Nothing Special   »   [go: up one dir, main page]

WO2019234870A1 - 熱交換換気装置 - Google Patents

熱交換換気装置 Download PDF

Info

Publication number
WO2019234870A1
WO2019234870A1 PCT/JP2018/021782 JP2018021782W WO2019234870A1 WO 2019234870 A1 WO2019234870 A1 WO 2019234870A1 JP 2018021782 W JP2018021782 W JP 2018021782W WO 2019234870 A1 WO2019234870 A1 WO 2019234870A1
Authority
WO
WIPO (PCT)
Prior art keywords
drain
housing
heat exchange
exhaust
air
Prior art date
Application number
PCT/JP2018/021782
Other languages
English (en)
French (fr)
Inventor
祐樹 宮崎
裕樹 青木
晃治 岩田
嘉範 藤井
幸男 渡邉
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/021782 priority Critical patent/WO2019234870A1/ja
Priority to JP2020523920A priority patent/JP6987241B2/ja
Priority to EP18921884.5A priority patent/EP3805652A4/en
Publication of WO2019234870A1 publication Critical patent/WO2019234870A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Definitions

  • the present invention relates to a heat exchange ventilator that performs ventilation while exchanging heat between an air supply flow and an exhaust flow.
  • the heat exchange ventilator in order to prevent leakage of drain water caused by condensation of moisture contained in the air taken into the housing of the heat exchange ventilator, the heat exchange ventilator is provided with a drain receiver that holds the drain water. Sometimes. The drain water is stored in the drain receiver and then discharged out of the casing.
  • Patent Document 1 discloses a heat exchange ventilator including a drain receiver provided below a heat exchanger in a housing.
  • the drain receiver is provided with a communication hole that communicates the inside of the housing with the outside of the housing, and drain water is discharged through the communication hole.
  • a heat exchange ventilator installed on a ceiling of a house or the like is a horizontal installation in which an air supply blower, a heat exchanger, and an exhaust blower are arranged in a horizontal direction in order to suppress the vertical dimension.
  • the heat exchange ventilator when the heat exchange ventilator is installed on a wall surface in a room, the supply air blower, the heat exchanger, and the exhaust blower may be vertically installed in the vertical direction.
  • the heat exchange ventilator can select the horizontal installation and the vertical installation, thereby increasing the degree of freedom of the installation mode.
  • Patent Document 1 The drain receiver and the communication hole disclosed in Patent Document 1 are capable of discharging drain water when the heat exchange ventilator is installed horizontally, while draining when the heat exchange ventilator is installed vertically. Water discharge is not possible. For this reason, in the technique of patent document 1, even if it is possible to install the heat exchange ventilator by selecting the horizontal installation and the vertical installation, the drain water cannot be discharged when the vertical installation is selected. There was a problem.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a heat exchange ventilator that can drain water regardless of whether horizontal installation or vertical installation is selected.
  • a heat exchange ventilator includes a supply air blower that generates a supply air flow, an exhaust blower that generates an exhaust flow, and a supply air flow and an exhaust flow.
  • a heat exchanger that performs heat exchange; and a housing that houses an air supply blower, an exhaust blower, and a heat exchanger.
  • the heat exchange ventilator according to the present invention is located at the lower part of the casing when the casing is in the first posture in which the air supply blower, the heat exchanger, and the exhaust blower are arranged in the horizontal direction, and is stored in the casing.
  • the heat exchange ventilator according to the present invention has an effect that drain water can be discharged when either horizontal installation or vertical installation is selected.
  • the figure which shows the structure of the heat exchange ventilation apparatus concerning Embodiment 1 of this invention 1st top view which shows the heat exchange ventilation apparatus shown in FIG. 2nd top view which shows the heat exchange ventilation apparatus shown in FIG.
  • the figure explaining the air path which the heat exchange ventilation apparatus shown in FIG. 1 has The figure explaining arrangement
  • positioning of the heat exchanger which the heat exchange ventilation apparatus shown in FIG. 1 has The perspective view which shows the 1st example of the heat exchanger which the heat exchange ventilation apparatus shown in FIG. 1 has.
  • FIG. 1 is a diagram showing a configuration of a heat exchange ventilator 100 according to the first embodiment of the present invention.
  • FIG. 2 is a first plan view showing the heat exchange ventilator 100 shown in FIG.
  • FIG. 3 is a second plan view showing the heat exchange ventilator 100 shown in FIG.
  • the heat exchange ventilator 100 is a device that can perform ventilation while exchanging heat between the exhaust flow and the supply airflow.
  • FIG. 1 shows a perspective view of the heat exchange ventilator 100 in a disassembled state.
  • the heat exchange ventilator 100 can be installed either horizontally or vertically. When the heat exchanging ventilator 100 is installed on the ceiling, it is installed horizontally. The heat exchange ventilator 100 is vertically installed when it is installed on a wall surface.
  • FIG. 2 the structure at the time of seeing the heat exchange ventilation apparatus 100 made into horizontal installation from the downward direction is shown.
  • FIG. 3 the structure at the time of seeing the heat exchange ventilation apparatus 100 made into horizontal installation from the front is shown.
  • the heat exchange ventilator 100 maintains a comfortable air environment in the room by ventilating the room by supplying air from outside the room and exhausting air from the room to the outside. Moreover, the heat exchange ventilator 100 reduces the temperature difference between the air taken into the room and the air in the room by heat exchange between the supply airflow and the exhaust stream, thereby reducing the air conditioning burden in the room.
  • the heat exchange ventilator 100 includes an air supply blower 2 that generates a supply airflow, an exhaust blower 3 that generates an exhaust flow, a heat exchanger 4 that performs heat exchange between the supply airflow and the exhaust flow, and an air supply blower 2.
  • a housing 1 in which an exhaust blower 3 and a heat exchanger 4 are housed is provided.
  • the air supply blower 2 takes outdoor air into the housing 1 and sends the air taken into the housing 1 into the room.
  • the exhaust blower 3 takes indoor air into the housing 1 and sends the air taken into the housing 1 to the outside.
  • the housing 1 is provided with a supply air passage through which a supply air flow passes and an exhaust air passage through which an exhaust flow passes.
  • the attitude of the casing 1 when the heat exchange ventilator 100 is installed in a horizontal installation is the first attitude
  • the attitude of the casing 1 when the heat exchange ventilator 100 is installed in a vertical installation is the second posture.
  • the housing 1 is a box having a rectangular parallelepiped shape, and includes six plate portions 1a, 1b, 1c, 1d, 1e, and 1f.
  • the plate portion 1a When the housing 1 is in the first posture, the plate portion 1a is a portion that becomes a top surface directed upward.
  • the plate portion 1b When the housing 1 is in the first posture, the plate portion 1b is a portion that becomes a bottom surface directed downward.
  • the plate portion 1c, which is the first plate portion is a portion where the air supply inlet 5 and the exhaust outlet 8 are provided.
  • the plate portion 1d which is the second plate portion, is provided with an air supply outlet 6 and an exhaust suction port 7.
  • the plate portion 1a and the plate portion 1b are portions between the plate portion 1c and the plate portion 1d, and the air path between the plate portion 1c and the heat exchanger 4, the plate portion 1d, and the heat exchanger 4 And the air path between.
  • board part 1c, 1d is a part used as the side surface turned sideways.
  • the plate portion 1c forms one end in the longitudinal direction of the rectangular parallelepiped shape that the housing 1 exhibits.
  • the plate portion 1d forms the other end in the longitudinal direction of the rectangular parallelepiped shape that the housing 1 exhibits.
  • the plate portions 1e and 1f are portions between the plate portion 1c and the plate portion 1d.
  • the plate portion 1e which is the third plate portion, is a front portion that is directed forward.
  • the plate portion 1f is a portion serving as a back surface directed rearward.
  • the control part 9 which controls the whole heat exchange ventilation apparatus 100 is provided in the board part 1e.
  • the control device 9 controls the ventilation air volume of the heat exchange ventilator 100 by controlling the driving of the air supply blower 2 and the driving of the exhaust blower 3.
  • An opening 10 is formed in the plate portion 1b.
  • the opening 10 is formed below the heat exchanger 4 when the housing 1 is in the first posture.
  • the ceiling is provided with an inspection port 11 for work to the opening 10 and the control device 9 from below the ceiling. 1 and 2, the range of the inspection port 11 is indicated by a broken line.
  • the components housed in the housing 1 are detachable through the opening 10.
  • the plate portion 1c When the housing 1 is in the second posture, the plate portion 1c is the bottom surface, the plate portion 1d is the top surface, the plate portion 1b is the front surface, the plate portion 1a is the back surface, and the plate portions 1e and 1f are the side surfaces.
  • the heat exchange ventilator 100 As a case where the heat exchange ventilator 100 is vertically installed, it may be installed by being embedded in a wall of a living room, or it may be installed by being hung on a wall surface in a room such as a machine room or a storage room other than a living room of a building. obtain.
  • the heat exchange ventilator 100 is hung with the opening 10 facing the front, so that the work on the opening 10 and the control device 9 can be performed from the front without going through the inspection port 11.
  • the case 1 is in the second posture, so that the work without the inspection port 11 is possible, and the workability during maintenance may be improved.
  • the heat exchanging ventilator 100 is installed in a wall, it may be possible to work on the opening 10 and the control device 9 through the inspection port 11 formed on the wall surface.
  • the drain pan 12 that is the first drain receiver is disposed below the heat exchanger 4 when the housing 1 is in the first posture.
  • the drain pan 12 accumulates drain water generated in the heat exchanger 4 when the housing 1 is in the first posture.
  • the drain pan 12 closes the opening 10 by being attached to the plate portion 1b.
  • the air supply filter 13 is disposed inside the housing 1 on the plate portion 1c side of the heat exchanger 4.
  • the air supply filter 13 collects dust contained in the air flowing from the outside through the air supply inlet 5 into the air supply air passage.
  • the exhaust filter 14 is disposed on the plate portion 1 d side of the heat exchanger 4 inside the housing 1.
