Nothing Special   »   [go: up one dir, main page]

WO2020052194A1 - 一种稠环苯并噻二唑基非富勒烯受体材料及其制备方法和应用 - Google Patents

一种稠环苯并噻二唑基非富勒烯受体材料及其制备方法和应用 Download PDF

Info

Publication number
WO2020052194A1
WO2020052194A1 PCT/CN2019/074045 CN2019074045W WO2020052194A1 WO 2020052194 A1 WO2020052194 A1 WO 2020052194A1 CN 2019074045 W CN2019074045 W CN 2019074045W WO 2020052194 A1 WO2020052194 A1 WO 2020052194A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
acceptor material
reaction
fused ring
Prior art date
Application number
PCT/CN2019/074045
Other languages
English (en)
French (fr)
Inventor
邹应萍
张云强
袁俊
周流洋
彭红建
Original Assignee
中南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中南大学 filed Critical 中南大学
Publication of WO2020052194A1 publication Critical patent/WO2020052194A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/22Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains four or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to an organic solar cell acceptor material, in particular to a fused ring benzothiadiazole-based non-fullerene acceptor material, and also relates to a preparation method and application thereof in an organic solar cell, and belongs to an organic solar cell. Material preparation technology field.
  • the first object of the present invention is to provide a fused ring benzothiadiazolyl group with good film formation and high photoelectric conversion efficiency.
  • Non-fullerene acceptor material is to provide a fused ring benzothiadiazolyl group with good film formation and high photoelectric conversion efficiency.
  • a second object of the present invention is to provide a method for preparing a fused ring benzothiadiazolyl non-fullerene acceptor material with mild conditions and simple operation.
  • a third object of the present invention is to provide an application of a fused ring benzothiadiazole-based non-fullerene acceptor material, and the fused ring benzothiadiazole-based non-fullerene acceptor material is more complementary to a donor material.
  • Absorption having an energy level more compatible with the donor material, and having a high and balanced carrier mobility, can be used to prepare organic solar cells with high short-circuit current and energy conversion efficiency.
  • the present invention provides a fused ring benzothiadiazole non-fullerene acceptor material, which has the structure of Formula 1:
  • R 1 is a C 1 -C 20 alkyl group
  • Ar is a thiophene group, a thiophene derivative group, a dithiophene group, a dithiophene derivative group, a trithiophene group, a benzotrithiophene derivative group, a benzodithiophene group, a benzodithiophene Derivative group, pyrrolodithiophene group, pyrrolodithiophene derivative group, pyrrolodiphenyl group, pyrrolodiphenyl derivative group, pentanedithiophene group, pentanedithiophene Derivative group, pentanediphenyl group or pentanediphenyl derivative group; when Ar is selected from thiophene derivative group, it means that the thiophene ring contains some common substituent groups, such as C 1 ⁇ C 20 alkyl group, C 1 ⁇ C 20 alkoxy group, carbonyl group, ester group (such as C 1 ⁇ C 20 alk
  • EG is any of the following groups: (the dotted line is the connection position)
  • R 2 is a hydrogen atom, a halogen substituent (the halogen substituent is fluorine, chlorine, bromine, or iodine), a C 1 to C 20 alkyl group, a C 1 to C 20 alkoxy group, a carbonyl group, or an ester group (such as C 1 ⁇ C 20 alkoxyacyl) or cyano.
  • the fused ring benzothiadiazole non-fullerene acceptor material of the present invention includes a fused ring benzothiadiazole core and an electron withdrawing end group.
  • the fused ring benzothiadiazole core has a nitrogen bridge trapezoidal fused ring structure. Electron-withdrawing end groups are connected at both ends of the central core.
  • the fused ring benzothiadiazole non-fullerene acceptor material of the present invention uses a fused ring benzothiadiazole central core unit, and the following structural design is performed on the fused ring benzothiadiazole central unit: (1) use The nitrogen atom connects the benzothiadiazole to the conjugated group. The lone pair of electrons of the nitrogen atom participates in the conjugation, which increases the electron cloud density of the conjugated system and the electron donating ability of the central nucleus.
  • Condensed polycyclic non fullerene acceptor material of the present invention have good solubility, easily processed into a film, has a strong visible-near IR absorptivity performance and high charge mobility ( ⁇ 10 -4 cm 2 ⁇ V - 1 ⁇ s -1 ). It can be used to prepare solar cell materials with high short-circuit current and energy conversion efficiency. It is a class of potential acceptor materials. Compared with the fullerene and its derivative materials in the prior art, it can regulate energy levels, has good film-forming properties, and has high photoelectric conversion efficiency. Its finished products can be made into flexible solar cell panels. High efficiency and low price.
  • Ar is any one of the following groups (these groups have common properties and similar chemical properties, and the main body is a conjugated system formed by thiophene and / or benzene rings, and the conjugated system may include some Common substituent groups): (the dotted line is the connection position)
  • R 3 is C 1 to C 20 alkyl, C 1 to C 20 alkoxy, carbonyl, ester (preferably C 1 to C 20 alkoxyacyl), phenyl, substituted phenyl (preferably substituted) Phenyl contains at least one C 1 to C 20 alkyl group and / or C 1 to C 20 alkoxy group, and most preferably contains one C 1 to C 20 alkyl group or C 1 to C 20 alkoxy group) , Thienyl, or substituted thienyl (preferably substituted thienyl includes at least one C 1 to C 20 alkyl group and / or C 1 to C 20 alkoxy group, most preferably an C 1 to C 20 alkyl group Or C 1 to C 20 alkoxy).
  • the invention also provides a method for preparing a fused ring benzothiadiazole non-fullerene acceptor material, which comprises the following steps:
  • Compound B is obtained by stille coupling reaction between 4,7-dibromo-5,6-dinitrobenzothiadiazole and compound A:
  • the haloalkane is R 1 X;
  • R 1 is a C 1 to C 20 alkyl group
  • X is halogen
  • the EG ketone is any one of the following structures (these ketone compounds are conventional compounds that can be purchased):
  • R 2 is a hydrogen atom, a halogen, a C 1 to C 20 alkyl group, a C 1 to C 20 alkoxy group, a carbonyl group, an ester group (such as a C 1 to C 20 alkoxyacyl group), or a cyano group.
  • the conditions of the stille coupling reaction are: the solvent is tetrahydrofuran, the catalyst is bistriphenylphosphine palladium dichloride, and the amount of the catalyst added is 0.01% to 10% of the molar amount of Compound A;
  • the molar ratio of dibromo-5,6-dinitrobenzothiadiazole to compound A is 1: 2.2 to 3.5; the reaction is refluxed at a temperature of 80 to 100 ° C. for 24 to 48 hours.
  • the conditions of the condensation ring-closure reaction are: the solvent is o-dichlorobenzene, and the catalyst is triethyl phosphite; the molar amount of the catalyst and the compound B is 30-50: 1; and the reflux is performed at a temperature of 160-180 ° C The reaction takes 16 to 20 hours.
