
  • Example 3.1 CIK cells obtained according to, select seven to eight week old female mice of NPG (purchased from Beijing Biotech Co. Mastery), Raji cells were collected in the logarithmic growth phase, will be 4 ⁇ 10 6 th Raji cells were mixed with 8 ⁇ 10 5 CIK cells and inoculated subcutaneously on the right back of NPG mice. After 1h, the mice were randomly divided into 5 groups according to body weight, each group of 6 were given the corresponding drugs intraperitoneally, specifically, all the administration groups were administered twice a week, Rituxan (Merovar, Roche Pharmaceuticals) and dual function Antibody AB2K was given 1 mg / kg and 0.1 mg / kg, respectively. The day of administration is recorded as day 0. The maximum diameter (D) and minimum diameter (d) of the tumor are measured twice a week, and the tumor volume (mm 3 ) of each group and each administration are calculated according to the formula in Example 3.1 The tumor growth inhibition rate TGI (%) of the group.
  • TGI tumor growth inhibition rate
  • the average tumor volume of the PBS control group was 1766.84 ⁇ 155.62 mm 3 ; the average tumor volume of the 1 mg / kg Rituxan administration group was 647.92 ⁇ 277.11 mm 3 , and the TGI was 63.33%, with a very significant difference compared to the control group (P ⁇ 0.01); the average tumor volume of the 0.1 mg / kg Rituxan administration group was 1893.81 ⁇ 186.99 mm 3 , no drug effect; AB2K 1 mg / kg administration group The average tumor volume was 116.18 ⁇ 39.50mm 3 and TGI was 93.42%, which was extremely significant compared to the control group (P ⁇ 0.01); the average tumor volume of the AB2K 0.1mg / kg administration group was 1226.03 ⁇ 340.05mm 3 , TGI is 30.61%, no significant difference compared with the control group.
  • the above results indicate that the bifunctional specific antibody AB2K inhibits the growth
  • NPG mice were co-inoculated with human CIK cells and human Burkkit ’s lymphoma Daudi cell transplanted tumor model
  • Human Burkkit ’s lymphoma Daudi cells with positive CD20 expression were selected to observe the in vivo tumor suppressive effect of double antibodies in a transplanted tumor model in which NCI mice were co-inoculated with human CIK cells and human Burkkit ’s lymphoma Daudi cells.
  • CIK cells were obtained. Seven to eight-week-old female NPG mice were selected to collect Daudi cells in the logarithmic growth phase (purchased from the Cell Bank of the Chinese Academy of Sciences). 4 ⁇ 10 6 Daudi cells and 8 ⁇ 10 5 CIK cells were mixed and inoculated subcutaneously on the right back of NPG mice. After 1 hour, the mice were randomly divided into 5 groups according to body weight, each group had 6 animals, and the corresponding drugs were given intraperitoneally, respectively, and all the groups were given twice a week. Both Rituxan and bifunctional antibody AB2K were given 1 mg / kg and 0.1 mg / kg, respectively. The day of administration is recorded as day 0. The maximum diameter (D) and minimum diameter (d) of the tumor are measured twice a week, and the tumor volume (mm 3 ) of each group and each administration are calculated according to the formula in Example 3.1 The tumor growth inhibition rate TGI (%) of the group.
  • TGI tumor growth inhibition rate
  • the average tumor volume of the PBS control group was 889.68 ⁇ 192.13mm 3 ; the average tumor volume of the 1mg / kg Rituxan administration group was 241.51 ⁇ 44.91mm 3 , and the TGI was 72.85%, extremely significant difference compared to the control group (P ⁇ 0.01); the average tumor volume of the 0.1 mg / kg Rituxan administration group was 746.11 ⁇ 299.71 mm 3 , no significant difference compared to the control group; 1 mg of AB2K The average tumor volume in the / kg administration group was 72.05 ⁇ 11.89 mm 3 , and the TGI was 91.9%, which was very significant compared to the control group (P ⁇ 0.01); the average tumor volume in the AB2K 0.1 mg / kg administration group It is 75.36 ⁇ 11.81mm 3 and TGI is 91.53%, which is very significant difference compared with the control group (P ⁇ 0.01).
  • the bifunctional specific antibody AB2K inhibits the growth of tumor cells by activating human immune cells in animals.
  • the double antibody has better efficacy than monoclonal antibody Rituxan, and low dose AB2K also shows good Anti-tumor effect.
  • Female cynomolgus monkeys are divided into two groups, one in each group, weighing 3-4 kg.
  • the first group is the blank control group, and the second group is the AB2K administration group with an administration dose of 0.3 mg / kg.
  • Blood sampling time points were 15min, 1h, 3h, 6h, 10h, 24h, 30h, 48h, 54h, 72h, 96h and 144h, a total of 13 time points. Blood was collected to collect serum and frozen at -80 ° C.
  • ELISA method was used to determine the concentration of AB2K drug in the serum, and PKSolver software was used to calculate the pharmacokinetic parameters. The specific parameters are shown in Table 8. The results showed that AB2K had a T 1/2 of 8.5 hours in normal cynomolgus monkeys.
  • Example 11 Evaluation of the anti-CD19 ⁇ CD3 bispecific antibody in vitro biological function
  • the tumor cells Raji cells positive for CD19 expression were cultured, and the cells were collected by centrifugation.
  • the collected cells were resuspended with 1% PBSB, the cell density was adjusted to 2 ⁇ 10 6 cells / ml, placed in a 96-well plate, 100 ⁇ l (2 ⁇ 10 5 cells) per well, and blocked at 4 ° C. for 0.5 h. After blocking, the cells were centrifuged and the supernatant was discarded.
  • a series of diluted bispecific antibody AB1K2 and isotype CD19 bispecific antibodies AB23P8, AB23P9 and AB23P10 were added and incubated at 4 ° C for 1 h; Wash three times with PBSB, add diluted AF647-labeled goat anti-human IgG antibody, and incubate at 4 ° C in the dark for 1 h; centrifuge to remove supernatant, wash twice with 1% PBSB, resuspend with 100 ⁇ l 1% PF in each well, flow The cytometer detects the signal strength. The average fluorescence intensity is used as the Y axis and the antibody concentration is used as the X axis. The analysis is performed by the software GraphPad, and the EC 50 value of the bispecific antibody binding to the tumor cell Raji is calculated.
  • Figure 9-1 shows the binding curves of bispecific antibodies with different structures and tumor cells Raji. As shown in Table 9-1, four pairs of molecules that specifically bind to Raji cells EC 50 nM in both horizontal level.
  • PBMC peripheral blood mononuclear cell mononuclear cell mononuclear cell
  • PBMC peripheral blood mononuclear cell mononuclear cell mononuclear cell mononuclear cell mononuclear cell mononuclear cell mononuclear cell mononuclear cell mononuclear cell mononuclear cell mononuclear cell mononuclear cell mononuclear cell mononucleic acid.
  • the expanded T cells were prepared, and the expression of CD3 on the cell surface was positive by flow cytometry.
  • the preparation and determination methods of the samples to be tested are the same as those in Example 11.1a).
  • the 1% PF detects the resuspended cells, mean fluorescence intensity analyzed by GraphPad Software, EC 50 values were calculated for each bispecific antibody binds to human T cells.
  • PBMC peripheral blood mononuclear cells
  • the bispecific antibodies AB1K2 and AB23P10 have almost no difference in binding ability to cynomolgus monkey T cells.
  • the flow cytometer detects that the EC 50 they bind is approximately 5.5 nM, and the two bispecific antibodies
  • the binding ability with cynomolgus monkey T cells is stronger than that with human T cells.
  • bispecific antibodies to soluble CD3 and CD19 was identified by double antigen sandwich ELISA.
  • the CD19 protein (ACRO Biosystems, catalog number CD9-H5251) was diluted with PBS to a concentration of 1 ⁇ g / ml, added to a 96-well plate, 100 ⁇ l / well, and coated at 4 ° C overnight. Then it was blocked with 1% skimmed milk powder for 1 hour at room temperature. Simultaneously dilute each bispecific antibody with a 5-fold gradient for a total of 10 concentration gradients. Then wash the 96-well plate with PBST, add the diluted bispecific antibody, set the control well without antibody, and incubate at room temperature for 2h.
  • the unbound bispecific antibody was washed away with PBST, and the biotinylated CD3E & CD3D (ACRO Biosystem, Catalog No. CDD-H82W1) was mixed with 50 ng / ml Streptavdin HRP (BD, Catalog No. 554066) into a 96-well plate, 100 ⁇ l / well , Incubate at room temperature for 1h. Thereafter, the 96-well plate was washed with PBST, TMB was added, 100 ⁇ l / well, and the color was developed at room temperature for 15 min, and then 0.2M H 2 SO 4 was added to stop the color reaction. Detect the absorbance of A450-620nm with a microplate reader. Analyzed by the software GraphPad, EC 50 values were calculated with the two bispecific antibody antigen binding.
  • Reporter cell lines evaluate the ability of bispecific antibodies to activate T cells
  • Jurkat T cells containing the NFAT RE gene can overexpress luciferase in the presence of bispecific antibodies and target cells Raji cells, and quantify Jurkat T cell activation by detecting luciferase activity.
  • the concentration of the bispecific antibody is used as the X axis, and the fluorescein signal is used as the Y axis to fit the four-parameter curve.
  • Normally cultured tumor cell lines including Raji-Luc, NALM6, and Reh cells (all purchased from the Cell Bank of the Chinese Academy of Sciences) as target cells, collect the cell suspension, centrifuge, adjust the cell density to 2 ⁇ 10 5 cells / ml, add to 96 wells In the cell culture plate, 100 ⁇ l / well, culture overnight. Dilute the corresponding antibody according to the experimental design, 50 ⁇ l / well, and add the same volume of medium to the wells without antibody addition. Then add 5 times the number of effector cells (human PBMC or expanded cultured CIK cells), 100 ⁇ l / well, set the control well, and add the same volume of medium to the wells without adding effector cells.
  • effector cells human PBMC or expanded cultured CIK cells
  • Table 9-6 EC bispecific antibody-mediated killing of tumor cells PBMC value 50
  • Table 9-7 CIK bispecific antibody-mediated killing of tumor cells EC 50 values
  • Example 12 Biological function evaluation of Anti-Mucin1 ⁇ CD3 bispecific antibody in vitro
  • the above cells were digested with trypsin, centrifuged, collected, resuspended with 1% PBSB, adjusted the cell density to 5 ⁇ 10 5 cells / ml, placed in 96-well plates, 100 ⁇ l / well, and blocked at 4 ° C for 30 min; human or cynomolgus monkey Primary T cells were collected by centrifugation and resuspended with 1% PBSB. The cell density was adjusted to 5 ⁇ 10 5 cells / ml and placed in 96-well plates, 100 ⁇ l / well, and blocked at 4 ° C for 30 min. The cells were washed once with 1% PBSB.
  • AB11K binds to the above tumor cells and human or cynomolgus monkey primary T cells, and its signal intensity is proportional to the antibody concentration.
  • tumor cells in conjunction with the above-described EC 50 reaches between 5nM-300nM, and wherein the T-47D and Hela strongest binding, followed HCC70, HCC1954, SKOV-3 and BT-549, MCF-7 and in combination with HT-29, and more Weak, did not reach the upper platform.
  • EC 50 values AB11K bind human or cynomolgus monkey T cells were 13.43nM and 9.996nM, capacity and human T-cell binding to its binding to the cynomolgus monkey T cells were roughly equivalent.
  • Table 10-1 AB11K with EC or with high expression of human, cynomolgus T cells bind tumor cells results Mucin1 50
  • AB11K mediates the ability of T cells to kill tumor cells
  • Normally cultured MCF-7, BT-549, HCC70, T-47D, HCC1954, SK-OV-3, Hela, and HT-29 cells were used as target cells, respectively, and the cell density was adjusted to 2 ⁇ 10 5 cells / ml after trypsin digestion , Add to 96-well cell culture plate, 100 ⁇ l / well, incubate at 37 °C, 5% CO 2 overnight. Effector cells (expanded and cultured T cells) corresponding to 5 times the number of target cells were added to the T cell group, and effector cells (PBMC of healthy volunteers) were added 10 times to the PBMC group, 100 ⁇ l / well. Set up blank wells and wells without adding effector cells.
  • the bispecific antibody AB11K mediates effector cell killing of tumor cells that highly express Mucin1 and exhibits a very significant killing effect.
  • expanded T cells are used as effector cells
  • the maximum specific killing of AB11K reached more than 99%, of which the specific killing effect on MCF-7, BT-549, HCC70 and T-47D was the best
  • EC 50 reached 100pM-200pM, followed by Hela, HCC1954 and SK-OV-3, while the specific killing effect of HT-29 is weak, the EC 50 is large, about 1577pM.
  • AB11K When PBMC is used as an effector cell, AB11K has the best specific killing effect on MCF-7 and BT-549, with a maximum specific killing rate of more than 95%.
  • EC 50 is 131.2pM and 955.9pM, followed by HCC1954 and HCC70, respectively. killing of Hela and HT-29 EC 50 larger, respectively 4810pM and 9550pM.
  • Table 10-2 EC AB11K killing tumor cells mediated effector cell guide 50 Results
  • Jurkat T cells (purchased from BPS Bioscience) containing the NFAT RE gene can overexpress luciferase in the presence of bispecific antibodies and Mucin1 positive cells, and quantify Jurkat T by detecting luciferase activity The degree of cell activation.
  • the cell density was adjusted to 2 ⁇ 10 5 cells / ml, and 50 ⁇ l / well was added In a 96-well cell culture plate, incubate at 37 ° C and 5% CO 2 overnight.
  • Jurkat-NFAT cells adjusted the cell density to 2.5 ⁇ 10 6 cells / ml, 40 ⁇ l / well.
  • AB11K was diluted with culture medium to 400 ⁇ g / mL.
  • AB11K can specifically activate Jurkat-NFAT cells, the EC 50 values are all in the nM level, and its concentration is proportional to the signal intensity.
  • Table 10-3 EC 50 results of AB11K's ability to activate T cells
  • the human skin cancer A431 cell xenograft model with high expression of EGFR was selected as anti-EGFR ⁇ CD3 bifunctional specific antibodies AB8K, AB2K and Erbitux (Erbitux, Merkelion Pharmaceutical) to conduct in vivo pharmacodynamic studies on tumor growth inhibition.
  • CIK cells were obtained according to the method in Example 3.1, and A431 cells in the logarithmic growth phase were collected. Seven to eight-week-old female NPG mice were selected, and 3 ⁇ 10 6 A431 cells and 1 ⁇ 10 6 CIK cells were mixed and inoculated subcutaneously on the right back of NPG mice. After 1 hour, the mice were randomly divided into 5 groups according to their body weight, with 6 mice in each group, and the corresponding drugs were given intraperitoneally. All administration groups and the control group PBS group were administered twice a week. The dosage of AB2K and Erbitux was 1 mg / kg. The dosage of AB8K is set at 1 mg / kg and 0.1 mg / kg. The day of administration is recorded as day 0. The maximum diameter (D) and minimum diameter (d) of the tumor are measured twice a week, and the tumor volume (mm 3 ) of each group and each administration are calculated according to the formula in Example 3.1 The tumor growth inhibition rate TGI (%) of the group.
  • TGI tumor growth
  • the average tumor volume of the PBS control group was 1370.76 ⁇ 216.35 mm 3 ; the average tumor volume of the 1 mg / kg Erbitux administration group was 1060.35 ⁇ 115.86 mm 3 , relative to the control group No significant difference; the average tumor volume of the 1 mg / kg AB2K administration group was 877.76 ⁇ 120.38 mm 3 , no significant difference compared to the control group; the average tumor volume of the 0.1 mg / kg and 1 mg / kg AB8K administration groups was Were 233.30 ⁇ 135.51mm 3 and 8.14 ⁇ 8.14mm 3 , and TGI was 82.98% and 98.36%, respectively, which were significantly different from the control group (p ⁇ 0.01).
  • AB2K is the isotype control of AB8K.
  • A431 cells do not express CD20, and AB2K fails to see the drug effect in this model, which shows that the structure of the double antibody is relatively safe and will not cause non-specific killing effects.
  • More than 90% of CIK cells are activated T cells.
  • AB8K inhibits and kills tumor cells by activating human immune cells in animals. It can completely inhibit tumor growth at a dose of 1 mg / kg. At a dose of 0.1 mg / kg It also shows good anti-tumor effect.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Oncology (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Mycology (AREA)
  • Endocrinology (AREA)
  • Pain & Pain Management (AREA)
  • Transplantation (AREA)
  • Rheumatology (AREA)
  • Toxicology (AREA)
  • Hematology (AREA)

Abstract

提供了一种同时靶向免疫效应细胞抗原CD3和肿瘤相关抗原的四价、同源二聚体型双特异性抗体分子,所述双特异性抗体分子从N端至C端依次包含第一和第二单链Fv和Fc片段;其中,第一单链Fv能够特异性结合肿瘤相关抗原,第二单链Fv能够特异性结合CD3,且第一和第二单链Fv通过连接肽相连,而第二单链Fv与Fc片段直接相连或通过连接肽相连;所述Fc片段不具有CDC、ADCC和ADCP等效应子功能。