  • the exhaust filter 14 collects dust contained in the air flowing into the exhaust air passage from the room through the exhaust air inlet 7.
  • the heat exchange ventilator 100 collects dust with the air supply filter 13 and the exhaust filter 14, thereby preventing the heat exchanger 4 from being clogged due to the adhesion of dust.
  • FIG. 4 is a diagram for explaining the air path of the heat exchange ventilator 100 shown in FIG. FIG. 4 shows the internal configuration of the housing 1 as viewed from below when the housing 1 is in the first posture.
  • the heat exchange ventilator 100 has a damper 20 that switches between heat exchange ventilation and normal ventilation.
  • the heat exchange ventilation is ventilation with heat exchange between the supply air flow 17 and the exhaust flow 18.
  • the heat exchange ventilator 100 sends a supply air flow 17 that has undergone heat exchange with the exhaust flow 18 by the heat exchanger 4 to the room.
  • the heat exchange ventilator 100 reduces the air conditioning burden by bringing the outdoor air temperature closer to the indoor air temperature by heat exchange ventilation when the indoor temperature is more comfortable than the outdoor temperature.
  • Normal ventilation is ventilation that does not involve heat exchange between the supply air flow 17 and the exhaust flow 18.
  • the heat exchange ventilator 100 sends a supply air flow 17 to the room without heat exchange with the exhaust flow 18 by the heat exchanger 4.
  • the heat exchanging ventilator 100 sends the air having a comfortable temperature from the outside to the room by the normal ventilation, thereby reducing the air-conditioning load while making the room comfortable. .
  • the power consumption of the heat exchange ventilator 100 can be reduced.
  • an exhaust flow 18 is an exhaust flow in the case of heat exchange ventilation.
  • the bypass air flow 19 is an exhaust flow in the case of normal ventilation.
  • the housing 1 is provided with a supply air passage 15 through which the supply air flow 17 passes and an exhaust air passage 16 through which the exhaust flow 18 and the bypass air flow 19 pass.
  • the supply air passage 15 includes an upstream air passage 15 a between the supply air inlet 5 and the inlet of the supply air flow 17 in the heat exchanger 4, and an outlet and supply air outlet of the supply air flow 17 in the heat exchanger 4. 6 and the downstream side air passage 15b between the two.
  • the air supply air 17 sucked into the air supply inlet 5 from the outside passes through the upstream air passage 15a, passes through the air supply filter 13, and then flows into the heat exchanger 4.
  • the supply airflow 17 flowing out from the heat exchanger 4 passes through the downstream air passage 15b and is blown out from the supply air outlet 6 into the room.
  • the exhaust air passage 16 includes an upstream air passage 16 a between the exhaust suction port 7 and the inlet of the exhaust flow 18 in the heat exchanger 4, an outlet of the exhaust flow 18 in the heat exchanger 4, and an exhaust outlet 8. And a downstream air passage 16b therebetween.
  • the exhaust stream 18 sucked into the exhaust suction port 7 from the room passes through the upstream air passage 16a, passes through the exhaust filter 14, and then flows into the heat exchanger 4.
  • the exhaust stream 18 flowing out from the heat exchanger 4 passes through the downstream air passage 16b and is blown out from the exhaust outlet 8 to the outside of the room.
  • the bypass air passage 21 is an air passage provided outside the heat exchanger 4.
  • the upstream side air passage 16 a is provided with a heat exchange side opening 22 through which the exhaust flow 18 toward the heat exchanger 4 passes and a bypass side opening 23 through which the bypass airflow 19 toward the bypass air passage 21 passes.
  • the damper 20 is rotatably supported between the heat exchange side opening 22 and the bypass side opening 23.
  • the damper 20 serving as a switching unit switches between the flow of the exhaust flow 18 from the exhaust suction port 7 to the heat exchanger 4 and the flow of the bypass air flow 19 from the exhaust suction port 7 to the bypass air passage 21.
  • the control device 9 controls switching between heat exchange ventilation and normal ventilation by controlling the operation of the damper 20.
  • the damper 20 closes the bypass side opening 23.
  • the exhaust stream 18 passes from the upstream side air passage 16 a through the heat exchange side opening 22 and proceeds to the heat exchanger 4.
  • the damper 20 closes the heat exchange side opening 22.
  • the bypass air flow 19 passes from the upstream air passage 16 a through the bypass opening 23 and proceeds to the bypass air passage 21.
  • the exhaust flow 18 that has passed through the heat exchanger 4 and the bypass airflow 19 that has passed through the bypass air passage 21 pass through the downstream air passage 16b and proceed to the exhaust outlet 8.
  • Each air passage formed in the housing 1 is provided with a heat insulating part 27 shown in FIG.
  • FIG. 5 is a diagram for explaining the arrangement of the heat exchanger 4 included in the heat exchanging ventilator 100 shown in FIG.
  • FIG. 5 shows a perspective view of the heat exchange ventilator 100 with the drain pan 12, the air supply filter 13, and the exhaust filter 14 removed.
  • the heat exchanger 4 is disposed between the plate portion 1 a and the drain pan 12.
  • the heat exchanger 4 is located in the center in the longitudinal direction of the housing 1 in the housing 1.
  • the drain pan 12 is removed from the opening 10, and the air supply filter 13 and the exhaust filter 14 are removed from the inside of the housing 1 through the opening 10. Further, the heat exchanger 4, the air supply blower 2, and the exhaust blower 3 are removed from the inside of the housing 1 through the opening 10. Immediately below the heat exchanger 4 when the housing 1 is in the first posture, a plurality of pressing plates 24 for preventing the heat exchanger 4 from falling during maintenance are provided. Since the drain pan 12 can be removed from the opening 10, the heat exchanger 4, the supply blower 2, and the exhaust blower 3 can be taken out from the housing 1 through the opening 10.
  • FIG. 6 is a perspective view showing a first example of the heat exchanger 4 included in the heat exchange ventilator 100 shown in FIG.
  • the heat exchanger 4 according to the first example has a quadrangular prism shape.
  • the heat exchanger 4 according to the first example is an orthogonal heat exchanger in which the direction of the supply air flow 17 and the direction of the exhaust flow 18 are perpendicular to each other.
  • the heat exchanger 4 is provided between the supply air passage 15 and the exhaust air passage 16.
  • the heat exchanger 4 performs total heat exchange between the supply air flow 17 and the exhaust flow 18.
  • the heat exchanger 4 includes a plurality of partition members 30 arranged with a space between each other, and a spacing member 31 that holds the spacing between the plurality of partition members 30.
  • the heat exchanger 4 is a laminated body configured by laminating a partition member 30 and a spacing member 31.
  • the partition member 30 is a flat sheet material.
  • the spacing member 31 is a sheet material with corrugated irregularities. The partition member 30 and the spacing member 31 are joined to each other.
  • the heat exchanger 4 is arranged with the stacking direction, which is the direction in which the partition member 30 and the spacing member 31 are stacked, parallel to the plate portion 1e and the plate portion 1f.
  • the heat exchanger 4 may be disposed with the stacking direction parallel to the plate portion 1c and the plate portion 1d.
  • the spacing members 31 whose directions are different so that the direction of the folds of the corrugations are perpendicular to each other are alternately laminated via the partitioning material 30.
  • the heat exchanger 4 is provided with primary passages 32 through which the exhaust flow 18 passes and secondary passages 33 through which the supply airflow 17 passes alternately in the stacking direction.
  • the partition member 30 sensible heat exchange and latent heat exchange between the exhaust air flow 18 passing through the primary passage 32 and the air supply air 17 passing through the secondary passage 33 without mixing the air supply air 17 and the exhaust air flow 18. Is done.
  • the heat exchanger 4 may perform only one of sensible heat exchange and latent heat exchange.
  • Paper is used for the partition member 30 and the spacing member 31.
  • the heat exchanger 4 can suppress the manufacturing cost by using paper for the partition member 30 and the spacing member 31. Since the primary passage 32 and the secondary passage 33 are made of paper, the dew condensation water generated by heat exchange can be held by the primary passage 32 and the secondary passage 33. In addition, blockage of the air passage due to the formation of condensed water that has entered the air passage can be reduced.
  • FIG. 7 is a perspective view showing a second example of the heat exchanger 4 included in the heat exchange ventilator 100 shown in FIG.
  • the heat exchanger 4 according to the second example has a hexagonal prism shape.
  • the heat exchanger 4 according to the second example is a counter flow type heat exchanger in which the direction of the supply air flow 17 and the direction of the exhaust flow 18 are different by 180 degrees. Either the heat exchanger 4 according to the first example or the heat exchanger 4 according to the second example may be applied to the heat exchange ventilator 100.
  • the shape of the heat exchanger 4 may be a polygonal column shape, and may be a shape other than a hexagonal column shape and a quadrangular column shape.
  • FIG. 1 shows the heat exchanger 4 according to the second example.
  • the heat exchange ventilator 100 can perform heat conversion with high heat exchange efficiency.
  • FIG. 8 is a cross-sectional view of the heat exchange ventilator 100 taken along the line VIII-VIII shown in FIG.
  • FIG. 8 shows the heat exchange ventilator 100 installed in a horizontal installation.
  • the plate portion 1b shown in FIG. 2 is directed downward.
  • the drain pan 35 that is the second drain receiver, the drain pan 36 that is the third drain receiver, and the drain pan 37 that is the fourth drain receiver are provided on the surface inside the housing 1 of the plate portion 1b.
  • the drain pan 35 is disposed on the lower side of the upstream air passage 15a of the supply air passage 15 and the downstream air passage 16b of the exhaust air passage 16 when the housing 1 is in the first posture.
  • the drain pan 35 holds drain water in the upstream air passage 15a and the downstream air passage 16b.
  • the drain pan 36 is disposed on the lower side of the upstream air passage 16a of the exhaust air passage 16 and the downstream air passage 15b of the supply air passage 15 when the casing 1 is in the first posture.
  • the drain pan 36 holds drain water in the upstream air passage 16a and the downstream air passage 15b.
  • the drain pan 37 is disposed on the lower side of the bypass air passage 21 when the casing 1 is in the first posture.
  • the drain pan 37 holds drain water in the bypass air passage 21.
  • the heat exchange ventilator 100 can hold drain water by the four drain pans 12, 35, 36, and 37.
  • the four drain pans 12, 35, 36, and 37 are connected to each other so that a path for discharging drain water to the outside of the housing 1 can be configured.
