Nothing Special   »   [go: up one dir, main page]

WO2019202928A1 - 圧力センサ及び圧力センサの製造方法 - Google Patents

圧力センサ及び圧力センサの製造方法 Download PDF

Info

Publication number
WO2019202928A1
WO2019202928A1 PCT/JP2019/012849 JP2019012849W WO2019202928A1 WO 2019202928 A1 WO2019202928 A1 WO 2019202928A1 JP 2019012849 W JP2019012849 W JP 2019012849W WO 2019202928 A1 WO2019202928 A1 WO 2019202928A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure sensor
sensor
sensor devices
electrode
electrodes
Prior art date
Application number
PCT/JP2019/012849
Other languages
English (en)
French (fr)
Inventor
豊島 良一
Original Assignee
日本メクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本メクトロン株式会社 filed Critical 日本メクトロン株式会社
Priority to CN201980002648.3A priority Critical patent/CN110709680B/zh
Priority to US16/621,223 priority patent/US20200200617A1/en
Publication of WO2019202928A1 publication Critical patent/WO2019202928A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • G01L19/0627Protection against aggressive medium in general
    • G01L19/0654Protection against aggressive medium in general against moisture or humidity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes

Definitions

  • the present disclosure relates to a pressure sensor and a method for manufacturing the pressure sensor.
  • pressure sensors that detect pressure are used. Some of the pressure sensors are used for mobile terminals and robots. It is desired that the pressure sensor for such applications can be installed in a relatively narrow range, that is, the installation area is small. Further, the pressure sensor is required to detect the position where the pressure is received with high accuracy.
  • Known examples of pressure sensors are described in, for example, Patent Document 1, Patent Document 2, and Patent Document 3.
  • a control device for a robot hand described in Patent Literature 1 includes a workpiece gripping unit in a robot and a pressure detection sensor used to detect contact pressure with the workpiece.
  • Patent Document 2 describes a seating sensor including a plurality of sensitive sensors connected in parallel.
  • Patent Document 3 discloses a membrane switch including a spacer provided between a pair of insulating films and having an open contact portion, and an electrode formed on each of the opposing surfaces of the opening. Is described. Further, it is described that a protruding portion is provided on the outer surface of at least one insulating film of the contact portion.
  • the pressure sensor disclosed in Patent Document 1 detects contact pressure at a plurality of locations, and whether or not only one of a plurality of contact pressures arranged on a straight line such as vertical, horizontal, or diagonal is greater than or equal to a predetermined value. Judging. For this reason, the pressure sensor disclosed in Patent Document 1 requires a plurality of pressure sensors arranged in a plurality of directions. This increases the installation area of the pressure sensor. Further, according to the embodiment described in Patent Document 2, a plurality of pressure sensors are provided in the passenger seat of the automobile. And the influence which the electrical resistance value detected by each of this pressure sensor has on the total resistance of the whole is reduced. This prevents erroneous detection of human seating.
  • the embodiment described in Patent Document 2 is not intended to solve the problem of the installation area of the pressure sensor.
  • the resistance value of the pressure sensor varies greatly even with a relatively small value of load. That is, the pressure sensor ha can measure a relatively small pressure with high sensitivity, but is not effective for measuring a large pressure. For this reason, this pressure sensor has the disadvantage that the dynamic range of its measurement is narrow.
  • the pressure sensor according to the present embodiment has been developed in view of the above points. That is, the present disclosure relates to a pressure sensor that can measure a pressure in a wide range (measurement range) of a measurable pressure and is suitable for reducing an installation area, and a method for manufacturing the pressure sensor. .
  • the pressure sensor according to the present embodiment includes a plurality of sensor devices and a wiring sheet, and each of the plurality of sensor devices includes an electrode and a conductive film disposed to face the electrode.
  • the plurality of sensor devices are stacked in the arrangement direction of the conductive film with respect to the electrodes, and the wiring sheet includes a common input wiring for inputting an electric signal to the plurality of sensor devices, and the plurality of sensor devices. Including common output wiring for outputting electrical signals,
  • the pressure sensor manufacturing method includes a sensor device including a plurality of electrodes and a conductive film corresponding to at least one of the plurality of electrodes, and an electrical signal to the plurality of sensor devices. Forming a common input wiring to be input and a common output wiring for outputting an electrical signal from the plurality of sensor devices on a wiring sheet; and overlapping the sensor devices by folding the wiring sheet. ,including.
  • a pressure sensor that can assume a wide range (measurement range) of pressure and is suitable for reducing the installation area, and a method of manufacturing the pressure sensor are provided.
  • FIG. 3 is a top view of a pressure sensor including the stack circuit shown in FIGS. 1 and 2 connected in parallel. It is the figure which showed the equivalent circuit of the pressure sensor shown in FIG. (A), (b), (c) is a figure for demonstrating the manufacturing method of the pressure sensor of this embodiment.
  • FIG. 6 is a diagram for explaining an embodiment of the present disclosure, and (a) to (c) are diagrams illustrating verification results of effects obtained by connecting superimposed sensor devices in parallel or in series.
  • the basic configuration of the pressure sensor of the present embodiment includes a sheet-like wiring board (hereinafter referred to as “wiring sheet”) including a flexible material processed into a sheet shape, and is formed on the wiring sheet. And a wiring layer.
  • wiring sheet a sheet-like wiring board
  • FIG. 1 is a schematic cross-sectional view for explaining a pressure sensor 1 of the present embodiment.
  • FIGS. 2A and 2B are schematic diagrams for enlarging and explaining the sensor devices U1 and U2 shown in FIG. 2 (a) and 2 (b), with the wiring sheet of the pressure sensor as the reference (lowermost layer), the direction from the side closer to the wiring sheet (downward) to the side farther from the wiring sheet (upward) is the vertical direction. Define. This vertical direction does not necessarily coincide with the vertical direction of the product itself in which the pressure sensor is incorporated.
  • FIG. 2A is a schematic top view of the sensor device U1 of the pressure sensor 1.
  • FIG. 2B is a schematic cross-sectional view of the cross sections of the sensor devices U1 and U2 as viewed in the direction of the arrow 2b-2b in FIG.
  • the pressure sensor 1 includes sensor devices U1 and U2.
  • Each of the sensor devices U1 and U2 includes two electrodes 19a and 19b that are spaced apart from each other by a predetermined distance, and a conductive film 15 that is disposed to face the electrodes 19a and 19b. Further, the sensor devices U1 and U2 are overlapped with the electrodes 19a and 19b in the direction in which the conductive film 15 is disposed.
  • the pressure sensor 1 also contains the wiring sheet 10.
  • FIG. The wiring sheet 10 includes a common input wiring 21 that inputs electric signals to the two sensor devices U1 and U2, and a common output wiring 22 that outputs electric signals from the plurality of sensor devices U1 and U2. 4).
  • the sensor devices U1 and U2 have the same configuration.
  • the sensor devices U1 and U2 shown in FIGS. 2A and 2B are overlapped with each other and share the input wiring 21 and the output wiring 22. For this reason, these superimposed sensor devices constitute a circuit that outputs one detection signal (hereinafter referred to as “pressure-sensitive signal”). Such a circuit is also referred to as “stack circuit S” in the present embodiment.
  • a plurality of stack circuits S are provided on the wiring sheet 10. In the present embodiment, all of the sensor devices U1 and U2 formed on the wiring sheet 10 need not be limited to the stack circuit S. Elements having other configurations may be present on the wiring sheet 10.
  • electrodes 19a and 19b are formed on the wiring sheet of the pressure sensor 1.
  • the pressure sensor 1 is constituted by an electrode built on the wiring sheet 10.
  • this embodiment has a configuration advantageous for reducing the thickness of the stack circuit S.
  • a part of the plurality of sensor devices U1 and U2 includes a protrusion 17a that overlaps at least a part of the electrodes 19a and 19b.
  • the protrusion 17a exists on the sensor device U1 side.
  • the sensor device U1 is configured so that the load is concentrated on the electrodes 19a and 19b.
  • the sensor device U1 includes a protrusion 17a.
  • the one protrusion 17a is provided corresponding to all the several sensor devices U1 and U2 on which it was piled up.
  • the number of protrusions 17a in the stack circuit S is reduced, which is advantageous for making the stack circuit S thinner.
  • the protrusion 17a can be appropriately formed in any shape such as a quadrangular prism, a cylinder, or a substantially spherical body. Therefore, the end face 170 (in FIG. 1, the lower end face of the protrusion 17a; hereinafter referred to as “protrusion end face”) that transmits a pressing force from the device and the sensor device of the protrusion 17a may have any shape. .
  • the protrusion 17a of the present embodiment is a protrusion protruding upward from the base portion 17b.
  • the base portion 17b is a member generated when the projection 17a is injection molded.
  • a member having a structure including the combined protrusion 17a and base portion 17b is referred to as an electrode pressing member 17.
  • the protrusion end surface 170 is a virtual surface corresponding to the boundary between the protrusion 17a and the base portion 17b.
  • the sensor devices U1 and U2 are stacked so that the directions (directions from the electrode 19 toward the conductive film 15) are the same. It is not limited to.
  • the sensor devices U1 and U2 may be overlapped so that the direction of the sensor device U1 is opposite to the direction of the sensor device U2.
  • FIG. 3A shows an embodiment in which the sensor devices U1 and U2 are stacked such that the orientation of the sensor device U1 and the orientation of the sensor device U2 are opposite.
  • the wiring sheet 10 is disposed inside.
  • the sensor devices U1 and U2 may have the wiring sheet 10 individually.
  • the sensor devices U ⁇ b> 1 and U ⁇ b> 2 may share the one-layer wiring sheet 10. Thereby, the thickness of the pressure sensor can be reduced.
  • the pressure sensor 1 with a small thickness is advantageous for reducing the installation area by further overlapping the sensor devices U1 and U2.
  • FIG.3 (b) is a figure which shows how the pressure sensor shown to Fig.3 (a) is folded. In the present embodiment, as shown in FIG.
  • FIG.3 (c) is sectional drawing of the pressure sensor produced by folding the pressure sensor shown to Fig.3 (a) as shown in FIG.3 (b).
  • the insulating sheet 16 provided between the stacked conductive films 15 prevents conduction between two adjacent sensor devices U1.
  • the electrode pressing material 17 can be provided in any side of the upper and lower conductive films 15 used as the outermost layer.
  • the sensor devices U1 and U2 may be overlapped so that the conductive film 15 is disposed on the inner side and the insulating sheet 16 is sandwiched between the sensor devices U1 and U2 from the upper and lower sides. Also in this case, the direction of the sensor device U1 is opposite to the direction of the sensor device U2.
  • the insulating sheet 16 is inserted between the conductive films 15a and 15b so that the two conductive films 15a and 15b corresponding to the sensor devices U11 and U21 are not electrically short-circuited. Has been.
  • FIG. 6C the insulating sheet 16 is inserted between the conductive films 15a and 15b so that the two conductive films 15a and 15b corresponding to the sensor devices U11 and U21 are not electrically short-circuited.
  • insulation is provided between the conductive films 15a and 15b corresponding to the sensor devices U11 and U21 and between the conductive films 15c and 15d corresponding to the sensor devices U31 and U41.
  • a sheet 16 is inserted.
  • the positional relationship between the wiring sheet 10b and the conductive film 15b is opposite to the configuration shown in FIGS. 1 and 2 (below the conductive film 15 in FIGS. 1 and 2).
  • the sensor device U11 and the sensor device U21 may be overlapped so that a certain wiring sheet 10 is located above the conductive film 15 in FIG. 6C.
  • FIG. 8C the positional relationship between the wiring sheet 10b and the conductive film 15b is opposite to that shown in FIGS.
  • the sensor device U11 and the sensor device U21 may be overlapped with each other so that the wiring sheet 10 located on the upper side of the conductive sheet 15 is above the conductive film 15 in FIG. Further, in FIG. 8C, similarly, the sensor device U31 and the sensor device U41 are arranged so that the positional relationship between the wiring sheet 10d and the conductive film 15d is opposite to the configuration shown in FIG. 1 and FIG. You may superimpose.
  • one protrusion 17a is provided corresponding to the sensor devices U1 and U2.
  • the protrusion 17a may be provided in each of a plurality of stacked sensor devices.
  • the protrusion 17a may be provided outside the overlapping sensor devices U1 and U2.
  • the protrusion 17a may be provided between the sensor devices U1 and U2, that is, in the stack circuit S.
  • one protrusion 17a of the sensor device U1 or sensor device U2 may be provided outside the stack circuit S, while the other protrusion 17a may be provided inside the stack circuit. .
  • the pressing force applied to the pressure sensor 1 is reliably concentrated on the electrodes 19a and 19b. Therefore, the protrusion 17a can increase the sensitivity of the pressure sensor 1.
  • the characteristic regarding the resistance of the several sensor device which comprises the stack circuit S will differ.
  • the characteristic relating to the resistance of the sensor device refers to a physical or chemical characteristic that can affect the electric resistance value of the sensor device among various parameters of the pressure sensor 1.
  • the contact area between the electrodes 19a and 19b and the conductive film 15 is increased or decreased.
  • the contact area between the electrodes 19a and 19b and the conductive film 15 is increased or decreased.
  • the contact area between the electrodes 19a and 19b and the conductive film 15 is reduced.
  • the contact area between the electrodes 19a and 19b and the conductive film 15, and the parameters that affect the contact area are examples of “characteristics relating to the resistance of the sensor device”.
  • the pressure sensor 1 has an insulating layer 13 in addition to the above configuration.
  • the insulating layer 13 of the pressure sensor 1 shown in FIGS. 1 and 2 covers substantially the entire surface of the wiring sheet 10 except for a part of the formation region of the electrodes 19a and 19b, and protects the input wiring 21 and the output wiring 22. .
  • the insulating layer 13 improves its environmental resistance.
  • the insulating layer 13 is opened on the electrodes 19a and 19b, and an opening O1 of the insulating layer 13 is shown in FIGS.
  • the electrodes 19a and 19b can be in contact with the conductive film 15 in the region of the opening O1. Therefore, in the pressure sensor 1 shown in FIGS.
  • the opening area of the opening O1 is determined according to the application of the pressure sensor 1 and the range of appropriate detection values.
  • An adhesive layer 11 is formed between the conductive film 15 and the insulating layer 13.
  • the adhesive layer 11 maintains the separation between the conductive film 15 and the electrodes 19a and 19b when no pressing force is applied.
  • the wiring sheet 10 of this embodiment is a flexible and insulating film, and is a so-called flexible printed wiring board.
  • the material for the insulating film include polyethylene, polyethylene terephthalate, polyethylene naphthalate, cycloolefin polymer, polycarbonate, aramid resin, polyimide, polyimide varnish, polyamideimide, polyamideimide varnish, and flexible sheet glass. It can. However, the example of the said material is not limited to this.
  • the material of the wiring sheet 10 is polycarbonate, aramid film, polyimide, polyimide varnish, polyamideimide, polyamideimide varnish, flexible sheet glass, or the like having high heat resistance. Is more preferable.
  • the material of the wiring sheet 10 is more preferably a polyimide film, a polyimide varnish film, a polyamideimide film, or a polyamideimide varnish film.
  • the thickness of the wiring sheet 10 is not specifically limited, For example, it can be set as the range of 12.5 micrometers or more and 50 micrometers or less.
  • the wiring sheet 10 can be favorably used by arranging or bending the wiring sheet 10 on a curved surface.
  • the wiring sheet 10 may be preliminarily formed into a film shape, or a polyimide-based insulating varnish is cast and applied to the Cu foil or the like that is the material of the electrodes 19a and 19b. It may be formed.
  • the thickness of the wiring sheet 10 may be designed to be larger than the thickness of the conductive film 15.
  • the electrodes 19a and 19b are a pair of electrodes arranged in parallel at a predetermined distance in the surface direction.
  • the electrodes 19 a and 19 b are formed on the wiring sheet 10 in a desired pattern shape.
  • the sensor devices U1 and U2 of the present embodiment individually have the wiring sheet 10 and the electrodes 19a and 19b. That is, the stack circuit S of this embodiment shown in FIG. 2B is configured to include two wiring sheets 10 and two conductive films 15 facing each other.
  • the electrodes 19a and 19b are formed on the same surface side (upper surface side in the figure) of each sheet of the wiring sheet 10, respectively.
  • the pressure sensor 1 can be manufactured at a lower cost compared to a modification shown in FIG. .
  • the electrodes 19a and 19b of the present embodiment each have a rectangular shape in a top view and are arranged adjacent to each other in parallel with a predetermined distance.
  • the combined resistance value of the electrodes 19a and 19b varies depending on the distance between the electrodes 19a and 19b.
  • the electrode 19a and the electrode 19b of the present embodiment are formed in the same shape and the same size. However, the present embodiment is not limited to this.
  • the electrode 19a and the electrode 19b may have different shapes, or may have similar shapes and different dimensions.
  • the distance between the electrodes 19a and 19b is not particularly limited.
  • the distance can be determined according to the distance between the electrodes 19a and 19b and the conductive film 15.
  • the distance between the counter electrodes can be designed in a range of 10 ⁇ m or more and 500 ⁇ m or less.
  • the thickness of the electrodes 19a and 19b is preferably 9 ⁇ m or more and 20 ⁇ m or less.
  • the electrodes 19a and 19b are made of a conductive member.
  • the electrodes 19a and 19b are made of a low-resistance metal material.
  • the surface resistivity of the electrodes 19 a and 19 b is designed to be smaller than the surface resistivity of the conductive film 15.
  • the electrodes 19a and 19b are preferably formed from copper, silver, copper, a metal material containing silver, or aluminum.
  • the material is not limited to these.
  • the form of the material can be appropriately determined depending on the combination with the manufacturing method of the electrodes 19a and 19b, such as foil or paste.
  • the electrode 19 a and the electrode 19 b are connected to the input wiring 21 and the output wiring 22 formed on the wiring sheet 10.
  • One of the input wirings 21 is connected to a power source (not shown).
  • the other of the input wirings 21 is connected to, for example, all of the sensor devices U1 and U2 formed on the wiring sheet 10, and supplies current or voltage to the sensor devices U1 and U2.
  • the output wiring 22 is connected to a driver device (not shown) of the pressure sensor 1.
  • the output wiring 22 is common to the sensor devices U1 and U2 constituting one stack circuit.
  • One pressure-sensitive signal is output from one stack circuit S. From this, the pressure-sensitive signal of the present embodiment is a combined value of the resistance values detected by the sensor devices U1 and U2.
  • the input wiring 21 and the output wiring 22 may be formed only on one surface of the wiring sheet 10. Alternatively, either or all of the input wiring 21 and the output wiring 22 may be led out through a through hole (TH) on the surface opposite to the surface of the wiring sheet 10 on which the electrodes 19a and 19b are formed. . The input wiring 21 and the output wiring 22 drawn out to the opposite surface may be drawn out again to the surface on which the electrodes 19a and 19b are formed through the through holes (TH).
  • the wiring sheet 10 of the present embodiment may be a double-sided board on which the input wiring 21 and the output wiring 22 are arranged on both sides. Alternatively, the wiring sheet 10 may be a single-sided board.
  • FIG.3 (b) is sectional drawing of the sensor device concerning the modification of this embodiment which shows this structure.
  • the wiring sheet 10 of the present modification including the sensor devices U1 and U2 may be further stacked to form a multilayer sensor device having four or more layers. According to this modification shown in FIG. 3B, the wiring sheet 10 can be reduced by one layer as compared with the embodiment shown in FIG. Therefore, the pressure sensor 1 can be thinned.
  • the insulating layer 13 and the adhesive layer 11 will be described.
  • the insulating layer 13 is provided on the upper surface of the wiring sheet 10 on which the electrodes 19a and 19b are provided.
