WO2020085811A1 - Lithium-sulfur secondary battery - Google Patents
Lithium-sulfur secondary battery Download PDFInfo
- Publication number
- WO2020085811A1 WO2020085811A1 PCT/KR2019/014039 KR2019014039W WO2020085811A1 WO 2020085811 A1 WO2020085811 A1 WO 2020085811A1 KR 2019014039 W KR2019014039 W KR 2019014039W WO 2020085811 A1 WO2020085811 A1 WO 2020085811A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium
- solvent
- secondary battery
- sulfur secondary
- positive electrode
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a lithium-sulfur secondary battery.
- lithium-ion secondary batteries with relatively low weight-to-weight energy storage density ( ⁇ 250 Wh / kg) are used in these products. There is a limit to the application.
- lithium-sulfur secondary batteries are in the spotlight as the next generation secondary battery technology because they can theoretically realize a high weight-to-weight energy storage density ( ⁇ 2,600 Wh / kg).
- the lithium-sulfur secondary battery refers to a battery system using a sulfur-based material having an S-S bond (Sulfur-Sulfur Bond) as a positive electrode active material and a lithium metal as a negative electrode active material.
- Sulfur the main material of the positive electrode active material, has an advantage of having a large amount of resources worldwide, not toxic, and having a low weight per atom.
- lithium In the lithium-sulfur secondary battery, lithium, a negative electrode active material, is released and ionized during discharge, and is oxidized, and a sulfur-based material, a positive electrode active material, is absorbed and reduced.
- the oxidation reaction of lithium is a process in which lithium metal releases electrons and is converted into lithium cation form.
- the reduction reaction of sulfur is a process in which the SS bond accepts two electrons and is converted into a sulfur anion form. The lithium cation generated by the oxidation reaction of lithium is transferred to the positive electrode through the electrolyte, and combines with the sulfur anion generated by the reduction reaction of sulfur to form a salt.
- sulfur before discharge has a cyclic S 8 structure, which is converted to lithium polysulfide (LiS x ) by a reduction reaction.
- lithium polysulfide LiS x
- lithium sulfide Li 2 S
- sulfur As a positive electrode active material, sulfur has a characteristic of low electrical conductivity, so it is difficult to secure reactivity with electrons and lithium ions in a solid phase form.
- the existing lithium-sulfur secondary battery In order to improve the reactivity of the sulfur, the existing lithium-sulfur secondary battery generates an intermediate polysulfide in the form of Li 2 S x to induce a liquid phase reaction and improve reactivity.
- an ether-based solvent such as dioxolane or dimethoxyethane, which is highly soluble in lithium polysulfide, is used as a solvent for the electrolyte.
- the existing lithium-sulfur secondary battery constructs a catholyte type lithium-sulfur secondary battery system to improve reactivity, in which case, due to the characteristics of lithium polysulfide dissolved in the electrolyte, the reactivity of sulfur according to the content of the electrolyte And lifetime characteristics are affected.
- a low content of electrolyte In order to build a high energy density, a low content of electrolyte must be injected, but as the content of the electrolyte decreases, the concentration of lithium polysulfide in the electrolyte increases, and it is difficult to operate a normal battery due to a decrease in fluidity and an increase in side reactions.
- Non-Patent Document 1 Abbas Fotouhi et al., Lithium-Sulfur Battery Technology Readiness and Applications ⁇ A Review, Energys 2017, 10, 1937.
- the present invention is to provide a lithium-sulfur secondary battery capable of realizing a lithium-sulfur secondary battery having a high energy density by adjusting a positive electrode and an electrolyte to specific conditions.
- the present invention provides a lithium-sulfur secondary battery comprising an anode, a cathode, a separator, and an electrolyte.
- the positive electrode has an SC factor value of 0.45 or more represented by Equation 1 below.
- P is the porosity (%) of the positive electrode active material layer in the positive electrode
- L is the mass of sulfur per unit area of the positive electrode active material layer in the positive electrode (mg / cm 2)
- ⁇ is 10 (constant).
- the electrolyte solution includes a solvent and a lithium salt
- the solvent includes a first solvent having a DV 2 factor value of 1.75 or less represented by Equation 2 below, and a second solvent being a fluorinated ether-based solvent.
- the first solvent has a DV 2 factor value of 1.5 or less.
- the lithium-sulfur secondary battery has an NS factor value represented by Equation 3 below 3.5 or less.
- the lithium-sulfur secondary battery has an ED factor value of 850 or more represented by Equation 4 below.
- V is the nominal discharge voltage for Li / Li + (V)
- D is the density of the electrolyte (g / cm 3)
- C is the discharge capacity at discharge at 0.1C rate (mAh / g)
- SC factor I is the same as the value defined by Equation 1 above.
- the first solvent is selected from the group consisting of propionitrile, dimethylacetamide, dimethylformamide, gamma-butyrolactone, triethylamine, 1-iodopropane, and combinations thereof. .
- the second solvent is 1H, 1H, 2'H, 3H-decafluorodipropyl ether, difluoromethyl 2,2,2-trifluoroethyl ether, 1,2, 2,2-tetrafluoroethyl trifluoromethyl ether, 1,1,2,3,3,3-hexafluoropropyl difluoromethyl ether, 1H, 1H, 2'H, 3H-decafluorodipropyl Ether, pentafluoroethyl 2,2,2-trifluoroethyl ether, 1H, 1H, 2'H-perfluorodipropyl ether and combinations thereof.
- the solvent comprises 1 to 50% by weight of the first solvent.
- the solvent comprises 50 to 99% by weight of the second solvent.
- the solvent comprises a first solvent and a second solvent in a weight ratio of 3: 7 to 1: 9.
- the lithium-sulfur secondary battery according to the present invention has a high energy density that was difficult to implement with a conventional lithium-sulfur secondary battery by controlling the positive electrode and the electrolyte to specific conditions.
- the present invention provides a lithium-sulfur secondary battery comprising an anode, a cathode, a separator, and an electrolyte.
- the lithium-sulfur secondary battery according to the present invention includes a positive electrode having a low porosity and a high loading amount of sulfur as a positive electrode active material. When the porosity is lowered at the positive electrode and the content of the positive electrode active material is increased, the energy density of the battery containing the positive electrode increases. However, if the porosity of the anode is minimized and the sulfur content is maximized in the lithium-sulfur secondary battery, the ratio of the electrolyte solution per unit sulfur content decreases.
- the target is It is difficult to achieve one performance.
- it is intended to provide a lithium-sulfur secondary battery having a higher energy density than an existing lithium-sulfur secondary battery in actual implementation by limiting conditions related to sulfur at the positive electrode and specifying appropriate electrolyte conditions.
- the positive electrode is not particularly limited, but may be a lithium thin film or a positive electrode active material layer formed on one surface of the current collector. If, when the positive electrode is a positive electrode active material layer is formed on one surface of the current collector, the positive electrode may be prepared by applying a positive electrode active material slurry containing a positive electrode active material on one surface of the current collector and drying it. The slurry may further include additives such as a binder and a conductive material, a filler, and a dispersant in addition to the positive electrode active material.
- the positive active material may include elemental sulfur (S 8 ), a sulfur-based compound, or a mixture thereof.
- the binder is a component that assists the bonding of the positive electrode active material and the conductive material and bonding to the current collector, and may be usually added in an amount of 1% to 30% by weight based on the total amount of the positive electrode active material slurry.
- the binder is not particularly limited, for example, vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidenefluoride, polyacrylonitrile, polymethylmethacryl Late (polymethylmethacrylate), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene It may be one or a mixture of two or more selected from the group consisting of monomers (EPDM), sulfonated EPDM, styrene-butylene
- the conductive material is not particularly limited, for example, graphite such as natural graphite or artificial graphite; Carbon blacks such as carbon black (super-p), acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and denka black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder, and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; And conductive materials such as polyphenylene derivatives.
- the conductive material may be a content of 0.05% to 5% by weight based on the total weight of the positive electrode active material slurry.
- the filler may be used as a component that suppresses the expansion of the positive electrode, if necessary, whether or not to use it, and does not cause any chemical change in the battery, but is not particularly limited if it is a fibrous material, for example, olefin polymers such as polyethylene polypropylene; It may be a fibrous material such as glass fiber, carbon fiber.
- the dispersant is not particularly limited, but may be, for example, isopropyl alcohol, N-methylpyrrolidone (NMP), acetone, or the like.
- the coating may be performed by a method commonly known in the art, but, for example, the positive electrode active material slurry is distributed on one side of the positive electrode current collector and then uniformly dispersed using a doctor blade or the like. You can. In addition, it may be performed through methods such as die casting, comma coating, and screen printing.
- the drying is not particularly limited, but may be performed within 1 day in a vacuum oven at 50 ° C to 200 ° C.
- the positive electrode of the present invention manufactured by the above-described material and method is divided by the SC factor value represented by the following equation (1).
- the lithium-sulfur secondary battery according to the present invention realizes a high energy density by organic bonding of the cathode, separator, and electrolyte as well as the above-described positive electrode, and according to an embodiment of the present invention, the lithium-sulfur secondary battery has high energy
- the SC factor value may be 0.45 or more, preferably 0.5 or more.
- the upper limit of the SC factor value is not particularly limited, but considering the embodiment of the actual lithium-sulfur secondary battery, the SC factor value may be 4.5 or less.
- the SC factor value is 0.45 or more, in the case of a conventional lithium-sulfur secondary battery, performance such as energy density of the battery decreases in actual implementation, but in the case of a lithium-sulfur secondary battery according to the present invention, even in actual implementation Its performance is maintained without deterioration.
- the negative electrode includes a negative electrode current collector, and a negative electrode active material layer formed on the negative electrode current collector.
- the negative active material layer includes a negative active material, a binder, and a conductive material.
- a material capable of reversibly intercalating or deintercalating lithium ions (Li + ), a material capable of reversibly forming a lithium-containing compound by reacting with lithium ions, lithium metal or lithium alloy Can be used.
- the material capable of reversibly occluding or releasing lithium ions (Li + ) may be, for example, crystalline carbon, amorphous carbon, or a mixture thereof.
- a material capable of reversibly forming a lithium-containing compound by reacting with the lithium ion (Li + ) may be, for example, tin oxide, titanium nitrate or silicon.
- the lithium alloy is, for example, lithium (Li) and sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), beryllium (Be), magnesium (Mg), calcium ( Ca), strontium (Sr), barium (Ba), radium (Ra), aluminum (Al), and tin (Sn).
- the binder is not limited to the above-described binder, and any material that can be used as a binder in the related art is possible.
- Materials such as a current collector other than the negative electrode active material and the conductive material, and materials and methods used in the positive electrode described above may be used.
- the separator is a physical separator having a function of physically separating an electrode, and can be used without particular limitation as long as it is used as a normal separator. desirable.
- the separator enables the transport of lithium ions between the positive electrode and the negative electrode while separating or insulating the positive electrode and the negative electrode from each other.
- the separator may be made of a material having a porosity of 30 to 50% and a non-conductive or insulating material.
- a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer, and ethylene / methacrylate copolymer may be used. It is possible to use a non-woven fabric made of high melting point glass fiber or the like. Among them, a porous polymer film is preferably used.
- an ethylene homopolymer (polyethylene) polymer film is used as a separator, and a polyimide nonwoven fabric is used as a buffer layer.
- the polyethylene polymer film preferably has a thickness of 10 to 25 ⁇ m and a porosity of 40 to 50%.
- the electrolyte solution is a non-aqueous electrolyte solution containing a lithium salt, and is composed of a lithium salt and a solvent.
- the electrolyte has a density of less than 1.5 g / cm 3.
- the electrolyte has a density of 1.5 g / cm 3 or more, it is difficult to realize a high energy density of the lithium-sulfur secondary battery due to an increase in the weight of the electrolyte.
- the lithium salt is a material that can be easily dissolved in a non-aqueous organic solvent, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiB (Ph) 4 , LiC 4 BO 8 , LiPF 6 , LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, LiSO 3 CH 3, LiSO 3 CF 3, LiSCN, LiC (CF 3 SO 2) 3, LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2 ) 2 , LiN (SO 2 F) 2 , chloro borane lithium, lower aliphatic lithium carboxylate, lithium tetraphenyl borate, and lithium imide.
- the lithium salt may be preferably a lithium imide such as LiTFSI.
- the concentration of the lithium salt is 0.1 to 8.0M, depending on several factors such as the exact composition of the electrolyte mixture, the solubility of the salt, the conductivity of the dissolved salt, the conditions for charging and discharging the battery, the working temperature and other factors known in the field of lithium secondary batteries. , Preferably 0.5 to 5.0M, more preferably 1.0 to 3.0M. If the concentration of the lithium salt is less than the above range, the conductivity of the electrolyte solution may be lowered to deteriorate the battery performance, and if it exceeds the above range, the mobility of the lithium ion (Li + ) may decrease due to an increase in the viscosity of the electrolyte solution. It is desirable to select an appropriate concentration.
- the solvent includes a first solvent and a second solvent.
- the first solvent has the highest dipole moment per unit volume among the components contained in the solvent by 1% by weight or more, and thus is characterized by having a high dipole moment and a low viscosity.
- a solvent having a high dipole moment is used, it has an effect of improving the solid phase reactivity of sulfur, and this effect can be excellently expressed when the solvent itself has a low viscosity.
- the first solvent is classified by the DV 2 factor represented by Equation 2 below.
- the DV 2 factor value may be 1.75 or less, preferably 1.5 or less.
- the lower limit of the DV 2 factor value is not particularly limited, but considering the embodiment of the actual lithium-sulfur secondary battery, the DV 2 factor value may be 0.1 or more.
- the type is not particularly limited, but propionitrile (Propionitrile), dimethylacetamide (Dimethylacetamide), dimethylformamide (Dimethylformamide), gamma- Butyrolactone (Gamma-Butyrolactone), triethylamine (Triethylamine), can be selected from the group consisting of 1-iodopropane (1-iodopropane) and combinations thereof.
- the first solvent may include 1 to 50% by weight, preferably 5 to 40% by weight, more preferably 10 to 30% by weight based on the solvent constituting the electrolyte solution.
- the solvent according to the present invention includes the first solvent within the above-mentioned weight percent range, the performance of the battery may be improved even when used with a positive electrode having a low porosity and a high loading amount of sulfur as a positive electrode active material.
- the lithium-sulfur secondary battery of the present invention may be further classified by an NS factor combining the SC factor and the DV 2 factor.
- the NS factor is represented by Equation 3 below.
- the SC factor is the same as the value defined by Equation 1
- the DV 2 factor is the same as the value defined by Equation 2.
- the NS factor value may be 3.5 or less, preferably 3.0 or less, and more preferably 2.7 or less.
- the lower limit of the NS factor value is not particularly limited, but considering the embodiment of the actual lithium-sulfur secondary battery, the NS factor value may be 0.1 or more. When the NS factor value is adjusted within the above range, the performance improvement effect of the lithium-sulfur secondary battery may be more excellent.
- the second solvent in the present invention is a fluorinated ether-based solvent.
- a solvent such as dimethoxyethane or dimethylcarbonate was used as a diluent.