  • the first drain port 25 is located at the lower part of the housing 1 when the housing 1 is in the first posture.
  • the first drain port 25 allows the drain water held in the housing 1 to flow out of the housing 1.
  • the first drain port 25 is erected from the end 12 a of the drain pan 12 on the air supply filter 13 side in a direction perpendicular to the longitudinal direction of the housing 1.
  • the first drain port 25 stands upright with respect to the plate portion 1e. If the first drain port 25 is oriented parallel to the longitudinal direction of the housing 1, the first drain port 25 may interfere with the attachment / detachment of the air supply filter 13 or the exhaust filter 14. Since the first drain port 25 is perpendicular to the longitudinal direction of the housing 1, the first drain port 25 can be arranged in a manner that does not hinder the attachment / detachment of the air supply filter 13 or the exhaust filter 14.
  • the height position of the first drain port 25 is equivalent to the height position of the plate portion 1b.
  • a drainage path portion 38 a that constitutes a drainage path is provided at the boundary between the drainpan 36 and the drainpan 37.
  • the drainage path portion 38 a is a portion that connects the drain pan 36 and the drain pan 37 and is formed so that the drain pan 36 is positioned higher than the drain pan 37 when the housing 1 is in the first posture.
  • the drain water stored in the drain pan 36 flows to the drain pan 37 through the drainage path portion 38a.
  • a drainage path portion 38c constituting a drainage path is provided at the boundary between the drain pan 37 and the end 12a of the drain pan 12.
  • the drainage path portion 38c connects the drain pan 37 and the end portion 12a, and is a portion formed so that the drain pan 37 is positioned higher than the end portion 12a when the housing 1 is in the first posture. .
  • the drain water stored in the drain pan 37 flows to the end portion 12a through the drainage passage portion 38c.
  • the drain water that has flowed to the end 12 a is discharged from the first drain port 25 to the outside of the housing 1.
  • a drainage path portion 38b that constitutes a drainage path is provided at the boundary between the drain pan 35 and the end 12a of the drain pan 12.
  • the drainage path portion 38b is provided between the air supply filter 13 and the plate portion 1e.
  • the drainage channel portion 38b connects the drain pan 35 and the end portion 12a, and is a portion formed so that the drain pan 35 is positioned higher than the end portion 12a when the housing 1 is in the first posture. .
  • the drain water stored in the drain pan 35 flows to the end portion 12a through the drainage passage portion 38b.
  • the drain water that has flowed to the end 12 a is discharged from the first drain port 25 to the outside of the housing 1.
  • FIG. 9 is a view showing a state in which the heat exchange ventilator 100 shown in FIG. 8 is arranged in a vertical installation.
  • FIG. 9 shows the same cross section as that shown in FIG.
  • the second drain port 26 is located at the lower part of the housing 1 when the housing 1 is in the second posture.
  • the second drain 26 allows the drain water held in the housing 1 to flow out of the housing 1.
  • the 2nd drain 26 is provided next to the drain pan 35 among the board parts 1c.
  • the 2nd drain 26 is stood perpendicularly to the board part 1c.
  • the direction in which the first drain port 25 stands from the housing 1 and the direction in which the second drain port 26 stands from the housing 1 are perpendicular to each other.
  • the drain water generated in the housing 1 moves downward.
  • the drain water flows downward through the wall portions or the drain pans 12, 35, 36, 37 constituting the respective air passages, or falls downward after leaving the wall portions and the drain pans 12, 35, 36, 37.
  • the drain water that has reached the plate portion 1 c is discharged from the second drain port 26 to the outside of the housing 1.
  • a configuration for preventing leakage of drain water in the plate portion 1c may be provided, or a drain pan may be provided.
  • a configuration for blocking drain water may be provided at the inner ends of the housing 1 of the air supply inlet 5 and the exhaust outlet 8. Thereby, the drain water which reached to the board part 1c can be discharged
  • the drain pan 36 When the casing 1 is in the first posture, when the indoor humid air enters the upstream air passage 16a from the exhaust air inlet 7, the water condensed in the upstream air passage 16a is held in the drain pan 36.
  • the drain water stored in the drain pan 36 flows to the drain pan 37 through the drainage path portion 38a.
  • the drain water that has flowed to the drain pan 37 flows to the end portion 12a through the drainage path portion 38c.
  • the drain water that has flowed to the end 12 a is discharged from the first drain port 25 to the outside of the housing 1.
  • the water condensed after passing through the heat exchanger 4 in the downstream side air passage 16 b is held by the drain pan 35.
  • the drain water stored in the drain pan 35 passes through the drainage path portion 38 b and is discharged from the first drainage port 25 to the outside of the housing 1.
  • the water condensed in the upstream air passage 15a is retained in the drain pan 35 when humid outdoor air enters the upstream air passage 15a from the supply air intake port 5. Is done.
  • the drain pan 35 is formed with a partition 39 that partitions the upstream side air passage 15a and the downstream side air passage 16b.
  • the water condensed in the downstream side air passage 16b proceeds to the drainage passage portion 38b without being mixed with the water condensed in the upstream side air passage 15a because the partition portion 39 is provided.
  • the heat exchange ventilator 100 may hold the water condensed in the upstream air passage 15a in the drain pan 35 and evaporate the water by a ventilation operation.
  • Drain water generated by condensation inside the heat exchanger 4 is held in the drain pan 12.
  • the drain water stored in the drain pan 12 passes through the end portion 12a and is discharged out of the housing 1 from the first drain port 25.
  • the heat exchange ventilator 100 advances the drain water generated in each air passage and the heat exchanger 4 to the first drain port 25 and discharges the drain water to the outside of the housing 1.
  • a water stop component that stops the drain water from flowing out may be attached to the second drain port 26. Thereby, leakage of drain water from the 2nd drain 26 can be prevented.
  • the heat exchange ventilator 100 is provided with drain pans 35, 36, and 37 for each air path in addition to the drain pan 12 provided below the heat exchanger 4, so that humid air is supplied to the housing 1. Drain water generated by being taken in can be held in each air passage.
  • Drain water generated by condensation inside the heat exchanger 4 proceeds to the upstream side air passage 15a and the downstream side air passage 16b through the inside of the heat exchanger 4.
  • the drain water flows downward through the wall portions of the upstream side air passage 15a and the downstream side air passage 16b or the drain pan 35, or falls downward.
  • the drain water that has reached the plate portion 1 c is discharged from the second drain port 26 to the outside of the housing 1.
  • the heat exchange ventilator 100 advances the drain water generated in each air passage and the heat exchanger 4 to the second drain port 26 and discharges the drain water to the outside of the housing 1.
  • a water stop component may be attached to the first drain port 25. Thereby, leakage of drain water from the first drain port 25 can be prevented.
  • FIG. 10 is a diagram showing a configuration of a drainage path portion included in the heat exchange ventilator 100 shown in FIG.
  • FIG. 10 shows a cross section of the drainage path portion 38a among the drainage path portions 38a, 38b, and 38c shown in FIG.
  • the drain pan 36 and the drain pan 37 are two drain pans adjacent to each other.
  • the drain pan 36 which is one of the two drain pans, has a bottom portion 41 where drain water is stored and a protruding portion 42 that stands from the bottom portion 41.
  • the protrusion 42 is formed at the end of the drain pan 36 on the drain pan 37 side, and constitutes a boundary with the drain pan 37.
  • the drain pan 37 which is the other of the two drain pans, has a bottom portion 43 in which drain water is stored and a protruding portion 44 that stands vertically from the bottom portion 43.
  • the protrusion 44 is formed at the end of the drain pan 37 on the drain pan 36 side, and constitutes a boundary with the drain pan 36.
  • the protruding portion 42 of the drain pan 36 is bent by winding the end portion of the drain pan 37 on which the protruding portion 44 is formed.
  • a water blocking material 45 is provided between the protruding portion 42 and the protruding portion 44.
  • the drainage path portion 38a can prevent the drain water from leaking because the protruding portion 44 and the water blocking material 45 are fitted inside the protruding portion 42 being bent.
  • the drain pan 36 can store drain water from the bottom 41 to the end 42a on the opposite side to the bottom 41 of the protrusion 42.
  • the drain water that exceeds the end 42 a in the drain pan 36 flows from the end 42 a to the drain pan 37.
  • the drainage path part 38b and the drainage path part 38c are configured in the same manner as the drainage path part 38a.
  • the drain pan 35 has the same configuration as the drain pan 36 shown in FIG.
  • the drain pan 12 has the same configuration as the drain pan 37 shown in FIG.
  • the drain pan 37 has the same configuration as the drain pan 36 shown in FIG.
  • the drain pan 12 has the same configuration as the drain pan 37 shown in FIG.
  • the size of the drain pan 12 is suppressed to a size that can pass through the opening 10 and the inspection port 11 shown in FIG. For this reason, when the casing 1 is in the first posture, the drain pan 12 is enlarged in order to receive the water condensed in each air passage by the one drain pan 12 below the heat exchanger 4. Have difficulty.
  • the heat exchange ventilator 100 can hold the drain water in the housing 1 by the drain pan 12 and the drain pans 35, 36, and 37 for each air passage. Thereby, even when the heat exchange ventilator 100 is installed in a humid environment, the drain water can be retained in the housing 1.
  • the heat exchange ventilator 100 can promote drainage of drain water by configuring the drainage path together with the drain pan 12 by the drain pans 35, 36, and 37 for each air path.
  • the heat exchanging ventilator 100 includes the first drain port 25 located at the lower part of the housing 1 when the housing 1 is in the first posture, and the housing 1 in the second posture. And a second drain port 26 located at the lower part of the housing 1.
  • the heat exchange ventilator 100 can discharge the drain water stored in the housing 1 to the outside of the housing 1 regardless of whether horizontal installation or vertical installation is selected.
  • the heat exchange ventilator 100 can increase the degree of freedom of the installation mode by selecting horizontal installation or vertical installation. Thereby, the heat exchange ventilation apparatus 100 has an effect that drain water can be discharged when either horizontal installation or vertical installation is selected.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