  • the electrodes 19a, 19b and the conductive film 15 are placed on the electrodes 19a, 19b together with the opening O1 at a predetermined distance A (see FIG. 1) so that at least a part of the electrodes 19a, 19b are in contact with the conductive film 15.
  • a spacer for separating is used.
  • the electrodes 19 a and 19 b and the conductive film 15 are separated from each other. Therefore, the electrodes 19a and 19b are not conductive.
  • the distance A increases, the pressing force required to bring the conductive film 15 into contact with the electrodes 19a and 19b increases. Accordingly, when a predetermined pressing force is applied to the pressure sensor 1, the deformation amount of the sensor devices U1 and U2 is reduced. As a result, the resistance between the electrodes 19a and 19b and the conductive film 15 increases. Therefore, the distance A between the electrodes 19a and 19b and the conductive film 15 is an example of “characteristic relating to the resistance of the sensor device”.
  • the end of the insulating layer 13 on the side close to the opening O1 may run on the electrodes 19a and 19b as shown in FIG.
  • the maximum height H of the insulating layer 13 is larger than the thickness of the insulating layer 13 in other regions sufficiently separated from the electrodes 19a and 19b. Since the maximum height H of the insulating layer 13 is one of the factors that determine the distance A between the electrodes 19a and 19b and the conductive film 15 described above, the maximum height H is also “characteristic related to the resistance of the sensor device”. Is an example.
  • the opening size of the opening O1 is not particularly limited, and may be determined as appropriate without departing from the spirit of the present disclosure.
  • the vertical dimension of the opening O1 is 1.5 mm and the horizontal dimension is 1.05 mm.
  • the electrodes 19a and 19b are offset by 0.2 mm (0.1 mm on one side) with respect to the opening O1.
  • a solder resist can be used as the insulating layer 13. The material for the solder resist is not particularly limited.
  • the opening O1 By exposing and developing using a photosensitive material such as a photosensitive sheet or a photosensitive coating material, the opening O1 can be accurately formed.
  • the wiring sheet 10 can be coated with a photosensitive material by screen printing so that the photosensitive material covers the electrodes 19a and 19b.
  • the preferable insulating layer 13 can be formed by exposing a predetermined location and forming the opening O1.
  • the opening O1 of the present embodiment has a rectangular shape as shown in FIG.
  • the shape of the opening O1 can be appropriately designed in a circular shape, a polygonal shape, or an indefinite shape depending on the shapes of the electrodes 19a and 19b.
  • the photosensitive material examples include an epoxy resin to which flexibility is appropriately added by a known means such as urethane modification.
  • the epoxy resin By using the epoxy resin, it is possible to form the insulating layer 13 having moderate flexibility and heat resistance that can be input into the reflow process.
  • a conductive film 15 is laminated on the upper surface of the insulating layer 13.
  • the insulating layer 13 and the conductive film 15 are bonded to each other via the adhesive layer 11.
  • any material may be used as long as the insulating layer 13 and the conductive film 15 can be joined, such as an adhesive, an adhesive, an adhesive sheet, or an adhesive sheet.
  • the adhesive layer 11 has an opening having a shape substantially the same as the opening O1 so that the contact resistance between the electrodes 19a and 19b and the conductive film 15 is not hindered.
  • the other may be bonded while being aligned with the one side.
  • the conductive film 15 is a member that conducts between the electrodes 19a and 19b by contacting the electrodes 19a and 19b.
  • the conductive film 15 has a conductive function means that the conductive film 15 has electrical conductivity to the extent that the electrodes 19a and 19b can be energized through the conductive film 15 by pressing the conductive film 15 from the outside. To do. Specifically, the conductive film 15 to which a pressing force is applied from the outside contacts the electrode 19a and the electrode 19b. As a result, the electrode 19a and the electrode 19b are electrically connected.
  • the conductive film 15 in the present embodiment only needs to have a conductive function that allows the electrodes 19a and 19b to conduct by contact with the electrodes 19a and 19b.
  • the conductive film 15 may be, for example, a resin film containing carbon particles.
  • the conductive film 15 is given a conductive function by carbon particles.
  • the resin film used as the conductive film 15 contains carbon particles to the extent that the conductive function is exhibited.
  • the resin film is flexible.
  • the conductive film 15 since the resin film itself has a conductive function, the conductive film 15 can be made thin. Furthermore, the conductive film 15 having good flexibility can be obtained. As a result, the pressure sensor 1 having a large dynamic range can be obtained.
  • the resin film constituting the conductive film 15 can be appropriately configured using a known resin without departing from the gist of the present disclosure.
  • the resin include polyesters such as polyethylene terephthalate, polyethylene naphthalate, and cyclic polyolefin; polycarbonate; polyimide; polyamideimide; liquid crystal polymer.
  • the conductive film 15 can be configured by mixing one or more resin materials among the above-described resins.
  • the carbon particles contained in the conductive film 15 are members for imparting conductivity to the conductive film 15.
  • the carbon particle is a particulate carbon material. Examples of carbon particles include one or a combination of two or more of carbon black such as acetylene black, furnace black (Ketjen black), channel black, thermal black, and graphite.
  • the carbon particles are not limited to this example.
  • the carbon particle content, the shape and the particle size of the carbon particles in the conductive film 15 are not particularly limited as long as they do not depart from the spirit of the present disclosure. These can be determined as appropriate within a range in which the electrodes 19a and 19b are conducted in accordance with the contact resistance between the conductive film 15 and the electrodes 19a and 19b.
  • the thickness of the conductive film 15 is preferably 6.5 ⁇ m or more and 40 ⁇ m or less. When the thickness is 6.5 ⁇ m or more, the durability of the conductive film 15 is ensured. When the thickness is 40 ⁇ m or less, the initial detection sensitivity when the conductive film 15 is pressed is good, and a wide dynamic range can be secured.
  • the thickness of the conductive film 15 can be measured using a general hide gauge, upright gauge, or other thickness measuring means.
  • the surface resistivity of the conductive film 15 is preferably 7 k ⁇ / sq to 30 k ⁇ / sq.
  • the conductive film 15 can exhibit a small variation in sensor resistance and a high electrical reliability when a heavy load is applied.
  • the surface resistivity of the conductive film 15 in a desired range can be adjusted by the amount of carbon particles contained in the conductive film 15. In other words, the blending amount of the carbon particles contained in the conductive film 15 may be determined using as an index that the surface resistivity of the conductive film 15 falls within the above range.
  • the conductive film 15 may be adjusted so that the surface roughness Rz of the surface facing the electrodes 19a and 19b is 0.10 ⁇ m or more and 0.50 ⁇ m or less. Thereby, the film formability of the conductive film 15 is good, and the detection sensitivity of the contact resistance is stabilized.
  • the surface roughness Rz of the conductive film 15 is measured by measurement using a general surface roughness meter or surface roughness analysis using a laser microscope.
  • the Young's modulus of the conductive film 15 is preferably 5 GPa or less. As a result, the conductive film 15 can be sufficiently flexible. According to the range of the Young's modulus, the change in the contact resistance accompanying the increase in the pressing force applied to the conductive film 15 is quantified well in the above-described predetermined distance A and the preferable range of the opening size of the opening O1. be able to.
  • the method for producing the resin film containing carbon particles is not particularly limited. For example, a carbon particle-containing resin film is produced by film-forming a composition obtained by appropriately kneading a mixture of one or more resins as raw materials and carbon particles. be able to.
  • the conductivity, surface resistivity, and surface roughness of the conductive film 15 described above are parameters that affect the magnitude of the resistance value when the conductive film 15 contacts the electrodes 19a and 19b. Therefore, both are examples of “characteristics related to the resistance of the sensor device”. Further, when the thickness or Young's modulus of the conductive film 15 is large, the displacement of the conductive film 15 when a predetermined pressing force is applied to the pressure sensor 1 becomes small. Therefore, as a result of the conductive film 15 becoming difficult to contact the electrodes 19a and 19b, the resistance of the sensor device increases. Therefore, these parameters are also examples of “characteristics related to the resistance of the sensor device”.
  • the electrode pressing member 17 includes the protrusions 17a and the base portion 17b.
  • the protrusion 17a and the base portion 17b are integrally formed of the same material, for example, by injection molding.
  • the base portion 17b is formed of a molten material for forming the protrusion 17a in the injection molding. Therefore, when the projection 17a can be directly formed on the conductive film 15, the electrode pressing member 17 does not include the base portion 17b.
  • the material of the electrode pressing member 17 can be selected as appropriate without departing from the spirit of the present embodiment. For example, a rubber material having a rubber hardness of 20 or more and 80 or less or a plastic material having a relatively low hardness is used.
  • the rubber material examples include natural rubber, acrylic rubber, isoprene rubber, styrene butadiene rubber, butadiene rubber, chloroprene rubber, butyl rubber, ethylene propylene rubber, epichlorohydrin rubber, nitrile butadiene rubber, nitrile isoprene rubber, and silicon rubber. Conceivable. It is also possible to consider polyvinyl alcohol, ethylene / vinyl acetate copolymer, etc. as plastic materials.
  • the protrusion 17a may have any shape.
  • the protrusion 17a preferably has a shape and an area suitable for allowing the protrusion end surface 170 to concentrate the load on the electrodes 19a and 19b.
  • the protrusion end surface 170 preferably has a size that overlaps the opening O1 and enters the inside of the opening O1. .
  • the pressure sensor 1 described above operates as follows. Electric power is supplied to the sensor devices U 1 and U 2 of the pressure sensor 1 through the input wiring 21. Since the electrodes 19a and 19b are separated from each other, when the pressing force is not applied to the pressure sensor 1, no electrical conduction occurs between the electrodes 19a and 19b. When a pressing force is applied from above the pressure sensor 1, the pressing force acts on both of the superimposed sensor devices U1 and U2. In the sensor devices U1 and U2, the conductive film 15 is pushed downward by the protrusion 17a and comes into contact with the electrodes 19a and 19b exposed from the opening O1. The conductive film 15 and the electrodes 19a and 19b are in contact with each other, and conduction is generated between the electrodes 19a and 19b.
  • an electrical signal is output from the output wiring 22 to a driver device (not shown).
  • the driver device determines that the pressure sensor 1 has been turned on when the output detection signal becomes greater than or equal to a predetermined threshold value. And the magnitude
  • the electrical signal output from the pressure sensor 1 varies depending on the area where the electrodes 19 a and 19 b are in contact with the conductive film 15. For this reason, when the conductive film 15 is strongly pressed against the electrodes 19a and 19b, the contact area increases and the resistance value decreases. And it is judged that the electrical signal became large and a strong pressure was applied to the sensor devices U1 and U2.
  • the sensor devices U1 and U2 superimposed in the pressure application direction form a stack circuit. Therefore, the contact area between the electrodes 19a and 19b of the sensor device U1 to which the pressing force is transmitted first and the conductive film 15 may be different from the contact area between the conductive film 15 and the electrodes 19a and 19b of the sensor device U2.
  • the combined resistance of the sensor device U1 and the sensor device U2 includes a low resistance component and a high resistance component.
  • the electrical signal changes in a wider range according to the pressure than when pressure is applied to a sensor device that is not stacked (hereinafter referred to as “sensor device alone”).
  • sensor device alone Such an embodiment can provide a wide range pressure sensor with a wide pressure measurement range.
  • the present embodiment may be configured such that a part of the plurality of superimposed sensor devices included in the stack circuit S is different from the characteristics relating to the resistance of other sensor devices. .
  • a relatively large electrical signal is output from the relatively low resistance sensor device in the stack circuit S.
  • a relatively small electrical signal is output from the high-resistance sensor device.
  • a large electric signal starts to be output at a relatively low pressure. Therefore, the initial sensitivity of the pressure sensor 1 can be increased.
  • the small electric signal output from the high resistance sensor device changes until after the large electric signal does not change.
  • a combined value of large and small electric signals is output as a pressure detection signal. Therefore, it is possible to realize a wide range pressure sensor 1 that can measure a wide range from a low pressure to a high pressure.
  • the area of the electrode that can be in contact with the conductive film As a method of changing the characteristics related to the resistance of the sensor device, for example, changing the area of the electrode that can be in contact with the conductive film can be mentioned. That is, a part of the plurality of superimposed sensor devices used in the present embodiment may be configured such that the area of the electrode that can contact the conductive film 15 is different from that of other sensor devices. Good. As a configuration for changing the area of the electrode that can come into contact with the conductive film 15, for example, it is conceivable to change the opening area of the opening O1 between the sensor devices included in the stack circuit S. It is also conceivable to change the areas of the electrodes 19a and 19b.
  • the range where the concentrated load is applied between the conductive film 15 and the electrodes 19a and 19b may be different between the sensor devices.
  • a part of the protrusion end surfaces 170 of the plurality of protrusions 17a is formed in the size of another sensor device. It can be designed to be different from the size of the projection end surface 170 of the projection 17a. Assuming that the external pressing force applied to the protrusion 17a is constant, the pressing force is dispersed by providing the protrusion 17a having a large area of the protrusion end surface 170. Therefore, the resistance between the electrodes 19a and 19b and the conductive film 15 is increased.
  • the protrusion 17a having a small area of the protrusion end surface 170 the external pressing force is concentrated. Therefore, the resistance between the electrodes 19a and 19b and the conductive film 15 is reduced. For this reason, a relatively small electrical signal is output from the sensor device corresponding to the large protrusion end surface 170. A relatively large electrical signal is output from the sensor device corresponding to the small protrusion end surface 170. Therefore, the parameter of the area of the protrusion end surface 170 is an example of “characteristic related to the resistance of the sensor device”. At this time, a large electric signal corresponding to the small protrusion end surface 170 starts outputting a signal at a relatively low pressure. Therefore, the initial sensitivity of the pressure sensor 1 can be increased.
  • the small electric signal output from the sensor device corresponding to the large protrusion end surface 170 changes until after the large electric signal does not change. Therefore, by making the areas of the plurality of protrusion end surfaces 170 different from each other, a combined value of large and small electric signals is output as a pressure detection signal. Therefore, according to the present embodiment, it is possible to realize a wide range pressure sensor 1 that can measure a wide range from a low pressure to a high pressure.
  • the configuration for changing the characteristics related to the resistance of the sensor device in the stack circuit S is not limited to the area of the protrusion end surface 170.
  • the thickness, surface roughness, electrical resistance profile (how to change) of the conductive film 15 can be changed.
  • the pressure measurement range of the pressure sensor 1 can be widened by connecting a plurality of sensor devices included in the stack circuit S in parallel to each other.
  • FIG. 4 is a top view showing the pressure sensor 1 of this embodiment including a plurality of stack circuits shown in FIGS. 1 and 2 connected in parallel.
  • FIG. 5 is a diagram showing an equivalent circuit of the pressure sensor 1 shown in FIG.
  • the illustrated pressure sensor 1 includes a plurality of sensor devices.
  • the stacked sensor device U11 and sensor device U21 constitute a stack circuit S1.
  • the sensor device U12 and the sensor device U22 constitute a stack circuit S2.
  • the sensor device U13 and the sensor device U23 constitute a stack circuit S3. Sensor device pairs included in each stack circuit are connected in parallel to each other.
  • the ratio of the resistance characteristics of the sensor devices constituting the stack circuit to the combined resistance is reduced.
  • the electric signal output from the stack circuit can be changed gently.
  • the stack circuit when the stack circuit includes a plurality of sensor devices having different resistance characteristics, the stack circuit can be designed so that the combined resistance continuously changes.
  • the stack circuit S1 to the stack circuit S8 are connected in parallel to each other.
  • the driver apparatus which is not illustrated can acquire the detection signal of a pressure from each stack circuit.
  • the driver device may include the same number of input channels as the number of stack circuits.
  • the driver device may include fewer input channels than the number of stack circuits.
  • the driver device may be designed to repeatedly and sequentially acquire detection signals output from each stack circuit at a frequency of about 300 Hz, for example. .
  • FIG. 6A, FIG. 6B, and FIG. 6C are views for explaining a method for manufacturing the pressure sensor of the present embodiment.
  • FIG. 6A is a top view of the pressure sensor member 100.
  • the pressure sensor member 100 has a plurality of stack circuits S1 to S8 on the wiring sheet 10.
  • Each of the stack circuit S1 to the stack circuit S8 includes two sensor devices that make a pair, such as sensor devices U11 and U21 and sensor devices U12 and U22.
  • the sensor device includes the electrodes 19a and 19b and the conductive film 15 disposed to face the electrodes 19a and 19b.
  • the pressure sensor member 100 includes a common input wiring 21 that inputs electrical signals to the plurality of sensor devices U11, U21, and the like, and a common output wiring 22 that outputs electrical signals from the plurality of sensor devices U11, U21, etc. ing.
  • the manufacturing method of the pressure sensor member 100 is a common method for inputting an electrical signal to the electrodes 19a and 19b, the conductive film 15 disposed facing the electrodes 19a and 19b, the sensor devices U11 and U21, and the like.
  • the electrodes 19a and 19b of the sensor devices U11 and U12 are arranged facing each other inward with the conductive film 15 therebetween.
  • An insulating sheet 16 is disposed on the entire surface between the conductive films 15 so that the two conductive films 15 are not electrically short-circuited.
  • the insulating sheet 16 can be made of the same material as the wiring sheet 10 described above, such as polyimide or polyamideimide.
  • the wiring sheet 10 and the insulating sheet 16 may be made of the same material or different materials.
  • the pressure sensor member 100 includes sensor devices U11 to U18 and sensor devices U21 to U28 that constitute the stack circuit from S1 to stack circuit S8.
  • through holes h ⁇ b> 1 and h ⁇ b> 2 are formed in the wiring sheet 10 for electrically connecting the front and back of the wiring sheet 10.
  • the surface and thickness direction of the wiring sheet 10 in the through holes h1 and h2 are made conductive by plating or the like.
  • an etching resist film is laminated on the wiring sheet 10. Then, by exposing and developing the resist film, an etching mask having a pattern including the input wiring 21, the output wiring 22, and the electrodes 19a and 19b is formed on the wiring sheet 10.
  • the plating foil that is not covered with the etching mask is removed from the wiring sheet 10 by etching the plating foil using the etching mask as a mask. The etching mask is peeled off after completing the etching of the plating foil.
  • a cover film is laminated on the surface of the wiring sheet 10 where the input wiring 21 and the output wiring 22 are formed. And a soldering resist is printed on a formation surface, this is exposed and developed, and the insulating layer 13 is formed.