Description

同源二聚体型双特异性抗体及其制备方法和用途
相关申请
本申请要求2018年11月1日提交的中国专利申请CN 201811294887.4的优先权。以上所引用的优先权申请的内容全文以引用的方式并入本文。
技术领域
本发明涉及免疫学领域,更具体地,涉及一种介导T细胞杀伤的抗CD3双特异性抗体,以及这类抗体的用途,特别是其在治疗癌症中的用途。
背景技术
1985年,利用T细胞杀死肿瘤细胞的概念就已被提出(Stearz UD等,Nature,314:628-631,1985)。通常认为有效激活T细胞需要双重信号,第一信号来自抗原呈递细胞上MHC-抗原复合物与T细胞受体TCR-CD3的结合,第二信号为T细胞与抗原呈递细胞表达的共刺激分子相互作用后产生的非抗原特异性共刺激信号。由于多数肿瘤细胞表面MHC的表达下调甚至缺失,从而使肿瘤细胞逃逸免疫杀伤。
双特异性抗体从作用机制上可分为双重信号阻断型和介导细胞功能型。通常,介导细胞功能型双特异性抗体指介导T细胞杀伤的抗CD3双特异性抗体。CD3分子表达于所有成熟T细胞表面,并与TCR呈非共价结合,形成完整的TCR-CD3复合物,共同参于对抗原刺激的免疫应答,是目前在双特异性抗体中应用最多且最成功的免疫效应细胞表面的触发分子。靶向CD3的双特异性抗体则能够分别结合T细胞表面CD3和肿瘤细胞表面抗原,从而拉近细胞毒性T细胞(cytotoxic T cell,Tc或CTL)与肿瘤细胞的距离,并直接激活T细胞,诱导T细胞直接杀伤癌细胞,而不再依赖于传统的T细胞的双重激活信号。但是,靶向T细胞抗原CD3的激动型抗体,例如,第一代应用于临床的靶向人CD3的小鼠单克隆抗体OKT3(Kung P等,Science,206:347-349,1979),由于T细胞被过度激活而大量释放炎症因子,诸如白介素-2(IL-2)、TNF-α、IFN-γ和白介素-6(IL-6),在临床上会引起严重的“细胞因子风暴综合症”(Hirsch R等,J.Immunol.,142:737-743,1989),导致以发烧、寒战、头疼、恶心、呕吐、腹泻、呼吸窘迫、无菌性脑膜炎和血压过低为特征的“流感样”综合征。因而,开发靶向CD3的双功能抗体,如何削弱或避免过度的细胞因子风暴是首要考虑的问题。
近年来,为了解决将两个不同的半抗体进行正确装配问题,科学家们设计开发了多种结构的双特异性抗体。总体归结起来有两大类,一类双特异性抗体不含Fc区。这类结构双抗优点是分子量小,可以在原核细胞中表达,不需要考虑正确装配的问题;缺点是由于没有抗体Fc段,分子量较低,导致其半衰期较短,且这种形式的双抗极易聚合、稳定性差且表达量低,因而临床应用受到一定限制。目前已有报道的此类双特异性抗体包括BiTE、DART、TrandAbs、bi-Nanobody等。
另一类双特异性抗体保留Fc结构域。此类双抗形成IgG样结构,分子结构较大,并且由FcRn介导的细胞内吞和再循环过程,使其具有更长的半衰期;同时保留了Fc介导的部分或全部效应子功能,如抗体依 赖细胞介导细胞毒性(ADCC)、补体依赖细胞毒性(CDC)和抗体依赖细胞吞噬(ADCP)。目前已有报道的此类双特异性抗体包括Triomabs、kih IgG、Cross-mab、orthoFab IgG、DVD IgG、IgG scFv、scFv 2-Fc等。而对于抗CD3双特异性抗体,目前除了TandAb和scFv-Fv-scFv构型外,其它抗CD3双特异性抗体的设计广泛采用单价抗CD3形式,主要因为二价抗CD3双特异性抗体很容易导致过度激活而诱发T细胞凋亡和大量细胞因子瞬时释放(Kuhn C等,Immunotherapy,8:889-906,2016),并且更为严重的是它还可能引发非抗原依赖性地激活T细胞而打破免疫平衡。因此,现有技术中的抗CD3双特异性抗体多避免引入二价抗CD3抗体,例如triFab-Fc、DART-Fc和BiTE-Fc构型的双特异性抗体都采用非对称性设计(即异源二聚体型双抗)(Z Wu等,Pharmacology and Therapeutics,182:161-175,2018),但这对其下游的生产带来很多挑战,如产生不希望出现的同源二聚体或错配的杂质分子,增加了双抗表达和纯化的难度。尽管“knobs-into-holes”技术的运用一定程度上解决了异源二聚体型双抗分子的重链间错配的问题,然而“轻链/重链错配”又带来了另一个挑战。防止重链-轻链错配的一种策略是将双特异性抗体的其中一条Fab的轻链和重链的部分结构域互换,形成Crossmab(杂交抗体),该方法可以允许轻链/重链间选择性地配对。但这些方法的缺点是不能完全杜绝错配产物的生成,而任何错配分子的残留级分都很难从产物中分离,并且这种方法需要针对两个抗体序列进行大量的突变等基因工程改造,无法达到简单、通用的目的。
另外,对于含CD3特异性的IgG样结构的双特异性抗体,因具有FcγR结合能力,可能导致无限制的长久T细胞激活,且这种激活是非靶细胞限制性的,无论是否与靶抗原结合,在表达FcγR的组织内(例如在造血、淋巴和网状内皮系统内),都发现了活化的T细胞。这种T细胞的全身性激活,将伴随着细胞因子的大量释放,这是一种在T细胞激活细胞因子或抗体的治疗应用过程中的严重不良反应。因此,对于这类介导T细胞杀伤的抗CD3双特异性抗体需要避免Fc介导的T细胞全身性激活,从而允许免疫效应细胞在靶细胞组织内的限制性激活,即专一性地依赖双特异性抗体与相应靶抗原的结合。
因此,本领域迫切需要开发在产品半衰期、稳定性、安全性和可生产性方面具有改善性能的新型双特异性分子。
发明内容
本发明目的是提供一种靶向免疫效应细胞抗原CD3和肿瘤相关抗原(Tumor-Associated Antigen,TAA)的四价、同源二聚体型双特异性抗体分子,这种双特异性抗体在体内能够显著抑制或杀伤肿瘤细胞,但对低表达TAA的正常细胞的非特异性杀伤作用显著降低,同时具有控制的可能由效应细胞过度活化所致的毒副作用,且其理化和体内稳定性都显著提高。
本发明第一方面,提供一种双特异性抗体,所述双特异性抗体分子由两条相同的多肽链以共价键结合形成四价同源二聚体,每条多肽链从N端至C端依次包含特异性结合肿瘤相关抗原的第一单链Fv(抗-TAA scFv)、特异性结合效应细胞抗原CD3的第二单链Fv(抗-CD3 scFv)和Fc片段;其中,第一和第二单链Fv通过连接肽相连,而第二单链Fv与Fc片段直接相连或通过连接肽相连,且所述Fc片段不具有效应子功能。
其中,第一单链Fv针对肿瘤相关抗原具有特异性,其所包含的VH结构域和VL结构域通过连接肽(L1) 连接,所述VH、L1和VL以VH-L1-VL或VL-L1-VH的顺序排列,且所述连接肽L1的氨基酸序列为(GGGGX) n,X包含Ser或Ala,X优选Ser;n为1-5的自然数,n优选3;
示例性地,所述肿瘤相关抗原包含但不限于:CD19、CD20、CD22、CD25、CD30、CD33、CD38、CD39、CD40、CD47、CD52、CD73、CD74、CD123、CD133、CD138、BCMA、CA125、CEA、CS1、DLL3、DLL4、EGFR、EpCAM、FLT3、gpA33、GPC-3、Her2、MEGE-A3、NYESO1、PSMA、TAG-72、CIX、叶酸盐结合蛋白、GD2、GD3、GM2、VEGF、VEGFR2、VEGFR3、钙黏素(Cadherin)、整合素(Integrin)、间皮素(Mesothelin)、Claudin18、αVβ3、α5β1、ERBB3、c-MET、IGF1R、EPHA3、TRAILR1、TRAILR2、RANKL、B7蛋白家族、粘蛋白家族(Mucin)、FAP和肌腱蛋白(Tenascin);优选地,所述肿瘤相关抗原为CD19、CD20、CD22、CD30、CD38、BCMA、CS1、EpCAM、CEA、Her2、EGFR、CA125、Mucin1、GPC-3和Mesothelin。
例如,本发明表6-1中示例性的例举了一些优选的针对肿瘤相关抗原的第一单链Fv的VH结构域及其互补决定区(HCDR1、HCDR2和HCDR3)的氨基酸序列,和VL结构域及其互补决定区(LCDR1、LCDR2和LCDR3)的氨基酸序列。
优选地,所述第一单链Fv特异性结合CD19,其选自下组:
(i)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:9、10和11所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:12、13和14所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
(ii)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:17、18和19所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:20、21和22所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
(iii)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:25、26和27所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:28、29和30所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
(iv)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:33、34和35所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或 具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:36、37和38所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
优选地,所述第一单链Fv特异性结合CD20,其选自下组:
(i)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:41、42和43所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:44、45和46所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
(ii)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:49、50和51所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:52、53和54所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
(iii)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:57、58和59所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:60、61和62所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
(iv)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:65、66和67所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:68、69和70所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
优选地,所述第一单链Fv特异性结合CD22,其选自下组:
(i)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:73、74和75所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具 有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:76、77和78所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
(ii)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:81、82和83所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:84、85和86所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
优选地,所述第一单链Fv特异性结合CD30,其选自下组:
(i)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:89、90和91所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:92、93和94所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
(ii)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:97、98和99所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:100、101和102所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
优选地,所述第一单链Fv特异性结合EpCAM,其选自下组:
(i)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:105、106和107所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:108、109和110所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
(ii)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:113、114和115所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的 或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:116、117和118所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
优选地,所述第一单链Fv特异性结合CEA,其选自下组:
(i)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:121、122和123所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:124、125和126所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
(ii)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:129、130和131所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:132、133和134所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
(iii)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:137、138和139所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:140、141和142所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
优选地,所述第一单链Fv特异性结合Her2,其选自下组:
(i)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:145、146和147所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:148、149和150所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
(ii)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:153、154和155所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的 或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:156、157和158所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
(iii)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:161、162和163所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:164、165和166所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
优选地,所述第一单链Fv特异性结合EGFR,其选自下组:
(i)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:169、170和171所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:172、173和174所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
(ii)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:177、178和179所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:180、181和182所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
(iii)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:185、186和187所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:188、189和190所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
优选地,所述第一单链Fv特异性结合GPC-3,其VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:193、194和195所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序 列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:196、197和198所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
优选地,所述第一单链Fv特异性结合Mesothelin,其VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:201、202和203所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:204、205和206所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
优选地,所述第一单链Fv特异性结合Mucin1,其选自下组:
(i)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:209、210和211所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:212、213和214所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
(ii)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:217、218和219所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:220、221和222所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
优选地,所述第一单链Fv特异性结合CA125,其VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:225、226和227所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:228、229和230所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
优选地,所述第一单链Fv特异性结合BCMA,其VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:233、234和235所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序 列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:236、237和238所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
更优选地,所述第一单链Fv特异性结合CD19,其选自下组:
(i)VH结构域包含如SEQ ID NO:15所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:16所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
(ii)VH结构域包含如SEQ ID NO:23所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:24所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
(iii)VH结构域包含如SEQ ID NO:31所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:32所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
(iv)VH结构域包含如SEQ ID NO:39所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:40所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
更优选地,所述第一单链Fv特异性结合CD20,其选自下组:
(i)VH结构域包含如SEQ ID NO:47所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:48所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
(ii)VH结构域包含如SEQ ID NO:55所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例 如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:56所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
(iii)VH结构域包含如SEQ ID NO:63所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:64所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
(iv)VH结构域包含如SEQ ID NO:71所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:72所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
更优选地,所述第一单链Fv特异性结合CD22,其选自下组:
(i)VH结构域包含如SEQ ID NO:79所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:80所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
(ii)VH结构域包含如SEQ ID NO:87所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:88所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
更优选地,所述第一单链Fv特异性结合CD30,其选自下组:
(i)VH结构域包含如SEQ ID NO:95所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:96所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
(ii)VH结构域包含如SEQ ID NO:103所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例 如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:104所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
更优选地,所述第一单链Fv特异性结合EpCAM,其选自下组:
(i)VH结构域包含如SEQ ID NO:111所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:112所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
(ii)VH结构域包含如SEQ ID NO:119所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:120所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
更优选地,所述第一单链Fv特异性结合CEA,其选自下组:
(i)VH结构域包含如SEQ ID NO:127所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:128所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
(ii)VH结构域包含如SEQ ID NO:135所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:136所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
(iii)VH结构域包含如SEQ ID NO:143所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:144所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
更优选地,所述第一单链Fv特异性结合Her2,其选自下组:
(i)VH结构域包含如SEQ ID NO:151所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:152所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
(ii)VH结构域包含如SEQ ID NO:159所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:160所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
(iii)VH结构域包含如SEQ ID NO:167所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:168所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
更优选地,所述第一单链Fv特异性结合EGFR,其选自下组:
(i)VH结构域包含如SEQ ID NO:175所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:176所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
(ii)VH结构域包含如SEQ ID NO:183所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:184所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
(iii)VH结构域包含如SEQ ID NO:191所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:192所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
更优选地,所述第一单链Fv特异性结合GPC-3,其VH结构域包含如SEQ ID NO:199所示的氨基酸 序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:200所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
更优选地,所述第一单链Fv特异性结合Mesothelin,其VH结构域包含如SEQ ID NO:207所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:208所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
更优选地,所述第一单链Fv特异性结合Mucin1,其选自下组:
(i)VH结构域包含如SEQ ID NO:215所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:216所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
(ii)VH结构域包含如SEQ ID NO:223所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:224所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
更优选地,所述第一单链Fv特异性结合CA125,其VH结构域包含如SEQ ID NO:231所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:232所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
更优选地,所述第一单链Fv特异性结合BCMA,其VH结构域包含如SEQ ID NO:239所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:240所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
其中,连接本发明所述第一单链Fv和第二单链Fv的连接肽(L2)由柔性肽和刚性肽组成。
进一步地,所述柔性肽包含2个或更多个氨基酸,并优选自下列几种氨基酸:Gly(G)、Ser(S)、Ala(A)和Thr(T)。更优地,所述柔性肽包含G和S残基。最优地,所述柔性肽的氨基酸组成结构通式为G xS y(GGGGS) z,其中x,y和z是大于或等于0的整数,且x+y+z≥1。例如,在一优选实施例中,所述柔性肽的氨基酸序列为G 2(GGGGS) 3
进一步地,所述刚性肽来自天然人绒毛膜促性腺激素β亚基羧基末端第118至145位氨基酸组成的全长序列(如SEQ ID NO:257所示)或其截短的片段(以下统称为CTP)。优选地,所述CTP刚性肽包含SEQ ID NO:257N端的10个氨基酸,即SSSSKAPPPS(CTP 1);或所述CTP刚性肽包含SEQ ID NO:257C端的14个氨基酸,即SRLPGPSDTPILPQ(CTP 2);又如,另一实施例中,所述CTP刚性肽包含SEQ ID NO:257N端的16个氨基酸,即SSSSKAPPPSLPSPSR(CTP 3);再如,另一些实施例中,所述CTP刚性肽包含28个氨基酸并开始于人绒毛膜促性腺激素β亚基的第118位,终止于第145位,即SSSSKAPPPSLPSPSRLPGPSDTPILPQ(CTP 4)。
例如,本发明表6-3中示例性的例举了一些优选的连接第一和第二单链Fv的连接肽L2的氨基酸序列。
在本发明的一优选实施例中,所述连接肽的氨基酸序列如SEQ ID NO:258所示,其柔性肽的氨基酸组成为G 2(GGGGS) 3,和其刚性肽的氨基酸组成为SSSSKAPPPS(即CTP 1)。
其中,第二单链Fv针对免疫效应细胞抗原CD3具有特异性,其所包含的VH结构域和VL结构域通过连接肽(L3)连接,所述VH、L3和VL以VH-L3-VL或VL-L3-VH的顺序排列,且所述连接肽L3的氨基酸序列为(GGGGX) n,X包含Ser或Ala,X优选Ser;n为1-5的自然数,n优选3;
优选地,所述双特异性抗体的第二单链Fv在体外FACS结合分析测定中以大于约50nM,或大于100nM,或大于300nM,或大于500nM的EC 50值结合于效应细胞;更优选地,所述双特异性抗体的第二单链Fv不仅能与人CD3结合,还可与食蟹猴或恒河猴的CD3特异性结合。在本发明的一优选实施例中,所述双特异性抗体以132.3nM的EC 50值与效应细胞特异性结合。
例如,本发明表6-2中示例性的例举了一些优选的抗-CD3 scFv的VH结构域及其互补决定区(HCDR1、HCDR2和HCDR3)的氨基酸序列,和VL结构域及其互补决定区(LCDR1、LCDR2和LCDR3)的氨基酸序列。
优选地,所述第二单链Fv特异性结合CD3,其VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:241、242和243所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:244、245和246所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
优选地,所述第二单链Fv特异性结合CD3,其VH结构域包含的HCDR1、HCDR2和HCDR3分别如 SEQ ID NO:249、250和251所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:252、253和254所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
更优选地,所述第二单链Fv特异性结合CD3,其VH结构域包含如SEQ ID NO:247所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:248所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
更优选地,所述第二单链Fv特异性结合CD3,其VH结构域包含如SEQ ID NO:255所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:256所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
其中,本发明所述Fc片段直接或通过连接肽L4与第二单链Fv相连,且所述连接肽L4包含1-20个氨基酸,并优选自下列几种氨基酸:Gly(G)、Ser(S)、Ala(A)和Thr(T);较优地地,所述连接肽L4选自Gly(G)和Ser(S);更优选地,所述连接肽L4组成为(GGGGS)n,n=1,2,3或4。本发明的一优选实施例中,所述Fc片段与第二单链Fv直接相连。
另一方面,本发明所述Fc片段包含来源于人免疫球蛋白重链恒定区的铰链区、CH2和CH3结构域,例如,在某些实施方案中,本发明所述Fc片段来源于例如选自人IgG1、IgG2、IgG3、IgG4、IgM、IgA1、IgA2、IgD和IgE的重链恒定区;特别地选自例如人IgG1、IgG2、IgG3和IgG4的重链恒定区,更特别地选自人IgG1或IgG4的重链恒定区;并且,所述Fc片段与其所源自的天然序列相比具有一个或多个氨基酸的置换、缺失或添加(例如,至多20个、至多15个、至多10个、或至多5个置换、缺失或添加)。
在一些优选实施方案中,所述Fc片段被改变,例如被突变,以修饰本发明所述双特异性抗体分子的性质(例如改变下列中的一个或更多个特性:Fc受体结合、抗体糖基化、效应细胞功能或补体功能)。
例如,本发明提供的双特异性抗体包含具有改变的效应子功能(例如降低或消除)的氨基酸置换、缺失或添加的Fc变体。抗体的Fc区介导几种重要的效应子功能,例如ADCC、ADCP、CDC等。通过替换抗体的Fc区中的氨基酸残基,以改变抗体对效应子配体(如FcγR或补体C1q)的亲和力,从而改变效应子功能的方法是本领域已知的(参见,例如EP 388,151A1;US 564,8260;US 562,4821;Natsume A等,Cancer Res.,68:3863-3872,2008;Idusogie EE等,J.Immunol.,166:2571-2575,2001;Lazar GA等,PNAS,103:4005-4010,2006;Shields RL等,JBC,276:6591-6604,2001;Stavenhagen JB等,Cancer Res.,67:8882-8890,2007;Stavenhagen JB等,Advan.Enzyme.Regul.,48:152-164,2008;Alegre ML等,J.Immunol.,148:3461-3468, 1992;和Kaneko E等,Biodrugs,25:1-11,2011)。在本发明一些优选实施例中,对抗体恒定区上的氨基酸L235(EU编号)进行修饰以改变Fc受体相互作用,例如L235E或L235A。在另一些优选实施例中,对抗体恒定区上的氨基酸234和235同时进行修饰,例如L234A和L235A(L234A/L235A)(EU编号)。
例如,本发明提供的双特异性抗体可包含具有延长的循环半衰期的氨基酸置换、缺失或添加的Fc变体。研究发现M252Y/S254T/T256E、M428L/N434S或者T250Q/M428L都能够延长抗体在灵长类动物中的半衰期。更多的与新生儿受体(FcRn)结合亲和力增强的Fc变体所包含突变位点可以参见中国发明专利CN 201280066663.2、US 2005/0014934A1、WO 97/43316、US 5,869,046、US 5,747,03、WO 96/32478。在本发明一些优选实施例中,对抗体恒定区上的氨基酸M428(EU编号)进行修饰以增强FcRn受体的结合亲和力,例如M428L。在另一些优选实施例中,对抗体恒定区上的氨基酸250和428(EU编号)同时进行修饰,例如T250Q和M428L(T250Q/M428L)。
例如,本发明提供的双特异性抗体也可包含具有可以降低或消除Fc糖基化的氨基酸置换、缺失或添加的Fc变体。例如,Fc变体包含正常存在于氨基酸位点297(EU编号)处的N-连接聚糖降低的糖基化。N297位糖基化对IgG的活性有很大影响,如果该位点糖基化被移除,则会影响IgG分子CH2上半部分的构象,从而丧失对FcγRs的结合能力,影响抗体相关的生物活性。在本发明的一些优选实施例中,对人IgG恒定区上的氨基酸N297(EU编号)进行修饰以避免抗体的糖基化,例如N297A。
例如,本发明提供的双特异性抗体也可包含具有消除电荷异质性的氨基酸置换、缺失或添加的Fc变体。在工程细胞表达过程中发生的多种翻译后修饰会都会引起单克隆抗体的电荷异质性,而IgG抗体C末端赖氨酸的不均一性是其中的一个主要原因,重链C端的赖氨酸K可能在抗体生产过程中出现一定比例的缺失,从而造成电荷异质性,从而影响抗体的稳定性、有效性、免疫原性或药代动力学。在本发明的一些优选实施例中,将IgG抗体C末端的K447(EU编号)去除或缺失,以消除抗体的电荷异质性,提高表达产物的均一性。
本发明表6-4中示例性的例举了一些优选的Fc片段的氨基酸序列。与包含野生型人IgG Fc区的双特异性抗体相比,本发明提供的双特异性抗体所包含的Fc片段对人FcγRs(FcγRI、FcγRIIa或FcγRIIIa)和C1q的至少一种显示出降低的亲和力,具有减少的效应细胞功能或补体功能。例如,在本发明的一优选实施例中,双特异性抗体包含的Fc片段来自人IgG1,且具有L234A和L235A取代(L234A/L235A),显示出对FcγRI降低的结合能力;此外,本发明提供的双特异性抗体包含的所述Fc片段还可以包含具有使其它一种或几种特性(例如,与FcRn受体结合能力、抗体糖基化或抗体电荷异质性等)改变的氨基酸取代。例如,在本发明的一优选实施例中,所述Fc片段的氨基酸序列如SEQ ID NO:263所示,它与其所源自的天然序列相比具有L234A/L235A/T250Q/N297A/P331S/M428L的氨基酸置换或取代,且K447被缺失或删除。
本发明所述双特异性抗体分子由两条相同的多肽链通过Fc片段铰链区的链间二硫键结合形成四价同源二聚体,每条多肽链自N端至C端依次由抗-TAA scFv、连接肽、抗-CD3 scFv和Fc片段组成;例如,本发明表6-5中示例性的例举了一些优选的双特异性抗体的氨基酸序列。
本发明一优选实施例中,所述双特异性抗体结合人CD19和CD3,其氨基酸序列如下:
(i)SEQ ID NO:264所示的序列;
(ii)与SEQ ID NO:264所示的序列相比具有一个或几个置换、缺失或添加(例如1个,2个,3个,4个或5个置换、缺失或添加)的序列;或
(iii)与SEQ ID NO:264所示的序列具有至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%的序列同一性的序列;
在某些优选的实施方案中,(ii)中所述的置换是保守置换。
本发明一优选实施例中,所述双特异性抗体结合人CD19和CD3,其氨基酸序列如下:
(i)SEQ ID NO:283所示的序列;
(ii)与SEQ ID NO:283所示的序列相比具有一个或几个置换、缺失或添加(例如1个,2个,3个,4个或5个置换、缺失或添加)的序列;或
(iii)与SEQ ID NO:283所示的序列具有至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%的序列同一性的序列;
在某些优选的实施方案中,(ii)中所述的置换是保守置换。
本发明一优选实施例中,所述双特异性抗体结合人CD20和CD3,其氨基酸序列如下:
(i)SEQ ID NO:266所示的序列;