熱交換換気装置(100)は、給気流を発生させる給気送風機と、排気流を発生させる排気送風機と、給気流と排気流との熱交換を行う熱交換器と、給気送風機と排気送風機と熱交換器とが収容された筐体(1)と、筐体(1)が、給気送風機、熱交換器および排気送風機が水平方向へ並んだ第1の姿勢であるときにおける筐体(1)の下部に位置し、筐体(1)に溜められたドレン水を筐体の外へ流出させる第1の排水口(25)と、筐体(1)が、給気送風機、熱交換器および排気送風機が鉛直方向へ並んだ第2の姿勢であるときにおける筐体(1)の下部に位置し、筐体(1)に保持されたドレン水を筐体の外へ流出させる第2の排水口(26)と、を備える。

Description

熱交換換気装置
 本発明は、給気流と排気流との熱交換を行いながら換気を行う熱交換換気装置に関する。
 従来、熱交換換気装置の筐体内へ取り込まれた空気に含まれる水分が凝縮することによって生じるドレン水の漏れ出しを防ぐために、熱交換換気装置には、ドレン水を保持するドレン受けが設けられることがある。ドレン水は、ドレン受けに溜められてから、筐体の外へ排出される。
 特許文献1には、筐体内において熱交換器の下方に設けられたドレン受けを備える熱交換換気装置が開示されている。ドレン受けには、筐体の中と筐体の外とを連通する連通孔が設けられており、連通孔を通してドレン水が排出される。
特許第6150742号公報
 住宅などの天井に設置される熱交換換気装置は、一般に、鉛直方向の寸法を抑えるために、給気送風機と熱交換器と排気送風機が水平方向へ並んだ水平設置とされる。一方、熱交換換気装置は、室内の壁面に設置される場合には、給気送風機と熱交換器と排気送風機とが鉛直方向へ並んだ垂直設置とされることがある。熱交換換気装置は、水平設置と垂直設置とが選択可能となることで、設置態様の自由度を高めることが可能となる。
 特許文献1に開示されるドレン受けと連通孔とは、熱交換換気装置が水平設置とされた場合におけるドレン水の排出が可能である一方、熱交換換気装置が垂直設置とされた場合におけるドレン水の排出は可能とされていない。このため、特許文献1の技術では、水平設置と垂直設置とを選択して熱交換換気装置を設置可能とされても、垂直設置が選択された場合にはドレン水を排出することができないという問題があった。
 本発明は、上記に鑑みてなされたものであって、水平設置と垂直設置とのどちらが選択された場合もドレン水の排出を可能とする熱交換換気装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる熱交換換気装置は、給気流を発生させる給気送風機と、排気流を発生させる排気送風機と、給気流と排気流との熱交換を行う熱交換器と、給気送風機と排気送風機と熱交換器とが収容された筐体と、を備える。本発明にかかる熱交換換気装置は、筐体が、給気送風機、熱交換器および排気送風機が水平方向へ並んだ第1の姿勢であるときにおける筐体の下部に位置し、筐体に溜められたドレン水を筐体の外へ流出させる第1の排水口と、筐体が、給気送風機、熱交換器および排気送風機が鉛直方向へ並んだ第2の姿勢であるときにおける筐体の下部に位置し、筐体に保持されたドレン水を筐体の外へ流出させる第2の排水口と、を備える。
 本発明にかかる熱交換換気装置は、水平設置と垂直設置とのどちらが選択された場合もドレン水を排出することができるという効果を奏する。
本発明の実施の形態1にかかる熱交換換気装置の構成を示す図 図1に示す熱交換換気装置を示す第1の平面図 図1に示す熱交換換気装置を示す第2の平面図 図1に示す熱交換換気装置が有する風路について説明する図 図1に示す熱交換換気装置が有する熱交換器の配置について説明する図 図1に示す熱交換換気装置が有する熱交換器の第1例を示す斜視図 図1に示す熱交換換気装置が有する熱交換器の第2例を示す斜視図 図3に示すVIII-VIII線における熱交換換気装置の断面図 図8に示す熱交換換気装置が垂直設置で配置された状態を示す図 図8に示す熱交換換気装置が有する排水経路部の構成を示す図
 以下に、本発明の実施の形態にかかる熱交換換気装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1にかかる熱交換換気装置100の構成を示す図である。図2は、図1に示す熱交換換気装置100を示す第1の平面図である。図3は、図1に示す熱交換換気装置100を示す第2の平面図である。熱交換換気装置100は、排気流と給気流との熱交換を行いながら換気を行うことが可能な装置である。図1には、分解された状態における熱交換換気装置100の斜視図を示している。
 熱交換換気装置100は、水平設置と垂直設置とのどちらも可能とされている。熱交換換気装置100は、天井へ設置される場合、水平設置とされる。熱交換換気装置100は、壁面に掛けられて設置される壁掛けとされる場合、垂直設置とされる。図2には、水平設置とされた熱交換換気装置100を下方から見た場合の構成を示している。図3には、水平設置とされた熱交換換気装置100を前方から見た場合の構成を示している。
 熱交換換気装置100は、室外から室内への給気と室内から室外への排気とにより室内を換気することで、室内の快適な空気環境を維持する。また、熱交換換気装置100は、給気流と排気流との熱交換により、室内へ取り込まれる空気と室内の空気との温度差を小さくして、室内の空調負担を低減させる。
 熱交換換気装置100は、給気流を発生させる給気送風機2と、排気流を発生させる排気送風機3と、給気流と排気流との熱交換を行う熱交換器4と、給気送風機2と排気送風機3と熱交換器4とが収容された筐体1とを備える。給気送風機2は、室外の空気を筐体1内へ取り込み、筐体1内へ取り込まれた空気を室内へ送る。排気送風機3は、室内の空気を筐体1内へ取り込み、筐体1内へ取り込まれた空気を室外へ送る。筐体1には、給気流が通過する給気風路と排気流が通過する排気風路とが設けられている。
 熱交換換気装置100が水平設置で設置される場合、給気送風機2と熱交換器4と排気送風機3とは水平方向へ並ぶ。熱交換換気装置100が垂直設置で設置される場合、給気送風機2と熱交換器4と排気送風機3とは鉛直方向へ並ぶ。以下の説明では、熱交換換気装置100が水平設置で設置されるときの筐体1の姿勢を第1の姿勢、熱交換換気装置100が垂直設置で設置されるときの筐体1の姿勢を第2の姿勢、と称する。
 筐体1は、直方体形状を呈する箱体であって、6つの板部1a,1b,1c,1d,1e,1fから構成されている。筐体1が第1の姿勢であるとき、板部1aは、上方へ向けられる天面となる部分である。筐体1が第1の姿勢であるとき、板部1bは、下方へ向けられる底面となる部分である。第1の板部である板部1cは、給気吸込口5と排気吹出口8とが設けられた部分である。第2の板部である板部1dは、給気吹出口6と排気吸込口7とが設けられている。板部1aと板部1bとは、板部1cと板部1dとの間の部分であって、板部1cと熱交換器4との間の風路と板部1dと熱交換器4との間の風路とを構成する。筐体1が第1の姿勢であるとき、板部1c,1dは、横へ向けられる側面となる部分である。板部1cは、筐体1が呈する直方体形状における長手方向のうちの一方の端をなす。板部1dは、筐体1が呈する直方体形状における長手方向のうちの他方の端をなす。
 板部1e,1fは、板部1cと板部1dとの間の部分である。筐体1が第1の姿勢であるときに、第3の板部である板部1eは、前方へ向けられる正面となる部分である。筐体1が第1の姿勢であるときに、板部1fは、後方へ向けられる背面となる部分である。
 板部1eには、熱交換換気装置100の全体を制御する制御装置9が設けられている。制御装置9は、給気送風機2の駆動と排気送風機3の駆動との制御により、熱交換換気装置100の換気風量を制御する。
 板部1bには、開口10が形成されている。開口10は、熱交換器4に対して、筐体1が第1の姿勢であるときの下方に形成されている。熱交換換気装置100が天井裏に水平設置される場合には、天井には、天井よりも下方からの開口10と制御装置9とへの作業のための点検口11が設けられる。図1および図2には、点検口11の範囲を破線によって示している。筐体1内に収容される構成要素は、開口10を通して着脱可能とされている。