  • the wiring protective layer can be formed by the above steps. Then, the surface of the electrodes 19a and 19b facing the conductive film 15 is plated with nickel or gold. Further, in the present embodiment, the conductive film 15 is bonded to the insulating layer 13 using the adhesive layer 11. The pressure sensor member 100 is completed through the above steps.
  • the manufacturing method of the pressure sensor according to the present embodiment includes a step of overlapping the sensor devices U11 and U21 by folding the pressure sensor member 100 that is the wiring sheet 10 that has undergone the above-described steps.
  • FIG. 6B and FIG. 6C are diagrams for explaining the above steps.
  • 6 (b) is a perspective view of the pressure sensor member 100 in the process of being folded
  • FIG. 6 (c) is a diagram illustrating the sensor device U11, U12 with the folded pressure sensor member 100 in a direction perpendicular to the line L1 in the figure. It is a schematic diagram of the cross section obtained when it cut
  • a partial region 10a folded at the line L1 is referred to as a partial region 10a, and the other side (upper side in FIG. 6) is referred to as a partial region 10b.
  • a plurality of sensor devices included in each of the stack circuits are individually arranged in each of the partial region 10a and the partial region 10b.
  • the sensor device U21 is disposed in the partial region 10a.
  • the sensor device U11 is disposed in the partial region 10b.
  • the through holes h1 and h2 are formed through the partial regions 10a and 10b, respectively.
  • the through holes h1 and h2 are formed at positions that overlap each other when the wiring sheet 10 is folded along the line L1. Specifically, the distances from the centers of the through holes h1 and h2 to the line L1 are equal to each other. Furthermore, the arrangement direction of the through holes h1 and h2 is orthogonal to the line L1. Thereby, when the wiring sheet 10 is folded along the line L1, it is possible to prevent the partial area 10a and the partial area 10b from being displaced by inserting a pin (not shown) or the like into the through holes h1 and h2. can do. In this way, these partial regions can be superimposed on each other while being aligned.
  • the pressure sensor member 100 is folded in the width direction along the line L1.
  • two sensor devices for example, the sensor devices U11 and U21
  • each of the plurality of stack circuits for example, the stack circuit S1 overlap each other.
  • a stack circuit for example, stack circuit S1 is configured.
  • the pressure sensor member 100 is folded so that the formation surfaces of the sensor devices U11 and U21 are on the inside. For this reason, the stacked sensor devices U11 and U21 are arranged so that the conductive film 15 overlaps as shown in FIG. 6C.
  • a pressure sensor is completed by bonding the electrode pressing material 17 on one wiring sheet 10 of the sensor devices U11 and U21.
  • this embodiment is not limited to folding the pressure sensor member 100 so that the formation surfaces of the sensor devices U11 and U21 are inside.
  • the pressure sensor member 100 may be folded so that the formation surfaces of the sensor devices U11 and U21 are on the outside.
  • the sensor devices U11 and U21 are stacked such that the wiring sheets 10 overlap each other.
  • the present embodiment is not limited to providing the electrode pressing member 17 on one side of the stack circuit.
  • the electrode pressing member 17 may be formed on both sides of the stack circuit.
  • the sensor device may be stacked by folding the pressure sensor member 100 after providing the electrode pressing member 17 to the sensor device.
  • FIG. 7A, FIG. 7B, and FIG. 7C are other views for explaining the method of manufacturing the pressure sensor of the present embodiment.
  • 7A is a top view of the pressure sensor member 100
  • FIGS. 7B and 7C are diagrams for explaining a process of overlapping the sensor devices U11 and U21 by folding the pressure sensor member 100.
  • FIG. FIG. FIG. 7B is a cross-sectional view of the pressure sensor member 100 viewed in the direction of arrows b and b shown in FIG.
  • FIG. 7C is a diagram showing a state in which the sensor device is stacked by folding the pressure sensor member 100 shown in FIG. 7B in the direction indicated by the arrow c.
  • the pressure sensor member 100 is folded at the line L1.
  • the pressure sensor shown in FIG. 7C the pressure sensor member 100 is folded at the line L1.
  • the sensor device U11 and the sensor device U12 are stacked such that the conductive films 15 are all disposed inside.
  • the sensor device U11 and the sensor device U12 are stacked such that all of the conductive films 15 are disposed inside. In this respect, the pressure sensor of FIG. 7C is different from the pressure sensor of FIG.
  • FIG. 8A, FIG. 8B, and FIG. 8C are diagrams for explaining an example in which the pressure sensor member 101 is folded three times in a bellows shape.
  • FIG. 8A is a top view of the pressure sensor member 101.
  • FIG. 8B is a perspective view of the pressure sensor member 101 in the process of being folded.
  • FIG. 8C is a schematic diagram of a cross section obtained by cutting the folded pressure sensor member 101 in a direction orthogonal to the line L1 in the drawing and at a position passing through the sensor devices U11, U21, U31, U41. It is.
  • the pressure sensor member 101 shown in FIG. 8A includes 32 sensor devices U11 to U18, U21 to 28, U31 to 38, and U41 to 48. Then, as shown in FIG. 8B, the pressure sensor member 101 is folded along each of the three lines L1, L2, and L3. At this time, in this embodiment, the sensor device U11 and the sensor device U21 are stacked by “valley-folding” the pressure sensor member 101 along the line L1. The sensor device U11 and the sensor device U41 are stacked when the pressure sensor member 101 is “folded” along the line L2. Further, the sensor device U41 and the sensor device U31 are stacked by the “valley folding” of the pressure sensor member 101 along the line L3.
  • the four regions partitioned by the lines L1 to L3 are referred to as partial regions 10a to 10d.
  • the region on one side of the line L1 (the lower side in FIG. 8A) is the partial region 10a
  • the region surrounded by the line L1 and the line L2 is the partial region 10b
  • the line L2 and the line A region surrounded by L3 is referred to as a partial region 10c
  • a region on the other side of the line L3 (upper side in the figure) is referred to as a partial region 10d.
  • the plurality of sensor devices included in each of the stack circuits are respectively arranged in one and the other of the two partial regions adjacent to each other divided by either the line L1 or the line L3 among the partial regions 10a to 10d.
  • the sensor devices U21, U11 are arranged in the partial regions 10a, 10b partitioned by the line L1, respectively.
  • Sensor devices U41 and U31 are arranged in the partial areas 10c and 10d partitioned by the line L3, respectively.
  • Each of the partial areas 10a to 10d has through holes h1 to h4 penetrating the partial areas.
  • the through holes h1 to h4 are formed at positions that overlap each other when the wiring sheet 10 is folded along the lines L1 to L3. Specifically, the distances from the centers of the through holes h1 and h2 to the line L1 are equal to each other. The distances from the centers of the through holes h1 and h4 to the line L2 are also equal. Further, the distances from the centers of the through holes h3 and h4 to the line L3 are also equal to each other.
  • the direction in which the through holes h1 to h4 are arranged is orthogonal to the lines L1 to L3 that are parallel to each other.
  • the present embodiment is not limited to the configuration including the sensor devices stacked by folding the pressure sensor members 100 and 101.
  • the input wiring 21, and the output wiring 22 may be connected to each other through the through hole h1 or the like.
  • one electrode pressing member 17 is arranged corresponding to the plurality of stack circuits S arranged in the plane direction.
  • the pressure sensor according to the present embodiment reduces the installation area of the pressure sensor by stacking a plurality of sensor devices in the direction in which the conductive film is disposed with respect to the electrodes of the sensor device. Suitable for Further, by providing the input wiring common to the plurality of sensor devices and the common output wiring, the combined resistance of the plurality of sensor devices can be output as a pressure detection signal. For this reason, the combined resistance of the resistance value detected by each sensor device can be output as a detection signal. In this way, a wide range of pressures from a relatively low pressure to a relatively high pressure can be detected.
  • the sensor device even if the sensor device is stacked in the thickness direction of the wiring sheet 10 by forming the pressure sensor 1 in the wiring sheet 10, for example, a tact switch or the like stacked in the thickness direction.
  • the entire pressure sensor 1 can be made thinner than a known configuration including a mounting component.
  • the sensor devices are overlapped by folding the formed pressure sensor members 100 and 101. Thereby, the number of electrical connection points can be reduced. As a result, the degree of freedom in design can be increased.
  • the insulating layer 13 is not limited to the insulating layer formed so that a part of the insulating layer 13 overlaps the periphery of the electrodes 19a and 19b.
  • an offset may be provided between the peripheral edges of the electrodes 19 a and 19 b and the insulating layer 13.
  • the opening O2 of the insulating layer 13 is designed to be slightly larger than the periphery of the electrodes 19a and 19b.
  • a dot pattern is attached to the formation region of the insulating layer 13 in FIG. 9A.
  • the electrodes 19a and 19b are entirely separated from the insulating layer 13 in the direction of alignment adjacent to each other (the horizontal direction in FIGS. 9A and 9B). Then, as shown in FIG. 9A, in the direction orthogonal to the arrangement direction (vertical direction in the figure), part of the end portions of the electrodes 19a and 19b overlap with the insulating layer 13 and are covered therewith. May be. According to the first modification, variations in the characteristics of the sensor device due to the positional deviation between the opening O1 and the electrodes 19a and 19b can be suppressed.
  • the present embodiment is not limited to a configuration including rectangular electrodes 19a and 19b arranged adjacent to each other in parallel with a predetermined distance.
  • the electrode may include a first electrode and a second electrode, and the first electrode and the second electrode may have a shape that is separated from each other and can be fitted.
  • the “fitable shape” means that all straight lines passing through the envelope region of the first electrode and the second electrode (the smallest rectangular region including the first electrode and the second electrode) Crossing at least one of the electrode and the second electrode.
  • FIGS. 10A, 10 ⁇ / b> B, and 10 ⁇ / b> C are diagrams for explaining the electrode of the second modification.
  • the first electrode 83a and the second electrode 83b of the electrode 83 shown in FIG. 10B have a spiral shape in which they are combined with each other.
  • the first electrode 83a and the second electrode 83b of the electrode 83 shown in FIG. 10C are arranged concentrically with each other.
  • one of the first electrode 83a and the second electrode 83b may have a circular shape, and the other may have a ring shape surrounding the circular shape with a predetermined distance.
  • the circular shape includes a perfect circle, an ellipse, and an ellipse.
  • the envelope regions 85, 86, 87 including the first electrode and the second electrode are provided in any of the electrodes 82, 83, 84. All of the straight lines intersecting with each other intersect with at least one of the first electrode and the second electrode. According to the electrode of Modification 2 as described above, the change in resistance value when pressure is applied changes according to the shape. Therefore, the detection accuracy of the pressure sensor can be increased by combining electrodes having different shapes.
  • FIG. 11A and FIG. 11B are diagrams for explaining the results of an experiment for verifying the effect of overlapping sensor devices.
  • the vertical axis represents the detection signal (resistance value: ⁇ ) output from the pressure sensor
  • the horizontal axis represents the pressure (mN) applied to the pressure sensor.
  • a curve C1 in FIG. 11A indicates the characteristics of the pressure sensor according to the present embodiment.
  • Curves C2 and C3 indicate the characteristics of Comparative Example 1 and Comparative Example 2 that are compared with the pressure sensor according to the present embodiment.
  • the pressure sensor according to the present embodiment whose result is shown in FIG. 11 (a), four sensor devices designed in the same manner are stacked and connected in parallel.
  • An electrode pressing member 17 is provided in each of the stacked sensor devices.
  • the protrusion end surfaces of the protrusions 17a of the electrode pressing members 17 are all circular with a diameter of 4 mm.
  • the electrode pressing member 17 is provided on the same sensor device as the sensor device included in the pressure sensor according to the present embodiment.
  • the protrusion 17a has a circular protrusion end surface with a diameter of 4 mm.
  • an electrode pressing member 17 is provided on the sensor device alone.
  • the protrusion 17a has a circular protrusion end surface with a diameter of 2 mm.
  • the resistance value (resistance) of the curve C2 of Comparative Example 1 hardly changes when the pressure reaches about 3000 mN.
  • the resistance value hardly changes.
  • the pressure sensor output according to the present embodiment whose result is shown in FIG. 11B is formed by stacking four sensor devices similarly designed and connected in parallel.
  • An electrode pressing member 17 is provided for each of the stacked sensor devices.
  • the protrusion end surfaces of the protrusions 17a of the electrode pressing members 17 are all circular with a diameter of 2 mm.
  • a curve C4 in FIG. 11B shows the characteristics of the pressure sensor according to this embodiment. According to FIG.11 (b), it was confirmed by the curve C4 which the pressure sensor which concerns on this embodiment shows that resistance value has changed until a pressure reaches about 4000 mN. From the above experiment, it was confirmed that the pressure sensor according to the present embodiment has a wider detection range than a single pressure sensor by connecting a plurality of superposed sensor devices in parallel. .
  • 12 (a) and 12 (b) are diagrams for explaining the results of an experiment for verifying the effect of changing the electrical characteristics of a plurality of superimposed sensor devices in a stack circuit.
  • 12A and 12B the vertical axis represents the detection signal (resistance value: ⁇ ) output from the pressure sensor, and the horizontal axis represents the pressure (mN) applied to the pressure sensor.
  • a curve C5 in FIG. 12A shows the characteristics of the pressure sensor according to the present embodiment.
  • four sensor devices designed in the same manner are stacked and connected in parallel.
  • An electrode pressing member 17 is provided in each of the stacked sensor devices.
  • the protrusion 17a of the three devices has a circular protrusion end surface with a diameter of 4 mm.
  • the protrusion 17a of the remaining one device has a circular protrusion end surface with a diameter of 2 mm.
  • FIG. 12 (a) it was confirmed from the curve C5 indicated by the pressure sensor according to the present embodiment that the resistance value changed until the pressure reached about 4000 mN.
  • the pressure sensor according to the present embodiment whose result is shown in FIG. 12B, four sensor devices designed in the same manner are stacked and connected in parallel.
  • An electrode pressing member 17 is provided in each of the stacked sensor devices.
  • the protrusion 17a of the two devices has a circular protrusion end surface with a diameter of 4 mm.
  • the protrusions 17a of the remaining two devices have circular protrusion end faces with a diameter of 2 mm.
  • a curve C6 in FIG. 12B shows the characteristics of the pressure sensor according to this embodiment. According to FIG.12 (b), it was confirmed by the curve C6 which the pressure sensor which concerns on this embodiment shows that resistance value has changed until a pressure reaches about 4000 mN.
  • the pressure sensor according to the present embodiment is a single unit by the fact that a plurality of superimposed sensors are connected in parallel and the resistance characteristics are changed between the plurality of sensor devices. It was confirmed that it has a detection range wider than that of the pressure sensor.
  • FIGS. 13 (a) to 13 (c) are diagrams showing the results of theoretical calculation of the relationship between the detection signal (resistance value: ⁇ ) output from the pressure sensor and the applied pressure.
  • 13A to 13C the vertical axis represents the detection signal (resistance value: ⁇ ) output from the pressure sensor, and the horizontal axis represents the pressure (mN) applied to the pressure sensor.
  • Fig.13 (a) is a figure for demonstrating the effect of connecting the sensor device overlapped in parallel.
  • a curve C7 shown in FIG. 13A shows the characteristics of a pressure sensor of a single sensor device (hereinafter referred to as “sensor device p1”) having predetermined characteristics.
  • a curve C8 shows the characteristics of a pressure sensor of a single sensor device (hereinafter referred to as “sensor device p2”) having characteristics relating to resistance different from that of the sensor device p1.
  • a curve C9 indicates the characteristics of the pressure sensor in which the sensor device p1 and the sensor device p2 are overlapped and connected in parallel.
  • a curve C10 indicates the characteristics of the pressure sensor in which three sensor devices p1 and one sensor device p2 are combined and overlapped and connected in parallel.
  • FIG. 13B is a diagram for explaining the effect of overlapping and connecting the sensor devices in series.
  • FIG.13 (c) is the figure which expanded the area
  • Curves C11 shown in FIGS. 13B and 13C show the characteristics of the pressure sensor of a single sensor device (hereinafter referred to as “sensor device p3”) having characteristics relating to resistance different from the sensor devices p1 and p2. Show.
  • a curve C12 indicates the characteristics of a pressure sensor of a single sensor device (hereinafter, referred to as “sensor device p4”) having characteristics relating to resistance different from any of the sensor devices p1, p2, and p3.
  • a curve C13 indicates the characteristics of the pressure sensor in which the sensor device p3 and the sensor device p4 having characteristics related to different resistances are overlapped and connected in series.
  • a curve C14 indicates the characteristics of the pressure sensor in which three sensor devices p3 and one sensor device p4 are combined and overlapped and connected in series.
  • a pressure sensor is a single sensor device when the applied pressure is within 1000 mN.
  • a detection signal similar to that of the pressure sensor is output.
  • the detection signal of the pressure sensor in which the sensor devices are overlapped and connected in series, changes with a larger inclination than the pressure sensor of the sensor device alone, particularly in the range where the applied pressure is 3000 mN or more. From the above, it can be seen that the pressure sensor according to the present embodiment can measure a wider range of pressures than the pressure sensor of the sensor device alone.
  • FIG. 13 (a) when a plurality of sensor devices are connected in parallel, it has been found that the change width of the characteristic regarding resistance becomes larger than that of a single sensor device.
  • FIGS. 13B and 13C when a plurality of sensor devices are connected in series, the change width of the resistance-related characteristics is smaller than that of a single sensor device. I found out that For this reason, a pressure sensor in which a plurality of sensor devices are connected in parallel can be said to be more preferable because a wider dynamic range can be obtained.
  • a plurality of sensor devices each having an electrode and a conductive film disposed to face the electrode are stacked in the direction in which the conductive film is disposed with respect to the electrode, and inputs an electric signal to the plurality of sensor devices.
  • a pressure sensor having a wiring sheet on which a plurality of input wirings and a common output wiring for outputting electrical signals from the plurality of sensor devices are formed.
  • the pressure sensor according to (7) wherein an area of the electrode that can be in contact with the conductive film is different from that of the other sensor devices in a part of the plurality of stacked sensor devices.
  • the electrode includes a first electrode and a second electrode, and the first electrode and the second electrode have shapes that are spaced apart from each other and can be fitted together. Any one pressure sensor.
  • a sensor device having a plurality of electrodes and a conductive film corresponding to at least a part of the plurality of electrodes, a common input wiring for inputting an electric signal to the plurality of sensor devices, and the plurality of sensors
  • a method for manufacturing a pressure sensor comprising: forming a common output wiring for outputting an electrical signal from a device on a wiring sheet; and stacking the sensor devices by folding the wiring sheet.
  • Pressure sensor 1 Wiring sheet 10 Partial areas 10a, 10b, 10c, 10d Adhesive layer 11 Insulating layer 13 Conductive film 15 Insulation sheet 16 Electrode pressing material 17 Protrusion 17a Base part 17b Electrodes 19a, 19b, 82, 83, 84 Input wiring 21 Output wiring 22 Through hole 24 First electrodes 82a, 83a, 84a Second electrodes 82b, 83b, 84b Envelope regions 85, 86, 87 Pressure sensor member 100, 101