  • the conditions for the nucleophilic substitution reaction are: using dimethyl sulfoxide as a solvent, potassium hydroxide as a neutralizing agent, and a molar ratio of the halogenated alkane to the compound C is 3 to 5: 1; The reaction was carried out at reflux for 15 to 24 hours.
  • the conditions of the Vilsmeier-Haack reaction are: the solvent is N, N-dimethylformamide, phosphorus oxychloride is a formylating agent, and the molar ratio of compound D to phosphorus oxychloride is 1:15 -20; reflux reaction at 80-105 ° C for 8-12 hours.
  • the conditions of the Knoevenagel reaction are: chloroform is the solvent, pyridine is the acid binding agent, the molar ratio of the compound E to the EG ketone is 1: 5-12, and the reaction is refluxed at a temperature of 60-70 ° C for 12-16 hours .
  • the invention also provides an application of a fused ring benzothiadiazole non-fullerene acceptor material, which is used as an acceptor material of an organic solar cell.
  • a fused ring benzothiadiazole-based non-fullerene acceptor material and an electron donor material are used to make a photoelectric conversion layer for an organic solar cell device.
  • the specific preparation process of the photoelectric conversion layer is: mixing a fused ring benzothiadiazolyl non-fullerene acceptor material with an electron donor material, adding a solvent to dissolve, and obtaining a slurry, which is prepared by coating the conductive glass with The thin film is then prepared for an organic solar cell device.
  • the solvent at least one of trichloromethane, o-dichlorobenzene and tetrahydrofuran is generally used.
  • the fused ring benzothiadiazolyl non-fullerene acceptor material can be dissolved in conventional organic solvents and has good processing properties.
  • the molar ratio of the fused ring benzothiadiazolyl non-fullerene acceptor material to the electron donor material is 1 to 1.5: 1.
  • the electron donor material is PCE10, PCE12, P3HT, and other organic electron donor materials.
  • the fused ring benzothiadiazole non-fullerene acceptor material of the present invention has a special molecular structure, and its main body includes a fused ring benzothiadiazole core and an electron withdrawing end group, and a fused ring benzothiadiazole core. It is a nitrogen bridge trapezoidal fused ring structure, with electron-withdrawing end groups connected at both ends of the central core, and also modified with an alkane or alkoxy chain.
  • the fused ring benzothiadiazole central core unit connects the benzothiadiazole to the conjugated group through the nitrogen atom, and the lone pair of electron pairs of the nitrogen atom participates in the conjugation, which increases the electron cloud density of the conjugated system and improves the supply of the central core Electronic capabilities.
  • the introduction of an alkyl chain on the nitrogen atom can not only increase the flatness of the central core region, thereby potentially improving the charge mobility, but also further improve the material dissolution performance.
  • the simultaneous introduction of electron withdrawing at both ends of the core unit of the fused ring benzothiadiazole can effectively broaden the absorption and absorption coefficient of the material.
  • the fused ring non-fullerene acceptor material of the present invention has good solubility, is easy to be processed into a film, has strong visible and near-infrared light absorption performance and a high charge mobility ( ⁇ 10 -4 cm 2 ⁇ V -1 ⁇ S -1 ), which can be used to prepare solar cell materials with high short-circuit current and energy conversion efficiency, is a class of potential acceptor materials.
  • the cyclic benzothiadiazole non-fullerene acceptor material of the present invention can regulate the energy level, has good film-forming properties, and has higher photoelectric conversion. Efficiency, the finished product can be made into a flexible solar panel.
  • the cyclobenzothiadiazole non-fullerene acceptor material of the present invention has mild synthesis conditions and low price, which is beneficial to realize large-scale production.
  • FIG. 1 is a synthetic roadmap of the acceptor material ZYQ3 prepared in Example 1.
  • FIG. 1 is a synthetic roadmap of the acceptor material ZYQ3 prepared in Example 1.
  • FIG. 2 is 1 HNMR of the acceptor material ZYQ3 prepared in Example 1.
  • FIG. 3 is a 13 C NMR of the acceptor material ZYQ3 prepared in Example 1.
  • FIG. 5 is a current-voltage (J-V) curve diagram of an organic solar cell prepared in Example 1.
  • FIG. 6 is an external quantum efficiency (EQE) curve diagram of the organic solar cell prepared in Example 1.
  • FIG. 6 is an external quantum efficiency (EQE) curve diagram of the organic solar cell prepared in Example 1.
  • FIG. 7 is a synthetic roadmap of the acceptor material ZYQ4 prepared in Example 2.
  • FIG. 8 is a 1 HNMR of the acceptor material ZYQ4 prepared in Example 2.
  • FIG. 9 is a 13 CNMR of the acceptor material ZYQ4 prepared in Example 2.
  • FIG. 11 is a cyclic voltammogram of the acceptor material ZYQ4 prepared in Example 2.
  • FIG. 12 is a current-voltage (J-V) curve diagram of an organic solar cell prepared in Example 2.
  • J-V current-voltage
  • the dichloromethane and petroleum ether used in the following examples were purchased from Tianjin Hengxing Chemical Reagent Factory; 4,7-dibromobenzothiadiazole, bistriphenylphosphine palladium dichloride, anhydrous N, N-di Methylformamide, phosphorus oxychloride, triethylphosphite, and anhydrous tetrahydrofuran were purchased from Saen Chemical (Shanghai) Co., Ltd .; 3- (dicyanomethylene) indone was purchased from Suzhou Nakai Technology Co., Ltd. . The reagents purchased above were used directly without further treatment.
  • acceptor material ZYQ3 In a 250 ml round bottom flask, compound E (0.102 g, 0.10 mmol) and 3- (dicyanomethylene) indone (0.20 g, 1.00 mmol) were dissolved in 45 ml of chloroform. 1 ml of pyridine was added, and the mixture was reacted under reflux for 12 hours under the protection of argon gas, cooled to room temperature, poured into 200 ml of anhydrous methanol, filtered by suction to obtain a crude product, and separated and purified by silica gel column chromatography to obtain a dark blue solid (0.10 g) , Is the acceptor material ZYQ3.
  • acceptor material ZYQ4 In a 250 ml round-bottomed flask, compound E (0.154 g, 0.15 mmol) and 3- (dicyanomethylene) indone (0.345 g, 1.50 mmol) were dissolved in 45 ml of chloroform and added 1 ml of pyridine, the mixture was refluxed under the protection of argon for 12 hours, cooled to room temperature, poured into 200 ml of anhydrous methanol, filtered by suction to obtain the crude product, and purified by silica gel column chromatography to obtain a dark blue solid (0.140 g), That is the acceptor material ZYQ4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种稠环苯并噻二唑非富勒烯受体材料及其制备方法和应用。稠环苯并噻二唑非富勒烯受体材料包括稠环苯并噻二唑中心核与吸电子端基,稠环苯并噻二唑中心核为氮桥梯形稠环结构,吸电子端基连接在中心核的两端,其制备过程为以4,7-二溴-5,6-二硝基苯并噻二唑为原料,依次通过Stille偶联及Vilsmeier-Haack反应得到稠环苯并噻二唑中心核,再通过Knoevenagel反应引入端基结构,得到稠环苯并噻二唑非富勒烯受体材料。该受体材料溶解性好,易于加工成膜,且具有良好的光电转换功能,用于制备有机太阳能电池器件,光电转换效率达到近16%的单节电池转换效率。