 なお、筐体1が第2の姿勢とされた場合には、板部1cは底面、板部1dは天面、板部1bは正面、板部1aは背面、板部1e,1fは側面となる。熱交換換気装置100が垂直設置とされるケースとして、居室の壁に埋め込まれて設置される場合、あるいは建物の居室以外の機械室あるいは納戸といった室内の壁面に掛けられて設置される場合があり得る。熱交換換気装置100は、開口10を正面に向けた状態で掛けられることで、開口10と制御装置9とへの作業は、正面から点検口11を介さずに行うことができる。熱交換換気装置100は、筐体1が第2の姿勢とされることで、点検口11を介さない作業が可能となりメンテナンス時の作業性を向上できる場合がある。なお、熱交換換気装置100は、壁に埋め込まれて設置される場合には、壁面に形成された点検口11を介して開口10と制御装置9とへの作業が可能とされても良い。
 第1のドレン受けであるドレンパン12は、熱交換器4に対して、筐体1が第1の姿勢であるときの下方に配置されている。ドレンパン12は、筐体1が第1の姿勢であるときに熱交換器4で生じたドレン水を溜める。ドレンパン12は、板部1bに取り付けられることによって開口10を塞ぐ。
 給気フィルター13は、筐体1の内部において熱交換器4の板部1c側に配置される。給気フィルター13は、室外から給気吸込口5を通って給気風路へ流入する空気に含まれる塵埃を捕集する。排気フィルター14は、筐体1の内部において熱交換器4の板部1d側に配置される。排気フィルター14は、室内から排気吸込口7を通って排気風路へ流入する空気に含まれる塵埃を捕集する。熱交換換気装置100は、給気フィルター13および排気フィルター14にて塵埃を捕集することによって、塵埃の付着による熱交換器4の目詰まりを防ぐ。
 図4は、図1に示す熱交換換気装置100が有する風路について説明する図である。図4には、筐体1の内部の構成を、筐体1が第1の姿勢とされた場合における下方から見た状態を示している。
 熱交換換気装置100は、熱交換換気と普通換気とを切り換えるダンパー20を有する。熱交換換気は、給気流17と排気流18との間の熱交換を伴う換気である。熱交換換気装置100は、熱交換換気では、熱交換器4による排気流18との熱交換を経た給気流17を室内へ送る。熱交換換気装置100は、室外より室内のほうが快適な温度である場合に、熱交換換気により室外の空気の温度を室内の空気の温度に近づけることで、空調負担を低減させる。
 普通換気は、給気流17と排気流18との間の熱交換を伴わない換気である。熱交換換気装置100は、普通換気では、熱交換器4による排気流18との熱交換を経ない給気流17を室内へ送る。熱交換換気装置100は、室内より室外のほうが快適な温度である場合に、普通換気により快適な温度の空気を室外から室内へ送ることで、室内を快適な温度にするとともに空調負荷を低減させる。また、普通換気では、熱交換器4への排気流18の通過による圧力損失が抑えられることから、熱交換換気装置100の消費電力を低減することができる。なお、図4において、排気流18は、熱交換換気の場合における排気流とする。バイパス気流19は、普通換気の場合における排気流とする。筐体1には、給気流17が通過する給気風路15と、排気流18とバイパス気流19とが通過する排気風路16とが設けられている。
 給気風路15は、給気吸込口5と熱交換器4における給気流17の流入口との間の上流側風路15aと、熱交換器4における給気流17の流出口と給気吹出口6との間の下流側風路15bとを含む。室外から給気吸込口5へ吸い込まれた給気流17は、上流側風路15aを通り、給気フィルター13を通過してから熱交換器4へ流入する。熱交換器4から流出した給気流17は、下流側風路15bを通り、給気吹出口6から室内へ向けて吹き出される。
 排気風路16は、排気吸込口7と熱交換器4における排気流18の流入口との間の上流側風路16aと、熱交換器4における排気流18の流出口と排気吹出口8との間の下流側風路16bとを含む。室内から排気吸込口7へ吸い込まれた排気流18は、上流側風路16aを通り、排気フィルター14を通過してから熱交換器4へ流入する。熱交換器4から流出した排気流18は、下流側風路16bを通り、排気吹出口8から室外へ向けて吹き出される。
 バイパス風路21は、熱交換器4の外に設けられた風路である。上流側風路16aには、熱交換器4へ向かう排気流18が通過する熱交換側開口部22と、バイパス風路21へ向かうバイパス気流19が通過するバイパス側開口部23とが設けられている。ダンパー20は、熱交換側開口部22とバイパス側開口部23との間にて回動可能に支持されている。切り換え部であるダンパー20は、排気吸込口7から熱交換器4への排気流18の流動と排気吸込口7からバイパス風路21へのバイパス気流19の流動とを切り換える。制御装置9は、ダンパー20の動作の制御により、熱交換換気と普通換気との切り換えを制御する。
 熱交換換気において、ダンパー20は、バイパス側開口部23を塞ぐ。排気流18は、上流側風路16aから熱交換側開口部22を通過して、熱交換器4へ進行する。一方、普通換気において、ダンパー20は、熱交換側開口部22を塞ぐ。バイパス気流19は、上流側風路16aからバイパス側開口部23を通過して、バイパス風路21へ進行する。熱交換器4を通過した排気流18とバイパス風路21を通過したバイパス気流19とは、下流側風路16bを通過して排気吹出口8へ進行する。筐体1内に形成された各風路には、結露を生じにくくさせるために、図1に示す断熱部品27が設けられている。
 図5は、図1に示す熱交換換気装置100が有する熱交換器4の配置について説明する図である。図5には、熱交換換気装置100からドレンパン12と給気フィルター13と排気フィルター14とが外された状態の斜視図を示している。熱交換器4は、板部1aとドレンパン12との間に配置される。熱交換器4は、筐体1内において、筐体1の長手方向における中央に位置する。
 熱交換換気装置100のメンテナンスの際に、ドレンパン12が開口10から外されて、給気フィルター13と排気フィルター14とが筐体1内から開口10を通して外される。さらに、熱交換器4と給気送風機2と排気送風機3とが筐体1内から開口10を通して外される。筐体1が第1の姿勢であるときにおける熱交換器4の直下には、メンテナンスの際における熱交換器4の落下を防ぐための複数の押さえ板24が設けられている。開口10からドレンパン12を取り外し可能としたことで、開口10を通して熱交換器4と給気送風機2と排気送風機3とを筐体1内から取り出すことができる。
 図6は、図1に示す熱交換換気装置100が有する熱交換器4の第1例を示す斜視図である。第1例にかかる熱交換器4は、四角柱形状をなす。第1例にかかる熱交換器4は、給気流17の向きと排気流18の向きとが互いに垂直である直交型の熱交換器である。
 熱交換器4は、給気風路15と排気風路16との間に設けられている。熱交換器4は、給気流17と排気流18との間の全熱交換を行う。熱交換器4は、互いに間隔が設けられて配置された複数の仕切材30と、複数の仕切材30の間隔を保持する間隔保持材31とを備える。熱交換器4は、仕切材30と間隔保持材31とを積層させて構成された積層体である。仕切材30は、平坦に加工されたシート材である。間隔保持材31は、波形の凹凸が施されたシート材である。仕切材30と間隔保持材31とは、互いに接合されている。
 熱交換器4は、仕切材30と間隔保持材31とを積層させた方向である積層方向を板部1eと板部1fとに平行にして配置されている。熱交換器4は、積層方向を板部1cと板部1dとに平行にして配置されても良い。
 積層体において、波形の折り目の方向が互いに垂直となるように向きを異ならせた間隔保持材31が、仕切材30を介して交互に積層されている。これにより、熱交換器4には、排気流18が通過する一次通路32と給気流17が通過する二次通路33とが積層方向において交互に設けられている。仕切材30では、給気流17と排気流18とを混合させずに、一次通路32を通過する排気流18と二次通路33を通過する給気流17との間の顕熱交換と潜熱交換とが行われる。なお、熱交換器4は、顕熱交換と潜熱交換との一方のみを行うものであっても良い。