- a second solvent is added together with the first solvent to drive the positive electrode according to the present invention.
- the second solvent is a fluorinated ether-based solvent generally used in the art, the type is not particularly limited, but 1H, 1H, 2'H, 3H-decafluorodipropyl ether (1H, 1H, 2 ' H, 3H-Decafluorodipropyl ether), Difluoromethyl 2,2,2-trifluoroethyl ether, 1,2,2,2-tetrafluoroethyl trifluoro Methyl ether (1,2,2,2-Tetrafluoroethyl trifluoromethyl ether), 1,1,2,3,3,3-hexafluoropropyl difluoromethyl ether (1,1,2,3,3,3- Hexafluoropropyl difluoromethyl ether), 1H, 1H, 2'H, 3H-decafluorodipropyl ether (1H, 1H, 2'H, 3H-Decafluorodipropyl ether), pentafluoroethyl 2,2,
- the second solvent may include 50 to 99% by weight, preferably 60 to 95% by weight, more preferably 70 to 90% by weight based on the solvent constituting the electrolyte solution.
- the solvent according to the present invention includes the second solvent within the above-mentioned weight percent range, the performance of the battery is improved even when used with a positive electrode having a low porosity and a positive loading amount of sulfur as a positive electrode active material, as in the first solvent.
- the second solvent may be included in the electrolyte in an amount equal to or higher than the first solvent.
- the solvent comprises a first solvent and a second solvent in a weight ratio of 1: 1 to 1: 9, preferably 3: 7 to 1: 9 (first solvent: second solvent). You can.
- the non-aqueous electrolyte solution for a lithium-sulfur battery of the present invention may further include a nitric acid or nitrous acid compound as an additive.
- the nitric acid or nitrite-based compound has an effect of forming a stable film on the lithium electrode and improving charging and discharging efficiency.
- the nitric acid or nitrite-based compound is not particularly limited in the present invention, but lithium nitrate (LiNO 3 ), potassium nitrate (KNO 3 ), cesium nitrate (CsNO 3 ), barium nitrate (Ba (NO 3 ) 2 ), ammonium nitrate Inorganic nitric acid or nitrite compounds such as (NH 4 NO 3 ), lithium nitrite (LiNO 2 ), potassium nitrite (KNO 2 ), cesium nitrite (CsNO 2 ), and ammonium nitrite (NH 4 NO 2 ); Organic nitric acid such as methyl nitrate, dialkyl imidazolium nitrate, guanidine nitrate, imidazolium nitrate, pyridinium nitrate, ethyl nitrite, propyl nitrite, butyl nitrite, pentyl nitrite, oct
- the non-aqueous electrolyte may further include other additives for the purpose of improving charge / discharge characteristics, flame retardancy, and the like.
- the additives include pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexatriphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazoli Dinon, N, N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol, aluminum trichloride, fluoroethylene carbonate (FEC), propene sulfone (PRS), vinylene carbonate ( VC) and the like.
- FEC fluoroethylene carbonate
- PRS propene sulfone
- VC vinylene carbonate
- the lithium-sulfur secondary battery of the present invention may be manufactured by placing a separator between an anode and a cathode to form an electrode assembly, and the electrode assembly is placed in a cylindrical battery case or a square battery case and then injected with electrolyte. Alternatively, after laminating the electrode assembly, it may be prepared by impregnating it with an electrolyte and sealing the resulting product in a battery case.
- the lithium-sulfur secondary battery according to the present invention is divided by an ED factor value represented by the following Equation 4.
- V is the nominal discharge voltage for Li / Li + (V)
- D is the density of the electrolyte (g / cm 3)
- C is the discharge capacity at discharge at 0.1C rate (mAh / g)
- SC factor is It is the same as the value defined by Equation 1 above.
- the ED factor value may be 850 or more, preferably 870 or more, and more preferably 891 or more.
- the upper limit of the ED factor value is not particularly limited, but considering an embodiment of an actual lithium-sulfur secondary battery, the ED factor value may be 10,000 or less.
- the range of the ED factor value means that the lithium-sulfur secondary battery according to the present invention can realize an improved energy density than the existing lithium-sulfur secondary battery.
- a composition for forming a positive electrode active material layer was prepared by mixing water as a solvent, and mixing sulfur, super-P, SP, a conductive material, and a binder with a ball mill. At this time, Denka Black was used as the conductive material, and a mixed binder of SBR and CMC was used as the binder, and the mixing ratio was sulfur and SP (9: 1 ratio) by weight ratio: conductive material: binder was 90:10:10 It was made possible.
- the prepared positive electrode active material layer-forming composition was applied to an aluminum current collector and dried to prepare a positive electrode (energy density of the positive electrode: 6.18 mAh / cm 2).
- the porosity of the positive electrode active material layer calculated by measuring electrode weight and electrode thickness (using TESA- ⁇ HITE equipment manufactured by TESA) in the prepared positive electrode was 74%, and the mass of sulfur per unit area of the positive electrode active material layer was 3.75 mg / cm 2.
- the SC factor value calculated based on this was 0.50.
- the electrolyte solution was prepared by dissolving 3M concentration of lithium bis (trifluoromethyl sulfonyl) imide (LiTFSI) in an organic solvent, wherein the organic solvent was propionitrile (first solvent) and 1H, 1H, 2 A solvent in which 'H, 3H-decafluorodipropyl ether (second solvent) was mixed in a 3: 7 weight ratio was used.
- LiTFSI lithium bis (trifluoromethyl sulfonyl) imide
- the dipole moment per unit volume in the first solvent was 97.1 D ⁇ mol / L, and the viscosity (25 ° C.) of the solvent measured using a BROOKFIELD AMETEK LVDV2T-CP viscometer was 0.38 cP. The DV 2 factor value calculated based on this was 0.39.
- a lithium-sulfur secondary battery was manufactured in the same manner as in Example 1.
- a lithium-sulfur secondary battery was manufactured in the same manner as in Example 1.
- a lithium-sulfur secondary battery was manufactured in the same manner as in Example 1.
- a lithium-sulfur secondary battery was manufactured in the same manner as in Example 1.
- LiTFSI lithium bis (trifluoromethyl sulfonyl) imide
- LiTFSI lithium bis (trifluoromethyl sulfonyl) imide
- LiTFSI lithium bis (trifluoromethyl sulfonyl) imide
- LiTFSI lithium bis (trifluoromethyl sulfonyl) imide
- LiTFSI lithium bis (trifluoromethyl sulfonyl) imide
- the dipole moment per unit volume was 59.29D ⁇ mol / L
- the solvent viscosity (25 ° C) was 0.61cP
- the DV 2 factor value calculated based on this A lithium-sulfur secondary battery was manufactured in the same manner as in Example 1, except that 1.02 dimethylacetamide was used.
- the dipole moment per unit volume instead of propionitrile as the first solvent was 71.04D ⁇ mol / L
- the solvent viscosity (25 ° C) was 0.51cP
- the DV 2 factor value calculated based on this A lithium-sulfur secondary battery was manufactured in the same manner as in Example 1, except that 0.71 dimethylformamide was used.
- the dipole moment per unit volume is 84.91D ⁇ mol / L
- the solvent viscosity (25 ° C) is 1.03cP
- the DV 2 factor value calculated based on this A lithium-sulfur secondary battery was manufactured in the same manner as in Example 1, except that gamma-butyrolactone of 1.21 was used.
- the dipole moment per unit volume is 136.8 D ⁇ mol / L instead of propionitrile as the first solvent, the solvent viscosity (25 ° C.) is 0.42 cP, and the DV 2 factor value calculated based on this
- a lithium-sulfur secondary battery was manufactured in the same manner as in Example 1, except that 0.31 triethylamine was used.
- the dipole moment per unit volume is 32.42D ⁇ mol / L instead of propionitrile as the first solvent, the solvent viscosity (25 ° C) is 0.45cP, and the DV 2 factor value calculated based on this
- a lithium-sulfur secondary battery was manufactured in the same manner as in Example 1, except that 1.40 i-iodopropane was used.
- the dipole moment per unit volume is 33.66D ⁇ mol / L
- the solvent viscosity (25 ° C) is 0.7cP
- the DV 2 factor value calculated based on this A lithium-sulfur secondary battery was manufactured in the same manner as in Example 1, except that 2.07, 1,3-dioxolane (1,3-Dioxolane) was used.
- the dipole moment per unit volume was 20.54 D ⁇ mol / L
- the solvent viscosity (25 ° C.) was 0.48 cP
- the DV 2 factor value calculated based on this A lithium-sulfur secondary battery was manufactured in the same manner as in Example 1, except that 2.33, 1,2-dimethoxyethane was used.
- the dipole moment per unit volume is 25.79 D ⁇ mol / L
- the solvent viscosity (25 ° C.) is 0.58 cP
- the DV 2 factor value calculated based on this A lithium-sulfur secondary battery was manufactured in the same manner as in Example 1, except that 2.24 tetrahydrofuran was used.
- the dipole moment per unit volume was 59.43D ⁇ mol / L
- the solvent viscosity (25 ° C) was 1.16cP
- the DV 2 factor value calculated based on this A lithium-sulfur secondary battery was manufactured in the same manner as in Example 1, except that 1.95 dimethyl sulfoxide was used.
- the dipole moment per unit volume is 96.13D ⁇ mol / L
- the solvent viscosity (25 ° C) is 1.71cP
- the DV 2 factor value calculated based on this A lithium-sulfur secondary battery was manufactured in the same manner as in Example 1, except that 1.77 propylene carbonate was used.
- the dipole moment per unit volume was 5.74 D ⁇ mol / L
- the solvent viscosity (25 ° C.) was 0.57 cP
- the DV 2 factor value calculated based on this A lithium-sulfur secondary battery was manufactured in the same manner as in Example 1, except that 9.93 dimethyl carbonate was used.
- Electrolyte composition SC factor ED factor Example 1 First electrolyte composition 1 ) 0.50 1004.6 Example 2 0.45 893.0 Comparative Example 1 0.30 593.1 Comparative Example 2 0.35 695.6 Comparative Example 3 0.41 819.4 Comparative Example 4 Second electrolyte composition 2 ) 0.50 877.9 Comparative Example 5 0.45 890.8 Comparative Example 6 0.30 654.4 Comparative Example 7 0.35 761.4 Comparative Example 8 0.41 882.5 1)
- First electrolyte composition Propionitrile: 1H, 1H, 2'H, 3H-Decafluorodipropyl ether (3: 7, w / w) solvent, 3.0M LiTFSI 2)
- Second electrolyte composition 1,3-Dioxolan: Dimethyl ether (1: 1, v / v) solvent, 1.0M LiTFSI, 1.0 wt% LiNO 3
- the lithium-sulfur secondary batteries according to Examples 1 and 2 have an ED factor value of 891 or more that cannot be realized by a lithium-sulfur secondary battery having a second electrolyte composition or an SC factor of 0.41 or less. Can have This means that the lithium-sulfur secondary battery according to the present invention can realize a higher energy density that could not be realized in the existing lithium-sulfur secondary battery.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
The present invention provides a lithium-sulfur secondary battery comprising a cathode, an anode, a separator and an electrolytic solution. The cathode has an SC factor, represented by mathematical formula 1, of 0.45 or greater. The electrolytic solution comprises a solvent and a lithium salt, and the solvent comprises a first solvent having a DV2 factor represented by mathematical formula 2, of 1.7 or less, and a second solvent which is a fluorinated ether-based solvent.
Description
본 출원은 2018년 10월 26일자 한국 특허 출원 제10-2018-0128729호 및 2019년 10월 22일자 한국 특허 출원 제10-2019-0131538호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.This application claims the benefit of priority based on Korean Patent Application No. 10-2018-0128729 filed on October 26, 2018 and Korean Patent Application No. 10-2019-0131538 filed on October 22, 2019. All content disclosed in the literature is included as part of this specification.
본 발명은 리튬-황 이차전지에 관한 것이다.The present invention relates to a lithium-sulfur secondary battery.
이차전지의 응용 영역이 전기 자동차(EV)나 에너지 저장 장치(ESS) 등으로 확대됨에 따라, 상대적으로 낮은 무게 대비 에너지 저장 밀도(~250 Wh/kg)를 갖는 리튬-이온 이차전지는 이러한 제품에 대한 적용의 한계가 있다. 이와 달리, 리튬-황 이차전지는 이론상으로 높은 무게 대비 에너지 저장 밀도(~2,600 Wh/kg)를 구현할 수 있기 때문에, 차세대 이차전지 기술로 각광을 받고 있다.As the application area of secondary batteries is expanded to electric vehicles (EVs) or energy storage devices (ESSs), lithium-ion secondary batteries with relatively low weight-to-weight energy storage density (~ 250 Wh / kg) are used in these products. There is a limit to the application. On the other hand, lithium-sulfur secondary batteries are in the spotlight as the next generation secondary battery technology because they can theoretically realize a high weight-to-weight energy storage density (~ 2,600 Wh / kg).
리튬-황 이차전지는 S-S 결합(Sulfur-Sulfur Bond)을 갖는 황 계열 물질을 양극 활물질로 사용하고, 리튬 금속을 음극 활물질로 사용한 전지 시스템을 의미한다. 상기 양극 활물질의 주재료인 황은 전 세계적으로 자원량이 풍부하고, 독성이 없으며, 낮은 원자당 무게를 가지고 있는 장점이 있다.The lithium-sulfur secondary battery refers to a battery system using a sulfur-based material having an S-S bond (Sulfur-Sulfur Bond) as a positive electrode active material and a lithium metal as a negative electrode active material. Sulfur, the main material of the positive electrode active material, has an advantage of having a large amount of resources worldwide, not toxic, and having a low weight per atom.
리튬-황 이차전지는 방전 시에 음극 활물질인 리튬이 전자를 내어놓고 이온화되면서 산화되며, 양극 활물질인 황 계열 물질이 전자를 받아들여 환원된다. 여기서, 리튬의 산화반응은 리튬 금속이 전자를 내어놓고 리튬 양이온 형태로 변환되는 과정이다. 또한, 황의 환원반응은 S-S 결합이 2개의 전자를 받아들여 황 음이온 형태로 변환되는 과정이다. 리튬의 산화반응에 의해 생성된 리튬 양이온은 전해질을 통해 양극으로 전달되고, 황의 환원반응에 의해 생성된 황 음이온과 결합하여 염을 형성한다. 구체적으로, 방전 전의 황은 환형의 S8 구조를 가지고 있는데, 이는 환원반응에 의해 리튬 폴리설파이드(Lithium polysulfide, LiSx)로 변환된다. 리튬 폴리설파이드가 완전히 환원되는 경우에는 리튬 설파이드(Li2S)가 생성되게 된다.In the lithium-sulfur secondary battery, lithium, a negative electrode active material, is released and ionized during discharge, and is oxidized, and a sulfur-based material, a positive electrode active material, is absorbed and reduced. Here, the oxidation reaction of lithium is a process in which lithium metal releases electrons and is converted into lithium cation form. In addition, the reduction reaction of sulfur is a process in which the SS bond accepts two electrons and is converted into a sulfur anion form. The lithium cation generated by the oxidation reaction of lithium is transferred to the positive electrode through the electrolyte, and combines with the sulfur anion generated by the reduction reaction of sulfur to form a salt. Specifically, sulfur before discharge has a cyclic S 8 structure, which is converted to lithium polysulfide (LiS x ) by a reduction reaction. When lithium polysulfide is completely reduced, lithium sulfide (Li 2 S) is generated.