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

広範囲の圧力を測定することに適しており、かつ、小さな設置面積を有する圧力センサが提供される。 電極19a、19bと、前記電極19a、19bに対向して配置されている導電膜15と、を含み、かつ、電極19a、19bに対して導電膜15が配置されている方向に重ねられている、複数のセンサデバイスU1、U2、および、前記複数のセンサデバイスU1、U2に電気信号を入力する共通の入力配線21と、複数のセンサデバイスから電気信号を出力する共通の出力配線22と、を有する配線シート10によって圧力センサが構成される。

Description

圧力センサ及び圧力センサの製造方法
 本開示は、圧力センサ、及び、圧力センサの製造方法に関する。
 様々な技術分野において、圧力を感知する圧力センサが使用されている。圧力センサのいくつがは、モバイル端末やロボット等に使用される。このような用途の圧力センサには、比較的狭い範囲に設置できる、つまり設置面積が小さいことが望まれる。また、圧力センサには、圧力を受けた位置を高精度に検出することが要求されている。圧力センサの公知例は、例えば、特許文献1、特許文献2、及び特許文献3に記載されている。特許文献1に記載のロボットハンドの制御装置は、ロボットにおけるワークの把持部と、ワークとの接触圧力を検出するのに使用される圧力検出センサと、を有している。また、特許文献2には、並列に接続されている複数の感応センサを含む着座センサが記載されている。特許文献3には、一対の絶縁フィルム間に設けられており、かつ、開口している接点部を有するスペーサと、この開口の対向面のそれぞれに形成されている電極と、を含むメンブレインスイッチが記載されている。さらに、接点部の少なくとも一方の絶縁フィルムの外面には、突出部が設けられていることが記載されている。
特開平7-186078号公報 特開2003-65865号公報 特開2000-222982号公報
 しかしながら、特許文献1に開示の圧力センサは、複数個所で接触圧力を検出し、縦、横、あるいは斜めといった直線上に並ぶ複数の接触圧力のいずれかのみが所定の値以上であるか否かを判断している。このため、特許文献1に開示の圧力センサには、複数の方向に配置されている複数個の圧力センサが必要になる。そのため、圧力センサの設置面積が大きくなる。また、特許文献2に記載の実施形態によれば、複数の圧力センサが自動車の助手席に設けられている。そして、この圧力センサの各々により検出された電気抵抗値が全体の合計抵抗に与える影響が低減されている。これによって、人の着座を誤検出することを防いでいる。このため、特許文献2に記載の実施形態も、圧力センサの設置面積の問題解決を意図してはない。さらに、特許文献3に記載の実施形態では、比較的小さい値の荷重に対しても圧力センサの抵抗値が大きく変動する。すなわち、この圧力センサha、比較的小さい圧力を高い感度で測定できる一方で、大きい圧力の測定には、効果がな。そのため、この圧力センサは、その測定のダイナミックレンジが狭いという欠点を有する。本実施形態に係る圧力センサは、上記の点に鑑みてな開発された。すなわち、本開示は、測定可能な圧力の広い範囲(測定レンジ)の圧力を測定することができ、かつ、設置面積を小さくすることに適している圧力センサ、及び、その圧力センサの製造方法に関する。
 本実施形態に係る圧力センサは、複数のセンサデバイスと、配線シートと、を含み、前記複数のセンサデバイスのそれぞれは、電極と、前記電極に対向して配置される導電膜と、を含み、前記複数のセンサデバイスが、前記電極に対する前記導電膜の配置方向に重ねられており、前記配線シートは、前記複数のセンサデバイスに電気信号を入力する共通の入力配線と、前記複数のセンサデバイスから電気信号を出力する共通の出力配線と、を含む、
 また、本実施形態に係る圧力センサの製造方法は、複数の電極と、前記複数の電極の少なくとも一つの電極に対応する導電膜と、を含むセンサデバイスと、複数の前記センサデバイスに電気信号を入力する共通の入力配線と、複数の前記センサデバイスから電気信号を出力する共通の出力配線と、を配線シート上に形成することと、前記配線シートを折り畳むことによって前記センサデバイス同士を重ねることと、を含む。
開示の効果
 本開示によれば、広い範囲(測定レンジ)の圧力を想定することができ、かつ、設置面積を小さくすることに適している圧力センサ、及び、その圧力センサの製造方法が提供される。
本開示の一実施形態の圧力センサを説明するための模式的な断面図である。 (a)は、図1に示した圧力センサのセンサデバイスの模式的な上面図である。(b)は、センサデバイスの模式的な断面図である。 (a)は、変形例のセンサデバイスの断面図である。(b)は、(a)のセンサデバイスを折り畳むことを説明するための図である。(c)は、折り畳まれた(b)のセンサデバイスを含む構成の断面図である。 並列に接続されている、図1、図2に示したスタック回路を含む圧力センサの上面図である。 図4に示した圧力センサの等価回路を示した図である。 (a)、(b)、(c)は、本実施形態の圧力センサの製造方法を説明するための図である。 (a)、(b)、(c)は、本実施形態の他の圧力センサの製造方法を説明するための図である。 (a)、(b)、(c)は、本実施形態の圧力センサの製造方法の他の例を説明するための図である。 本開示の一実施形態の変形例1を説明するための図である。 本開示の一実施形態の変形例2を説明するための図である。 本開示の実施例を説明するための図であって、(a)、(b)は、センサデバイスを重ね合わせたことによる効果の検証結果を示した図である。 本開示の実施例を説明するための図であって、(a)、(b)は、重ね合わされたセンサデバイスの抵抗に関する特性を違えたことによる効果の検証結果を示した図である。 本開示の実施例を説明するための図であって、(a)~(c)は重ね合わされたセンサデバイスを並列または直列に接続したことによる効果の検証結果を示した図である。
[概要]
 以下、本開示の一実施形態を図面に基づいて説明する。なお、すべての図面において、同様の構成要素には同様の符号が付される。そして、重複する説明は適宜省略される。本実施形態の圧力センサの基本構成には、シート状に加工された可撓性を有する材料を含む、シート状の配線基板(以下、「配線シート」と称す)と、この配線シートに形成されている配線層と、を含む。
 図1は、本実施形態の圧力センサ1を説明するための模式的な断面図である。図2(a)、図2(b)は、図1に示したセンサデバイスU1、U2を拡大して示して、説明するための模式図である。図2(a)及び図2(b)では、圧力センサの配線シートを基準(最下層)として、配線シートに近い側(下方)から配線シートに遠い側(上方)に向う方向を上下方向と定義する。この上下方向は、当該圧力センサが組み込まれている製品自体の上下方向とは、必ずしも一致しない。また、「シート状」とは、配線層が形成される配線シートの形成面(上面)及び上面に対する裏面(下面)に比べて、配線シートが可撓性を有するほどに、十分小さい側面の面積を有する薄板状あるいは膜状の形状を指す。シート状であるか否かが、その材料の厚さのみに依存することはない。図2(a)は、圧力センサ1のセンサデバイスU1の模式的な上面図である。図2(b)は、センサデバイスU1、U2の断面を、図2(a)中の矢線2b-2bの方向に見た、模式的な断面図である。
 図1図2に示したように、圧力センサ1は、センサデバイスU1及びU2を含む。このセンサデバイスU1及びU2は、それぞれ、所定の距離だけ離されて配置されている二つの電極19a、19bと、電極19a、19bに対向して配置されている導電膜15と、を含む。さらに、センサデバイスU1及びU2は、電極19a及び19bに対して、導電膜15が配置されている方向に、重ねられている。そして、図2(b)に示すように、圧力センサ1は、配線シート10も含む。この配線シート10は、二つのセンサデバイスU1及びU2に電気信号を入力する共通の入力配線21と、複数のセンサデバイスU1及びU2から電気信号を出力する共通の出力配線22と、を含む(図4)。センサデバイスU1及びU2は、同様の構成を有している。
 図2(a)及び図2(b)に示したセンサデバイスU1及びU2は、互いに重ね合わされると共に、入力配線21及び出力配線22を共用する。このため、これら重ね合わされたセンサデバイスは、一つの検出信号(以下、「感圧信号」)を出力する回路を構成する。このような回路を、本実施形態では以降「スタック回路S」とも称す。スタック回路Sは、配線シート10上に複数設けられている。本実施形態では、配線シート10上に形成されているセンサデバイスU1及びU2の全てがスタック回路Sに限定される必要はない。他の構成を有する素子が配線シート10上に存在していてもよい。
 また、図1に示したように、圧力センサ1の配線シート上には、電極19a及び19bが形成されている。このことから、圧力センサ1は、配線シート10上に作り込まれる電極により構成される。このため、本実施形態は、スタック回路Sの薄型化に有利な構成となっている。
 図1に示した例では、複数のセンサデバイスU1及びU2の一部が、電極19a及び19bの少なくとも一部と重なっている突起17aを備えている。この例では、突起17aがセンサデバイスU1の側に存在している。このようにして、センサデバイスU1が、電極19a及び19b上に荷重が集中するように、構成されている。この例では、センサデバイスU1が突起17aを備えている。また、図1に示した圧力センサ1では、重ねられている複数のセンサデバイスU1及びU2の全てに対応して、一つの突起17aが設けられている。複数のセンサデバイスU1及びU2に対応して設けられている一つの突起17aを含む構成では、スタック回路Sにおける突起17aの個数が低減されるので、スタック回路Sを薄くすることに有利である。また、突起17aの形状について、特に規制はない。突起17aは、適宜、四角柱、円柱、略球体等、のうちのいかなる形状にも形成され得る。したがって、突起17aのうちデバイス、外部からの押圧力をセンサデバイスに伝達する端面170(図1では、突起17aの下端面。以下、「突起端面」と称す)もいかなる形状を有してもよい。
 本実施形態の突起17aは、ベース部17bから上に突出している突起である。ベース部17bは、突起17aを射出成形した場合に生じる部材である。組み合わされている突起17aとベース部17bとを含む構成を有する部材を、電極押圧材17と称す。突起端面170は、突起17aとベース部17bとの境界にあたる仮想面である。ただし、本実施形態は、図1及び図2(b)のように、センサデバイスU1及びU2の向き(電極19から、導電膜15へ向かう方向)が同じであるように重ねられている実施形態に限定されない。センサデバイスU1の向きと、センサデバイスU2の向きとが反対であるように、センサデバイスU1及びU2が重ねられていてもよい。
 図3(a)は、センサデバイスU1の向きと、センサデバイスU2の向きと、が反対であるように、センサデバイスU1及びU2が、重ねられている実施形態を示している。この実施形態では、配線シート10が内側に配置されている。この場合、センサデバイスU1及びU2が配線シート10を個別に有してもよい。ただし、図3(a)に示すように、1層の配線シート10をセンサデバイスU1及びU2が共有してもよい。これにより圧力センサの厚さを薄くすることができる。厚さが薄い圧力センサ1は、センサデバイスU1及びU2がさらに重ね合わせることにより、設置面積を小さくするのに有利である。
 図3(b)は、図3(a)に示した圧力センサがどのように折り畳まれるかを示す図である。本実施形態は、図3(b)に示すように、図3(b)中に示した一点鎖線を境にして矢線dが示す方向(鉛直方向)に圧力センサを折り返すことによって、さらに多くのセンサデバイスU1及びU2をスタックすることができる。図3(c)は、図3(a)に示した圧力センサを、図3(b)に示したように折り畳むことにより、作製される圧力センサの断面図である。なお、図3(c)に示した圧力センサにあっては、重ねられた導電膜15の間に設けられている絶縁シート16が二つの隣り合うセンサデバイスU1間の導通を防いでいる。また、図3(c)に示した圧力センサでは、最外層となる上下の導電膜15のうちのいずれの側にも電極押圧材17を設けることができる。
 また、導電膜15を内側に配置して、絶縁シート16が上下両側からセンサデバイスU1及びU2で挟まれるように、センサデバイスU1及びU2が重ねられてもよい。この場合も、センサデバイスU1の向きは、センサデバイスU2の向きと反対である。このような実施形態は、図6(c)および図8(c)を参照して、後述する。この場合、図6(c)では、センサデバイスU11とU21とに対応する2つの導電膜15aと15bとが電気的に短絡しないように、絶縁シート16が導電膜15aと15bとの間に挿入されている。同様に、図8(c)では、センサデバイスU11とU21とに対応する導電膜15aと15bとの間、及び、センサデバイスU31とU41とに対応する導電膜15cと15dとの間、に絶縁シート16が挿入されている。
 さらに、図6(c)では、配線シート10bと導電膜15bとの位置関係が図1及び図2に示した構成と反対になるように(図1及び図2において導電膜15よりも下にある配線シート10が、図6(c)では、導電膜15よりも上にあるように)、センサデバイスU11とセンサデバイスU21とを重ね合わせてもよい。同様に、図8(c)では、配線シート10bと導電膜15bとの位置関係が図1及び図2に示した構成と反対になるように(図1及び図2において導電膜15よりも下にある配線シート10が、図8(c)では、導電膜15よりも上にあるように)、センサデバイスU11とセンサデバイスU21とを、重ね合わせてもよい。さらに、図8(c)では、同様に、センサデバイスU31とセンサデバイスU41とを、配線シート10dと導電膜15dとの位置関係が図1及び図2に示した構成と反対になるように、重ね合わせてもよい。
 図1に示した例では、一つの突起17aがセンサデバイスU1及びU2に対応して設けられている。ただし、本実施形態は、このような構成に限定されない。突起17aは、複数重ねられているセンサデバイスのうちのそれぞれに設けられていてもよい。複数のセンサデバイスU1及びU2の各々に突起17aを設ける場合、突起17aは、重なり合ったセンサデバイスU1及びU2の外側に設けられてもよい。あるいは、突起17aは、センサデバイスU1と、U2との間、即ち、スタック回路S内、に設けられていてもよい。さらに、本実施形態は、センサデバイスU1またはセンサデバイスU2の一方の突起17aをスタック回路Sの外側に設けられており、一方、他方の突起17aが、スタック回路の内側に設けられていてもよい。上記いずれの構成であっても、圧力センサ1にかかった押圧力が電極19a、19b上に確実に集中する。そのため、突起17aは、圧力センサ1の感度を高めることができる。
 また、複数重ね合わされたスタック回路Sのセンサデバイスに突起17aを複数形成する場合、複数の突起のうちの一部の突起端面170は、他の突起の突起端面170と大きさが異なるように、構成されてもよい。このようにすると、スタック回路Sを構成する複数のセンサデバイスの抵抗に係る特性が相違する。ここで、センサデバイスの抵抗に係る特性とは、圧力センサ1が有する各種のパラメータのうち、センサデバイスの電気抵抗値に影響を及ぼしうる物理的または化学的な特性をいう。例えば、電極19a、19bと導電膜15とが一定の圧接応力(単位面積あたりの押圧力)で均一に押圧されることを前提として、電極19a、19bと導電膜15との接触面積を増減変化させることを考える。この場合、接触面積が大きくなると、電極19a、19bと導電膜15との間で導電しやすくなる。そのため、センサデバイスの抵抗は小さくなる。反対に電極19a、19bと導電膜15との接触面積が小さくなると、センサデバイスの抵抗は大きくなる。したがって、電極19a、19bと導電膜15との接触面積、および、当該接触面積に影響を及ぼすパラメータは、「センサデバイスの抵抗に係る特性」の一例となる。このように、スタック回路Sに含まれるセンサデバイスU1、U2の抵抗に係る特性を変えることの意義については後述する。
 圧力センサ1は、上記構成に加えて、絶縁層13を有している。図1、図2に示した圧力センサ1の絶縁層13は、電極19a、19bの形成領域の一部を除き、配線シート10の略全面を覆って、入力配線21及び出力配線22を保護する。それと共に、絶縁層13は、その耐環境性を向上させている。絶縁層13は、電極19a、19b上に開口されていて、図1、図2中に絶縁層13の開口部O1を示す。開口部O1の領域で、電極19a、19bが導電膜15と接触し得る。したがって、図1、図2に示した圧力センサ1では、開口部O1の面積が大きいと、電極19a、19bと導電膜15との抵抗値が小さくなる。したがって開口部O1の開口面積は、圧力センサ1の用途、および、適正な検出値の範囲に応じて決定される。
 導電膜15と絶縁層13との間には、接着剤層11が形成されている。接着剤層11は、押圧力が加わってないときの導電膜15と電極19a、19bとの離間を維持している。