Description

一种稠环苯并噻二唑基非富勒烯受体材料及其制备方法和应用 技术领域
本发明涉及一种有机太阳能电池受体材料,特别涉及一种稠环苯并噻二唑基非富勒烯受体材料,还涉及其制备方法和在有机太阳能电池中的应用,属于有机太阳能电池材料制备技术领域。
背景技术
随着能源问题的日益严重,发展新型能源迫在眉睫,而太阳能由于具有清洁无污染,且取之不尽,用之不竭等诸多优点而具有很大发展前景。如何更好的利用太阳能是应对能源危机的关键解决办法。有机太阳能电池因其具有柔性、价格低廉,可低成本制备引起研究学者的广泛关注。经过二十多年的发展,目前单层异质结的有机太阳能电池的效率已经达到14%,在未来很有可能会取代传统的硅基电池。[Advanced Materials.2018,30(20):1800868]及[Advanced Materials.2018,30(16):1707170]公开有机太阳能电池最常用的给体材料PTB7-Th(PCE10)的吸收范围为550-780nm,其光学带隙(Eg opt=1.59eV)较窄,与一般常用的非富勒烯受体材料有较多的重叠,因此,设计并合成更窄带隙(Eg opt<1.5eV)的非富勒烯受体与低或中等带隙的给体聚合物相匹配的给体材料将是一个新的发展方向。[Advanced Energy Materials.2013,3(1):54-59.]
发明内容
针对现有有机太阳能电池中有机受体材料存在光电转换效率低等问题,本发明的第一个目的是在于提供一种成膜性好,光电转换效率较高的稠环苯并噻二唑基非富勒烯受体材料。
本发明的第二个目的是在于提供一种条件温和,操作简单的制备稠环苯并噻二唑基非富勒烯受体材料的方法。
本发明的第三个目的是在于提供稠环苯并噻二唑基非富勒烯受体材料的应用,稠环苯并噻二唑基非富勒烯受体材料与给体材料更加互补的吸收、具有与给体材料更加匹配的能级和具有高而平衡的载流子迁移率,可以用于制备高短路电流和能量转换效率的有机太阳能电池。
为了实现上述技术目的,本发明提供了一种稠环苯并噻二唑非富勒烯受体材料,其具有 式1结构:
Figure PCTCN2019074045-appb-000001
其中,
R 1为C 1~C 20的烷基;
Ar为噻吩基团、噻吩衍生物基团、并二噻吩基团、并二噻吩衍生物基团、并三噻吩基、并三噻吩衍生物基团、苯并二噻吩基团、苯并二噻吩衍生物基团、吡咯并二噻吩基团、吡咯并二噻吩衍生物基团、吡咯并二苯基团、吡咯并二苯衍生物基团、戊烷并二噻吩基团、戊烷并二噻吩衍生物基团、戊烷并二苯基团或戊烷并二苯衍生物基团;Ar选自噻吩衍生物基团时,指的是噻吩环上包含一些常见的取代基团,如C 1~C 20的烷基、C 1~C 20的烷氧基、羰基、酯基(如C 1~C 20烷氧酰基)、苯基、取代苯基(苯环上主要含C 1~C 20的烷基或C 1~C 20的烷氧基)、噻吩基或取代噻吩基(噻吩环上主要含C 1~C 20的烷基或C 1~C 20的烷氧基);同样,Ar选自苯并二噻吩衍生物基团、吡咯并二噻吩衍生物基团、吡咯并二苯衍生物基团、戊烷并二噻吩衍生物基团或戊烷并二苯衍生物基团时,指的是苯并二噻吩、吡咯并二噻吩、吡咯并二苯、戊烷并二噻吩或戊烷并二苯上也包含与噻吩衍生物基团上类似的一些常见的取代基团;
EG为以下基团中任意一种:(虚线处为连接位置)
Figure PCTCN2019074045-appb-000002
Figure PCTCN2019074045-appb-000003
其中,
R 2为氢原子、卤素取代基(卤素取代基为氟、氯、溴或碘)、C 1~C 20的烷基、C 1~C 20的烷氧基、羰基、酯基(如C 1~C 20烷氧酰基)或氰基。
本发明的稠环苯并噻二唑非富勒烯受体材料包括稠环苯并噻二唑中心核与吸电子端基,稠环苯并噻二唑中心核为氮桥梯形稠环结构,吸电子端基连接在中心核的两端。
本发明的稠环苯并噻二唑非富勒烯受体材料使用稠环苯并噻二唑中心核单元,并且在稠环苯并噻二唑中心单元上进行以下结构设计:(1)使用氮原子将苯并噻二唑与共轭基团相连,通过氮原子的孤对电子对参与共轭,增加共轭体系电子云密度,提高中心核的给电子能力;(2)引入简单的烷基链在氮原子上不仅可以增加中心核的区域平整性从而潜在提高电荷迁移率,还可以进一步改善材料溶解性能,提高加工性能;(3)引入吸电子的苯并噻二唑结构在中心核单元可以有效拓宽材料的吸收,吸收系数和能级。
本发明的稠环非富勒烯受体材料具有良好的溶解性,易于加工成膜,具有较强的可见近红外吸光系性能及较高的电荷迁移率(≥10 -4cm 2·V -1·s -1)。能用于制备高短路电流和能量转换效率的太阳能电池材料,是一类富有潜力受体材料。与现有技术中的富勒烯及其衍生物材料相比,它可以调控能级,具有很好的成膜性,具有较高的光电转换效率,其成品可以制成柔性太阳能电池板,具有高效、价格低廉优点。
优选的方案,Ar为以下基团中任意一种(这些基团都具有共性,具有相似的化学性质,主体均是噻吩和/或苯环构建成的共轭体系,共轭体系上可以包含一些常见的取代基团):(虚线处为连接位置)
Figure PCTCN2019074045-appb-000004
其中,
R 3为C 1~C 20的烷基、C 1~C 20的烷氧基、羰基、酯基(优选为C 1~C 20的烷氧酰基)、苯基、取代苯基(优选的取代苯基包含至少一个C 1~C 20的烷基和/或C 1~C 20的烷氧基,最优选为包含一个C 1~C 20的烷基或C 1~C 20的烷氧基)、噻吩基、或取代噻吩基(优选的取代噻吩基包含至少一个C 1~C 20的烷基和/或C 1~C 20的烷氧基,最优选为包含一个C 1~C 20的烷基或C 1~C 20的烷氧基)。
本发明还提供了一种稠环苯并噻二唑非富勒烯受体材料的制备方法,其包括以下步骤:
1)将4,7-二溴-5,6-二硝基苯并噻二唑和化合物A通过stille偶联反应得到化合物B:
Figure PCTCN2019074045-appb-000005
2)化合物B进行缩合闭环反应得到化合物C:
Figure PCTCN2019074045-appb-000006
3)化合物C与卤代烷烃通过亲核取代反应得到化合物D;
Figure PCTCN2019074045-appb-000007
所述卤代烷烃为R 1X;
其中,R 1为C 1~C 20的烷基;X为卤素;
4)化合物D通过Vilsmeier-Haack反应得到化合物E;
Figure PCTCN2019074045-appb-000008
5)化合物E和EG酮通过Knoevenagel反应,即得;
所述EG酮为以下结构中任意一种(这些酮类化合物均为可以购买的常规化合物):
Figure PCTCN2019074045-appb-000009
其中,
R 2为氢原子、卤素、C 1~C 20的烷基、C 1~C 20的烷氧基、羰基、酯基(如C 1~C 20烷氧酰基)或氰基。