양극 활물질인 황은 낮은 전기전도도의 특성으로 인해, 고상 형태에서는 전자 및 리튬 이온과의 반응성을 확보하기가 어렵다. 기존 리튬-황 이차전지는 이러한 황의 반응성을 개선하기 위해 Li2Sx 형태의 중간 폴리설파이드(intermediate polysulfide)를 생성하여 액상 반응을 유도하고 반응성을 개선한다. 이 경우, 전해액의 용매로 리튬 폴리설파이드에 대해 용해성이 높은 디옥솔란(dioxolane), 디메톡시에탄(dimethoxyethane) 등의 에테르계 용매가 사용된다. 또한, 기존 리튬-황 이차전지는 반응성을 개선하기 위해 캐솔라이트(catholyte) 타입의 리튬-황 이차전지 시스템을 구축하는데, 이 경우 전해액 내에 녹는 리튬 폴리설파이드의 특성으로 인해 전해액의 함량에 따라 황의 반응성 및 수명 특성이 영향을 받게 된다. 높은 에너지 밀도를 구축하기 위해서는 낮은 함량의 전해액을 주액해야 하나, 전해액 함량이 감소함에 따라 전해액 내 리튬 폴리설파이드의 농도가 증가하게 되어, 활물질의 유동성 감소 및 부반응 증가로 인해 정상적인 전지의 구동이 어렵다.As a positive electrode active material, sulfur has a characteristic of low electrical conductivity, so it is difficult to secure reactivity with electrons and lithium ions in a solid phase form. In order to improve the reactivity of the sulfur, the existing lithium-sulfur secondary battery generates an intermediate polysulfide in the form of Li 2 S x to induce a liquid phase reaction and improve reactivity. In this case, an ether-based solvent such as dioxolane or dimethoxyethane, which is highly soluble in lithium polysulfide, is used as a solvent for the electrolyte. In addition, the existing lithium-sulfur secondary battery constructs a catholyte type lithium-sulfur secondary battery system to improve reactivity, in which case, due to the characteristics of lithium polysulfide dissolved in the electrolyte, the reactivity of sulfur according to the content of the electrolyte And lifetime characteristics are affected. In order to build a high energy density, a low content of electrolyte must be injected, but as the content of the electrolyte decreases, the concentration of lithium polysulfide in the electrolyte increases, and it is difficult to operate a normal battery due to a decrease in fluidity and an increase in side reactions.
고에너지 밀도의 리튬-황 이차전지를 구축하기 위해서는 고로딩, 저기공도의 전극을 구동할 수 있는 전지 시스템을 필요로 하고, 해당 기술 분야에서는 이러한 전지 시스템에 대한 연구가 지속적으로 수행되고 있다.In order to build a high-energy density lithium-sulfur secondary battery, a battery system capable of driving an electrode with high loading and low porosity is required, and research on such a battery system has been continuously conducted in the related technical field.
[선행기술문헌][Advanced technical literature]
[비특허문헌][Non-patent literature]
(비특허문헌 1) Abbas Fotouhi et al., Lithium-Sulfur Battery Technology Readiness and Applications―A Review, Energies 2017, 10, 1937.(Non-Patent Document 1) Abbas Fotouhi et al., Lithium-Sulfur Battery Technology Readiness and Applications―A Review, Energies 2017, 10, 1937.
상기 문제점을 해결하기 위해, 본 발명은 양극 및 전해액을 특정 조건으로 조절함으로써, 고에너지 밀도의 리튬-황 이차전지를 구현할 수 있는 리튬-황 이차전지를 제공하고자 한다.In order to solve the above problems, the present invention is to provide a lithium-sulfur secondary battery capable of realizing a lithium-sulfur secondary battery having a high energy density by adjusting a positive electrode and an electrolyte to specific conditions.
본 발명의 제1 측면에 따르면,According to a first aspect of the invention,
본 발명은 양극, 음극, 분리막 및 전해액을 포함하는 리튬-황 이차전지를 제공한다.The present invention provides a lithium-sulfur secondary battery comprising an anode, a cathode, a separator, and an electrolyte.
본 발명의 일 구체예에 있어서, 상기 양극은 하기 수학식 1로 표시되는 SC factor 값이 0.45 이상이다.In one embodiment of the present invention, the positive electrode has an SC factor value of 0.45 or more represented by Equation 1 below.
[수학식 1][Equation 1]
(여기서, P는 양극 내 양극 활물질 층의 공극률(%)이고, L은 양극 내 양극 활물질 층의 단위 면적당 황의 질량(mg/㎠)이며, α는 10(상수)이다.)(Here, P is the porosity (%) of the positive electrode active material layer in the positive electrode, L is the mass of sulfur per unit area of the positive electrode active material layer in the positive electrode (mg / cm 2), and α is 10 (constant).)
본 발명의 일 구체예에 있어서, 상기 전해액은 용매 및 리튬염을 포함하며,In one embodiment of the present invention, the electrolyte solution includes a solvent and a lithium salt,
상기 용매는 하기 수학식 2로 표시되는 DV2 factor 값이 1.75 이하인 제1 용매, 및 불소화된 에테르계 용매인 제2 용매를 포함한다.The solvent includes a first solvent having a DV 2 factor value of 1.75 or less represented by Equation 2 below, and a second solvent being a fluorinated ether-based solvent.
[수학식 2][Equation 2]
(여기서, DV는 단위 부피당 쌍극자 모멘트(D·mol/L)이고, μ는 용매의 점도(cP, 25℃)이며, γ는 100(상수)이다.)(Where DV is the dipole moment per unit volume (D · mol / L), μ is the viscosity of the solvent (cP, 25 ° C.), and γ is 100 (constant).
본 발명의 일 구체예에 있어서, 상기 제1 용매는 1.5 이하의 DV2 factor 값을 갖는다.In one embodiment of the present invention, the first solvent has a DV 2 factor value of 1.5 or less.
본 발명의 일 구체예에 있어서, 상기 리튬-황 이차전지는 하기 수학식 3으로 표시되는 NS factor 값이 3.5 이하이다.In one embodiment of the present invention, the lithium-sulfur secondary battery has an NS factor value represented by Equation 3 below 3.5 or less.
[수학식 3][Equation 3]
(여기서, SC factor는 상기 수학식 1에 의해 정의된 값과 동일하고, DV2 factor는 상기 수학식 2에 의해 정의된 값과 동일하다.)(Here, the SC factor is the same as the value defined by Equation 1, and the DV 2 factor is the same as the value defined by Equation 2.)
본 발명의 일 구체예에 있어서, 상기 리튬-황 이차전지는 하기 수학식 4로 표시되는 ED factor 값이 850 이상이다.In one embodiment of the present invention, the lithium-sulfur secondary battery has an ED factor value of 850 or more represented by Equation 4 below.
[수학식 4][Equation 4]
(여기서, V는 Li/Li+에 대한 방전 공칭 전압(V)이고, D는 전해액의 밀도(g/㎤)이고, C는 0.1C rate로 방전 시 방전 용량(mAh/g)이며, SC factor는 상기 수학식 1에 의해 정의된 값과 동일하다.)(Wherein, V is the nominal discharge voltage for Li / Li + (V), D is the density of the electrolyte (g / cm 3), C is the discharge capacity at discharge at 0.1C rate (mAh / g), and SC factor Is the same as the value defined by Equation 1 above.)
본 발명의 일 구체예에 있어서, 상기 제1 용매는 프로피오니트릴, 디메틸아세트아미드, 디메틸포름아미드, 감마-부티로락톤, 트리에틸아민, 1-아이오도프로판 및 이의 조합으로 이루어진 군으로부터 선택된다.In one embodiment of the present invention, the first solvent is selected from the group consisting of propionitrile, dimethylacetamide, dimethylformamide, gamma-butyrolactone, triethylamine, 1-iodopropane, and combinations thereof. .
본 발명의 일 구체예에 있어서, 상기 제2 용매는 1H,1H,2'H,3H-데카플루오로디프로필 에테르, 디플루오로메틸 2,2,2-트리플루오로에틸 에테르, 1,2,2,2-테트라플루오로에틸 트리플루오로메틸 에테르, 1,1,2,3,3,3-헥사플루오로프로필 디플루오로메틸 에테르, 1H,1H,2'H,3H-데카플루오로디프로필 에테르, 펜타플루오로에틸 2,2,2-트리플루오로에틸 에테르, 1H,1H,2'H-퍼플루오로디프로필 에테르 및 이의 조합으로 이루어진 군으로부터 선택된다.In one embodiment of the invention, the second solvent is 1H, 1H, 2'H, 3H-decafluorodipropyl ether, difluoromethyl 2,2,2-trifluoroethyl ether, 1,2, 2,2-tetrafluoroethyl trifluoromethyl ether, 1,1,2,3,3,3-hexafluoropropyl difluoromethyl ether, 1H, 1H, 2'H, 3H-decafluorodipropyl Ether, pentafluoroethyl 2,2,2-trifluoroethyl ether, 1H, 1H, 2'H-perfluorodipropyl ether and combinations thereof.
본 발명의 일 구체예에 있어서, 상기 용매는 제1 용매를 1 내지 50 중량% 포함한다.In one embodiment of the invention, the solvent comprises 1 to 50% by weight of the first solvent.
본 발명의 일 구체예에 있어서, 상기 용매는 제2 용매를 50 내지 99 중량% 포함한다.In one embodiment of the invention, the solvent comprises 50 to 99% by weight of the second solvent.
본 발명의 일 구체예에 있어서, 상기 용매는 3:7 내지 1:9 중량비로 제1 용매 및 제2 용매를 포함한다.In one embodiment of the invention, the solvent comprises a first solvent and a second solvent in a weight ratio of 3: 7 to 1: 9.
본 발명에 따른 리튬-황 이차전지는 양극 및 전해액을 특정 조건으로 조절함으로써, 기존의 리튬-황 이차전지로는 구현하기 어려웠던 고에너지 밀도를 갖는다.The lithium-sulfur secondary battery according to the present invention has a high energy density that was difficult to implement with a conventional lithium-sulfur secondary battery by controlling the positive electrode and the electrolyte to specific conditions.
도 1은 실시예 1 및 2와 비교예 1 내지 8에 따른 리튬-황 이차전지의 ED factor 값을 측정하여 나타낸 그래프이다.1 is a graph showing the measured ED factor values of the lithium-sulfur secondary batteries according to Examples 1 and 2 and Comparative Examples 1 to 8.
도 2는 실시예 1 및 3 내지 7과 비교예 9 내지 14에 따른 리튬-황 이차전지의 ED factor 값을 측정하여 나타낸 그래프이다.2 is a graph showing the measured ED factor values of the lithium-sulfur secondary batteries according to Examples 1 and 3 to 7 and Comparative Examples 9 to 14.
본 발명에 따라 제공되는 구체예는 하기의 설명에 의하여 모두 달성될 수 있다. 하기의 설명은 본 발명의 바람직한 구체예를 기술하는 것으로 이해되어야 하며, 본 발명이 반드시 이에 한정되는 것은 아님을 이해해야 한다.The specific examples provided according to the present invention can all be achieved by the following description. It should be understood that the following description is to describe preferred embodiments of the invention, and it is to be understood that the invention is not necessarily limited thereto.
본 명세서에 기재된 물성에 대하여, 측정 조건 및 방법이 구체적으로 기재되어 있지 않은 경우, 상기 물성은 해당 기술 분야에서 통상의 기술자에 의해 일반적으로 사용되는 측정 조건 및 방법에 따라 측정된다.For the properties described in the present specification, unless the measurement conditions and methods are specifically described, the properties are measured according to measurement conditions and methods generally used by those skilled in the art.
본 발명은 양극, 음극, 분리막 및 전해액을 포함하는 리튬-황 이차전지를 제공한다. 본 발명에 따른 리튬-황 이차전지는 기공도가 낮고, 양극 활물질인 황의 로딩양이 높은 양극을 포함한다. 양극에서 기공도를 낮추고, 양극 활물질의 함량을 높이면, 양극을 포함하는 전지의 에너지 밀도가 증가한다. 그러나, 리튬-황 이차전지에서 양극의 기공도를 최소한으로 낮추고, 황의 함량을 최대한으로 높이면, 단위 황 함량당 전해액을 비율이 감소하게 되므로 상기 양극을 리튬-황 이차전지에 적용하는 경우, 목표로 한 성능을 구현하기 어렵다. 본 발명에서는 양극에서 황과 관련된 조건을 한정하고, 이에 적절한 전해액 조건을 특정함으로써, 실제로 구현 시에 기존의 리튬-황 이차전지에 비해 고에너지 밀도를 갖는 리튬-황 이차전지를 제공하고자 한다.The present invention provides a lithium-sulfur secondary battery comprising an anode, a cathode, a separator, and an electrolyte. The lithium-sulfur secondary battery according to the present invention includes a positive electrode having a low porosity and a high loading amount of sulfur as a positive electrode active material. When the porosity is lowered at the positive electrode and the content of the positive electrode active material is increased, the energy density of the battery containing the positive electrode increases. However, if the porosity of the anode is minimized and the sulfur content is maximized in the lithium-sulfur secondary battery, the ratio of the electrolyte solution per unit sulfur content decreases. Therefore, when the anode is applied to the lithium-sulfur secondary battery, the target is It is difficult to achieve one performance. In the present invention, it is intended to provide a lithium-sulfur secondary battery having a higher energy density than an existing lithium-sulfur secondary battery in actual implementation by limiting conditions related to sulfur at the positive electrode and specifying appropriate electrolyte conditions.
본 발명에서 상기 양극은 특별히 제한하는 것은 아니나, 리튬 박막이거나 집전체 일면 상에 양극 활물질 층이 형성되어 있는 것일 수 있다. 만약, 상기 양극이 집전체 일면 상에 양극 활물질 층이 형성되어 있는 것인 경우, 상기 양극은 집전체 일면 상에 양극 활물질을 포함하는 양극 활물질 슬러리를 도포한 후 건조하여 제조할 수 있으며, 이때 상기 슬러리는 양극 활물질 이외에 바인더 및 도전재, 충진제, 분산제와 같은 첨가제를 더 포함하는 것일 수 있다. In the present invention, the positive electrode is not particularly limited, but may be a lithium thin film or a positive electrode active material layer formed on one surface of the current collector. If, when the positive electrode is a positive electrode active material layer is formed on one surface of the current collector, the positive electrode may be prepared by applying a positive electrode active material slurry containing a positive electrode active material on one surface of the current collector and drying it. The slurry may further include additives such as a binder and a conductive material, a filler, and a dispersant in addition to the positive electrode active material.