 次に、以上説明した構成について詳述する。
[配線シート]
 本実施形態の配線シート10は、可撓性かつ絶縁性のフィルムであり、所謂フレキシブルプリント配線板である。上記絶縁性フィルムの材料の例としては、ポリエチレン、ポリエチレンテレフタレート、ポリエチレンナフタレート、シクロオレフィンポリマー、ポリカーボネート、アラミド樹脂、ポリイミド、ポリイミドワニス、ポリアミドイミド、ポリアミドイミドワニス、およびフレキシブルシートガラス等が挙げることができる。ただし、上記材料の例は、これに限定されない。圧力センサ1の使用環境上の高温耐久性を考慮するならば、配線シート10の材料は、耐熱性の高いポリカーボネート、アラミドフィルム、ポリイミド、ポリイミドワニス、ポリアミドイミド、ポリアミドイミドワニス、またはフレキシブルシートガラス等が、より好ましい。圧力センサ1の製造上、はんだ付け等のプロセスを提供する場合には、配線シート10の材料は、ポリイミドフィルム、ポリイミドワニスフィルム、ポリアミドイミドフィルム、またはポリアミドイミドワニスフィルムであることがさらに好ましい。配線シート10の厚みは特に限定されないが、例えば12.5μm以上、50μm以下の範囲とすることができる。配線シート10の厚みが、12.5μmを上回る場合、圧力センサ1の製造工程または使用の際に良好な耐久性を発揮する。また、50μmを下回る場合、良好な可撓性が発揮される。そのため、配線シート10を曲面へ配置して、または屈曲させて、配線シート10を良好に使用することができる。配線シート10は、上述したように、予めフィルム状に成形されていてもよいし、または、電極19a、19bの素材であるCu箔等に対しポリイミド系等の絶縁用ワニスをキャスト、塗工することで形成されていてもよい。例えば、圧力センサ1の耐久性及び高感度特性のいずれも良好にするという観点からは、配線シート10の厚みを、導電膜15の厚みよりも大きく設計するとよい。
[電極]
 電極19a、19bは、面方向に所定の距離を空けて並列される一対の電極対である。電極19a、19bは、配線シート10の上に所望のパターン形状で形成されている。本実施形態のセンサデバイスU1、U2は、個別に配線シート10および電極19a、19bを有している。すなわち図2(b)に示す本実施形態のスタック回路Sは、2枚の配線シート10およびそれぞれに対向する2枚の導電膜15を含むように、構成されている。電極19a、19bは、各枚の配線シート10の同一面側(同図では上面側)の表面にそれぞれ形成されている。このように配線シート10の片面に電極19a、19bを設けてこれを積層することで、後述する図2(c)に示す変形例と比較して、安価に圧力センサ1を製造することができる。
 図1及び図2に示すように、本実施形態の電極19a、19bは、それぞれが上面視において矩形形状を有し、かつ、所定の距離を空けて平行に隣接配置されている。電極19a、19bの合成抵抗値は、電極19a、19b間の距離によって変化する。本実施形態の電極19aと電極19bとは互いに同一形状かつ同一寸法に形成されている。ただし本実施形態はこれに限られない。電極19aと電極19bとは異なる形状でもよく、または相似形で異なる寸法でもよい。
 電極19a、19b間の距離は特に限定されない。その距離は、電極19a、19bと導電膜15との距離に応じて決定することができる。例えば、電極19a、19bと導電膜15との距離Aが5μm以上25μm以下である場合、上記対向電極間距離を、10μm以上500μm以下の範囲に設計することができる。これにより、好適な感圧特性と製造安定性を得ることができる。このとき、電極19a、19bの厚さは、好ましくは9μm以上、20μm以下である。
 電極19a、19bは、導電性の部材から構成される。本実施形態において電極19a、19bは、低抵抗の金属材料から構成されている。本実施形態では、導電膜15の表面抵抗率よりも電極19a、19bの表面抵抗率の方が小さくなるように、設計されている。具体的には、銅、銀、銅、もしくは銀を含む金属材料から、またはアルミニウム等から電極19a、19bを形成することが好ましい。ただし、その材料は、これらに限定されない。また、材料の形態は、箔、またはペースト等、電極19a、19bの製造方法との組み合わせで適宜決定することができる。
[入力配線及び出力配線]
 電極19a及び電極19bは、配線シート10上に形成された入力配線21及び出力配線22に接続されている。入力配線21の一方は、図示しない電源と接続されている。また、入力配線21の他方は、配線シート10上に形成されているセンサデバイスU1、U2の、例えば全てに接続されて、センサデバイスU1、U2に電流または電圧を供給している。出力配線22は、圧力センサ1の図示しないドライバ装置に接続されている。出力配線22は、一つのスタック回路を構成するセンサデバイスU1、U2に共通である。一つのスタック回路Sからは、一つの感圧信号が出力される。このことから、本実施形態の感圧信号は、センサデバイスU1、U2で検出された抵抗値の合成値になる。
 なお、入力配線21および出力配線22は、配線シート10の一方の面にのみ形成されていてもよい。あるいは、入力配線21、出力配線22のいずれかまたは全部が、電極19a、19bが形成された配線シート10の面とは反対側の面にスルーホール(TH)を介して引き出されていてもよい。反対側の面に引き出された入力配線21、出力配線22は、再度スルーホール(TH)を介して、電極19a、19bが形成された面に引き出されていてもよい。このように、本実施形態の配線シート10は、入力配線21および出力配線22が両面に配置される両面基板であってもよい。あるいは、配線シート10は、片面基板であってもよい。このほか、共通の配線シート10の両面に電極19a、19bを互いに背中合わせに配置し、その上下両側に導電膜15をそれぞれ配置してもよい。図3(b)は、かかる構造を示す本実施形態の変形例にかかるセンサデバイスの断面図である。センサデバイスU1およびU2を含む本変形例の配線シート10を更に折り畳むことなどにより積層して、4層以上の多層のセンサデバイスを構成してもよい。図3(b)に示す本変形例によれば、図2(b)に示す実施形態と比較して、配線シート10を1層分だけ削減できる。そのため、圧力センサ1を薄型化することができる。
[絶縁層及び接着剤層]
 次に絶縁層13及び接着剤層11について説明する。絶縁層13は、電極19a、19bが設けられた配線シート10の上面に設けられている。電極19a、19bの少なくとも一部が導電膜15と接触するように、電極19a、19b上に、開口部O1と共に、電極19a、19bと導電膜15とを所定の距離A(図1参照)で離間させるためのスペーサをなす。初期状態において、絶縁層13及び接着剤層11の存在により、電極19a、19bと導電膜15とは離間している。そのため、電極19a、19bは導通していない。この距離Aが大きくなると、導電膜15を電極19a、19bに接触させるのに要する押圧力が大きくなる。その分だけ、所定の押圧力が圧力センサ1に負荷された場合にセンサデバイスU1、U2の変形量は小さくなる。その結果、電極19a、19bと導電膜15との間の抵抗が大きくなる。したがって、電極19a、19bと導電膜15との距離Aは「センサデバイスの抵抗に係る特性」の一例である。
 絶縁層13のうち開口部O1に近接する側の端部は、図1に示すように電極19a、19bの上に乗り上げていてもよい。この場合、絶縁層13の最大高さHは、電極19a、19bから十分に離間した他の領域における絶縁層13の厚みよりも大きくなる。この絶縁層13の最大高さHは、上述した電極19a、19bと導電膜15との距離Aを決定する要因の一つであるため、この最大高さHも「センサデバイスの抵抗に係る特性」の一例である。
 開口部O1の開口寸法は特に限定されず、本開示の趣旨を逸脱しない範囲において適宜決定してよい。例えば、図1に示すセンサデバイスU1、U2が、それぞれ上面視において例えば縦寸法1.7mm、横寸法1.25mmである場合、開口部O1の縦寸法を1.5mm、横寸法を1.05mmに設定することができる。このような場合、電極19a、19bは、開口部O1に対して0.2mm(片側0.1mm)オフセットすることになる。本実施形態では、絶縁層13として、ソルダーレジストを使用することができる。ソルダーレジストの材料は特に限定されない。感光性シートまたは感光性塗材等の感光性材料を用いて露光および現像することにより、開口部O1を精度よく形成することができる。特に、感光性材料で、スクリーン印刷手法により、配線シート10を、当該感光材料が電極19a、19bを覆うように、塗工することができる。そして、所定の箇所を露光して開口部O1を形成することによって、好ましい絶縁層13を形成することができる。また、本実施形態の開口部O1は、図2(a)に示すように矩形状である。ただし、開口部O1の形状を、電極19a、19bの形状により、適宜、円形状、多角形状、または不定形状に設計することが可能である。
 上記感光性材料の例として、ウレタン変性等の公知の手段によって適度に可撓性が付加されたエポキシ系樹脂を挙げることができる。エポキシ樹脂を用いることにより、適度な柔軟と、リフロープロセスに投入可能な耐熱性と、を有する絶縁層13を形成することができる。
 絶縁層13の上面には、導電膜15が積層されている。本実施形態では、絶縁層13と導電膜15とは、接着剤層11を介して互いに接合している。接着剤層11としては、粘着剤、接着剤、粘着シート、あるいは接着シート等、絶縁層13と導電膜15とを接合できるのであれば、いずれの素材を用いてもよい。接着剤層11は、電極19a、19bと、導電膜15と、の接触抵抗が妨げられないよう、開口部O1と略同等の形状の開口を有する。本実施形態では、接着剤層11が絶縁層13または導電膜15のいずれか一方の側に設けられた後に、他方が当該一方の側に位置合わせしながら貼合されてもよい。
[導電膜]
 導電膜15は、電極19a、19bと接触することにより、電極19a、19b間を導通させる部材である。導電膜15が導電機能を有するとは、導電膜15を外部から押圧することにより導電膜15を介して電極19a、19bが通電可能な程度に、導電膜15が電気伝導性を有することを意味する。具体的には、外部より押圧力が負荷された導電膜15が、電極19aと電極19bとに跨って当接する。このことで、電極19aと電極19bとが導通する。
 本実施形態における導電膜15は、電極19a、19bとの接触により、電極19a、19bを導通させる程度の導電機能を有していればよい。このため、導電膜15は、例えばカーボン粒子を含有している樹脂フィルムであってもよい。導電膜15は、カーボン粒子により導電機能が付与されている。換言すると、導電膜15として用いられる樹脂フィルムは、導電機能が発揮される程度のカーボン粒子を含有している。上記樹脂フィルムは、可撓性である。このように、樹脂フィルム自体が導電機能を有するので、導電膜15の薄膜化を図ることができる。さらに、良好な可撓性を有する導電膜15が得られる。その結果、大きなダイナミックレンジを有する圧力センサ1を得ることができる。
 導電膜15を構成する樹脂フィルムは、本開示の趣旨に逸脱しない範囲において、適宜、公知の樹脂を用いて構成することができる。具体的な樹脂の例としては、ポリエチレンテレフタレート、ポリエチレンナフタレート、環状ポリオレフィン等のポリエステル;ポリカーボネート;ポリイミド;ポリアミドイミド;液晶ポリマー等を挙げることができる。上記の樹脂のうち1種または複数の樹脂材料を混合して導電膜15を構成することができる。導電膜15に含有されるカーボン粒子は、導電膜15に導電性を付与するための部材である。カーボン粒子は、粒子状の炭素材料である。カーボン粒子の例として、アセチレンブラック、ファーネスブラック(ケッチェンブラック)、チャンネルブラック、サーマルブラック等のカーボンブラック、およびグラファイト等の1種または2種以上の組み合わせを挙げることができる。ただし、カーボン粒子は、この例に限定されない。導電膜15におけるカーボン粒子の含有量、カーボン粒子の形状及び粒径は、本開示の趣旨に逸脱しない範囲において特に限定されない。これらは、導電膜15と電極19a、19bとの接触抵抗に応じて、電極19a、19bが導通する範囲において適宜決定することができる。
 導電膜15の厚みは、好ましくは6.5μm以上、40μm以下である。上記厚みが6.5μm以上であることにより、導電膜15の耐久性が担保される。また上記厚みが40μm以下であることにより、導電膜15が押圧されたときの初期検知感度が良好であり、かつ広いダイナミックレンジを確保可能である。なお、導電膜15の厚みは、一般的なハイドゲージ、アップライトゲージ、またはその他厚み測定手段を用いて測定することができる。
 導電膜15の表面抵抗率は、好ましくは7kΩ/sq以上30kΩ/sq以下である。表面抵抗率が上記範囲であることにより、導電膜15は、大荷重が負荷された場合にセンサ抵抗のバラつきが小さく、かつ、高い電気信頼性を示し得る。所望の範囲の導電膜15の表面抵抗率は、導電膜15に含有されるカーボン粒子の配合量によって調整することができる。換言すると、導電膜15に含有されるカーボン粒子の配合量は、導電膜15の表面抵抗率が上記範囲となることを指標として、決定してもよい。
 導電膜15は、電極19a、19bに対向する面の表面粗さRzが、0.10μm以上0.50μm以下となるよう調整されていてもよい。これにより、導電膜15の膜形成性が良好であり、また接触抵抗の検知感度が安定する。導電膜15の表面粗さRzは、一般的な表面粗さ計による計測、またはレーザ顕微鏡を用いた表面粗さ分析により測定される。
 導電膜15のヤング率は、好ましくは5GPa以下である。これによって、導電膜15に充分な可撓性をもたらすことができる。上記ヤング率の範囲によれば、上述する所定の距離A、及び開口部O1の開口寸法の好ましい範囲において、導電膜15に負荷される押圧力の増大に伴う接触抵抗の変化を良好に定量することができる。カーボン粒子を含有する樹脂フィルムの作製方法は特に限定されない。例えば、原料となる1種または2種以上の樹脂と、カーボン粒子との混合物を適宜混練することにより得られて組成物を、フィルム状に成膜することによって、カーボン粒子含有樹脂フィルムを作製することができる。
 以上説明した導電膜15の導電率、表面抵抗率および表面粗さは、導電膜15が電極19a、19bに接触した場合の抵抗値の大小に影響を及ぼすパラメータである。そのため、いずれも「センサデバイスの抵抗に係る特性」の一例である。また、導電膜15の厚みあるいはヤング率が大きいと、所定の押圧力が圧力センサ1に負荷された場合の導電膜15の変位が小さくなる。そのため、導電膜15が電極19a、19bと接触しにくくなる結果、センサデバイスの抵抗が大きくなる。このことから、これらのパラメータも「センサデバイスの抵抗に係る特性」の一例である。
[電極押圧材]
 電極押圧材17は、上記のように、突起17aとベース部17bとによって構成される。突起17aとベース部17bとは同一材料によって、例えば射出成型によって一体に形成される。ベース部17bは、射出成型において突起17aを形成するための溶融した材料によって形成される。したがって、突起17aを導電膜15上に直接成形することが可能である場合、電極押圧材17はベース部17bを含まない。電極押圧材17の材料は、本実施形態の趣旨を逸脱しない範囲で、適宜選択可能である。例えば、20以上、80以下のゴム硬度を有するゴム材料あるいは比較的低硬度のプラスチック材料が用いられる。ゴム材料としては、例えば、天然ゴム、アクリルゴム、イソプレンゴム、スチレンブタジエンゴム、ブタジエンゴム、クロロプレンゴム、ブチルゴム、エチレンプロピレンゴム、エピクロロヒドリンゴム、ニトリルブタジエンゴム、ニトリルイソプレンゴム、及びシリコンゴム等が考えられる。また、プラスチック材料として、ポリビニルアルコール、エチレン・酢酸ビニル共重合体等を検討することが考えられる。
 前記したように、突起17aは、いかなる形状を有してもよい。ただし、突起17aは、好ましくは、突起端面170が電極19a、19bに荷重集中をさせることに適した形状及び面積を有する。1つのスタック回路SのセンサデバイスU1、U2に確実に荷重集中をさせるためには、突起端面170が、好ましくは、開口部O1に重なって、かつ、開口部O1の内部に入る大きさを有する。
 以上説明した圧力センサ1は、以下のように動作する。圧力センサ1のセンサデバイスU1、U2には、入力配線21によって電力が供給されている。電極19a、19bが離間していることから、圧力センサ1に押圧力が加えられていないとき、電極19a、19b間に電気的な導通は生じない。圧力センサ1の上方から押圧力が加えられたとき、押圧力は、重ね合わせられたセンサデバイスU1、U2の両方に作用する。センサデバイスU1、U2では、導電膜15が突起17aによって下方に押し込まれ、そして、開口部O1から露出する電極19a、19bと接触する。導電膜15と電極19a、19bとが接触し、電極19a、19bとの間に導通が生じる。そして、出力配線22から電気信号が図示しないドライバ装置に出力される。ドライバ装置は、出力される検知信号が所定の閾値以上の大きさになったとき、圧力センサ1がオン状態になったと判断する。そして、オン状態になった後の検知信号の大きさによって、検出された圧力の大きさが判断される。