优选的方案,所述stille偶联反应的条件为:溶剂为四氢呋喃,催化剂为双三苯基膦二氯化钯,催化剂的加入量为化合物A摩尔量的0.01%~10%;4,7-二溴-5,6-二硝基苯并噻二唑和化合物A的摩尔比为1:2.2~3.5;在80~100℃温度下回流反应24~48小时。
优选的方案,所述缩合闭环反应的条件为:溶剂为邻二氯苯,催化剂为亚磷酸三乙酯; 催化剂与化合物B的摩尔量为30~50:1;在160~180℃温度下回流反应16~20小时。
优选的方案,所述亲核取代反应的条件为:以二甲基亚砜为溶剂,氢氧化钾作为中和剂,卤代烷烃与化合物C的摩尔比为3~5:1;在80~100℃温度下回流反应15~24小时。
优选的方案,所述Vilsmeier-Haack反应的条件为:溶剂为N,N-二甲基甲酰胺,三氯氧磷为甲酰化试剂,化合物D与三氯氧磷的摩尔比为1:15~20;在80~105℃温度下回流反应8~12小时。
优选的方案,所述Knoevenagel反应的条件为:氯仿为溶剂,吡啶为缚酸剂,化合物E与EG酮的摩尔比为1:5~12;在60~70℃温度下回流反应12~16小时。
本发明还提供了一种稠环苯并噻二唑非富勒烯受体材料的应用,其作为有机太阳能电池受体材料应用。
优选的方案,将稠环苯并噻二唑基非富勒烯受体材料与电子给体材料制成光电转换层用于有机太阳能电池器件。光电转换层的具体制备过程为:将稠环苯并噻二唑基非富勒烯受体材料与电子给体材料混合,加入溶剂溶解,得到浆液,所述浆液涂覆在导电玻璃上制备成薄膜,然后制备有机太阳能电池器件。溶剂一般采用三氯甲烷、邻二氯苯以及四氢呋喃中至少一种。稠环苯并噻二唑基非富勒烯受体材料可以溶于常规的有机溶剂,具有较好的加工性能。
较优选的方案,稠环苯并噻二唑基非富勒烯受体材料与电子给体材料的摩尔比为1~1.5:1。
较优选的方案,所述电子给体材料为PCE10、PCE12、P3HT及其他有机电子给体材料。
本发明的稠环苯并噻二唑非富勒烯受体材料的具体合成路线及步骤表示如下:
(1)4,7-二溴-5,6-二硝基苯并噻二唑和化合物A通过stille偶联反应得到化合物B:溶剂为四氢呋喃,催化剂为双三苯基膦二氯化钯,催化剂的加入量为化合物A摩尔量的0.01%~10%;4,7-二溴-5,6-二硝基苯并噻二唑和化合物A的摩尔比为1:2.2;在80~100℃温度下回流反应24~48小时;
Figure PCTCN2019074045-appb-000010
(2)化合物B、亚磷酸三乙酯和邻二氯苯在氩气保护下进行缩合闭环反应得到化合物C:溶剂为邻二氯苯,催化剂为亚磷酸三乙酯;催化剂与化合物B的摩尔量为30:1;在160~180℃温度下回流反应16~20小时;
Figure PCTCN2019074045-appb-000011
(3)化合物C与卤代烃在碱性条件下通过亲核取代反应得到化合物D;以二甲基亚砜为溶剂,氢氧化钾作为中和剂,卤代烷烃与化合物C的摩尔比为3:1;在80~100℃温度下回流反应15~24小时;
Figure PCTCN2019074045-appb-000012
(4)化合物E由化合物D通过Vilsmeier-Haack反应得到;溶剂为N,N-二甲基甲酰胺,三氯氧磷为甲酰化试剂,化合物D与三氯氧磷的摩尔比为1:15;在80~105℃温度下回流反应8~12小时;
Figure PCTCN2019074045-appb-000013
(5)中间体E和EG酮通过Knoevenagel反应得到式1所示结构化合物;氯仿为溶剂,吡啶为缚酸剂,化合物E与EG酮的摩尔比为1:10;在60~70℃温度下回流反应12~16小时。
Figure PCTCN2019074045-appb-000014
相对于现有技术,本发明技术方案具有以下有益效果:
本发明的稠环苯并噻二唑非富勒烯受体材料具有特殊的分子结构,其主体包括稠环苯并噻二唑中心核与吸电子端基,稠环苯并噻二唑中心核为氮桥梯形稠环结构,吸电子端基连接在中心核的两端,同时还修饰有烷链或烷氧链。稠环苯并噻二唑中心核单元通过氮原子将苯并噻二唑与共轭基团相连,通过氮原子的孤对电子对参与共轭,增加共轭体系电子云密度,提高中心核的给电子能力。同时,在在氮原子上引入烷基链,不仅可以增加中心核的区域平整 性从而潜在提高电荷迁移率还可以进一步改善材料溶解性能。在稠环苯并噻二唑中心核单元两端同时引入吸电子可以有效拓宽材料的吸收和吸收系数。
本发明稠环非富勒烯受体材料具有良好的溶解性,易于加工成膜,具有较强的可见近红外吸光系性能及较高的电荷迁移率(≥10 -4cm 2·V -1·s -1),能用于制备高短路电流和能量转换效率的太阳能电池材料,是一类富有潜力受体材料.
本发明的环苯并噻二唑非富勒烯受体材料与之前的富勒烯及其衍生物材料相比,它可以调控能级,具有很好的成膜性,具有较高的光电转换效率,其成品可以制成柔性太阳能电池板。
本发明的环苯并噻二唑非富勒烯受体材料合成条件温和、价格低廉,有利于实现大规模生产。
附图说明
【图1】为实施例1制备得到的受体材料ZYQ3的合成路线图。
【图2】为实施例1制备得到的受体材料ZYQ3的 1HNMR。
【图3】为实施例1制备得到的受体材料ZYQ3的 13CNMR。
【图4】为实施例1制备得到的受体材料ZYQ3在氯仿溶液中和薄膜状态下的吸收谱图。
【图5】为实施例1制备有机太阳电池的电流-电压(J-V)曲线图。
【图6】为实施例1制备有机太阳电池的外量子效率(EQE)曲线图。
【图7】为实施例2制备得到的受体材料ZYQ4的合成路线图。
【图8】为实施例2制备得到的受体材料ZYQ4的 1HNMR。
【图9】为实施例2制备得到的受体材料ZYQ4的 13CNMR。
【图10】为实施例2制备得到的受体材料ZYQ4在氯仿溶液中和薄膜状态下的吸收谱图。
【图11】为实施例2制备得到的受体材料ZYQ4的循环伏安曲线图。
【图12】为实施例2制备有机太阳电池的电流-电压(J-V)曲线图。
具体实施方式
下面通过具体实验方式来进一步说明本发明的技术方案。
以下实施例中使用的二氯甲烷,石油醚购于天津恒兴化学试剂厂;4,7-二溴苯并噻二唑,双三苯基膦二氯化钯,无水N,N-二甲基甲酰胺,三氯氧磷,亚磷酸三乙酯,无水四氢呋喃购于萨恩化学(上海)有限公司;3-(二氰基亚甲基)靛酮购于苏州纳凯科技有限公司。以上 所购试剂直接使用,未再处理。
实施例1
上述所述的R 1
Figure PCTCN2019074045-appb-000015
Ar
Figure PCTCN2019074045-appb-000016
为R 3
Figure PCTCN2019074045-appb-000017
EG为
Figure PCTCN2019074045-appb-000018
时,受体材料的制备如下:
(1)4,7-二溴-5,6-二硝基苯并噻二唑和化合物A通过stille偶联反应得到化合物B:
Figure PCTCN2019074045-appb-000019