(ii)与SEQ ID NO:266所示的序列相比具有一个或几个置换、缺失或添加(例如1个,2个,3个,4个或5个置换、缺失或添加)的序列;或
(iii)与SEQ ID NO:266所示的序列具有至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%的序列同一性的序列;
在某些优选的实施方案中,(ii)中所述的置换是保守置换。
本发明一优选实施例中,所述双特异性抗体结合人CD22和CD3,其氨基酸序列如下:
(i)SEQ ID NO:268所示的序列;
(ii)与SEQ ID NO:268所示的序列相比具有一个或几个置换、缺失或添加(例如1个,2个,3个,4个或5个置换、缺失或添加)的序列;或
(iii)与SEQ ID NO:268所示的序列具有至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%的序列同一性的序列;
在某些优选的实施方案中,(ii)中所述的置换是保守置换。
本发明一优选实施例中,所述双特异性抗体结合人CD30和CD3,其氨基酸序列如下:
(i)SEQ ID NO:270所示的序列;
(ii)与SEQ ID NO:270所示的序列相比具有一个或几个置换、缺失或添加(例如1个,2个,3个,4个或5个置换、缺失或添加)的序列;或
(iii)与SEQ ID NO:270所示的序列具有至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%的序列同一性的序列;
在某些优选的实施方案中,(ii)中所述的置换是保守置换。
本发明一优选实施例中,所述双特异性抗体结合人EpCAM和CD3,其氨基酸序列如下:
(i)SEQ ID NO:272所示的序列;
(ii)与SEQ ID NO:272所示的序列相比具有一个或几个置换、缺失或添加(例如1个,2个,3个,4个或5个置换、缺失或添加)的序列;或
(iii)与SEQ ID NO:272所示的序列具有至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%的序列同一性的序列;
在某些优选的实施方案中,(ii)中所述的置换是保守置换。
本发明一优选实施例中,所述双特异性抗体结合人CEA和CD3,其氨基酸序列如下:
(i)SEQ ID NO:274所示的序列;
(ii)与SEQ ID NO:274所示的序列相比具有一个或几个置换、缺失或添加(例如1个,2个,3个,4个或5个置换、缺失或添加)的序列;或
(iii)与SEQ ID NO:274所示的序列具有至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%的序列同一性的序列;
在某些优选的实施方案中,(ii)中所述的置换是保守置换。
本发明一优选实施例中,所述双特异性抗体结合人Her2和CD3,其氨基酸序列如下:
(i)SEQ ID NO:8所示的序列;
(ii)与SEQ ID NO:8所示的序列相比具有一个或几个置换、缺失或添加(例如1个,2个,3个,4个或5个置换、缺失或添加)的序列;或
(iii)与SEQ ID NO:8所示的序列具有至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%的序列同一性的序列;
在某些优选的实施方案中,(ii)中所述的置换是保守置换。
本发明一优选实施例中,所述双特异性抗体结合人EGFR和CD3,其氨基酸序列如下:
(i)SEQ ID NO:277所示的序列;
(ii)与SEQ ID NO:277所示的序列相比具有一个或几个置换、缺失或添加(例如1个,2个,3个,4个或5个置换、缺失或添加)的序列;或
(iii)与SEQ ID NO:277所示的序列具有至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%的序列同一性的序列;
在某些优选的实施方案中,(ii)中所述的置换是保守置换。
本发明一优选实施例中,所述双特异性抗体结合人GPC-3和CD3,其氨基酸序列如下:
(i)SEQ ID NO:279所示的序列;
(ii)与SEQ ID NO:279所示的序列相比具有一个或几个置换、缺失或添加(例如1个,2个,3个,4个或5个置换、缺失或添加)的序列;或
(iii)与SEQ ID NO:279所示的序列具有至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%的序列同一性的序列;
在某些优选的实施方案中,(ii)中所述的置换是保守置换。
本发明一优选实施例中,所述双特异性抗体结合人Mesothelin和CD3,其氨基酸序列如下:
(i)SEQ ID NO:281所示的序列;
(ii)与SEQ ID NO:281所示的序列相比具有一个或几个置换、缺失或添加(例如1个,2个,3个,4个或5个置换、缺失或添加)的序列;或
(iii)与SEQ ID NO:281所示的序列具有至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%的序列同一性的序列;
在某些优选的实施方案中,(ii)中所述的置换是保守置换。
本发明一优选实施例中,所述双特异性抗体结合人Mucin1和CD3,其氨基酸序列如下:
(i)SEQ ID NO:285所示的序列;
(ii)与SEQ ID NO:285所示的序列相比具有一个或几个置换、缺失或添加(例如1个,2个,3个,4个或5个置换、缺失或添加)的序列;或
(iii)与SEQ ID NO:285所示的序列具有至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%的序列同一性的序 列;
在某些优选的实施方案中,(ii)中所述的置换是保守置换。
本发明的第二方面,提供了编码上述双特异性抗体的DNA分子。
本发明的优选实施例中,编码上述双特异性抗体的DNA分子如SEQ ID NO:265所示的核苷酸序列。
本发明的优选实施例中,编码上述双特异性抗体的DNA分子如SEQ ID NO:267所示的核苷酸序列。
本发明的优选实施例中,编码上述双特异性抗体的DNA分子如SEQ ID NO:269所示的核苷酸序列。
本发明的优选实施例中,编码上述双特异性抗体的DNA分子如SEQ ID NO:271所示的核苷酸序列。
本发明的优选实施例中,编码上述双特异性抗体的DNA分子如SEQ ID NO:273所示的核苷酸序列。
本发明的优选实施例中,编码上述双特异性抗体的DNA分子如SEQ ID NO:275所示的核苷酸序列。
本发明的优选实施例中,编码上述双特异性抗体的DNA分子如SEQ ID NO:276所示的核苷酸序列。
本发明的优选实施例中,编码上述双特异性抗体的DNA分子如SEQ ID NO:278所示的核苷酸序列。
本发明的优选实施例中,编码上述双特异性抗体的DNA分子如SEQ ID NO:280所示的核苷酸序列。
本发明的优选实施例中,编码上述双特异性抗体的DNA分子如SEQ ID NO:282所示的核苷酸序列。
本发明的优选实施例中,编码上述双特异性抗体的DNA分子如SEQ ID NO:284所示的核苷酸序列。
本发明的优选实施例中,编码上述双特异性抗体的DNA分子如SEQ ID NO:286所示的核苷酸序列。
本发明的第三方面,提供了包含上述DNA分子的载体。
本发明的第四方面,提供了包含上述载体的宿主细胞;所述宿主细胞包含原核细胞、酵母或哺乳动物细胞,如CHO细胞、NS0细胞或其它哺乳动物细胞,优选为CHO细胞;
本发明的第五方面,提供了一种药物组合物,所述组合物包含上述双特异性抗体以及可药用赋形剂、载体或稀释剂。
本发明的第六方面,还提供了制备本发明所述双特异性抗体的方法,其包括:(a)获得双特异性抗体的融合基因,构建双特异性抗体的表达载体;(b)通过基因工程方法将上述表达载体转染到宿主细胞中;(c)在允许产生所述双特异性抗体的条件下培养上述宿主细胞;(d)分离、纯化产生的所述抗体。
其中,步骤(a)中所述表达载体选自质粒、细菌和病毒中的一种或多种,优选地,所述表达载体为PCDNA3.1;
其中,步骤(b)通过基因工程方法将所构建的载体转染入宿主细胞中,所述宿主细胞包含原核细胞、酵母或哺乳动物细胞,如CHO细胞、NS0细胞或其它哺乳动物细胞,优选为CHO细胞。
其中,步骤(d)通过常规的免疫球蛋白纯化方法,包含蛋白质A亲和层析和离子交换、疏水层析或分子筛方法分离、纯化所述双特异性抗体。
本发明的第七方面,提供了所述双特异性抗体在制备治疗、预防或缓解肿瘤的药物中的用途;所述癌症的实例包括但不限于间皮瘤、鳞状细胞瘤、骨髓瘤、骨肉瘤、胶质母细胞瘤、神经胶质瘤、恶性上皮肿瘤、腺癌、黑色素瘤、肉瘤、急性和慢性白血病、淋巴瘤和脑膜瘤、霍奇金病、塞扎莱综合征、多发性骨 髓瘤,肺癌、非小细胞肺癌、小细胞肺癌、喉癌、乳腺癌、头颈癌、膀胱癌、子宫癌、皮肤癌、前列腺癌、宫颈癌、阴道癌、胃癌、肾细胞癌、肾癌、胰腺癌、结直肠癌、子宫内膜癌、食道癌、肝胆癌、骨癌、皮肤癌和血液癌,以及鼻腔鼻窦癌、鼻咽癌、口腔癌、口咽癌、喉头癌、喉下部癌、唾液腺癌、纵隔膜癌、胃癌、小肠癌、结肠癌、直肠和肛门区域的癌症、输尿管癌、尿道癌、阴茎癌、睾丸癌、外阴癌、内分泌系统癌症、中枢神经系统癌症和浆细胞癌。。
本发明的第八方面,提供了所述双特异性抗体用于增强或刺激免疫应答或功能的方法,其包含对患者/受试者个体施用治疗有效量的所述双特异性抗体。
本发明的第九方面,提供了所述双特异性抗体用于治疗肿瘤、延迟其进展、降低/抑制其复发的方法,其包括将有效量的所述双特异性抗体给予或施用至所述患有以上疾病或病症的个体;所述肿瘤的实例包括但不限于间皮瘤、鳞状细胞瘤、骨髓瘤、骨肉瘤、胶质母细胞瘤、神经胶质瘤、恶性上皮肿瘤、腺癌、黑色素瘤、肉瘤、急性和慢性白血病、淋巴瘤和脑膜瘤、霍奇金病、塞扎莱综合征、多发性骨髓瘤,肺癌、非小细胞肺癌、小细胞肺癌、喉癌、乳腺癌、头颈癌、膀胱癌、子宫癌、皮肤癌、前列腺癌、宫颈癌、阴道癌、胃癌、肾细胞癌、肾癌、胰腺癌、结直肠癌、子宫内膜癌、食道癌、肝胆癌、骨癌、皮肤癌和血液癌,以及鼻腔鼻窦癌、鼻咽癌、口腔癌、口咽癌、喉头癌、喉下部癌、唾液腺癌、纵隔膜癌、胃癌、小肠癌、结肠癌、直肠和肛门区域的癌症、输尿管癌、尿道癌、阴茎癌、睾丸癌、外阴癌、内分泌系统癌症、中枢神经系统癌症和浆细胞癌。
本发明公开的技术方案,取得了有益的技术效果,概况如下:
1、本发明提供的双特异性抗体包含的抗-TAA scFv位于双抗的N端,空间构像发生变化,与TAA的结合能力在某些条件下可能减弱,尤其不易结合弱表达或低表达TAA的正常细胞,减少了非特异性杀伤,但对过表达或高表达TAA的细胞的结合特异性没有显著下降,表现出良好的体内杀伤效果。由此亦知,当靶抗原仅表达于肿瘤细胞上或本发明所述双特异性抗体仅与过表达靶抗原的肿瘤细胞特异性结合时,使得免疫效应细胞限制性仅在靶细胞组织内被激活,这使得所述双特异性抗体对正常细胞的非特异性杀伤以及细胞因子的伴随释放能够被降至最低,减小其在临床治疗中的毒副作用。
2、本发明提供的双特异性抗体选择的抗-CD3 scFv以微弱的结合亲和力(EC 50值大于约50nM,或大于100nM,或大于300nM,或大于500nM)与效应细胞特异性结合,此外因被包埋在抗-TAA scFv和Fc之间,且位于其N端的连接肽L3包含的CTP刚性肽和位于其C端的Fc片段,都部分“遮盖”或“屏蔽”了抗-CD3 scFv的抗原结合域,这种位阻效应使其以更微弱的结合亲和力(例如以大于1μM)与CD3结合,这使其对T细胞的活化刺激能力减弱,因而限制了细胞因子的过度释放,因而具有更高的安全性;另外,本发明采用的抗-CD3 scFv可同时结合人和食蟹猴和/或恒河猴的CD3天然抗原,使其临床前毒理学评价不需要再构建替代分子,且获得的有效剂量、毒性剂量和毒副反应更客观、准确,可以直接进行临床剂量的转换,降低临床研究的风险。再者,本发明提供的双特异性抗体创造性地采用了二价抗-CD3 scFv,这使得所述双特异性抗体在构型设计上规避了现有技术普遍所采用的异源二聚体型(所包含的抗-CD3 scFv为单价)的非对称结构,因而也不存在重链间错配的问题,简化了下游纯化步骤;并且出人意料地,在体外细 胞结合试验中未观察到抗-CD3 scFv与T细胞的非特异性结合,且细胞激活程度(IL-2等细胞因子的释放)控制在安全、有效的范围内,即本发明采用的二价抗-CD3 scFv结构并未引起非抗原依赖地诱导T细胞的过度活化,而对其他包含二价抗-CD3结构域的双特异性抗体而言,T细胞被不可控地过度激活是普遍存在的,因而抗-CD3双特异性抗体在设计时一般避免引入二价抗-CD3结构。
3、本发明提供的双特异性抗体所包含的经修饰的Fc片段不具有FcγR结合能力,避免了由FcγR所介导的T细胞全身性激活,因而允许免疫效应细胞限制性地仅在靶细胞组织内被激活。
4、本发明提供的双特异性抗体为同源二聚体型,不存在重链及轻链错配的问题,下游生产工艺稳定,纯化步骤简单高效,表达产物均一,且其理化和体内稳定性都显著提高。
5、本发明提供的双特异性抗体因包含Fc片段,而具有较长的体内循环半衰期,药代动力学试验表明其在小鼠和食蟹猴体内的循环半衰期分别约40h和8h,这将大大降低其临床给药频率。
发明详述
缩写和定义
Her2     人表皮生长因子受体2
BiAb     双特异性抗体(bispecific antibody)
CDR      用Kabat编号系统界定的免疫球蛋白可变区中的互补决定区
EC 50     产生50%功效或结合的浓度
ELISA    酶联免疫吸附测定
FR       抗体构架区:将CDR区排除在外的免疫球蛋白可变区
HRP      辣根过氧化物酶
IL-2     白细胞介素2
IFN      干扰素
IC 50     产生50%抑制的浓度
IgG      免疫球蛋白G
Kabat    由Elvin A Kabat倡导的免疫球蛋白比对及编号系统
mAb      单克隆抗体
PCR      聚合酶链式反应
V区      在不同抗体之间序列可变的IgG链区段。其延伸到轻链的109位Kabat残基和重链的第113位残基。
VH       免疫球蛋白重链可变区
VK       免疫球蛋白κ轻链可变区
K D       平衡解离常数
k a       结合速率常数
k d       解离速率常数
在本发明中,除非另有说明,否则本文中使用的科学和技术名词具有本领域技术人员所通常理解的含义。本发明使用的抗体或其片段可单独或联合使用本领域已知的常规技术,例如氨基酸缺失、插入、取代、增加、和/或重组以及/或其他修饰方法作进一步修饰。根据一种抗体的氨基酸序列在其DNA序列中引入这种修饰的方法对本领域技术人员来说是众所周知的;见例如,Sambrook,分子克隆:实验手册,Cold Spring Harbor Laboratory(1989)N.Y.。所指的修饰优选在核酸水平上进行。同时,为了更好地理解本发明,下面提供相关术语的定义和解释。
“CD19”是分化簇19多肽,是单通道I型跨膜糖蛋白,其含有两个Ig样C2型(免疫球蛋白样)结构域和一个相对较大的胞质尾,在哺乳动物物种中高度保守。CD19在几乎所有的B谱系细胞中和滤泡细胞中表达,对于B淋巴细胞分化是必需的,并且作为B细胞关键共受体与CD21、CD81和CD225一起发挥作用。因此,CD19常被用作B淋巴细胞发育、B细胞淋巴瘤以及B淋巴细胞白血病的生物诊断标志。此外,CD19中的突变与严重的免疫缺陷综合症相关。针对CD19靶点的适应症还包括其他现有技术中发现的以及未来发现的相关疾病或病症。该术语还包括CD19的任何变体、同工型、衍生物和物种同源物,其由细胞-包括肿瘤细胞-天然地表达,或由以CD19基因或cDNA转染的细胞表达。
“CD20”是分化簇20多肽,属于4次跨膜的蛋白质,为B淋巴细胞表面特有分化抗原,表达于90%以上的B淋巴瘤细胞和正常B淋巴细胞,而在造血干细胞、原始B淋巴细胞、正常血细胞以及其他组织上不表达,与抗体结合后无显著内化和脱落,不发生抗原凋变,可作为治疗B细胞淋巴瘤的理想作用靶点。CD20主要经ADCC、CDC等作用发挥抗肿瘤作用。近年来,针对CD20靶点的适应症不断被拓展,包括例如自身免疫性疾病(包括多发性硬化症(MS)、克隆氏症(CD))、炎症性疾病(例如溃疡性结肠炎(UC))等。针对CD20靶点的适应症还包括其他现有技术中发现的以及未来发现的相关疾病或病症。该术语还包括CD20的任何变体、同工型、衍生物和物种同源物,其由细胞-包括肿瘤细胞-天然地表达,或由以CD20基因或cDNA转染的细胞表达。
“CD22”是分化簇22多肽,具有Ig结构域,是成熟B细胞表面的一种跨膜受体。在人类体内,CD22主要抑制B细胞表面受体的过度激活,降低罹患自身免疫性疾病的风险(例如,全身性红斑狼疮)。与CD22相关的适应症包括例如B细胞淋巴瘤、急性与慢性白血病和其他B细胞发育异常和B细胞依赖自身免疫性疾病相关的病症。针对CD22靶点的适应症还包括其他现有技术中发现的以及未来发现的相关疾病或病症。该术语还包括CD22的任何变体、同工型、衍生物和物种同源物,其由细胞-包括肿瘤细胞-天然地表达,或由以CD22基因或cDNA转染的细胞表达。
“CD30”是肿瘤坏死因子(TNF)受体超家族成员,属于I型跨膜糖蛋白,在生理上表达为激活的B和T淋巴细胞。CD30主要表达于淋巴起源的肿瘤,如所有的霍奇金淋巴瘤(HL)、某些B细胞淋巴瘤、某些T细胞淋巴瘤及NK细胞淋巴瘤,低表达于非病理状态下活化的T细胞、B细胞表面,在正常细胞不表达,因此可作为相应的肿瘤标志物及疾病诊断的指标。针对CD30靶点的适应症还包括其他现有技术中发现的以及未来发现的相关疾病或病症。CD30该术语还包括CD30的任何变体、同工型、衍生物和物种同源物,其由细胞-包括肿瘤细胞-天然地表达,或由以CD30基因或cDNA转染的细胞表达。
“EpCAM(上皮细胞粘附分子)”是一种跨膜糖蛋白,是最早发现于结肠癌的一种TAA。EpCAM不 同程度的过表达于大多数人类肿瘤,包括例如肺癌、食管癌、胃癌、乳腺癌、结直肠癌、肝癌、前列腺癌、卵巢癌,与肿瘤诊断和预后判断密切相关。此外,EpCAM的过表达已在EpCAM抗体及肿瘤相关疫苗临床实验中被开发和应用。针对EpCAM靶点的适应症还包括其他现有技术中发现的以及未来发现的相关疾病或病症。该术语还包括EpCAM的任何变体、同工型、衍生物和物种同源物,其由细胞-包括肿瘤细胞-天然地表达,或由以EpCAM基因或cDNA转染的细胞表达。
“CEA(癌胚抗原)”是一种酸性糖蛋白,是存在于肿瘤细胞表面的一种抗原,具有人类胚胎抗原特性,广泛存在于内胚叶起源的消化系统癌中,包括例如胃肠道肿瘤、肝癌、胰腺癌,也可存在于小细胞肺癌、乳腺癌、甲状腺髓样癌、类癌中。因此,其可作为广谱肿瘤标志物,用于多种肿瘤的诊断及治疗。针对CEA靶点的适应症还包括其他现有技术中发现的以及未来发现的相关疾病或病症。该术语还包括CEA的任何变体、同工型、衍生物和物种同源物,其由细胞-包括肿瘤细胞-天然地表达,或由以CEA基因或cDNA转染的细胞表达。
“Her2(人类表皮生长因子受体2)”是人类表皮生长因子受体家族成员,许多肿瘤的发生、发展和病情轻重与其活性大小密切相关。除了可发生基因突变或扩增,her2的上调还可激活下游两个信号转导通路,引发瀑布式连锁反应,促进细胞无限增殖,最终导致癌症。此外,her2可启动多种转移相关机制增加肿瘤细胞转移能力。Her2基因的扩增或过表达发生在例如乳腺癌、卵巢癌、胃癌、肺腺癌、前列腺癌、侵袭性子宫癌等多种肿瘤中。针对Her2靶点的适应症还包括其他现有技术中发现的以及未来发现的相关疾病或病症。该术语还包括Her2的任何变体、同工型、衍生物和物种同源物,其由细胞-包括肿瘤细胞-天然地表达,或由以Her2基因或cDNA转染的细胞表达。物种同源物包括恒河猴Her2。
“EGFR(表皮生长因子受体)”是表皮生长因子受体家族成员,广泛分布于哺乳动物上皮细胞、成纤维细胞、胶质细胞、角质细胞等细胞表面,与肿瘤细胞的增殖、血管生成、肿瘤侵袭、转移及细胞凋亡的抑制有关。EGFR的突变或过表达一般会引发肿瘤,在许多实体肿瘤包括例如胶质细胞、肾癌、肺癌、前列腺癌、胰腺癌、乳腺癌等组织中均存在EGFR的高表达或异常表达。针对EGFR靶点的适应症还包括其他现有技术中发现的以及未来发现的相关疾病或病症。该术语还包括EGFR的任何变体、同工型、衍生物和物种同源物,其由细胞-包括肿瘤细胞-天然地表达,或由以EGFR基因或cDNA转染的细胞表达。
“GPC-3(磷脂酰肌醇蛋白聚糖3)”是磷脂酰肌醇蛋白聚糖家族成员,在大多数胚胎组织中高表达,是一种细胞增殖的抑制因子。GPC-3的缺失可导致SGBS(过度生长综合症),并且其过表达于HCC的早期组织中,与肝细胞癌(HCC)、黑色素瘤、卵巢癌、前列腺癌等多种癌症相关。此外,GPC-3在恶性间皮瘤、乳腺癌、肺癌、胃癌、卵巢细胞癌等恶性肿瘤中表达沉默,而在正常组织中不表达或低表达,因此可作为多种肿瘤治疗和诊断的生物标记物。针对GPC-3靶点的适应症还包括其他现有技术中发现的以及未来发现的相关疾病或病症。该术语还包括GPC-3的任何变体、同工型、衍生物和物种同源物,其由细胞-包括肿瘤细胞-天然地表达,或由以GPC-3基因或cDNA转染的细胞表达。
“Mesothelin(间皮素)”属于间皮素家族,是前原核巨细胞增强因子,可通过弗林蛋白酶转化酶蛋白水解切割成两条链:巨核细胞增强因子(MPF)和间皮素。间皮素是一种肿瘤分化抗原,通常存在于胸膜,腹膜和心包内衬的间皮细胞上。间皮素在多种肿瘤例如间皮瘤、卵巢癌、肺癌、胰腺癌等肿瘤中 过表达并具有免疫原性,因此可被用作肿瘤标志物或治疗性癌症疫苗的抗原靶标。针对Mesothelin靶点的适应症还包括其他现有技术中发现的以及未来发现的相关疾病或病症。该术语还包括Mesothelin的任何变体、同工型、衍生物和物种同源物,其由细胞包括肿瘤细胞天然地表达,或由以Mesothelin基因或cDNA转染的细胞表达。
“Mucin1(细胞表面相关粘蛋白1)”是粘蛋白家族成员,在包括肺、乳腺、胃和胰腺等组织器官的上皮细胞的顶端表面上表达。Mucin1的过度表达,异常的细胞内定位以及糖基化变化均与癌症有关,包括但不限于结肠癌,乳腺癌,卵巢癌,肺癌和胰腺癌。通过免疫组织化学技术,可以在广泛的分泌性上皮细胞,间充质肿瘤(例如滑膜肉瘤和卵巢颗粒细胞瘤),以及其肿瘤等同物中鉴定Mucin1。并且,Mucin1可区分来源于腺癌并通过细胞质扩散引起的间皮瘤(限于细胞膜和相关的微绒毛)。因此,Mucin1可用于诊断和治疗以上相关疾病或病症和其他现有技术中发现的以及未来发现的相关疾病或病症。该术语还包括Mucin1的任何变体、同工型、和物种同源物,其由细胞-包括肿瘤细胞-天然地表达,或由以Mucin1基因或cDNA转染的细胞表达。
“CA125(糖类抗原125)”是一种卵巢癌相关抗原,起源于胎儿体腔上皮组织,普遍分布于胸膜、心包、腹膜、子宫内膜、生殖道和羊膜等间皮组织细胞表面。当这些部位发生恶性病变或受到炎症刺激时,血清中CA125的水平将显著升高。作为研究最多的卵巢癌标记物,CA125在卵巢癌早期筛查、诊断、治疗及预后的应用研究中均有报道。在卵巢癌良性囊肿瘤和恶性囊性上皮瘤的穿刺液中,CA125水平可明显升高。在消化道恶性肿瘤(如胰腺癌、肝癌、胃癌、肠癌)以及慢性胰腺炎、慢性肝炎、肝硬化、肺腺癌、盆腔炎性病变、子宫内膜异位症时,血清CA125水平也有升高。鉴于CA125在多种癌症与炎症中的研究,其可广泛用于筛查、诊断、治疗以上相关疾病。针对CA125靶点的适应症还包括其他现有技术中发现的以及未来发现的相关疾病或病症。该术语还包括CA125的任何变体、同工型、和物种同源物,其由细胞-包括肿瘤细胞-天然地表达,或由以CA125基因或cDNA转染的细胞表达。
“BCMA(B细胞成熟抗原)”属于肿瘤坏死因子受体超家族成员,优先在成熟B淋巴细胞中表达,并且表达在浆母细胞(即,浆细胞前体)和浆细胞的表面。在脾脏、淋巴结、胸腺、肾上腺和肝脏中均能检测到BCMA的RNA,多个B细胞系成熟后其BCMA mRNA的水平也增加。BCMA与白血病、淋巴瘤(如霍奇金淋巴瘤)、多发性骨髓瘤、自身免疫性疾病(如系统性红斑狼疮)等多种疾病有关,因此可作为涉及相关B细胞疾病的潜在靶标。针对BCMA靶点的适应症还包括其他现有技术中发现的以及未来发现的相关疾病或病症。该术语还包括BCMA的任何变体、同工型、和物种同源物,其由细胞-包括肿瘤细胞-天然地表达,或由以BCMA基因或cDNA转染的细胞表达。
CD3分子是T细胞膜上的重要分化抗原,是成熟T细胞的特征性标志,由6条肽链组成,以非共价键与T细胞抗原受体(TCR)组成TCR-CD3复合体,不仅参与TCR-CD3复合体的胞浆内组装,而且通过各多肽链胞浆区的免疫受体酪氨酸活化基序(immunoreceptortyrosine-basedactivationmotif,ITAM)传递抗原刺激信号。CD3分子的主要功能为:稳定TCR结构,传递T细胞活化信号,当TCR特异性识别并结合抗原后,CD3参与将信号转导到T细胞胞浆内,作为诱导T细胞活化的第一信号,在T细胞抗原识别和免疫应答产生过程中具有极其重要的作用。
“CD3”指的是作为T细胞受体复合物的一部分,由三个不同的链CD3ε,CD3δ和CD3γ组成。CD3在T细胞上通过例如抗CD3抗体对其的固定作用而产生的集中(clustering),导致T细胞的活化,与T细胞受体介导的活化类似,但是不依赖于TCR克隆的特异性。绝大多数抗CD3抗体识别CD3ε链。本发明的特异性识别T细胞表面受体CD3的第二功能域不受具体的限制,只要其能够特异性地识别CD3,例如但不限于在下列专利中提到的CD3抗体:US7,994,289,US6,750,325;US6,706,265;US5,968,509;US8,076,459;US7,728,114;US20100183615。优选地,本发明中使用的抗人CD3抗体与食蟹猴和/或恒河猴具有交叉反应性,例如但不限于下列专利中提到的抗人CD3抗体:WO 2016130726,US 20050176028,WO 2007042261或WO 2008119565。该术语还包括任何CD3变体、同工型、衍生物和物种同源物,其由细胞天然地表达,或在以编码前述的链的基因或cDNA转染的细胞上表达。
术语“超变区”或“CDR区”或“互补决定区”是指负责抗原结合的抗体氨基酸残基,是非连续的氨基酸序列。CDR区序列可以由IMGT、Kabat、Chothia和AbM方法来定义或本领域熟知的任何CDR区序列确定方法而鉴定的可变区内的氨基酸残基。例如,超变区包含以下氨基酸残基:来自序列比对所界定的“互补决定区”或“CDR”的氨基酸残基,例如,轻链可变结构域的24-34(L1)、50-56(L2)和89-97(L3)位残基和重链可变结构域的31-35(H1)、50-65(H2)和95-102(H3)位残基,参见Kabat等,1991,Sequences of Proteins of Immunological Interest(免疫目的物的蛋白质序列),第5版,Public Health Service,National Institutes of Health,Bethesda,Md.;和/或来自根据结构来界定的“超变环”(HVL)的残基,例如,轻链可变结构域的26-32(L1)、50-52(L2)和91-96(L3)位残基和重链可变结构域的26-32(H1)、53-55(H2)和96-101(H3)位残基,参见Chothia和Leskl,J.Mol.Biol.,196:901-917,1987。“构架”残基或“FR”残基为除本文定义的超变区残基之外的可变结构域残基。在某些实施方案中,本发明的抗体或其抗原结合片段含有的CDR优选地通过Kabat、Chothia或IMGT编号系统确定。本领域技术人员可以明确地将每种系统赋予任何可变结构域序列,而不依赖于超出序列本身之外的任何实验数据。例如,给定抗体的Kabat残基编号方式可通过将抗体序列与每种“标准”编号序列对比同源区来确定。基于本文提供的序列的编号,确定序列表中任何可变区序列的编号方案完全在本领域技术人员的常规技术范围内。
术语“单链Fv抗体”(或“scFv抗体”)是指包含抗体的VH和VL结构域的抗体片段,是通过接头(linker)连接的重链可变区(VH)和轻链可变区(VL)的重组蛋白,接头使得这两个结构域相交联以形成抗原结合位点,接头序列一般由柔性肽组成,例如但不限于G 2(GGGGS) 3。scFv的大小一般是一个完整抗体的1/6。单链抗体优选是由一个核苷酸链编码的一条氨基酸链序列。对于scFv综述,可参见Pluckthun(1994)The Pharmacology of Monoclonal Antibodies(单克隆抗体药理学),第113卷,Rosenburg和Moore主编,Springer-Verlag,New York,第269-315页。还参见国际专利申请公开号WO 88/01649和美国专利第4,946,778号和第5,260,203号。
术语“Fab片段”由一条轻链和一条重链的CH1及可变区组成。Fab分子的重链不能与另一个重链分子形成二硫键。“Fab抗体”的大小是完整抗体的1/3,其只包含一个抗原结合位点。
术语“Fab’片段”含有一条轻链和一条重链的VH结构域和CH1结构域以及CH1和CH2结构域之间的恒定区部分。
术语“F(ab’)2片段”含有两条轻链和两条重链的VH结构域和CH1结构域以及CH1和CH2结构域之间的恒定区部分,由此在两条重链间形成链间二硫键。因此,F(ab′)2片段由通过两条重链间的二硫键保持在一起的两个Fab′片段组成。
术语“Fc”区指抗体重链恒定区片段,其包含至少铰链区、CH2和CH3结构域。
术语“Fv区”包含来自重链和轻链二者的可变区,但缺少恒定区,是包含完整抗原识别和结合位点的最小片段。
术语“抗体片段”或“抗原结合片段”是指保留与抗原(如,Her2)特异性结合能力的抗体的抗原结合片段及抗体类似物,其通常包括至少部分母体抗体(Parental Antibody)的抗原结合区或可变区。抗体片段保留母体抗体的至少某些结合特异性。通常,当用摩尔来表示活性时,抗体片段保留至少10%的母体结合活性。优选地,抗体片段保留至少20%、50%、70%、80%、90%、95%或100%的母体抗体对靶标的结合亲和力。抗体片段包括但不限于:Fab片段、Fab’片段、F(ab’)2片段、Fv片段、Fd片段、互补决定区(CDR)片段、二硫键稳定性蛋白(dsFv)等;线性抗体(Linear Antibody)、单链抗体(例如scFv单抗体)(技术来自Genmab)、二价单链抗体、单链噬菌体抗体、单域抗体(Single Domain Antibody)(例如VH结构域抗体)、结构域抗体(技术来自AbIynx);由抗体片段形成的多特异性抗体(例如三链抗体、四链抗体等);和工程改造抗体如嵌合抗体(Chimeric Antibody)(例如人源化鼠抗体)、异缀合抗体(Heteroconjugate Antibody)等。这些抗体片段用本领域技术人员已知的常规技术获得,并用与完整抗体相同的方法对这些片段的实用性进行筛选。
术语“连接肽”是指连接两个多肽的肽,其中所述连接肽可以是两个免疫球蛋白可变区或一个可变区。连接肽的长度可以是0-30个氨基酸或0-40个氨基酸。在一些实施方案中,连接肽可以是0-25、0-20或0-18个氨基酸长度。在一些实施方案中,连接肽可以是不多于14、13、12、11、10、9、8、7、6或5个氨基酸长的肽。在其它实施方案中,连接肽可以是0-25、5-15、10-20、15-20、20-30或30-40个氨基酸长。在其它实施方案中,连接肽可以是约0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29或30个氨基酸长。连接肽是本领域技术人员已知的。连接肽的制备可以采用本领域任何方法。例如,连接肽可以是合成来源的。
术语“重链恒定区”包括来自免疫球蛋白重链的氨基酸序列。包含重链恒定区的多肽至少包含以下一种:CH1结构域,铰链(例如,上部铰链区、中间铰链区,和/或下部铰链区)结构域,CH2结构域,CH3结构域,或其变体或片段。例如,本申请中使用的抗原结合多肽可包含具有CH1结构域的多肽链;具有CH1结构域、至少一部分的铰链结构域和CH2结构域的多肽;具有CH1结构域和CH3结构域的多肽链;具有CH1结构域、至少一部分铰链结构域和CH3结构域的多肽链,或者具有CH1结构域,至少一部分铰链结构,CH2结构域,和CH3结构域的多肽链。在另一个实施例中,本申请的多肽包括具有CH3结构域的多肽链。另外,在本申请中使用的抗体可能缺少至少一部分CH2结构域(例如,所有的或一部分的CH2结构域)。如上文所述,但本技术领域的普通技术人员应理解,重链恒定区可能会被修改,使得它们在氨基酸序列上与天然存在的免疫球蛋白分子不同。
术语“轻链恒定区”包括来自抗体轻链的氨基酸序列。优选地,所述轻链恒定区包括恒定kappa结构域 和恒定lambda结构域中的至少一个。
术语“VH结构域”包括免疫球蛋白重链的氨基末端可变结构域,而术语“CH1结构域”包括免疫球蛋白重链的第一(多数为氨基末端)恒定区。CH1结构域邻近VH结构域并且是免疫球蛋白重链分子的铰链区的氨基末端。
“结合”定义抗原上的特定表位与其对应抗体之间的亲和性相互作用,一般也理解为“特异性识别”。“特异性识别”的意思是本发明的双特异性抗体不与或基本上不与目标抗原以外的任意多肽交叉反应。和特异性的程度可以通过免疫学技术来判断,包括但不限于免疫印迹,免疫亲和层析,流式细胞分析等。在本发明中,特异性识别优选通过流式细胞技术来确定,而具体情况下特异性识别的标准可由本领域一般技术人员根据其掌握的本领域常识来判断。
术语“体内半衰期”指目的多肽在给定动物的循环中的生物半衰期,并表示为在动物中从循环和/或其他组织清除存在于该动物循环中的量的一半所需的时间。
术语“同一性”用于指两个多肽之间或两个核酸之间序列的匹配情况。当两个进行比较的序列中的某个位置都被相同的碱基或氨基酸单体亚单元占据时(例如,两个DNA分子的每一个中的某个位置都被腺嘌呤占据,或两个多肽的每一个中的某个位置都被赖氨酸占据),那么各分子在该位置上是同一的。两个序列之间的“百分数同一性”是由这两个序列共有的匹配位置数目除以进行比较的位置数目×100的函数。例如,如果两个序列的10个位置中有6个匹配,那么这两个序列具有60%的同一性。例如,DNA序列CTGACT和CAGGTT共有50%的同一性(总共6个位置中有3个位置匹配)。通常,在将两个序列比对以产生最大同一性时进行比较。这样的比对可通过使用,例如,可通过计算机程序例如Align程序(DNAstar,Inc.)方便地进行的Needleman等人(1970)J.Mol.Biol.,48:443-453的方法来实现。还可使用已整合入ALIGN程序(版本2.0)的E.Meyers和W.Miller(Comput.Appl Biosci.,4:11-17(1988))的算法,使用PAM120权重残基表(weight residue table)、12的缺口长度罚分和4的缺口罚分来测定两个氨基酸序列之间的百分数同一性。此外,可使用已整合入GCG软件包(可在www.gcg.com上获得)的GAP程序中的Needleman和Wunsch(J.MoI.Biol.,48:444-453(1970))算法,使用Blossum 62矩阵或PAM250矩阵以及16、14、12、10、8、6或4的缺口权重(gap weight)和1、2、3、4、5或6的长度权重来测定两个氨基酸序列之间的百分数同一性。
术语“Fc区”或“Fc片段”是指免疫球蛋白重链的C端区,其含有铰链区的至少一部分、CH2结构域和CH3结构域,其介导免疫球蛋白与宿主组织或因子的结合,包括与位于免疫系统的各种细胞(例如,效应细胞)上的Fc受体结合或与经典补体系统的第一组分(C1q)结合,包括天然序列Fc区和变异Fc区。
通常,人IgG重链Fc区为自其Cys226或Pro230位置的氨基酸残基至羧基末端的区段,但其边界可能有变化。Fc区的C-末端赖氨酸(残基447,依照EU编号系统)可以存在或可以不存在。Fc还可以指隔离的这一区域,或在包含Fc的蛋白多肽的情况下,例如“包含Fc区的结合蛋白”,还称为“Fc融合蛋白”(例如,抗体或免疫粘合素)。本发明的抗体中天然序列Fc区包括哺乳动物(例如人)IgG1、IgG2(IgG2A,IgG2B)、IgG3和IgG4。在人IgG1Fc区中,至少两个等位基因类型是已知的。在某些实施方案中,相对于哺乳动物Fc多肽氨基酸序列的序列,两条Fc多肽链的氨基酸序列中每100个氨基酸中具有10个左右氨基酸的单一 氨基酸的置换、插入和/或缺失。在一些实施方案中,上述不同可以是延长半衰期的Fc改变、增加FcRn结合的改变、抑制Fcγ受体(FcγR)结合的改变和/或降低或去除ADCC和CDC的改变。
术语“Fc受体”或“FcR”指结合免疫球蛋白Fc区的受体。FcR可以是天然序列人FcR,也可以是结合IgG抗体的FcR(γ受体),以及这些受体的等位基因变体和可变剪接形式。FcγR家族由三种活化受体(小鼠中的FcγRI,FcγRIII和FcγRIV;人类中的FcγRIA,FcγRIIA和FcγRIIIA)和一种抑制性受体(FcγRIIb或等同的FcγRIIB)组成。FcγRII受体包括FcγRIIA(“活化受体”)和FcγRIIB(“抑制受体”),它们具有相似的氨基酸序列。FcγRIIA的胞质结构域中包含免疫受体基于酪氨酸的活化基序(ITAM)。FcγRIIB的胞质结构域中包含免疫受体基于酪氨酸的抑制基序(ITIM)(参见M.Annu.Rev.Immunol.,15:203-234(1997))。大多数天然效应细胞类型共表达一种或多种活化FcγR和抑制性FcγRIIb,而NK细胞选择性表达一种活化性Fc受体(小鼠中的FcγRIII和人中的FcγRIIIA),但小鼠和人中不表达抑制性FcγRIIb。人类IgG1与大多数人类Fc受体结合,在其结合的活化性Fc受体的类型方面被认为等同于鼠类IgG2a。术语“FcR”在本文中涵盖其它FcR,包括那些未来将会鉴定的。测量对FcRn的结合的方法是已知的(参见例如Ghetie V等,Immunol Today,18:592-8,1997);Ghetie V等,Nature Biotechnology,15:637-40,1997))。可测定人FcRn高亲和力结合多肽与FcRn的体内结合和血清半衰期,例如在表达人FcRn的转基因小鼠或经转染的人细胞系中。术语“Fc受体”或“FcR”还包括新生儿受体FcRn,它负责将母体IgG转移给胎儿(Guyer RL等,J.Immunol.,117:587,1976)和(Kim YJ等,J.Immunol.,24:249,1994))。
术语“人源化抗体”是指经基因工程改造的非人源抗体,其氨基酸序列经修饰以提高与人源抗体的序列的同源性。非人抗体的CDR域外的大部分或全部氨基酸,例如小鼠抗体被来自人免疫球蛋白的相应氨基酸置换,而一个或多个CDR区内的大部分或全部氨基酸未改变。小分子氨基酸的添加,删除,插入,替换或修饰是允许的,只要它们不会消除抗体结合特定抗原的能力。“人源化”抗体保留与原始抗体类似的抗原特异性。CDR的来源没有特别限制,可来源于任何动物。例如,可以利用源于小鼠抗体、大鼠抗体、兔抗体或非人灵长类动物(例如,食蟹猴)抗体。可用于本公开的人类框架的实例是KOL、NEWM、REI、EU、TUR、TEI、LAY和POM(Kabat等人,同上)。例如,KOL和NEWM可以用于重链,REI可以用于轻链和EU、LAY和POM可以用于重链和轻链二者。或者,可以使用人种系序列;这些可在以下网址获得:http://www2.mrc-lmb.cam.ac.uk/vbase/list2.php。在本公开的人源化抗体分子中,受体重链和轻链不一定需要衍生自相同的抗体,并且如果需要,可以包含具有衍生自不同链的框架区的复合链。
术语“细胞因子”一般指由一种细胞群体释放的,作为细胞间介质对另一细胞起作用或者对生成该蛋白质的细胞具有自分泌影响的蛋白质。此类细胞因子的例子包括淋巴因子,单核因子;白介素(“IL”),例如IL-2,IL-6,IL-17A-F;肿瘤坏死因子,例如TNF-α或TNF-β;和其它多肽因子,例如白血病抑制因子(“LIF”)。
术语“免疫结合”和“免疫结合性质”是指一种非共价相互作用,其发生在免疫球蛋白分子和抗原(对于该抗原而言免疫球蛋白为特异性的)之间。免疫结合相互作用的强度或亲和力可以相互作用的平衡解离常数(K D)表示,其中K D值越小,表示亲和力越高。所选多肽的免疫结合性质可使用本领域中公知的方法定量。一种方法涉及测量抗原结合位点/抗原复合物形成和解离的速度。“结合速率常数”(K a或K on)和“解 离速率常数”(K d或K off)两者都可通过浓度及缔合和解离的实际速率而计算得出。(参见Malmqvist M等,Nature,361:186-187,1993)。k d/k a的比率等于解离常数K D(通常参见Davies C等,Annual.Rev.Biochem.,59:439-473,1990)。可用任何有效的方法测量K D、k a和k d值。
术语“交叉反应”是指本文所述的抗体结合来自不同物种的肿瘤相关抗原的能力。例如,本文所述的结合人TAA的抗体还可结合来自其它物种的TAA(例如,食蟹猴TAA)。交叉反应性可通过检测在结合测定法(例如,SPR、ELISA)中与纯化抗原的特定反应性,或与生理表达TAA的细胞的结合或以其它方式与生理表达TAA的细胞功能相互作用来测量。本领域中已知测定结合亲和力的分析的实例包括表面等离子共振(例如,Biacore)或类似技术(例如,Kinexa或Octet)。
术语“EC 50”是指在使用抗体或其抗原结合片段进行的体外或体内测定中,诱导50%应答的抗体或其抗原结合片段的浓度的最大响应,即在最大响应和基线之间的一半。
“效应细胞”是指免疫系统的一种细胞,其表达一种或多种FcR并介导一种或多种效应器功能。优选地,该细胞表达至少一种类型的激活性Fc受体,例如人FcγRIII,并执行ADCC效应器功能。介导ADCC的人白细胞的实例包括外周血单个核细胞(PBMC)、NK细胞、单核细胞、巨噬细胞、中性粒细胞和嗜酸性粒细胞。效应细胞也包括例如T细胞。他们可以来源于包括但不限于人、小白鼠、大鼠、兔子和猴的任何生物体。
术语“效应子功能”是指,那些可归因于抗体Fc区(天然序列Fc区或氨基酸序列变体Fc区)的生物学活性,且其随抗体同种型而变化。抗体效应子功能的例子包括但不限于:Fc受体结合亲和性、ADCC、ADCP、CDC、细胞表面受体(例如B细胞受体)的下调、B细胞活化、细胞因子分泌、抗体和抗原-抗体复合物的半衰期/清除率等。改变抗体的效应子功能的方法是本领域已知的,例如通过在Fc区引入突变来完成。
术语“抗体依赖性细胞介导的细胞毒性(ADCC)”是指一种细胞毒性形式,Ig通过与细胞毒性细胞(例如NK细胞、中性粒细胞或巨噬细胞)上存在的FcR结合,使这些细胞毒性效应细胞特异性结合到抗原附着的靶细胞上,然后通过分泌细胞毒素杀死靶细胞。检测抗体的ADCC活性的方法是本领域已知的,例如可通过测定待测抗体与FcR(例如CD16a)之间的结合活性来评价。
术语“抗体依赖细胞介导的吞噬作用(ADCP)”指一种细胞介导的反应,在该反应中,表达FcγR的非特异性细胞毒活性细胞识别靶细胞上结合的抗体并随后引起该靶细胞的吞噬。
术语“补体依赖的细胞毒性(CDC)”是指通过使补体成分C1q与抗体Fc结合来激活补体级联的细胞毒性形式。检测抗体的CDC活性的方法是本领域已知的,例如可通过测定待测抗体与Fc受体(例如C1q)之间的结合活性来评价。
术语“药学上可接受的载体和/或赋形剂和/或稳定剂”,是指在药理学和/或生理学上与受试者和活性成分相容的载体和/或赋形剂/或稳定剂,它们在所采用的剂量和浓度对暴露于其的细胞或哺乳动物是无毒的。包括但不限于:pH调节剂,表面活性剂,佐剂,离子强度增强剂,稀释剂,维持渗透压的试剂,延迟吸收的试剂,防腐剂。例如,pH调节剂包括但不限于磷酸盐缓冲液。表面活性剂包括但不限于阳离子,阴离子或者非离子型表面活性剂,例如Tween-80。离子强度增强剂包括但不限于氯 化钠。防腐剂包括但不限于各种抗细菌试剂和抗真菌试剂,例如对羟苯甲酸酯,三氯叔丁醇,苯酚,山梨酸等。维持渗透压的试剂包括但不限于糖、NaCl及其类似物。延迟吸收的试剂包括但不限于单硬脂酸盐和明胶。稀释剂包括但不限于水,水性缓冲液(如缓冲盐水),醇和多元醇(如甘油)等。防腐剂包括但不限于各种抗细菌试剂和抗真菌试剂,例如硫柳汞,2-苯氧乙醇,对羟苯甲酸酯,三氯叔丁醇,苯酚,山梨酸等。稳定剂具有本领域技术人员通常理解的含义,其能够稳定药物中的活性成分的期望活性,包括但不限于谷氨酸钠,明胶,SPGA,糖类(如山梨醇,甘露醇,淀粉,蔗糖,乳糖,葡聚糖,或葡萄糖),氨基酸(如谷氨酸,甘氨酸),蛋白质(如干燥乳清,白蛋白或酪蛋白)或其降解产物(如乳白蛋白水解物)等。