 圧力センサ1が出力する電気信号は、電極19a、19bが導電膜15と接触する面積によって変化する。このため、導電膜15が電極19a、19bに強く押し当てられると接触面積が広がって、抵抗値が下がる。そして、電気信号が大きくなって、センサデバイスU1、U2に強い圧力が加わったものと判断される。本実施形態は、圧力の印加方向に重ね合わされているセンサデバイスU1、U2がスタック回路を構成している。そのため、先に押圧力が伝わるセンサデバイスU1の電極19a、19bと導電膜15との接触面積と、センサデバイスU2の導電膜15と電極19a、19bの接触面積と、が相違する場合がある。このような場合、センサデバイスU1とセンサデバイスU2との合成抵抗には、低抵抗の成分と高抵抗の成分とが含まれるようになる。このため、圧力センサ1は、重ねられていないセンサデバイス(以下、「センサデバイス単体」と称す)に圧力を加えた場合よりも、圧力に応じて電気信号が広範囲に変化する。このような本実施形態は、圧力の測定範囲が広いワイドレンジの圧力センサを提供することができる。
 上記構成において、本実施形態は、スタック回路Sに含まれる複数の重ね合わされたセンサデバイスは、そのうちの一部が、他のセンサデバイスの抵抗に係る特性と相違するように、構成されてもよい。このようにすれば、圧力センサ1に押圧力が加えられた場合、スタック回路S内において、相対的に低抵抗のセンサデバイスから相対的に大きな電気信号が出力される。そして、高抵抗のセンサデバイスからは、相対的に小さな電気信号が出力される。このとき、大きな電気信号は、相対的に低い圧力で信号の出力を開始する。そのため、圧力センサ1の初期感度を高めることができる。また、高抵抗のセンサデバイスから出力される小さな電気信号は、大きな電気信号が変化しなくなった後まで変化する。本実施形態は、大小の電気信号の合成値を圧力の検知信号として出力する。そのため、低圧力から高圧力までを広範囲に測定できるワイドレンジの圧力センサ1を実現することができる。
 センサデバイスの抵抗に係る特性を変化させる手法としては、例えば、導電膜に接触し得る電極の面積を変化することがあげられる。つまり、本実施形態に用いられる、重ね合わされている複数のセンサデバイスのうちの一部は、その導電膜15に接触し得る電極の面積が他のセンサデバイスと相違するように、構成されてもよい。導電膜15に接触し得る電極の面積を変えるための構成としては、例えば、開口部O1の開口面積をスタック回路Sに含まれるセンサデバイス間で変えることが考えられる。また、電極19a、19bの面積そのものを変えることも考えられる。
 さらに、本実施形態では、導電膜15と、電極19a、19bとの間の、集中荷重がかかる範囲がセンサデバイス間で異なっていてもよい。このような構成を実現するには、例えば、スタック回路S内に複数のセンサデバイスが設けられている場合、複数の突起17aの一部の突起端面170を、その大きさが他のセンサデバイスの突起17aの突起端面170の大きさと相違するように、設計することができる。突起17aに印加される外部からの押圧力が一定であることを前提とすると、突起端面170の面積が大きい突起17aを設けることにより、押圧力が分散する。そのため、電極19a、19bと導電膜15との間の抵抗が大きくなる。逆に突起端面170の面積が小さい突起17aを設けることにより、外部からの押圧力が集中する。そのため、電極19a、19bと導電膜15との間の抵抗が小さくなる。このため、大きい突起端面170に対応するセンサデバイスからは、相対的に小さな電気信号が出力される。小さい突起端面170に対応するセンサデバイスからは、相対的に大きな電気信号が出力される。したがって、突起端面170の面積というパラメータは、「センサデバイスの抵抗に係る特性」の一例となる。このとき、小さな突起端面170に対応する大きな電気信号は、相対的に低い圧力で信号の出力を開始する。そのため、圧力センサ1の初期感度を高めることができる。また、大きな突起端面170に対応するセンサデバイスから出力される小さな電気信号は、大きな電気信号が変化しなくなった後まで変化する。したがって、複数の突起端面170の面積を互いに相違させることにより、大小の電気信号の合成値が圧力の検知信号として出力される。そのため、本実施形態によれば、低圧力から高圧力までを広範囲に測定できるワイドレンジの圧力センサ1を実現することができる。
 スタック回路S内でセンサデバイスの抵抗に係る特性を変更する構成は、突起端面170の面積に限定されない。本実施形態では、例えば、導電膜15の厚さ、表面粗さ、電気抵抗のプロファイル(変化の仕方)等を変更することができる。これによって、センサデバイスの抵抗に係る特性を変更することが考えられる。また、本実施形態では、例えば、突起17aの厚さ、あるいは硬度等を変更することによって、センサデバイスの抵抗に係る特性を変更することが考えられる。
 また、本実施形態では、スタック回路Sに含まれる複数のセンサデバイスを互いに並列に接続することによって、圧力センサ1の圧力の測定レンジを広くすることができる。図4は、並列に接続されている複数の図1及び図2に示したスタック回路を含む、本実施形態の圧力センサ1を示した上面図である。図5は、図4に示した圧力センサ1の等価回路を示した図である。図示した圧力センサ1は、複数のセンサデバイスを備えている。スタックされているセンサデバイスU11とセンサデバイスU21とがスタック回路S1を構成している。また、センサデバイスU12とセンサデバイスU22とがスタック回路S2を構成している。センサデバイスU13とセンサデバイスU23とがスタック回路S3を構成している。各スタック回路に含まれるセンサデバイスの対は、互いに並列に接続されている。このような構成によれば、本実施形態では、スタック回路を構成する各センサデバイスの抵抗特性が合成抵抗に占める割合が小さくなる。これにより、スタック回路から出力される電気信号を穏やかに変化させることができる。また、本実施形態では、スタック回路が、異なる抵抗特性を有する複数のセンサデバイスを含む場合、合成抵抗が連続して変化するように、スタック回路を設計することができる。
 また、本実施形態では、スタック回路S1からスタック回路S8までが互いに並列に接続されている。このようにすることにより、本実施形態では、図示しないドライバ装置が各スタック回路から圧力の検知信号を取得することができる。このとき、ドライバ装置は、スタック回路の数と同数の入力チャネルを備えていてもよい。あるいは、ドライバ装置は、スタック回路の数よりも少ない入力チャネルを備えていてもよい。ドライバ装置がスタック回路の数よりも少ない数の入力チャネルを備える場合、ドライバ装置は、例えば300Hz程度の周波数で各スタック回路から出力される検知信号を順に繰り返し取得するように、設計されてもよい。
[圧力センサの製造方法]
 図6(a)、図6(b)及び図6(c)は、本実施形態の圧力センサの製造方法を説明するための図である。図6(a)は、圧力センサ部材100の上面図である。圧力センサ部材100は、配線シート10上に、複数のスタック回路S1からスタック回路S8を有している。スタック回路S1からスタック回路S8の各々は、センサデバイスU11およびU21、センサデバイスU12およびU22等、対をなす二つのセンサデバイスを備えている。センサデバイスは、先に説明してきたように、電極19a、19bと、これら電極19a、19bに対向して配置される導電膜15と、を有している。圧力センサ部材100は、複数のセンサデバイスU11、U21等に電気信号を入力する共通の入力配線21と、複数のセンサデバイスU11、U21等から電気信号を出力する共通の出力配線22と、を備えている。このことから、圧力センサ部材100の製造方法は、電極19a、19bと、これら電極19a、19bに対向して配置される導電膜15と、センサデバイスU11、U21等に電気信号を入力する共通の入力配線21と、センサデバイスU11、U21等から電気信号を出力する共通の出力配線22と、を配線シート10上に形成する工程を含んでいる。
 図6(c)に示すように、センサデバイスU11、U12の各電極19a、19bは、導電膜15を挟んで互いに内向きに対向して、配置されている。2つの導電膜15が電気的に短絡しないように、導電膜15同士の間には絶縁シート16が全面に配置されている。絶縁シート16には、ポリイミドあるいはポリアミドイミドなど、上述した配線シート10と同種の材料を使用することができる。配線シート10と絶縁シート16とは、同種材料で作成してもよく、異種材料で作成してもよい。
 次に、上記工程をより詳細に説明する。圧力センサ部材100は、スタック回路をS1からスタック回路S8までを構成するセンサデバイスU11~U18、および、センサデバイスU21~U28を含む。圧力センサ部材100を製造する工程では、配線シート10に配線シート10の表裏の電気的な導通をとるためのスルーホールh1、h2が形成される。そして、スルーホールh1、h2における配線シート10の表面及び厚み方向が、めっき等によって、導電化される。以上の工程により、配線シート10の表裏を導通させることができる。
 次に、本実施形態の圧力センサの製造方法では、エッチングのレジスト膜が配線シート10にラミネートされる。そして、レジスト膜を露光、現像することにより、入力配線21、出力配線22、および電極19a、19bを含むパターンのエッチングマスクが配線シート10上に作製される。本実施形態では、エッチングマスクをマスクとして、めっき箔をエッチングすることにより、エッチングマスクにより覆われていないめっき箔を配線シート10上から除去する。エッチングマスクは、めっき箔のエッチング完了後に剥離される。以上の工程により、配線シート10に入力配線21、出力配線22、及び電極19a、19bの金属パターンを形成することができる。
 以上の処理の後、本実施形態では、形成された入力配線21、出力配線22等を保護するため、配線シート10における入力配線21、出力配線22の形成面にカバーフィルムをラミネートする。そして、ソルダーレジストを形成面に印刷し、これを露光、現像して絶縁層13を形成する。以上の工程により、配線保護層を形成することができる。そして、電極19a、19bの導電膜15に対向する面に、ニッケル、あるいは金等によるめっき処理がなされる。さらに、本実施形態では、絶縁層13の上から接着剤層11を使って、導電膜15が貼り合わされる。以上の工程により、圧力センサ部材100が完成する。
 さらに、本実施形態の圧力センサの製造方法は、上記工程を経た配線シート10である圧力センサ部材100を折り畳むことによってセンサデバイスU11、U21同士
を重ねる工程を含んでいる。図6(b)及び図6(c)は、上記工程を説明するための図である。図6(b)は折り畳まれる過程にある圧力センサ部材100の斜視図、図6(c)は、折り畳まれた圧力センサ部材100を、図中の線L1に直交する方向にセンサデバイスU11、U12上で切断したときに得られる断面の模式図である。配線シート10のうち、線L1で折り畳まれる一方側(図6(a)では下方側)を部分領域10aと呼称し、他方側(同図では上方側)を部分領域10bと呼称する。スタック回路の各々が有する複数のセンサデバイスは、部分領域10aと部分領域10bのそれぞれに1個ずつ個別に配置されている。例えば図6(a)では、左端のスタック回路S1が有する2個のセンサデバイスU11、U21のうち、センサデバイスU21は、部分領域10aに配置されている。センサデバイスU11は、部分領域10bに配置されている。
 スルーホールh1,h2は、部分領域10a,10bにそれぞれ貫通形成されている。スルーホールh1,h2は、配線シート10が線L1で折り畳まれた際に互いに重なり合う位置に形成されている。具体的には、スルーホールh1,h2の各中心から線L1までの距離は、互いに等しい。さらに、スルーホールh1,h2の並び方向は、線L1と直交している。これにより、配線シート10を線L1で折り畳むときに、スルーホールh1,h2にピン(図示せず)等の器具を挿通状態ですることにより、部分領域10aと部分領域10bとがずれることを抑制することができる。このようにして、位置合わせしながら、これら部分領域を互いに重ね合せることができる。
 図6(b)に示すように、本実施形態では、圧力センサ部材100が線L1に沿って幅方向に折り畳まれる。圧力センサ部材100が折り畳まれることによって、複数のスタック回路の各々(例えばスタック回路S1)における二つのセンサデバイス(例えばセンサデバイスU11、U21)が互いに重なる。このようにして、スタック回路(例えばスタック回路S1)が構成される。本実施形態の圧力回路の製造方法では、センサデバイスU11、U21の形成面が内側になるように、圧力センサ部材100が折り畳まれている。このため、スタックされたセンサデバイスU11、U21は、図6(c)のように、導電膜15が重なるように、配置されている。さらに、本実施形態では、センサデバイスU11、U21の一方の配線シート10上に電極押圧材17を貼り合わせることにより、圧力センサが完成される。
 以上説明した本実施形態の圧力センサの製造方法によれば、複数のセンサデバイスを一度に形成してこれを重ね合わせることができる。そのため、工程の簡易化を図ることができる。また、配線シート10に直接に電極19a、19bを作り込む構成は、圧力センサの薄型化に有利である。ただし、本実施形態は、センサデバイスU11、U21の形成面が内側になるように圧力センサ部材100を折り畳むことに限定されない。本実施形態では、センサデバイスU11、U21の形成面が外側になるように圧力センサ部材100を折り畳まれてもよい。このようにした場合、センサデバイスU11、U21は、互いに配線シート10が重なるようにしてスタックされる。また、本実施形態は、電極押圧材17をスタック回路の一方の側に設けることに限定されない。電極押圧材17は、スタック回路の両側の面に形成されてもよい。また、本実施形態では、センサデバイスに電極押圧材17を設けた後に圧力センサ部材100を折り畳むことにより、センサデバイスがスタックされてもよい。
 図7(a)、図7(b)、及び図7(c)は、本実施形態の圧力センサの製造方法を説明するための他の図である。図7(a)は、圧力センサ部材100の上面図、図7(b)及び図7(c)は、圧力センサ部材100を折り畳むことによってセンサデバイスU11、U21同士を重ねる工程を説明するための図である。図7(b)は図7(a)に示した矢線b、bの方向に圧力センサ部材100の断面を見た断面図である。図7(c)は、図7(b)に示した圧力センサ部材100を矢線cが示す方向に折り畳んでセンサデバイスをスタックした状態を示した図である。図6(c)に示した圧力センサでは、圧力センサ部材100が線L1で谷折されている。これに対し、図7(c)に示した圧力センサでは、圧力センサ部材100が線L1で山折されている。図6(c)に示した圧力センサでは、センサデバイスU11と、センサデバイスU12と、がそれらの導電膜15がいずれも内側に配置されるように、スタックされている。これに対し、図7(c)に示した圧力センサ出は、センサデバイスU11と、センサデバイスU12と、がそれらの導電膜15がいずれも内側に配置されるように、スタックされている。この点で、図7(c)の圧力センサは、図6(c)の圧力センサと相違する。
 さらに、本実施形態で用いられる圧力センサ部材100は、一本の線L1のみに沿って折り畳まれる部材に限定されない。圧力センサ部材100は、複数本の線に沿って、複数回折り畳まれていてもよい。図8(a)、図8(b)、及び図8(c)は、圧力センサ部材101を三回蛇腹状に折り畳む例を説明するための図である。図8(a)は、圧力センサ部材101の上面図である。図8(b)は、折り畳まれる過程にある圧力センサ部材101の斜視図である。図8(c)は、折り畳まれた圧力センサ部材101を図中の線L1に直交する方向に、かつ、センサデバイスU11、U21、U31、U41を通る位置で切断してえられる断面の模式図である。図8(a)に示す圧力センサ部材101は、センサデバイスU11~U18、U21~28、U31~38、U41~48の32個のセンサデバイスを備えている。そして、図8(b)に示すように、圧力センサ部材101は、三本の線L1、L2、およびL3の各々に沿って折り畳まれる。このとき、本実施形態では、線L1に沿って圧力センサ部材101が「谷折」されることによってセンサデバイスU11とセンサデバイスU21とがスタックされる。そして、圧力センサ部材101が線L2に沿って「山折」されることによって、センサデバイスU11とセンサデバイスU41とがスタックされる。また、圧力センサ部材101が線L3に沿って「谷折」されることによって、センサデバイスU41とセンサデバイスU31とがスタックされる。