化合物B的合成:在250ml圆底烧瓶中,称取4,7-二溴-5,6-二硝基苯并噻二唑(7.68g,20mmol)和三丁基(6-十一基噻吩并[3,2-b]噻吩-2-基)锡烷(25.68g,44mmol)溶于100ml四氢呋喃中,氩气保护下将双三苯基膦二氯化钯(0.62g,0.88mmol)加入体系中。混合液在80℃下回流20小时。冷却至室温,旋干四氢呋喃,用二氯甲烷萃取,旋干溶剂得到粗产品,用硅胶柱层析分离提纯,得到红色固体(10.54g),即为化合物B;
(2)化合物B,亚磷酸三乙酯和邻二氯苯在氩气保护下进行缩合闭环反应得到化合物C:
Figure PCTCN2019074045-appb-000020
化合物C的合成:在250ml圆底烧瓶中,加入化合物B(8.1g,10mmol),亚磷酸三乙酯(50ml)和邻二氯苯(20ml)。氩气保护下,混合液在180摄氏度下反应15小时。冷却至室温,减压蒸馏除去溶剂,得到黄色液体,用硅胶柱层析分离提纯,得到黄色固体(3.73g),即为化合物C:
(3)化合物C在碱性条件下通过亲核取代反应得到化合物D;
Figure PCTCN2019074045-appb-000021
在250ml烧瓶中,加入化合物C(3.73g,5mmol),氢氧化钾(2g,35.64mmol),溴代异辛烷(2.90g,15mmol)和二甲基亚砜(120ml),氩气保护下,混合液在80℃下反应16小时,冷却至室温,二氯甲烷萃取,旋干溶剂,用硅胶柱层析分离提纯,得到红色固体(2.19g),即为化合物D:
(4)化合物E由化合物D通过Vilsmeier-Haack反应得到;
Figure PCTCN2019074045-appb-000022
化合物E的合成。在100ml三口烧瓶中,加入化合物D(0.45g,0.46mmol)和无水N,N-甲酰胺(20ml),降温度降至0℃,加入三氯氧磷(1ml),搅拌反应2小时。将温度升至90℃搅拌过夜,冷却至室温,二氯甲烷萃取,旋干溶剂,用硅胶柱层析分离提纯,得到亮黄色固体(0.35g,0.34mmol),即为化合物E;
(5)化合物E和3-(二氰基亚甲基)靛酮通过Knoevenagel反应得到ZYQ3受体材料:
Figure PCTCN2019074045-appb-000023
受体材料ZYQ3的合成:在250ml圆底烧瓶中,将化合物E(0.102g,0.10mmol)和3-(二氰基亚甲基)靛酮(0.20g,1.00mmol)溶于45ml氯仿中,加入1ml吡啶,混合液在氩气保护下回流反应12小时,冷却至室温,倒入200ml无水甲醇中,抽滤得到粗产物,用硅胶柱层析分离提纯,得到深蓝色固体(0.10g),即为受体材料ZYQ3。
化合物E的产率为65%,核磁谱图为 1H NMR(400MHz,CDCl 3)δ10.07(s,2H),4.62–4.52(m,4H),3.13(t,J=7.6Hz,4H),1.97–1.83(m,6H),1.45–1.36(m,4H),1.31(d,J=7.9Hz,4H),1.19(s,26H),0.97(d,J=3.2Hz,4H),0.81(dd,J=17.4,10.8Hz,18H),0.63–0.50(m,12H).
受体材料ZYQ3的产率85%,核磁谱图为 1H NMR(400MHz,CDCl 3)δ9.14(s,2H),8.68(dd,J=5.7,2.9Hz,2H),7.96(dt,J=7.3,3.7Hz,2H),7.84–7.71(m,4H),4.90–4.66(m,4H),3.22(t,J=7.6Hz,4H),2.23–2.09(m,2H),1.97–1.81(m,4H),1.57–1.46(m,7H),1.37(s,4H),1.23(d,J=21.3Hz,27H),1.04(d,J=23.1Hz,10H),0.86(t,J=6.7Hz,6H),0.81–0.73(m,6H),0.68(dd,J=7.6,6.7Hz,6H).
化合物PCE12(也称PBDB-T)的结构式为
Figure PCTCN2019074045-appb-000024
R=2-ethylhexyl
化合物PCE10的结构式为
Figure PCTCN2019074045-appb-000025
R=2-ethylhexyl
采用商业化的PCE12或者PCE10为给体材料,ZYQ3为受体材料,按照ITO/PEDOT:PSS/PCE12:ZYQ3/PDINO/Al制作成的太阳能电池的性能。表1和表2列出了太阳能电池的活性层中两个材料PCE12和ZYQ3在不同比例下电池所表现出来的性能参数。
表1
Figure PCTCN2019074045-appb-000026
Figure PCTCN2019074045-appb-000027
表2
Figure PCTCN2019074045-appb-000028
实施例2
上述所述的R 1
Figure PCTCN2019074045-appb-000029
Ar
Figure PCTCN2019074045-appb-000030
为R 3
Figure PCTCN2019074045-appb-000031
EG为
Figure PCTCN2019074045-appb-000032
时,受体材料的制备如下:(1)实验步骤与实施例1的实验步骤基本相同,根据实施例1实验步骤制备得到化合物E;(2)化合物E和5,6-二氟-3-(二氰基亚甲基)靛酮通过Knoevenagel反应得到ZYQ4受体材料:
Figure PCTCN2019074045-appb-000033
受体材料ZYQ4的合成:在250ml圆底烧瓶中,将化合物E(0.154g,0.15mmol)和3-(二氰基亚甲基)靛酮0.345g,1.50mmol)溶于45ml氯仿中,加入1ml吡啶,混合液在氩气保护下回流反应12小时,冷却至室温,倒入200ml无水甲醇中,抽滤得到粗产物,用硅胶柱层析分离提纯,得到深蓝色固体(0.140g),即为受体材料ZYQ4。
受体材料ZYQ4的产率65%,核磁谱图为 1H NMR(400MHz,CDCl 3)δ10.07(s,1H),4.68–4.48(m,2H),3.13(t,J=7.6Hz,2H),1.88(ddd,J=22.6,13.6,6.9Hz,3H),1.46–1.10(m,18H),1.10–0.68(m,12H),0.70–0.46(m,6H).
Figure PCTCN2019074045-appb-000034
采用商业化的PBDB-T-F或PCE12为给体材料,ZYQ4为受体材料,按照ITO/PEDOT:PSS/PBDB-T-F(或PCE 12):ZYQ4/PDINO/Al制作成的太阳能电池的性能。表3列出了太阳能电池的活性层中两个材料PBDB-T-F或PCE12和ZYQ4在电池中所表现出来的性能参数。
表3
Figure PCTCN2019074045-appb-000035