术语“有效量”是指足以获得或至少部分获得期望的效果的量。例如,预防疾病(例如,肿瘤或感染)有效量是指,当单独使用或与另一种或多种治疗剂组合使用时,足以预防,阻止,或延迟疾病(例如,肿瘤或感染)的发生的量;治疗疾病有效量是指,当单独使用或与另一种或多种治疗剂组合使用时,足以治愈或至少部分阻止已患有疾病的患者的疾病和其并发症的量。测定这样的有效量完全在本领域技术人员的能力范围之内。例如,对于治疗用途有效的量将取决于待治疗的疾病的严重度、患者自己的免疫系统的总体状态、患者的一般情况例如年龄,体重和性别,药物的施用方式,以及同时施用的其他治疗等等。术语关于治疗的“有效”和“有效性”包括药理学有效性和生理学安全性二者。药理学有效性是指药物促进患者病症或症状消退的能力。生理学安全性是指由于药物施用导致的细胞、器官和/或生物体水平上的毒性或者其它不良生理效果(不良作用)的水平。
对受试者的“治疗”或“疗法”是指以逆转、减轻、改善、抑制、减缓或防止与疾病有关的症状、并发症、病症或生化指标的出现、进展、发展、严重程度或复发为目的对受试者进行任何类型的干预或处理,或者向其施用活性剂。
术语“T细胞受体(TCR)”是存在于T细胞即T淋巴细胞表面上的特殊受体。体内T细胞受体以几个蛋白质的复合物存在。T细胞受体通常具有两个单独的肽链,通常是T细胞受体α和β(TCRα和TCRβ)链,在一些T细胞上是T细胞受体γ和δ(TCRγ和TCRδ)。复合物中其他蛋白质是CD3蛋白质:CD3εγ和CD3εδ异源二聚体,最重要的是,有六个ITAM基序的CD3ζ同源二聚体。CD3ζ上的ITAM基序可以被Lck磷酸化,反过来募集ZAP-70。Lck和/或ZAP-70也可以在许多其他分子上磷酸化酪氨酸,尤其是CD28、LAT和SLP-76,这允许围绕这些蛋白质的信号传导复合物聚集。
术语“双特异性抗体”指本发明的双特异性抗体,例如抗Her2抗体或其抗原结合片段可以进行衍生化或连接至另一功能性分子上,例如另一种肽或蛋白质(例如TAA、细胞因子和细胞表面受体)以生成与至少两种不同结合位点或靶分子结合的双特异性分子。为创建本发明的双特异性分子,可以将本发明的抗体在功能上连接(例如通过化学偶联、基因融合、非共价结合或其它方式)至一种或多种其它结合分子,诸如另一种抗体、抗体片段、肽或结合模仿物,从而产生双特异性分子。例如,“双特异性抗体”是指包含两个可变结构域或scFv单位使得所得抗体识别两种不同抗原。本领域已知双特异性抗体的许多不同的形式和用途(Chames P等,Curr.Opin.Drug Disc.Dev.,12:.276,2009;Spiess C等,Mol.Immunol.,67:95-106,2015)。
术语“hCG-β羧基末端肽(CTP)”是一段来自人绒毛膜促性腺激素(hCG)的β-亚基羧基末端的短肽。 四种与生殖相关的多肽类激素促卵泡激素(FSH)、黄体生成素(LH)、促甲状腺素(TSH)和绒毛膜促性腺激素(hCG)含有相同的α-亚基和各自特异的β-亚基。与其它三种激素相比,hCG体内半衰期明显延长,这主要来源于其β-亚基上特有的羧基末端肽(CTP)。CTP含有37个氨基酸残基,它具有4个O-糖基化位点,糖侧链终端是唾液酸残基。带负电、高度唾液酸化的CTP能够抵抗肾脏对其的清除作用,从而延长蛋白在体内的半衰期(Fares FA等,Proc.Natl.Acad.Sci.USA,89:4304-4308,1992)。
术语“糖基化”意思是低聚糖(含有连接在一起的两个或更多个单糖、例如连接在一起的2个到约12个单糖的碳水化合物)附着形成糖蛋白。低聚糖侧链通常通过N-或O-连接连接到糖蛋白的骨架上。本文公开的抗体的低聚糖通常是连接到Fc区的CH2结构域,作为N-连接的低聚糖。“N-连接的糖基化”是指碳水化合物类部分连接到糖蛋白链的天冬酰胺残基上。例如,技术人员可以识别鼠IgG1、IgG2a、IgG2b和IgG3以及人IgG1、IgG2、IgG3、IgG4、IgA和IgD的CH2结构域中的每一个在残基297处有用于N-连接的糖基化的单一位点。
同源抗体
在又一方面,本发明抗体包含的重链和轻链可变区所包含的氨基酸序列与本文所述的优选抗体的氨基酸序列同源,且其中所述抗体保留了本发明所述,例如Her2×CD3双特异性抗体的期望的功能特性。
具有保守修饰的抗体
术语“保守修饰”意图指氨基酸修饰不会显著影响或改变含有该氨基酸序列的抗体的结合特征。此类保守修饰包括氨基酸的取代、添加和缺失。修饰可以通过本领域已知的标准技术,例如定点诱变和PCR介导的优点引入到本发明的抗体中。保守氨基酸取代指氨基酸残基用具有类似侧链的氨基酸残基替换。本领域中对具有类似侧链的氨基酸残基家族已有详细说明。这些家族包括具有碱性侧链(例如赖氨酸、精氨酸、组氨酸)、酸性侧链(例如天冬氨酸、谷氨酸)、不带电荷的极性侧链(例如甘氨酸、天冬酰胺、谷酰胺、丝氨酸、苏氨酸、酪氨酸、半胱氨酸、色氨酸)、非极性侧链(例如丙氨酸、缬氨酸、亮氨酸、异亮氨酸、脯氨酸、苯丙氨酸、甲硫氨酸)、β-分支侧链(例如苏氨酸、缬氨酸、异亮氨酸)和芳香侧链(例如酪氨酸、苯丙氨酸、色氨酸、组氨酸)的氨基酸。因此,可以用来自同一侧链家族的其它氨基酸残基替换本发明抗体CDR区中的一个或多个氨基酸残基。
与新生儿受体(FcRn)结合亲和力改变的Fc变体
这里使用的“FcRn”指结合IgG抗体Fc区的至少部分由FcRn基因编码的蛋白。FcRn可以来源于包括但不限于人、小白鼠、大鼠、兔子和猴的任何生物体。功能性FcRn蛋白包含经常被称为重链和轻链的两条多肽,轻链是β-2-微球蛋白,重链由FcRn基因编码。
本发明涉及对FcRn的结合被调节的抗体(调节包括增加以及降低结合)。例如:在有些情况下,增加的结合会导致细胞再循环抗体,并由此延长,例如治疗抗体的半衰期。有时,降低FcRn结合是合乎需要的,例如用作包含放射标记的诊断抗体或治疗抗体。另外,对FcRn的结合显示出增加,同时对其他Fc受体, 例如FcγRs的结合被改变的抗体可以用于本发明。
本申请涉及包含调节对FcRn的结合力的氨基酸修饰的抗体。具有特殊意义的是在较低的pH时,对FcRn的结合亲和力显示出增加,而在更高的pH时,结合基本上不显示出改变的最低限度地包含Fc区的抗体或其功能性变体。
与新生儿受体(FcRn)结合亲和力增强的Fc变体
IgG的血浆半衰期取决于它与FcRn的结合,一般在pH 6.0时结合,在pH 7.4(血浆pH)时解离。通过对两者结合位点的研究,改造IgG上与FcRn结合的位点,使之在pH 6.0时结合能力增加。已经证明对于结合FcRn重要的人Fcγ结构域的一些残基的突变可增加血清半衰期。已报道T250、M252、S254、T256、V308、E380、M428和N434(EU编号)中的突变可增加或降低FcRn结合亲和力(Roopenian DC等,Nat.Rev.Immunol.,7:715-725,2007)。韩国专利号KR 10-1027427公开了具有增加的FcRn结合亲和力的曲妥珠单抗(赫赛汀,Genentech)变体,并且这些变体包含选自257C、257M、257L、257N、257Y、279Q、279Y、308F和308Y的一个或更多个氨基酸修饰。韩国专利公开号KR 2010-0099179提供了贝伐单抗(阿瓦斯汀,Genentech)变体并且这些变体通过包含在N434S、M252Y/M428L、M252Y/N434S和M428L/N434S的氨基酸修饰显示增加的体内半衰期。此外,Hinton等也发现T250Q和M428L2个突变体分别使与FcRn的结合增加3和7倍。同时突变2个位点,则结合增加28倍。在恒河猴体内,M428L或T250QM/428L突变体显示血浆半衰期增加2倍(Hinton PR等,J.Immunol.,176:346-356,2006)。更多的与新生儿受体(FcRn)结合亲和力增强的Fc变体所包含突变位点可以参见中国发明专利CN 201280066663.2。此外,有研究对五种人源化抗体的Fc段进行T250Q/M428L突变不仅改善了Fc与FcRn的相互作用,且在随后的体内药代动力学试验中,发现以皮下注射给药,Fc突变抗体与野生型抗体相比药代动力学参数有所改善,如体内暴露量增加、清除率降低、皮下生物利用度提高(Datta-Mannan A等,MAbs.Taylor&Francis,4:267-273,2012)。
其他可引起本发明抗体与FcRn亲和力增强的突变点包括但不限于以下氨基酸修饰:226,227,230,233,239,241,243,246,259,264,265,267,269,270,276,284,285,288,289,290,291,292,294,298,299,301,302,303,305,307,309,311,315,317,320,322,325,327,330,332,334,335,338,340,342,343,345,347,350,352,354,355,356,359,360,361,362,369,370,371,375,378,382,383,384,385,386,387,389,390,392,393,394,395,396,397,398,399,400,401,403,404,408,411,412,414,415,416,418,419,420,421,422,424,426,433,438,439,440,443,444,445,446,其中Fc区中氨基酸的编号是Kabat中的EU索引的编号。
与FcRn结合亲和力增强的Fc变体还包括其他一切公知的氨基酸修饰位点以及尚未被发现的氨基酸修饰位点。
在可选择的实施方式中,可以优化IgG变体使其具有增加或降低的FcRn亲和力,以及增加或降低的人FcγR,包括但不限于FcγRI、FcγRIIa、FcγRIIb、FcγRIIc、FcγRIIIa和包括他们的等位基因变异的FcγRIIIb亲和力。
优先地,IgG变体的Fc配体特异性将决定它的治疗应用。给定IgG变体用于治疗目的将取决于靶抗原的表位或形式,以及待治疗的疾病或适应症。对大多数靶和适应症来说,增强的FcRn结合可是更优选的, 因为增强的FcRn结合可以导致血清半衰期延长。较长的血清半衰期允许治疗时以较低的频率和剂量给药。为了使需要重复给药的适应症作出反应而施用该治疗剂时,这种特性可是特别优选的。对一些靶和适应症来说,当需要变体Fc具有增加的清除或降低的血清半衰期时,例如当Fc多肽用作显象剂或放射治疗剂时,降低的FcRn亲和力可是特别优选的。
可以通过现有技术的公知方法来评价该多肽对FcRn的亲和力。例如,本领域技术人员可以进行适当的ELISA测定。如实施例5.6中所阐述,适当的ELISA测定使得能够比较变体和亲本与FcRn的结合强度。在PH为7.0时,比较针对变体和亲本多肽检测到的特异性信号,如果变体的特异性信号比亲本多肽的特异性信号弱至少1.9倍,则它是本发明的优选的变体,更适于临床应用。
FcRn可以来自包括但不限于人类、小鼠、大鼠、兔和猴的任意生物。
抑制FcγR结合的改变
本文所述“抑制FcγR结合的改变”是指Fc多肽链中抑制FcγRIIA、FcγRIIB和/或FcγRIIIA的结合的一个或多个插入、缺失或置换,所述结合如通过例如基于的竞争结合实验(PerkinElmer,Waltham,MA)测定。这些改变可包含在作为双特异性抗体一部分的Fc多肽链中。更具体地,抑制Fcγ受体(FcγR)结合的改变包括L234A、L235A或抑制N297位糖基化的任意改变,包括在N297的任意置换。此外,连同抑制N297位糖基化的改变一起,通过建立另外的二硫桥来稳定二聚体Fc区的另外的改变也被预期。抑制FcγR结合的改变的进一步实例包括在一条Fc多肽链中的D265A改变和在另一条Fc多肽链中的A327Q改变。上述一些突变描述于,如Xu D等,Cellular Immunol.,200:16-26,2000中,其中描述上述突变及其活性评估的部分以引用的方式并入本文。以上是根据EU编号。
例如,本发明提供的双特异性抗体抑制FcγR结合的改变所包含的Fc片段对人FcγRs(FcγRI、FcγRIIa或FcγRIIIa)和C1q的至少一种显示出降低的亲和力,具有减少的效应细胞功能或补体功能。
其他抑制FcγR结合的改变包含公知技术及未来可能被发现的位点及其修饰。
FcγR可以来自包括但不限于人类、小鼠、大鼠、兔和猴的任意生物。
延长半衰期的Fc改变
本文所述“延长半衰期的Fc改变”是指与包含相同Fc多肽、但其不包含改变的相似Fc蛋白质的半衰期相比,Fc多肽链中延长包含改变的Fc多肽链的蛋白质的体内半衰期的改变。所述改变可包含在作为双特异性抗体一部分的Fc多肽链中。改变T250Q、M252Y、S254T和T256E(第250位的苏氨酸变为谷氨酰胺;第252位的甲硫氨酸变为酪氨酸;第254位的丝氨酸变为苏氨酸;和第256位的苏氨酸变为谷氨酸;根据EU编号进行编号)为延长半衰期的Fc改变并能联合、单独或任意组合使用。这些改变及其它一些改变详细描述于美国专利7,083,784中。美国专利7,083,784中描述这种改变的部分以引用的方式并入本文。
同样地,M428L和N434S为延长半衰期的Fc改变并能联合、单独或任意组合使用。这些改变及其它一些改变详细描述于美国专利申请公开文本2010/0234575和美国专利7,670,600中。美国专利申请公开文本2010/0234575和美国专利7,670,600中描述这种改变的部分以引用的方式并入本文。
此外,按照本文含义,在以下位点之一处的任何置换都可被认为是延长半衰期的Fc改变:250、251、252、259、307、308、332、378、380、428、430、434、436。这些改变中的每一个或者这些改变的组合可用于延长本文所述双特异性抗体的半衰期。其它可用于延长半衰期的改变详细描述于2012年12月17日提交的国际申请PCT/US2012/070146(公开号:WO 2013/096221)中。这一申请中描述上述改变的部分以引用的形式并入本文。
延长半衰期的Fc改变还包括包含公知技术及未来可能被发现的位点及其修饰。
Fc可以来自包括但不限于人类、小鼠、大鼠、兔和猴的任意生物。
制备双特异性抗体的方法
可采用本领域任何已知的方法制备本发明双特异性抗体。早期构建双特异性抗体的方法有化学交联法或杂合杂交瘤或四价体瘤法(例如,Staerz UD等,Nature,314:628-31,1985;Milstein C等,Nature,305:537-540,1983;Karpovsky B等,J.Exp.Med.,160:1686-1701,1984)。化学偶联法是将2个不同的单克隆抗体用化学偶联的方式连接在一起,制备出双特异性单克隆抗体。例如两种不同单克隆抗体的化学结合,或例如两个抗体片段如两个Fab片段的化学结合。杂合—杂交瘤法是通过细胞杂交法或者三元杂交瘤的方式产生双特异性单克隆抗体,这些细胞杂交瘤或者三元杂交瘤是通过建成的杂交瘤融合,或者建立的杂交瘤和从小鼠得到的淋巴细胞融合而得到的。虽然这些技术用于制造BiAb,但各种产生问题使得此类复合物难以使用,诸如产生含有抗原结合位点的不同组合的混合群体、蛋白质表现方面的困难、需要纯化目标BiAb、低产率、生产费用高等。
最近的方法利用经过基因工程改造的构建体,其能够产生单一BiAb的均质产物而无需彻底纯化以去除不需要的副产物。此类构建体包括串联scFv、二抗体、串联二抗体、双可变结构域抗体和使用诸如Ch1/Ck结构域或DNLTM的基元的异源二聚(Chames&Baty,Curr.Opin.Drug.Discov.Devel.,12:276-83,2009;Chames&Baty,mAbs,1:539-47)。相关纯化技术是公知的。
肿瘤表面抗原
术语“肿瘤表面抗原”指这样的抗原,它在或可以呈现在肿瘤细胞上或内部的表面上。一些癌细胞抗原也在一些正常细胞表面表达,这可以被称为肿瘤-相关抗原。当与正常细胞相比时,这些肿瘤-相关抗原可以在肿瘤细胞上过表达,或者由于与正常组织相比,肿瘤组织的结构较不紧密,所述抗原在肿瘤细胞中易与抗体结合。这些抗原可以只由肿瘤细胞呈现,而不由正常细胞呈现。肿瘤抗原也可以仅仅在肿瘤细胞上表达或可代表与正常细胞相比的肿瘤特异性突变。相应的抗原可以被称为肿瘤-特异性抗原。
“肿瘤相关抗原”可以在宿主中触发免疫反应,用于鉴定肿瘤细胞,并在癌症治疗中用作可能的候选。此抗原可能包括很好地躲避免疫系统的正常蛋白,通常以极少量产生的蛋白质,通常仅在某些发育阶段中产生的蛋白,或其结构由于突变被修改的蛋白。
大量的肿瘤抗原在本领域中是已知的,并且可以容易地确定通过筛选鉴定新的肿瘤抗原。肿瘤抗原的非限制性实例包括:α-胎蛋白(AFP)、α-辅肌动蛋白-4、A3、对A33抗体有特异性的抗原、ART-4、B7、Ba733、 BAGE、BrE3-抗原、CA125、CAMEL、CAP-1、碳酸酐酶IX、CASP-8/m、CCCL19、CCCL21、CD1、CD1a、CD2、CD3、CD4、CD5、CD8、CD11A、CD14、CD15、CD16、CD18、CD19、CD20、CD21、CD22、CD23、CD25、CD29、CD30、CD32b、CD33、CD37、CD38、CD40、CD40L、CD44、CD45、CD46、CD47、CD52、CD54、CD55、CD59、CD64、CD66a-e、CD67、CD70、CD70L、CD74、CD79a、CD80、CD83、CD95、CD123、CD126、CD132、CD133、CD138、CD147、CD154、CDC27、BCMA、CS1、DLL3、DLL4、EpCAM、FLT3、gpA33、GPC-3、Her2、MEGE-A3、NYESO1、CIX、GD2、GD3、GM2、CDK-4/m、CDKN2A、CTLA-4、CXCR4、CXCR7、CXCL12、HIF-1α、结肠特异性抗原p(CSAp)、CEA(CEACAM5)、CEACAM6、c-Met、DAM、EGFR、EGFRvIII、EGP-1(TROP-2)、EGP-2、ELF2-M、Ep-CAM、成纤维细胞生长因子(FGF)、Flt-1、Flt-3、叶酸盐结合蛋白、G250抗原、GAGE、gp100、GRO-β、HLA-DR、HM1.24、人绒毛膜促性腺激素(HCG)和其亚基、HER2/neu、HMGB-1、缺氧诱导因子(HIF-1)、HSP70-2M、HST-2、Ia、IGF-1R、IFN-γ、IFN-α、IFN-β、IFN-λ、IL-4R、IL-6R、IL-13R、IL-15R、IL-17R、IL-18R、IL-2、IL-6、IL-8、IL-12、IL-15、IL-17、IL-18、IL-23、IL-25、胰岛素样生长因子-1(IGF-1)、KC4-抗原、KS-1-抗原、KS1-4、Le-Y、LDR/FUT、巨噬细胞迁移抑制因子(MIF)、MAGE、MAGE-3、MART-1、MART-2、NY-ESO-1、TRAG-3、mCRP、MCP-1、MIP-1A、MIP-1B、MIF、MUC1、MUC2、MUC3、MUC4、MUC5ac、MUC13、MUC16、MUM-1/2、MUM-3、NCA66、NCA95、NCA90、PAM4抗原、胰腺癌粘蛋白、PD-1受体、胎盘生长因子、p53、PLAGL2、前列腺酸性磷酸酶、PSA、PRAME、PSMA、PlGF、ILGF、ILGF-1R、IL-6、IL-25、RS5、RANTES、T101、SAGE、S100、存活素、存活素-2B、TAC、TAG-72、腱生蛋白、TRAIL受体、TNF-α、Tn抗原、Thomson-Friedenreich抗原、肿瘤坏死抗原、VEGF、VEGFR2、VEGFR3、钙黏素(Cadherin)、整合素(Integrin)、间皮素(Mesothelin)、Claudin18、αVβ3、α5β1、ERBB3、IGF1R、EPHA3、TRAILR1、TRAILR2、RANKL、粘蛋白家族、FAP、肌腱蛋白(Tenascin)、ED-B纤连蛋白、WT-1、17-1A-抗原、补体因子C3、C3a、C3b、C5a、C5、血管生成标记物、bcl-2、bcl-6、Kras、致癌基因标记物以及致癌基因产物(参见,例如Sensi M等,Clin.Cancer Res.,12:5023-32,2006;Parmiani J等,J.Immunol.,178:1975-79,2007;Novellino L等,Cancer Immunol.Immunother.,54:187-207,2005)。优选地,本发明所述TAA为CD19、CD20、CD22、CD30、CD38、BCMA、CS1、EpCAM、CEA、Her2、EGFR、Mucin1、CA125、GPC-3和Mesothelin。
该术语还包括TAA的任何变体、同工型、衍生物和物种同源物,其由细胞-包括肿瘤细胞-天然地表达,或由以TAA基因或cDNA转染的细胞表达。
TAA可以来自包括但不限于人类、小鼠、大鼠、兔和猴的任意生物,优选来自人的TAA。
靶细胞和在靶细胞上表达的靶细胞蛋白
如上文所述,双特异性抗体可结合至效应细胞蛋白和靶细胞蛋白。例如,所述靶细胞蛋白可以在癌细胞、病原体感染的细胞或介导疾病(例如炎性、自身免疫性疾病)的细胞表面表达。在一些实施方案中,该靶细胞蛋白能在靶细胞表面高度表达,尽管高水平的表达不是必需的。在一些实施方案中,该靶细胞蛋白在靶细胞表面不表达或低表达。
当靶细胞为癌细胞时,如本文所述的同源二聚体的双特异性抗体可结合至如上文所述的癌细胞抗原。 癌细胞抗原可以是人蛋白或源自其它物种的蛋白。
在一些实施例中,所述靶细胞蛋白可以是在肿瘤细胞表面选择性表达或过表达或不表达的蛋白。
在一些实施例中,所述靶细胞蛋白可以是介导淋巴系统相关疾病的细胞表面的蛋白。
在其他方面,靶细胞可以是介导自身免疫性疾病或炎性疾病的细胞。例如,哮喘中的人嗜酸性粒细胞可以是靶细胞,在这种情况下,如含EGF样模体粘液样激素受体(EMR1)可作为靶细胞蛋白。可选地,在全身性红斑狼疮患者中过量人B细胞可作为靶细胞,在这种情况下,如CD19或CD20可作为靶细胞蛋白。在其它自身免疫性疾病中,过量人Th2T细胞可作为靶细胞,在这种情况下,如CCR4可作为靶细胞蛋白。同样地,靶细胞可以是介导如动脉粥样硬化、慢性阻塞性肺疾病(COPD)、肝硬化、硬皮病、肾移植纤维化、肾同种异体移植肾病或肺纤维化(包括特发性肺纤维化和/或独特型肺动脉高压)的纤维化细胞。对于所述纤维化病症,如成纤维细胞活化蛋白α(FAPα)可以是靶细胞蛋白。
在一些实施例中,靶细胞蛋白可以是在感染的细胞表面选择性地表达的蛋白。例如,在乙型肝炎病毒(HBV)或丙型肝炎病毒(HCV)感染的情况下,所述靶细胞蛋白可以是在感染的细胞表面表达的HBV或HCV的包膜蛋白。在其他实施方案中,所述靶细胞蛋白可以是由人免疫缺陷病毒(HIV)在HIV感染的细胞上编码的gp120。
在一些实施例中,靶细胞可以是介导感染及感染性相关疾病的细胞。
在一些实施例中,靶细胞可以是介导免疫缺陷相关疾病的细胞。
在一些实施例中,靶细胞可以是介导其他相关疾病的细胞,包括公知技术及未来可能发展的部分。
双特异性抗体可结合至来自小鼠、大鼠、兔、新世界猴和/或旧世界猴物种等的靶细胞蛋白。所述物种包括但不限于以下物种:小家鼠(Musmusculus);黑家鼠(Rattusrattus);褐家鼠(Rattusnorvegicus);食蟹猕猴,食蟹猴(Macacafascicularis);阿拉伯狒狒(hamadryasbaboon),埃及狒狒(Papiohamadryas);大狒狒(Guineababoon),几内亚狒狒(Papiopapio);橄榄狒狒(olivebaboon),东非狒狒(Papioanubis);黄狒狒(yellowbaboon),草原狒狒(Papiocynocephalus);南非大狒狒(Chacmababoon),豚尾狒狒(Papioursinus),普通狨(Callithrixjacchus),绒顶柽柳猴(SaguinusOedipus)和松鼠猴(Saimirisciureus)。
癌症
术语“癌症”是指以体内异常细胞的不受控生长为特征的一大类疾病。“癌症”包括良性和恶性癌症以及休眠肿瘤或微转移。癌症包括原发性恶性细胞或肿瘤(例如细胞未迁移至受试者体内原始恶性疾病或肿瘤部位以外的部位的肿瘤)和继发性恶性细胞或肿瘤(例如由转移产生的肿瘤,转移为恶性细胞或肿瘤细胞迁移至与原始肿瘤部位不同的次级部位)。癌症也包括血液学恶性肿瘤。“血液学恶性肿瘤”包括淋巴瘤,白血病,骨髓瘤或淋巴恶性肿瘤,以及脾癌和淋巴结肿瘤。
在优选的实施方案中,本发明双特异性抗体或编码本申请抗体的核酸或多核苷酸或免疫缀合物或药物组合物或组合疗法对癌症的治疗、预防或缓解是有用的。癌症的实例包括但不限于癌瘤、淋巴瘤、成胶质细胞瘤、黑素瘤、肉瘤和白血病、骨髓瘤或淋巴恶性疾病。此类癌症的更特定实例如下所述并且包括:鳞状细胞癌(例如上皮鳞状细胞癌)、尤因氏肉瘤、韦尔姆斯氏肿瘤、星形细胞瘤、肺癌(包括小细胞肺癌、 非小细胞肺癌、肺腺癌和肺鳞状癌)、腹膜癌、肝细胞癌、胃部癌或胃癌(包括胃肠癌)、胰腺癌、多形性成胶质细胞瘤、宫颈癌、卵巢癌、肝癌、膀胱癌、肝细胞瘤、肝细胞癌瘤、神经内分泌肿瘤、甲状腺髓样癌、甲状腺分化癌、乳癌、卵巢癌、结肠癌、直肠癌、子宫内膜癌或子宫癌、唾液腺癌、肾脏癌或肾癌、前列腺癌、阴门癌、肛门癌、阴茎癌以及头颈癌。
癌症或恶性病的其他实例包括但不限于:急性儿童成淋巴细胞性白血病、急性成淋巴细胞性白血病、急性淋巴细胞性白血病、急性骨髓性白血病、肾上腺皮质癌、成人(原发性)肝细胞癌、成人(原发性)肝癌、成人急性淋巴细胞性白血病、成人急性骨髓性白血病、成人霍奇金氏淋巴瘤、成人淋巴细胞性淋巴瘤、成人非霍奇金氏淋巴瘤、成人原发性肝癌、成人软组织肉瘤、AIDS相关性淋巴瘤、AIDS相关性恶性病、肛门癌、星形细胞瘤、胆管癌、膀胱癌、骨癌、脑干神经胶质瘤、脑瘤、乳腺癌、肾盂和输尿管癌、中枢神经系统(原发性)淋巴瘤、中枢神经系统淋巴瘤、小脑星形细胞瘤、大脑星形细胞瘤、宫颈癌、儿童(原发性)肝细胞癌、儿童(原发性)肝癌、儿童急性成淋巴细胞性白血病、儿童急性骨髓性白血病、儿童脑干神经胶质瘤、儿童小脑星形细胞瘤、儿童大脑星形细胞瘤、儿童颅外胚细胞瘤、儿童霍奇金氏病、儿童霍奇金氏淋巴瘤、儿童下丘脑和视通路神经胶质瘤、儿童成淋巴细胞性白血病、儿童成神经管细胞瘤、儿童非霍奇金氏淋巴瘤、儿童松果体和幕上原始神经外胚层瘤、儿童原发性肝癌、儿童横纹肌肉瘤、儿童软组织肉瘤、儿童视通路和下丘脑神经胶质瘤、慢性淋巴细胞性白血病、慢性髓细胞性白血病、结肠癌、皮肤T细胞淋巴瘤、内分泌胰岛细胞癌、子宫内膜癌、室管膜瘤、上皮癌、食道癌、尤因氏肉瘤和相关肿瘤、外分泌胰腺癌、颅外胚细胞瘤、性腺外胚细胞瘤、肝外胆管癌、眼癌、女性乳腺癌、高歇氏病、胆囊癌、胃部癌、胃肠道良性肿瘤、胃肠道肿瘤、胚细胞瘤、妊娠性滋养层细胞瘤、毛细胞白血病、头颈癌、肝细胞癌、霍奇金氏淋巴瘤、高丙种球蛋白血症、下咽癌、肠癌、眼内黑素瘤、胰岛细胞癌、胰岛细胞胰腺癌、卡波济氏肉瘤、肾癌、喉癌、唇口腔癌、肝癌、肺癌、淋巴增生性病症、巨球蛋白血症、男性乳腺癌、恶性间皮瘤、恶性胸腺瘤、成神经管细胞瘤、黑素瘤、间皮瘤、转移性原发灶隐匿性鳞状颈癌、转移性原发性鳞状颈癌、转移性鳞状颈癌、多发性骨髓瘤、多发性骨髓瘤/浆细胞赘瘤、骨髓发育不良综合症、髓细胞性白血病、骨髓性白血病、骨髓增生性病症、鼻腔和副鼻窦癌、鼻咽癌、成神经细胞瘤、非霍奇金氏淋巴瘤、非黑素瘤皮肤癌、非小细胞肺癌、转移性原发灶隐匿性鳞状颈癌、口咽癌、骨肉瘤/恶性纤维肉瘤、骨肉瘤/恶性纤维组织细胞瘤、骨肉瘤/骨骼的恶性纤维组织细胞瘤、卵巢上皮癌、卵巢胚细胞瘤、卵巢低恶性潜能肿瘤、胰腺癌、病变蛋白血症、真性红细胞增多症、副甲状腺癌、阴茎癌、嗜铬细胞瘤、垂体肿瘤、原发性中枢神经系统淋巴瘤、原发性肝癌、前列腺癌、直肠癌、肾细胞癌、肾盂和输尿管癌、成视网膜细胞瘤、横纹肌肉瘤、唾液腺癌、肉状瘤病肉瘤、塞扎里综合症、皮肤癌、小细胞肺癌、小肠癌、软组织肉瘤、鳞状颈癌、胃癌、幕上原始神经外胚层和松果体瘤、T细胞淋巴瘤、睾丸癌、胸腺瘤、甲状腺癌、肾盂和输尿管的移行迁移细胞癌、移行迁移肾盂和输尿管癌、滋养层细胞瘤、输尿管和肾盂细胞癌、输尿管癌、子宫癌、子宫肉瘤、阴道癌、视通路和下丘脑神经胶质瘤、阴门癌、瓦尔登斯特伦巨球蛋白血症、韦尔姆斯氏瘤和位于以上所列出的器官系统中的除赘瘤以外任何其他过度增生性疾病。
组合疗法
本发明涵盖双特异性抗体或编码本申请抗体的核酸或多核苷酸或免疫缀合物或药物组合物可与一或多种活性治疗剂(例如化学治疗剂)或其他预防或治疗模式(例如,辐射)组合的用途。在此类组合疗法中,各种活性剂经常具有不同的互补作用机制,组合疗法可能导致协同效应。组合疗法包含影响免疫反应(例如增强或活化反应)之治疗剂及影响(例如抑制或杀死)肿瘤/癌细胞之治疗剂。组合疗法可降低抗药性癌细胞发生的可能性。组合疗法可允许试剂中的一或多种试剂剂量减少,以减少或消除与试剂中之一或多种相关的不良作用。此类组合疗法可对潜在疾病、病症或病状具有协同的治疗或预防作用。
“组合”包括可以分开施用的疗法,例如针对单独投药分开调配(例如,可以在套组中提供),及可以按单一调配物(亦即,“共调配物”)一起投与的疗法。在某些实施例中,本发明的双特异性抗体或编码本申请抗体的核酸或多核苷酸或免疫缀合物或药物组合物可依次序施用。在其他实施例中,双特异性抗体或编码本申请抗体的核酸或多核苷酸或免疫缀合物或药物组合物可同时施用。本发明的双特异性抗体或编码本申请抗体的核酸或多核苷酸或免疫缀合物或药物组合物可以与至少一种其他(活性)药剂以任何方式组合使用。
用本发明双特异性抗体治疗可以与可有效针对待治疗病症的其他治疗组合。本发明抗体组合治疗的非限制性实例包括手术、化疗、放疗、免疫疗法、基因疗法、DNA疗法、RNA疗法、纳米疗法、病毒疗法、辅助疗法。
组合疗法还包括其他一切公知技术中已有的以及未来可能发展的部分。
附图说明
图1-1.双特异性抗体AB7K、AB7K4、AB7K5、AB7K6、AB7K7和AB7K8的构型分别如a、b、c、d、e和f所示。
图1-2、显示了双特异性抗体AB7K7表达质粒图谱。该表达质粒全长9293bp,含有9个主要基因片断,包括1.hCMV启动子;2.目标基因;3.EMCV IRES;4.mDHFR筛选基因;5.Syn中止序列;6.SV40启动子;7.卡拉霉素抗性基因;8.SV40中止序列;9.PUC复制子。
图1-3、AB7K7纯化样品的SEC-HPLC检测结果。
图1-4、AB7K7纯化样品的SDS-PAGE电泳结果。
图1-5、AB7K7在25℃加速实验的SDS-PAGE结果。
图1-6、AB7K7在冻融实验的SDS-PAGE结果。
图2-1、FACS检测双特异性抗体AB7K和AB7K4与肿瘤细胞BT474结合的能力。
图2-2、FACS检测双特异性抗体AB7K和AB7K5与肿瘤细胞BT474结合的能力。
图2-3、FACS检测双特异性抗体AB7K和AB7K6与肿瘤细胞BT474结合的能力。
图2-4、FACS检测双特异性抗体AB7K和AB7K7与肿瘤细胞BT474结合的能力。
图2-5、FACS检测双特异性抗体AB7K8与肿瘤细胞BT474结合的能力。
图2-6、FACS检测双特异性抗体AB7K和AB7K4与效应细胞CIK结合的能力。
图2-7、FACS检测双特异性抗体AB7K和AB7K5与效应细胞CIK结合的能力。
图2-8、FACS检测双特异性抗体AB7K6与效应细胞CIK结合的能力。
图2-9、FACS检测双特异性抗体AB7K和AB7K7与效应细胞CIK结合的能力。
图2-10、FACS检测双特异性抗体AB7K8与效应细胞CIK结合的能力。
图2-11、FACS检测双特异性抗体AB7K与食蟹猴T细胞结合的能力。
图2-12、ELISA检测5种Anti-Her2×CD3双特异性抗体与CD3和Her2分子结合的能力。
图2-13、酶标仪检测5种Anti-Her2×CD3双特异性抗体活化报告基因细胞株Jurkat T细胞的能力。
图2-14、CTP连接肽与抗-CD3 scFv VH结构建模。
图2-15、GS连接肽与抗-CD3 scFv VH结构建模。
图2-16、抗-CD3 Fv与CD3 epsilon链的分子对接模型。
图3-1、双抗AB7K4和AB7K7在NCG小鼠皮下共接种人CIK细胞和HCC1954细胞的移植瘤模型中的体内抑瘤效果。
图3-2、双抗AB7K7在NPG小鼠皮下共接种人CIK细胞和人乳腺癌细胞HCC1954的移植瘤模型中的体内抑瘤效果。
图3-3、在不同给药频次下双抗AB7K7和AB7K8在NPG小鼠皮下共接种人CIK细胞和人乳腺癌细胞HCC1954的移植瘤模型中的体内抑瘤效果。
图3-4、双抗AB7K7在NPG小鼠皮下共接种人CIK细胞和SK-OV-3细胞的移植瘤模型中的体内抑瘤效果。
图3-5、双抗AB7K7在NPG小鼠皮下共接种人CIK细胞和HT-29细胞的移植瘤模型中的体内抑瘤效果。
图3-6、双抗AB7K7在CD34免疫重建的NPG小鼠皮下接种人乳腺癌HCC1954细胞的移植瘤模型中的体内抑瘤效果。
图3-7、双抗AB7K7在PBMC免疫重建的NPG小鼠接种人乳腺癌HCC1954细胞的小鼠移植瘤模型中的体内抑瘤效果。
图4-1、双抗AB7K4和AB7K7在NCG小鼠皮下共接种人CIK细胞和人Burkkit’s淋巴瘤Raji细胞的移植瘤模型中的抑瘤效果。
图4-2、双抗AB7K7在NPG小鼠皮下单独接种人乳腺癌HCC1954细胞的移植瘤模型中的抑瘤效果。
图4-3、正常食蟹猴多次给予双抗AB7K7和AB7K8的体重变化曲线。
图5-1、双抗AB7K7在SD大鼠中用两种ELISA方法检测时的药时曲线。
图5-2、双抗AB7K8在SD大鼠中用两种ELISA方法检测时的药时曲线。
图5-3、双抗AB7K7和AB7K8在食蟹猴体内的药时曲线。
图5-4、pH 6.0时双抗AB7K、AB7K5和AB7K7与FcRn结合能力测定。
图5-5、pH 7.0时双抗AB7K、AB7K5和AB7K7与FcRn结合能力测定。
图6-1、双抗AB9K在NOD-SCID小鼠皮下共接种人PBMC细胞和Huh-7细胞的移植瘤模型中的体内抑瘤效果。
图6-2、双抗AB9K在CD34免疫重建的NPG小鼠皮下接种人肝癌Huh-7细胞的移植瘤模型中的体内抑瘤效果。
图6-3、双抗AB9K在CD34免疫重建的NPG小鼠皮下接种人肝癌Huh-7细胞的移植瘤模型中的体内抑瘤效果。
图7-1、流式细胞检测双特异性抗体AB2K与CD20阳性肿瘤细胞结合的能力。
图7-2、双特异性抗体AB2K和AB7K7介导效应细胞杀伤Raji-luc细胞的能力。
图7-3、报告基因法检测双特异性抗体AB2K和AB7K7活化Jurkat NFATRE Luc细胞的能力。
图7-4、双抗AB2K在NPG小鼠皮下共接种人CIK细胞和人Burkkit’s淋巴瘤Raji细胞移植瘤模型中的体内抑瘤效果。
图7-5、双抗AB2K在NPG小鼠皮下共接种人CIK细胞和人Burkkit’s淋巴瘤Daudi细胞移植瘤模型中的体内抑瘤效果。
图8、正常食蟹猴多次给予双抗AB2K后的白细胞和淋巴细胞变化曲线。
图9-1、FACS检测Anti-CD19×CD3双特异性抗体与肿瘤细胞Raji结合的能力。
图9-2、FACS检测Anti-CD19×CD3双特异性抗体与效应细胞CIK结合的能力。
图9-3、FACS检测双特异性抗体AB1K2和AB23P10与食蟹猴T细胞结合的能力。
图9-4、ELISA检测4种Anti-CD19×CD3双特异性抗体与CD3和CD19分子结合的能力。
图9-5、酶标仪检测AB1K2和AB23P8双特异性抗体活化报告基因细胞株Jurkat T细胞的能力。
图9-6、酶标仪检测4种Anti-CD19×CD3双特异性抗体活化报告基因细胞株Jurkat T细胞的能力。
图10-1、AB11K与高表达Mucin1抗原的肿瘤细胞以及与人或食蟹猴原代T细胞的结合。
图10-2、AB11K介导扩增的T细胞杀伤肿瘤细胞的能力。
图10-3、AB11K介导PBMC杀伤肿瘤细胞的能力。
图10-4、AB11K特异性活化T细胞的能力。
图11、双抗AB8K在NPG小鼠皮下共接种人CIK细胞和人皮肤癌A431细胞移植瘤模型中的体内抑瘤效果。
具体实施方式
通过下列实施例进一步说明本发明,所述实施例不应解释为进一步限制。在此将整篇申请中引用的所有附图和所有参考文献、专利和已公开专利申请的内容明确收入本文作为参考。
实施例一、不同结构的Anti-Her2×CD3双特异性抗体的设计和制备
1.1、不同结构双特异性抗体的设计
为了筛选到适宜构型的双特异性抗体,我们针对Her2和CD3设计了六种不同构型的双特异性抗体,其中AB7K5、AB7K6和AB7K8为单链二价双特异性抗体,AB7K、AB7K4和AB7K7为双链四价双特异性抗体(参见图1-1),其中仅AB7K8不含Fc片段。具体地,上述四种构型的双特异性抗体的构型及其从N端至C端方向的组成及其氨基酸序列编号如表1-1所示。六种双特异性抗体的具体结构组成特性描述如下:
其中,双特异性抗体AB7K是由抗Her2的全长抗体的两条重链的C端通过连接肽(L1)各自连接一个抗CD3的scFv结构域所组成。AB7K包含的针对Her2的完整抗体的氨基酸序列参照单克隆抗体
Figure PCTCN2019114818-appb-000001
的序列(IMGT数据库INN 7637),其所包含的Fc片段来自人IgG1,且具有D356E/L358M突变(EU编号)。 其连接肽L1由柔性肽和刚性肽组成,且柔性肽组成为GS(GGGGS) 3,刚性肽为SSSSKAPPPSLPSPSRLPGPSDTPILPQ;其中抗CD3 scFv的VH和VL之间的连接肽L2的组成为(GGGGS) 3
其中,双特异性抗体AB7K4是由抗Her2的全长抗体的两条轻链的C端通过连接肽(L1)各自连接一个抗CD3的scFv结构域所组成。AB7K4包含的针对Her2的完整抗体的重链可变区氨基酸序列参照单克隆抗体
Figure PCTCN2019114818-appb-000002
的可变区序列,其轻链氨基酸序列参照单克隆抗体
Figure PCTCN2019114818-appb-000003
的轻链氨基酸序列(IMGT数据库INN 7637)。AB7K4重链包含的Fc片段来自人IgG1,且具有多个氨基酸的替换/取代,分别为L234A、L235A、T250Q、N297A、P331S和M428L(EU编号),同时还删除/缺失了Fc片段C末端的K447(EU编号)。其连接肽L1由柔性肽和刚性肽组成,且柔性肽组成为G 2(GGGGS) 3,刚性肽为SSSSKAPPPS;其中抗CD3 scFv的VH和VL之间的连接肽L2的组成为(GGGGS) 3
其中,双特异性抗体AB7K5是由抗-Her2 scFv、Fc片段、连接肽L2和抗-CD3 scFv依次串联组成,抗-Her2 scFv和抗-CD3 scFv内部VH和VL之间分别由连接肽L1和L3连接。AB7K5所包含的针对Her2的scFv的氨基酸序列参照单克隆抗体
Figure PCTCN2019114818-appb-000004
的可变区序列。AB7K5所包含的Fc片段来自人IgG1,且具有多个氨基酸的替换/取代,分别为C226S、C229S、L234A、L235A、T250Q、N297A、P331S、T366R、L368H、K409T和M428L(EU编号)。其中,C226S、C229S、T366R、L368H和K409T这5个位点的突变,可以防止Fc片段间发生聚合,从而促使其形成单链二价双特异性抗体;携带L234A/L235A/P331S突变的Fc片段去除了ADCC和CDC活性;携带T250Q/M428L突变可以增强Fc片段与受体FcRn的结合亲和力,从而延长其半衰期;N297A突变避免了抗体糖基化,且丧失对FcγRs的结合能力。另外,还删除/缺失了Fc片段C末端的K447(EU编号),消除了抗体的电荷异质性。其连接肽(L2)由柔性肽和刚性肽组成,且柔性肽均为G 2(GGGGS) 3,刚性肽为SSSSKAPPPS。而每个scFv内部的连接肽L1和L3的组成均为(GGGGS) 3
其中,双特异性抗体AB7K6是由抗-Her2 scFv、连接肽L2、抗-CD3 scFv和Fc片段依次串联组成,抗-Her2 scFv和抗-CD3 scFv内部VH和VL之间分别由连接肽L1和L3连接。AB7K6所包含的Fc片段来自人IgG1,且具有多个氨基酸的替换/取代,分别为C226S、C229S、L234A、L235A、T250Q、N297A、P331S、T366R、L368H、K409T和M428L(EU编号)。其中,C226S、C229S、T366R、L368H和K409T这5个位点的突变,可以防止Fc片段间发生聚合,从而促使其形成单链二价双特异性抗体;携带L234A/L235A/P331S突变的Fc片段去除了ADCC和CDC活性;携带T250Q/M428L突变可以增强Fc片段与受体FcRn的结合亲和力,从而延长其半衰期;N297A突变避免了抗体糖基化,且丧失对FcγRs的结合能力。另外,还删除/缺失了Fc片段C末端的K447(EU编号),消除了抗体的电荷异质性。其连接肽(L2)由柔性肽和刚性肽组成,且柔性肽均为G 2(GGGGS) 3,刚性肽为SSSSKAPPPS。而每个scFv内部的连接肽L1和L3的组成均为(GGGGS) 3
其中,双特异性抗体AB7K7是由抗-Her2 scFv、连接肽L2、抗-CD3 scFv和Fc片段依次串联组成,抗-Her2 scFv和抗-CD3 scFv内部VH和VL之间分别由连接肽L1和L3连接。AB7K7包含的针对Her2的scFv的氨基酸序列参照单克隆抗体
Figure PCTCN2019114818-appb-000005
的可变区序列。AB7K7所包含的Fc片段来自人IgG1,且具有多个氨基酸的替换/取代,分别为L234A、L235A、T250Q、N297A、P331S和M428L(EU编号),同时还删除/缺失了Fc片段C末端的K447(EU编号)。其连接肽(L2)由柔性肽和刚性肽组成,且柔性肽均为G 2(GGGGS) 3, 刚性肽为SSSSKAPPPS。而每个scFv内部的连接肽L1和L3的组成均为(GGGGS) 3
其中,双特异性抗体AB7K8是由抗-Her2 scFv、连接肽L2、抗-CD3 scFv和His标签依次串联组成,抗-Her2 scFv和抗-CD3 scFv内部VH和VL之间分别由连接肽L1和L3连接。AB7K8包含的针对Her2的scFv的氨基酸序列参照单克隆抗体
Figure PCTCN2019114818-appb-000006
的可变区序列。AB7K8在抗-CD3 scFv的C末端添加His标签,组成为HHHHHHHH,以便于抗体纯化。其连接肽(L2)由柔性肽和刚性肽组成,且柔性肽均为G 2(GGGGS) 3,刚性肽为SSSSKAPPPS。而每个scFv内部的连接肽L1和L3的组成均为(GGGGS) 3
上述六种双特异性抗体包含的抗CD3-scFv的VH和VL氨基酸序列分别如SEQ ID NO:247和SEQ ID NO:248所示,且VH和VL之间由(GGGGS) 3连接,该单克隆抗体(命名为CD3-3)特异性结合人类和食蟹猴CD3抗原,且与CD3具有微弱的结合亲和力。
表1-1:四种不同结构的针对Her2和CD3的双特异性抗体
Figure PCTCN2019114818-appb-000007
备注:表中Ln代表不同结构单元之间的连接肽,n是以从双特异性抗体从N端至C端不同结构单元间所包含的连接肽的排列顺序依次编号。
1.2、双特异性抗体分子表达载体的构建
按常规分子生物学方法合成上述五种双特异性抗体的编码基因,并将获得的融合基因的编码cDNA分别插入到经PCDNA3.1改造后的真核表达质粒pCMAB2M的相应酶切位点间,其中AB7K和AB7K4的重链和轻链可以构建到一个载体中,或者分别构建在两个不同的载体上。例如,AB7K7的表达质粒图谱见图1-2,该质粒含巨细胞病毒早期启动子,它是哺乳动物细胞高水平表达外源基因所需的增强子。质粒pCMAB2M还含有选择性标记物,从而在细菌中可以具有卡那霉素抗性,而在哺乳动物细胞中可以具有G418抗性。另外,当宿主细胞是DHFR基因表达缺陷型时,pCMAB2M表达载体含有小鼠的二氢叶酸还原酶(DHFR)基因,从而在存在氨甲蝶呤(MTX)时能共扩增目的基因和DHFR基因(参见美国专利US 4,399,216)。
1.3、双特异性抗体分子的表达