상기 양극 활물질은 황 원소(Elemental sulfur, S8), 황 계열 화합물 또는 이들의 혼합물을 포함할 수 있다. 상기 황 계열 화합물은 구체적으로, Li2Sn(n≥1), 유기황 화합물 또는 탄소-황 폴리머((C2Sx)n: x=2.5 ~ 50, n≥2) 등일 수 있다. 이들은 황 물질 단독으로는 전기전도성이 없기 때문에 도전재와 복합하여 적용한다.The positive active material may include elemental sulfur (S 8 ), a sulfur-based compound, or a mixture thereof. Specifically, the sulfur-based compound may be Li 2 S n (n≥1), an organic sulfur compound, or a carbon-sulfur polymer ((C 2 S x ) n : x = 2.5 to 50, n≥2). They are applied in combination with a conductive material because the sulfur material alone does not have electrical conductivity.
상기 바인더는 상기 양극 활물질과 도전재의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질 슬러리 총량을 기준으로 1 중량% 내지 30 중량%로 첨가될 수 있다. 이러한 바인더는 특별히 제한하는 것은 아니나, 예컨대 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌-부티렌 고무(SBR) 및 불소 고무로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물일 수 있다.The binder is a component that assists the bonding of the positive electrode active material and the conductive material and bonding to the current collector, and may be usually added in an amount of 1% to 30% by weight based on the total amount of the positive electrode active material slurry. The binder is not particularly limited, for example, vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidenefluoride, polyacrylonitrile, polymethylmethacryl Late (polymethylmethacrylate), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene It may be one or a mixture of two or more selected from the group consisting of monomers (EPDM), sulfonated EPDM, styrene-butylene rubber (SBR) and fluorine rubber.
상기 도전재는 특별히 제한하지 않으나, 예컨대 천연흑연이나 인조흑연 등의 흑연; 카본블랙(super-p), 아세틸렌 블랙, 케첸블랙, 채널블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙, 덴카 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등일 수 있다. 상기 도전재는 통상적으로 상기 양극 활물질 슬러리 전체 중량을 기준으로 0.05 중량% 내지 5 중량%의 함량일 수 있다.The conductive material is not particularly limited, for example, graphite such as natural graphite or artificial graphite; Carbon blacks such as carbon black (super-p), acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and denka black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder, and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; And conductive materials such as polyphenylene derivatives. The conductive material may be a content of 0.05% to 5% by weight based on the total weight of the positive electrode active material slurry.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 필요에 따라 사용 여부를 정할 수 있으며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한하는 것은 아니나, 예컨대 폴리에틸렌 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질일 수 있다. The filler may be used as a component that suppresses the expansion of the positive electrode, if necessary, whether or not to use it, and does not cause any chemical change in the battery, but is not particularly limited if it is a fibrous material, for example, olefin polymers such as polyethylene polypropylene; It may be a fibrous material such as glass fiber, carbon fiber.
상기 분산제(분산액)로는 특별히 제한하는 것은 아니나, 예컨대 이소프로필 알코올, N-메틸피롤리돈(NMP), 아세톤 등일 수 있다. The dispersant (dispersion) is not particularly limited, but may be, for example, isopropyl alcohol, N-methylpyrrolidone (NMP), acetone, or the like.
상기 도포는 당업계에 통상적으로 공지된 방법에 의하여 수행할 수 있으나, 예컨대 상기 양극 활물질 슬러리를 상기 양극 집전체 일측 상면에 분배시킨 후 닥터 블레이드(doctor blade) 등을 사용하여 균일하게 분산시켜 수행할 수 있다. 이외에도, 다이 캐스팅(die casting), 콤마 코팅(comma coating), 스크린 프린팅(screen printing) 등의 방법을 통하여 수행할 수 있다. The coating may be performed by a method commonly known in the art, but, for example, the positive electrode active material slurry is distributed on one side of the positive electrode current collector and then uniformly dispersed using a doctor blade or the like. You can. In addition, it may be performed through methods such as die casting, comma coating, and screen printing.
상기 건조는 특별히 제한하는 것은 아니나 50℃ 내지 200℃의 진공오븐에서 1일 이내로 수행하는 것일 수 있다.The drying is not particularly limited, but may be performed within 1 day in a vacuum oven at 50 ° C to 200 ° C.
상술한 소재 및 방법으로 제조된 본 발명의 양극은 하기 수학식 1로 표시되는 SC factor 값에 의해 구분된다.The positive electrode of the present invention manufactured by the above-described material and method is divided by the SC factor value represented by the following equation (1).
[수학식 1][Equation 1]
여기서, P는 양극 내 양극 활물질 층의 공극률(%)이고, L은 양극 내 양극 활물질 층의 단위 면적당 황의 질량(mg/㎠)이며, α는 10(상수)이다. 본 발명에 따른 리튬-황 이차전지는 상술한 양극뿐만 아니라 음극, 분리막 및 전해질 등의 유기적인 결합에 의해 고에너지 밀도를 구현하며, 본 발명의 구체예에 따르면, 리튬-황 이차전지가 고에너지 밀도를 구현하기 위해, 상기 SC factor 값은 0.45 이상, 바람직하게는 0.5 이상일 수 있다. 본 발명에 있어서, 상기 SC factor 값의 상한은 특별하게 제한되지 않지만, 실제 리튬-황 이차전지의 구현예를 고려해 볼 때, 상기 SC factor 값은 4.5 이하일 수 있다. 상기 SC factor 값이 0.45 이상인 경우, 기존의 리튬-황 이차전지의 경우에는 실제 구현 시 전지의 에너지 밀도 등의 성능이 저하되지만, 본 발명에 따른 리튬-황 이차전지의 경우에는 실제 구현 시에도 전지의 성능이 저하되지 않고 유지된다.Here, P is the porosity (%) of the positive electrode active material layer in the positive electrode, L is the mass of sulfur per unit area of the positive electrode active material layer in the positive electrode (mg / cm 2), and α is 10 (constant). The lithium-sulfur secondary battery according to the present invention realizes a high energy density by organic bonding of the cathode, separator, and electrolyte as well as the above-described positive electrode, and according to an embodiment of the present invention, the lithium-sulfur secondary battery has high energy To implement density, the SC factor value may be 0.45 or more, preferably 0.5 or more. In the present invention, the upper limit of the SC factor value is not particularly limited, but considering the embodiment of the actual lithium-sulfur secondary battery, the SC factor value may be 4.5 or less. When the SC factor value is 0.45 or more, in the case of a conventional lithium-sulfur secondary battery, performance such as energy density of the battery decreases in actual implementation, but in the case of a lithium-sulfur secondary battery according to the present invention, even in actual implementation Its performance is maintained without deterioration.
본 발명에서 상기 음극은 음극 집전체, 및 음극 집전체 상에 형성된 음극 활물질 층을 포함한다.In the present invention, the negative electrode includes a negative electrode current collector, and a negative electrode active material layer formed on the negative electrode current collector.
상기 음극 활물질 층은 음극 활물질, 바인더 및 도전재를 포함한다. 상기 음극 활물질로는 리튬 이온(Li+)을 가역적으로 흡장(Intercalation) 또는 방출(Deintercalation)할 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 금속 또는 리튬 합금을 사용할 수 있다. 상기 리튬 이온(Li+)을 가역적으로 흡장 또는 방출할 수 있는 물질은 예컨대 결정질 탄소, 비정질 탄소 또는 이들의 혼합물일 수 있다. 상기 리튬 이온(Li+)과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질은 예를 들어, 산화주석, 티타늄나이트레이트 또는 실리콘일 수 있다. 상기 리튬 합금은 예를 들어, 리튬(Li)과 나트륨(Na), 칼륨(K), 루비듐(Rb), 세슘(Cs), 프랑슘(Fr), 베릴륨(Be), 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 라듐(Ra), 알루미늄(Al) 및 주석(Sn)으로 이루어지는 군에서 선택되는 금속의 합금일 수 있다.The negative active material layer includes a negative active material, a binder, and a conductive material. As the negative electrode active material, a material capable of reversibly intercalating or deintercalating lithium ions (Li + ), a material capable of reversibly forming a lithium-containing compound by reacting with lithium ions, lithium metal or lithium alloy Can be used. The material capable of reversibly occluding or releasing lithium ions (Li + ) may be, for example, crystalline carbon, amorphous carbon, or a mixture thereof. A material capable of reversibly forming a lithium-containing compound by reacting with the lithium ion (Li + ) may be, for example, tin oxide, titanium nitrate or silicon. The lithium alloy is, for example, lithium (Li) and sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), beryllium (Be), magnesium (Mg), calcium ( Ca), strontium (Sr), barium (Ba), radium (Ra), aluminum (Al), and tin (Sn).
상기 바인더는 상술한 바인더에 한정되지 않고, 해당 기술 분야에서 바인더로 사용될 수 있는 것이라면 모두 가능하다.The binder is not limited to the above-described binder, and any material that can be used as a binder in the related art is possible.
상기 음극 활물질 및 도전재를 제외한 집전체 등의 구성은 상술한 양극에서 사용된 물질 및 방법 등이 사용될 수 있다.Materials such as a current collector other than the negative electrode active material and the conductive material, and materials and methods used in the positive electrode described above may be used.
본 발명에서 상기 분리막은 전극을 물리적으로 분리하는 기능을 갖는 물리적인 분리막으로서, 통상의 분리막으로 사용되는 것이라면 특별한 제한 없이 사용 가능하며, 특히 전해액의 이온 이동에 대하여 저 저항이면서 전해액 함습 능력이 우수한 것이 바람직하다.In the present invention, the separator is a physical separator having a function of physically separating an electrode, and can be used without particular limitation as long as it is used as a normal separator. desirable.
또한, 상기 분리막은 양극과 음극을 서로 분리 또는 절연시키면서 양극과 음극 사이에 리튬 이온의 수송을 가능하게 한다. 이러한 분리막은 기공도 30~50%의 다공성이고, 비전도성 또는 절연성인 물질로 이루어질 수 있다. In addition, the separator enables the transport of lithium ions between the positive electrode and the negative electrode while separating or insulating the positive electrode and the negative electrode from each other. The separator may be made of a material having a porosity of 30 to 50% and a non-conductive or insulating material.
구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 사용할 수 있고, 고융점의 유리 섬유 등으로 된 부직포를 사용할 수 있다. 이 중 바람직하기로 다공성 고분자 필름을 사용한다.Specifically, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer, and ethylene / methacrylate copolymer may be used. It is possible to use a non-woven fabric made of high melting point glass fiber or the like. Among them, a porous polymer film is preferably used.
만일 버퍼층 및 분리막으로 모두 고분자 필름을 사용하게 되면, 전해액 함침량 및 이온 전도 특성이 감소하고, 과전압 감소 및 용량 특성 개선 효과가 미미하게 된다. 반대로, 모두 부직포 소재를 사용할 경우는 기계적 강성이 확보되지 못하여 전지 단락의 문제가 발생한다. 그러나, 필름형의 분리막과 고분자 부직포 버퍼층을 함께 사용하면, 버퍼층의 채용으로 인한 전지 성능 개선 효과와 함께 기계적 강도 또한 확보할 수 있다.If a polymer film is used as both the buffer layer and the separation membrane, the amount of electrolyte impregnation and ion conduction characteristics decreases, and the effect of reducing overvoltage and improving capacity characteristics is negligible. Conversely, when all non-woven materials are used, mechanical stiffness cannot be secured, resulting in a short circuit of the battery. However, when the film-type separator and the polymer nonwoven fabric buffer layer are used together, the mechanical performance can be secured together with the battery performance improvement effect due to the adoption of the buffer layer.
본 발명의 바람직한 일 구체예에 따르면 에틸렌 단독중합체(폴리에틸렌) 고분자 필름을 분리막으로, 폴리이미드 부직포를 버퍼층으로 사용한다. 이때, 상기 폴리에틸렌 고분자 필름은 두께가 10 내지 25μm, 기공도가 40 내지 50%인 것이 바람직하다. According to a preferred embodiment of the present invention, an ethylene homopolymer (polyethylene) polymer film is used as a separator, and a polyimide nonwoven fabric is used as a buffer layer. At this time, the polyethylene polymer film preferably has a thickness of 10 to 25 μm and a porosity of 40 to 50%.
본 발명에서 상기 전해액은 리튬염을 함유하는 비수계 전해액으로서 리튬염과 용매로 구성된다. 상기 전해액은 1.5 g/㎤ 미만의 밀도를 가진다. 상기 전해액이 1.5 g/㎤ 이상의 밀도를 가지는 경우, 전해액의 무게 증가로 인해 리튬-황 이차전지의 고에너지 밀도를 구현하기 어렵다.In the present invention, the electrolyte solution is a non-aqueous electrolyte solution containing a lithium salt, and is composed of a lithium salt and a solvent. The electrolyte has a density of less than 1.5 g / cm 3. When the electrolyte has a density of 1.5 g / cm 3 or more, it is difficult to realize a high energy density of the lithium-sulfur secondary battery due to an increase in the weight of the electrolyte.
상기 리튬염은 비수계 유기 용매에 쉽게 용해될 수 있는 물질로서, 예컨대, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiB(Ph)4
, LiC4BO8, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, LiSO3CH3, LiSO3CF3, LiSCN, LiC(CF3SO2)3, LiN(CF3SO2)2, LiN(C2F5SO2)2, LiN(SO2F)2, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 테트라 페닐 붕산 리튬 및 리튬 이미드로 이루어진 군으로부터 하나 이상일 수 있다. 본 발명의 일 구체예에 있어서, 상기 리튬염은 LiTFSI 등과 같은 리튬 이미드가 바람직할 수 있다.The lithium salt is a material that can be easily dissolved in a non-aqueous organic solvent, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiB (Ph) 4 , LiC 4 BO 8 , LiPF 6 , LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, LiSO 3 CH 3, LiSO 3 CF 3, LiSCN, LiC (CF 3 SO 2) 3, LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2 ) 2 , LiN (SO 2 F) 2 , chloro borane lithium, lower aliphatic lithium carboxylate, lithium tetraphenyl borate, and lithium imide. In one embodiment of the present invention, the lithium salt may be preferably a lithium imide such as LiTFSI.
상기 리튬염의 농도는, 전해액 혼합물의 정확한 조성, 염의 용해도, 용해된 염의 전도성, 전지의 충전 및 방전 조건, 작업 온도 및 리튬 이차전지 분야에 공지된 다른 요인과 같은 여러 요인에 따라, 0.1 내지 8.0M, 바람직하게는 0.5 내지 5.0M, 더욱 바람직하게는 1.0 내지 3.0M일 수 있다. 만약, 리튬염의 농도가 상기 범위 미만이면 전해액의 전도도가 낮아져서 전지 성능이 저하될 수 있고, 상기 범위 초과이면 전해액의 점도가 증가하여 리튬 이온(Li+)의 이동성이 감소될 수 있으므로 상기 범위 내에서 적정 농도를 선택하는 것이 바람직하다.The concentration of the lithium salt is 0.1 to 8.0M, depending on several factors such as the exact composition of the electrolyte mixture, the solubility of the salt, the conductivity of the dissolved salt, the conditions for charging and discharging the battery, the working temperature and other factors known in the field of lithium secondary batteries. , Preferably 0.5 to 5.0M, more preferably 1.0 to 3.0M. If the concentration of the lithium salt is less than the above range, the conductivity of the electrolyte solution may be lowered to deteriorate the battery performance, and if it exceeds the above range, the mobility of the lithium ion (Li + ) may decrease due to an increase in the viscosity of the electrolyte solution. It is desirable to select an appropriate concentration.