Claims (9)

  1. 一种稠环苯并噻二唑非富勒烯受体材料,其特征在于:具有式1结构:
    Figure PCTCN2019074045-appb-100001
    其中,
    R 1为C 1~C 20的烷基;
    Ar为噻吩基团、噻吩衍生物基团、并二噻吩基团、并二噻吩衍生物基团、并三噻吩基、并三噻吩衍生物基团、苯并二噻吩基团、苯并二噻吩衍生物基团、吡咯并二噻吩基团、吡咯并二噻吩衍生物基团、吡咯并二苯基团、吡咯并二苯衍生物基团、戊烷并二噻吩基团、戊烷并二噻吩衍生物基团、戊烷并二苯基团或戊烷并二苯衍生物基团;
    EG为以下基团中任意一种:
    Figure PCTCN2019074045-appb-100002
    Figure PCTCN2019074045-appb-100003
    Figure PCTCN2019074045-appb-100004
    其中,R 2为氢原子、卤素取代基、C 1~C 20的烷基、C 1~C 20的烷氧基、羰基、酯基或氰基。
  2. 根据权利要求1所述的稠环苯并噻二唑非富勒烯受体材料,其特征在于:Ar为以下基团中任意一种:
    Figure PCTCN2019074045-appb-100005
    Figure PCTCN2019074045-appb-100006
    其中,R 3为C 1~C 20的烷基、C 1~C 20的烷氧基、羰基、酯基、苯基、取代苯基、噻吩基、或取代噻吩基。
  3. 根据权利要求2所述的稠环苯并噻二唑非富勒烯受体材料,其特征在于:所述取代苯基包含至少一个C 1~C 20的烷基和/或C 1~C 20的烷氧基;所述取代噻吩基包含至少一个C 1~C 20的烷基和/或C 1~C 20的烷氧基。
  4. 权利要求1~3任一项所述的一种稠环苯并噻二唑非富勒烯受体材料的制备方法,其特征在于:包括以下步骤:
    1)将4,7-二溴-5,6-二硝基苯并噻二唑和化合物A通过stille偶联反应得到化合物B:
    Figure PCTCN2019074045-appb-100007
    2)化合物B进行缩合闭环反应得到化合物C:
    Figure PCTCN2019074045-appb-100008
    3)化合物C与卤代烷烃通过亲核取代反应得到化合物D;
    Figure PCTCN2019074045-appb-100009
    所述卤代烷烃为R 1X;
    其中,R 1为C 1~C 20的烷基;X为卤素;
    4)化合物D通过Vilsmeier-Haack反应得到化合物E;
    Figure PCTCN2019074045-appb-100010
    5)化合物E和EG酮通过Knoevenagel反应,即得;
    所述EG酮为以下结构中任意一种:
    Figure PCTCN2019074045-appb-100011
    Figure PCTCN2019074045-appb-100012
    其中,
    R 2为氢原子、卤素、C 1~C 20的烷基、C 1~C 20的烷氧基、羰基、酯基或氰基。
  5. 根据权利要求4所述的一种苯并噻二唑稠环化合物的制备方法,其特征在于:所述stille偶联反应的条件为:溶剂为四氢呋喃,催化剂为双三苯基膦二氯化钯,催化剂的加入量为化合物A摩尔量的0.01%~10%;4,7-二溴-5,6-二硝基苯并噻二唑和化合物A的摩尔比为1:2.2~3.5;在80~100℃温度下回流反应24~48小时;
    所述缩合闭环反应的条件为:溶剂为邻二氯苯,催化剂为亚磷酸三乙酯;催化剂与化合物B的摩尔量为30~40:1;在160~180℃温度下回流反应16~20小时;
    所述亲核取代反应的条件为:以二甲基亚砜为溶剂,氢氧化钾作为中和剂,卤代烷烃与化合物C的摩尔比为3~6:1;在80~100℃温度下回流反应15~24小时;
    所述Vilsmeier-Haack反应的条件为:溶剂为N,N-二甲基甲酰胺,三氯氧磷为甲酰化试剂,化合物D与三氯氧磷的摩尔比为1:15~25;在80~105℃温度下回流反应8~12小时;
    所述Knoevenagel反应的条件为:氯仿为溶剂,吡啶为缚酸剂,化合物E与EG酮的摩尔比为1:5~12;在60~70℃温度下回流反应12~16小时。
  6. 权利要求1~3任一项所述的一种稠环苯并噻二唑非富勒烯受体材料的应用,其特征在于:作为有机太阳能电池受体材料应用。
  7. 根据权利要求5所述的一种稠环苯并噻二唑基非富勒烯受体材料的应用,其特征在于:将稠环苯并噻二唑基非富勒烯受体材料与电子给体材料制成光电转换层用于有机太阳能电池器件。
  8. 根据权利要求7所述的一种稠环苯并噻二唑基非富勒烯受体材料的应用,其特征在于:稠环苯并噻二唑基非富勒烯受体材料与电子给体材料的摩尔比为1~1.5:1。
  9. 根据权利要求8所述的一种稠环苯并噻二唑基非富勒烯受体材料的应用,其特征在于:所述电子给体材料为PCE10、PCE12、P3HT及其他有机电子给体材料中至少一种。
PCT/CN2019/074045 2018-09-10 2019-01-31 一种稠环苯并噻二唑基非富勒烯受体材料及其制备方法和应用 WO2020052194A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811049106.5A CN109134513B (zh) 2018-09-10 2018-09-10 一种稠环苯并噻二唑基非富勒烯受体材料及其制备方法和应用
CN201811049106.5 2018-09-10