将上述构建的表达质粒转染哺乳动物宿主细胞系,以表达双特异性抗体。为了稳定高水平的表达,优选的宿主细胞系是DHFR酶缺陷型CHO-细胞(参见美国专利US 4,818,679),本实施例中宿主细胞选取CHO衍生细胞株DXB11。一种优选的转染方法是电穿孔,也可以使用其它方法,包括磷酸钙共沉降、脂转染。在电穿孔中,用设置为300V电场和1500μFd电容的Gene Pulser电穿孔仪(Bio-Rad Laboratories,Hercules,CA),在比色杯内的5×107个细胞中加入50μg表达载体质粒DNA。在转染两天后,将培养基改成含0.6mg/mL G418的生长培养基。用极限稀释亚克隆转染子,并用ELISA方法测定各细胞系的分泌率。筛选出高水平表达双特异性抗体的细胞株。
为了实现融合蛋白较高水平的表达,宜用受MTX药物抑制的DHFR基因进行共扩增。在含有递增浓度MTX的生长培养基中,用DHFR基因共扩增转染的融合蛋白基因。极限稀释DHFR表达阳性的亚克隆,逐步加压并筛选出能在高达6μM MTX培养基中生长的转染子,测定其分泌率,筛选出高表达外源蛋白的细胞系。将分泌率超过约5(较佳地约15)μg/106(即百万)个细胞/24h的细胞系使用无血清培养基的进行适应性悬浮培养。然后,收集细胞上清并分离纯化双特异性抗体。
下文分别对几种构型的双特异性抗体的纯化工艺、稳定性、体外和体内生物学功能、安全性及药代动力学等进行成药性评价,以筛选出适宜构型的双特异性抗体。
1.4、双特异性抗体的纯化工艺及稳定性试验
抗体纯化一般采用三步纯化策略:粗纯(样品捕获)、中间纯化和精细纯化。在粗纯阶段,通常利用亲和层析对目的抗体进行捕获,可有效去除样品中的大量杂质,如杂蛋白和核酸、内毒素和病毒。中间纯化步骤较多地采用疏水层析或CHT羟基磷灰石层析以去除大部分的残留的杂质蛋白以及聚合体。精细纯化多采用离子交换层析或凝胶过滤层析(分子筛)以去除与目的抗体性质相近的残留的少量或微量的杂质蛋白,并进一步去除HCP、DNA等污染物。
本发明可以利用金属鳌合亲和层析柱(例如GE公司的HisTrap FF等)对融合His-tag的双特异性抗体AB7K8的培养上清进行粗纯。可以利用Protein A/G亲和层析柱(例如GE公司的Mabselect SURE等)对包含Fc的双特异性抗体AB7K4、AB7K5、AB7K6、AB7K和AB7K7进行粗纯。上述粗纯产物再经过中间纯化及精细纯化步骤,最终获得高纯度、高质量的纯化目的抗体,然后利用脱盐柱(例如GE公司的HiTrap desaulting等)将上述双特异性抗体保存缓冲液置换为PBS或其它合适的缓冲液。
(a)双链四价双特异性抗体AB7K7的纯化
以AB7K7为例,阐明该类四价同源二聚体构型双特异性抗体的具体纯化步骤和方案。
我们采用三步层析法对双特异性抗体AB7K7进行纯化。分别为亲和层析、疏水层析和阴离子交换层析(本实施例采用的蛋白纯化仪为美国GE公司的AKTA pure 25M。本实施例中采用的试剂均购自国药集团化学试剂有限公司,纯度均为分析级)。
第一步,亲和层析:采用GE公司的MabSelect Sure亲和层析介质或其它市售的亲和介质(例如博格隆公司的Diamond protein A等)进行样品捕获、浓缩以及部分污染物的去除。首先使用平衡buffer(20mM PB,140mM NaCl,pH 7.4),以100-200cm/h的线性流速平衡层析柱3-5个柱体积(CV);将经过澄清后的发酵 液以100-200cm/h的线性流速上样,载量不高于20mg/m;上样完毕后,使用平衡buffer(20mM PB,140mM NaCl,pH 7.4)以100-200cm/h的线性流速平衡层析柱3-5个柱体积(CV),冲洗未结合的组份;使用去污buffer 1(50mM NaAc-HAc,1M NaCl,pH 5.0),以100-200cm/h的线性流速冲洗层析柱3-5个柱体积,去除部分污染物;使用去污buffer 2(50mM NaAc-HAc,pH 5.0),以100-200cm/h的线性流速平衡层析柱3-5个柱体积(CV);之后使用洗脱buffer(40mM NaAc-HAc,pH 3.5),以不高于100cm/h的线性流速洗脱目标产物,收集目标峰。
第二步,疏水层析:使用博格隆公司的Butyl HP或其它市售的疏水层析介质(例如GE的Butyl HP等)进行中间纯化,用于降低聚合体含量。目标蛋白聚合以后,聚合体和单体之间存在性质上的差异,包括电荷特性以及疏水性,我们使用疏水性的差异对二者进行分离。首先,使用平衡buffer(20mM PB,0.3M(NH4)2SO4,pH 7.0),以100-200cm/h的线性流速平衡层析柱3-5个柱体积(CV);第二步阴离子交换层析分离得到的目标蛋白用2M(NH4)2SO4溶液调电导40-50ms/cm,然后上样,载量控制在<20mg/ml;上样完毕后,使用平衡buffer(20mM PB,0.3M(NH4)2SO4,pH 7.0),以100-200cm/h的线性流速冲洗层析柱3-5个柱体积(CV);最后进行目标蛋白洗脱,使用洗脱buffer(20mM PB,pH 7.0),分别以40%、80%和100%洗脱buffer,以不高于100cm/h的线性流速洗脱3-5个柱体积(CV),对洗脱组分进行分段收集,分别送检SEC-HPLC。将单体百分比大于90%的目标组分合并进行下一步层析。
第三步,阴离子交换层析:使用博格隆公司的Q-HP或其它市售的阴离子交换层析介质(例如GE的QHP、TOSOH的Toyopearl GigaCap Q-650、天地人和的DEAE Beads 6FF,赛分科技的Generik MC-Q、Merck的Fractogel EMD TMAE、Pall的Q Ceramic HyperD F)进行精细纯化,分离结构变异体、进一步去除HCP、DNA等污染物。首先使用平衡buffer(20mM PB,pH 7.0),以100-200cm/h的线性流速冲洗层析柱3-5个柱体积(CV);经第二步疏水层析分离得到的目标蛋白上样,收集流穿,上样完毕,使用平衡buffer(20mM PB,pH 7.0),以100-200cm/h的线性流速冲洗层析柱3-5个柱体积(CV);对流穿组分进行分段收集,分别送样进行蛋白含量、SEC-HPLC和电泳检测。
样品的SEC-HPLC纯度结果及SDS-PAGE电泳结果分见图1-3和图1-4,其中SEC-HPLC结果显示,三步层析后双特异性抗体的主峰纯度达95%以上,SDS-PAGE电泳带型符合预期,非还原电泳(180KDa),还原后可得清晰的(90KDa)单链条带。
(b)单链二价双特异性抗体AB7K5和AB7K6的纯化
AB7K5以Protein A亲和层析和羟基磷灰石(CHT)层析对AB7K5进行纯化,经SEC-HPLC检测发现其纯度较低,且收率不高,还存在表达产量极低的问题。
另一单链二价双特异性抗体AB7K6同样存在工艺开发难度大的问题,AB7K6以Protein A亲和层析和分子筛层析Superdex 200进行两步纯化后,经SEC-HPLC检测后发现其纯度较难定量,主峰中有明显的“肩膀峰”;此外,其表达产量极低、且非常不稳定,在4℃冰箱中放置24h后,发现其SEC-HPLC结果中峰形变化,由两个峰变成一个主峰,根据出峰时间推测可能是它由单链转换成双链结构所致。综上可知,AB7K6目前的工艺开发难度较大,难以实现工艺放大和产业化。
综上,AB7K7相对于AB7K5和AB7K6,在工艺开发方面具有显著优势,具有产量高、纯化方法简单高效、下游工艺稳定等优点。我们还进一步考察了AB7K7在不同缓冲液体系、和不同储存条件下的理化稳定性。
c)双特异性抗体AB7K7稳定性试验
分别对AB7K7蛋白在柠檬酸盐(20mM柠檬酸盐、pH 5.5)和组氨酸盐缓冲体系(20mM组氨酸盐、pH 5.5)中的稳定性进行考察。将AB7K7蛋白在25℃的加速条件下贮存4周,对蛋白的稳定性进行评估。
将AB7K7蛋白分别换液至上述柠檬酸盐(F2)和组氨酸盐(F3)缓冲液中,调节浓度至0.5mg/mL,上述两种缓冲体系中均加入了8%蔗糖(w/v)和0.02%PS80(w/v)作为辅料。以0.22μm PES膜针式滤器过滤,分别分装至2mL的西林瓶中,每瓶0.8mL,分装完成后立即压塞轧盖。根据表1-2方案将样品放入不同的稳定性箱中,每个取样点取出样品进行检测分析,检测项目包括样品外观、浓度、SEC-HPLC检测样品纯度、HMW%和LMW%以及浊度测定(A340)。
表1-2:稳定性测试方案
Figure PCTCN2019114818-appb-000008
备注:X=外观、浓度、SEC-HPLC、SDS-PAGE(还原&非还原);Y=浊度(A340)
2种制剂配方在25℃贮存0~4周后的外观、浓度、浊度及SEC-HPLC检测结果见表1-3和表1-4,SDS-PAGE(还原/非还原)结果见图1-5。2个处方的外观、浓度结果均无明显变化;在SEC-HPLC结果中,F2和F3两个配方的SEC结果未发生明显变化,4周后纯度分别为97.9%和98.2%。SDS-PAGE(还原/非还原)结果与LMW%结果趋势基本一致,F2和F3变化较轻微。
为了解AB7K7蛋白在2种缓冲体系中的解折叠温度,通过DSF的方式检测了2种处方中的Tm(解折叠温度)与Tmonset(蛋白开始解折叠的温度),结果见表1-5。2个处方的Tmonset值均较低,F2和F3的Tmonset值均小于45℃。
表1-3:25℃加速实验外观、浓度、浊度结果
Figure PCTCN2019114818-appb-000009
*T0浊度检测样品为经历1轮冻融后样品
表1-4:25℃加速实验SEC-HPLC结果
Figure PCTCN2019114818-appb-000010
表1-5:DSF结果
  Tmonset(℃) Tm1(℃) Tm2(℃)
F2 42.0 46.0 60.5
F3 41.0 45.0 58.0
同时还进行3轮冻融实验,考察冻融(-70℃/室温,反复冻融3次)过程中AB7K7蛋白在上述2种缓冲体系中的稳定性情况,样品准备及测试方案同上。
样品外观、浓度、浊度和SEC-HPLC检测结果见表1-6,SDS-PAGE(还原/非还原)结果见图1-6。在SDS-PAGE(非还原)结果中,F2和F3两个处方经历3轮冻融后,各检项结果无明显变化。
表1-6:冻融实验外观、浓度、浊度与SEC-HPLC结果
Figure PCTCN2019114818-appb-000011
*T0浊度检测样品为经历1轮冻融后样品。
实施例二、Anti-Her2×CD3双特异性抗体的体外生物学功能评价
2.1、双特异性抗体与效应细胞和靶细胞结合活性的测定(FACS)
a)利用流式分析法检测双特异性抗体与Her2阳性肿瘤细胞BT-474的结合活性
培养Her2表达阳性的肿瘤细胞BT-474细胞(上海中国科学院细胞库),用0.25%胰酶消化,离心收集细胞。将收集的细胞用1%PBSB重悬,调整细胞密度为2×10 6个/ml,置于96孔板中,每孔100μl(2×10 5个细胞),4℃封闭0.5h。封闭后的细胞离心弃上清,加入稀释好的一系列浓度的双特异性抗体,4℃孵育1h;离心去上清,用1%BSA的PBS溶液(PBSB)洗3遍,加入稀释好的AF488标记的山羊抗人IgG抗体或鼠抗6×His IgG抗体,4℃避光孵育1h;离心去上清,1%PBSB洗两遍,每孔再用100μl 1%多聚甲醛(PF)重悬,流式细胞仪检测信号强度。再以平均荧光强度作为Y轴,抗体浓度作为X轴,通过软件GraphPad进行分析,计算双特异性抗体与肿瘤细胞BT-474结合的EC 50值。
结果显示,不同结构的双特异性抗体和Her2过表达肿瘤细胞均具有良好的结合活性。图2-1~图2-5展 示了不同结构的双特异性抗体和肿瘤细胞BT-474的结合曲线。根据表2-1所示,AB7K和AB7K4与肿瘤细胞结合的EC 50在5nM左右,AB7K7与肿瘤细胞结合的EC 50接近50nM,AB7K5和AB7K8与肿瘤细胞结合的EC 50为100nM,而AB7K6与肿瘤细胞结合的EC 50高达200nM以上。
表2-1:Anti-Her2×CD3双特异性抗体与肿瘤细胞BT474结合能力的测定
  AB7K AB7K4 AB7K5 AB7K6 AB7K7 AB7K8
EC 50(nM) 5.009 4.388 125.0 239.9 51.98 125.3
b)利用FACS检测双特异性抗体与人T细胞的结合活性
采用密度梯度离心法从人新鲜血液制备PBMC,用含10%热灭活FBS的1640培养基重悬,加入2μg/ml OKT3活化24h后,加入250IU/ml IL-2扩增培养7天,制备得到CIK细胞(Cytokine-Induced Killer cells),经流式细胞分析仪检测细胞表面CD3表达呈阳性。待测样品制备及测定方法同实施例2.1a)。将1%PF重悬的细胞上机检测,以平均荧光强度,通过软件OriginPro 8进行分析,计算各双特异性抗体与人CIK细胞结合的EC 50值。
结果显示各双特异性抗体与CIK细胞的结合存在较大差异(图2-6~图2-10)。如表2-2所示,AB7K的EC 50约20nM,AB7K4的结果与其相当,AB7K7与其相差6倍以上,AB7K5、AB7K6、AB7K8与其均相差10倍以上。
表2-2:Anti-Her2×CD3双特异性抗体与效应细胞CIK结合能力的测定
  AB7K AB7K4 AB7K5 AB7K6 AB7K7 AB7K8
EC 50(nM) 20.51 19.44 375.2 241.7 132.3 504.1
c)通过FACS检测双特异性抗体与食蟹猴CIK细胞膜表面CD3的交叉反应性
采用密度梯度离心法从食蟹猴新鲜血液制备PBMC,用含10%热灭活FBS的1640培养基重悬,加入2μg/ml OKT3活化24h后,加入250IU/ml IL-2扩增培养7天,得到食蟹猴CIK细胞备用。将人CIK细胞和食蟹猴CIK细胞离心收集,接下来的实验过程与上述实施例相同。将1%多聚甲醛溶液重悬的细胞上机检测,以平均荧光强度,通过软件OriginPro 8进行分析,计算双特异性抗体分别与人CIK细胞和食蟹猴CIK细胞结合的EC 50值。
如图2-11所示,双特异性抗体AB7K与食蟹猴T细胞也能很好的结合,并且其与食蟹猴T细胞结合的能力和人T细胞结合的能力大致相当,流式细胞仪检测其结合的EC 50大约在26nM。双特异性抗体AB7K4、AB7K5、AB7K6、AB7K7和AB7K8同AB7K一样可以与食蟹猴T细胞特异性结合。
2.2、双特异性抗体与抗原的结合能力测定
通过双抗原夹心ELISA法鉴定双特异性抗体与可溶CD3和Her2的结合。
将Her2蛋白(北京义翘神州,货号10004-H08H4)以PBS稀释成0.1μg/ml的浓度,加入96孔板中, 100μl/孔,4℃包被过夜。然后用1%脱脂奶粉室温封闭1h。同时稀释各双特异性抗体,4倍梯度稀释,共11个浓度梯度。然后用PBST清洗96孔板,加入稀释好的双特异性抗体,设不加抗体的对照孔,室温孵育1h。将未结合的双特异性抗体以PBST洗去,将生物素化的CD3E&CD3D(ACRO Biosystem,货号CDD-H82W1)以50ng/ml混合streptavdin HRP(BD,货号554066)加入96孔板中,100μl/孔,室温孵育1h。其后,将96孔板以PBST清洗,加入TMB,100μl/孔,室温显色15min,然后加入0.2M H 2SO 4终止显色反应。用酶标仪检测A450-620nm的吸光值。通过软件OriginPro 8进行分析,计算双特异性抗体与两个抗原结合的EC 50值。
结果显示各个双特异性抗体都能同时特异性地结合CD3和Her2分子,并且随抗体浓度的变化呈现良好的剂量依赖性(图2-12)。几种双特异性抗体与可溶CD3和Her2的结合能力如表2-3所示,其EC 50值从0.03nM至3.8nM,相差了两个数量级。其中,AB7K的结合活性最好,AB7K4和AB7K7与其相差一个数量级,AB7K5和AB7K8的结合活性最弱。
表2-3:Anti-Her2×CD3双特异性抗体与CD3和Her2分子结合能力的测定
  AB7K AB7K4 AB7K5 AB7K7 AB7K8
EC 50(nM) 0.03128 0.1518 1.004 0.1398 3.815
2.3、报告基因细胞株评价双特异性抗体活化T细胞的能力
含有NFAT RE报告基因的Jurkat T细胞(BPS Bioscience,货号60621),在双特异性抗体和靶细胞同时存在的情况下可以过表达萤光素酶,通过检测萤光素酶的活性来定量Jurkat T细胞的活化程度。以双特异性抗体的浓度做X轴,荧光素信号作为Y轴,拟合四参数曲线。
根据图2-13的实验结果表明,靶向Her2的单抗Herceptin并不能被活化Jurkat T细胞。只有当两个抗体都存在的情况下,T细胞才会被活化。各抗体活化Jurkat T细胞的能力显示在表2-4中,其中AB7K4活化T细胞的能力最强,AB7K8活化T细胞的能力最弱,其EC 50值相差一个数量级。
表2-4:Anti-Her2×CD3双特异性抗体活化报告基因细胞株Jurkat T细胞能力的测定
  AB7K AB7K4 AB7K5 AB7K7 AB7K8 Herceptin
EC 50(nM) 0.02263 0.01338 0.05357 0.08952 0.1575 0.009907
2.4、双特异性抗体介导T细胞杀伤肿瘤细胞的能力
正常培养的肿瘤细胞系,包括SK-BR-3、MCF-7、HCC1937、NCI-N87、HCC1954细胞(均购自上海中科院细胞库)作为靶细胞,用0.25%的胰酶消化,制备单细胞悬液,调整细胞密度2×10 5个/ml,加入96孔细胞培养板中,100μl/孔,培养过夜。按实验设计稀释相应抗体,50μl/孔,无需加入抗体的孔则用相同体积的培养基补入。然后加入5倍于靶细胞数的效应细胞(人PBMC或者扩增培养的CIK细胞),100μl/孔,设置对照孔,无需加入效应细胞的孔则用相同体积的培养基补入。培养48h后,96孔板弃上清,用PBS洗3遍,加入含10%CCK-8完全培养基,100μl/孔,37℃孵育4h,用酶标仪检测A450-620nm的吸光值。 通过软件OriginPro 8进行分析,计算并比较各双特异性抗体和同靶点单抗Herceptin介导杀伤肿瘤细胞的能力。
各双特异性抗体介导效应细胞杀伤肿瘤细胞的EC 50值归纳在表2-5中,结果显示各双特异性抗体对Her2高表达的肿瘤细胞(例如SK-BR-3、NCI-N87和HCC1954)均呈现非常显著的杀伤作用,并且呈剂量依赖性。各双特异性抗体(尤其是AB7K7)对于低表达Her2的乳腺癌细胞MCF-7也表现出较好的杀伤效果。对于Herceptin耐药的细胞株HCC1954,各双特异性抗体也具有很好的杀伤作用,而对于Her2表达阴性(极少量表达)的细胞株HCC1937,各双特异性抗体只有在最高的两个浓度下才表现出杀伤作用。
表2-5:双特异性抗体介导PBMC杀伤不同肿瘤细胞的EC 50
Figure PCTCN2019114818-appb-000012
备注:~表示约等于;-表示未进行检测。
2.5、采用计算机技术评估GS-CTP连接肽对抗-CD3 scFv与CD3分子结合能力的影响
采用计算机软件对含GS-CTP连接肽的抗-CD3 scFv VH进行结构建模,并对抗-CD3 scFv与其抗原CD3 epsilon链的分子对接进行空间构象进行模拟和预测。
位于双抗AB7K7中抗-Her2 scFv和抗-CD3 scFv之间的GS-CTP连接肽序列为(GGGGGGSGGGGSGGGGSSSSSKAPPPS),前半部分为GS柔性肽(GGGGGGSGGGGSGGGGS),后半部分为CTP刚性肽(SSSSKAPPPS)。刚性CTP部分(SSSSKAPPPS)与抗-CD3 scFv VH的N端相连。通过phyre2软件三维结构建模,结构上CTP肽段覆盖在抗-CD3 scFv VH的CDR1区上(图2-14),可能会阻碍或不利于CD3抗体与其抗原的结合。对与GS连接肽(去除了CTP,仅包含GS柔性肽)相连接的抗-CD3 scFv的VH用phyre2软件进行三维结构建模,发现GS连接肽远离CDR区(图2-15),并不会对抗原抗体结合造成影响。即使GS连接肽靠近CDR区,由于其自身的灵活性,可以自由移离抗原抗体结合区,因而也不会对抗原抗体结合产生影响。
进一步地,用Discovery Studio软件模拟抗-CD3 scFv及其抗原CD3 epsilon链的分子对接情况。由于双链抗-CD3 FV与抗-CD3 scFv的结构高度相似,采用双链抗-CD3 FV代替抗-CD3 scFv进行结构模拟。模拟结果显示抗原CD3 epsilon链与抗-CD3 Fv VH的CDR2和CDR3有结合,与CDR1区不结合(图2-16),似乎表明覆盖在其VH CDR1区的CTP不会干扰抗-CD3 scFv与抗原的结合。但考虑到CD3分子为一个复 合物,包括一个CD3 gamma链、一个CD3 delta链和2个CD3 epsilon链,该CD3分子与TCR及Zeta链一起构成了T细胞受体复合物。尽管覆盖在抗-CD3 scFv VH CDR1上的CTP肽段不会直接干扰抗-CD3 scFv与其抗原CD3 epsilon链的结合,但CTP肽段可能通过与T细胞受体复合物的某个组成蛋白进行空间结构上的接触,从而间接地影响到抗-CD3 scFv与其抗原CD3 epsilon链的结合。
由于覆盖在抗-CD3 scFv VH的CDR1区上CTP的存在,抗-CD3 scFv与其抗原结合亲和力被大大削弱,从而不会导致因T细胞被过度激活所致的细胞因子大量释放,避免了一些不必要的由T细胞介导的非特异性杀伤。
实施例三、Anti-Her2×CD3双特异性抗体在小鼠移植瘤模型中的药效学研究
3.1、NCG小鼠皮下共接种人CIK细胞和人乳腺癌HCC1954细胞移植瘤模型
选取Her2表达阳性的人乳腺癌HCC1954细胞,观察双抗在NCG小鼠皮下共接种人CIK细胞和HCC1954细胞的移植瘤模型中的体内抑瘤效果。
取正常人外周血,用密度梯度离心法(Lymphoprep TM,人淋巴细胞分离液,STEMCELL)分离人PBMC细胞,然后用RPMI-1640培养液加入10%已灭活的FBS重悬,并且加入终浓度为1μg/ml的OKT3和250IU/ml的人IL-2;培养第三天后,300g离心5min后换液,用RPMI-1640加入10%已灭活FBS培养细胞,同时加入250IU/ml人IL-2;之后每2天添加新鲜的培养液,培养到第10天,收集CIK细胞。选取七至八周龄的雌性NCG小鼠(购自江苏集萃药康生物科技有限公司),收集处于对数生长期的HCC1954细胞(ATCC),将5×10 6个HCC1954细胞和5×10 5个CIK细胞混合,接种于NCG小鼠右侧背部皮下。1h后,小鼠按体重随机分为7组,每组5只,分别腹腔给予相应药物,阳性对照组和PBS对照组均为每周给药两次,共给药3次,阳性对照组分别给予剂量为1mg/kg和3mg/kg的Herceptin(赫赛汀,罗氏),PBS对照组给予相同体积的PBS溶液。给药组每天给予双抗AB7K4和AB7K7,给药剂量分别为0.1mg/kg和1mg/kg,共给药10次。给药当天记为第0天,每周用电子游标卡尺测量两次肿瘤的最大直径(D)和最小直径(d),使用以下公式计算肿瘤体积(mm 3)=[D×d 2]/2,并根据公式计算各给药组的肿瘤生长抑制率TGI(%)=(1-给药组体积/对照组体积)×100%。
如图3-1所示,在给药后第33天,PBS对照组平均肿瘤体积为1494.61±500.28mm 3;1mg/kg Herceptin给药组的平均肿瘤体积为1327.29±376.65mm 3;3mg/kg Herceptin给药组的平均肿瘤体积为510.49±106.07mm 3,TGI为65.84%,相对于PBS对照组无显著性差异。0.1mg/kg和1mg/kg AB7K4给药组的平均肿瘤体积分别为304.10±108.50mm 3和79.70±58.14mm 3,TGI分别为79.65%和94.67%,相对于PBS对照组均有显著性差异(P<0.05)。0.1mg/kg和1mg/kg AB7K7给药组的平均肿瘤体积分别为385.82±95.41mm 3和209.98±51.74mm 3,TGI分别为74.19%和85.95%,相对于PBS对照组均有显著性差异(P<0.05)。综上结果表明,不同剂量的双抗AB7K4和AB7K7均能在动物体内通过激活人类免疫细胞来抑制肿瘤细胞的生长,显示出良好的抗肿瘤效果;在同样1mg/kg的剂量下,双抗的抑瘤效果要明显优于单抗Herceptin。
3.2、NPG小鼠皮下共接种人CIK细胞和人乳腺癌HCC1954细胞移植瘤模型
选取Her2表达阳性的人乳腺癌HCC1954细胞,观察双抗对NPG小鼠皮下共接种人CIK细胞和人乳腺 癌细胞HCC1954的移植瘤模型中的体内抑瘤效果。
根据实施例3.1中的方法获得CIK细胞。选取七至八周龄的雌性NPG小鼠(购自北京维通达生物技术有限公司),收集处于对数生长期的HCC1954细胞(ATCC),将5×10 6个HCC1954细胞和5×10 5个CIK细胞混合,接种于NPG小鼠右侧背部皮下。待肿瘤生长6天后,小鼠按肿瘤体积和体重随机分为3组,每组6只,分别腹腔给予相应药物,具体的,AB7K7给药组的剂量分别为0.1mg/kg和1mg/kg,每周给药2次;对照组给予相同体积的PBS溶液。给药当天记为第0天,每周测量两次肿瘤的最大直径(D)和最小直径(d),并根据实施例3.1中的公式计算各组的肿瘤体积(mm 3)和各给药组的肿瘤生长抑制率TGI(%)。
如图3-2所示,在给药后第21天,PBS对照组平均肿瘤体积为821.73±201.82mm 3;0.1mg/kg的AB7K7给药组的平均肿瘤体积为435.60±51.04mm 3,TGI为50.83%,相对于对照组无显著性差异;1mg/kg的AB7K7给药组的平均肿瘤体积分别为40.98±12.64mm 3,TGI为95.37%,相对于对照组均有极显著性差异(P<0.01)。上述结果表明,在肿瘤生长到一定大小后再给予双抗AB7K7仍有良好的治疗效果,0.1mg/kg低剂量下有50%的抑瘤效果,而1mg/kg给药组6只小鼠中有4只小鼠肿瘤完全消退,另外2只的肿瘤体积也小于100mm 3,小于分组时的体积(分组时该组的平均肿瘤体积为161.37±18.98mm 3),双抗AB7K7具有良好的的治疗肿瘤的作用。
此外,还考察了双抗AB7K7和AB7K8在上述移植瘤模型中,于两种给药频次下对肿瘤生长的抑制作用。根据上文所述方法获得CIK细胞,选取七至八周龄的雌性NPG小鼠,将5×10 6个HCC1954细胞和5×10 5个CIK细胞混合,接种于NPG小鼠右侧背部皮下。1h后,小鼠按体重随机分为6组,每组6只,分别腹腔给予相应药物。具体的,对照组和Herceptin给药组均为每周给药2次,Herceptin的给药剂量为3mg/kg,对照组给予相同体积的PBS溶液;双特异性抗体AB7K7给药剂量为1mg/kg,AB7K8的给药剂量为0.7mg/kg,各设置了两种给药频率,QD组每天给药1次,连续给药10天,BIW组每周给药2次。给药当天记为第0天,每周测量两次肿瘤的最大直径(D)和最小直径(d),并根据上述公式计算各组的肿瘤体积(mm 3)和各给药组的肿瘤生长抑制率TGI(%)。
如图3-3所示,在给药后第25天,PBS对照组平均肿瘤体积为1588.12±120.46mm 3;3mg/kg的Herceptin给药组的平均肿瘤体积为361.72±134.70mm 3;AB7K7的QD给药组和BIW给药组的平均肿瘤体积分别为260.18±45.96mm 3和239.39±40.62mm 3,TGI分别为83.62%和84.93%,相对于PBS对照组均有极显著性差异(P<0.01);AB7K8的QD给药组和BIW给药组的平均肿瘤体积分别为284.98±26.62mm 3和647.14±118.49mm 3,TGI分别为82.06%和59.25%,相对于PBS对照组均有极显著性差异(P<0.01)。从上述结果中可以看出,双特异性抗体AB7K7无论是QD组还是BIW组,抗肿瘤效果均优于Herceptin;在等摩尔剂量下,QD组AB7K8与AB7K7的抑瘤效果相当,而BIW组AB7K7显示出显著优于AB7K8的抗肿瘤效果,推测是由于AB7K8为BiTE构型的双特异性抗体,无Fc结构域,AB7K7较AB7K8而言半衰期更长,可以预见临床给药频次降低,获得更好的治疗效果。
3.3、NPG小鼠皮下共接种人CIK细胞和人卵巢癌SK-OV-3细胞移植瘤模型
选取Her2表达阳性的人卵巢癌SK-OV-3细胞,观察双抗在NPG小鼠皮下共接种人CIK细胞和SK-OV-3 细胞的移植瘤模型中的体内抑瘤效果。
取正常人外周血,用密度梯度离心法分离人PBMC细胞,然后用McCoy’s 5A培养液加入10%已灭活的FBS重悬,并且加入终浓度为1μg/ml的OKT3,以及250IU/ml人IL-2;第三天后,300g离心5min,去上清,用RPMI-1640加入10%已灭活FBS重悬细胞,同时加入250IU/ml人IL-2进行培养;每2天添加新鲜的培养液,培养至第10天,收集CIK细胞。选取七至八周龄的雌性NPG小鼠,收集处于对数生长期的SK-OV-3细胞(购自中科院上海细胞库),将3×10 6个SK-OV-3细胞和3×10 5个CIK细胞混合,接种于NPG小鼠右侧背部皮下。接种1h后,小鼠按体重随机分为7组,每组6只,分别腹腔给予相应药物,Herceptin和AB7K7给药组都分别给药1mg/kg、0.2mg/kg和0.04mg/kg,给药频次均为每周给药2次,对照组给予相同体积PBS。给药当天记为第0天,每周测量两次肿瘤的最大直径(D)和最小直径(d),并根据实施例3.1中的公式计算各组的肿瘤体积(mm 3)和各给药组的肿瘤生长抑制率TGI(%)。
如图3-4所示,在给药后第21天,PBS对照组平均肿瘤体积为834.09±45.64mm 3;Herceptin在1mg/kg、0.2mg/kg和0.04mg/kg剂量下的平均肿瘤体积分别为644.84±58.22mm 3、884.95±38.63mm 3和815.79±78.39mm 3;AB7K7所有给药组的肿瘤均完全消退。上述结果表明,在卵巢癌SK-OV-3模型中,AB7K7在极低剂量0.04mg/kg下仍然能使肿瘤完全消退,显示出了极好的抗肿瘤效果。
3.4、NPG小鼠皮下共接种人CIK细胞和人结肠癌细胞HT-29细胞移植瘤模型
选取Her2表达阳性的人结肠癌HT-29细胞,观察双抗在NPG小鼠皮下共接种人CIK细胞和HT-29细胞的移植瘤模型中的体内抑瘤效果。
根据实施例3.1中的方法获得CIK细胞。选取七至八周龄的雌性NPG小鼠,收集处于对数生长期的HT-29细胞(购自中科院上海细胞库),将3×10 6个HT-29细胞和3×10 6个CIK细胞混合,接种于NPG小鼠右侧背部皮下。接种1h后,小鼠按体重随机分为5组,每组6只,分别腹腔给予相应药物,具体的,Herceptin的给药剂量为3mg/kg,AB7K7给药组的剂量分别为3mg/kg、1mg/kg和0.3mg/kg,所有的给药组均为每周给药2次,对照组给予相同体积PBS。给药当天记为第0天,每周测量两次肿瘤的最大直径(D)和最小直径(d),并根据实施例3.1中的公式计算各组的肿瘤体积(mm 3)和各给药组的肿瘤生长抑制率TGI(%)。
如图3-5所示,在给药后第21天,PBS对照组平均肿瘤体积为1880.52±338.26mm 3;3mg/kg Herceptin的平均肿瘤体积为1461.36±177.94mm 3;AB7K7在3mg/kg、1mg/kg和0.3mg/kg剂量给药组的平均肿瘤体积分别为13.94±7.06mm 3、26.31±10.75mm 3和10.47±6.71mm 3,其中0.3mg/kg给药组有4只小鼠肿瘤完全消退,1mg/kg给药组有3只小鼠肿瘤完全消退,3mg/kg给药组有4只小鼠肿瘤完全消退。上述结果显示,在结肠癌HT-29模型中,Herceptin对此肿瘤模型基本无药效,而AB7K7在三个剂量下均有小鼠的肿瘤完全消退,极低剂量也显示出了极好的抗肿瘤效的果。
3.5、CD34免疫重建的NPG小鼠接种人乳腺癌HCC1954移植瘤模型
选取Her2表达阳性的人乳腺癌HCC1954细胞,观察双抗在CD34免疫重建的NPG小鼠皮下接种人乳腺癌HCC1954细胞的移植瘤模型中的体内抑瘤效果。
使用CD34阳性选择磁珠(购自德国美天旎生物技术有限公司)从新鲜的脐带血中富集CD34阳性的造血干细胞,选取三至四周龄的雌性NPG小鼠(购自北京维通达生物技术有限公司),尾静脉注射CD34阳性的造血干细胞,在小鼠体内重建人的免疫系统。16周后,小鼠眼眶后静脉丛采血进行流式检测,人CD45比例大于15%的小鼠视为免疫重建成功。收集处于对数生长期的HCC1954细胞,将5×10 6个HCC1954细胞接种于免疫重建的小鼠右侧背部皮下。1h后,小鼠按体重随机分为3组,每组6只,分别腹腔给予剂量为1mg/kg的AB7K7和Herceptin,对照组给予相同体积的PBS,每周给药2次,共给药6次。给药当天记为第0天,每周测量两次肿瘤的最大直径(D)和最小直径(d),并根据实施例3.1中的公式计算各组的肿瘤体积(mm 3)和各给药组的肿瘤生长抑制率TGI(%)。
如图3-6所示,在给药后第21天,PBS对照组平均肿瘤体积为475.23±58.82mm 3;Herceptin给药组的平均肿瘤体积为293.27±66.35mm 3,TGI为38.29%,相对于对照组无显著性差异;AB7K7给药组的平均肿瘤体积为0.67±0.67mm 3,TGI为99.86%,所有肿瘤都已基本消退,相对于对照组均有极显著性差异(P<0.01)。综上结果表明,双抗AB7K7在CD34免疫重建模型中具有极好的抗肿瘤效果。
3.6、PBMC免疫重建的NPG小鼠接种人乳腺癌HCC1954细胞移植瘤模型
选取Her2表达阳性的HCC1954细胞,观察双抗在PBMC免疫重建的NPG小鼠接种人乳腺癌HCC1954细胞的小鼠移植瘤模型中的体内抑瘤效果。
取正常人外周血,用密度梯度离心法分离人PBMC细胞,选取五至六周龄的雌性NPG小鼠,腹腔注射人PBMC细胞,在小鼠体内重建人免疫系统。PBMC注射7天后,收集处于对数生长期的HCC1954细胞,将5×10 6个HCC1954细胞接种于小鼠右侧背部皮下。PBMC注射13天后,眼眶后静脉丛采血进行流式检测,human CD45比例大于15%的小鼠视为免疫重建成功。PBMC注射14天后,免疫成功的小鼠按肿瘤体积和体重随机分为2组,每组6只,腹腔给予剂量为1mg/kg的AB7K7,对照组给予PBS,每周给药三次。给药当天记为第0天,每周测量两次肿瘤的最大直径(D)和最小直径(d),并根据实施例3.1中的公式计算各组的肿瘤体积(mm 3)和各给药组的肿瘤生长抑制率TGI(%)。
如图3-7所示,在给药后第23天,PBS对照组平均肿瘤体积为1224.05±224.39mm 3;AB7K7给药组的平均肿瘤体积为32.00±0.00mm 3,TGI为97.41%,所有肿瘤都已消退,相对于对照组均有极显著性差异(P<0.001)。综上结果表明,双功能特异性抗体AB7K7在PBMC免疫重建模型中有极好的抗肿瘤效果。
实施例四、Anti-Her2×CD3双特异性抗体的安全性评价
4.1、双特异性抗体不能介导对Her2表达阴性肿瘤细胞的非特异性杀伤
选取Her2表达阴性的人Burkkit’s淋巴瘤Raji细胞,观察双抗在NCG小鼠皮下共接种人CIK细胞和人Burkkit’s淋巴瘤Raji细胞的移植瘤模型中是否会抑制肿瘤生长。
根据实施例3.1中的方法获得CIK细胞。选取七至八周龄的雌性NCG小鼠,收集处于对数生长期的Raji细胞(购自中科院上海细胞库),将5×10 6个Raji细胞和2×10 6个CIK细胞混合,接种于NCG小鼠右侧背部皮下。1h后,小鼠按体重随机分为3组,每组5只,给药组分别腹腔给予剂量为1mg/kg的AB7K4 和AB7K7,对照组给予相同体积PBS溶液,每天给药1次,连续给药10天。给药当天记为第0天,每周测量两次肿瘤的最大直径(D)和最小直径(d),并根据实施例3.1中的公式计算各组的肿瘤体积(mm 3)和各给药组的肿瘤生长抑制率TGI(%)。
如图4-1所示,在给药后第25天,PBS对照组平均肿瘤体积为2439.88±193.66mm 3;AB7K4给药组的平均肿瘤体积为2408.81±212.44mm 3,AB7K7给药组的平均肿瘤体积为2598.11±289.35mm 3,两个给药组平均肿瘤体积相对于对照组均无差异。综上结果表明,双抗AB7K4和AB7K7在Her2表达阴性的细胞株上均未观察到非特性杀伤,说明AB7K4和AB7K7在体内不会介导T细胞对于非靶点组织的杀伤(即专一性地依赖双特异性抗体与相应靶抗原的结合),没有脱靶毒性,安全性高。
4.2、双特异性抗体杀伤肿瘤细胞依赖于T细胞的激活
选取Her2表达阳性的人乳腺癌HCC1954细胞,观察双抗在NPG小鼠皮下单独接种人乳腺癌HCC1954细胞的移植瘤模型中是否抑制肿瘤生长。
选取七至八周龄的雌性NPG小鼠,收集处于对数生长期的HCC1954细胞,将5×10 6个HCC1954细胞和Matrigel基质胶(Corning,货号:354234)以体积比1:1混匀,接种于NPG小鼠右侧背部皮下。待肿瘤生长6天后,小鼠按肿瘤体积和体重随机分为3组,每组6只,给药组分别腹腔给予剂量为3mg/kg的Herceptin和1mg/kg的AB7K7,对照组给予相同体积的PBS,每周给药2次。给药当天记为第0天,每周测量两次肿瘤的最大直径(D)和最小直径(d),并根据实施例3.1中的公式计算各组的肿瘤体积(mm 3)和各给药组的肿瘤生长抑制率TGI(%)。
如图4-2所示,在给药后第21天,PBS对照组平均肿瘤体积为1311.35±215.70mm 3;Herceptin给药组的平均肿瘤体积为273.98±60.10mm 3;AB7K7给药组的平均肿瘤体积为1243.20±340.31mm 3,相对于对照组无差异。综上结果显示,AB7K7在没有人免疫细胞存在的情况下并未抑制HCC1954皮下瘤的生长,表明双抗AB7K7需要通过免疫效应细胞介导才能杀伤肿瘤细胞,而不像Herceptin主要是依赖于FcγR介导的ADCC或CDC效应来杀伤肿瘤细胞,证明AB7K7所包含的Fc变体不能结合FcγR,则可以避免介导因其受体FcγR广泛表达所致的T细胞全身性激活,因而药物安全性更高。
4.3、双特异性抗体对正常食蟹猴的毒性评价
选取3-4岁的雌性成年食蟹猴(购于广州相观生物科技有限公司),体重3-4kg,分成三组,每组一只,分别为溶媒对照组、AB7K7给药组和AB7K8给药组。给药方式为蠕动泵静脉滴注1h,分别于第0天(D0)、第7天(D7)、第21天(D21)和第28天(D28)给药,共给药4次,药物剂量逐次递增。同时每周对动物体重进行称量。给药剂量和体积如下表4-1所示。
于D0给药后,AB7K8给药组食蟹猴出现嗜睡、瞳孔缩小现象,第二天恢复正常,其他组无异常;D7给药后,AB7K7给药组食蟹猴在给药后2-3h出现呕吐症状,给药第二天恢复正常,其他组无异常;D21给药后,AB7K7给药组食蟹猴在给药后3h出现呕吐食物症状,并排泄果冻样粪便,AB7K8给药组在给药后1h出现呕吐食物症状,两组食蟹猴在给药后第二天均恢复正常;于D28给药后40到50min,AB7K7和 AB7K8给药组均出现呕吐症状,3h后动物均排出的粪便均有胶冻样粘液,6h后,AB7K7给药组动物排腥臭味水样粪;24h后,动物均恢复正常,采食正常。食蟹猴的体重变化如图4-3所示,箭头表示给药时间,可以看到各组体重均无太大变化,且在正常生理值范围内波动。
表4-1:食蟹猴急性毒性评价给药安排
Figure PCTCN2019114818-appb-000013
本实验过程中观察到的不同程度的腹泻,可能和肠道中相关受体的表达有关,推测是双抗抑制Her1/Her2或Her2/Her3的异二聚体后导致肠道氯离子失衡后造成的,属于药理作用的延伸,给药24h后即可恢复正常。而AB7K7达到3mg/kg的高给药剂量时,食蟹猴仍有良好的耐受性,而通过小鼠的药效实验结果显示,低剂量的AB7K7表现出很好的抗肿瘤效果,表明AB7K7的治疗窗口较宽,安全性较高。
实施例五、Anti-Her2×CD3抗体的药代动力学研究
5.1、双抗AB7K7在SD大鼠体内的药代动力学实验
AB7K7以1mg/kg的剂量,通过尾静脉给药方式注射入4只健康SD大鼠(购自上海斯莱克实验动物有限责任公司)。取血时间点分别为:1h、3h、6h、24h、72h、96h、120h、168h、216h和264h。每个时间点取一定量的全血,分离血清,然后采用两种ELISA方法测定血清中的药品浓度。
方法一、用抗AB7K7抗体A(安源医药科技(上海)有限公司,mouse-anti-herceptin)包板,包板浓度为0.5μg/mL。将AB7K7按照100ng/mL、50ng/mL、25ng/mL、12.5ng/mL、6.25ng/mL、3.125ng/mL和1.56ng/mL配置并建立标准曲线。用HRP标记抗AB7K7抗体B(安源医药科技(上海)有限公司,anti-herceptin-HRP),使用浓度为1:5000,最后用TMB显色。利用PKSolver软件计算药代动力学参数,具体参数见表5-1。
方法二、检测SD大鼠血清中的药品浓度。用抗AB7K7抗体A(安源医药科技(上海)有限公司, mouse-anti-herceptin)包板,包板浓度为0.5μg/mL。将AB7K7按照5ng/mL、2.5ng/mL、1.25ng/mL、0.625ng/mL、0.3125ng/mL、0.156ng/mL和0.078ng/mL配置并建立标准曲线。将鼠抗人IgG Fc-HRP(安源医药科技(上海)有限公司)按照1:5000加入,最后用TMB显色。利用PKSolver软件计算药代动力学参数,具体参数见表5-2。
图5-1显示了用两种不同检测方法检测AB7K7在大鼠体内的血药浓度,用两种不同的检测方法检测血药中的AB7K7浓度,得到的血药浓度基本一致,计算的药代参数大致相同,说明AB7K7在体内能够以完整分子形式进行代谢,从而保证其生物学功能。
表5-1:双抗AB7K7在SD大鼠中的药代动力学参数(方法一)
AB7K7 t 1/2(h) AUC 0-inf_ob(ng/mL*h) Vz_obs(μg)/(ng/mL)) Cl_obs(μg)/(ng/mL)/h
药代参数 42.10 550236.77 0.02351 3.811E-4
表5-2:双抗AB7K7在SD大鼠中的药代动力学参数(方法二)
AB7K7 t 1/2(h) AUC 0-inf_ob(ng/mL*h) Vz_obs(μg)/(ng/mL)) Cl_obs(μg)/(ng/mL)/h
药代参数 41.02 706126.89 0.01720 2.899E-4
5.2、双抗AB7K7在NPG模型鼠体内的药代动力学实验
NPG小鼠(购自北京维通达生物技术有限公司)给药前一周接种HCC1954细胞(购自中科院细胞所),接种密度为3.5×10 6/只。给药前两天复苏CIK细胞,培养24h后收集细胞静脉注射入小鼠体内。小鼠随机分为3组,每组四只。三个给药组给药剂量分别是:0.3mg/kg、1mg/kg和3mg/kg。采血时间点分别为1h、3h、6h、24h、48h、72h、96h、120h、168h、216h和264h。每个时间点采一定量的全血,分离血清,然后采用ELISA方法测定血清中的药品浓度。
用抗AB7K7抗体A(安源医药科技(上海)有限公司,mouse-anti-herceptin)包板,包板浓度为0.5μg/mL。将AB7K7按照100ng/mL、50ng/mL、25ng/mL、12.5ng/mL、6.25ng/mL、3.125ng/mL和1.56ng/mL配置并建立标准曲线。用HRP标记抗AB7K7抗体B(安源医药科技(上海)有限公司,mouse-anti-herceptin),使用浓度为1:5000,最后用TMB显色。利用PKSolver软件计算药代动力学参数,具体参数见表5-3。从表5-3中可以看出,AB7K7在NPG模型鼠体内的药代参数与在SD大鼠体内的在数值上没有大的差异。
表5-3:双抗AB7K7在NPG模型鼠中的药代动力学参数
Figure PCTCN2019114818-appb-000014
5.3、双抗AB7K8在SD大鼠体内的药代动力学实验
AB7K8分别以1mg/kg和3mg/kg的剂量,通过尾静脉给药方式注射入3只健康SD大鼠。取血时间点分别为:0.25h、0.5h、1h、2h、3h、4h、5h和7h。每个时间点取一定量的全血,分离血清,然后采用ELISA方法检测血清中的药品浓度。