 仕切材30と間隔保持材31とには、紙が使用されている。熱交換器4は、仕切材30と間隔保持材31とに紙が使用されることによって、製造コストを抑えることができる。紙によって一次通路32と二次通路33が構成されていることで、熱交換によって発生した結露水を一次通路32と二次通路33とによって保持することができる。また、風路へ進入した結露水が結氷することによる風路の閉塞を低減できる。
 図7は、図1に示す熱交換換気装置100が有する熱交換器4の第2例を示す斜視図である。第2例にかかる熱交換器4は、六角柱形状をなす。第2例にかかる熱交換器4は、給気流17の向きと排気流18の向きとを180度異ならせた対向流型の熱交換器である。熱交換換気装置100には、第1例にかかる熱交換器4と第2例にかかる熱交換器4とのどちらが適用されても良い。熱交換器4の形状は、多角柱形状であれば良く、六角柱形状および四角柱形状以外の形状であっても良い。なお、図1には、第2例にかかる熱交換器4を示している。対向流型の熱交換器4が設けられることにより、熱交換換気装置100は、高い熱交換効率での熱変換を行うことができる。
 次に、熱交換換気装置100におけるドレン水の排出のための構成について説明する。図8は、図3に示すVIII-VIII線における熱交換換気装置100の断面図である。図8には、水平設置で設置された熱交換換気装置100を示している。筐体1が第1の姿勢であるとき、図2に示す板部1bが下方へ向けられている。第2のドレン受けであるドレンパン35と第3のドレン受けであるドレンパン36と第4のドレン受けであるドレンパン37とは、板部1bのうち筐体1内側の面に設けられている。
 ドレンパン35は、給気風路15の上流側風路15aと排気風路16の下流側風路16bとのうち、筐体1が第1の姿勢であるときの下方側に配置されている。ドレンパン35は、上流側風路15aと下流側風路16bとにおいてドレン水を保持する。
 ドレンパン36は、排気風路16の上流側風路16aと給気風路15の下流側風路15bとのうち、筐体1が第1の姿勢であるときの下方側に配置されている。ドレンパン36は、上流側風路16aと下流側風路15bとにおいてドレン水を保持する。
 ドレンパン37は、バイパス風路21のうち筐体1が第1の姿勢であるときの下方側に配置されている。ドレンパン37は、バイパス風路21においてドレン水を保持する。熱交換換気装置100は、4つのドレンパン12,35,36,37によってドレン水を保持可能とする。4つのドレンパン12,35,36,37は、筐体1の外へドレン水を排出させる経路を構成可能に、互いに連結されている。
 第1の排水口25は、筐体1が第1の姿勢であるときの筐体1の下部に位置している。第1の排水口25は、筐体1内に保持されたドレン水を筐体1の外へ流出させる。第1の排水口25は、ドレンパン12のうち給気フィルター13側の端部12aから、筐体1の長手方向に垂直な向きに立てられている。第1の排水口25は、板部1eに対して垂直に立てられている。仮に、第1の排水口25が筐体1の長手方向に平行な向きとされた場合、第1の排水口25が給気フィルター13または排気フィルター14の着脱の妨げとなることがあり得る。第1の排水口25が筐体1の長手方向に垂直とされたことで、給気フィルター13または排気フィルター14の着脱の妨げとならない態様で第1の排水口25を配置することができる。
 筐体1が第1の姿勢であるときにおいて、第1の排水口25の高さ位置は、板部1bの高さ位置と同等とされている。筐体1が第1の姿勢であるときにおけるできるだけ低い位置に第1の排水口25が設けられていることで、熱交換換気装置100は、第1の排水口25からの排水を促すことができる。
 ドレンパン36とドレンパン37との境界には、排水経路を構成する排水経路部38aが設けられている。排水経路部38aは、ドレンパン36とドレンパン37とをつなぐとともに、筐体1が第1の姿勢であるときにドレンパン36のほうがドレンパン37よりも高い位置となるように形成された部分である。ドレンパン36に溜められたドレン水は、排水経路部38aを通ってドレンパン37へ流れる。
 ドレンパン37と、ドレンパン12の端部12aとの境界には、排水経路を構成する排水経路部38cが設けられている。排水経路部38cは、ドレンパン37と端部12aとをつなぐとともに、筐体1が第1の姿勢であるときにドレンパン37のほうが端部12aよりも高い位置となるように形成された部分である。ドレンパン37に溜められたドレン水は、排水経路部38cを通って端部12aへ流れる。端部12aへ流れたドレン水は、第1の排水口25から筐体1の外へ排出される。
 ドレンパン35と、ドレンパン12の端部12aとの境界には、排水経路を構成する排水経路部38bが設けられている。排水経路部38bは、給気フィルター13と板部1eとの間に設けられている。排水経路部38bは、ドレンパン35と端部12aとをつなぐとともに、筐体1が第1の姿勢であるときにドレンパン35のほうが端部12aよりも高い位置となるように形成された部分である。ドレンパン35に溜められたドレン水は、排水経路部38bを通って端部12aへ流れる。端部12aへ流れたドレン水は、第1の排水口25から筐体1の外へ排出される。
 図9は、図8に示す熱交換換気装置100が垂直設置で配置された状態を示す図である。図9には、図8に示す断面と同じ断面を示している。筐体1が第2の姿勢であるときに、板部1cが下方へ向けられている。第2の排水口26は、筐体1が第2の姿勢であるときにおける筐体1の下部に位置している。第2の排水口26は、筐体1内に保持されたドレン水を筐体1の外へ流出させる。第2の排水口26は、板部1cのうちドレンパン35の隣に設けられている。第2の排水口26は、板部1cに垂直に立てられている。第1の排水口25が筐体1から立てられている方向と、第2の排水口26が筐体1から立てられている方向とは、互いに垂直である。
 筐体1が第2の姿勢とされたことで、筐体1内で発生したドレン水は、下方へ向かって移動する。ドレン水は、各風路を構成する壁部あるいは各ドレンパン12,35,36,37を伝って下方へ流れるか、壁部および各ドレンパン12,35,36,37を離れて下方へ落下する。板部1cにまで到達したドレン水は、第2の排水口26から筐体1の外へ排出される。筐体1内には、板部1cにおけるドレン水の漏れを防止するための構成が設けられても良く、ドレンパンが設けられても良い。給気吸込口5と排気吹出口8との筐体1内側の端には、ドレン水を堰き止めるための構成が設けられても良い。これにより、板部1cまで到達したドレン水を漏れなく第2の排水口26から排出することができる。
 次に、室内空気によって生じたドレン水と室外空気によって生じたドレン水との排出について、筐体1が図8に示す第1の姿勢であるときと図9に示す第2の姿勢であるときとに分けて説明する。
 筐体1が第1の姿勢であるときにおいて、室内の多湿な空気が排気吸込口7から上流側風路16aへ進入した場合に、上流側風路16aで凝縮した水がドレンパン36に保持される。ドレンパン36に溜められたドレン水は、排水経路部38aを通ってドレンパン37へ流れる。ドレンパン37へ流れたドレン水は、排水経路部38cを通って端部12aへ流れる。端部12aへ流れたドレン水は、第1の排水口25から筐体1の外へ排出される。熱交換器4を通過してから下流側風路16bで凝縮した水は、ドレンパン35にて保持される。ドレンパン35に溜められたドレン水は、排水経路部38bを通り、第1の排水口25から筐体1の外へ排出される。