Publications (1)

Publication Number Publication Date
WO2020052194A1 true WO2020052194A1 (zh) 2020-03-19

Family

ID=64824294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074045 WO2020052194A1 (zh) 2018-09-10 2019-01-31 一种稠环苯并噻二唑基非富勒烯受体材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN109134513B (zh)
WO (1) WO2020052194A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115991715A (zh) * 2022-12-20 2023-04-21 广州追光科技有限公司 一种稠杂环化合物及其在电子器件中的应用
CN116178364A (zh) * 2023-02-23 2023-05-30 东华大学 一种非稠环受体小分子材料及其合成方法及其应用
WO2023120359A1 (ja) * 2021-12-20 2023-06-29 住友化学株式会社 化合物及びこれを用いた光電変換素子
WO2024115332A1 (en) 2022-11-28 2024-06-06 Cambridge Display Technology Limited Compounds for organic electronic devices

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109134513B (zh) * 2018-09-10 2020-10-23 中南大学 一种稠环苯并噻二唑基非富勒烯受体材料及其制备方法和应用
CN110964040B (zh) * 2019-05-07 2021-04-06 深圳睿迅有机太阳能有限公司 基于苯并氧族二唑的受体材料及其制备方法和应用
CN112142957B (zh) * 2019-06-27 2023-05-16 北京大学深圳研究生院 一种高分子电子受体材料及其制备方法和应用
CN110452241B (zh) * 2019-07-26 2020-11-24 华南理工大学 一种含螺芴基团的有机小分子非富勒烯受体材料及其制备方法与应用
CN112390813B (zh) * 2019-08-16 2022-06-03 位速科技股份有限公司 非富勒烯电子受体材料与有机光伏电池
CN110862518B (zh) * 2019-10-15 2021-05-14 华南理工大学 基于多元稠环结构的多元共聚物及其在有机光电器件中的应用
CN110734539B (zh) * 2019-10-15 2022-02-15 华南理工大学 基于五元或七元芳香稠环的聚合物及其在有机光电器件中的应用
CN110698498B (zh) * 2019-10-17 2021-05-25 中南大学 一种非对称稠环苯并三氮唑类受体及其制备方法和应用
CN112778327B (zh) * 2019-11-11 2022-04-01 北京大学深圳研究生院 一种有机非富勒烯电子受体材料及其制备方法和应用
WO2021107674A1 (ko) * 2019-11-29 2021-06-03 경상국립대학교산학협력단 신규한 화합물 및 이를 이용하는 유기 전자 소자
KR102695113B1 (ko) * 2019-11-29 2024-08-16 경상국립대학교산학협력단 신규한 화합물 및 이를 이용하는 유기 전자 소자
KR102446165B1 (ko) * 2019-12-10 2022-09-23 경상국립대학교산학협력단 (아릴옥시)알킬기가 치환된 화합물 및 이를 이용하는 유기 전자 소자
WO2021118171A1 (ko) * 2019-12-10 2021-06-17 경상국립대학교산학협력단 (아릴옥시)알킬기가 치환된 화합물 및 이를 이용하는 유기 전자 소자
TWI717153B (zh) * 2019-12-16 2021-01-21 位速科技股份有限公司 非富勒烯電子受體材料與有機光伏電池
CN112552313B (zh) * 2019-12-16 2022-03-29 华南理工大学 一种稠环喹喔啉酰亚胺基非富勒烯受体材料及其制备方法与应用
CN113105477B (zh) * 2020-01-13 2022-07-12 北京大学深圳研究生院 一种硫原子稠环的电子受体材料及其制备方法和应用
CN113185539A (zh) * 2020-01-14 2021-07-30 中国科学院宁波材料技术与工程研究所 三元环类苯并噻二唑有机小分子材料、其制备方法与应用
CN113135941A (zh) * 2020-01-17 2021-07-20 天光材料科技股份有限公司 含苯并硒二唑的非富勒烯受体化合物及包含其的有机光电元件
CN111285885A (zh) * 2020-03-17 2020-06-16 香港科技大学深圳研究院 稠环苯并硒二唑非富勒烯受体材料及其制备方法和应用
CN111978335B (zh) * 2020-08-24 2022-04-26 中国科学院化学研究所 一种带二乙烯基pi-桥的窄带隙有机受体光伏材料及其制备方法与应用
TWI758955B (zh) * 2020-11-17 2022-03-21 位速科技股份有限公司 七元稠環化合物、電子受體材料混合物及其製備方法與有機光伏電池
TWI759964B (zh) * 2020-11-17 2022-04-01 位速科技股份有限公司 七元稠環化合物與有機光伏電池
CN112521403B (zh) * 2020-11-18 2023-12-12 位速科技股份有限公司 七元稠环化合物与有机光伏电池
CN112521404B (zh) * 2020-11-18 2024-03-12 位速科技股份有限公司 七元稠环化合物、电子受体材料混合物及其制备方法与有机光伏电池
CN113234094B (zh) * 2021-04-02 2022-06-07 广州追光科技有限公司 苯并噻二唑衍生物及其在有机电子器件的应用
CN113087725B (zh) * 2021-04-06 2022-07-22 广州追光科技有限公司 一类苯并噻二唑氘代衍生物及其在有机电子器件的应用
CN113173937A (zh) * 2021-04-07 2021-07-27 香港科技大学深圳研究院 基于手性烷烃链的非富勒烯受体材料及其制备方法
CN113174032B (zh) * 2021-04-07 2023-11-07 香港科技大学深圳研究院 氟代稠环苯并噻二唑聚合物受体材料、制备方法
CN113666953B (zh) * 2021-07-19 2023-12-05 淮阴工学院 一类苯并噻二唑硼氮衍生物材料及其在有机电子器件的应用
CN113583025B (zh) * 2021-07-26 2022-08-30 武汉大学 一种十元稠环类的苯并噻二唑的具有黄色力致发光的小分子材料及其制备方法和应用
CN113583019B (zh) * 2021-08-03 2022-07-19 中国科学院长春应用化学研究所 Ada’da型全稠环小分子及其制备方法与应用
CN113880862B (zh) * 2021-09-09 2022-09-09 苏州大学 一种具备协同组装特性的非富勒烯受体及其制备方法与应用
CN114456197A (zh) * 2021-12-13 2022-05-10 中南大学 一种准聚合物非富勒烯受体材料及其制备方法和应用
KR102722511B1 (ko) 2022-03-17 2024-10-25 울산과학기술원 유기 태양전지용 광활성층 및 이를 포함하는 유기태양전지
CN114716456B (zh) * 2022-04-06 2023-08-25 中南大学 小分子受体材料、无界面修饰层的有机太阳能电池及制备方法
CN115028647B (zh) * 2022-06-24 2023-07-21 华南理工大学 一种稠环三氮唑双内酰胺基非富勒烯受体材料及其制备方法与应用
CN115991714B (zh) * 2022-09-07 2024-10-29 平顶山学院 一种侧链修饰的非富勒烯受体及其合成方法和应用
CN115785119B (zh) * 2022-11-26 2023-08-22 广州追光科技有限公司 一种有机化合物及其在有机电子器件中的应用
CN116082367A (zh) * 2022-12-14 2023-05-09 广州市香港科大霍英东研究院 一种基于苯并噻吩侧链的y6型非富勒烯电子受体及其制备与应用
CN116284052B (zh) * 2023-03-14 2024-04-26 中南大学 一种有机共轭环状分子的制备及在有机光伏中的应用
CN116375732B (zh) * 2023-03-21 2024-10-11 南方科技大学 一种非富勒烯受体材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105705610A (zh) * 2013-08-23 2016-06-22 巴斯夫欧洲公司 具有端杂芳基氰基亚乙烯基的化合物及其在有机太阳能电池中的应用
CN108948042A (zh) * 2018-09-10 2018-12-07 中南大学 一种七元稠环类苯并三氮唑受体及其制备方法和应用
CN109134513A (zh) * 2018-09-10 2019-01-04 中南大学 一种稠环苯并噻二唑基非富勒烯受体材料及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105705610A (zh) * 2013-08-23 2016-06-22 巴斯夫欧洲公司 具有端杂芳基氰基亚乙烯基的化合物及其在有机太阳能电池中的应用
CN108948042A (zh) * 2018-09-10 2018-12-07 中南大学 一种七元稠环类苯并三氮唑受体及其制备方法和应用
CN109134513A (zh) * 2018-09-10 2019-01-04 中南大学 一种稠环苯并噻二唑基非富勒烯受体材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUANG, ZUSHENG ET AL.: "Dithienopyrrolobenzothiadiazole-based organic dyes for efficient dye-sensitized solar cells", JOURNAL OF MATERIALS CHEMISTRY A, vol. 2, no. 37, 31 December 2014 (2014-12-31), pages 15365 - 15376, XP055692754 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023120359A1 (ja) * 2021-12-20 2023-06-29 住友化学株式会社 化合物及びこれを用いた光電変換素子
WO2024115332A1 (en) 2022-11-28 2024-06-06 Cambridge Display Technology Limited Compounds for organic electronic devices
CN115991715A (zh) * 2022-12-20 2023-04-21 广州追光科技有限公司 一种稠杂环化合物及其在电子器件中的应用
CN115991715B (zh) * 2022-12-20 2023-12-29 广州追光科技有限公司 一种稠杂环化合物及其在电子器件中的应用
CN116178364A (zh) * 2023-02-23 2023-05-30 东华大学 一种非稠环受体小分子材料及其合成方法及其应用