用抗AB7K8抗体C(安源医药科技(上海)有限公司,mouse-anti-herceptin)包板,包板浓度为2.5μg/mL。将AB7K8按照25ng/mL、12.5ng/mL、6.25ng/mL、3.125ng/mL、1.56ng/mL和0.78ng/mL配置并建立标准曲线。用HRP标记抗-his的抗体(安源医药科技(上海)有限公司),使用浓度为1:5000,最后用TMB显色。利用PKSolver软件计算药代动力学参数,具体参数见表5-4。
AB7K8在两种剂量下,得到药代参数T 1/2基本一致,说明其在SD大鼠体内呈现线性代谢动力学。由于AB7K8不含Fc,所以其T 1/2非常短,与AB7K7相比短了约20倍。
表5-4:双抗AB7K8在SD大鼠中的药代动力学参数
AB7K8 t 1/2(h) AUC 0-inf_ob(ng/mL*h) Vz_obs(μg)/(ng/mL)) Cl_obs(μg)/(ng/mL)/h
1mg/kg IV 2.27 4623.14 0.17082 0.05191
3mg/kg IV 1.98 20608.77 0.10220 0.03579
5.4、双抗AB7K在SD大鼠体内的药代动力学实验
AB7K以0.8mg/kg的剂量,通过尾静脉给药方式注射入4只健康SD大鼠。取血时间点分别为:2h、24h、48h、72h、96h、120h、144h、168h、216h和264h。每个时间点取一定量的全血,分离血清,然后采用两种ELISA方法测定血清中的药品浓度。
方法一、用抗AB7K抗体A(安源医药科技(上海)有限公司,mouse-anti-herceptin)包板,包板浓度为1μg/mL。将AB7K按照20ng/mL、10ng/mL、5ng/mL、2.5ng/mL、1.25ng/mL、0.625ng/mL和0.3125ng/mL配置并建立标准曲线。加入25ng/mL的生物素标记的人CD3E&CD3D(Acro,货号CDD-H82W0),孵育1h后加入1:500稀释的HRP标记的链霉亲和素(BD Pharmingen,货号554066),最后用TMB显色。利用PKSolver软件计算药代动力学参数,具体参数见表5-5。
表5-5:双抗AB7K的药代动力学参数
AB7K t 1/2(h) AUC 0-inf_ob(ng/mL*h) Vz_obs(μg)/(ng/mL)) Cl_obs(μg)/(ng/mL)/h
药代参数 60.47 1022788.69 0.01726 1.985E-4
方法二、用抗AB7K的抗体A(安源医药科技(上海)有限公司,mouse-anti-herceptin)包板,包板浓度为1μg/mL。将AB7K按照20ng/mL、10ng/mL、5ng/mL、2.5ng/mL、1.25ng/mL、0.625ng/mL和0.3125ng/mL配置并建立标准曲线。加入鼠抗人IgG Fc-HRP(1:10000稀释)(安源医药科技(上海)有限公司),孵箱1h,最后用TMB显色。
图5-2显示了用两种不同检测方法检测AB7K在大鼠体内的血药浓度,结果表明两种检测方法测得结果差异比较大。曲线的前两个点(2h,1D)的浓度还是很接近的,但是第二天之后,两种方法测得浓度差 异很大,推测有可能抗-CD3 scFv与抗-Her2抗体重链之间的连接肽断裂了。AB7K在体内结构不稳定,从而无法发挥其生物学功能,而改进的AB7K7能够在体内以完整形式代谢,从而能正常发挥其生物学功能。
5.5、双抗AB7K7和AB7K8在食蟹猴体内的药代动力学实验
食蟹猴(购自广州相观生物科技有限公司)分成三个组,每组一只,性别雌性,体重在3-4kg。第一组(G1-1)为空白对照组;第二组(G2-1)AB7K7为给药组,给药剂量为0.3mg/kg;第三组(G3-1)为AB7K8给药组,给药剂量为0.2mg/kg。采血时间点分别为15min、1h、3h、6h、24h、48h、72h、96h、144h、192h、240h和288h,共13个时间点。取血收集血清,-80℃冻存,然后采用ELISA方法测定血清中的药品浓度。
用抗AB7K7抗体A(安源医药科技(上海)有限公司,mouse-anti-herceptin)包板,包板浓度为0.5μg/mL。将AB7K7按照100ng/mL、50ng/mL、25ng/mL、12.5ng/mL、6.25ng/mL、3.125ng/mL、1.56ng/mL配置并建立标准曲线。用HRP标记抗AB7K7抗体B(安源医药科技(上海)有限公司,mouse-anti-herceptin),使用浓度为1:5000,最后用TMB显色。利用PKSolver软件计算药代动力学参数,具体参数见表5-6。
图5-3显示了AB7K7在大鼠体内的血药浓度,AB7K7在正常食蟹猴体内的T 1/2仅为8个小时左右。AB7K8由于药时曲线上的点过少,无法计算药代参数。但是从药时曲线上可以看出,在正常食蟹猴体内AB7K7要比AB7K8半衰期长很多。
表5-6:双抗AB7K7在食蟹猴体内的药代动力学参数
AB7K7 t 1/2(h) AUC 0-inf_obs ng/mL*h) Vz_obs(μg)/(ng/mL)) Cl_obs(μg)/(ng/mL)/h
药代参数 7.95 87995.48 0.1563 0.01364
5.6、通过ELISA技术评价双特异性抗体和FcRn的结合能力
将各个抗体用PBS溶液稀释成10μg/ml的浓度,加入96孔板中,100μl/孔,4℃包被过夜。然后用1%脱脂奶粉室温封闭1h。同时分别用pH 6.0和7.0的稀释液稀释生物素biotin标记的FcRn蛋白(ACRO Biosystem,货号FCM-H8286),4倍梯度稀释,共11个浓度梯度。分别用同pH的PBST清洗96孔板,加入使用相同pH稀释液稀释好的双特异性抗体,设不加抗体的对照孔,室温孵育1h。使用同pH的PBST溶液洗板,将链霉亲和素-HRP(BD,货号554066)加入96孔板中,100μl/孔,室温孵育0.5h。其后,将96孔板以PBST清洗,加入TMB,100μl/孔,室温显色15min,然后加入0.2M H 2SO 4终止显色反应。用酶标仪检测A450nm-620nm的吸光值。通过软件OriginPro 8进行分析,计算双特异性抗体与FcRn结合的EC 50值。
结果显示了不同的pH条件下每个抗体和FcRn的结合能力不同,结合体内PK的数据,可以分析出双特异性抗体AB7K7的半衰期长于AB7K,但短于Herceptin,这可能更有利于临床应用(图5-4和图5-5)。表5-7和表5-8分别显示了pH 6.0和7.0时各抗体与FcRn结合能力的测定结果。
表5-7:pH 6.0时双抗AB7K、AB7K5和AB7K7与FcRn结合能力的测定
  Herceptin AB7K AB7K5 AB7K7
EC 50(μg/ml) 2.591 0.8027 1.706 0.4630
表5-8:pH 7.0时双抗AB7K、AB7K5和AB7K7与FcRn结合能力的测定
  Herceptin AB7K AB7K5 AB7K7
EC 50(μg/ml) ~287.1 1.651 13.43 4.838
实施例六、scFv1-scFv2--Fc构型双特异性抗体的制备
根据上述对六种抗-Her2×CD3双特异性抗体的多方面研究结果,可以确定AB7K7这类scFv1-scFv2-Fc构型的双特异性抗体具有易于制备、纯化方法简单高效、且其在制备及存储过程中稳定性较好。更有利的是,它对正常细胞的非特异性杀伤作用微弱,且具有控制的可能由效应细胞过度活化所致的毒副作用等显著优势,成药性良好。
参照实施例一中双特异性抗体AB7K7的构型设计及制备方法,我们构建了一系列靶向免疫效应细胞抗原CD3分子和肿瘤相关抗原的双特异性抗体分子,这类双特异性抗体分子由两条相同的多肽链通过Fc片段铰链区的链间二硫键结合形成四价同源二聚体,每条多肽链自N端至C端依次由抗-TAA scFv、连接肽、抗-CD3 scFv和Fc片段组成,以下具体描述了各双特异性抗体的每个结构单元的分子组成。
其中,所述肿瘤相关抗原包含但不限于:CD19、CD20、CD22、CD25、CD30、CD33、CD38、CD39、CD40、CD47、CD52、CD73、CD74、CD123、CD133、CD138、BCMA、CA125、CEA、CS1、DLL3、DLL4、EGFR、EpCAM、FLT3、gpA33、GPC-3、Her2、MEGE-A3、NYESO1、PSMA、TAG-72、CIX、叶酸盐结合蛋白、GD2、GD3、GM2、VEGF、VEGFR2、VEGFR3、钙黏素(Cadherin)、整合素(Integrin)、间皮素(Mesothelin)、Claudin18、αVβ3、α5β1、ERBB3、c-MET、IGF1R、EPHA3、TRAILR1、TRAILR2、RANKL、B7蛋白家族、粘蛋白家族(Mucin)、FAP和肌腱蛋白(Tenascin);优选地,所述肿瘤相关抗原为CD19、CD20、CD22、CD30、CD38、BCMA、CS1、EpCAM、CEA、Her2、EGFR、CA125、Mucin1、GPC-3和Mesothelin。
表6-1例举了一些优选的针对肿瘤相关抗原的第一单链Fv的VH结构域及其互补决定区(HCDR1、HCDR2和HCDR3)的氨基酸序列,和VL结构域及其互补决定区(LCDR1、LCDR2和LCDR3)的氨基酸序列,其CDR区所含氨基酸残基根据Kabat规则定义。其中,抗-TAA scFv的VH和VL之间的连接肽氨基酸组成为(GGGGS)n,n=1,2,3,4或5。
表6-1:双特异性抗体包含的抗-TAA scFv的氨基酸序列及其CDR区氨基酸序列
Figure PCTCN2019114818-appb-000015
Figure PCTCN2019114818-appb-000016
Figure PCTCN2019114818-appb-000017
Figure PCTCN2019114818-appb-000018
Figure PCTCN2019114818-appb-000019
Figure PCTCN2019114818-appb-000020
Figure PCTCN2019114818-appb-000021
Figure PCTCN2019114818-appb-000022
Figure PCTCN2019114818-appb-000023
Figure PCTCN2019114818-appb-000024
其中,抗-CD3 scFv在体外FACS结合分析测定中以大于约50nM,或大于100nM,或大于300nM,或 大于500nM的EC 50值结合于效应细胞;更优选地,所述双特异性抗体的第二单链Fv不仅能与人CD3结合,还可与食蟹猴或恒河猴的CD3特异性结合。
表6-2中例举了一些优选的抗-CD3 scFv的VH结构域及其互补决定区(HCDR1、HCDR2和HCDR3)的氨基酸序列,和VL结构域及其互补决定区(LCDR1、LCDR2和LCDR3)的氨基酸序列,其CDR区所含氨基酸残基根据Kabat规则定义。其中,抗-CD3 scFv的VH和VL之间的连接肽氨基酸组成为(GGGGS)n,n=1,2,3,4或5。
表6-2:双特异性抗体包含的抗-CD3 scFv的氨基酸序列及其CDR区氨基酸序列
Figure PCTCN2019114818-appb-000025
其中,连接抗-TAA scFv和抗-CD3 scFv的连接肽由柔性肽和刚性肽组成;优选地,柔性肽的氨基酸组成结构通式为G xS y(GGGGS) z,其中x,y和z是大于或等于0的整数,且x+y+z≥1。而刚性肽来自天然人绒毛膜促性腺激素β亚基羧基末端第118至145位氨基酸组成的全长序列(如SEQ ID NO:257所示)或其截短的片段;优选地,所述CTP刚性肽组成为SSSSKAPPPS(CTP 1)。表6-3中例举了一些优选的连接抗-TAA scFv和抗-CD3 scFv的连接肽的氨基酸序列。
表6-3:连接抗-TAA scFv和抗-CD3 scFv的连接肽的氨基酸序列
SEQ ID NO:258 G 2(GGGGS) 3CTP 1 GGGGGGSGGGGSGGGGSSSSSKAPPPS
SEQ ID NO:259 (GGGGS) 3CTP 1 GGGGSGGGGSGGGGSSSSSKAPPPS
SEQ ID NO:260 GS(GGGGS) 2CTP 1 GSGGGGSGGGGSSSSSKAPPPS
SEQ ID NO:261 (GGGGS) 1CTP 4 GGGGSSSSSKAPPPSLPSPSRLPGPSDTPILPQ
其中,Fc片段直接或通过连接肽与抗-CD3 scFv相连,连接肽包含1-20个氨基酸,并优选自下列几种氨基酸:Gly(G)、Ser(S)、Ala(A)和Thr(T),更优地自Gly(G)和Ser(S),最优选地,所述连接肽组成为(GGGGS)n,n=1,2,3或4。
Fc片段优选自人IgG1、IgG2、IgG3和IgG4的重链恒定区,更特别地选自人IgG1或IgG4的重链恒定区;并且Fc是突变的,以修饰双特异性抗体分子的性质,例如,对人FcγRs(FcγRI、FcγRIIa或FcγRIIIa)和C1q的至少一种显示出降低的亲和力,具有减少的效应细胞功能或补体功能。此外,Fc片段还可以包含具有使其它一种或几种特性(例如,与FcRn受体结合能力、抗体糖基化或抗体电荷异质性等)改变的氨基酸取代。
表6-4中例举了一些具有一个或多个氨基酸突变的Fc片段的氨基酸序列。
表6-4:人IgG Fc氨基酸序列
Figure PCTCN2019114818-appb-000026
表6-5中示例性的例举了一些优选的双特异性抗体的氨基酸及对应的核苷酸序列。
表6-5:几种scFv-scFv-Fc构型的双特异性抗体
抗体代码 靶点 氨基酸序列号 核苷酸序列号
AB1K1 Anti-CD19×CD3 SEQ ID NO:264 SEQ ID NO:265
AB1K2 Anti-CD19×CD3 SEQ ID NO:283 SEQ ID NO:284
AB2K Anti-CD20×CD3 SEQ ID NO:266 SEQ ID NO:267
AB3K Anti-CD22×CD3 SEQ ID NO:268 SEQ ID NO:269
AB4K Anti-CD30×CD3 SEQ ID NO:270 SEQ ID NO:271
AB5K Anti-EpCAM×CD3 SEQ ID NO:272 SEQ ID NO:273
AB6K Anti-CEA×CD3 SEQ ID NO:274 SEQ ID NO:275
AB7K7 Anti-Her2×CD3 SEQ ID NO:8 SEQ ID NO:276
AB8K Anti-EGFR×CD3 SEQ ID NO:277 SEQ ID NO:278
AB9K Anti-GPC-3×CD3 SEQ ID NO:279 SEQ ID NO:280
AB10K Anti-Mesothelin×CD3 SEQ ID NO:281 SEQ ID NO:282
AB11k Anti-Mucin1×CD3 SEQ ID NO:285 SEQ ID NO:286
实施例七、Anti-GPC-3×CD3双特异性抗体在小鼠移植瘤模型中的药效学研究
7.1、NOD-SCID小鼠皮下共接种人PBMC细胞和人肝癌Huh-7细胞移植瘤模型
选取GPC-3表达阳性的人肝癌Huh-7细胞,观察双抗在NOD-SCID小鼠皮下共接种人PBMC细胞和Huh-7细胞的移植瘤模型中的体内抑瘤效果。
取正常人外周血,用密度梯度离心法分离人PBMC细胞,选取七至八周龄雌性NOD-SCID小鼠(购自上海灵畅生物科技有限公司),收集处于对数生长期的Huh-7细胞。将3×10 6个Huh-7细胞和3×10 6个PBMC细胞混合,接种于NOD-SCID小鼠右侧背部皮下。1h后,小鼠按体重随机分为2组,每组6只,给药组腹腔给予1mg/kg AB9K,对照组给予相同体积PBS溶液,每天给药1次,连续给药6天。给药当天记为第0天,每周测量两次肿瘤的最大直径(D)和最小直径(d),并根据实施例3.1中的公式计算各组的肿瘤体积(mm 3)和各给药组的肿瘤生长抑制率TGI(%)。
如图6-1所示,在给药后第21天,PBS对照组平均肿瘤体积为1311.03±144.89mm 3;AB9K给药组的平均肿瘤体积为60.83±12.63mm 3,TGI为95.36%,有1只小鼠的肿瘤完全消退,相对于对照组均有极显著性差异(P<0.01)。以上结果表明,PBMC中大部分为未活化的原始T细胞,双抗AB9K能在动物体内激活原始T细胞,并且拉近T细胞与靶细胞Huh-7的距离,使得T细胞可以直接杀伤肿瘤细胞,抑制肿瘤的生长,AB9K在1mg/kg的剂量下有非常好的抗肿瘤效果。
7.2、NPG小鼠皮下共接种人CIK细胞和人Burkkit’s淋巴瘤Raji细胞移植瘤模型
选取GPC-3表达阴性的人Burkkit’s淋巴瘤Raji细胞,观察双抗在NPG小鼠皮下共接种人CIK细胞和人Burkkit’s淋巴瘤Raji细胞的移植瘤模型中的体内性抑瘤效果。
根据实施例3.1中的方法获得CIK细胞,选取七至八周龄的雌性NPG小鼠,收集处于对数生长期的Raji细胞,将5×10 6个Raji细胞和2×10 6个CIK细胞混合,接种于NPG小鼠右侧背部皮下。1h后,小鼠按体重随机分为3组,每组5只,给药组腹腔给予剂量为1mg/kg的AB9K,对照组给予相同体积的PBS溶液,每天给药1次,连续给药10天。给药当天记为第0天,每周测量两次肿瘤的最大直径(D)和最小直径(d),并根据实施例3.1中的公式计算各组的肿瘤体积(mm 3)和各给药组的肿瘤生长抑制率TGI(%)。
结果如图6-2所示,在给药后第26天,PBS对照组平均肿瘤体积为2636.66±196.62mm 3;AB9K给药组的平均肿瘤体积为2739.57±220.13mm 3,相对于对照组无显著性差异。综上结果表明,双抗AB9K在GPC-3表达阴性的细胞株上未观察到非特异性杀伤,说明双抗在体内不会介导T细胞对于非靶点组织的杀伤,没有药物毒性,安全性高。
7.3、CD34免疫重建的NPG小鼠接种人肝癌Huh-7细胞移植瘤模型
选取GPC-3表达阳性的人肝癌Huh-7细胞,观察双抗在CD34免疫重建的NPG小鼠皮下接种人肝癌Huh-7细胞的移植瘤模型中的体内抑瘤效果。
根据实施例3.5中的方法制备CD34免疫重建的NPG小鼠。收集处于对数期的Huh-7细胞,将2.5×10 6个Huh-7细胞接种于免疫重建的小鼠右侧背部皮下。接种4天后,小鼠按肿瘤体积和体重随机分为2组,每组7只,给药组腹腔给予1mg/kg AB9K,PBS对照组给予相同体积PBS溶液,每天给药1次直至实验结束。给药当天记为第0天,每周测量两次肿瘤的最大直径(D)和最小直径(d),并根据实施例3.1中的公式计算各组的肿瘤体积(mm 3)和各给药组的肿瘤生长抑制率TGI(%)。
如图6-3所示,在给药后第21天,PBS对照组平均肿瘤体积为2102.84±275.71mm 3;1mg/kg的AB9K给药组的平均肿瘤体积为325.01±282.21mm 3,TGI为86.53%,有4只小鼠肿瘤完全消退,相对于对照组均有极显著性差异(P<0.01)。以上结果表明,双抗AB9K在CD34免疫重建模型中有极好的抗肿瘤效果。
实施例八、Anti-CD20×CD3双特异性抗体的体外生物学功能评价和小鼠移植瘤模型中的药效学研究
8.1、利用流式分析法检测AB2K与CD20阳性肿瘤细胞的结合活性
培养Raji细胞(购自中科院细胞库),离心收集细胞用1%PBSB重悬,调整细胞密度为2×10 6个/ml,置于96孔板中,每孔100μl(2×10 5个细胞)。然后加入稀释好的一系列浓度的双特异性抗体,4℃孵育1h;离心去上清,用1%BSA的PBS溶液(PBSB)洗3遍,加入稀释好的AF488标记的山羊抗人IgG抗体(Jackson Immuno Research Inc.,货号109-545-088)或鼠抗6×his IgG抗体(R&D Systems,货号IC050P),4℃避光孵育1h;离心去上清,1%PBSB洗两遍,每孔再用100μl 1%多聚甲醛重悬,流式细胞仪检测信号强度。再以平均荧光强度作为Y轴,抗体浓度作为X轴,通过软件GraphPad进行分析,计算AB2K与Raji细胞结合的EC 50值。
如图7-1所示,AB2K可以很好的与CD20阳性细胞结合,其信号强度与抗体浓度成正比,计算得出AB2K与Raji细胞结合的EC 50值约为69.97nM。
8.2、AB2K介导效应细胞靶向杀伤CD20阳性肿瘤细胞
正常培养的Raji-luc细胞(购自北京百奥赛图基因生物技术有限公司),调整细胞密度1×10 5个/ml,加入96孔白色板中,40μl/孔。同时稀释一系列梯度的AB2K抗体,加入到上述96孔白板中,调整CIK细胞密度为5×10 5/ml,加入96孔白色板中,40μl/孔,使效靶比E:T=5:1,37℃培养24h。24h后,取出白色板,每孔加入100μl One-Glo(Promega,货号E6120)溶液,室温放置至少3min。酶标仪检测冷发光值。以萤光强度作为Y轴,抗体浓度作为X轴,通过软件GraphPad进行分析,计算AB2K杀伤Raji-luc细胞的EC 50值。
如图7-2显示,AB2K介导效应细胞杀伤Raji-luc细胞的EC 50只有42.8ng/ml,而且具有靶点特异性,作为阴性对照的AB7K7的EC 50为229.5ng/ml,对Raji-luc细胞几乎没有杀伤作用。
8.3、报告基因细胞株评价双特异性抗体活化T细胞的能力
含有NFAT RE报告基因的Jurkat T细胞(BPS Bioscience,货号60621),在双特异性抗体和CD20阳性Raji细胞同时存在的情况下可以过表达萤光素酶,通过检测萤光素酶的活性来定量Jurkat T细胞的活化程度。以双特异性抗体的浓度做X轴,荧光素信号作为Y轴,拟合四参数曲线。
如图7-3所示,AB2K可以特异性的活化Jurkat NFATRE Luc细胞,EC 50值为0.2006μg/ml,且其浓度和信号强度成正比,而作为阴性对照的AB7K7几乎没有活化T细胞的能力。
8.4、NPG小鼠皮下共接种人CIK细胞和人Burkkit’s淋巴瘤Raji细胞移植瘤模型
选取CD20表达阳性的人Burkkit’s淋巴瘤Raji细胞,观察双抗在NPG小鼠皮下共接种人CIK细胞和人Burkkit’s淋巴瘤Raji细胞的移植瘤模型中的体内抑瘤效果。
根据实施例3.1中的方法获得CIK细胞,选取七至八周龄的雌性NPG小鼠(购自北京维通达生物技术有限公司),收集处于对数生长期的Raji细胞,将4×10 6个Raji细胞和8×10 5个CIK细胞混合,接种于NPG小鼠右侧背部皮下。1h后,小鼠按体重随机分为5组,每组6只,分别腹腔给予相应药物,具体的,所有给药组均为每周给药2次,Rituxan(美罗华,罗氏制药)和双功能抗体AB2K分别都给予1mg/kg和0.1mg/kg。给药当天记为第0天,每周测量两次肿瘤的最大直径(D)和最小直径(d),并根据实施例3.1中的公式计算各组的肿瘤体积(mm 3)和各给药组的肿瘤生长抑制率TGI(%)。
如图7-4所示,在给药后第24天,PBS对照组平均肿瘤体积为1766.84±155.62mm 3;1mg/kg的Rituxan给药组的平均肿瘤体积为647.92±277.11mm 3,TGI为63.33%,相对于对照组有极显著性差异(P<0.01);0.1mg/kg的Rituxan给药组的平均肿瘤体积为1893.81±186.99mm 3,无药效;AB2K的1mg/kg给药组的平均肿瘤体积为116.18±39.50mm 3,TGI为93.42%,相对于对照组均有极显著性差异(P<0.01);AB2K的0.1mg/kg给药组的平均肿瘤体积为1226.03±340.05mm 3,TGI为30.61%,相对于对照组无显著性差异。上述结果表明,双功能特异性抗体AB2K在动物体内通过激活人类免疫细胞来抑制肿瘤细胞的生长,在相同的剂量下,双抗的药效优于单抗Rituxan,显示出良好的抗肿瘤效果。
8.5、NPG小鼠皮下共接种人CIK细胞和人Burkkit’s淋巴瘤Daudi细胞移植瘤模型
选取CD20表达阳性的人Burkkit’s淋巴瘤Daudi细胞,观察双抗在NPG小鼠皮下共接种人CIK细胞和人Burkkit’s淋巴瘤Daudi细胞的移植瘤模型中的体内抑瘤效果。
根据实施例3.1中的方法获得CIK细胞,选取七至八周龄的雌性NPG小鼠,收集处于对数生长期的Daudi细胞(购自中科院细胞库),将4×10 6个Daudi细胞和8×10 5个CIK细胞混合,接种于NPG小鼠右侧背部皮下。1小时后,小鼠按体重随机分为5组,每组6只,分别腹腔给予相应药物,所有给药组均为每周给药两次。Rituxan和双功能抗体AB2K分别都给予1mg/kg和0.1mg/kg。给药当天记为第0天,每周测量两次肿瘤的最大直径(D)和最小直径(d),并根据实施例3.1中的公式计算各组的肿瘤体积(mm 3)和各给药组的肿瘤生长抑制率TGI(%)。
如图7-5所示,在给药后第30天,PBS对照组平均肿瘤体积为889.68±192.13mm 3;1mg/kg的Rituxan给药组的平均肿瘤体积为241.51±44.91mm 3,TGI为72.85%,相对于对照组有极显著性差异(P<0.01);0.1mg/kg的Rituxan给药组的平均肿瘤体积为746.11±299.71mm 3,相对于对照组无显著性差异;AB2K的1mg/kg给药组的平均肿瘤体积为72.05±11.89mm 3,TGI为91.9%,相对于对照组均有极显著性差异(P<0.01);AB2K的0.1mg/kg给药组的平均肿瘤体积为75.36±11.81mm 3,TGI为91.53%,相对于对照组有极显著性差异(P<0.01)。上述结果表明,双功能特异性抗体AB2K在动物体内通过激活人类免疫细胞来抑制肿瘤细胞的生长,在相同的剂量下,双抗的药效优于单抗Rituxan,低剂量的AB2K也显示出良好的抗肿瘤效果。
实施例九、Anti-CD20×CD3双特异性抗体的安全性评价
评价AB2K的毒性反应情况,为后续的毒性试验确定合适的剂量范围及观察指标。选取3-4岁的雌性成年食蟹猴(购自广州相观生物科技有限公司),体重3-4kg,分为2组,每组1只,分为溶媒对照组和AB2K给药组。给药方式为蠕动泵静脉滴注1h,给药剂量和体积如下表7所示。分别于分别于第0天(D0)、第7天(D7)、第21天(D21)和第28天(D28)给药,共给药4次,药物剂量逐次递增。同时每周对动物体重进行称量。
表7、食蟹猴急性毒性评价给药安排
Figure PCTCN2019114818-appb-000027
试验期间,周期性的监测动物的临床症状、体重、食量、体温、心电图、血压、临床病理指标(血细胞计数、凝血功能指标和血液生化)、淋巴细胞亚群、细胞因子、药物血浆浓度测定和毒代分析。给予AB2K后,食蟹猴的体征无异常反应,体重较为稳定,体温变化波动幅度与溶媒对照组相似,给药期间各动物未见死亡或濒死。如图8所示,AB2K组给药后食蟹猴的白细胞变化与对照组变化趋势相似;而首次给予0.06mg/kg的AB2K对淋巴细胞的影响不大;二次给药后1h至6h,给药组动物的淋巴细胞细胞数量急剧下降,24小时后恢复正常;随着给药次数的增加,尽管剂量不断增加,但AB2K对淋巴细胞的细胞数量减少的影响越来越弱。此外,首次给予AB2K后,促进了IL-2、IL-6、TNF-ɑ因子的释放,微弱刺激IL-5的释放,但未刺激IFN-γ的释放;随着给药次数的增加,AB2K对细胞因子的促释放作用越来越不明显,说明机体适应了双特异性抗体的刺激。
实施例十、Anti-CD20×CD3双特异性抗体的药代动力学评价
雌性食蟹猴分成2组,每组1只,体重在3-4kg。第一组为空白对照组,第二组为AB2K给药组,给药剂量为0.3mg/kg。采血时间点分别为15min、1h、3h、6h、10h、24h、30h、48h、54h、72h、96h和144h,共13个时间点。取血收集血清,-80℃冻存。
采用ELISA方法测定血清中的AB2K药物浓度,利用PKSolver软件计算药代动力学参数,具体参数见表8。结果表明,AB2K在正常食蟹猴体内的T 1/2为8.5小时左右。
表8、双抗AB2K在食蟹猴体内的药代动力学参数
Figure PCTCN2019114818-appb-000028
实施例十一、Anti-CD19×CD3双特异性抗体的体外生物学功能评价
11.1、双特异性抗体与效应细胞和靶细胞结合活性的测定(FACS)
a)利用流式分析法检测双特异性抗体与CD19阳性肿瘤细胞Raji的结合活性
培养CD19表达阳性的肿瘤细胞Raji细胞,离心收集细胞。将收集的细胞用1%PBSB重悬,调整细胞密度为2×10 6个/ml,置于96孔板中,每孔100μl(2×10 5个细胞),4℃封闭0.5h。封闭后的细胞离心弃上清,加入稀释好的一系列浓度的双特异性抗体AB1K2及同型CD19双特异性抗体AB23P8、AB23P9和AB23P10,4℃孵育1h;离心去上清,用1%BSA的PBSB洗3遍,加入稀释好的AF647标记的山羊抗人IgG抗体,4℃避光孵育1h;离心去上清,1%PBSB洗两遍,每孔再用100μl 1%PF重悬,流式细胞仪检测信号强度。再以平均荧光强度作为Y轴,抗体浓度作为X轴,通过软件GraphPad进行分析,计算双特异性抗体与肿瘤细胞Raji结合的EC 50值。
结果显示,不同结构的双特异性抗体和CD19过表达肿瘤细胞均具有良好的结合活性。图9-1展示了不同结构的双特异性抗体和肿瘤细胞Raji的结合曲线。如表9-1所示,四个双特异性分子与Raji细胞结合的EC 50均在nM级水平。
表9-1:Anti-CD19×CD3双特异性抗体与肿瘤细胞Raji结合能力的测定
  AB1K2 AB23P8 AB23P9 AB23P10
EC 50(nM) 1.393 1.924 2.600 2.678
b)利用FACS检测双特异性抗体与人T细胞的结合活性
采用密度梯度离心法从人新鲜血液制备PBMC,用含10%热灭活FBS的1640培养基重悬,加入2μg/ml CD3抗体活化24h后,加入250IU/ml IL-2扩增培养7天,制备得到扩增的T细胞,经流式细胞分析仪检测细胞表面CD3表达呈阳性。待测样品制备及测定方法同实施例11.1a)。将1%PF重悬的细胞上机检测,以平均荧光强度,通过软件GraphPad进行分析,计算各双特异性抗体与人T细胞结合的EC 50值。
图9-2结果显示各双特异性抗体和CIK均具有良好的结合活性。如表9-2所示,AB1K2的EC 50约为16nM,AB23P8的结果与其相当,AB23P9、AB23P10的EC 50约为50nM和30nM。
表9-2:Anti-CD19×CD3双特异性抗体与效应细胞CIK结合能力的测定
  AB1K2 AB23P8 AB23P9 AB23P10
EC 50(nM) 15.69 16.69 49.52 32.41
c)通过FACS检测双特异性抗体与食蟹猴CIK细胞膜表面CD3的交叉反应性
采用密度梯度离心法从食蟹猴新鲜血液制备PBMC,用含10%热灭活FBS的1640培养基重悬,加入2μg/ml OKT3活化24h后,加入250IU/ml IL-2扩增培养7天,得到食蟹猴CIK细胞备用。将人CIK细胞和食蟹猴CIK细胞离心收集。待测样品制备及测定方法同实施例11.1a)。将1%多聚甲醛溶液重悬的细胞上机检测,以平均荧光强度,通过软件GraphPad进行分析,计算双特异性抗体分别与人CIK细胞和食蟹猴CIK细胞结合的EC 50值。
如图9-3所示,双特异性抗体AB1K2和AB23P10与食蟹猴T细胞的结合能力几乎没有差别,流式细胞仪检测其结合的EC 50大约在5.5nM,且两个双特异性抗体与食蟹猴T细胞的结合能力强于与人T细胞的结合能力。
11.2、双特异性抗体与抗原的结合能力测定
通过双抗原夹心ELISA法鉴定双特异性抗体与可溶CD3和CD19的结合。
将CD19蛋白(ACRO Biosystems,货号CD9-H5251)以PBS稀释成1μg/ml的浓度,加入96孔板中,100μl/孔,4℃包被过夜。然后用1%脱脂奶粉室温封闭1h。同时稀释各双特异性抗体,用5倍梯度稀释,共10个浓度梯度。然后用PBST清洗96孔板,加入稀释好的双特异性抗体,设不加抗体的对照孔,室温孵育2h。将未结合的双特异性抗体以PBST洗去,将生物素化的CD3E&CD3D(ACRO Biosystem,货号CDD-H82W1)以50ng/ml混合Streptavdin HRP(BD,货号554066)加入96孔板中,100μl/孔,室温孵育1h。其后,将96孔板以PBST清洗,加入TMB,100μl/孔,室温显色15min,然后加入0.2M H 2SO 4终止 显色反应。用酶标仪检测A450-620nm的吸光值。通过软件GraphPad进行分析,计算双特异性抗体与两个抗原结合的EC 50值。
结果显示各个双特异性抗体都能同时特异性地结合CD3和CD19分子,并且随抗体浓度的变化呈现良好的剂量依赖性(图9-4)。几种双特异性抗体与可溶CD3和CD19的结合能力如表9-3所示,其EC 50值从0.19nM至0.47nM,两端结合能力几乎相差无几。
表9-3:Anti-CD19×CD3双特异性抗体与CD3和CD19分子结合能力的测定
  AB1K2 AB23P8 AB23P9 AB23P10
EC 50(nM) 0.2185 0.1925 0.2211 0.4704
11.3、报告基因细胞株评价双特异性抗体活化T细胞的能力
含有NFAT RE报告基因的Jurkat T细胞,在双特异性抗体和靶细胞Raji细胞同时存在的情况下可以过表达萤光素酶,通过检测萤光素酶的活性来定量Jurkat T细胞的活化程度。以双特异性抗体的浓度做X轴,荧光素信号作为Y轴,拟合四参数曲线。
根据图9-5~图9-6的实验结果显示,在没有CD19过表达靶细胞的存在下,Jurkat T细胞几乎不能被活化,只有当双抗及两端靶细胞都存在的情况下,T细胞才会被活化。各抗体活化Jurkat T细胞的能力显示在表9-4中,各双特异性抗体活化Jurkat T细胞的能力几乎相当。
表9-4:Anti-CD19×CD3双特异性抗体活化报告基因细胞株Jurkat T细胞能力的测定
  AB1K2 AB23P8 AB23P9 AB23P10 Blincyto
EC 50(nM) 1.080 1.123 0.8527 0.7093 2.714
11.4、双特异性抗体介导T细胞杀伤肿瘤细胞的能力
正常培养的肿瘤细胞系,包括Raji-Luc、NALM6、Reh细胞(均购自上海中科院细胞库)作为靶细胞,收集细胞悬液,离心,调整细胞密度2×10 5个/ml,加入96孔细胞培养板中,100μl/孔,培养过夜。按实验设计稀释相应抗体,50μl/孔,无需加入抗体的孔则用相同体积的培养基补入。然后加入5倍于靶细胞数的效应细胞(人PBMC或者扩增培养的CIK细胞),100μl/孔,设置对照孔,无需加入效应细胞的孔则用相同体积的培养基补入。培养48h后,Raji-Luc细胞用Steady-Glo Luciferase Assay System(Promega)检测,其它细胞使用CytoTox96 Non-Radio Cytotoxicity Assay(Promega)检测。以检测结果作为Y轴,双特异性抗体浓度作为X轴,通过软件GraphPad进行分析,计算并比较各双特异性抗体介导杀伤肿瘤细胞的能力。
各双特异性抗体介导效应细胞杀伤肿瘤细胞的EC 50值归纳在表9-5~表9-7中,结果显示各双特异性抗体对CD19高表达的肿瘤细胞均呈现非常显著的杀伤作用,其EC 50达到pM级别,并且呈剂量依赖性。
表9-5:双特异性抗体介导CIK杀伤肿瘤细胞的EC 50
Figure PCTCN2019114818-appb-000029
备注:-表示未进行检测。
表9-6:双特异性抗体介导PBMC杀伤肿瘤细胞的EC 50
Figure PCTCN2019114818-appb-000030
备注:-表示未进行检测。
表9-7:双特异性抗体介导CIK杀伤不同肿瘤细胞的EC 50
EC 50(pM) AB1K2 AB23P10 Blincyto
NALM6 - 4.402 77.29
Reh 1.709 1.640 11.87
备注:-表示未进行检测。
实施例十二、Anti-Mucin1×CD3双特异性抗体的体外生物学功能评价
12.1、AB11K与高表达Mucin1的肿瘤细胞以及与人或食蟹猴原代T细胞的结合活性
培养人乳腺癌细胞MCF-7、BT-549、HCC70、T-47D和HCC1954,人卵巢癌细胞SK-OV-3,人宫颈癌细胞Hela以及人结肠癌细胞HT-29,其中MCF-7、BT-549、T-47D、HCC1954、SK-OV-3、Hela和HT-29细胞购自中国科学院细胞库,HCC70购自南京科佰生物科技有限公司。上述细胞分别用胰酶消化后离心收集用1%PBSB重悬,分别调整细胞密度为5×10 5个/ml置于96孔板中,100μl/孔,4℃封闭30min;人或食蟹猴原代T细胞,离心收集细胞用1%PBSB重悬,分别调整细胞密度为5×10 5个/ml置于96孔板中,100μl/孔,4℃封闭30min。用1%PBSB洗涤细胞1次。然后100μl/孔加入稀释后的一系列浓度的AB11K,4℃孵育1h。离心去上清,用1%PBSB清洗2遍,加入稀释好的AF647 goat anti human IgG(H+L)抗体(Jackson Immuno Research Inc.1:250稀释),100μl/孔,4℃避光孵育1h。离心去上清,洗板后150μl/孔加入4%PFA重悬细胞,流式细胞仪检测信号强度。以平均荧光强度作为Y轴,抗体摩尔浓度作为X轴,通过软件GraphPad Prism 6进行分析,计算AB11K与上述肿瘤细胞以及人或食蟹猴原代T细胞结合的EC 50值。
如图10-1和表10-1所示,在细胞水平上,AB11K与上述肿瘤细胞以及人或食蟹猴原代T细胞有结合,其信号强度与抗体浓度成正比,计算得出AB11K与上述肿瘤细胞的结合EC 50达到5nM-300nM之间,其中与T-47D和Hela结合最强,其次为HCC70、HCC1954、SKOV-3和BT-549,而与MCF-7和HT-29结合 较弱,未达到上平台。AB11K与人或食蟹猴T细胞结合的EC 50值分别为13.43nM和9.996nM,其与食蟹猴T细胞结合的能力和人T细胞结合的能力大致相当。
表10-1:AB11K与高表达Mucin1的肿瘤细胞或与人、食蟹猴T细胞结合的EC 50结果
细胞名称 EC 50(nM)
MCF-7 /
BT-549 287.2
HCC70 58.98
T-47D 5.053
HCC1954 81.24
Hela 5.515
SK-OV-3 93.72
HT-29 /
人T细胞 13.43
食蟹猴T细胞 9.996
12.2、AB11K介导T细胞杀伤肿瘤细胞的能力
正常培养的MCF-7、BT-549、HCC70、T-47D、HCC1954、SK-OV-3、Hela以及HT-29细胞分别作为靶细胞,胰酶消化后调整细胞密度2×10 5个/ml,加入96孔细胞培养板中,100μl/孔,37℃、5%CO 2培养过夜。T细胞组加入对应靶细胞数5倍的效应细胞(扩增培养的T细胞),PBMC组加入对应靶细胞数10倍的效应细胞(健康志愿者的PBMC),100μl/孔。设置空白孔和无需加入效应细胞的孔。将AB11K用培养基稀释成50μg/mL,4倍比稀释后,50μl/孔加入96孔板,37℃、5%CO 2培养48h。细胞培养板用PBS洗涤3次,去除悬浮细胞。加入含10%CCK-8的培养基,100μl/孔,37℃、5%CO 2孵育4h。于450nm和620nm下读数,根据[OD450-OD620]数值计算抗体的特异性杀伤率,公式如下:
Figure PCTCN2019114818-appb-000031
以特异性杀伤率(%)作为Y轴,抗体摩尔浓度作为X轴,通过软件GraphPad Prism 6进行分析,计算AB11K介导杀伤肿瘤靶细胞的EC 50
如图10-2和10-3以及表10-2所示,双特异性抗体AB11K介导效应细胞杀伤高表达Mucin1的肿瘤细胞呈现出非常显著的杀伤作用,当扩增的T细胞作为效应细胞时,AB11K的最大特异性杀伤均达到99%以上,其中对MCF-7、BT-549、HCC70和T-47D的特异性杀伤效果最好,EC 50达到100pM-200pM,其次为Hela、HCC1954和SK-OV-3,而特异性杀伤HT-29的效果较弱,EC 50较大,约为1577pM。当PBMC作为效应细胞时,AB11K特异性杀伤MCF-7、BT-549的效果最好,最大特异性杀伤达到95%以上,EC 50分别为131.2pM和955.9pM,其次为HCC1954和HCC70,而特异性杀伤Hela和HT-29的EC 50较大,分别为4810pM和9550pM。
表10-2:AB11K介导效应细胞杀伤肿瘤细胞的EC 50结果
Figure PCTCN2019114818-appb-000032
12.3、双特异性抗体活化T细胞能力评价
含有NFAT RE报告基因的Jurkat T细胞(购自BPS Bioscience),在双特异性抗体和Mucin1阳性细胞同时存在的情况下可以过表达萤光素酶,通过检测萤光素酶的活性来定量Jurkat T细胞的活化程度。
具体的,MCF-7、BT-549、HCC70、T-47D、HCC1954、SK-OV-3、Hela以及HT-29细胞胰酶消化后调整细胞密度2×10 5个/ml,50μl/孔加入96孔细胞培养板中,37℃、5%CO 2培养过夜。Jurkat-NFAT细胞调整细胞密度到2.5×10 6个/ml,40μl/孔。AB11K用培养基稀释成400μg/mL,4倍比稀释后,10μl/孔加入96孔细胞培养板中,37℃、5%CO 2培养箱中孵育4h。加入
Figure PCTCN2019114818-appb-000033
Luciferase,100μl/孔,反应5min后,用酶标仪检测冷发光值。以荧光素强度作为Y轴,抗体的摩尔浓度做X轴,通过软件GraphPad Prism 6进行分析,计算双特异性抗体活化T细胞的EC 50
如图10-4和表10-3所示,AB11K可以特异性的活化Jurkat-NFAT细胞,EC 50值均在nM级别,且其浓度和信号强度成正比。
表10-3:AB11K活化T细胞能力的EC 50结果
Figure PCTCN2019114818-appb-000034
实施例十三、Anti-EGFR×CD3双特异性抗体在小鼠移植瘤模型中的药效学研究
选取EGFR高表达的人皮肤癌A431细胞小鼠移植瘤模型对抗EGFR×CD3双功能特异性抗体AB8K、AB2K和Erbitux(爱必妥,默克里昂制药)进行体内抑制肿瘤生长药效学研究。
根据实施例3.1中的方法获得CIK细胞,收集处于对数生长期的A431细胞。选取七至八周龄的雌性NPG小鼠,将3×10 6个A431细胞和1×10 6个CIK细胞混合,接种于NPG小鼠右侧背部皮下。1小时后,小鼠按体重随机分为5组,每组6只,腹腔给予相应的药物。所有给药组和对照组PBS组均为每周给药两次,AB2K和Erbitux的给药剂量为1mg/kg。AB8K的给药剂量设置为1mg/kg和0.1mg/kg。给药当天记为第0天,每周测量两次肿瘤的最大直径(D)和最小直径(d),并根据实施例3.1中的公式计算各组的肿瘤体积(mm 3)和各给药组的肿瘤生长抑制率TGI(%)。
如图11所示,在给药后第17天,PBS对照组平均肿瘤体积为1370.76±216.35mm 3;1mg/kg的Erbitux给药组的平均肿瘤体积为1060.35±115.86mm 3,相对于对照组无显著性差异;1mg/kg AB2K给药组的平均肿瘤体积为877.76±120.38mm 3,相对于对照组无显著性差异;0.1mg/kg和1mg/kg的AB8K给药组的平均肿瘤体积分别为233.30±135.51mm 3和8.14±8.14mm 3,TGI分别为82.98%和98.36%,相对于对照组均有极显著性差异(p<0.01),其中AB8K的1mg/kg剂量组的6只小鼠中有5只小鼠的肿瘤完全消退。AB2K为AB8K的同型对照,A431细胞不表达CD20,而AB2K在此模型中未能见到药效,由此说明双抗的结构相对较安全,不会引起非特异的杀伤作用。CIK细胞90%以上均为激活的T细胞,AB8K在动物体内通过激活人类免疫细胞来抑制和杀伤肿瘤细胞,在1mg/kg的剂量下能完全抑制肿瘤的生长,在0.1mg/kg的剂量下也显示出良好的抗肿瘤效果。
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (63)