 筐体1が第1の姿勢であるときにおいて、室外の多湿な空気が給気吸込口5から上流側風路15aへ進入した場合に、上流側風路15aで凝縮した水がドレンパン35に保持される。ドレンパン35には、上流側風路15aと下流側風路16bとの間を仕切る仕切り部39が形成されている。下流側風路16bで凝縮した水は、仕切り部39が設けられていることで、上流側風路15aで凝縮した水と混在せずに排水経路部38bへ進行する。室外の空気が多湿である場合、霧などによって室外が一時的に多湿状態になったことが想定される。熱交換換気装置100は、上流側風路15aで凝縮した水をドレンパン35に保持しておき、換気運転によって水を蒸発させても良い。
 熱交換換気装置100が第1の姿勢であるときにおいて、室外の多湿な空気がバイパス風路21へ進入した場合に、バイパス風路21で凝縮した水がドレンパン37に保持される。ドレンパン37に溜められたドレン水は、排水経路部38cと端部12aとを通り、第1の排水口25から筐体1の外へ排出される。
 熱交換器4の内部での凝縮によって生じたドレン水は、ドレンパン12に保持される。ドレンパン12に溜められたドレン水は、端部12aを通り、第1の排水口25から筐体1の外へ排出される。
 このようにして、熱交換換気装置100は、各風路と熱交換器4とにおいて生じたドレン水を第1の排水口25へ進行させて、筐体1の外へドレン水を排出させる。筐体1が第1の姿勢であるときには、ドレン水の流出を止める止水部品が第2の排水口26に取り付けられても良い。これにより、第2の排水口26からのドレン水の漏れ出しを防ぐことができる。
 熱交換換気装置100は、熱交換器4の下方にドレンパン12が設けられている以外に、風路ごとのドレンパン35,36,37が設けられていることにより、多湿な空気が筐体1へ取り込まれたことによって生じるドレン水を風路ごとにおいて保持することができる。
 筐体1が第2の姿勢であるときにおいて、室内の多湿な空気が排気吸込口7から上流側風路16aへ進入した場合に、上流側風路16aで凝縮した水は、上流側風路16aよりも下方の各風路を構成する壁部あるいは各ドレンパン12,35,36,37を伝って下方へ流れるか、下方へ落下する。板部1cにまで到達したドレン水は、第2の排水口26から筐体1の外へ排出される。
 筐体1が第2の姿勢であるときにおいて、室外の多湿な空気が給気吸込口5から上流側風路15aへ進入した場合に、上流側風路15aで凝縮した水は、上流側風路15aの壁部あるいはドレンパン35を伝って下方へ流れるか、下方へ落下する。板部1cにまで到達したドレン水は、第2の排水口26から筐体1の外へ排出される。
 筐体1が第2の姿勢であるときにおいて、室外の多湿な空気がバイパス風路21へ進入した場合に、バイパス風路21で凝縮した水は、バイパス風路21および下流側風路16bの壁部あるいはドレンパン37,35を伝って下方へ流れるか、下方へ落下する。板部1cにまで到達したドレン水は、第2の排水口26から筐体1の外へ排出される。
 熱交換器4の内部での凝縮によって生じたドレン水は、熱交換器4の内部を通って、上流側風路15aと下流側風路16bとに進行する。ドレン水は、上流側風路15aおよび下流側風路16bの壁部あるいはドレンパン35を伝って下方へ流れるか、下方へ落下する。板部1cにまで到達したドレン水は、第2の排水口26から筐体1の外へ排出される。
 このようにして、熱交換換気装置100は、各風路と熱交換器4とにおいて生じたドレン水を第2の排水口26へ進行させて、筐体1の外へドレン水を排出させる。筐体1が第2の姿勢であるときには、第1の排水口25に止水部品が取り付けられても良い。これにより、第1の排水口25からのドレン水の漏れ出しを防ぐことができる。
 図10は、図8に示す熱交換換気装置100が有する排水経路部の構成を示す図である。図10には、図8に示す排水経路部38a,38b,38cのうち、排水経路部38aの断面を示している。ドレンパン36とドレンパン37とは、互いに隣り合う2つのドレンパンである。2つのドレンパンのうちの一方であるドレンパン36は、ドレン水が溜められる底部41と、底部41から立てられた突出部42とを有する。突出部42は、ドレンパン36のうちドレンパン37側の端部に形成されており、ドレンパン37との境界を構成する。2つのドレンパンのうちの他方であるドレンパン37は、ドレン水が溜められる底部43と、底部43から垂直に立てられた突出部44とを有する。突出部44は、ドレンパン37のうちドレンパン36側の端部に形成されており、ドレンパン36との境界を構成する。
 ドレンパン36の突出部42は、突出部44が形成されたドレンパン37の端部を巻き込んで折り曲げられている。突出部42と突出部44との間には、止水材45が設けられている。排水経路部38aは、突出部42が折り曲げられた内側に突出部44と止水材45とが嵌め込まれていることで、ドレン水の漏れを防止可能とされている。
 筐体1が第1の姿勢であるとき、ドレンパン36では、底部41から、突出部42のうち底部41とは逆側の端42aまでドレン水を溜めることができる。ドレンパン36において端42aを超えたドレン水は、端42aからドレンパン37へ流れる。
 排水経路部38bおよび排水経路部38cは、排水経路部38aと同様に構成されている。ドレンパン12とドレンパン35との境界に設けられた排水経路部38bでは、ドレンパン35は、図10に示すドレンパン36と同様の構成を有する。排水経路部38bでは、ドレンパン12は、図10に示すドレンパン37と同様の構成を有する。ドレンパン37とドレンパン12との境界に設けられた排水経路部38cでは、ドレンパン37は、図10に示すドレンパン36と同様の構成を有する。排水経路部38cでは、ドレンパン12は、図10に示すドレンパン37と同様の構成を有する。これにより、各排水経路部38a,38b,38cでのドレン水の漏れを防止することができる。
 ドレンパン12のサイズは、図1に示す開口10と点検口11とを通過可能なサイズに抑えられる。このため、筐体1が第1の姿勢であるときに、各風路にて凝縮した水を熱交換器4の下方にある1つのドレンパン12によって受けるために、ドレンパン12を大型化することは困難である。実施の形態1では、熱交換換気装置100は、ドレンパン12と、風路ごとのドレンパン35,36,37とによって筐体1内のドレン水を保持することができる。これにより、熱交換換気装置100は、多湿な環境に設置される場合でも、筐体1内にてドレン水を保持することができる。熱交換換気装置100は、風路ごとのドレンパン35,36,37によって、ドレンパン12とともに排水経路を構成したことで、ドレン水の排出を促すことができる。
 実施の形態1によると、熱交換換気装置100は、筐体1が第1の姿勢であるときの筐体1の下部に位置する第1の排水口25と、筐体1が第2の姿勢であるときの筐体1の下部に位置する第2の排水口26とを備える。熱交換換気装置100は、水平設置および垂直設置のどちらが選択される場合も、筐体1に溜められたドレン水を筐体1の外に排出することができる。熱交換換気装置100は、水平設置と垂直設置とが選択可能となることで、設置態様の自由度を高めることが可能となる。これにより、熱交換換気装置100は、水平設置と垂直設置とのどちらが選択された場合もドレン水を排出することができるという効果を奏する。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 筐体、1a,1b,1c,1d,1e,1f 板部、2 給気送風機、3 排気送風機、4 熱交換器、5 給気吸込口、6 給気吹出口、7 排気吸込口、8 排気吹出口、9 制御装置、10 開口、11 点検口、12,35,36,37 ドレンパン、12a 端部、13 給気フィルター、14 排気フィルター、15 給気風路、15a,16a 上流側風路、15b,16b 下流側風路、16 排気風路、17 給気流、18 排気流、19 バイパス気流、20 ダンパー、21 バイパス風路、22 熱交換側開口部、23 バイパス側開口部、24 押さえ板、25 第1の排水口、26 第2の排水口、27 断熱部品、30 仕切材、31 間隔保持材、32 一次通路、33 二次通路、38a,38b,38c 排水経路部、39 仕切り部、41,43 底部、42,44 突出部、42a 端、45 止水材、100 熱交換換気装置。