Also Published As

Publication number Publication date
CN109134513A (zh) 2019-01-04
CN109134513B (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
WO2020052194A1 (zh) 一种稠环苯并噻二唑基非富勒烯受体材料及其制备方法和应用
CN109666033B (zh) 基于九并稠杂环类共轭小分子及其制备方法与应用
CN111285885A (zh) 稠环苯并硒二唑非富勒烯受体材料及其制备方法和应用
CN108864137B (zh) 一种受体化合物、制备方法、用途以及含有其的光伏电池
CN113174032B (zh) 氟代稠环苯并噻二唑聚合物受体材料、制备方法
CN110922569B (zh) 一种基于酰亚胺吡嗪杂环的给体-受体型超低带隙共轭聚合物及其制法与应用
CN113173937A (zh) 基于手性烷烃链的非富勒烯受体材料及其制备方法
CN110408010A (zh) 一种含稠环内酯的d-a型共轭聚合物及其制备方法与应用
CN112778327A (zh) 一种有机非富勒烯电子受体材料及其制备方法和应用
CN104559286B (zh) 一种三苯胺-氟化硼络合二甲基吡咯甲川衍生物有机染料及其制备方法
CN110655637A (zh) 一类含吡啶杂环单元的规整型聚合物其及制备方法与应用
CN114456197A (zh) 一种准聚合物非富勒烯受体材料及其制备方法和应用
CN109627428B (zh) 一种d-a型共轭聚合物及其制备方法和应用及热电材料
CN101665492A (zh) 一类1,6,7,12-四苯基苝双酰亚胺衍生物及其制备方法
CN112979611A (zh) 一类碗烯基钙钛矿太阳能电池空穴传输层材料及其制备方法和应用
CN109912621B (zh) 一种不对称的萘核小分子受体材料及其制备方法和应用
CN110776619A (zh) 一类含基于喹啉的稠环单元的规整型聚合物及其制备方法与应用
CN112409387B (zh) 以还原橙1为中心核的a-d-a型有机小分子光伏材料
CN108192083B (zh) 含三氟甲基的共轭聚合物及其制备方法和应用
CN106632438B (zh) 一种基于乙炔基桥联的A-π-D-π-A型BODIPY衍生物及其制备方法
KR20150027344A (ko) 전도성 유기 반도체 화합물 및 이를 포함하는 유기태양전지
KR101374070B1 (ko) 트리페닐아민 유도체 및 이를 포함하는 유기 태양 전지
CN110746440A (zh) 一类以二茚并双噻吩为核的有机太阳能电池受体材料及其制备方法和应用
CN113105477B (zh) 一种硫原子稠环的电子受体材料及其制备方法和应用
CN109776568B (zh) 一种轴对称的六元桥环萘核小分子受体材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19860441

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/09/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19860441

Country of ref document: EP

Kind code of ref document: A1