상기 용매는 제1 용매 및 제2 용매를 포함한다. 상기 제1 용매는 용매에서 1 중량% 이상 포함된 구성성분 중 가장 높은 단위 부피당 쌍극자 모멘트(dipole moment)를 갖는 것이며, 따라서 높은 쌍극자 모멘트(dipole moment) 및 낮은 점도를 갖는 것을 특징으로 한다. 쌍극자 모멘트가 높은 용매를 사용하는 경우, 황의 고상 반응성을 개선하는 효과를 가지는데, 이러한 효과는 용매 자체가 낮은 점도를 가질 때에 우수하게 발현될 수 있다. 본 발명에서 제1 용매는 하기 수학식 2로 표시되는 DV2 factor에 의해 구분된다.The solvent includes a first solvent and a second solvent. The first solvent has the highest dipole moment per unit volume among the components contained in the solvent by 1% by weight or more, and thus is characterized by having a high dipole moment and a low viscosity. When a solvent having a high dipole moment is used, it has an effect of improving the solid phase reactivity of sulfur, and this effect can be excellently expressed when the solvent itself has a low viscosity. In the present invention, the first solvent is classified by the DV 2 factor represented by Equation 2 below.
[수학식 2][Equation 2]
여기서, DV는 단위 부피당 쌍극자 모멘트(debye(D)·mol/L)이고, μ는 용매의 점도(cP, 25℃)이며, γ는 100(상수)이다. 본 발명의 구체예에 따르면, 상기 DV2 factor 값은 1.75 이하, 바람직하게는 1.5 이하일 수 있다. 본 발명에 있어서, 상기 DV2 factor 값의 하한은 특별하게 제한되지 않지만, 실제 리튬-황 이차전지의 구현예를 고려해 볼 때, 상기 DV2 factor 값은 0.1 이상일 수 있다. 제1 용매와 같이 DV2 factor 값이 1.75 이하인 용매를 혼합하는 경우, 기공도가 낮고, 양극 활물질인 황의 로딩양이 높은 양극이 리튬-황 전지에 적용되었을 때도 전해액의 기능성이 그대로 유지될 수 있어, 전지의 성능이 저하되지 않는다.Here, DV is the dipole moment per unit volume (debye (D) · mol / L), μ is the viscosity of the solvent (cP, 25 ° C), and γ is 100 (constant). According to an embodiment of the present invention, the DV 2 factor value may be 1.75 or less, preferably 1.5 or less. In the present invention, the lower limit of the DV 2 factor value is not particularly limited, but considering the embodiment of the actual lithium-sulfur secondary battery, the DV 2 factor value may be 0.1 or more. When mixing a solvent having a DV 2 factor value of 1.75 or less, such as a first solvent, even when a positive electrode having a low porosity and a high loading amount of sulfur as a positive electrode active material is applied to a lithium-sulfur battery, the functionality of the electrolyte can be maintained. , The performance of the battery does not deteriorate.
본 발명에서 제1 용매는 상술한 DV2 factor 값의 범위에 포함되면, 그 종류는 특별히 한정되지 않으나, 프로피오니트릴(Propionitrile), 디메틸아세트아미드(Dimethylacetamide), 디메틸포름아미드(Dimethylformamide), 감마-부티로락톤(Gamma-Butyrolactone), 트리에틸아민(Triethylamine), 1-아이오도프로판(1-iodopropane) 및 이의 조합으로 이루어진 군으로부터 선택될 수 있다. 본 발명의 구체예에 따르면, 상기 제1 용매는 전해액을 구성하는 용매를 기준으로 1 내지 50 중량%, 바람직하게는 5 내지 40 중량%, 보다 바람직하게는 10 내지 30 중량%가 포함될 수 있다. 본 발명에 따른 용매가 상술한 중량% 범위 내에서 제1 용매를 포함하는 경우, 기공도가 낮고, 양극 활물질인 황의 로딩양이 높은 양극과 함께 사용했을 때에도 전지의 성능 개선 효과를 가질 수 있다.If the first solvent in the present invention is included in the range of the above-mentioned DV 2 factor value, the type is not particularly limited, but propionitrile (Propionitrile), dimethylacetamide (Dimethylacetamide), dimethylformamide (Dimethylformamide), gamma- Butyrolactone (Gamma-Butyrolactone), triethylamine (Triethylamine), can be selected from the group consisting of 1-iodopropane (1-iodopropane) and combinations thereof. According to an embodiment of the present invention, the first solvent may include 1 to 50% by weight, preferably 5 to 40% by weight, more preferably 10 to 30% by weight based on the solvent constituting the electrolyte solution. When the solvent according to the present invention includes the first solvent within the above-mentioned weight percent range, the performance of the battery may be improved even when used with a positive electrode having a low porosity and a high loading amount of sulfur as a positive electrode active material.
본 발명의 리튬-황 이차전지는 상기 SC factor와 상기 DV2 factor를 조합한 NS factor에 의해 추가적으로 구분될 수 있다. 상기 NS factor는 하기 수학식 3으로 표시된다.The lithium-sulfur secondary battery of the present invention may be further classified by an NS factor combining the SC factor and the DV 2 factor. The NS factor is represented by Equation 3 below.
[수학식 3][Equation 3]
여기서, SC factor는 상기 수학식 1에 의해 정의된 값과 동일하고, DV2 factor는 상기 수학식 2에 의해 정의된 값과 동일하다. 본 발명의 구체예에 따르면, 상기 NS factor 값은 3.5 이하, 바람직하게는 3.0 이하, 보다 바람직하게는 2.7 이하일 수 있다. 본 발명에 있어서, 상기 NS factor 값의 하한은 특별하게 제한되지 않지만, 실제 리튬-황 이차전지의 구현예를 고려해 볼 때, 상기 NS factor 값은 0.1 이상일 수 있다. 상기 NS factor 값을 상기 범위 내로 조절하는 경우, 리튬-황 이차전지의 성능 개선 효과가 보다 우수할 수 있다.Here, the SC factor is the same as the value defined by Equation 1, and the DV 2 factor is the same as the value defined by Equation 2. According to an embodiment of the present invention, the NS factor value may be 3.5 or less, preferably 3.0 or less, and more preferably 2.7 or less. In the present invention, the lower limit of the NS factor value is not particularly limited, but considering the embodiment of the actual lithium-sulfur secondary battery, the NS factor value may be 0.1 or more. When the NS factor value is adjusted within the above range, the performance improvement effect of the lithium-sulfur secondary battery may be more excellent.
본 발명에서 제2 용매는 불소화된 에테르계 용매이다. 기존에는 전해액의 점도를 조절하기 위하여, 희석제(diluent)로 디메톡시에탄(dimethoxyethane), 디메틸카보네이트(dimethylcarbonate) 등의 용매가 사용되었는데, 이와 같은 용매를 희석제로 사용하는 경우, 본 발명과 같은 고로딩, 저기공도의 양극을 포함하는 전지를 구동할 수가 없다. 따라서, 본 발명에서 제2 용매는 제1 용매와 함께 본 발명에 따른 양극을 구동하기 위해 첨가된다. 상기 제2 용매는 해당 기술 분야에서 일반적으로 사용되는 불소화된 에테르계 용매이면, 그 종류는 특별히 한정되지 않으나, 1H,1H,2'H,3H-데카플루오로디프로필 에테르(1H,1H,2'H,3H-Decafluorodipropyl ether), 디플루오로메틸 2,2,2-트리플루오로에틸 에테르(Difluoromethyl 2,2,2-trifluoroethyl ether), 1,2,2,2-테트라플루오로에틸 트리플루오로메틸 에테르(1,2,2,2-Tetrafluoroethyl trifluoromethyl ether), 1,1,2,3,3,3-헥사플루오로프로필 디플루오로메틸 에테르(1,1,2,3,3,3-Hexafluoropropyl difluoromethyl ether), 1H,1H,2'H,3H-데카플루오로디프로필 에테르(1H,1H,2'H,3H-Decafluorodipropyl ether), 펜타플루오로에틸 2,2,2-트리플루오로에틸 에테르(Pentafluoroethyl 2,2,2-trifluoroethyl ether), 1H,1H,2'H-퍼플루오로디프로필 에테르(1H,1H,2'H-Perfluorodipropyl ether) 및 이의 조합으로 이루어진 군으로부터 선택될 수 있다. 본 발명의 구체예에 따르면, 상기 제2 용매는 전해액을 구성하는 용매를 기준으로 50 내지 99 중량%, 바람직하게는 60 내지 95 중량%, 보다 바람직하게는 70 내지 90 중량%가 포함될 수 있다. 본 발명에 따른 용매가 상술한 중량% 범위 내에서 제2 용매를 포함하는 경우, 제1 용매와 마찬가지로 기공도가 낮고, 양극 활물질인 황의 로딩양이 높은 양극과 함께 사용했을 때에도 전지의 성능 개선 효과를 가질 수 있다. 제1 용매와 제2 용매를 혼합 시, 전지의 성능 개선 효과를 고려하여 제2 용매는 제1 용매와 동일하거나 그 이상의 양이 전해액에 포함될 수 있다. 본 발명의 구체예에 따르면, 상기 용매는 1:1 내지 1:9, 바람직하게는 3:7 내지 1:9 중량비(제1 용매:제2 용매)로 제1 용매 및 제2 용매를 포함할 수 있다.The second solvent in the present invention is a fluorinated ether-based solvent. Conventionally, in order to control the viscosity of the electrolyte, a solvent such as dimethoxyethane or dimethylcarbonate was used as a diluent. When such a solvent is used as a diluent, high loading as in the present invention , It is not possible to drive a battery containing a positive electrode having low porosity. Therefore, in the present invention, a second solvent is added together with the first solvent to drive the positive electrode according to the present invention. If the second solvent is a fluorinated ether-based solvent generally used in the art, the type is not particularly limited, but 1H, 1H, 2'H, 3H-decafluorodipropyl ether (1H, 1H, 2 ' H, 3H-Decafluorodipropyl ether), Difluoromethyl 2,2,2-trifluoroethyl ether, 1,2,2,2-tetrafluoroethyl trifluoro Methyl ether (1,2,2,2-Tetrafluoroethyl trifluoromethyl ether), 1,1,2,3,3,3-hexafluoropropyl difluoromethyl ether (1,1,2,3,3,3- Hexafluoropropyl difluoromethyl ether), 1H, 1H, 2'H, 3H-decafluorodipropyl ether (1H, 1H, 2'H, 3H-Decafluorodipropyl ether), pentafluoroethyl 2,2,2-trifluoroethyl ether (Pentafluoroethyl 2,2,2-trifluoroethyl ether), 1H, 1H, 2'H-perfluorodipropyl ether (1H, 1H, 2'H-Perfluorodipropyl ether) and combinations thereof. According to an embodiment of the present invention, the second solvent may include 50 to 99% by weight, preferably 60 to 95% by weight, more preferably 70 to 90% by weight based on the solvent constituting the electrolyte solution. When the solvent according to the present invention includes the second solvent within the above-mentioned weight percent range, the performance of the battery is improved even when used with a positive electrode having a low porosity and a positive loading amount of sulfur as a positive electrode active material, as in the first solvent. Can have When mixing the first solvent and the second solvent, considering the effect of improving the performance of the battery, the second solvent may be included in the electrolyte in an amount equal to or higher than the first solvent. According to an embodiment of the present invention, the solvent comprises a first solvent and a second solvent in a weight ratio of 1: 1 to 1: 9, preferably 3: 7 to 1: 9 (first solvent: second solvent). You can.
본 발명의 리튬-황 전지용 비수계 전해액은 첨가제로서 질산 또는 아질산계 화합물을 더 포함할 수 있다. 상기 질산 또는 아질산계 화합물은 리튬 전극에 안정적인 피막을 형성하고 충방전 효율을 향상시키는 효과가 있다. 이러한 질산 또는 아질산계 화합물로는 본 발명에서 특별히 한정하지는 않으나, 질산리튬(LiNO3), 질산칼륨(KNO3), 질산세슘(CsNO3), 질산바륨(Ba(NO3)2), 질산암모늄(NH4NO3), 아질산리튬(LiNO2), 아질산칼륨(KNO2), 아질산세슘(CsNO2), 아질산암모늄(NH4NO2) 등의 무기계 질산 또는 아질산 화합물; 메틸 니트레이트, 디알킬 이미다졸륨 니트레이트, 구아니딘 니트레이트, 이미다졸륨 니트레이트, 피리디늄 니트레이트, 에틸 니트라이트, 프로필 니트라이트, 부틸 니트라이트, 펜틸 니트라이트, 옥틸 니트라이트 등의 유기계 질산 또는 아질산 화합물; 니트로메탄, 니트로프로판, 니트로부탄, 니트로벤젠, 디니트로벤젠, 니트로 피리딘, 디니트로피리딘, 니트로톨루엔, 디니트로톨루엔 등의 유기 니트로 화합물 및 이들의 조합으로 이루어진 군에서 선택된 1종이 가능하며, 바람직하게는 질산리튬을 사용한다.The non-aqueous electrolyte solution for a lithium-sulfur battery of the present invention may further include a nitric acid or nitrous acid compound as an additive. The nitric acid or nitrite-based compound has an effect of forming a stable film on the lithium electrode and improving charging and discharging efficiency. The nitric acid or nitrite-based compound is not particularly limited in the present invention, but lithium nitrate (LiNO 3 ), potassium nitrate (KNO 3 ), cesium nitrate (CsNO 3 ), barium nitrate (Ba (NO 3 ) 2 ), ammonium nitrate Inorganic nitric acid or nitrite compounds such as (NH 4 NO 3 ), lithium nitrite (LiNO 2 ), potassium nitrite (KNO 2 ), cesium nitrite (CsNO 2 ), and ammonium nitrite (NH 4 NO 2 ); Organic nitric acid such as methyl nitrate, dialkyl imidazolium nitrate, guanidine nitrate, imidazolium nitrate, pyridinium nitrate, ethyl nitrite, propyl nitrite, butyl nitrite, pentyl nitrite, octyl nitrite Or nitrite compounds; One type selected from the group consisting of organic nitro compounds such as nitromethane, nitropropane, nitrobutane, nitrobenzene, dinitrobenzene, nitropyridine, dinitropyridine, nitrotoluene, and dinitrotoluene, and combinations thereof. Uses lithium nitrate.
또한, 상기 비수계 전해액은 충방전 특성, 난연성 등의 개선을 목적으로 기타 첨가제를 더 포함할 수 있다. 상기 첨가제의 예시로는 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아마이드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄, 플루오로에틸렌 카보네이트(FEC), 프로펜 설톤(PRS), 비닐렌 카보네이트(VC) 등을 들 수 있다.In addition, the non-aqueous electrolyte may further include other additives for the purpose of improving charge / discharge characteristics, flame retardancy, and the like. Examples of the additives include pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexatriphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazoli Dinon, N, N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol, aluminum trichloride, fluoroethylene carbonate (FEC), propene sulfone (PRS), vinylene carbonate ( VC) and the like.