  1. 一种双特异性抗体,所述双特异性抗体分子由两条相同的多肽链以共价键结合形成四价同源二聚体,每条多肽链从N端至C端依次包含特异性结合肿瘤相关抗原的第一单链Fv、特异性结合效应细胞抗原CD3的第二单链Fv和Fc片段;其中,第一和第二单链Fv通过连接肽相连,而第二单链Fv与Fc片段直接相连或通过连接肽相连,且所述Fc片段不具有CDC、ADCC和ADCP等效应子功能。
  2. 如权利要求1所述的双特异性抗体,其特征在于,所述第一单链Fv所包含的VH结构域和VL结构域通过连接肽连接,且所述连接肽的氨基酸序列为(GGGGX) n,X包含Ser或Ala,X优选Ser;n为1-5的自然数,n优选3。
  3. 如权利要求1所述的双特异性抗体,其特征在于,所述肿瘤相关抗原包含但不限于:CD19、CD20、CD22、CD25、CD30、CD33、CD38、CD39、CD40、CD47、CD52、CD73、CD74、CD123、CD133、CD138、BCMA、CA125、CEA、CS1、DLL3、DLL4、EGFR、EpCAM、FLT3、gpA33、GPC-3、Her2、MEGE-A3、NYESO1、PSMA、TAG-72、CIX、叶酸盐结合蛋白、GD2、GD3、GM2、VEGF、VEGFR2、VEGFR3、钙黏素(Cadherin)、整合素(Integrin)、间皮素(Mesothelin)、Claudin18、αVβ3、α5β1、ERBB3、c-MET、IGF1R、EPHA3、TRAILR1、TRAILR2、RANKL、B7蛋白家族、粘蛋白家族(Mucin)、FAP和肌腱蛋白(Tenascin);优选地,所述肿瘤相关抗原为CD19、CD20、CD22、CD30、CD38、BCMA、CS1、EpCAM、CEA、Her2、EGFR、CA125、Mucin1、GPC-3和Mesothelin。
  4. 如权利要求1所述的双特异性抗体,其特征在于,所述第一单链Fv特异性结合CD19,其选自下组:
    (i)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:9、10和11所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:12、13和14所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
    (ii)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:17、18和19所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:20、21和22所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
    (iii)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:25、26和27所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:28、29和30所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
    (iv)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:33、34和35所示,或与上述 序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:36、37和38所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
  5. 如权利要求1所述的双特异性抗体,其特征在于,所述第一单链Fv特异性结合CD20,其选自下组:
    (i)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:41、42和43所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:44、45和46所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
    (ii)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:49、50和51所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:52、53和54所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
    (iii)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:57、58和59所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:60、61和62所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
    (iv)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:65、66和67所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:68、69和70所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
  6. 如权利要求1所述的双特异性抗体,其特征在于,所述第一单链Fv特异性结合CD22,其选自下组:
    (i)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:73、74和75所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:76、77和78所示,或与上述序列中的任何基本上相同(例如至少80%、85%、 90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
    (ii)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:81、82和83所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:84、85和86所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
  7. 如权利要求1所述的双特异性抗体,其特征在于,所述第一单链Fv特异性结合CD30,其选自下组:
    (i)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:89、90和91所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:92、93和94所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
    (ii)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:97、98和99所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:100、101和102所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
  8. 如权利要求1所述的双特异性抗体,其特征在于,所述第一单链Fv特异性结合EpCAM,其选自下组:
    (i)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:105、106和107所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:108、109和110所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
    (ii)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:113、114和115所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:116、117和118所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
  9. 如权利要求1所述的双特异性抗体,其特征在于,所述第一单链Fv特异性结合CEA,其选自下组:
    (i)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:121、122和123所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:124、125和126所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
    (ii)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:129、130和131所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:132、133和134所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
    (iii)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:137、138和139所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:140、141和142所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
  10. 如权利要求1所述的双特异性抗体,其特征在于,所述第一单链Fv特异性结合Her2,其选自下组:
    (i)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:145、146和147所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:148、149和150所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
    (ii)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:153、154和155所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:156、157和158所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
    (iii)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:161、162和163所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:164、165和166所示,或与上述序列中的任何基本上相同(例如至少80%、 85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
  11. 如权利要求1所述的双特异性抗体,其特征在于,所述第一单链Fv特异性结合EGFR,其选自下组:
    (i)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:169、170和171所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:172、173和174所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
    (ii)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:177、178和179所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:180、181和182所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
    (iii)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:185、186和187所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:188、189和190所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
  12. 如权利要求1所述的双特异性抗体,其特征在于,所述第一单链Fv特异性结合GPC-3,其VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:193、194和195所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:196、197和198所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
  13. 如权利要求1所述的双特异性抗体,其特征在于,所述第一单链Fv特异性结合Mesothelin,其VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:201、202和203所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:204、205和206所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
  14. 如权利要求1所述的双特异性抗体,其特征在于,所述第一单链Fv特异性结合Mucin1,其选自下组:
    (i)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:209、210和211所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:212、213和214所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
    (ii)VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:217、218和219所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:220、221和222所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
  15. 如权利要求1所述的双特异性抗体,其特征在于,所述第一单链Fv特异性结合CA125,其VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:225、226和227所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:228、229和230所示,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
  16. 如权利要求1或4所述的双特异性抗体,其特征在于,所述第一单链Fv特异性结合CD19,其选自下组:
    (i)VH结构域包含如SEQ ID NO:15所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:16所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
    (ii)VH结构域包含如SEQ ID NO:23所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:24所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
    (iii)VH结构域包含如SEQ ID NO:31所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:32所示的氨基酸序列,或与上述序列 中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
    (iv)VH结构域包含如SEQ ID NO:39所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:40所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
  17. 如权利要求1或5所述的双特异性抗体,其特征在于,所述第一单链Fv特异性结合CD20,其选自下组:
    (i)VH结构域包含如SEQ ID NO:47所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:48所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
    (ii)VH结构域包含如SEQ ID NO:55所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:56所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
    (iii)VH结构域包含如SEQ ID NO:63所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:64所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
    (iv)VH结构域包含如SEQ ID NO:71所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:72所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
  18. 如权利要求1或6所述的双特异性抗体,其特征在于,所述第一单链Fv特异性结合CD22,其选自下组:
    (i)VH结构域包含如SEQ ID NO:79所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:80所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一 个或更多个氨基酸取代(例如保守性取代))的序列;
    (ii)VH结构域包含如SEQ ID NO:87所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:88所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
  19. 如权利要求1或7所述的双特异性抗体,其特征在于,所述第一单链Fv特异性结合CD30,其选自下组:
    (i)VH结构域包含如SEQ ID NO:95所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:96所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
    (ii)VH结构域包含如SEQ ID NO:103所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:104所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
  20. 如权利要求1或8所述的双特异性抗体,其特征在于,更优选地,所述第一单链Fv特异性结合EpCAM,其选自下组:
    (i)VH结构域包含如SEQ ID NO:111所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:112所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
    (ii)VH结构域包含如SEQ ID NO:119所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:120所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
  21. 如权利要求1或9所述的双特异性抗体,其特征在于,所述第一单链Fv特异性结合CEA,其选自下组:
    (i)VH结构域包含如SEQ ID NO:127所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:128所示的氨基酸序列,或与上述序列 中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
    (ii)VH结构域包含如SEQ ID NO:135所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:136所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
    (iii)VH结构域包含如SEQ ID NO:143所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:144所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
  22. 如权利要求1或10所述的双特异性抗体,其特征在于,所述第一单链Fv特异性结合Her2,其选自下组:
    (i)VH结构域包含如SEQ ID NO:151所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:152所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
    (ii)VH结构域包含如SEQ ID NO:159所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:160所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
    (iii)VH结构域包含如SEQ ID NO:167所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:168所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
  23. 如权利要求1或11所述的双特异性抗体,其特征在于,所述第一单链Fv特异性结合EGFR,其选自下组:
    (i)VH结构域包含如SEQ ID NO:175所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:176所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具 有一个或更多个氨基酸取代(例如保守性取代))的序列;
    (ii)VH结构域包含如SEQ ID NO:183所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:184所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
    (iii)VH结构域包含如SEQ ID NO:191所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:192所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
  24. 如权利要求1或12所述的双特异性抗体,其特征在于,所述第一单链Fv特异性结合GPC-3,其VH结构域包含如SEQ ID NO:199所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:200所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
  25. 如权利要求1或13所述的双特异性抗体,其特征在于,所述第一单链Fv特异性结合Mesothelin,其VH结构域包含如SEQ ID NO:207所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:208所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
  26. 如权利要求1或14所述的双特异性抗体,其特征在于,所述第一单链Fv特异性结合Mucin1,其选自下组:
    (i)VH结构域包含如SEQ ID NO:215所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:216所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;
    (ii)VH结构域包含如SEQ ID NO:223所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:224所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
  27. 如权利要求1或15所述的双特异性抗体,其特征在于,所述第一单链Fv特异性结合CA125,其VH结构域包含如SEQ ID NO:231所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:232所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
  28. 如权利要求1所述的双特异性抗体,其特征在于,所述第二单链Fv所包含的VH结构域和VL结构域通过连接肽连接,且所述连接肽的氨基酸序列为(GGGGX) n,X包含Ser或Ala,X优选Ser;n为1-5的自然数,n优选3。
  29. 如权利要求1或28所述的双特异性抗体,其特征在于,所述第二单链Fv在体外结合亲和力分析中以大于约50nM,或大于100nM,或大于300nM,或大于500nM的EC 50值结合于效应细胞;更优选地,所述双特异性抗体的第二单链Fv不仅能与人CD3结合,还可与食蟹猴或恒河猴的CD3特异性结合。
  30. 如权利要求29所述的双特异性抗体,其特征在于,所述第二单链Fv的VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:241、242和243所示,或与上述序列至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:244、245和246所示,或与上述序列至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代的序列。
  31. 如权利要求29所述的双特异性抗体,其特征在于,所述第二单链Fv的VH结构域包含的HCDR1、HCDR2和HCDR3分别如SEQ ID NO:249、250和251所示,或与上述序列至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代的序列;和其VL结构域包含的LCDR1、LCDR2和LCDR3分别如SEQ ID NO:252、253和254所示,或与上述序列至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代的序列。
  32. 如权利要求30所述的双特异性抗体,其特征在于,所述第二单链Fv特异性结合CD3,其VH结构域包含如SEQ ID NO:247所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:248所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
  33. 如权利要求31所述的双特异性抗体,其特征在于,所述第二单链Fv特异性结合CD3,其VH结构域包含如SEQ ID NO:255所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列;和其VL结构域包含如SEQ ID NO:256所示的氨基酸序列,或与上述序列中的任何基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高度相似的或具有一个或更多个氨基酸取代(例如保守性取代))的序列。
  34. 如权利要求1所述的双特异性抗体,其特征在于,所述连接第一单链Fv和第二单链Fv的连接肽由柔 性肽和刚性肽组成;且所述柔性肽包含2个或更多个氨基酸,并优选自下列几种氨基酸:Gly(G)、Ser(S)、Ala(A)和Thr(T);更优地,所述柔性肽包含G和S残基;最优地,所述柔性肽的氨基酸组成结构通式为G xS y(GGGGS) z,其中x,y和z是大于或等于0的整数,且x+y+z≥1;所述刚性肽来自天然人绒毛膜促性腺激素β亚基羧基末端第118至145位氨基酸组成的全长序列或其截短的片段;优选地,所述刚性肽包含SSSSKAPPPS。
  35. 如权利要求34所述的双特异性抗体,其特征在于,所述连接肽包含如SEQ ID NO:258所示的氨基酸序列。
  36. 如权利要求1所述的双特异性抗体,其特征在于,连接所述Fc片段与第二单链Fv的连接肽包含1-20个氨基酸,并优选自下列几种氨基酸:Gly(G)、Ser(S)、Ala(A)和Thr(T);较优选自Gly(G)和Ser(S);更优选地,所述连接肽组成为(GGGGS)n,n=1,2,3或4。
  37. 如权利要求1或36所述的双特异性抗体,其特征在于,所述Fc片段包含来源于人免疫球蛋白重链恒定区的铰链区、CH2和CH3结构域;较优地,Fc片段选自人IgG1、IgG2、IgG3、IgG4、IgM、IgA1、IgA2、IgD和IgE的重链恒定区;较优地,Fc片段选自人IgG1、IgG2、IgG3和IgG4的重链恒定区;更优地,Fc片段选自人IgG1或IgG4的重链恒定区;并且,所述Fc片段与其所源自的天然序列相比具有一个或多个氨基酸的置换、缺失或添加。
  38. 如权利要求37所述的双特异性抗体,其特征在于,所述Fc片段包含具有降低或消除的效应子功能(ADCP、ADCC和CDC效应)的氨基酸置换、缺失或添加。
  39. 如权利要求38所述的双特异性抗体,其特征在于,所述Fc片段包含根据EU编号系统确定的L234A/L235A/P331S的氨基酸置换。
  40. 如权利要求38或39所述的双特异性抗体,其特征在于,所述Fc片段还包含具有以下一种或多种性质的氨基酸的置换、缺失或添加:
    (i)与新生儿受体(FcRn)的结合亲和力增强;
    (ii)降低或消除的糖基化;
    (iii)降低或消除的电荷异质性。
  41. 如权利要求40所述的双特异性抗体,其特征在于,所述Fc片段还包含以下一个或多个氨基酸的置换、缺失或添加:
    (i)根据EU编号系统确定的M428L、T250Q/M428L、M428L/N434S或M252Y/S254T/T256E的氨基酸置换;
    (ii)根据EU编号系统确定的N297A的氨基酸置换;
    (iii)根据EU编号系统确定的K447的氨基酸缺失。
  42. 如权利要求40所述的双特异性抗体,其特征在于,所述Fc片段的氨基酸序列如SEQ ID NO:263所示,它与其所源自的天然序列相比具有根据EU编号系统确定的以下6个氨基酸的置换或取代:L234A/L235A/N297A/P331S/T250Q/M428L;且缺失或删除了根据EU编号系统确定的K447。
  43. 如权利要求1所述的双特异性抗体,其特征在于,所述双特异性抗体结合人CD19和CD3,其氨基酸序列如下:
    (i)SEQ ID NO:264所示的序列;
    (ii)与SEQ ID NO:264所示的序列相比具有一个或几个置换、缺失或添加(例如1个,2个,3个,4个或5个置换、缺失或添加)的序列;或
    (iii)与SEQ ID NO:264所示的序列具有至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%的序列同一性的序列。
  44. 如权利要求1所述的双特异性抗体,其特征在于,所述双特异性抗体结合人CD19和CD3,其氨基酸序列如下:
    (i)SEQ ID NO:283所示的序列;
    (ii)与SEQ ID NO:283所示的序列相比具有一个或几个置换、缺失或添加(例如1个,2个,3个,4个或5个置换、缺失或添加)的序列;或
    (iii)与SEQ ID NO:283所示的序列具有至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%的序列同一性的序列。
  45. 如权利要求1所述的双特异性抗体,其特征在于,所述双特异性抗体结合人CD20和CD3,其氨基酸序列如下:
    (i)SEQ ID NO:266所示的序列;
    (ii)与SEQ ID NO:266所示的序列相比具有一个或几个置换、缺失或添加(例如1个,2个,3个,4个或5个置换、缺失或添加)的序列;或
    (iii)与SEQ ID NO:266所示的序列具有至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%的序列同一性的序列。
  46. 如权利要求1所述的双特异性抗体,其特征在于,所述双特异性抗体结合人CD22和CD3,其氨基酸序列如下:
    (i)SEQ ID NO:268所示的序列;
    (ii)与SEQ ID NO:268所示的序列相比具有一个或几个置换、缺失或添加(例如1个,2个,3个,4个或5个置换、缺失或添加)的序列;或
    (iii)与SEQ ID NO:268所示的序列具有至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%的序列同一性的序列。
  47. 如权利要求1所述的双特异性抗体,其特征在于,所述双特异性抗体结合人CD30和CD3,其氨基酸序列如下:
    (i)SEQ ID NO:270所示的序列;
    (ii)与SEQ ID NO:270所示的序列相比具有一个或几个置换、缺失或添加(例如1个,2个,3个,4个或5个置换、缺失或添加)的序列;或
    (iii)与SEQ ID NO:270所示的序列具有至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%的序列同一性的序列。
  48. 如权利要求1所述的双特异性抗体,其特征在于,所述双特异性抗体结合人EpCAM和CD3,其氨基酸序列如下:
    (i)SEQ ID NO:272所示的序列;
    (ii)与SEQ ID NO:272所示的序列相比具有一个或几个置换、缺失或添加(例如1个,2个,3个,4个或5个置换、缺失或添加)的序列;或
    (iii)与SEQ ID NO:272所示的序列具有至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%的序列同一性的序列。
  49. 如权利要求1所述的双特异性抗体,其特征在于,所述双特异性抗体结合人CEA和CD3,其氨基酸序列如下:
    (i)SEQ ID NO:274所示的序列;
    (ii)与SEQ ID NO:274所示的序列相比具有一个或几个置换、缺失或添加(例如1个,2个,3个,4个或5个置换、缺失或添加)的序列;或
    (iii)与SEQ ID NO:274所示的序列具有至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%的序列同一性的序列。
  50. 如权利要求1所述的双特异性抗体,其特征在于,所述双特异性抗体结合人Her2和CD3,其氨基酸序列如下:
    (i)SEQ ID NO:8所示的序列;
    (ii)与SEQ ID NO:8所示的序列相比具有一个或几个置换、缺失或添加(例如1个,2个,3个,4个或5个置换、缺失或添加)的序列;或
    (iii)与SEQ ID NO:8所示的序列具有至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%的序列同一性的序列。
  51. 如权利要求1所述的双特异性抗体,其特征在于,所述双特异性抗体结合人EGFR和CD3,其氨基酸序列如下:
    (i)SEQ ID NO:277所示的序列;
    (ii)与SEQ ID NO:277所示的序列相比具有一个或几个置换、缺失或添加(例如1个,2个,3个,4个或5个置换、缺失或添加)的序列;或
    (iii)与SEQ ID NO:277所示的序列具有至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%的序列同一性的序列。
  52. 如权利要求1所述的双特异性抗体,其特征在于,所述双特异性抗体结合人GPC-3和CD3,其氨基 酸序列如下:
    (i)SEQ ID NO:279所示的序列;
    (ii)与SEQ ID NO:279所示的序列相比具有一个或几个置换、缺失或添加(例如1个,2个,3个,4个或5个置换、缺失或添加)的序列;或
    (iii)与SEQ ID NO:279所示的序列具有至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%的序列同一性的序列。
  53. 如权利要求1所述的双特异性抗体,其特征在于,所述双特异性抗体结合人Mesothelin和CD3,其氨基酸序列如下:
    (i)SEQ ID NO:281所示的序列;
    (ii)与SEQ ID NO:281所示的序列相比具有一个或几个置换、缺失或添加(例如1个,2个,3个,4个或5个置换、缺失或添加)的序列;或
    (iii)与SEQ ID NO:281所示的序列具有至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%的序列同一性的序列。
  54. 如权利要求1所述的双特异性抗体,其特征在于,所述双特异性抗体结合人Mucin1和CD3,其氨基酸序列如下:
    (i)SEQ ID NO:285所示的序列;
    (ii)与SEQ ID NO:285所示的序列相比具有一个或几个置换、缺失或添加(例如1个,2个,3个,4个或5个置换、缺失或添加)的序列;或
    (iii)与SEQ ID NO:285所示的序列具有至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%的序列同一性的序列。
  55. 编码如权利要求1-54任一项所述双特异性抗体的DNA分子。
  56. 如权利要求55所述的DNA分子具有如SEQ ID NO:265、267、269、271、273、275、276、278、280、282、284或286所示的核苷酸序列。
  57. 包含如权利要求55或56所述DNA分子的载体。
  58. 包含如权利要求57所述载体的宿主细胞;所述宿主细胞包含原核细胞、酵母或哺乳动物细胞,优选为CHO细胞。
  59. 一种药物组合物,所述组合物包含如权利要求1-54任一项所述的双特异性抗体以及可药用赋形剂、载体或稀释剂。
  60. 制备如权利要求1-54任一项所述双特异性抗体的方法,其包括:(a)获得双特异性抗体的融合基因,构建双特异性抗体的表达载体;(b)通过基因工程方法将上述表达载体转染到宿主细胞中;(c)在允许产生所述双特异性抗体的条件下培养上述宿主细胞;(d)分离、纯化产生的所述抗体;
    其中,步骤(a)中所述表达载体选自质粒、细菌和病毒中的一种或多种,优选地,所述表达载体为 pCDNA3.4载体;
    其中,步骤(b)通过基因工程方法将所构建的载体转染入宿主细胞中,所述宿主细胞包含原核细胞、酵母或哺乳动物细胞,如CHO细胞、NS0细胞或其它哺乳动物细胞,优选为CHO细胞;
    其中,步骤(d)通过常规的免疫球蛋白纯化方法,包含蛋白质A亲和层析和离子交换、疏水层析或分子筛方法分离、纯化所述双特异性抗体。
  61. 如权利要求1-54任一项所述双特异性抗体在制备治疗、预防或缓解癌症/肿瘤的药物中的用途,所述癌症的实例包括但不限于间皮瘤、鳞状细胞瘤、骨髓瘤、骨肉瘤、胶质母细胞瘤、神经胶质瘤、恶性上皮肿瘤、腺癌、黑色素瘤、肉瘤、急性和慢性白血病、淋巴瘤和脑膜瘤、霍奇金病、塞扎莱综合征、多发性骨髓瘤,肺癌、非小细胞肺癌、小细胞肺癌、喉癌、乳腺癌、头颈癌、膀胱癌、子宫癌、皮肤癌、前列腺癌、宫颈癌、阴道癌、胃癌、肾细胞癌、肾癌、胰腺癌、结直肠癌、子宫内膜癌、食道癌、肝胆癌、骨癌、皮肤癌和血液癌,以及鼻腔鼻窦癌、鼻咽癌、口腔癌、口咽癌、喉头癌、喉下部癌、唾液腺癌、纵隔膜癌、胃癌、小肠癌、结肠癌、直肠和肛门区域的癌症、输尿管癌、尿道癌、阴茎癌、睾丸癌、外阴癌、内分泌系统癌症、中枢神经系统癌症和浆细胞癌。
  62. 如权利要求1-54任一项所述双特异性抗体用于增强或刺激免疫应答或功能的方法,其包含对患者/受试者个体施用治疗有效量的所述双特异性抗体。
  63. 如权利要求1-54任一项所述双特异性抗体用于治疗肿瘤、延迟其进展、降低/抑制其复发的方法,其包括将有效量的所述双特异性抗体给予或施用至所述患有以上疾病或病症的个体;所述肿瘤的实例包括但不限于间皮瘤、鳞状细胞瘤、骨髓瘤、骨肉瘤、胶质母细胞瘤、神经胶质瘤、恶性上皮肿瘤、腺癌、黑色素瘤、肉瘤、急性和慢性白血病、淋巴瘤和脑膜瘤、霍奇金病、塞扎莱综合征、多发性骨髓瘤,肺癌、非小细胞肺癌、小细胞肺癌、喉癌、乳腺癌、头颈癌、膀胱癌、子宫癌、皮肤癌、前列腺癌、宫颈癌、阴道癌、胃癌、肾细胞癌、肾癌、胰腺癌、结直肠癌、子宫内膜癌、食道癌、肝胆癌、骨癌、皮肤癌和血液癌,以及鼻腔鼻窦癌、鼻咽癌、口腔癌、口咽癌、喉头癌、喉下部癌、唾液腺癌、纵隔膜癌、胃癌、小肠癌、结肠癌、直肠和肛门区域的癌症、输尿管癌、尿道癌、阴茎癌、睾丸癌、外阴癌、内分泌系统癌症、中枢神经系统癌症和浆细胞癌。
PCT/CN2019/114818 2018-11-01 2019-10-31 同源二聚体型双特异性抗体及其制备方法和用途 WO2020088608A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020217016755A KR102688281B1 (ko) 2018-11-01 2019-10-31 동종이량체형 이중특이성항체 및 그의 제조 방법 및 용도
JP2021523492A JP7308560B2 (ja) 2018-11-01 2019-10-31 相同二量体型二重特異性抗体およびその調製方法と使用
EP19877895.3A EP3875489A4 (en) 2018-11-01 2019-10-31 HOMODIMERIC BISPECIFIC ANTIBODY, METHOD FOR PREPARING IT AND ITS USE
US17/290,651 US20210371526A1 (en) 2018-11-01 2019-10-31 Homodimeric bispecific antibody, preparation method therefor and use thereof
CN201980071467.6A CN112996817B (zh) 2018-11-01 2019-10-31 同源二聚体型双特异性抗体及其制备方法和用途
CA3118238A CA3118238C (en) 2018-11-01 2019-10-31 Homodimeric bispecific antibody, preparation method therefor and use thereof
AU2019370758A AU2019370758B2 (en) 2018-11-01 2019-10-31 Homodimeric bispecific antibody, preparation method therefor and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811294887 2018-11-01
CN201811294887.4 2018-11-01

Publications (1)

Publication Number Publication Date
WO2020088608A1 true WO2020088608A1 (zh) 2020-05-07

Family

ID=70461958

Family Applications (5)

Application Number Title Priority Date Filing Date
PCT/CN2019/108057 WO2020088164A1 (zh) 2018-11-01 2019-09-26 双特异性抗体及其用途
PCT/CN2019/113671 WO2020088403A1 (zh) 2018-11-01 2019-10-28 针对Her2和CD3的同源二聚体型双特异性抗体及其用途
PCT/CN2019/113930 WO2020088437A1 (zh) 2018-11-01 2019-10-29 针对cd20和cd3的双特异性抗体及其用途
PCT/CN2019/114818 WO2020088608A1 (zh) 2018-11-01 2019-10-31 同源二聚体型双特异性抗体及其制备方法和用途
PCT/CN2019/114808 WO2020088605A1 (zh) 2018-11-01 2019-10-31 针对cd19和cd3的同源二聚体型双特异性抗体及其制备方法和用途

Family Applications Before (3)

Application Number Title Priority Date Filing Date
PCT/CN2019/108057 WO2020088164A1 (zh) 2018-11-01 2019-09-26 双特异性抗体及其用途
PCT/CN2019/113671 WO2020088403A1 (zh) 2018-11-01 2019-10-28 针对Her2和CD3的同源二聚体型双特异性抗体及其用途
PCT/CN2019/113930 WO2020088437A1 (zh) 2018-11-01 2019-10-29 针对cd20和cd3的双特异性抗体及其用途

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114808 WO2020088605A1 (zh) 2018-11-01 2019-10-31 针对cd19和cd3的同源二聚体型双特异性抗体及其制备方法和用途

Country Status (14)

Country Link
US (6) US12030939B2 (zh)
EP (5) EP3889179A4 (zh)
JP (2) JP7410143B2 (zh)
KR (2) KR20210087472A (zh)
CN (10) CN111138542B (zh)
AU (2) AU2019370339B2 (zh)
BR (1) BR112021008486A2 (zh)
CA (2) CA3118397A1 (zh)
CL (1) CL2021001143A1 (zh)
CO (1) CO2021006970A2 (zh)
MX (1) MX2021005155A (zh)
PE (1) PE20211867A1 (zh)
WO (5) WO2020088164A1 (zh)
ZA (1) ZA202103717B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022165171A1 (en) 2021-01-28 2022-08-04 Regeneron Pharmaceuticals, Inc. Compositions and methods for treating cytokine release syndrome
WO2022253248A1 (zh) * 2021-06-02 2022-12-08 启愈生物技术(上海)有限公司 抗cd3抗体变异体、融合蛋白及应用
WO2023201226A1 (en) 2022-04-11 2023-10-19 Regeneron Pharmaceuticals, Inc. Compositions and methods for universal tumor cell killing
WO2024173830A2 (en) 2023-02-17 2024-08-22 Regeneron Pharmaceuticals, Inc. Induced nk cells responsive to cd3/taa bispecific antibodies

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JOP20210298A1 (ar) 2019-05-14 2023-01-30 Provention Bio Inc طرق وتركيبات للوقاية من مرض السكري من النوع الأول
WO2021238932A1 (zh) * 2020-05-26 2021-12-02 百奥泰生物制药股份有限公司 多特异性抗体及其应用
BR112022025381A2 (pt) 2020-06-11 2023-01-24 Provention Bio Inc Métodos e composições para prevenir diabetes tipo 1
US20230303698A1 (en) * 2020-06-30 2023-09-28 Harbour Biomed (Shanghai) Co., Ltd Multispecific binding protein of immune cell engager, preparation therefor and application thereof
CN111826400A (zh) * 2020-07-21 2020-10-27 中科宝承生物医学科技有限公司 一种双特异性抗体nk细胞制备方法及其细胞和应用
CN115715200A (zh) * 2020-07-27 2023-02-24 正大天晴药业集团股份有限公司 新型双特异性抗cd3/cd20多肽复合物配制剂
CN112062855B (zh) * 2020-08-26 2024-08-30 北京天诺健成医药科技有限公司 一种含有衔接器的药物治疗剂的开发和应用
CN112010982B (zh) * 2020-08-31 2023-06-27 重庆金迈博生物科技有限公司 一种抗gpc3/cd3双特异性抗体及其应用
CN116323671A (zh) * 2020-11-06 2023-06-23 安进公司 具有增加的选择性的多靶向性双特异性抗原结合分子
TW202246333A (zh) * 2021-01-20 2022-12-01 大陸商江蘇恆瑞醫藥股份有限公司 特異性結合bcma和cd3的抗原結合分子及其醫藥用途
JP2024516098A (ja) * 2021-04-15 2024-04-12 チア タイ ティエンチン ファーマシューティカル グループ カンパニー リミテッド Bcmaを標的とする多重特異性抗体
CN117242095A (zh) * 2021-04-23 2023-12-15 和铂医药(上海)有限责任公司 一种双特异性抗体的纯化方法
CN115581765A (zh) * 2021-07-05 2023-01-10 山东新时代药业有限公司 一种重组人源化抗bcma/cd3双特异性抗体注射液
CN115569191A (zh) * 2021-07-05 2023-01-06 山东新时代药业有限公司 一种重组人源化抗bcma/cd3双特异性抗体冻干制剂
CN113527493B (zh) * 2021-07-20 2023-10-27 广州爱思迈生物医药科技有限公司 一种b7-h3抗体及其应用
TW202321296A (zh) 2021-10-06 2023-06-01 美商鏈接免疫療法公司 抗間皮素抗原結合分子及其用途
EP4458862A1 (en) * 2021-12-27 2024-11-06 Shanghai Sinobay Biotechnology Co., Ltd. Bispecific t-cell engager, recombinant oncolytic virus thereof, and use thereof
KR20240137640A (ko) * 2022-01-20 2024-09-20 상하이 준스 바이오사이언스 컴퍼니 리미티드 항-cd3 및 항-cd20 이중특이성 항체 및 이의 용도
CN114539420B (zh) * 2022-01-20 2024-05-17 荣昌生物制药(烟台)股份有限公司 抗b7-h3单克隆抗体、抗b7-h3×cd3双特异性抗体、制备方法及其应用
CN116554340A (zh) * 2022-01-28 2023-08-08 江苏众红生物工程创药研究院有限公司 新型长效化和高活性且更安全的抗体构建体
CN114410588B (zh) * 2022-01-29 2022-11-04 西安电子科技大学 一种α1β1整合素依赖增强型CAR巨噬细胞及其制备方法和应用
WO2023165514A1 (zh) * 2022-03-01 2023-09-07 江苏恒瑞医药股份有限公司 特异性结合flt3和cd3的抗原结合分子及其医药用途
CN115304680B (zh) * 2022-03-11 2024-02-02 四川大学华西医院 基于Pep42构建的双特异性细胞接合器分子的制备及其应用
CN114716559B (zh) * 2022-04-12 2023-05-26 无锡科金生物科技有限公司 双特异性抗体及其治疗癌症的应用
CN114685675B (zh) * 2022-04-27 2023-02-03 深圳市汉科生物工程有限公司 双特异性抗体及其在治疗癌症中的用途
WO2023218027A1 (en) * 2022-05-12 2023-11-16 Amgen Research (Munich) Gmbh Multichain multitargeting bispecific antigen-binding molecules of increased selectivity
CN115286715B (zh) * 2022-05-18 2023-05-23 上海百英生物科技股份有限公司 一种抗cd3的纳米抗体或其抗原结合部分及其制备方法
WO2024027793A1 (en) * 2022-08-05 2024-02-08 I-Mab Biopharma (Hangzhou) Co., Ltd. Bispecific antibodies targeting ifnar1 and blys
WO2024073700A2 (en) * 2022-09-30 2024-04-04 Igm Biosciences, Inc. Methods of treating autoimmune disorders using multimeric anti-cd20/anti-cd3 antibodies
CN116023499B (zh) * 2022-10-26 2024-01-23 北京力邦生物医药科技有限公司 一种针对cd3和cd20的双特异性抗体
CN117384288B (zh) * 2022-12-06 2024-10-11 成都赛恩吉诺生物科技有限公司 具有高亲和力的抗人bcma纳米抗体及car-t和双特异性抗体及应用
CN116063526A (zh) * 2022-12-31 2023-05-05 合肥天港免疫药物有限公司 抗pdl1的抗体及其用途
CN116143934B (zh) * 2023-03-21 2023-07-25 诺赛联合(北京)生物医学科技有限公司 一种干细胞外泌体提取试剂盒及其应用
CN117169518B (zh) * 2023-11-03 2024-01-19 赛德特(北京)生物工程有限公司 T淋巴细胞制剂中的cd3抗体残留物的检测方法和试剂盒
CN118027210A (zh) * 2024-03-29 2024-05-14 深圳泽安生物医药有限公司 靶向CD79b和CD3的双特异性抗体及其用途
CN118562015A (zh) * 2024-08-01 2024-08-30 广州爱思迈生物医药科技有限公司 一种针对cd20/cd3的双异性抗体及其制备方法和应用

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4399216A (en) 1980-02-25 1983-08-16 The Trustees Of Columbia University Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
WO1988001649A1 (en) 1986-09-02 1988-03-10 Genex Corporation Single polypeptide chain binding molecules
US4818679A (en) 1985-02-19 1989-04-04 The Trustees Of Columbia University In The City Of New York Method for recovering mutant cells
US4946778A (en) 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
EP0388151A1 (en) 1989-03-13 1990-09-19 Celltech Limited Modified antibodies
US5260203A (en) 1986-09-02 1993-11-09 Enzon, Inc. Single polypeptide chain binding molecules
WO1996032478A1 (en) 1995-04-14 1996-10-17 Genentech, Inc. Altered polypeptides with increased half-life
US5624821A (en) 1987-03-18 1997-04-29 Scotgen Biopharmaceuticals Incorporated Antibodies with altered effector functions
WO1997043316A1 (en) 1996-05-10 1997-11-20 Beth Israel Deaconess Medical Center, Inc. Physiologically active molecules with extended half-lives and methods of using same
US5869046A (en) 1995-04-14 1999-02-09 Genentech, Inc. Altered polypeptides with increased half-life
US5968509A (en) 1990-10-05 1999-10-19 Btp International Limited Antibodies with binding affinity for the CD3 antigen
US6706265B1 (en) 1992-03-24 2004-03-16 Btg International Limited Humanized anti-CD3 specific antibodies
US6750325B1 (en) 1989-12-21 2004-06-15 Celltech R&D Limited CD3 specific recombinant antibody
US20050014934A1 (en) 2002-10-15 2005-01-20 Hinton Paul R. Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis
US20050176028A1 (en) 2003-10-16 2005-08-11 Robert Hofmeister Deimmunized binding molecules to CD3
US7083784B2 (en) 2000-12-12 2006-08-01 Medimmune, Inc. Molecules with extended half-lives, compositions and uses thereof
WO2007042261A2 (en) 2005-10-11 2007-04-19 Micromet Ag Compositions comprising cross-species-specific antibodies and uses thereof
WO2008119565A2 (en) 2007-04-03 2008-10-09 Micromet Ag Cross-species-specific binding domain
US7728114B2 (en) 2004-06-03 2010-06-01 Novimmune S.A. Anti-CD3 antibodies and methods of use thereof
US20100183615A1 (en) 2007-04-03 2010-07-22 Micromet Ag Cross-species-specific bispecific binders
KR20100099179A (ko) 2007-12-26 2010-09-10 젠코어 인코포레이티드 FcRn에 대한 변경된 결합성을 갖는 Fc 변이체
US20100234575A1 (en) 2004-11-12 2010-09-16 Xencor, Inc. Fc variants with altered binding to fcrn
KR101027427B1 (ko) 2004-11-12 2011-04-11 젠코어 인코포레이티드 FcRn에 대하여 증가된 결합력을 갖는 Fc 변이체
US7994289B2 (en) 1998-07-21 2011-08-09 Btg International Limited Humanized anti-CD3 antibodies
US8076459B2 (en) 2003-10-16 2011-12-13 Micromet Ag Multispecfic deimmunized CD3-binders
CN102918057A (zh) * 2010-03-30 2013-02-06 中外制药株式会社 促进抗原清除的与FcRn的亲和力得到改进的抗体
WO2013096221A1 (en) 2011-12-21 2013-06-27 Amgen Inc. Variant fc-polypeptides with enhanced binding to the neonatal fc receptor
CN103476795A (zh) * 2011-03-29 2013-12-25 罗切格利卡特公司 抗体Fc 变体
WO2016130726A1 (en) 2015-02-10 2016-08-18 Minerva Biotechnologies Corporation Humanized anti-muc1* antibodies
CN106117370A (zh) * 2016-08-19 2016-11-16 安源医药科技(上海)有限公司 高糖基化Exendin‑4及其类似物的融合蛋白、其制备方法和用途
TW201731874A (zh) * 2016-02-03 2017-09-16 安美基研究(慕尼黑)公司 Bcma及cd3雙特異性t細胞嚙合抗體構築體
US20170274072A1 (en) * 2014-03-26 2017-09-28 Tohoku University Bispecific antibody targeting human epidermal growth factor receptor
EP3363818A1 (en) * 2015-10-12 2018-08-22 Ajou University Industry-Academic Cooperation Foundation Method for producing antibody ch3 domain heterodimeric mutant pair using yeast mating and ch3 mutant pair produced thereby

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3522A (en) 1844-04-04 richard son
US530A (en) 1837-12-20 Threshing-machine
US926A (en) 1838-09-17 Machine for threshing and winnowing grain
US8034A (en) 1851-04-08 Cooking-stove
US4980286A (en) 1985-07-05 1990-12-25 Whitehead Institute For Biomedical Research In vivo introduction and expression of foreign genetic material in epithelial cells
CA2090126C (en) 1990-08-02 2002-10-22 John W. Schrader Methods for the production of proteins with a desired function
DE60124912T2 (de) * 2001-09-14 2007-06-14 Affimed Therapeutics Ag Multimerische, einzelkettige, Tandem-Fv-Antikörper
US7906118B2 (en) 2005-04-06 2011-03-15 Ibc Pharmaceuticals, Inc. Modular method to prepare tetrameric cytokines with improved pharmacokinetics by the dock-and-lock (DNL) technology
US7993864B2 (en) 2002-12-03 2011-08-09 Ucb Pharma S.A. Assay for identifying antibody producing cells
GB0312481D0 (en) 2003-05-30 2003-07-09 Celltech R&D Ltd Antibodies
US8444973B2 (en) 2005-02-15 2013-05-21 Duke University Anti-CD19 antibodies and uses in B cell disorders
KR101866623B1 (ko) 2005-11-28 2018-07-04 젠맵 에이/에스 재조합 1가 항체 및 그의 제조 방법
WO2007108152A1 (ja) 2006-03-23 2007-09-27 Tohoku University 高機能性二重特異性抗体
SI2274008T1 (sl) * 2008-03-27 2014-08-29 Zymogenetics, Inc. Sestavki in metode za zaviranje PDGFRBETA in VEGF-A
US20100260668A1 (en) 2008-04-29 2010-10-14 Abbott Laboratories Dual Variable Domain Immunoglobulins and Uses Thereof
CA2815363C (en) * 2010-10-22 2020-07-14 Seattle Genetics, Inc. Synergistic effects between auristatin-based antibody drug conjugates and inhibitors of the pi3k-akt mtor pathway
EP3974453A3 (en) * 2010-11-16 2022-08-03 Amgen Inc. Agents and methods for treating diseases that correlate with bcma expression
JP2014514314A (ja) * 2011-04-20 2014-06-19 ゲンマブ エー/エス Her2およびcd3に対する二重特異性抗体
CA2833820C (en) 2011-05-27 2019-10-29 Glaxo Group Limited Bcma (cd269/tnfrsf17) -binding proteins
JP6339015B2 (ja) 2011-08-23 2018-06-06 ロシュ グリクアート アーゲー 二重特異性t細胞活性化抗原結合分子
TW201326209A (zh) * 2011-09-30 2013-07-01 Chugai Pharmaceutical Co Ltd 具有促進抗原清除之FcRn結合域的治療性抗原結合分子
TWI679212B (zh) * 2011-11-15 2019-12-11 美商安進股份有限公司 針對bcma之e3以及cd3的結合分子
CN104144949B (zh) * 2011-12-22 2016-08-31 财团法人生物技术开发中心 双特异性t细胞活化剂抗体
CA2874864C (en) * 2012-08-14 2023-02-21 Ibc Pharmaceuticals, Inc. T-cell redirecting bispecific antibodies for treatment of disease
US9701759B2 (en) * 2013-01-14 2017-07-11 Xencor, Inc. Heterodimeric proteins
US9580486B2 (en) 2013-03-14 2017-02-28 Amgen Inc. Interleukin-2 muteins for the expansion of T-regulatory cells
US20140302037A1 (en) * 2013-03-15 2014-10-09 Amgen Inc. BISPECIFIC-Fc MOLECULES
AR095374A1 (es) * 2013-03-15 2015-10-14 Amgen Res (Munich) Gmbh Moléculas de unión para bcma y cd3
US9288361B2 (en) 2013-06-06 2016-03-15 Open Text S.A. Systems, methods and computer program products for fax delivery and maintenance
BR112016000666A2 (pt) * 2013-07-12 2017-10-03 Zymeworks Inc Constructos de ligação de antígeno cd3 e cd19 biespecíficos
GB201317928D0 (en) * 2013-10-10 2013-11-27 Ucl Business Plc Molecule
CN104744592B (zh) * 2013-12-27 2019-08-06 北京韩美药品有限公司 抗HER2-抗CD3 scFv双特异四价抗体
CN104558192B (zh) * 2015-01-21 2018-12-28 武汉友芝友生物制药有限公司 一种双特异性抗体her2xcd3的构建及应用
AU2015292374B2 (en) * 2014-07-25 2020-09-03 Memorial Sloan Kettering Cancer Center Bispecific HER2 and CD3 binding molecules
US20170247476A1 (en) * 2014-09-25 2017-08-31 Amgen Inc. Protease-activatable bispecific proteins
CN107484416A (zh) * 2014-09-26 2017-12-15 宏观基因有限公司 能够结合cd19和cd3的双特异性单价双抗体及其用途
EP3023437A1 (en) 2014-11-20 2016-05-25 EngMab AG Bispecific antibodies against CD3epsilon and BCMA
EP3237449A2 (en) 2014-12-22 2017-11-01 Xencor, Inc. Trispecific antibodies
CN104829728B (zh) * 2015-01-21 2019-03-12 武汉友芝友生物制药有限公司 一种双特异性抗体her2xcd3的构建及应用
CN104558193B (zh) * 2015-01-21 2019-01-11 武汉友芝友生物制药有限公司 一种靶向鼠t淋巴细胞cd3和人肿瘤抗原her2的双特异性抗体制备方法及应用
CN104558191B (zh) * 2015-01-21 2020-08-21 武汉友芝友生物制药有限公司 一种双特异性抗体cd20×cd3的构建及应用
CA2975660A1 (en) 2015-03-16 2016-09-22 Helmholtz Zentrum Munchen - Deutsches Forschungszentrum Fur Gesundheit Und Umwelt (Gmbh) Trispecific binding molecules for treating hbv infection and associated conditions
CN104829729B (zh) * 2015-04-03 2018-08-14 复旦大学 一种携带抗Her2/CD3双特异性功能蛋白的人T细胞制备
MX2017014731A (es) * 2015-05-20 2018-06-28 Amgen Res Munich Gmbh Eliminacion de linfocitos b como marcador diagnostico.
JP6826529B2 (ja) * 2015-06-05 2021-02-03 中外製薬株式会社 免疫活性化剤の併用
TWI793062B (zh) * 2015-07-31 2023-02-21 德商安美基研究(慕尼黑)公司 Dll3及cd3抗體構築體
SG11201800989RA (en) * 2015-08-03 2018-03-28 Carsgen Therapeutics Ltd Antibody against glypican-3 and application thereof
AU2016308567B2 (en) * 2015-08-17 2022-10-27 Janssen Biotech, Inc. Anti-BCMA antibodies, bispecific antigen binding molecules that bind BCMA and CD3, and uses thereof
JP2019501369A (ja) * 2015-10-30 2019-01-17 グラクソスミスクライン、インテレクチュアル、プロパティー、ディベロップメント、リミテッドGlaxosmithkline Intellectual Property Development Limited 予後法
AU2016371034A1 (en) 2015-12-17 2018-05-31 Janssen Biotech, Inc. Antibodies specifically binding HLA-DR and their uses
US20190112380A1 (en) 2016-03-29 2019-04-18 University Of Southern California Chimeric antigen receptors targeting cancer
WO2017210485A1 (en) * 2016-06-01 2017-12-07 Xencor, Inc. Bispecific antibodies that bind cd20 and cd3 for use in the treatment of lymphoma
CA3029209A1 (en) 2016-06-21 2017-12-28 Teneobio, Inc. Cd3 binding antibodies
BR112019002579A2 (pt) * 2016-08-16 2019-05-21 Epimab Biotherapeutics, Inc. anticorpos biespecíficos fab monovalentes, assimétricos e tandem
CN106256835A (zh) 2016-08-19 2016-12-28 安源医药科技(上海)有限公司 高糖基化人生长激素融合蛋白及其制备方法与用途
WO2018032638A1 (zh) 2016-08-19 2018-02-22 安源医药科技(上海)有限公司 用于构建融合蛋白的连接肽
CN107759694B (zh) 2016-08-19 2023-01-13 安源医药科技(上海)有限公司 双特异性抗体及其制备方法与用途
CN110225924B (zh) 2017-01-25 2024-04-02 免疫医疗有限公司 松弛素融合多肽及其用途
US11046768B2 (en) * 2017-01-27 2021-06-29 Memorial Sloan Kettering Cancer Center Bispecific HER2 and CD3 binding molecules
EP3574012A1 (en) * 2017-01-27 2019-12-04 Memorial Sloan Kettering Cancer Center Bispecific her2 and cd3 binding molecules
AU2018224094A1 (en) * 2017-02-24 2019-09-19 Macrogenics, Inc. Bispecific binding molecules that are capable of binding CD137 and tumor antigens, and uses thereof
CN108623689B (zh) * 2017-03-15 2020-10-16 宜明昂科生物医药技术(上海)有限公司 新型重组双功能融合蛋白及其制备方法和用途
US20200095323A1 (en) 2017-03-20 2020-03-26 The General Hospital Corporation MITIGATING Fc-Fc RECEPTOR INTERACTIONS IN CANCER IMMUNOTHERAPY
BR112019020940A2 (pt) * 2017-04-11 2020-05-05 Inhibrx Inc construções polipeptídicas multipecíficas que têm ligação a cd3 restrita e métodos de usar as mesmas
CN107501412A (zh) * 2017-10-11 2017-12-22 深圳精准医疗科技有限公司 突变型双特异性抗体及其应用
CN118878692A (zh) 2018-05-16 2024-11-01 嘉立医疗科技(广州)有限公司 双特异性抗体组合物及其使用方法

Patent Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4399216A (en) 1980-02-25 1983-08-16 The Trustees Of Columbia University Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
US4818679A (en) 1985-02-19 1989-04-04 The Trustees Of Columbia University In The City Of New York Method for recovering mutant cells
WO1988001649A1 (en) 1986-09-02 1988-03-10 Genex Corporation Single polypeptide chain binding molecules
US5260203A (en) 1986-09-02 1993-11-09 Enzon, Inc. Single polypeptide chain binding molecules
US5624821A (en) 1987-03-18 1997-04-29 Scotgen Biopharmaceuticals Incorporated Antibodies with altered effector functions
US5648260A (en) 1987-03-18 1997-07-15 Scotgen Biopharmaceuticals Incorporated DNA encoding antibodies with altered effector functions
US4946778A (en) 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
EP0388151A1 (en) 1989-03-13 1990-09-19 Celltech Limited Modified antibodies
US6750325B1 (en) 1989-12-21 2004-06-15 Celltech R&D Limited CD3 specific recombinant antibody
US5968509A (en) 1990-10-05 1999-10-19 Btp International Limited Antibodies with binding affinity for the CD3 antigen
US6706265B1 (en) 1992-03-24 2004-03-16 Btg International Limited Humanized anti-CD3 specific antibodies
WO1996032478A1 (en) 1995-04-14 1996-10-17 Genentech, Inc. Altered polypeptides with increased half-life
US5869046A (en) 1995-04-14 1999-02-09 Genentech, Inc. Altered polypeptides with increased half-life
WO1997043316A1 (en) 1996-05-10 1997-11-20 Beth Israel Deaconess Medical Center, Inc. Physiologically active molecules with extended half-lives and methods of using same
US7994289B2 (en) 1998-07-21 2011-08-09 Btg International Limited Humanized anti-CD3 antibodies
US7083784B2 (en) 2000-12-12 2006-08-01 Medimmune, Inc. Molecules with extended half-lives, compositions and uses thereof
US7670600B2 (en) 2000-12-12 2010-03-02 MedImmine, LLC Molecules with extended half-lives, compositions and uses thereof
US20050014934A1 (en) 2002-10-15 2005-01-20 Hinton Paul R. Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis
US20050176028A1 (en) 2003-10-16 2005-08-11 Robert Hofmeister Deimmunized binding molecules to CD3
US8076459B2 (en) 2003-10-16 2011-12-13 Micromet Ag Multispecfic deimmunized CD3-binders
US7728114B2 (en) 2004-06-03 2010-06-01 Novimmune S.A. Anti-CD3 antibodies and methods of use thereof
KR101027427B1 (ko) 2004-11-12 2011-04-11 젠코어 인코포레이티드 FcRn에 대하여 증가된 결합력을 갖는 Fc 변이체
US20100234575A1 (en) 2004-11-12 2010-09-16 Xencor, Inc. Fc variants with altered binding to fcrn
WO2007042261A2 (en) 2005-10-11 2007-04-19 Micromet Ag Compositions comprising cross-species-specific antibodies and uses thereof
US20100183615A1 (en) 2007-04-03 2010-07-22 Micromet Ag Cross-species-specific bispecific binders
WO2008119565A2 (en) 2007-04-03 2008-10-09 Micromet Ag Cross-species-specific binding domain
KR20100099179A (ko) 2007-12-26 2010-09-10 젠코어 인코포레이티드 FcRn에 대한 변경된 결합성을 갖는 Fc 변이체
CN102918057A (zh) * 2010-03-30 2013-02-06 中外制药株式会社 促进抗原清除的与FcRn的亲和力得到改进的抗体
CN103476795A (zh) * 2011-03-29 2013-12-25 罗切格利卡特公司 抗体Fc 变体
WO2013096221A1 (en) 2011-12-21 2013-06-27 Amgen Inc. Variant fc-polypeptides with enhanced binding to the neonatal fc receptor
US20170274072A1 (en) * 2014-03-26 2017-09-28 Tohoku University Bispecific antibody targeting human epidermal growth factor receptor
WO2016130726A1 (en) 2015-02-10 2016-08-18 Minerva Biotechnologies Corporation Humanized anti-muc1* antibodies
EP3363818A1 (en) * 2015-10-12 2018-08-22 Ajou University Industry-Academic Cooperation Foundation Method for producing antibody ch3 domain heterodimeric mutant pair using yeast mating and ch3 mutant pair produced thereby
TW201731874A (zh) * 2016-02-03 2017-09-16 安美基研究(慕尼黑)公司 Bcma及cd3雙特異性t細胞嚙合抗體構築體
CN106117370A (zh) * 2016-08-19 2016-11-16 安源医药科技(上海)有限公司 高糖基化Exendin‑4及其类似物的融合蛋白、其制备方法和用途

Non-Patent Citations (44)

* Cited by examiner, † Cited by third party
Title
ALEGRE ML ET AL., J. IMMUNOL., vol. 148, 1992, pages 3461 - 3468
ASANO, R. ET AL.: "Cytotoxic enhancement of a bispecific diabody by format conversion to tandem single-chain variable fragment(taFv) the case of the hEx3 diabody", THE JOURNAL OF BIOLOGICAL CHEMISTRY, 19 November 2010 (2010-11-19), XP055043825 *
CHAMES P ET AL., CURR. OPIN. DRUG DISC. DEV., vol. 12, 2009, pages 276
CHAMESBATY, CURR. OPIN. DRUG. DISCOV. DEVEL., vol. 12, 2009, pages 276 - 83
CHAMESBATY, MABS, vol. 1, pages 539 - 47
CHOTHIALESKL, J. MOL BIOL, vol. 196, 1987, pages 901 - 917
DATTA-MANNAN A ET AL.: "MAbs", vol. 4, 2012, TAYLOR&FRANCIS, pages: 267 - 273
DAVIES ET AL., ANNUAL REV BIOCHEM., vol. 59, 1990, pages 439 - 473
E. MEYERSW. MILLER, COMPUT. APPL BIOSCI., vol. 4, pages 11 - 17
FARES F A ET AL., PROC NATL ACAD. SCI. USA, vol. 89, 1992, pages 4304 - 4308
GHETIE V ET AL., IMMUNOL TODAY,, vol. 18, 1997, pages 592 - 8
GHETIE V ET AL., NATURE BIOTECHNOLOGY, vol. 15, 1997, pages 637 - 40
GUYER RL ET AL., J. IMMUNOL., vol. 117, 1976, pages 587
HINTON P.R. ET AL., J. IMMUNOL., vol. 176, 2006, pages 346 - 356
HIRSCH R ET AL., J. IMMUNOL., vol. 142, 1989, pages 737 - 743
IDUSOGIE EE ET AL., J. IMMUNOL., vol. 166, 2001, pages 2571 - 2575
KABAT ET AL.: "Sequences of Proteins of Immunological Interest", 1991, PUBLIC HEALTH SERVICE, NATIONAL INSTITUTES OF HEALTH
KANEKO E ET AL., BIODRUGS, vol. 25, 2011, pages 1 - 11
KARPOVSKY B ET AL., J. EXP. MED., vol. 160, 1984, pages 1686 - 1701
KIM YJ ET AL., J. IMMUNOL., vol. 113, 1994, pages 249 - 315
KUHN C ET AL., IMMUNOTHERAPY, vol. 8, 2016, pages 889 - 906
KUNG P ET AL., SCIENCE, vol. 206, 1979, pages 347 - 349
LAZAR GA ET AL., PNAS, vol. 103, 2006, pages 4005 - 4010
M. ANNU. REV. IMMUNOL., vol. 15, 1997, pages 203 - 234
MALMQVIST M ET AL., NATURE, vol. 361, 1993, pages 186 - 187
MILSTEIN C ET AL., NATURE, vol. 305, 1983, pages 537 - 540
NATSUME, A. ET AL.: "Fucose removal from complex-type oligosaccharide enhances the antibody-dependent cellular cytotoxicity of single-gene-encoded bi- specific antibody comprising of two single-chain antibodies linked to the antibody constant region", THE JOURNAL OF BIOCHEMISTRY, vol. 31B, 31 December 2006 (2006-12-31), XP02660991 *
NEEDLEMAN ET AL., MOL. BIOL., vol. 48, pages 443 - 453
NEEDLEMANWUNSCH, J. MOL. BIOL., vol. 48, pages 444 - 453
NOVELLINO LET, CANCER IMMUNOL. IMMUNOTHER., vol. 54, 2005, pages 187 - 207
PARMIANI J ET AL., J. IMMUNOL., vol. 178, 2007, pages 1975 - 79
ROOPENIAN ET AL., NAT. REV. IMMUNOL., vol. 7, 2007, pages 715 - 725
SAMBROOK: "Molecular Cloning: A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY
See also references of EP3875489A4
SENSI M ET AL., CLIN. CANCER RES., vol. 12, 2006, pages 5023 - 32
SHIELDS RL ET AL., JBC, vol. 276, 2001, pages 6591 - 6604
SPIESS C ET AL., MOL. IMMUNOL., vol. 67, 2015, pages 95 - 106
STAERZ UD ET AL., NATURE, vol. 314, 1985, pages 628 - 631
STAVENHAGEN JB ET AL., ADVAN. ENZYME. REGUL., vol. 48, 2008, pages 152 - 164
STAVENHAGEN JB ET AL., CANCER RES., vol. 67, 2007, pages 8882 - 8890
WANG, DONG: "Construction and Expression of Multivalent Anti-CD3×anti-prostate-cancer Bispecific Single-Chain Antibody", MASTER THESIS, 15 December 2002 (2002-12-15), CN, pages 1 - 85, XP009528225 *
XU D ET AL., CELLULAR IMMUNOL., vol. 200, 2000, pages 16 - 26
Z WU ET AL., PHARMACOLOGY AND THERAPEUTICS, vol. 182, 2018, pages 161 - 175
ZOU, J.X. ET AL.: "Immunotherapy based on bispecific T- cell engager with hIgG1 Fc sequence as a new therapeutic strategy in multiple myeloma", CANCER SCIENCE, 31 December 2015 (2015-12-31), XP055465953 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022165171A1 (en) 2021-01-28 2022-08-04 Regeneron Pharmaceuticals, Inc. Compositions and methods for treating cytokine release syndrome
WO2022253248A1 (zh) * 2021-06-02 2022-12-08 启愈生物技术(上海)有限公司 抗cd3抗体变异体、融合蛋白及应用
WO2023201226A1 (en) 2022-04-11 2023-10-19 Regeneron Pharmaceuticals, Inc. Compositions and methods for universal tumor cell killing
WO2024173830A2 (en) 2023-02-17 2024-08-22 Regeneron Pharmaceuticals, Inc. Induced nk cells responsive to cd3/taa bispecific antibodies

Also Published As

Publication number Publication date
CN112996810B (zh) 2022-07-19
AU2019370339B2 (en) 2024-07-11
CN111138545A (zh) 2020-05-12
US20220002407A1 (en) 2022-01-06
US20220002431A1 (en) 2022-01-06
CN112996807A (zh) 2021-06-18
JP2022512997A (ja) 2022-02-07
CN111138546A (zh) 2020-05-12
US12030939B2 (en) 2024-07-09
PE20211867A1 (es) 2021-09-21
CN112955461B (zh) 2022-07-19
US20210371526A1 (en) 2021-12-02
CN111138544B (zh) 2022-06-28
CA3118238C (en) 2023-12-19
CN112955461A (zh) 2021-06-11
WO2020088164A1 (zh) 2020-05-07
CN111138542B (zh) 2022-09-23
EP3889179A4 (en) 2022-10-12
EP3875479A4 (en) 2022-08-24
KR102688281B1 (ko) 2024-07-25
CO2021006970A2 (es) 2021-07-30
CN111138545B (zh) 2022-06-28
JP2022512865A (ja) 2022-02-07
EP3875485A4 (en) 2022-10-12
WO2020088437A1 (zh) 2020-05-07
EP3875489A1 (en) 2021-09-08
MX2021005155A (es) 2021-09-30
CL2021001143A1 (es) 2021-10-22
KR20210089697A (ko) 2021-07-16
KR20210087472A (ko) 2021-07-12
US20240301063A1 (en) 2024-09-12
WO2020088403A1 (zh) 2020-05-07
CN111138547A (zh) 2020-05-12
CA3118397A1 (en) 2020-05-07
CN111138544A (zh) 2020-05-12
AU2019370339A1 (en) 2021-06-10
BR112021008486A2 (pt) 2021-10-26
EP3875479A1 (en) 2021-09-08
AU2019370758A1 (en) 2021-06-10
US20230416385A1 (en) 2023-12-28
CN112996817B (zh) 2022-07-19
ZA202103717B (en) 2023-12-20
JP7308560B2 (ja) 2023-07-14
CN111138546B (zh) 2022-10-11
EP3889174A4 (en) 2024-07-24
CN112996817A (zh) 2021-06-18
EP3875485A1 (en) 2021-09-08
US20230073411A1 (en) 2023-03-09
CN112996810A (zh) 2021-06-18
CN111138542A (zh) 2020-05-12
JP7410143B2 (ja) 2024-01-09
CA3118238A1 (en) 2020-05-07
CN115819607A (zh) 2023-03-21
CN112996807B (zh) 2022-07-19
EP3889179A1 (en) 2021-10-06
WO2020088605A1 (zh) 2020-05-07
EP3889174A1 (en) 2021-10-06
EP3875489A4 (en) 2022-12-21
AU2019370758B2 (en) 2024-09-05
CN111138547B (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2020088608A1 (zh) 同源二聚体型双特异性抗体及其制备方法和用途
CN109843325B (zh) Cd3结合抗体
CN109641049B (zh) Cd3结合抗体
JP2009500458A (ja) ヒト化抗cd16a抗体を用いる自己免疫疾患の治療方法
JP2022520817A (ja) Fcmr結合分子およびそれらの使用
CN115558028A (zh) 针对b7-h3和cd3的同源二聚体型双特异性抗体及其制备方法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19877895

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021523492

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3118238

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217016755

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019370758

Country of ref document: AU

Date of ref document: 20191031

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019877895

Country of ref document: EP

Effective date: 20210601