 圧力センサ部材101の配線シート10のうち、線L1~L3で区画される4つの領域を部分領域10a~10dと呼称する。具体的には、線L1よりも一方側(図8(a)では下方側)の側方の領域を部分領域10a、線L1と線L2とで囲まれる領域を部分領域10b、線L2と線L3とで囲まれる領域を部分領域10c、そして線L3よりも他方側(同図では上方側)の領域を部分領域10dと呼称する。スタック回路の各々が有する複数のセンサデバイスは、部分領域10a~10dのうち、線L1または線L3のいずれかで仕切られて隣接する2つの部分領域の一方と他方とにそれぞれ配置されている。例えば図8(a)の例では、左端のスタック回路が有する4個のセンサデバイスU11、U21、U31、U41のうち、線L1で仕切られる部分領域10a,10bにそれぞれセンサデバイスU21,U11が配置されている。そして線L3で仕切られる部分領域10c,10dに、それぞれセンサデバイスU41,U31が配置されている。
 各々の部分領域10a~10dは、その部分領域を貫通しているスルーホールh1~h4を有する。スルーホールh1~h4は、配線シート10が線L1~線L3で折り畳まれた際に互いに重なり合う位置に、形成されている。具体的には、スルーホールh1,h2の各中心から線L1までの距離は互いに等しい。スルーホールh1,h4の各中心から線L2までの距離も互いに等し。さらに、スルーホールh3,h4の各中心から線L3までの距離も互いに等しい。そして、スルーホールh1~h4配列されている方向は、互いに平行な線L1~L3に対して直交している。本実施形態によれば、配線シート10を線L1~線L3で折り畳んで部分領域10a~10dを順にスタックするときに、スルーホールh1~h4にピン(図示せず)等の器具を挿通することができる。これにより、部分領域10a~10dが互いにずれあうことを抑制することができる。
 ただし、本実施形態は、圧力センサ部材100、101を折り畳むことにより、スタックされたセンサデバイスを含む構成に限定されない。センサデバイス、入力配線21、および出力配線22を含む複数の配線シート10を重ね合わせることにより、入力配線21同士、あるいは、出力配線22同士がスルーホールh1等を介して接続されてもよい。また、図4のように、スタック回路Sを面方向に複数配置する場合、本実施形態では、面方向に配置されている複数のスタック回路Sに対応して、電極押圧材17を一つ配置することもできる。
 以上説明したように、本実施形態に係る圧力センサは、センサデバイスを、センサデバイスの電極に対して、導電膜が配置されている方向に複数重ねることによって、圧力センサの設置領域を小さくすることに適している。また、複数のセンサデバイスに共通の入力配線と、共通の出力配線と、を設けることによって、複数のセンサデバイスの合成抵抗を圧力の検知信号として出力することができる。このため、各センサデバイスが検知した抵抗値の合成抵抗を検知信号として出力することができる。このようにして、相対的に低い圧力から相対的に高い圧力までの広い範囲の圧力を検知することができるようになる。
 特に、本実施形態は、配線シート10に圧力センサ1を作りこむことによって、センサデバイスを配線シート10の厚さ方向に重ねても、例えば、その厚さ方向に重ねられているタクトスイッチ等の実装部品を含む、公知の構成よりも、圧力センサ1全体を薄くすることができる。また、本実施形態では、形成された圧力センサ部材100、101を折り畳むことにより、センサデバイスが重ね合わされる。これによって、電気的な接続点数を減らすことができる。その結果、設計の自由度を高めることができる。
[変形例]
(変形例1)
 さらに、本実施形態は、以上説明した実施形態に限定されない。例えば、絶縁層13は、電極19a、19bの周縁にその一部が重なるように、形成される絶縁層に限定されない。図9(a),(b)に示すように、電極19a、19bの周縁と絶縁層13との間に、オフセットが設けられていてもよい。このような場合、絶縁層13の開口部O2は、電極19a、19bの周縁よりも一回り大きく設計される。なお、図2(a)と同様に便宜上、図9(a)においては絶縁層13の形成領域にドットパターンを付している。電極19a、19bは、互いに隣接する並び方向(図9(a)および(b)における左右方向)に関しては絶縁層13から全体的に離間している。そして図9(a)に示すように、この並び方向と直交する方向(同図における上下方向)に関しては、電極19a、19bの端部の一部が絶縁層13と重なってこれに覆われていてもよい。このような変形例1によれば、開口部O1と電極19a、19bとの位置ずれによるセンサデバイスの特性のばらつきを抑えることができる。
(変形例2)
 また、本実施形態は、図2(a)のように、所定の距離を空けて平行に隣接配置されている矩形状の電極19a、19bを含む構成に限定されない。本実施形態は、電極が第一電極及び第二電極を含み、第一電極及び第二電極が、互いに離間し、かつ嵌め合わせ可能な形状を有していてもよい。ここで、「嵌め合わせ可能な形状」とは、第一電極及び第二電極の包絡領域(第一電極と第二電極とを包含する最小の矩形領域)を通過する全ての直線が、第一電極または第二電極の少なくとも一方と交差することを指す。図10(a)、図10(b)、及び図10(c)は、変形例2の電極を説明するための図である。図10(a)に示した電極82の第一電極82a及び第二電極82bは、互いが組み合う櫛歯形状を有している。図10(b)に示した電極83の第一電極83a及び第二電極83bは、互いが組み合うスパイラル形状を有している。図10(c)に示した電極83の第一電極83a及び第二電極83bは、互いに同心円上に配列されている。具体的には、第一電極83aまたは第二電極83bの一方が円形であり、他方がこの円形を所定の距離を空けて取り囲むリング形状であってもよい。上記円形とは、真円、楕円、および長円を含む。
 図10(a)から図10(c)に示した変形例2では、電極82、83、84のいずれにあっても、第一電極と第二電極とを包含する包絡領域85、86、87と交差する直線は、全て第一電極と第二電極の少なくともいずれか一方と交差することになる。このような変形例2の電極によれば、圧力が印加された場合の抵抗値変化が形状に応じて変化する。そのため、異なる形状の電極同士を組み合わせることにより、圧力センサの検知精度を高めることができる。
 以上説明した圧力センサの効果は、実験により、検証可能である。この結果を以下に実施例として説明する。実験では、重ね合わされたセンサデバイスの各々に設けられている電極押圧材17を含む構成を有する本実施形態に係る圧力センサが用いられた。また、本実施敬愛に係る圧力センサの特性を、重ね合わされていないセンサデバイス単体の圧力センサと比較した。図11(a)、図11(b)は、センサデバイスを重ね合わせた効果を検証する実験の結果を説明する図である。図11(a)、図11(b)のいずれにあっても、縦軸は圧力センサが出力する検知信号(抵抗値:Ω)を、横軸は圧力センサに印加された圧力(mN)を示している。図11(a)中の曲線C1は、本実施形態に係る圧力センサの特性を示している。曲線C2、C3は、いずれも本実施形態に係る圧力センサと比較される比較例1、比較例2の特性を示している。
 図11(a)に結果を示した本実施形態に係る圧力センサでは、同様に設計された4つのセンサデバイスがスタックして並列に接続されている。そして、スタックされたセンサデバイスの各々に、電極押圧材17が設けられている。各電極押圧材17の突起17aの突起端面は、全て直径4mmの円形である。曲線C2の特性を有する比較例1の圧力センサは、本実施形態に係る圧力センサに含まれるセンサデバイスと同一のセンサデバイス単体に電極押圧材17設けられている。この突起17aは、直径4mmの円形状の突起端面を有する。比較例2の圧力センサでは、上記センサデバイス単体に電極押圧材17が設けられている。この突起17aは、直径2mmの円形状の突起端面を有する。図11(a)によれば、比較例1の曲線C2は、圧力が約3000mNに達すると抵抗値(resistance)がほぼ変化しなくなる。また、比較例2の曲線C3は、圧力が約1000mNに達すると抵抗値がほぼ変化しなくなる。これに対し、本実施形態に係る圧力センサが示す曲線C1により、圧力が約4000mNに達するまで抵抗値が有意に変化していることが確認された。
 図11(b)に結果を示した本実施形態に係る圧力センサ出は、同様に設計された4つのセンサデバイスがスタックして並列に接続されており。そして、スタックされたセンサデバイスの各々に電極押圧材17が設けられている。各電極押圧材17の突起17aの突起端面は、全て直径2mmの円形である。図11(b)中の曲線C4は、このような本実施形態に係る圧力センサの特性を示している。図11(b)によれば、本実施形態に係る圧力センサが示す曲線C4により、圧力が約4000mNに達するまで抵抗値が変化していることが確認された。以上の実験から、本実施形態に係る圧力センサは、重ね合されている複数のセンサデバイスが、並列に接続していることによって、単体の圧力センサよりも広い検知範囲を有することが確認できた。
 図12(a)、(b)は、重ね合わされた複数のセンサデバイスの電気特性をスタック回路内において変更することの効果を検証する実験の結果を説明する図である。図12(a)、図12(b)のいずれにあっても、縦軸は圧力センサが出力する検知信号(抵抗値:Ω)、横軸は圧力センサに印加された圧力(mN)を示している。図12(a)中の曲線C5は、本実施形態に係る圧力センサの特性を示している。図12(a)に結果を示した本実施形態に係る圧力センサでは、同様に設計された4つのセンサデバイスがスタックして並列に接続されている。スタックされたセンサデバイスの各々には、電極押圧材17が設けられている。そして、4つのセンサデバイスのうち、3つのデバイスの突起17aは、直径4mmの円形の突起端面を有する。残りの一つのデバイスの突起17aは、直径2mmの円形の突起端面を有する。図12(a)によれば、本実施形態に係る圧力センサが示す曲線C5により、圧力が約4000mNに達するまで抵抗値が変化していることが確認された。
 また、図12(b)に結果を示した本実施形態に係る圧力センサでは、同様に設計された4つのセンサデバイスがスタックして並列に接続されている。そして、スタックされたセンサデバイスの各々に、電極押圧材17が設けられている。そして、4つのセンサデバイスのうち、2つのデバイスの突起17aは、直径4mmの円形の突起端面を有する。残りの2つのデバイスの突起17aは、直径2mmの円形の突起端面を有する。図12(b)中の曲線C6は、このような本実施形態に係る圧力センサの特性を示している。図12(b)によれば、本実施形態に係る圧力センサが示す曲線C6により、圧力が約4000mNに達するまで抵抗値が変化していることが確認された。以上の実験から、本実施形態に係る圧力センサは、重ね合わされた複数のセンサが並列に接続されていること、および、複数のセンサデバイス間で抵抗の特性を変加していることによって、単体の圧力センサよりも広い検知範囲を有することが確認できた。
 図13(a)から図13(c)は、圧力センサから出力される検知信号(抵抗値:Ω)と、印加された圧力との関係を理論的に計算した結果を示す図である。図13(a)から図13(c)のいずれにあっても、縦軸は圧力センサが出力する検知信号(抵抗値:Ω)、横軸は圧力センサに印加された圧力(mN)を示している。図13(a)は、重ね合されているセンサデバイスを並列に接続することの効果を説明するための図である。図13(a)中に示した曲線C7は、所定の特性を有するセンサデバイス(以下、「センサデバイスp1」と称す)単体の圧力センサの特性を示している。曲線C8は、センサデバイスp1とは、異なる抵抗に係る特性を有するセンサデバイス(以下、「センサデバイスp2」と称す)単体の圧力センサの特性を示している。曲線C9は、センサデバイスp1とセンサデバイスp2とが重ね合わされて並列に接続されている、圧力センサの特性を示している。また、曲線C10は、3つのセンサデバイスp1と、1つのセンサデバイスp2が組み合わされて重ね合わされて、並列に接続されている、圧力センサの特性を示している。
 図13(a)の曲線C9およびC10が示すように、異なる抵抗に係る特性を有するセンサデバイスが重ね合わされて、並列に接続されている圧力センサは、重ね合わされているセンサデバイスの数に関わらず、センサデバイス単体の圧力センサよりも測定可能な圧力の範囲が広くなっている。また、印加圧力が約1000mNまでの範囲において、検知信号は、重ね合わされているセンサデバイスの数が多いときに、より大きく変化することが分かる。
 図13(b)は、センサデバイスを重ね合わせて直列に接続することについての効果を説明するための図である。図13(c)は、図13(b)のうち検知信号(抵抗値:Ω)が低い領域を拡大した図である。図13(b),(c)中に示した曲線C11は、センサデバイスp1、p2とは異なる抵抗に関する特性を有するセンサデバイス(以下、「センサデバイスp3」と称す)単体の圧力センサの特性を示している。曲線C12は、センサデバイスp1、p2、p3のいずれとも異なる抵抗に係る特性を有するセンサデバイス(以下、「センサデバイスp4」と称す)単体の圧力センサの特性を示している。曲線C13は、互いに異なる抵抗に関する特性を有するセンサデバイスp3とセンサデバイスp4とが重ね合わされて直列に接続されている、圧力センサの特性を示している。また、曲線C14は、3つのセンサデバイスp3と、1つのセンサデバイスp4が、組み合わされて重ね合わされて、直列に接続されている、圧力センサの特性を示している。
 図13(b),(c)に示すように、異なる抵抗に係る特性を有するセンサデバイスが重ね合わされて直列に接続されている、圧力センサは、印加圧力が1000mN以内にあってはセンサデバイス単体の圧力センサと同様の検知信号を出力する。ただし、センサデバイスが重ね合わされて直列に接続されている、圧力センサの検知信号は、特に印加圧力が3000mN以上の範囲において、センサデバイス単体の圧力センサよりも大きな傾きを持って変化する。以上のことから、本実施形態に係る圧力センサによれば、センサデバイス単体の圧力センサに比べて、より広範囲の圧力が測定可能であることが分かる。
 また、図13(a)に示すように複数のセンサデバイスが並列に接続されている場合には、単体のセンサデバイスよりも、抵抗に関する特性の変化幅が大きくなることが分かった。これに対し、図13(b)および図13(c)に示すように、複数のセンサデバイスが直列に接続されている場合には、単体のセンサデバイスよりも、抵抗に関する特性の変化幅が小さくなることが分かった。このため、複数のセンサデバイスが並列に接続されている、圧力センサは、より広いダイナミックレンジを得ることができので、より好ましいといえる。
 上記実施形態及び実施例は以下の技術思想を包含するものである。
(1)電極と、前記電極に対向して配置される導電膜と、を有するセンサデバイスが前記電極に対する前記導電膜の配置方向に複数重ねられ、複数の前記センサデバイスに電気信号を入力する共通の入力配線と、複数の前記センサデバイスから電気信号を出力する共通の出力配線と、が形成されている配線シートを有する、圧力センサ。
(2)前記電極が、前記配線シート上に形成されている、(1)の圧力センサ。
(3)前記センサデバイスの少なくとも一部は、前記電極の少なくとも一部に重なる突起を備えている、(1)または(2)の圧力センサ。
(4)前記突起は、複数重ねられた前記センサデバイスのうちの複数にそれぞれ設けられている、(3)の圧力センサ。
(5)複数の前記突起のうちの一部の端面は、他の前記突起の端面と大きさが異なっている、(4)の圧力センサ。
(6)前記突起は、複数重ねられた前記センサデバイスのうちの複数に対応して一つ設けられている、(4)の圧力センサ。
(7)複数重ねられた前記センサデバイスのうちの一部の抵抗に係る特性は、他の前記センサデバイスの抵抗に係る特性と相違している、(1)から(6)のいずれか一つの圧力センサ。
(8)複数重ねられた前記センサデバイスのうちの一部は、前記導電膜に接触し得る前記電極の面積が他の前記センサデバイスと相違している、(7)の圧力センサ。
(9)複数重ねられた前記センサデバイスは、互いに並列に接続されている、(1)から(8)のいずれか一つの圧力センサ。
(10)前記電極が第一電極及び第二電極を含み、前記第一電極及び前記第二電極は、互いに離間し、かつ嵌め合わせ可能な形状を有している、(1)から(9)のいずれか一つの圧力センサ。
(11)複数の電極と、前記複数の電極の少なくとも一部に対応する導電膜と、を有するセンサデバイスと、複数の前記センサデバイスに電気信号を入力する共通の入力配線と、複数の前記センサデバイスから電気信号を出力する共通の出力配線と、を配線シート上に形成する工程と、前記配線シートを折り畳むことによって前記センサデバイス同士を重ねる工程と、を含む圧力センサの製造方法。
圧力センサ1
配線シート10
部分領域10a,10b,10c,10d
接着剤層11
絶縁層13
導電膜15
絶縁シート16
電極押圧材17
突起17a
ベース部17b
電極19a、19b、82、83、84
入力配線21
出力配線22
貫通孔24
第一電極82a、83a、84a
第二電極82b、83b、84b
包絡領域85、86、87
圧力センサ部材100、101

Claims (11)

  1.  複数のセンサデバイスと、配線シートと、を含み、
     前記複数のセンサデバイスのそれぞれは、電極と、前記電極に対向して配置されている導電膜と、を含み、
     前記複数のセンサデバイスが、前記電極に対して前記導電膜が配置されている方向に重ねられており、
     前記配線シートは、前記複数のセンサデバイスに電気信号を入力する共通の入力配線と、前記複数のセンサデバイスから電気信号を出力する共通の出力配線と、を含む、圧力センサ。
  2.  前記電極が、前記配線シート上に形成されている、請求項1に記載の圧力センサ。
  3.  前記センサデバイスの少なくとも一部は、前記電極の少なくとも一部に重なる突起を備えている、請求項1または2に記載の圧力センサ。
  4.  前記突起は、前記複数のセンサデバイスのそれぞれに、設けられている、請求項3に記載の圧力センサ。
  5.  複数の前記突起のうちの少なくとも一つの突起の端面は、残りの前記突起うちの少なくとも一つの突起の端面と異なる大きさを有する、請求項4に記載の圧力センサ。
  6.  前記複数のセンサデバイスに対応して、一つの前記突起が設けられている、請求項4に記載の圧力センサ。
  7.  前記複数のセンサデバイスのうちの少なくとも一つのセンサデバイスの抵抗に係る特性と、残りの前記複数のセンサデバイスのうちの少なくとも一つのセンサデバイスの抵抗に係る特性と、が互いに相違している、請求項1から6のいずれか一項に記載の圧力センサ。
  8.  前記複数のセンサデバイスのうちの少なくとも一つのセンサデバイスの、前記導電膜に接触し得る前記電極の面積と、残りの前記複数のセンサデバイスのうちの少なくとも一つのセンサデバイスの、前記導電膜に接触し得る前記電極の面積と、が互いに相違している、請求項7に記載の圧力セン
    サ。
  9.  前記複数のセンサデバイスは、互いに並列に接続されている、請求項1から8のいずれか一項に記載の圧力センサ。
  10.  前記電極が第一電極及び第二電極を含み、
     前記第一電極及び前記第二電極は、互いに離間し、かつ、嵌め合わせ可能な形状を有している、請求項1から9のいずれか一項に記載の圧力センサ。
  11.  複数の電極と、前記複数の電極の少なくとも一つの電極に対応する導電膜と、を含むセンサデバイスと、複数の前記センサデバイスに電気信号を入力する共通の入力配線と、複数の前記センサデバイスから電気信号を出力する共通の出力配線と、を配線シート上に形成することと、前記配線シートを折り畳むことによって前記センサデバイス同士を重ねることと、を含む圧力センサの製造方法。

     
PCT/JP2019/012849 2018-04-16 2019-03-26 圧力センサ及び圧力センサの製造方法 WO2019202928A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980002648.3A CN110709680B (zh) 2018-04-16 2019-03-26 压力传感器和压力传感器的制造方法
US16/621,223 US20200200617A1 (en) 2018-04-16 2019-03-26 Pressure sensor and method for manufacturing pressure sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018078208A JP6839127B2 (ja) 2018-04-16 2018-04-16 圧力センサ、圧力センサの製造方法
JP2018-078208 2018-04-16

Publications (1)

Publication Number Publication Date
WO2019202928A1 true WO2019202928A1 (ja) 2019-10-24

Family

ID=68238912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012849 WO2019202928A1 (ja) 2018-04-16 2019-03-26 圧力センサ及び圧力センサの製造方法

Country Status (5)

Country Link
US (1) US20200200617A1 (ja)
JP (1) JP6839127B2 (ja)
CN (1) CN110709680B (ja)
TW (1) TW201944043A (ja)
WO (1) WO2019202928A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017013A1 (ja) * 2018-07-19 2020-01-23 Posh Wellness Laboratory株式会社 検出装置、シートベルト、及び運転手監視システム
US11493392B2 (en) * 2019-10-03 2022-11-08 Ricoh Company, Ltd. Sensor sheet, robot hand, and glove
JP7276225B2 (ja) * 2020-03-31 2023-05-18 豊田合成株式会社 センサユニット
KR20210150072A (ko) * 2020-06-03 2021-12-10 주식회사 엘지에너지솔루션 전지셀 압력 측정 장치 및 방법
US11785715B2 (en) * 2021-12-17 2023-10-10 Exro Technologies Inc. Article for power inverter and power inverter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004037350A (ja) * 2002-07-05 2004-02-05 Nitta Ind Corp 抵抗型センサ
JP2007010482A (ja) * 2005-06-30 2007-01-18 Toshiba Hokuto Electronics Corp 面圧力センサー
GB2549451A (en) * 2016-02-17 2017-10-25 The Helping Hand Company (Ledbury) Ltd Support evaluation device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5331546B2 (ja) * 2008-04-24 2013-10-30 株式会社フジクラ 圧力センサモジュール及び電子部品
CN104089737B (zh) * 2014-06-25 2015-08-05 西安交通大学 一种高灵敏度叠层式挠曲电压力传感器
CN106030267A (zh) * 2014-12-24 2016-10-12 日本梅克特隆株式会社 压敏元件和压力传感器
CN105865668B (zh) * 2015-01-20 2019-12-10 北京纳米能源与系统研究所 压力传感成像阵列、设备及其制作方法
WO2017058655A1 (en) * 2015-09-29 2017-04-06 Apple Inc. Pressure measurement designs
CN107144375A (zh) * 2016-03-01 2017-09-08 鸿富锦精密工业(深圳)有限公司 高密度传感器模组

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004037350A (ja) * 2002-07-05 2004-02-05 Nitta Ind Corp 抵抗型センサ
JP2007010482A (ja) * 2005-06-30 2007-01-18 Toshiba Hokuto Electronics Corp 面圧力センサー
GB2549451A (en) * 2016-02-17 2017-10-25 The Helping Hand Company (Ledbury) Ltd Support evaluation device

Also Published As

Publication number Publication date
CN110709680B (zh) 2022-04-12
US20200200617A1 (en) 2020-06-25
TW201944043A (zh) 2019-11-16
CN110709680A (zh) 2020-01-17
JP2019184509A (ja) 2019-10-24
JP6839127B2 (ja) 2021-03-03

Similar Documents

Publication Publication Date Title
WO2019202928A1 (ja) 圧力センサ及び圧力センサの製造方法
EP2860744B1 (en) Input device
US10175126B2 (en) Pressing force sensor
US7960667B2 (en) Movable contact element and switch using the same
TW201209664A (en) Pressure detecting unit and information input device having pressure detecting unit
WO2010137464A1 (ja) 着座センサ
JP2009099498A (ja) タッチパネル及びタッチパネルの製造方法
JP5264839B2 (ja) センサーシート
JP2010181303A (ja) 感圧センサおよびこれを用いた乗員検知装置
US12135252B2 (en) Force sensor with conductive films
CN102483362A (zh) 压力检测单元
WO2023214565A1 (ja) 感圧センサ
JP2018194525A (ja) 圧力センサ装置
JP7395114B2 (ja) 押圧検出可能なメンブレンスイッチおよびその製造方法
TWI648757B (zh) 防鬼鍵之薄膜開關裝置
JP2024065855A (ja) 触覚センサ
JP2011085452A (ja) 感圧センサ及びこれを用いた乗員検知装置
LU102398B1 (en) Sensor device
JP2024065854A (ja) 触覚センサ
JP6946740B2 (ja) 圧力センサ装置
JP2023165261A (ja) シート型荷重センサ
CN118031789A (zh) 一种传感装置
JP2018036229A (ja) 感圧素子
CN117729687A (zh) 感压柔性线路板及其制作方法
JP2022076611A (ja) 応力センサ、その製造方法、及びセンサシート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19788440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19788440

Country of ref document: EP

Kind code of ref document: A1