본 발명의 리튬-황 이차전지는 양극과 음극 사이에 분리막을 배치하여 전극 조립체를 형성하고, 상기 전극 조립체는 원통형 전지 케이스 또는 각형 전지 케이스에 넣은 다음 전해질을 주입하여 제조할 수 있다. 또는, 상기 전극 조립체를 적층한 후, 이를 전해질에 함침시키고 얻어진 결과물을 전지 케이스에 넣어 밀봉하여 제조할 수도 있다.The lithium-sulfur secondary battery of the present invention may be manufactured by placing a separator between an anode and a cathode to form an electrode assembly, and the electrode assembly is placed in a cylindrical battery case or a square battery case and then injected with electrolyte. Alternatively, after laminating the electrode assembly, it may be prepared by impregnating it with an electrolyte and sealing the resulting product in a battery case.
본 발명에 따른 리튬-황 이차전지는 하기 수학식 4로 표시되는 ED factor 값에 의해 구분된다. The lithium-sulfur secondary battery according to the present invention is divided by an ED factor value represented by the following Equation 4.
[수학식 4][Equation 4]
여기서, V는 Li/Li+에 대한 방전 공칭 전압(V)이고, D는 전해액의 밀도(g/㎤)이고, C는 0.1C rate로 방전 시 방전 용량(mAh/g)이며, SC factor는 상기 수학식 1에 의해 정의된 값과 동일하다. 상기 ED factor는 그 값이 높을수록 실제 리튬-황 이차전지에서 높은 에너지 밀도를 구현할 수 있다. 본 발명의 구체예에 따르면, 상기 ED factor 값은 850 이상, 바람직하게는 870 이상, 더욱 바람직하게는 891 이상 일 수 있다. 본 발명에 있어서, 상기 ED factor 값의 상한은 특별하게 제한되지 않지만, 실제 리튬-황 이차전지의 구현예를 고려해 볼 때, 상기 ED factor 값은 10,000 이하일 수 있다. 상기 ED factor 값의 범위는 본 발명에 따른 리튬-황 이차전지가 기존의 리튬-황 이차전지보다 더 향상된 에너지 밀도를 구현할 수 있음을 의미한다.Here, V is the nominal discharge voltage for Li / Li + (V), D is the density of the electrolyte (g / cm 3), C is the discharge capacity at discharge at 0.1C rate (mAh / g), and SC factor is It is the same as the value defined by Equation 1 above. The higher the ED factor, the higher the energy density in a real lithium-sulfur secondary battery. According to an embodiment of the present invention, the ED factor value may be 850 or more, preferably 870 or more, and more preferably 891 or more. In the present invention, the upper limit of the ED factor value is not particularly limited, but considering an embodiment of an actual lithium-sulfur secondary battery, the ED factor value may be 10,000 or less. The range of the ED factor value means that the lithium-sulfur secondary battery according to the present invention can realize an improved energy density than the existing lithium-sulfur secondary battery.
이하, 본 발명의 이해를 돕기 위해 바람직한 실시예를 제시하지만, 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 이에 한정되는 것은 아니다.Hereinafter, preferred examples are provided to help understanding of the present invention, but the following examples are provided only to more easily understand the present invention and the present invention is not limited thereto.
실시예Example
실시예Example
1 One
물을 용매로 하고, 황, 슈퍼피(Super-P, SP), 도전재 및 바인더를 볼밀로 혼합하여 양극 활물질 층 형성용 조성물을 제조하였다. 이때 도전재로는 덴카블랙을, 바인더로는 SBR과 CMC의 혼합 형태의 바인더를 사용하였으며, 혼합 비율은 중량비로 황 및 SP(9:1비율):도전재:바인더가 90:10:10가 되도록 하였다. 제조한 양극 활물질 층 형성용 조성물을 알루미늄 집전체에 도포한 후 건조하여 양극을 제조하였다(양극의 에너지 밀도: 6.18 mAh/㎠). 제조된 양극에서 전극 무게와 전극 두께(TESA사 TESA-μHITE 장비 이용)를 측정하여 계산된 양극 활물질 층의 공극률은 74%이었고, 양극 활물질 층의 단위 면적당 황의 질량은 3.75mg/㎠이었다. 이를 기초로 계산된 SC factor 값은 0.50이었다.A composition for forming a positive electrode active material layer was prepared by mixing water as a solvent, and mixing sulfur, super-P, SP, a conductive material, and a binder with a ball mill. At this time, Denka Black was used as the conductive material, and a mixed binder of SBR and CMC was used as the binder, and the mixing ratio was sulfur and SP (9: 1 ratio) by weight ratio: conductive material: binder was 90:10:10 It was made possible. The prepared positive electrode active material layer-forming composition was applied to an aluminum current collector and dried to prepare a positive electrode (energy density of the positive electrode: 6.18 mAh / cm 2). The porosity of the positive electrode active material layer calculated by measuring electrode weight and electrode thickness (using TESA-μHITE equipment manufactured by TESA) in the prepared positive electrode was 74%, and the mass of sulfur per unit area of the positive electrode active material layer was 3.75 mg / cm 2. The SC factor value calculated based on this was 0.50.
상술한 방법으로 제조한 양극과 음극을 대면하도록 위치시킨 후, 두께 20μm 기공도 45%의 폴리에틸렌 분리막을 상기 양극과 음극 사이에 개재하였다.After the positive electrode and the negative electrode prepared by the above-described method were placed to face each other, a polyethylene separator with a thickness of 20 μm and a porosity of 45% was interposed between the positive electrode and the negative electrode.
그 후, 케이스 내부로 전해액을 주입하여 리튬-황 이차전지를 제조하였다. 이때 상기 전해액은, 유기 용매에 3M 농도의 리튬 비스(트리플루오르메틸 설포닐)이미드(LiTFSI)를 용해시켜 제조하였고, 여기서 상기 유기 용매는 프로피오니트릴(제1 용매)과 1H,1H,2'H,3H-데카플루오로디프로필 에테르(제2 용매)를 3:7 중량비로 혼합한 용매를 사용하였다. 상기 제1 용매에서 단위 부피당 쌍극자 모멘트는 97.1D·mol/L 이었고, BROOKFIELD AMETEK사 LVDV2T-CP점도계를 이용하여 측정한 용매의 점도(25℃)는 0.38cP이었다. 이를 기초로 계산된 DV2 factor 값은 0.39이었다.Thereafter, an electrolyte was injected into the case to prepare a lithium-sulfur secondary battery. At this time, the electrolyte solution was prepared by dissolving 3M concentration of lithium bis (trifluoromethyl sulfonyl) imide (LiTFSI) in an organic solvent, wherein the organic solvent was propionitrile (first solvent) and 1H, 1H, 2 A solvent in which 'H, 3H-decafluorodipropyl ether (second solvent) was mixed in a 3: 7 weight ratio was used. The dipole moment per unit volume in the first solvent was 97.1 D · mol / L, and the viscosity (25 ° C.) of the solvent measured using a BROOKFIELD AMETEK LVDV2T-CP viscometer was 0.38 cP. The DV 2 factor value calculated based on this was 0.39.
실시예Example
2 2
양극의 제조 조건을 변경하여, 양극 활물질 층의 공극률이 74%, 양극 활물질 층의 단위 면적당 황의 질량이 3.33mg/㎠, 이를 기초로 계산된 SC factor 값이 0.45인 양극을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬-황 이차전지를 제조하였다.By changing the manufacturing conditions of the positive electrode, except that a positive electrode having a porosity of 74%, a mass of sulfur per unit area of the positive electrode active material layer of 3.33 mg / cm 2, and a SC factor value calculated on the basis of this was 0.45, was prepared. A lithium-sulfur secondary battery was manufactured in the same manner as in Example 1.
비교예Comparative example
1 One
양극의 제조 조건을 변경하여, 양극 활물질 층의 공극률이 78%, 양극 활물질 층의 단위 면적당 황의 질량이 2.33mg/㎠, 이를 기초로 계산된 SC factor 값이 0.30인 양극을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬-황 이차전지를 제조하였다.By changing the manufacturing conditions of the positive electrode, except that a positive electrode having a porosity of 78%, a mass of sulfur per unit area of the positive electrode active material layer of 2.33 mg / cm 2, and a SC factor value calculated based on this was prepared, A lithium-sulfur secondary battery was manufactured in the same manner as in Example 1.
비교예Comparative example
2 2
양극의 제조 조건을 변경하여, 양극 활물질 층의 공극률이 76%, 양극 활물질 층의 단위 면적당 황의 질량이 2.67mg/㎠, 이를 기초로 계산된 SC factor 값이 0.35인 양극을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬-황 이차전지를 제조하였다.By changing the manufacturing conditions of the positive electrode, except that a positive electrode having a porosity of 76%, a mass of sulfur per unit area of the positive electrode active material layer of 2.67 mg / cm 2, and a SC factor value calculated on the basis of this was 0.35, was prepared. A lithium-sulfur secondary battery was manufactured in the same manner as in Example 1.
비교예Comparative example
3 3
양극의 제조 조건을 변경하여, 양극 활물질 층의 공극률이 75%, 양극 활물질 층의 단위 면적당 황의 질량이 3.1mg/㎠, 이를 기초로 계산된 SC factor 값이 0.41인 양극을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬-황 이차전지를 제조하였다.By changing the manufacturing conditions of the positive electrode, except that a positive electrode having a porosity of 75%, a mass of sulfur per unit area of the positive electrode active material layer of 3.1 mg / cm 2, and a SC factor value calculated based on this was prepared, A lithium-sulfur secondary battery was manufactured in the same manner as in Example 1.
비교예Comparative example
4 4
전해액의 제조 조건을 변경하여, 1,3-디옥솔란과 디메틸에테르를 1:1 부피비로 혼합한 유기 용매에 1M 농도의 리튬 비스(트리플루오로메틸 설포닐)이미드(LiTFSI)와 1 wt%의 LiNO3를 용해시킨 전해액을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬-황 이차전지를 제조하였다.By changing the preparation conditions of the electrolytic solution, 1,3-dioxolane and dimethyl ether in an organic solvent mixed in a 1: 1 volume ratio of 1M concentration of lithium bis (trifluoromethyl sulfonyl) imide (LiTFSI) and 1 wt% A lithium-sulfur secondary battery was manufactured in the same manner as in Example 1, except that the electrolyte solution in which LiNO 3 was dissolved was used.
비교예Comparative example
5 5
전해액의 제조 조건을 변경하여, 1,3-디옥솔란과 디메틸에테르를 1:1 부피비로 혼합한 유기 용매에 1M 농도의 리튬 비스(트리플루오로메틸 설포닐)이미드(LiTFSI)와 1 wt%의 LiNO3를 용해시킨 전해액을 사용한 것을 제외하고는 실시예 2와 동일한 방법으로 리튬-황 이차전지를 제조하였다.By changing the preparation conditions of the electrolytic solution, 1,3-dioxolane and dimethyl ether in an organic solvent mixed in a 1: 1 volume ratio of 1M concentration of lithium bis (trifluoromethyl sulfonyl) imide (LiTFSI) and 1 wt% A lithium-sulfur secondary battery was manufactured in the same manner as in Example 2, except that the electrolyte solution in which LiNO 3 was dissolved was used.
비교예Comparative example
6 6
전해액의 제조 조건을 변경하여, 1,3-디옥솔란과 디메틸에테르를 1:1 부피비로 혼합한 유기 용매에 1M 농도의 리튬 비스(트리플루오로메틸 설포닐)이미드(LiTFSI)와 1 wt%의 LiNO3를 용해시킨 전해액을 사용한 것을 제외하고는 비교예 1과 동일한 방법으로 리튬-황 이차전지를 제조하였다.By changing the preparation conditions of the electrolytic solution, 1,3-dioxolane and dimethyl ether in an organic solvent mixed in a 1: 1 volume ratio of 1M concentration of lithium bis (trifluoromethyl sulfonyl) imide (LiTFSI) and 1 wt% A lithium-sulfur secondary battery was manufactured in the same manner as in Comparative Example 1, except that an electrolyte solution in which LiNO 3 was dissolved was used.
비교예Comparative example
7 7
전해액의 제조 조건을 변경하여, 1,3-디옥솔란과 디메틸에테르를 1:1 부피비로 혼합한 유기 용매에 1M 농도의 리튬 비스(트리플루오로메틸 설포닐)이미드(LiTFSI)와 1 wt%의 LiNO3를 용해시킨 전해액을 사용한 것을 제외하고는 비교예 2와 동일한 방법으로 리튬-황 이차전지를 제조하였다.By changing the preparation conditions of the electrolytic solution, 1,3-dioxolane and dimethyl ether in an organic solvent mixed in a 1: 1 volume ratio of 1M concentration of lithium bis (trifluoromethyl sulfonyl) imide (LiTFSI) and 1 wt% A lithium-sulfur secondary battery was manufactured in the same manner as in Comparative Example 2, except that an electrolyte solution in which LiNO 3 was dissolved was used.
비교예Comparative example
8 8
전해액의 제조 조건을 변경하여, 1,3-디옥솔란과 디메틸에테르를 1:1 부피비로 혼합한 유기 용매에 1M 농도의 리튬 비스(트리플루오로메틸 설포닐)이미드(LiTFSI)와 1 wt%의 LiNO3를 용해시킨 전해액을 사용한 것을 제외하고는 비교예 3과 동일한 방법으로 리튬-황 이차전지를 제조하였다.By changing the preparation conditions of the electrolytic solution, 1,3-dioxolane and dimethyl ether in an organic solvent mixed in a 1: 1 volume ratio of 1M concentration of lithium bis (trifluoromethyl sulfonyl) imide (LiTFSI) and 1 wt% A lithium-sulfur secondary battery was manufactured in the same manner as in Comparative Example 3, except that an electrolyte solution in which LiNO 3 was dissolved was used.
실시예 1 및 2와 비교예 1 내지 8의 조건을 정리하여 하기 표 1에 나타내었다.The conditions of Examples 1 and 2 and Comparative Examples 1 to 8 are summarized in Table 1 below.