Claims (10)

  1.  給気流を発生させる給気送風機と、
     排気流を発生させる排気送風機と、
     前記給気流と前記排気流との熱交換を行う熱交換器と、
     前記給気送風機と前記排気送風機と前記熱交換器とが収容された筐体と、
     前記筐体が、前記給気送風機、前記熱交換器および前記排気送風機が水平方向へ並んだ第1の姿勢であるときにおける前記筐体の下部に位置し、前記筐体に溜められたドレン水を前記筐体の外へ流出させる第1の排水口と、
     前記筐体が、前記給気送風機、前記熱交換器および前記排気送風機が鉛直方向へ並んだ第2の姿勢であるときにおける前記筐体の下部に位置し、前記筐体に保持されたドレン水を前記筐体の外へ流出させる第2の排水口と、
     を備えることを特徴とする熱交換換気装置。
  2.  前記筐体は、
     給気吸込口と排気吹出口とが設けられた第1の板部と、
     給気吹出口と排気吸込口とが設けられた第2の板部と、
     前記第1の板部と前記第2の板部との間の部分であって前記筐体が前記第1の姿勢であるときの側面を構成する第3の板部と、を有し、
     前記第1の排水口は、前記第3の板部に対して垂直に立てられていることを特徴とする請求項1に記載の熱交換換気装置。
  3.  前記筐体は、
     給気吸込口と排気吹出口とが設けられた第1の板部と、
     給気吹出口と排気吸込口とが設けられた第2の板部と、を有し、
     前記第2の排水口は、前記第2の板部に対して垂直に立てられていることを特徴とする請求項1に記載の熱交換換気装置。
  4.  前記熱交換器に対して、前記筐体が前記第1の姿勢であるときの下方に配置された第1のドレン受けと、
     前記給気吸込口と前記熱交換器との間の風路のうち前記筐体が前記第1の姿勢であるときの下方側に配置された第2のドレン受けと、
     前記排気吸込口と前記熱交換器との間の風路のうち前記筐体が前記第1の姿勢であるときの下方側に配置された第3のドレン受けと、
     を備えることを特徴とする請求項2または3に記載の熱交換換気装置。
  5.  前記排気吸込口から前記熱交換器へ向かう経路と前記排気吸込口から前記熱交換器の外を通って前記排気吹出口へ向かう風路であるバイパス風路とに前記排気流の経路を切り換える切り換え部と、
     前記バイパス風路のうち前記第1の姿勢であるときの下方側に配置された第4のドレン受けと、
     を備え、
     前記第1のドレン受けと前記第2のドレン受けと前記第3のドレン受けと前記第4のドレン受けとは、ドレン水の排水経路を構成することを特徴とする請求項4に記載の熱交換換気装置。
  6.  前記第1のドレン受けと前記第2のドレン受けと前記第3のドレン受けと前記第4のドレン受けとのうち互いに隣り合う2つのドレン受けの境界では、前記第1の姿勢であるときに、前記2つのドレン受けのうち一方のドレン受けのほうが他方のドレン受けよりも高い位置となることを特徴とする請求項5に記載の熱交換換気装置。
  7.  前記2つのドレン受けの各々には、ドレン水が溜められる凹部と、前記凹部から立てられて前記境界を構成する突出部とが設けられており、
     前記一方のドレン受けの前記突出部が折り曲げられた内側に、前記他方のドレン受けの前記突出部が嵌め込まれていることを特徴とする請求項6に記載の熱交換換気装置。
  8.  前記一方のドレン受けは、前記第2のドレン受けであって、
     前記他方のドレン受けは、前記第1のドレン受けであることを特徴とする請求項7に記載の熱交換換気装置。
  9.  前記一方のドレン受けは、前記第3のドレン受けであって、
     前記他方のドレン受けは、前記第4のドレン受けであることを特徴とする請求項7に記載の熱交換換気装置。
  10.  前記一方のドレン受けは、前記第4のドレン受けであって、
     前記他方のドレン受けは、前記第1のドレン受けであることを特徴とする請求項7に記載の熱交換換気装置。
PCT/JP2018/021782 2018-06-06 2018-06-06 熱交換換気装置 WO2019234870A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2018/021782 WO2019234870A1 (ja) 2018-06-06 2018-06-06 熱交換換気装置
JP2020523920A JP6987241B2 (ja) 2018-06-06 2018-06-06 熱交換換気装置
EP18921884.5A EP3805652A4 (en) 2018-06-06 2018-06-06 HEAT EXCHANGE VENTILATION DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/021782 WO2019234870A1 (ja) 2018-06-06 2018-06-06 熱交換換気装置

Publications (1)

Publication Number Publication Date
WO2019234870A1 true WO2019234870A1 (ja) 2019-12-12

Family

ID=68769832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021782 WO2019234870A1 (ja) 2018-06-06 2018-06-06 熱交換換気装置

Country Status (3)

Country Link
EP (1) EP3805652A4 (ja)
JP (1) JP6987241B2 (ja)
WO (1) WO2019234870A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020134053A (ja) * 2019-02-21 2020-08-31 三菱電機株式会社 熱交換換気装置
CN115977432A (zh) * 2022-12-27 2023-04-18 张家口云储数据科技有限公司 一种数据中心用装配式机房及其施工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150742B2 (ja) 1983-09-30 1986-11-05 Tokyo Shibaura Electric Co
JPH05280780A (ja) * 1992-03-31 1993-10-26 Toshiba Corp 熱交換器付換気扇
JPH08100451A (ja) * 1994-09-30 1996-04-16 Sekisui Chem Co Ltd 防水床パンの接続組立て方法
WO2010125632A1 (ja) * 2009-04-27 2010-11-04 三菱電機株式会社 熱交換換気装置
JP2014059096A (ja) * 2012-09-18 2014-04-03 Panasonic Corp 給排気型換気装置
JP2016023855A (ja) * 2014-07-18 2016-02-08 三菱電機株式会社 空調換気装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3106728B2 (ja) * 1992-09-29 2000-11-06 三菱電機株式会社 空調換気扇
JPH09126514A (ja) * 1995-10-30 1997-05-16 Matsushita Seiko Co Ltd 熱交換器およびその周辺装置
JP4432556B2 (ja) * 2004-03-18 2010-03-17 パナソニック株式会社 熱交換形換気装置
JP5261988B2 (ja) * 2007-05-31 2013-08-14 マックス株式会社 換気空調装置
KR20130086391A (ko) * 2009-02-19 2013-08-01 미쓰비시덴키 가부시키가이샤 열교환 환기 장치
JP6509338B2 (ja) * 2015-05-29 2019-05-08 三菱電機株式会社 熱交換型換気装置
WO2016194261A1 (ja) * 2015-05-29 2016-12-08 三菱電機株式会社 熱交換型換気装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150742B2 (ja) 1983-09-30 1986-11-05 Tokyo Shibaura Electric Co
JPH05280780A (ja) * 1992-03-31 1993-10-26 Toshiba Corp 熱交換器付換気扇
JPH08100451A (ja) * 1994-09-30 1996-04-16 Sekisui Chem Co Ltd 防水床パンの接続組立て方法
WO2010125632A1 (ja) * 2009-04-27 2010-11-04 三菱電機株式会社 熱交換換気装置
JP2014059096A (ja) * 2012-09-18 2014-04-03 Panasonic Corp 給排気型換気装置
JP2016023855A (ja) * 2014-07-18 2016-02-08 三菱電機株式会社 空調換気装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3805652A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020134053A (ja) * 2019-02-21 2020-08-31 三菱電機株式会社 熱交換換気装置
CN115977432A (zh) * 2022-12-27 2023-04-18 张家口云储数据科技有限公司 一种数据中心用装配式机房及其施工方法

Also Published As

Publication number Publication date
EP3805652A4 (en) 2021-09-08
EP3805652A1 (en) 2021-04-14
JP6987241B2 (ja) 2021-12-22
JPWO2019234870A1 (ja) 2020-12-17

Similar Documents

Publication Publication Date Title
JP3042329B2 (ja) 空気調和装置の排水構造
TWI588419B (zh) 分離式模組之空調設備組合
JP5449951B2 (ja) 外気処理空気調和機
WO2019234870A1 (ja) 熱交換換気装置
WO2019146116A1 (ja) 熱交換型換気装置
JP4568058B2 (ja) 天吊型空気調和装置
WO2019234871A1 (ja) 熱交換換気装置
KR102439300B1 (ko) 환기 시스템
WO2019234873A1 (ja) 熱交換換気装置
WO2019234874A1 (ja) 熱交換換気装置
JP2000304327A (ja) 換気装置及び換気装置の製造方法
WO2019234872A1 (ja) 熱交換換気装置
KR100748138B1 (ko) 모듈형 공기조화시스템
JP2000065376A (ja) 天井カセット形空気調和機
KR100747802B1 (ko) 환기장치 및 환기장치의 제어방법
JP5495804B2 (ja) 熱交換換気装置及び建造物
JP7148818B2 (ja) 換気装置
JP2000213785A (ja) 熱交換形換気扇
JPH10232036A (ja) 加湿ユニット
JP4646611B2 (ja) 空気調和装置
JP2011075119A (ja) 外気処理空気調和機
JP6037855B2 (ja) 換気装置
JP6203240B2 (ja) 熱交換器及び換気装置
JP4910323B2 (ja) 熱交換型換気装置、この熱交換型換気装置を備える空調システムおよびこの空調システムを備えた建物
KR20170113721A (ko) 환기시스템의 바이패스장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921884

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020523920

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018921884

Country of ref document: EP

Effective date: 20210111