전해액 조성Electrolyte composition | SC factorSC factor | |
실시예 1Example 1 | 제1 전해액 조성1 ) First electrolyte composition 1 ) | 0.500.50 |
실시예 2Example 2 | 0.450.45 | |
비교예 1Comparative Example 1 | 0.300.30 | |
비교예 2Comparative Example 2 | 0.350.35 | |
비교예 3Comparative Example 3 | 0.410.41 | |
비교예 4Comparative Example 4 | 제2 전해액 조성2 ) Second electrolyte composition 2 ) | 0.500.50 |
비교예 5Comparative Example 5 | 0.450.45 | |
비교예 6Comparative Example 6 | 0.300.30 | |
비교예 7Comparative Example 7 | 0.350.35 | |
비교예 8Comparative Example 8 | 0.410.41 | |
1)제1 전해액 조성 = Propionitrile:1H,1H,2'H,3H-Decafluorodipropyl ether(3:7, w/w) solvent, 3.0M LiTFSI2)제2 전해액 조성 = 1,3-Dioxolan:Dimethyl ether(1:1, v/v) solvent, 1.0M LiTFSI, 1.0 wt% LiNO3 1) First electrolyte composition = Propionitrile: 1H, 1H, 2'H, 3H-Decafluorodipropyl ether (3: 7, w / w) solvent, 3.0M LiTFSI 2) Second electrolyte composition = 1,3-Dioxolan: Dimethyl ether (1: 1, v / v) solvent, 1.0M LiTFSI, 1.0 wt% LiNO 3 |
실시예Example
3 3
전해액의 제조 조건을 변경하여, 제1 용매로서 프로피오니트릴 대신에 단위 부피당 쌍극자 모멘트가 59.29D·mol/L, 용매의 점도(25℃)가 0.61cP, 이를 기초로 계산된 DV2 factor 값이 1.02인 디메틸아세트아미드를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬-황 이차전지를 제조하였다.By changing the manufacturing conditions of the electrolyte, instead of propionitrile as the first solvent, the dipole moment per unit volume was 59.29D · mol / L, the solvent viscosity (25 ° C) was 0.61cP, and the DV 2 factor value calculated based on this A lithium-sulfur secondary battery was manufactured in the same manner as in Example 1, except that 1.02 dimethylacetamide was used.
실시예Example
4 4
전해액의 제조 조건을 변경하여, 제1 용매로서 프로피오니트릴 대신에 단위 부피당 쌍극자 모멘트가 71.04D·mol/L, 용매의 점도(25℃)가 0.51cP, 이를 기초로 계산된 DV2 factor 값이 0.71인 디메틸포름아미드를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬-황 이차전지를 제조하였다.By changing the manufacturing conditions of the electrolyte solution, the dipole moment per unit volume instead of propionitrile as the first solvent was 71.04D · mol / L, the solvent viscosity (25 ° C) was 0.51cP, and the DV 2 factor value calculated based on this A lithium-sulfur secondary battery was manufactured in the same manner as in Example 1, except that 0.71 dimethylformamide was used.
실시예Example
5 5
전해액의 제조 조건을 변경하여, 제1 용매로서 프로피오니트릴 대신에 단위 부피당 쌍극자 모멘트가 84.91D·mol/L, 용매의 점도(25℃)가 1.03cP, 이를 기초로 계산된 DV2 factor 값이 1.21인 감마-부티로락톤을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬-황 이차전지를 제조하였다.By changing the manufacturing conditions of the electrolyte, instead of propionitrile as the first solvent, the dipole moment per unit volume is 84.91D · mol / L, the solvent viscosity (25 ° C) is 1.03cP, and the DV 2 factor value calculated based on this A lithium-sulfur secondary battery was manufactured in the same manner as in Example 1, except that gamma-butyrolactone of 1.21 was used.
실시예Example
6 6
전해액의 제조 조건을 변경하여, 제1 용매로서 프로피오니트릴 대신에 단위 부피당 쌍극자 모멘트가 136.8D·mol/L, 용매의 점도(25℃)가 0.42cP, 이를 기초로 계산된 DV2 factor 값이 0.31인 트리에틸아민을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬-황 이차전지를 제조하였다.By changing the manufacturing conditions of the electrolytic solution, the dipole moment per unit volume is 136.8 D · mol / L instead of propionitrile as the first solvent, the solvent viscosity (25 ° C.) is 0.42 cP, and the DV 2 factor value calculated based on this A lithium-sulfur secondary battery was manufactured in the same manner as in Example 1, except that 0.31 triethylamine was used.
실시예Example
7 7
전해액의 제조 조건을 변경하여, 제1 용매로서 프로피오니트릴 대신에 단위 부피당 쌍극자 모멘트가 32.42D·mol/L, 용매의 점도(25℃)가 0.45cP, 이를 기초로 계산된 DV2 factor 값이 1.40인 1-아이오도프로판을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬-황 이차전지를 제조하였다.By changing the manufacturing conditions of the electrolytic solution, the dipole moment per unit volume is 32.42D · mol / L instead of propionitrile as the first solvent, the solvent viscosity (25 ° C) is 0.45cP, and the DV 2 factor value calculated based on this A lithium-sulfur secondary battery was manufactured in the same manner as in Example 1, except that 1.40 i-iodopropane was used.
비교예Comparative example
9 9
전해액의 제조 조건을 변경하여, 제1 용매로서 프로피오니트릴 대신에 단위 부피당 쌍극자 모멘트가 33.66D·mol/L, 용매의 점도(25℃)가 0.7cP, 이를 기초로 계산된 DV2 factor 값이 2.07인 1,3-디옥솔란(1,3-Dioxolane)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬-황 이차전지를 제조하였다.By changing the manufacturing conditions of the electrolyte, instead of propionitrile as the first solvent, the dipole moment per unit volume is 33.66D · mol / L, the solvent viscosity (25 ° C) is 0.7cP, and the DV 2 factor value calculated based on this A lithium-sulfur secondary battery was manufactured in the same manner as in Example 1, except that 2.07, 1,3-dioxolane (1,3-Dioxolane) was used.
비교예Comparative example
10 10
전해액의 제조 조건을 변경하여, 제1 용매로서 프로피오니트릴 대신에 단위 부피당 쌍극자 모멘트가 20.54D·mol/L, 용매의 점도(25℃)가 0.48cP, 이를 기초로 계산된 DV2 factor 값이 2.33인 1,2-디메톡시에탄(1,2-Dimethoxyethane)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬-황 이차전지를 제조하였다.By changing the manufacturing conditions of the electrolyte, instead of propionitrile as the first solvent, the dipole moment per unit volume was 20.54 D · mol / L, the solvent viscosity (25 ° C.) was 0.48 cP, and the DV 2 factor value calculated based on this A lithium-sulfur secondary battery was manufactured in the same manner as in Example 1, except that 2.33, 1,2-dimethoxyethane was used.
비교예Comparative example
11 11
전해액의 제조 조건을 변경하여, 제1 용매로서 프로피오니트릴 대신에 단위 부피당 쌍극자 모멘트가 25.79D·mol/L, 용매의 점도(25℃)가 0.58cP, 이를 기초로 계산된 DV2 factor 값이 2.24인 테트라하이드로퓨란(Tetrahydrofuran)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬-황 이차전지를 제조하였다.By changing the manufacturing conditions of the electrolyte, instead of propionitrile as the first solvent, the dipole moment per unit volume is 25.79 D · mol / L, the solvent viscosity (25 ° C.) is 0.58 cP, and the DV 2 factor value calculated based on this A lithium-sulfur secondary battery was manufactured in the same manner as in Example 1, except that 2.24 tetrahydrofuran was used.
비교예Comparative example
12 12
전해액의 제조 조건을 변경하여, 제1 용매로서 프로피오니트릴 대신에 단위 부피당 쌍극자 모멘트가 59.43D·mol/L, 용매의 점도(25℃)가 1.16cP, 이를 기초로 계산된 DV2 factor 값이 1.95인 디메틸설폭사이드(Dimethyl sulfoxide)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬-황 이차전지를 제조하였다.By changing the manufacturing conditions of the electrolyte, instead of propionitrile as the first solvent, the dipole moment per unit volume was 59.43D · mol / L, the solvent viscosity (25 ° C) was 1.16cP, and the DV 2 factor value calculated based on this A lithium-sulfur secondary battery was manufactured in the same manner as in Example 1, except that 1.95 dimethyl sulfoxide was used.
비교예Comparative example
13 13
전해액의 제조 조건을 변경하여, 제1 용매로서 프로피오니트릴 대신에 단위 부피당 쌍극자 모멘트가 96.13D·mol/L, 용매의 점도(25℃)가 1.71cP, 이를 기초로 계산된 DV2 factor 값이 1.77인 프로필렌 카보네이트(Propylene carbonate)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬-황 이차전지를 제조하였다.By changing the manufacturing conditions of the electrolyte, instead of propionitrile as the first solvent, the dipole moment per unit volume is 96.13D · mol / L, the solvent viscosity (25 ° C) is 1.71cP, and the DV 2 factor value calculated based on this A lithium-sulfur secondary battery was manufactured in the same manner as in Example 1, except that 1.77 propylene carbonate was used.
비교예Comparative example
14 14
전해액의 제조 조건을 변경하여, 제1 용매로서 프로피오니트릴 대신에 단위 부피당 쌍극자 모멘트가 5.74D·mol/L, 용매의 점도(25℃)가 0.57cP, 이를 기초로 계산된 DV2 factor 값이 9.93인 디메틸 카보네이트(Dimethyl carbonate)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬-황 이차전지를 제조하였다.By changing the manufacturing conditions of the electrolyte, instead of propionitrile as the first solvent, the dipole moment per unit volume was 5.74 D · mol / L, the solvent viscosity (25 ° C.) was 0.57 cP, and the DV 2 factor value calculated based on this A lithium-sulfur secondary battery was manufactured in the same manner as in Example 1, except that 9.93 dimethyl carbonate was used.
실시예 1 및 3 내지 7과 비교예 9 내지 14의 조건을 정리하여 하기 표 2에 나타내었다. NS factor 값을 계산하여 하기 표 2에 함께 나타내었다.The conditions of Examples 1 and 3 to 7 and Comparative Examples 9 to 14 are summarized in Table 2 below. NS factor values are calculated and are shown in Table 2 below.
제1 용매First solvent | DV2 factorDV 2 factor | NS factorNS factor | |
실시예 1Example 1 | PropionitrilePropionitrile | 0.390.39 | 0.780.78 |
실시예 3Example 3 | DimethylacetamideDimethylacetamide | 1.021.02 | 2.042.04 |
실시예 4Example 4 | DimethylformamideDimethylformamide | 0.710.71 | 1.421.42 |
실시예 5Example 5 | Gamma-ButyrolactoneGamma-Butyrolactone | 1.211.21 | 2.422.42 |
실시예 6Example 6 | TriethylamineTriethylamine | 0.310.31 | 0.620.62 |
실시예 7Example 7 | 1-iodopropane1-iodopropane | 1.401.40 | 2.802.80 |
비교예 9Comparative Example 9 | 1,3-Dioxolane1,3-Dioxolane | 2.072.07 | 4.144.14 |
비교예 10Comparative Example 10 | 1,2-Dimethoxyethane1,2-Dimethoxyethane | 2.332.33 | 4.664.66 |
비교예 11Comparative Example 11 | TetrahydrofuranTetrahydrofuran | 2.242.24 | 4.484.48 |
비교예 12Comparative Example 12 | Dimethyl sulfoxideDimethyl sulfoxide | 1.951.95 | 3.903.90 |
비교예 13Comparative Example 13 | Propylene carbonatePropylene carbonate | 1.771.77 | 3.543.54 |
비교예 14Comparative Example 14 | Dimethyl carbonateDimethyl carbonate | 9.939.93 | 19.8619.86 |
실험예Experimental example
실험예Experimental example
1 One
실시예 1 및 2와 비교예 1 내지 8에 따른 리튬-황 이차전지의 ED factor 값을 측정하여 표 3 및 도 1에 나타내었다.The ED factor values of the lithium-sulfur secondary batteries according to Examples 1 and 2 and Comparative Examples 1 to 8 were measured and are shown in Table 3 and FIG. 1.
전해액 조성Electrolyte composition | SC factorSC factor | ED factorED factor | |
실시예 1Example 1 | 제1 전해액 조성1 ) First electrolyte composition 1 ) | 0.500.50 | 1004.61004.6 |
실시예 2Example 2 | 0.450.45 | 893.0893.0 | |
비교예 1Comparative Example 1 | 0.300.30 | 593.1593.1 | |
비교예 2Comparative Example 2 | 0.350.35 | 695.6695.6 | |
비교예 3Comparative Example 3 | 0.410.41 | 819.4819.4 | |
비교예 4Comparative Example 4 | 제2 전해액 조성2 ) Second electrolyte composition 2 ) | 0.500.50 | 877.9877.9 |
비교예 5Comparative Example 5 | 0.450.45 | 890.8890.8 | |
비교예 6Comparative Example 6 | 0.300.30 | 654.4654.4 | |
비교예 7Comparative Example 7 | 0.350.35 | 761.4761.4 | |
비교예 8Comparative Example 8 | 0.410.41 | 882.5882.5 | |
1)제1 전해액 조성 = Propionitrile:1H,1H,2'H,3H-Decafluorodipropyl ether(3:7, w/w) solvent, 3.0M LiTFSI2)제2 전해액 조성 = 1,3-Dioxolan:Dimethyl ether(1:1, v/v) solvent, 1.0M LiTFSI, 1.0 wt% LiNO3 1) First electrolyte composition = Propionitrile: 1H, 1H, 2'H, 3H-Decafluorodipropyl ether (3: 7, w / w) solvent, 3.0M LiTFSI 2) Second electrolyte composition = 1,3-Dioxolan: Dimethyl ether (1: 1, v / v) solvent, 1.0M LiTFSI, 1.0 wt% LiNO 3 |
상기 표 3 및 도 1에 따르면, 실시예 1 및 2에 따른 리튬-황 이차전지는 제2 전해액 조성 또는 0.41 이하의 SC factor를 갖는 리튬-황 이차전지에 의해서는 구현할 수 없는 891 이상의 ED factor 값을 가질 수 있다. 이는 본 발명에 따른 리튬-황 이차전지가 기존의 리튬-황 이차전지에서는 구현할 수 없었던 보다 높은 에너지 밀도를 구현할 수 있음을 의미한다.According to Table 3 and FIG. 1, the lithium-sulfur secondary batteries according to Examples 1 and 2 have an ED factor value of 891 or more that cannot be realized by a lithium-sulfur secondary battery having a second electrolyte composition or an SC factor of 0.41 or less. Can have This means that the lithium-sulfur secondary battery according to the present invention can realize a higher energy density that could not be realized in the existing lithium-sulfur secondary battery.
실험예Experimental example
2 2
실시예 1 및 3 내지 7과 비교예 9 내지 14에 따른 리튬-황 이차전지의 ED factor 값을 측정하여 표 4 및 도 2에 나타내었다.The ED factor values of the lithium-sulfur secondary batteries according to Examples 1 and 3 to 7 and Comparative Examples 9 to 14 were measured and are shown in Table 4 and FIG. 2.
제1 용매First solvent | DV2 factorDV 2 factor | NS factorNS factor | ED factorED factor | |
실시예 1Example 1 | PropionitrilePropionitrile | 0.390.39 | 0.780.78 | 1004.61004.6 |
실시예 3Example 3 | DimethylacetamideDimethylacetamide | 1.021.02 | 2.042.04 | 939.4939.4 |
실시예 4Example 4 | DimethylformamideDimethylformamide | 0.710.71 | 1.421.42 | 968.8968.8 |
실시예 5Example 5 | Gamma-ButyrolactoneGamma-Butyrolactone | 1.211.21 | 2.422.42 | 924.7924.7 |
실시예 6Example 6 | TriethylamineTriethylamine | 0.310.31 | 0.620.62 | 1019.51019.5 |
실시예 7Example 7 | 1-iodopropane1-iodopropane | 1.401.40 | 2.802.80 | 917.4917.4 |
비교예 9Comparative Example 9 | 1,3-Dioxolane1,3-Dioxolane | 2.072.07 | 4.144.14 | 567.6567.6 |
비교예 10Comparative Example 10 | 1,2-Dimethoxyethane1,2-Dimethoxyethane | 2.332.33 | 4.664.66 | 667.0667.0 |
비교예 11Comparative Example 11 | TetrahydrofuranTetrahydrofuran | 2.242.24 | 4.484.48 | 580.5580.5 |
비교예 12Comparative Example 12 | Dimethyl sulfoxideDimethyl sulfoxide | 1.951.95 | 3.903.90 | 376.0376.0 |
비교예 13Comparative Example 13 | Propylene carbonatePropylene carbonate | 1.771.77 | 3.543.54 | 352.4352.4 |
비교예 14Comparative Example 14 | Dimethyl carbonateDimethyl carbonate | 9.939.93 | 19.8619.86 | 287.6287.6 |
상기 표 4 및 도 2에 의하면, SC factor 값이 0.5로 황이 고로딩된 경우, 실시예 1 및 3 내지 7과 같이 DV2 factor가 1.75 이하이거나 NS factor가 3.50 이하에서 리튬-황 이차전지의 에너지 밀도가 현저하게 개선될 수 있다.According to Tables 4 and 2, when sulfur is highly loaded with an SC factor value of 0.5, the energy of a lithium-sulfur secondary battery is less than 1.75 of DV 2 or NS factor of less than 3.50 as in Examples 1 and 3 to 7. Density can be significantly improved.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것이며, 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.All simple modifications and variations of the present invention belong to the scope of the present invention, and the specific protection scope of the present invention will become apparent by the appended claims.
Claims (10)
- 양극, 음극, 분리막 및 전해액을 포함하는 리튬-황 이차전지로서,A lithium-sulfur secondary battery comprising an anode, a cathode, a separator, and an electrolyte,상기 양극은 하기 수학식 1로 표시되는 SC factor 값이 0.45 이상인 리튬-황 이차전지:The positive electrode is a lithium-sulfur secondary battery having an SC factor value of 0.45 or more represented by Equation 1 below:[수학식 1][Equation 1]여기서, P는 양극 내 양극 활물질 층의 공극률(%)이고, L은 양극 내 양극 활물질 층의 단위 면적당 황의 질량(mg/㎠)이며, α는 10(상수)이다.Here, P is the porosity (%) of the positive electrode active material layer in the positive electrode, L is the mass of sulfur per unit area of the positive electrode active material layer in the positive electrode (mg / cm 2), and α is 10 (constant).
- 청구항 1에 있어서,The method according to claim 1,상기 전해액은 용매 및 리튬염을 포함하며,The electrolyte solution includes a solvent and a lithium salt,상기 용매는,The solvent,하기 수학식 2로 표시되는 DV2 factor 값이 1.75 이하인 제1 용매; 및A first solvent having a DV 2 factor value of 1.75 or less represented by Equation 2 below; And불소화된 에테르계 용매인 제2 용매를 포함하는 것을 특징으로 하는 리튬-황 이차전지:Lithium-sulfur secondary battery comprising a fluorinated ether-based second solvent:[수학식 2][Equation 2]여기서, DV는 단위 부피당 쌍극자 모멘트(D·mol/L)이고, μ는 용매의 점도(cP, 25℃)이며, γ는 100(상수)이다.Here, DV is the dipole moment per unit volume (D · mol / L), μ is the viscosity of the solvent (cP, 25 ° C.), and γ is 100 (constant).
- 청구항 2에 있어서,The method according to claim 2,상기 제1 용매는 1.5 이하의 DV2 factor 값을 갖는 것을 특징으로 하는 리튬-황 이차전지.The first solvent is a lithium-sulfur secondary battery, characterized in that it has a DV 2 factor value of 1.5 or less.
- 청구항 2에 있어서,The method according to claim 2,상기 리튬-황 이차전지는 하기 수학식 3으로 표시되는 NS factor 값이 3.5 이하인 것을 특징으로 하는 리튬-황 이차전지:The lithium-sulfur secondary battery is a lithium-sulfur secondary battery characterized in that the NS factor value represented by Equation 3 below is 3.5 or less:[수학식 3][Equation 3]여기서, SC factor는 상기 수학식 1에 의해 정의된 값과 동일하고, DV2 factor는 상기 수학식 2에 의해 정의된 값과 동일하다.Here, the SC factor is the same as the value defined by Equation 1, and the DV 2 factor is the same as the value defined by Equation 2.
- 청구항 1에 있어서,The method according to claim 1,상기 리튬-황 이차전지는 하기 수학식 4로 표시되는 ED factor 값이 850 이상인 것을 특징으로 하는 리튬-황 이차전지:The lithium-sulfur secondary battery is a lithium-sulfur secondary battery characterized in that the ED factor value represented by the following equation (4) is 850 or more:[수학식 4][Equation 4]여기서, V는 Li/Li+에 대한 방전 공칭 전압(V)이고, D는 전해액의 밀도(g/㎤)이고, C는 0.1C rate로 방전 시 방전 용량(mAh/g)이며, SC factor는 상기 수학식 1에 의해 정의된 값과 동일하다.Here, V is the nominal discharge voltage for Li / Li + (V), D is the density of the electrolyte (g / cm 3), C is the discharge capacity at discharge at 0.1C rate (mAh / g), and SC factor is It is the same as the value defined by Equation 1 above.
- 청구항 2에 있어서,The method according to claim 2,상기 제1 용매는 프로피오니트릴, 디메틸아세트아미드, 디메틸포름아미드, 감마-부티로락톤, 트리에틸아민, 1-아이오도프로판 및 이의 조합으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 리튬-황 이차전지.The first solvent is a lithium-sulfur secondary battery characterized in that it is selected from the group consisting of propionitrile, dimethylacetamide, dimethylformamide, gamma-butyrolactone, triethylamine, 1-iodopropane and combinations thereof. .
- 청구항 2에 있어서,The method according to claim 2,상기 제2 용매는 1H,1H,2'H,3H-데카플루오로디프로필 에테르, 디플루오로메틸 2,2,2-트리플루오로에틸 에테르, 1,2,2,2-테트라플루오로에틸 트리플루오로메틸 에테르, 1,1,2,3,3,3-헥사플루오로프로필 디플루오로메틸 에테르, 1H,1H,2'H,3H-데카플루오로디프로필 에테르, 펜타플루오로에틸 2,2,2-트리플루오로에틸 에테르, 1H,1H,2'H-퍼플루오로디프로필 에테르 및 이의 조합으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 리튬-황 이차전지.The second solvent is 1H, 1H, 2'H, 3H-decafluorodipropyl ether, difluoromethyl 2,2,2-trifluoroethyl ether, 1,2,2,2-tetrafluoroethyl tri Fluoromethyl ether, 1,1,2,3,3,3-hexafluoropropyl difluoromethyl ether, 1H, 1H, 2'H, 3H-decafluorodipropyl ether, pentafluoroethyl 2,2 Lithium-sulfur secondary battery, characterized in that it is selected from the group consisting of, 2-trifluoroethyl ether, 1H, 1H, 2'H-perfluorodipropyl ether and combinations thereof.
- 청구항 2에 있어서,The method according to claim 2,상기 용매는 제1 용매를 1 내지 50 중량% 포함하는 것을 특징으로 하는 리튬-황 이차전지.The solvent is a lithium-sulfur secondary battery, characterized in that it contains 1 to 50% by weight of the first solvent.
- 청구항 2에 있어서,The method according to claim 2,상기 용매는 제2 용매를 50 내지 99 중량% 포함하는 것을 특징으로 하는 리튬-황 이차전지.The solvent is a lithium-sulfur secondary battery, characterized in that it contains 50 to 99% by weight of the second solvent.
- 청구항 2에 있어서,The method according to claim 2,상기 용매는 3:7 내지 1:9 중량비로 제1 용매 및 제2 용매를 포함하는 것을 특징으로 하는 리튬-황 이차전지.The solvent is 3: 7 to 1: 9 lithium-sulfur secondary battery, characterized in that it comprises a first solvent and a second solvent in a weight ratio.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020545656A JP7065990B2 (en) | 2018-10-26 | 2019-10-24 | Lithium-sulfur secondary battery |
US16/971,177 US20210104745A1 (en) | 2018-10-26 | 2019-10-24 | Lithium-sulfur secondary battery |
CN201980018365.8A CN111837260A (en) | 2018-10-26 | 2019-10-24 | Lithium-sulfur secondary battery |
EP19874836.0A EP3751640A4 (en) | 2018-10-26 | 2019-10-24 | Lithium-sulfur secondary battery |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2018-0128729 | 2018-10-26 | ||
KR20180128729 | 2018-10-26 | ||
KR10-2019-0131538 | 2019-10-22 | ||
KR1020190131538A KR20200047365A (en) | 2018-10-26 | 2019-10-22 | Lithium-sulfur secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020085811A1 true WO2020085811A1 (en) | 2020-04-30 |
Family
ID=70330492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/014039 WO2020085811A1 (en) | 2018-10-26 | 2019-10-24 | Lithium-sulfur secondary battery |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020085811A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023522346A (en) * | 2020-11-26 | 2023-05-30 | エルジー エナジー ソリューション リミテッド | Electrolyte for lithium-sulfur battery and lithium-sulfur battery containing the same |
JP7562214B2 (en) | 2020-10-13 | 2024-10-07 | エルジー エナジー ソリューション リミテッド | Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery including same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015505825A (en) * | 2011-11-30 | 2015-02-26 | ソルヴェイ(ソシエテ アノニム) | Fluorinated derivatives of Meldrum's acid, methods for their preparation, and their use as solvent additives |
JP2017178859A (en) * | 2016-03-30 | 2017-10-05 | 三菱ケミカル株式会社 | Lithium salt and mixture thereof, nonaqueous electrolyte and electricity storage device using them |
KR20170121047A (en) * | 2016-04-22 | 2017-11-01 | 주식회사 엘지화학 | Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising thereof |
WO2018007665A1 (en) * | 2016-07-04 | 2018-01-11 | Fundación Cidetec | Electrolyte based on sulfur/polysulfur for lithium/sulfur batteries |
KR20180128729A (en) | 2017-05-24 | 2018-12-04 | 김소용 | Stretching Machine for Enforcing Leg Muscle including Multiple Function |
KR20190131538A (en) | 2017-03-31 | 2019-11-26 | 가부시키가이샤 히로츠 바이오 사이언스 | Predictive and / or recurrence monitoring of treatment effects in cancer patients |
-
2019
- 2019-10-24 WO PCT/KR2019/014039 patent/WO2020085811A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015505825A (en) * | 2011-11-30 | 2015-02-26 | ソルヴェイ(ソシエテ アノニム) | Fluorinated derivatives of Meldrum's acid, methods for their preparation, and their use as solvent additives |
JP2017178859A (en) * | 2016-03-30 | 2017-10-05 | 三菱ケミカル株式会社 | Lithium salt and mixture thereof, nonaqueous electrolyte and electricity storage device using them |
KR20170121047A (en) * | 2016-04-22 | 2017-11-01 | 주식회사 엘지화학 | Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising thereof |
WO2018007665A1 (en) * | 2016-07-04 | 2018-01-11 | Fundación Cidetec | Electrolyte based on sulfur/polysulfur for lithium/sulfur batteries |
KR20190131538A (en) | 2017-03-31 | 2019-11-26 | 가부시키가이샤 히로츠 바이오 사이언스 | Predictive and / or recurrence monitoring of treatment effects in cancer patients |
KR20180128729A (en) | 2017-05-24 | 2018-12-04 | 김소용 | Stretching Machine for Enforcing Leg Muscle including Multiple Function |
Non-Patent Citations (3)
Title |
---|
ABBAS FOTOUHI ET AL.: "Lithium-Sulfur Battery Technology Readiness and Applications-A Review", ENERGIES, vol. 10, 2017, pages 1937 |
See also references of EP3751640A4 * |
YANG, XIAOFEI ET AL.: "Structural Design of Lithium-Sulfur Batteries: From Fundamental Research to Practical Application", ELECTROCHEMICAL ENERGY REVIEWS, vol. 1, 23 June 2018 (2018-06-23), pages 239 - 293, XP55709226 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7562214B2 (en) | 2020-10-13 | 2024-10-07 | エルジー エナジー ソリューション リミテッド | Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery including same |
JP2023522346A (en) * | 2020-11-26 | 2023-05-30 | エルジー エナジー ソリューション リミテッド | Electrolyte for lithium-sulfur battery and lithium-sulfur battery containing the same |
JP7378641B2 (en) | 2020-11-26 | 2023-11-13 | エルジー エナジー ソリューション リミテッド | Electrolyte for lithium-sulfur batteries and lithium-sulfur batteries containing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019103463A1 (en) | Cathode material for lithium secondary battery, and cathode and lithium secondary battery which comprise same | |
WO2019194433A1 (en) | Negative electrode for lithium secondary battery, method for manufacturing same, and lithium secondary battery including same | |
WO2020009494A1 (en) | Negative electrode for lithium secondary battery, method for pre-lithiating same, and lithium secondary battery including same | |
WO2018135889A1 (en) | Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same | |
WO2022154309A1 (en) | Method for charging and discharging secondary battery | |
WO2020197278A1 (en) | Lithium secondary battery | |
WO2020105980A1 (en) | Lithium-sulfur secondary battery | |
WO2021040388A1 (en) | Non-aqueous electrolytic solution, and lithium secondary battery comprising same | |
WO2021060811A1 (en) | Method for manufacturing secondary battery | |
WO2022055258A1 (en) | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same | |
WO2018135890A1 (en) | Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same | |
WO2022092688A1 (en) | Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same | |
WO2020085811A1 (en) | Lithium-sulfur secondary battery | |
WO2020067830A1 (en) | Positive electrode active material for secondary battery, method for producing same, and lithium secondary battery comprising same | |
WO2022080770A1 (en) | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same | |
WO2018131952A1 (en) | Non-aqueous electrolyte solution and lithium secondary battery comprising same | |
WO2020222469A1 (en) | Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same | |
WO2020149677A1 (en) | Non-aqueous electrolyte additive, and non-aqueous electrolyte for lithium secondary battery and lithium secondary battery including same | |
WO2020180125A1 (en) | Lithium secondary battery | |
WO2018236046A1 (en) | Lithium-sulfur battery | |
WO2018004103A1 (en) | Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same | |
WO2023167431A1 (en) | Non-aqueous electrolyte solution composition and lithium secondary battery comprising same | |
WO2021085887A1 (en) | Lithium-sulfur secondary battery | |
WO2021006629A1 (en) | Method for manufacturing anode | |
WO2020242247A1 (en) | Sulfur-carbon composite, lithium-sulfur battery positive electrode comprising same, and lithium-sulfur battery comprising positive electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19874836 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020545656 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019874836 Country of ref document: EP Effective date: 20200910 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |