Nothing Special   »   [go: up one dir, main page]

WO2019124140A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2019124140A1
WO2019124140A1 PCT/JP2018/045290 JP2018045290W WO2019124140A1 WO 2019124140 A1 WO2019124140 A1 WO 2019124140A1 JP 2018045290 W JP2018045290 W JP 2018045290W WO 2019124140 A1 WO2019124140 A1 WO 2019124140A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
hfo
refrigerant
coordinates
line segment
Prior art date
Application number
PCT/JP2018/045290
Other languages
English (en)
French (fr)
Inventor
熊倉 英二
山田 拓郎
吉見 敦史
岩田 育弘
板野 充司
大輔 加留部
佑樹 四元
一博 高橋
達哉 高桑
雄三 小松
瞬 大久保
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2018/037483 external-priority patent/WO2019123782A1/ja
Priority claimed from PCT/JP2018/038748 external-priority patent/WO2019123806A1/ja
Priority claimed from PCT/JP2018/038747 external-priority patent/WO2019123805A1/ja
Priority claimed from PCT/JP2018/038746 external-priority patent/WO2019123804A1/ja
Priority to BR112020010676-3A priority Critical patent/BR112020010676A2/pt
Priority to KR1020207020709A priority patent/KR102655073B1/ko
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP18892942.6A priority patent/EP3730870A4/en
Priority to CN201880081269.3A priority patent/CN111480040B/zh
Priority to AU2018387884A priority patent/AU2018387884B2/en
Priority to US16/955,465 priority patent/US20210003323A1/en
Priority to JP2019560982A priority patent/JP7212265B2/ja
Publication of WO2019124140A1 publication Critical patent/WO2019124140A1/ja
Priority to PH12020550914A priority patent/PH12020550914A1/en
Priority to US16/912,003 priority patent/US11506425B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • F24F1/24Cooling of electric components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/044Systems in which all treatment is given in the central station, i.e. all-air systems
    • F24F3/048Systems in which all treatment is given in the central station, i.e. all-air systems with temperature control at constant rate of air-flow
    • F24F3/052Multiple duct systems, e.g. systems in which hot and cold air are supplied by separate circuits from the central station to mixing chambers in the spaces to be conditioned
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present disclosure relates to a refrigeration cycle apparatus.
  • R410A is frequently used as a refrigerant.
  • R410A is a binary mixed refrigerant of (CH 2 F 2 ; HFC-32 or R32) and pentafluoroethane (C 2 HF 5 ; HFC-125 or R125), and is a pseudo-azeotropic composition.
  • Patent Document 1 WO 2015/141678
  • various low GWP mixed refrigerants that can be substituted for R410A have been proposed.
  • the content of the present disclosure is in view of the above-described point, and an object thereof is to provide an air conditioning unit capable of performing a refrigeration cycle using a refrigerant with a small GWP.
  • the refrigeration cycle apparatus includes a refrigerant circuit and a refrigerant.
  • the refrigerant circuit includes a compressor, a condenser, a pressure reducing unit, and an evaporator.
  • the refrigerant contains at least 1,2-difluoroethylene.
  • the refrigerant is enclosed in a refrigerant circuit.
  • this refrigeration cycle apparatus can perform a refrigeration cycle using a refrigerant containing 1,2-difluoroethylene in a refrigerant circuit having a compressor, a condenser, a pressure reducing unit, and an evaporator, the refrigerant having a small GWP can be used. It is possible to use it to perform a refrigeration cycle.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect, and the refrigerant circuit further includes a low pressure receiver.
  • the low pressure receiver is provided in the middle of the refrigerant flow path from the evaporator to the suction side of the compressor.
  • This refrigeration cycle apparatus can perform the refrigeration cycle while accumulating the excess refrigerant in the refrigerant circuit in the low pressure receiver.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect or the second aspect, and the refrigerant circuit further includes a high pressure receiver.
  • the high pressure receiver is provided on the way of the refrigerant flow path from the condenser to the evaporator.
  • the refrigeration cycle can be performed while accumulating the surplus refrigerant in the refrigerant circuit in the high pressure receiver.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first aspect to the third aspect, and the refrigerant circuit further includes a first pressure reducing unit, a second pressure reducing unit, and an intermediate pressure receiver.
  • the first pressure reducing unit, the second pressure reducing unit, and the intermediate pressure receiver are all provided in the middle of the refrigerant flow path from the condenser to the evaporator.
  • the intermediate pressure receiver is provided between the first pressure reducing portion and the second pressure reducing portion in the refrigerant flow path from the condenser to the evaporator.
  • the refrigeration cycle can be performed while accumulating the surplus refrigerant in the refrigerant circuit in the intermediate pressure receiver.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first aspect to the fourth aspect, and further includes a control unit.
  • the refrigerant circuit further includes a first pressure reducing unit and a second pressure reducing unit.
  • the first pressure reducing unit and the second pressure reducing unit are provided in the middle of the refrigerant flow path from the condenser to the evaporator.
  • the control unit adjusts both the pressure reduction degree of the refrigerant passing through the first pressure reduction unit and the pressure reduction degree of the refrigerant passing through the second pressure reduction unit.
  • the refrigerant flow from the condenser to the evaporator is controlled by controlling the degree of pressure reduction of the first pressure reducing unit and the second pressure reducing unit provided on the way of the refrigerant flow path from the condenser to the evaporator. It becomes possible to reduce the density of the refrigerant located between the first pressure reducing portion and the second pressure reducing portion in the middle of the path. As a result, the refrigerant enclosed in the refrigerant circuit can be more easily present in the condenser and / or the evaporator, and the capacity can be improved.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first aspect to the fifth aspect, and the refrigerant circuit further includes a refrigerant heat exchange unit.
  • the refrigerant heat exchange unit performs heat exchange between the refrigerant traveling from the condenser to the evaporator and the refrigerant traveling from the evaporator to the compressor.
  • the refrigerant traveling from the evaporator to the compressor is heated by the refrigerant traveling from the condenser to the evaporator. For this reason, it is possible to suppress liquid compression in the compressor.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first aspect to the sixth aspect, wherein the refrigerant is trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoro It contains ethylene (HFO-1123) and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
  • HFO-1132 E
  • trifluoro It contains ethylene
  • R1234yf 2,3,3,3-tetrafluoro-1-propene
  • GWP is sufficiently small and has a refrigeration capacity [Refrigeration Capacity (sometimes referred to as Cooling Capacity or Capacity)] equal to R410A and a coefficient of performance (Coefficient of Performance (COP)). It is possible to perform a refrigeration cycle using a refrigerant that has both performance.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the seventh aspect, wherein, in the refrigerant, mass% of HFO-1132 (E), HFO-1123 and R1234yf based on the total of these is respectively x , Y and z, in the ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123 and R1234yf is 100% by mass, coordinates (x, y, z) are Point A (68.6, 0.0, 31.4), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point D (0.0, 80.4, 19.6), Point C '(19.5, 70.5, 10.0), Point C (32.9, 67.1, 0.0) and point O (100.0, 0.0, 0.0) Within the range of the figure enclosed by the line segment AA ′, A′B, BD, DC ′, C′C, CO and OA connecting the seven points of Except for the points on OA), The line segment AA ′,
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the seventh aspect, wherein, in the refrigerant, mass% of HFO-1132 (E), HFO-1123 and R1234yf based on the total of these is indicated as x , Y and z, in the ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123 and R1234yf is 100% by mass, coordinates (x, y, z) are Point G (72.0, 28.0, 0.0), Point I (72.0, 0.0, 28.0), Point A (68.6, 0.0, 31.4), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point D (0.0, 80.4, 19.6), Point C '(19.5, 70.5, 10.0) and point C (32.9, 67.1, 0.0) Within the range of the figure enclosed by the line segments GI, IA, AA ′, A′B, BD, DC ′, C′C and CG
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the seventh aspect, wherein, in the refrigerant, mass% of HFO-1132 (E), HFO-1123 and R1234yf based on the total of these is indicated as x , Y and z, in the ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123 and R1234yf is 100% by mass, coordinates (x, y, z) are Point J (47.1, 52.9, 0.0), Point P (55.8, 42.0, 2.2), Point N (68.6, 16.3, 15.1), Point K (61.3, 5.4, 33.3), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point D (0.0, 80.4, 19.6), Point C '(19.5, 70.5, 10.0) and point C (32.9, 67.1, 0.0) Within the range of the figure bounded by the JP, PN, NK, KA ', A
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the seventh aspect, wherein, in the refrigerant, mass% of HFO-1132 (E), HFO-1123 and R1234yf based on the total of these is respectively x , Y and z, in the ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123 and R1234yf is 100% by mass, coordinates (x, y, z) are Point J (47.1, 52.9, 0.0), Point P (55.8, 42.0, 2.2), Point L (63.1, 31.9, 5.0), Point M (60.3, 6.2, 33.5), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point D (0.0, 80.4, 19.6), Point C '(19.5, 70.5, 10.0) and point C (32.9, 67.1, 0.0) Within the range of the figure bounded by the JP, PL, LM, MA ', A'B,
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the seventh aspect, wherein, in the refrigerant, mass% of HFO-1132 (E), HFO-1123 and R1234yf based on the total of these is respectively x , Y and z, in the ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123 and R1234yf is 100% by mass, coordinates (x, y, z) are Point P (55.8, 42.0, 2.2), Point L (63.1, 31.9, 5.0), Point M (60.3, 6.2, 33.5), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point F (0.0, 61.8, 38.2) and point T (35.8, 44.9, 19.3) Within the range of the figure bounded by the line segments PL, LM, MA ', A' B, BF, FT and TP connecting the 7 points of , The line segment PL is Coordinate
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the seventh aspect, wherein, in the refrigerant, mass% of HFO-1132 (E), HFO-1123 and R1234yf based on the total of these is indicated as x , Y and z, in the ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123 and R1234yf is 100% by mass, coordinates (x, y, z) are Point P (55.8, 42.0, 2.2), Point L (63.1, 31.9, 5.0), Point Q (62.8, 29.6, 7.6) and Point R (49.8, 42.3, 7.9) Within the range of the figure bounded by the line segments PL, LQ, QR and RP connecting the four points of The line segment PL is Coordinates (x, -0.1135x 2 + 12.112x- 280.43, 0.1135x 2 -13.112x + 380.43) Represented by The line segment RP is The coordinates (x, 0.0067
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the seventh aspect, wherein, in the refrigerant, the mass% of HFO-1132 (E), HFO-1123 and R1234yf based on the total of these is respectively x , Y and z, in the ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123 and R1234yf is 100% by mass, coordinates (x, y, z) are Point S (62.6, 28.3, 9.1), Point M (60.3, 6.2, 33.5), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point F (0.0, 61.8, 38.2) and point T (35.8, 44.9, 19.3) Within the range of the figure enclosed by the line segment SM, MA ′, A ′ B, BF, FT, and TS connecting the six points of The line segment MA 'is The coordinates (x, 0.0016x 2 -0.9473x + 57
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first aspect to the sixth aspect, wherein the refrigerant is trans-1,2-difluoroethylene (HFO-1132 (E)) and trifluoro 99.5% by mass or more of the total of ethylene (HFO-1123) with respect to the total of the refrigerant, and the refrigerant contains 62.0% by mass to 72.0% by mass of the HFO-1132 (E) with respect to the total of the refrigerant Including.
  • HFO-1132 (E) trans-1,2-difluoroethylene
  • HFO-1123 trifluoro 99.5% by mass or more of the total of ethylene
  • HFO-1123 total of ethylene
  • the refrigerant contains 62.0% by mass to 72.0% by mass of the HFO-1132 (E) with respect to the total of the refrigerant Including.
  • the GWP is sufficiently small, and has a coefficient of performance (coefficient of performance (COP)) equal to that of R410A, and a refrigeration capacity (RefrigerationCapacity (sometimes referred to as Cooling Capacity, Capacity)), It is possible to perform a refrigeration cycle using a refrigerant having the performance of being slightly flammable (2 L class) according to the standards of the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
  • COP coefficient of performance
  • R410A coefficient of performance
  • RefrigerationCapacity sometimes referred to as Cooling Capacity, Capacity
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first aspect to the sixth aspect, wherein the refrigerant is a mixture of HFO-1132 (E) and HFO-1123 in its entirety. On the other hand, it contains 99.5% by mass or more, and the refrigerant contains 45.1% by mass to 47.1% by mass of HFO-1132 (E) based on the whole of the refrigerant.
  • the GWP is sufficiently small, and has a coefficient of performance (coefficient of performance (COP)) equal to that of R410A, and a refrigeration capacity (RefrigerationCapacity (sometimes referred to as Cooling Capacity, Capacity)), It is possible to perform a refrigeration cycle using a refrigerant having the performance of being slightly flammable (2 L class) according to the standards of the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
  • COP coefficient of performance
  • R410A coefficient of performance
  • RefrigerationCapacity sometimes referred to as Cooling Capacity, Capacity
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first to sixth aspects, wherein the refrigerant is trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoro Ethylene (HFO-1123) and 2,3,3,3-tetrafluoro-1-propene (R1234yf) and difluoromethane (R32), HFO-1132 (E), HFO when the mass% of HFO-1132 (E), HFO-1123 and R1234yf and R32 based on the total of these is x, y and z and a, respectively, in the refrigerant.
  • the refrigerant is trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoro Ethylene (HFO-1123) and 2,3,3,3-tetrafluoro-1-propene (R1234yf) and difluoromethane (R32), HFO-1132 (E), HFO when the mass% of HFO-1132 (
  • Point A (0.0107a 2 -1.9142a + 68.305, 0.0, -0.0107a 2 + 0.9142a + 31.695)
  • Point B (0.0, 0.009a 2 -1.6045a + 59.318, -0.009a 2 + 0.6045a + 40.682)
  • the point W (0.0, 100.0-a, 0.0)
  • GI, IA, AB, BW and WG respectively connecting the five points of the above, or on the straight lines GI and AB (however, points G, I, except)
  • Point G (0.0111a 2 -1.3152a + 68.986,-0.0111a 2 + 0.3152a + 31.014, 0.0)
  • Point I (0.0111a 2 -1.3152a + 68.986, 0.0,-0.0111a 2 + 0.3152a + 31.014)
  • Point A (0.0103a 2 -1.9225a + 68.793, 0.0, -0.0103a
  • GWP is sufficiently small and has a refrigeration capacity [Refrigeration Capacity (sometimes referred to as Cooling Capacity or Capacity)] equal to R410A and a coefficient of performance (Coefficient of Performance (COP)). It is possible to perform a refrigeration cycle using a refrigerant that has both performance.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first through sixth aspects, wherein the refrigerant is trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoro Ethylene (HFO-1123) and 2,3,3,3-tetrafluoro-1-propene (R1234yf) and difluoromethane (R32), HFO-1132 (E), HFO when the mass% of HFO-1132 (E), HFO-1123 and R1234yf and R32 based on the total of these is x, y and z and a, respectively, in the refrigerant.
  • the refrigerant is trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoro Ethylene (HFO-1123) and 2,3,3,3-tetrafluoro-1-propene (R1234yf) and difluoromethane (R32), HFO-1132 (E), HFO when the mass% of HFO-1132 (
  • GWP is sufficiently small and has a refrigeration capacity [Refrigeration Capacity (sometimes referred to as Cooling Capacity or Capacity)] equal to R410A and a coefficient of performance (Coefficient of Performance (COP)). It is possible to perform a refrigeration cycle using a refrigerant that has both performance.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first aspect to the sixth aspect, wherein the refrigerant is trans-1,2-difluoroethylene (HFO-1132 (E)), difluoromethane (R32) and 2,3,3,3-tetrafluoro-1-propene (R1234yf), and the content of HFO-1132 (E), R32 and R1234yf based on the total of these in the refrigerant is
  • the three-component composition diagram in which the sum of HFO-1132 (E), R32 and R1234yf is 100% by mass when x, y and z are respectively, coordinates (x, y, z) are Point I (72.0, 0.0, 28.0), Point J (48.5, 18.3, 33.2), Point N (27.7, 18.2, 54.1) and point E (58.3, 0.0, 41.7)
  • the line segments IJ, JN, NE, and EI connecting the four points of the above,
  • the GWP is sufficiently small, and has a refrigeration capacity [Refrigeration Capacity (sometimes referred to as Cooling Capacity or Capacity)] equivalent to R410A, according to the standards of the American Society of Heating, Refrigerating and Air-Conditioning (ASHRAE) It is possible to perform a refrigeration cycle using a refrigerant that has the performance of being slightly flammable (2 L class).
  • refrigeration Capacity sometimes referred to as Cooling Capacity or Capacity
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first aspect to the sixth aspect, wherein the refrigerant comprises HFO-1132 (E), R32 and R1234yf, and in the refrigerant, HFO- A three-component composition in which the sum of HFO-1132 (E), R32 and R1234yf is 100% by mass, where x, y and z are mass% of 1132 (E), R32 and R1234yf based on the total of these
  • the coordinates (x, y, z) are Point M (52.6, 0.0, 47.4), Point M '(39.2, 5.0, 55.8), Point N (27.7, 18.2, 54.1), Point V (11.0, 18.1, 70.9) and Point G (39.6, 0.0, 60.4)
  • the line segments MM ', M'N, NV, VG, and GM connecting the five points of the above, or on the line segment (except for the points on
  • the GWP is sufficiently small, and has a refrigeration capacity [Refrigeration Capacity (sometimes referred to as Cooling Capacity or Capacity)] equivalent to R410A, according to the standards of the American Society of Heating, Refrigerating and Air-Conditioning (ASHRAE) It is possible to perform a refrigeration cycle using a refrigerant that has the performance of being slightly flammable (2 L class).
  • refrigeration Capacity sometimes referred to as Cooling Capacity or Capacity
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first aspect to the sixth aspect, wherein the refrigerant comprises HFO-1132 (E), R32 and R1234yf, wherein the refrigerant comprises HFO- A three-component composition in which the sum of HFO-1132 (E), R32 and R1234yf is 100% by mass, where x, y and z are mass% of 1132 (E), R32 and R1234yf based on the total of these
  • the coordinates (x, y, z) are Point O (22.6, 36.8, 40.6), Point N (27.7, 18.2, 54.1) and point U (3.9, 36.7, 59.4)
  • Within the range of the figure bounded by the line segments ON, NU and UO respectively connecting the three points of The line segment ON is Coordinates (0.0072y 2 -0.6701y + 37.512, y , -0.0072y 2 -0.3299y + 62.488)
  • the GWP is sufficiently small, and has a refrigeration capacity [Refrigeration Capacity (sometimes referred to as Cooling Capacity or Capacity)] equivalent to R410A, according to the standards of the American Society of Heating, Refrigerating and Air-Conditioning (ASHRAE) It is possible to perform a refrigeration cycle using a refrigerant that has the performance of being slightly flammable (2 L class).
  • refrigeration Capacity sometimes referred to as Cooling Capacity or Capacity
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first through sixth aspects, wherein the refrigerant comprises HFO-1132 (E), R32 and R1234yf, wherein the refrigerant comprises HFO- A three-component composition in which the sum of HFO-1132 (E), R32 and R1234yf is 100% by mass, where x, y and z are mass% of 1132 (E), R32 and R1234yf based on the total of these
  • the coordinates (x, y, z) are Point Q (44.6, 23.0, 32.4), Point R (25.5, 36.8, 37.7), Point T (8.6, 51.6, 39.8), Point L (28.9, 51.7, 19.4) and Point K (35.6, 36.8, 27.6)
  • the line segments QR, RT, TL, LK and KQ connecting the five points of The line segment QR is Coordinates (0.0099 y 2 -1.
  • the line segment RT is Coordinates (0.082y 2 -1.8683y + 83.126, y, -0.082y 2 + 0.8683y + 16.874)
  • the line segment LK is Coordinates (0.0049y 2 -0.8842y + 61.488, y, -0.0049y 2 -0.1158y + 38.512)
  • the line segment KQ is Coordinates (0.0095y 2 -1.2222y + 67.676, y, -0.0095y 2 + 0.2222y + 32.324)
  • the line segment TL is a straight line.
  • the GWP is sufficiently small, and has a refrigeration capacity [Refrigeration Capacity (sometimes referred to as Cooling Capacity or Capacity)] equivalent to R410A, according to the standards of the American Society of Heating, Refrigerating and Air-Conditioning (ASHRAE) It is possible to perform a refrigeration cycle using a refrigerant that has the performance of being slightly flammable (2 L class).
  • refrigeration Capacity sometimes referred to as Cooling Capacity or Capacity
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first through sixth aspects, wherein the refrigerant comprises HFO-1132 (E), R32 and R1234yf, wherein the refrigerant is HFO- A three-component composition in which the sum of HFO-1132 (E), R32 and R1234yf is 100% by mass, where x, y and z are mass% of 1132 (E), R32 and R1234yf based on the total of these
  • the coordinates (x, y, z) are Point P (20.5, 51.7, 27.8), Point S (21.9, 39.7, 38.4) and point T (8.6, 51.6, 39.8)
  • Within the range of the figure bounded by the line segments PS, ST, and TP connecting the three points of The line segment PS is Coordinates (0.0064y 2 -0.7103y + 40.1, y, -0.0064y 2 -0.2897y + 59.9) Represented by The line
  • the GWP is sufficiently small, and has a refrigeration capacity [Refrigeration Capacity (sometimes referred to as Cooling Capacity or Capacity)] equivalent to R410A, according to the standards of the American Society of Heating, Refrigerating and Air-Conditioning (ASHRAE) It is possible to perform a refrigeration cycle using a refrigerant that has the performance of being slightly flammable (2 L class).
  • refrigeration Capacity sometimes referred to as Cooling Capacity or Capacity
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first through sixth aspects, wherein the refrigerant is trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoro Containing ethylene (HFO-1123) and difluoromethane (R32), HFO-1132 (E), HFO-1123 and R32, where x, y and z respectively represent mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these refrigerants.
  • the refrigerant is trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoro Containing ethylene (HFO-1123) and difluoromethane (R32), HFO-1132 (E), HFO-1123 and R32, where x, y and z respectively represent mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these refrigerants.
  • the coordinates (x, y, z) are Point I (72.0, 28, 0, 0.0) Point K (48.4, 33.2, 18.4) Point B '(0.0, 81.6, 18.4) Point H (0.0, 84.2, 15.8) Point R (23.1, 67.4, 9.5) and Point G (38.5, 61.5, 0.0)
  • the line segment IK is Coordinates (0.025z 2 -1.7429z + 72.00, -0.025z 2 + 0.7429z + 28.0, z) Represented by
  • the line segment HR is Coordinates (-0.3123z 2 + 4.234z + 11.06, 0.3123z 2 -5.234z + 88.94, z) Represented by
  • the line segment RG is Coordinates ( ⁇ 0.0491z 2 -1.1544z + 3
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first through sixth aspects, wherein the refrigerant includes HFO-1132 (E), HFO-1123 and R32, HFO-1132 (E), HFO-1123 and R32, where x, y and z respectively represent mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these refrigerants.
  • the refrigerant includes HFO-1132 (E), HFO-1123 and R32, HFO-1132 (E), HFO-1123 and R32, where x, y and z respectively represent mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these refrigerants.
  • the coordinates (x, y, z) are Point I (72.0, 28, 0, 0.0) Point J (57.7, 32.8, 9.5) Point R (23.1, 67.4, 9.5) and Point G (38.5, 61.5, 0.0)
  • the line segment IJ is Coordinates (0.025z 2 -1.7429z + 72.0, -0.025z 2 + 0.7429z + 28.0, z)
  • the line segment RG is Coordinates ( ⁇ 0.0491z 2 -1.1544z + 38.5, 0.0491z 2 + 0.1544z + 61.5, z) Represented by The line segments JR and GI are straight lines.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first through sixth aspects, wherein the refrigerant includes HFO-1132 (E), HFO-1123 and R32, HFO-1132 (E), HFO-1123 and R32, where x, y and z respectively represent mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these refrigerants.
  • the refrigerant includes HFO-1132 (E), HFO-1123 and R32, HFO-1132 (E), HFO-1123 and R32, where x, y and z respectively represent mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these refrigerants.
  • the coordinates (x, y, z) are Point M (47.1, 52.9, 0.0) Point P (31.8, 49.8, 18.4) Point B '(0.0, 81.6, 18.4) Point H (0.0, 84.2, 15.8) Point R (23.1, 67.4, 9.5) and Point G (38.5, 61.5, 0.0)
  • the line segment MP is Coordinates (0.0083z 2 -0.984z + 47.1, -0.0083z 2 -0.016z + 52.9, z) Represented by
  • the line segment HR is Coordinates (-0.3123z 2 + 4.234z + 11.06, 0.3123z 2 -5.234z + 88.94, z) Represented by
  • the line segment RG is Coordinates ( ⁇ 0.0491z 2 -1.1544z + 38.5, 0.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first through sixth aspects, wherein the refrigerant includes HFO-1132 (E), HFO-1123 and R32, HFO-1132 (E), HFO-1123 and R32, where x, y and z respectively represent mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these refrigerants.
  • the refrigerant includes HFO-1132 (E), HFO-1123 and R32, HFO-1132 (E), HFO-1123 and R32, where x, y and z respectively represent mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these refrigerants.
  • the coordinates (x, y, z) are Point M (47.1, 52.9, 0.0) Point N (38.5, 52.1, 9.5) Point R (23.1, 67.4, 9.5) and Point G (38.5, 61.5, 0.0)
  • the line segment MN is Coordinates (0.0083z 2 -0.984z + 47.1, -0.0083z 2 -0.016z + 52.9, z)
  • the line segment RG is Coordinates ( ⁇ 0.0491z 2 -1.1544z + 38.5, 0.0491z 2 + 0.1544z + 61.5, z) Represented by The line segments JR and GI are straight lines.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first through sixth aspects, wherein the refrigerant includes HFO-1132 (E), HFO-1123 and R32, HFO-1132 (E), HFO-1123 and R32, where x, y and z respectively represent mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these refrigerants.
  • the refrigerant includes HFO-1132 (E), HFO-1123 and R32, HFO-1132 (E), HFO-1123 and R32, where x, y and z respectively represent mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these refrigerants.
  • the coordinates (x, y, z) are Point P (31.8, 49.8, 18.4) Point S (25.4, 56.2, 18.4) and Point T (34.8, 51.0, 14.2)
  • Point P 31.8, 49.8, 18.4
  • Point S (25.4, 56.2, 18.4)
  • Point T 34.8, 51.0, 14.2
  • the line segment ST is Coordinates (-0.0982z 2 + 0.9622z + 40.931, 0.0982z 2 -1.9622z + 59.069, z)
  • the line segment TP is Coordinates (0.0083z 2 -0.984z + 47.1, -0.0083z 2 -0.016z + 52.9, z) Represented by
  • the line segment PS is a straight line.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first through sixth aspects, wherein the refrigerant includes HFO-1132 (E), HFO-1123 and R32, HFO-1132 (E), HFO-1123 and R32, where x, y and z respectively represent mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these refrigerants.
  • the refrigerant includes HFO-1132 (E), HFO-1123 and R32, HFO-1132 (E), HFO-1123 and R32, where x, y and z respectively represent mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these refrigerants.
  • the coordinates (x, y, z) are Point Q (28.6, 34.4, 37.0) Point B '' (0.0, 63.0, 37.0) Point D (0.0, 67.0, 33.0) and point U (28.7, 41.2, 30.1)
  • the line segment DU is The coordinates ( ⁇ 3.4962z 2 + 210.71z ⁇ 3146.1, 3.4962z 2 ⁇ 211.71z + 3246.1, z) are represented, and the line segment UQ is Coordinates (0.0135z 2 -0.9181z + 44.133, -0.0135z 2 -0.0819z + 55.867, z) Represented by The line segments QB ′ ′ and B′′D are straight lines.
  • FIG. 3 is a diagram showing points A to T and line segments connecting them in a ternary composition diagram in which the total sum of HFO-1132 (E), HFO-1123 and R1234yf is 100% by mass.
  • the sum of HFO-1132 (E), HFO-1123 and R1234yf is (100 ⁇ a) mass%, points A to C, D ′, G, I, J and K ′ and their respective It is the figure which showed the line segment to connect.
  • the three-component composition diagram in which the sum of HFO-1132 (E), R32 and R1234yf is 100% by mass is a diagram showing points A to C, E, G, and I to W and line segments connecting them. .
  • FIG. 3 is a diagram showing points A to U and line segments connecting them in a ternary composition diagram in which the total sum of HFO-1132 (E), HFO-1123 and R32 is 100% by mass.
  • It is a schematic block diagram of the refrigerant circuit concerning a 1st embodiment.
  • refrigerant includes at least a compound having a refrigerant number (ASHRAE number) defined by ISO 817 (International Organization for Standardization) and representing a type of refrigerant. Furthermore, even if the refrigerant number is not yet assigned, those having the same characteristics as the refrigerant are included.
  • refrigerants are roughly classified into “fluorocarbon compounds” and “nonfluorocarbon compounds” in terms of the structure of the compounds.
  • the "fluorocarbon compounds” include chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs). Examples of the "non-fluorocarbon compound” include propane (R290), propylene (R1270), butane (R600), isobutane (R600a), carbon dioxide (R744), ammonia (R717) and the like.
  • composition containing a refrigerant further includes (1) the refrigerant itself (including a mixture of refrigerants) and (2) other components, and at least a refrigerator by mixing with a refrigerator oil. At least a composition that can be used to obtain a working fluid, and (3) a working fluid for a refrigerator containing a refrigerator oil.
  • the composition of (2) is referred to as “refrigerant composition” to distinguish it from the refrigerant itself (including a mixture of refrigerants).
  • the thing of the working fluid for refrigerators for (3) is distinguished from a "refrigerant composition", and is described as a "refrigerant oil containing working fluid.”
  • the term "alternate” is used in the context of "substituting" a first refrigerant with a second refrigerant, to operate using the first refrigerant as a first type
  • the second refrigerant is used only by changing and adjusting the number of parts (at least one of refrigerator oil, gasket, packing, expansion valve, dryer and other parts) as needed. Mean that they can be operated under optimum conditions. That is, this type refers to operating the same device with "substituting" the refrigerant.
  • this type of “alternate” “drop in alternative”, “nearly drop in” There may be nealy drop in 'and' retrofit '.
  • the term "refrigerator” refers to any device that maintains a temperature lower than ambient air and maintains this low temperature by removing heat from objects or space.
  • the refrigerator in order to transfer heat from the low temperature side to the high temperature side, the refrigerator refers to a conversion device that obtains energy from the outside, performs work and converts energy.
  • the refrigerant being "WCF slight burn” means that the burning rate is 10 cm / s or less in the most flammable composition (WCF) according to the US ANSI / ASHRAE 34-2013 standard.
  • that the refrigerant is "ASHRAE slight burn” means that the burning rate of WCF is 10 cm / s or less, and storage, transport, and use based on ANSI / ASHRAE 34-2013 using WCF.
  • the most flammable fraction composition (Worst case of fractionation for flammability; WCFF) specified by conducting the leakage test has a burning rate of 10 cm / s or less and the flammability classification of US ANSI / ASHRAE 34-2013 is “ It means that it will be judged as "2L class”.
  • RCL refrigerant concentration limit
  • Temperature Glide refers to the absolute value of the difference between the onset temperature and the end temperature of the phase change process of the composition comprising the refrigerant of the present disclosure in the heat exchanger of the refrigerant system.
  • Refrigerant (2-1) Refrigerant Component Although the details will be described later, any one of the refrigerants A, B, C, D, and E can be used as the refrigerant.
  • the refrigerant of the present disclosure can be preferably used as a working fluid in a refrigerator.
  • compositions of the present disclosure are suitable for use as substitutes for HFC refrigerants such as R410A, R407C and R404A, and HCFC refrigerants such as R22.
  • the refrigerant composition of the present disclosure contains at least the refrigerant of the present disclosure and can be used for the same application as the refrigerant of the present disclosure.
  • the refrigerant composition of the present disclosure can be used to obtain a working fluid for a refrigerator by further mixing with at least a refrigerator oil.
  • the refrigerant composition of the present disclosure further contains at least one other component in addition to the refrigerant of the present disclosure.
  • the refrigerant composition of the present disclosure may optionally contain at least one of the following other components.
  • the refrigerant compositions of the present disclosure are preferably substantially free of refrigeration oil.
  • the refrigerant composition of the present disclosure preferably has a refrigerator oil content of 0 to 1% by mass, more preferably 0 to 0.1% by mass, based on the entire refrigerant composition.
  • the refrigerant composition of the present disclosure may contain a trace amount of water.
  • the water content of the refrigerant composition is preferably 0.1% by mass or less based on the entire refrigerant.
  • the intramolecular double bond of the unsaturated fluorocarbon compound which may be contained in the refrigerant is stabilized, and oxidation of the unsaturated fluorocarbon compound is also less likely to occur.
  • the stability of the refrigerant composition is improved.
  • the tracer is added to the refrigerant composition of the present disclosure at a detectable concentration so that when the refrigerant composition of the present disclosure is diluted, contaminated, or any other change can be traced. .
  • the refrigerant composition of the present disclosure may contain one type alone or two or more types as a tracer.
  • the tracer is not particularly limited, and can be appropriately selected from generally used tracers.
  • a compound that can not be an impurity that is inevitably mixed in the refrigerant of the present disclosure is selected as a tracer.
  • tracers examples include hydrofluorocarbons, hydrochlorofluorocarbons, chlorofluorocarbons, hydrochlorocarbons, fluorocarbons, deuterated hydrocarbons, deuterated hydrofluorocarbons, perfluorocarbons, fluoroethers, fluoroethers, brominated compounds, iodinated compounds, alcohols, Aldehydes, ketones, nitrous oxide (N2O) and the like can be mentioned.
  • hydrofluorocarbons As a tracer, hydrofluorocarbons, hydrochlorofluorocarbons, chlorofluorocarbons, hydrochlorocarbons, fluorocarbons and fluoroethers are particularly preferred.
  • the following compounds are preferable.
  • FC-14 Tetrafluoromethane, CF 4 ) HCC-40 (chloromethane, CH 3 Cl) HFC-23 (trifluoromethane, CHF 3 ) HFC-41 (fluoromethane, CH 3 Cl) HFC-125 (pentafluoroethane, CF 3 CHF 2 ) HFC-134a (1,1,1,2-tetrafluoroethane, CF 3 CH 2 F) HFC-134 (1,1,2,2-tetrafluoroethane, CHF 2 CHF 2 ) HFC-143a (1,1,1-trifluoroethane, CF 3 CH 3 ) HFC-143 (1,1,2-trifluoroethane, CHF 2 CH 2 F) HFC-152a (1,1-difluoroethane, CHF 2 CH 3 ) HFC-152 (1,2-difluoroethane, CH 2 FCH 2 F) HFC-161 (Fluoroethane, CH 3 CH 2 F
  • the tracer compound may be present in the refrigerant composition at a total concentration of about 10 parts per million (ppm) to about 1000 ppm.
  • the tracer compound is present in the refrigerant composition at a total concentration of about 30 ppm to about 500 ppm, and most preferably, the tracer compound is present in the refrigerant composition at a total concentration of about 50 ppm to about 300 ppm.
  • the refrigerant composition of the present disclosure may contain one kind alone or two or more kinds as an ultraviolet fluorescent dye.
  • the ultraviolet fluorescent dye is not particularly limited, and can be appropriately selected from ultraviolet fluorescent dyes generally used.
  • UV fluorescent dyes include, for example, naphthalimide, coumarin, anthracene, phenanthrene, xanthene, thioxanthene, naphthoxanthene and fluorescein, and derivatives thereof.
  • the ultraviolet fluorescent dye either or both of naphthalimide and coumarin are particularly preferable.
  • the refrigerant composition of the present disclosure may contain one kind alone, or two or more kinds as a stabilizer.
  • the stabilizer is not particularly limited, and can be appropriately selected from generally used stabilizers.
  • a stabilizer As a stabilizer, a nitro compound, ethers, amines etc. are mentioned, for example.
  • nitro compound examples include aliphatic nitro compounds such as nitromethane and nitroethane, and aromatic nitro compounds such as nitrobenzene and nitrostyrene.
  • ethers examples include 1,4-dioxane and the like.
  • amines examples include 2,2,3,3,3-pentafluoropropylamine, diphenylamine and the like.
  • the content ratio of the stabilizer is not particularly limited, and usually 0.01 to 5% by mass is preferable, and 0.05 to 2% by mass is more preferable with respect to the whole refrigerant.
  • the refrigerant composition of the present disclosure may contain one kind alone, or may contain two or more kinds.
  • the polymerization inhibitor is not particularly limited, and can be appropriately selected from commonly used polymerization inhibitors.
  • polymerization inhibitor examples include 4-methoxy-1-naphthol, hydroquinone, hydroquinone methyl ether, dimethyl-t-butylphenol, 2,6-di-tert-butyl-p-cresol, benzotriazole and the like.
  • the content ratio of the polymerization inhibitor is not particularly limited, and is usually preferably 0.01 to 5% by mass, and more preferably 0.05 to 2% by mass, with respect to the entire refrigerant.
  • the refrigerator oil-containing working fluid of the present disclosure at least includes the refrigerant or the refrigerant composition of the present disclosure and a refrigerator oil, and is used as a working fluid in a refrigerator.
  • the refrigerator oil-containing working fluid of the present disclosure is obtained by mixing the refrigerator oil used in the compressor of the refrigerator and the refrigerant or the refrigerant composition with each other.
  • the refrigeration oil-containing working fluid generally contains 10 to 50% by mass of refrigeration oil.
  • the refrigerator oil is not particularly limited, and can be appropriately selected from commonly used refrigerator oils. At that time, if necessary, a refrigerator oil more excellent in the miscibility with the mixture, the effect of improving the stability of the mixture, and the like can be appropriately selected.
  • a base oil of refrigeration oil for example, at least one selected from the group consisting of polyalkylene glycol (PAG), polyol ester (POE) and polyvinyl ether (PVE) is preferable.
  • PAG polyalkylene glycol
  • POE polyol ester
  • PVE polyvinyl ether
  • the refrigerator oil may further contain an additive in addition to the base oil.
  • the additive may be at least one selected from the group consisting of an antioxidant, an extreme pressure agent, an acid scavenger, an oxygen scavenger, a copper deactivator, a rust inhibitor, an oil agent and an antifoamer. .
  • the refrigerator oil one having a kinematic viscosity at 40 ° C. of 5 to 400 cSt is preferable in terms of lubrication.
  • the refrigerator oil-containing working fluid of the present disclosure may further contain at least one additive, as needed.
  • the additive include the following compatibilizers and the like.
  • the refrigeration oil-containing working fluid of the present disclosure may contain one kind alone or two or more kinds as a compatibilizing agent.
  • the compatibilizer is not particularly limited, and can be appropriately selected from commonly used compatibilizers.
  • compatibilizer examples include polyoxyalkylene glycol ethers, amides, nitriles, ketones, chlorocarbons, esters, lactones, aryl ethers, fluoroethers and 1,1,1-trifluoroalkanes.
  • polyoxyalkylene glycol ether is particularly preferred.
  • the following descriptions of the refrigerant A, the refrigerant B, the refrigerant C, the refrigerant D, and the refrigerant E are independent of one another, and alphabets indicating points and line segments, numbers of examples, and numbers of comparative examples are all
  • the refrigerant A, the refrigerant B, the refrigerant C, the refrigerant D, and the refrigerant E are independent of each other.
  • the first embodiment of the refrigerant A and the first embodiment of the refrigerant B show different embodiments.
  • Refrigerant A of the present disclosure includes trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoroethylene (HFO-1123) and 2,3,3,3-tetrafluoro-1-propene (R1234yf). Is a mixed refrigerant containing
  • the refrigerant A of the present disclosure has desirable characteristics as an R410A alternative refrigerant, having the same refrigeration capacity and coefficient of performance as the R410A, and the GWP is sufficiently small.
  • the refrigerant A of the present disclosure may be a composition containing HFO-1132 (E) and R1234yf, and optionally HFO-1123, and may further satisfy the following requirements.
  • This refrigerant also has desirable characteristics as an R410A alternative refrigerant, having the same refrigeration capacity and coefficient of performance as R410A, and having a sufficiently small GWP.
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • coordinates (x, y, z) are Point G (72.0, 28.0, 0.0), Point I (72.0, 0.0, 28.0), Point A (68.6, 0.0, 31.4), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point D (0.0, 80.4, 19.6), Point C '(19.5, 70.5, 10.0) and point C (32.9, 67.1, 0.0)
  • the line segment AA ′ is The line segment AA ′ is The
  • the refrigerant of the present disclosure not only has a refrigeration capacity ratio of 85% or more based on R410A and a COP ratio of 92.5% or more based on R410A when the above requirements are satisfied, and further, it is further specified by ASHRAE. It shows WCF slight flammability (burn rate of WCF composition is 10 cm / s or less).
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-1123, where x, y and z are mass% of HFO-1132 (E) HFO-1123 and R1234yf based on the total of these.
  • the coordinates (x, y, z) are Point J (47.1, 52.9, 0.0), Point P (55.8, 42.0, 2.2), Point N (68.6, 16.3, 15.1), Point K (61.3, 5.4, 33.3), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point D (0.0, 80.4, 19.6), Point C '(19.5, 70.5, 10.0) and point C (32.9, 67.1, 0.0)
  • the refrigerant of the present disclosure not only has a refrigeration capacity ratio of 85% or more based on R410A and a COP ratio of 92.5% or more based on R410A when the above requirements are satisfied, and further, it is further specified by ASHRAE. It shows slight flammability (2 L class (burning rate of WCF composition and WCFF composition is 10 cm / s or less)).
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • coordinates (x, y, z) are Point J (47.1, 52.9, 0.0), Point P (55.8, 42.0, 2.2), Point L (63.1, 31.9, 5.0), Point M (60.3, 6.2, 33.5), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point D (0.0, 80.4, 19.6), Point C '(19.5, 70.5, 10.0) and point C (32.9, 67.1, 0.0)
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 85% or more based on R410A and a COP ratio of 92.5% or more based on R410A when the above requirements are satisfied, and further, the RCL is 40 g / m 3 or more.
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • coordinates (x, y, z) are Point P (55.8, 42.0, 2.2), Point L (63.1, 31.9, 5.0), Point M (60.3, 6.2, 33.5), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point F (0.0, 61.8, 38.2) and point T (35.8, 44.9, 19.3)
  • the line segment PL is Coordinates (x, -0.1135x 2 + 12.112x- 280.43
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 85% or more based on R410A and a COP ratio based on R410A of 95% or more when the above requirements are satisfied, and further, the RCL is 40 g / l. m 3 or more.
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • coordinates (x, y, z) are Point P (55.8, 42.0, 2.2), Point L (63.1, 31.9, 5.0), Point Q (62.8, 29.6, 7.6) and Point R (49.8, 42.3, 7.9)
  • coordinates (x, y, z) are Point P (55.8, 42.0, 2.2), Point L (63.1, 31.9, 5.0), Point Q (62.8, 29.6, 7.6) and Point R (49.8, 42.3, 7.9)
  • the line segment PL is Coordinates (x, -0.1135x 2 + 12.112x- 280.43, 0.1135x 2 -13.112x + 380.43)
  • Represented by The line segment RP is The coordinates (x, 0.0067x 2 -0.7607x
  • the refrigerant of the present disclosure has a COP ratio of 95% or more based on R410A when the above requirements are satisfied, and not only an RCL of 40 g / m 3 or more but also a condensation temperature glide of 1 ° C. or less .
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • coordinates (x, y, z) are Point S (62.6, 28.3, 9.1), Point M (60.3, 6.2, 33.5), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point F (0.0, 61.8, 38.2) and point T (35.8, 44.9, 19.3)
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 85% or more based on R410A, a COP ratio based on R410A of 95% or more, and RCL of 40 g / m 3 or more when the above requirements are satisfied. Not only that, the discharge pressure ratio based on R410A is 105% or less.
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • coordinates (x, y, z) are Point d (87.6, 0.0, 12.4), Point g (18.2, 55.1, 26.7), Point h (56.7, 43.3, 0.0) and point O (100.0, 0.0, 0.0)
  • the line segment dg is Coordinates (0.0047y 2 -1.5177y + 87.598, y, -0.0047y 2 + 0.5177y + 12.402) Represented by The
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • coordinates (x, y, z) are Point l (72.5, 10.2, 17.3), Point g (18.2, 55.1, 26.7), Point h (56.7, 43.3, 0.0) and point i (72.5, 27.5, 0.0)
  • the line segment lg is Coordinates (0.0047y 2 -1.5177y + 87.598, y, -0.0047y 2 + 0.5177y + 12.402) Represented by The line segment gh is Coordinates (0.0047y 2 -1.5177y + 87.598, y, -0.0047y 2 + 0.5177y + 12.402) Represented by The line segment gh is Coordinates (0.0047y 2 -1.5177y + 87.598, y, -0.0047y 2
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 92.5% or more based on R410A and a COP ratio based on R410A of 92.5% or more when the above requirements are satisfied, and further, it is further specified by ASHRAE. Indicates slight flammability (2 L class).
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • coordinates (x, y, z) are Point d (87.6, 0.0, 12.4), Point e (31.1, 42.9, 26.0), Point f (65.5, 34.5, 0.0) and point O (100.0, 0.0, 0.0)
  • the line segment de is Coordinates (0.0047y 2 -1.5177y + 87.598, y, -0.0047y 2 + 0.5177y + 12.402) Represented by The line segment ef is Coordinates (0.0047y 2 -1.5177y + 87.598, y, -0.0047y 2 + 0.5177y + 12.402) Represented by The line segment ef is Coordinates (0.0047y 2 -1.5177y + 87.598, y, -0.0047y 2 +
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • coordinates (x, y, z) are Point l (72.5, 10.2, 17.3), Point e (31.1, 42.9, 26.0), Point f (65.5, 34.5, 0.0) and point i (72.5, 27.5, 0.0)
  • the line segment LE is Coordinates (0.0047y 2 -1.5177y + 87.598, y, -0.0047y 2 + 0.5177y + 12.402) Represented by The line segment ef
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 93.5% or more based on R410A and a COP ratio based on R410A of 93.5% or more when the above requirements are satisfied, and further, it is further specified in ASHRAE standard. Indicates slight flammability (2 L class).
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • coordinates (x, y, z) are Point a (93.4, 0.0, 6.6), Point b (55.6, 26.6, 17.8), Point c (77.6, 22.4, 0.0) and point O (100.0, 0.0, 0.0)
  • the line segment ab is Coordinates (0.0052y 2 -1.5588y + 93.385, y,-0.0052y 2 + 0.
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 95% or more based on R410A and a COP ratio based on R410A of 95% or more when the above requirements are satisfied.
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • coordinates (x, y, z) are Point k (72.5, 14.1, 13.4), Point b (55.6, 26.6, 17.8) and point j (72.5, 23.2, 4.3)
  • coordinates (x, y, z) are Point k (72.5, 14.1, 13.4), Point b (55.6, 26.6, 17.8) and point j (72.5, 23.2, 4.3)
  • coordinates (x, y, z) are Point k (72.5, 14.1, 13.4), Point b (55.6, 26.6, 17.8) and point j (72.5, 23.2, 4.3)
  • Within the range of the figure bounded by the line segments kb, bj and jk connecting the three points of The line segment kb is Coordinates (0.0052y 2
  • the line segment bj is Coordinates (-0.0032z 2 -1.1791z + 77.593, 0.0032z 2 + 0.1791z + 22.407, z) It is preferable that the line segment jk is a straight line.
  • the refrigerant of the present disclosure not only has a refrigeration capacity ratio of 95% or more based on R410A and a COP ratio based on R410A of 95% or more when the above requirements are satisfied, and further, it is further specified by ASHRAE. Indicates slight flammability (2 L class).
  • the refrigerant A of the present disclosure may further contain other additional refrigerants in addition to HFO-1132 (E), HFO-1123 and R1234yf, as long as the above-described properties and effects are not impaired.
  • the refrigerant of the present disclosure preferably contains 99.5% by mass or more, more preferably 99.75% by mass or more, of the total of HFO-1132 (E), HFO-1123 and R1234yf with respect to the entire refrigerant. It is more preferable to contain 99.9 mass% or more.
  • the refrigerant A of the present disclosure may contain 99.5 mass% or more, 99.75 mass% or more, of the total of HFO-1132 (E), HFO-1123 and R1234yf with respect to the entire refrigerant. And may further contain 99.9% by mass or more.
  • the additional refrigerant is not particularly limited and can be widely selected.
  • the mixed refrigerant may contain one kind alone as an additional refrigerant, or may contain two or more kinds.
  • Example of refrigerant A Below, the Example of the refrigerant
  • the refrigeration capacity of a composition containing a mixture of R410A and HFO-1132 (E), HFO-1123, R1234yf is determined using the National Institute of Science and Technology (NIST) Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0). It calculated
  • HFO-1132 (E), HFO-1123 and HFO-1123 and HFO-1123 and HFO-1123 and HFO-1123 and H1234b, respectively, are represented by x, y and z, respectively.
  • coordinates (x, y, z) are Point A (68.6, 0.0, 31.4), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point D (0.0, 80.4, 19.6), Point C '(19.5, 70.5, 10.0), Point C (32.9, 67.1, 0.0) and point O (100.0, 0.0, 0.0)
  • the line segment AA ′ is The coordinates (x, 0.0016x 2 -0.9473x + 57.497 ,
  • the point on the line segment AA ′ was determined by finding an approximate curve connecting three points of the point A, the example 1, and the point A ′ by the least square method.
  • the point on the line segment A′B was determined by finding an approximate curve connecting the three points of the point A ′, the example 3 and the point B by the least square method.
  • the point on the line segment DC ′ was determined by finding an approximate curve connecting the three points of the point D, the example 6, and the point C ′ by the least square method.
  • the point on line segment C'C was determined by calculating
  • the coordinates (x, y, z) are Point A (68.6, 0.0, 31.4), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point F (0.0, 61.8, 38.2), Point T (35.8, 44.9, 19.3), Point E (58.0, 42.0, 0.0) and point O (100.0, 0.0, 0.0)
  • the line segment AA ′ is The coordinates (x, 0.0016x 2 -0.9473x + 57.497 , -0.0016x 2 -0.0527x + 42.503) Represented by The line segment A'B is Coordinates (x, 0.0029x 2 -1.0268x + 58.7 , -0.0029x 2 + 0.0268x + 41.3) Represented by The line segment FT is
  • the points on the line segment FT were determined by finding an approximate curve connecting the three points T, E 'and F by the least squares method.
  • the points on the line segment TE were determined by finding an approximate curve connecting the three points E, R and T by the least square method.
  • R1234yf contributes to the reduction of flammability and the suppression of deterioration such as polymerization, and it is preferable to include this.
  • the burning rate was measured according to the ANSI / ASHRA 34-2013 standard, with the mixed composition as the WCF concentration.
  • the one with a burning rate of 10 cm / s or less is considered as "2 L class (slight flammability)".
  • the burning rate test was done as follows using the apparatus shown in FIG. In FIG. 1, 901 indicates a sample cell, 902 indicates a high-speed camera, 903 indicates a xenon lamp, 904 indicates a collimating lens, 905 indicates a collimating lens, and 906 indicates a ring filter.
  • the mixed refrigerant used was 99.5% or more pure and degassed by repeated cycles of freezing, pumping and thawing until no traces of air were visible on the vacuum gauge.
  • the burning rate was measured by the closure method. The initial temperature was ambient temperature. Ignition was performed by creating an electrical spark between the electrodes at the center of the sample cell.
  • the duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J.
  • the spread of the flame was visualized using Schlieren photographs.
  • a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two acrylic windows for transmitting light was used as a sample cell, and a xenon lamp was used as a light source.
  • Schlieren images of flames were recorded with a high speed digital video camera at a framing rate of 600 fps and stored on a PC.
  • the WCFF concentration was determined by performing leakage simulation according to NIST Standard Reference Data Base Refleak Version 4.0 with the WCF concentration as the initial concentration.
  • the line segment PN is Coordinates (x, -0.1135x 2 + 12.112x- 280.43, 0.1135x 2 -13.112x + 380.43) Represented by
  • the line segment NK is Coordinates (x, 0.2421x 2 -29.955x + 931.91, -0.2421x 2 + 28.955x-831.91) It is represented by.
  • the point on the line segment PN was determined by finding an approximate curve connecting the three points P, L, and N by the least squares method.
  • the point on the line segment NK was determined by finding an approximate curve connecting the three points of the point N, the point N 'and the point K by the least square method.
  • the refrigerant B of the present disclosure is 99.5 mass% or more of the total of trans-1,2-difluoroethylene (HFO-1132 (E)) and trifluoroethylene (HFO-1123) with respect to the whole of the refrigerant, and the refrigerant is HFO- Or a mixed refrigerant containing 62.0% by mass to 72.0% by mass or 45.1% by mass to 47.1% by mass of 1132 (E) based on the whole of the refrigerant, or
  • the total of HFO-1132 (E) and HFO-1123 is 99.5 mass% or more with respect to the whole of the refrigerant, and the refrigerant contains 40.1 mass% of HFO-1132 (E) with respect to the whole of the refrigerant It is a mixed refrigerant containing ⁇ 47.1% by mass.
  • the refrigerant B of the present disclosure has (1) a coefficient of performance equivalent to R410A, (2) refrigeration capacity equivalent to R410A, (3) sufficiently small GWP, and (4) ASHRAE standard. It has desirable characteristics as a R410A alternative refrigerant, that is, it is slightly flammable (2 L class).
  • the refrigerant B of the present disclosure is a WCF slight-combustible if it is a mixed refrigerant containing 72.0% by mass or less of HFO-1132 (E).
  • the refrigerant B of the present disclosure is a composition containing HFO-1132 (E) at 47.1% or less, and is a “2 L class” which is a slightly flammable refrigerant according to ASHRAE standards with WCF slight combustion and WCFF slight combustion, and handling is easier It becomes.
  • the refrigerant B of the present disclosure contains 62.0% by mass or more of HFO-1132 (E)
  • the coefficient of performance coefficient based on R410A is more excellent at 95% or more, and HFO-1132 (E) and / or Or, the polymerization reaction of HFO-1123 is further suppressed, and the stability becomes more excellent.
  • the refrigerant B of the present disclosure contains 45.1% by mass or more of HFO-1132 (E)
  • the coefficient of performance coefficient based on R410A is more excellent at 93% or more, and HFO-1132 (E) and / or Or, the polymerization reaction of HFO-1123 is further suppressed, and the stability becomes more excellent.
  • the refrigerant B of the present disclosure may further contain other additional refrigerants in addition to HFO-1132 (E) and HFO-1123 as long as the above-described properties and effects are not impaired.
  • the refrigerant B of the present disclosure more preferably contains the total of HFO-1132 (E) and HFO-1123 at 99.75 mass% or more, further preferably 99.9 mass% or more with respect to the entire refrigerant.
  • the additional refrigerant is not particularly limited and can be widely selected.
  • the mixed refrigerant may contain one kind alone as an additional refrigerant, or may contain two or more kinds.
  • Example of refrigerant B Below, the Example of the refrigerant
  • a mixed refrigerant was prepared by mixing HFO-1132 (E) and HFO-1123 in mass% (mass%) shown in Table 37 and Table 38, respectively, based on the total of them.
  • IPCC Intergovernmental Panel on Climate Change
  • the refrigeration capacity of a composition containing a mixture of R410A and HFO-1132 (E) and HFO-1123 is as follows using the National Institute of Science and Technology (NIST) Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) It calculated
  • composition of each mixture is WCF, and NIST Standard Reference Data Base Version under the condition of Equipment, Storage, Shipping, Leak, and Recharge according to ASHRAE 34-2013 standard.
  • a leak simulation was performed according to 4.0, and the most flammable fraction was WCFF.
  • GWP, COP and refrigeration capacity calculated based on these results are shown in Tables 1 and 2.
  • the ratio COP and the specific refrigeration capacity are shown relative to R410A.
  • COP (refrigeration capacity or heating capacity) / power consumption
  • the flammability was measured according to the ANSI / ASHRAE 34-2013 standard. If the burning rate is 10 cm / s or less for both WCF and WCFF, it is considered as "2 L class (slight flammability)".
  • the burning rate test was conducted as follows using the apparatus shown in FIG. First, the mixed refrigerant used was 99.5% or more pure and degassed by repeated cycles of freezing, pumping and thawing until no traces of air were visible on the vacuum gauge. The burning rate was measured by the closure method. The initial temperature was ambient temperature. Ignition was performed by creating an electrical spark between the electrodes at the center of the sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using Schlieren photographs.
  • a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two acrylic windows for transmitting light was used as a sample cell, and a xenon lamp was used as a light source.
  • Schlieren images of flames were recorded with a high speed digital video camera at a framing rate of 600 fps and stored on a PC.
  • Refrigerant C of the present disclosure includes trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoroethylene (HFO-1123) and 2,3,3,3-tetrafluoro-1-propene (R1234yf). And difluoromethane (R32), which further satisfy the following requirements.
  • the refrigerant C of the present disclosure has desirable characteristics as an R410A alternative refrigerant, having a refrigeration capacity and a coefficient of performance equivalent to that of R410A, and having a sufficiently small GWP.
  • the refrigerant C of the present disclosure is HFO-1132, where the mass% of HFO-1132 (E), HFO-1123 and R1234yf, and R32 based on the total of these is x, y and z, and a, respectively.
  • Point A (0.0107a 2 -1.9142a + 68.305, 0.0, -0.0107a 2 + 0.9142a + 31.695)
  • Point B (0.0, 0.009a 2 -1.6045a + 59.318, -0.009a 2 + 0.6045a + 40.682)
  • the point W (0.0, 100.0-a, 0.0)
  • GI, IA, AB, BW and WG respectively connecting the five points of the above, or on the straight lines GI and AB (however, points G, I, except)
  • Point G (0.0111a 2 -1.3152a + 68.986,-0.0111a 2 + 0.3152a + 31.014, 0.0)
  • Point I (0.0111a 2 -1.3152a + 68.986, 0.0,-0.0111a 2 + 0.3152a + 31.014)
  • Point A (0.0103a 2 -1.9225a + 68.793, 0.0, -0.0103a
  • the refrigerant C of the present disclosure is HFO-1132 (E), HFO- when the mass% of HFO-1132 (E), HFO-1123 and R1234yf based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are When 0 ⁇ a ⁇ 11.1
  • Point J (0.0049a 2 -0.9645a + 47.1, -0.0049a 2 -0.0355a + 52.9, 0.0)
  • Point B (0.0, 0.0144a 2 -1.6377a + 58.7,-0.0144a 2 + 0.6377a + 41.3)
  • Point D (0.0, 0.0224a 2 + 0.968a
  • the refrigerant of the present disclosure not only achieves a refrigeration capacity ratio of 85% or more based on R410A and a COP ratio of 92.5% or more based on R410A when the above requirements are satisfied, and further, WCF slight combustion and WCFF slight burn and ASHRAE standards indicate "2L class", a slightly burnt refrigerant.
  • the refrigerant C of the present disclosure further includes R32 in addition to HFO-1132 (E), HFO-1123 and R1234yf, the sum of HFO-1132 (E), HFO-1123 and R1234yf, and R32 is used as a standard.
  • R410A is a point It is an intersection point of an approximate straight line connecting points where the COP ratio is 95% and a straight line ab.
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 95% or more based on R410A and a COP ratio based on R410A of 95% or more when the above requirements are satisfied.
  • the refrigerant C of the present disclosure may further contain other additional refrigerant in addition to HFO-1132 (E), HFO-1123 and R1234yf, and R32, as long as the above-described properties and effects are not impaired. Good.
  • the refrigerant of the present disclosure preferably contains 99.5% by mass or more, more preferably 99.75% by mass or more, of the total of HFO-1132 (E), HFO-1123 and R1234yf, and R32 with respect to the entire refrigerant. Preferably, 99.9% by mass or more is included.
  • the refrigerant C of the present disclosure may contain 99.5% by mass or more and 99.75% by mass or more of the total of HFO-1132 (E), HFO-1123 and R1234yf, and R32 with respect to the entire refrigerant. And may contain 99.9% by mass or more.
  • the additional refrigerant is not particularly limited and can be widely selected.
  • the mixed refrigerant may contain one kind alone as an additional refrigerant, or may contain two or more kinds.
  • Example of refrigerant C Below, the Example of the refrigerant
  • a mixed refrigerant was prepared by mixing HFO-1132 (E), HFO-1123 and R1234yf, and R32 in the mass% shown in Tables 39 to 96, respectively, based on the total of these.
  • IPCC Intergovernmental Panel on Climate Change
  • the refrigeration capacity of a composition containing a mixture of R410A and HFO-1132 (E) and HFO-1123 is as follows using the National Institute of Science and Technology (NIST) Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) It calculated
  • the COP ratio and the refrigeration capacity ratio were determined with reference to R410.
  • the calculation conditions were as follows.
  • COP (refrigeration capacity or heating capacity) / power consumption
  • HFO-1132 (E: HFO-1132 (E), HFO-1123 and R1234yf, and R32, based on the sum of these, mass% is x, y and z, and a, respectively).
  • HFO-1123 and R1234yf the bottom line is a straight line connecting point (0.0, 100.0-a, 0.0) and point (0.0, 0.0, 100, 0-a) where the mass becomes (100-a) mass%
  • the coordinates (x, y, z) are When 0 ⁇ a ⁇ 11.1 Point A (0.0134a 2 -1.9681a + 68.6, 0.0, -0.0134a 2 + 0.9681a + 31.4) and point B (0.0, 0.0144a 2 -1.6377a + 58.7, -0.0144a 2 + 0.6377a + 41.3) and A straight line AB connecting the When 11.1
  • a point at which the actual refrigeration capacity ratio is 85% is a curve that extends to the 1234yf side connecting the point A and the point B shown in FIG. Therefore, when it is on the straight line AB or on the left side, the refrigeration capacity ratio based on R410A is 85% or more.
  • the coordinates (x, y, z) are When 0 ⁇ a ⁇ 11.1 Point D '(0.0, 0.0224a 2 + 0.968a + 75.4, -0.0224a 2 -1.968a + 24.6) and point C (-0.2304a 2 -0.4062a + 32.9, 0.2304a 2 -0.5938a + 67.1, 0.0) And the straight line D′ C connecting the When 11.1 ⁇ a ⁇ 46.7 It can be seen that the COP ratio based on R410A is 92.5% or more when in all the regions.
  • FIG. 3 it is the curve CD that the COP ratio is 92.5% or more, but in FIG. 3, when the R1234yf concentration is 5% by mass and 10% by mass, the COP ratio is 92.5% (26.6, 68.4, 5), (19.5, 70.5, 10), and an approximate straight line connecting three points C (32.9, 67.1, 0.0), and the intersection point D ′ (0, 0, 0) with the HFO-1132 (E) concentration of 0.0 mass% A straight line connecting 75.4, 24.6) and the point C is a line segment D'C. Also, in FIG. 4, D ′ (D) is similarly derived from an approximate curve connecting point C (18.4, 74.5, 0), point (13.9, 76.5, 2.5), and point (8.7, 79. Find 0, 83.4, 9.5), and let D'C be a straight line connecting point C.
  • composition of each mixture is WCF, and NIST Standard Reference Data Base Version under the condition of Equipment, Storage, Shipping, Leak, and Recharge according to ASHRAE 34-2013 standard.
  • a leak simulation was performed according to 4.0, and the most flammable fraction was WCFF.
  • the flammability was measured according to the ANSI / ASHRAE 34-2013 standard. If the burning rate is 10 cm / s or less for both WCF and WCFF, it is considered as "2 L class (slight flammability)".
  • the burning rate test was done as follows using the apparatus shown in FIG. First, the mixed refrigerant used was 99.5% or more pure and degassed by repeated cycles of freezing, pumping and thawing until no traces of air were visible on the vacuum gauge. The burning rate was measured by the closure method. The initial temperature was ambient temperature. Ignition was performed by creating an electrical spark between the electrodes at the center of the sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using Schlieren photographs.
  • a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two acrylic windows for transmitting light was used as a sample cell, and a xenon lamp was used as a light source.
  • Schlieren images of flames were recorded with a high speed digital video camera at a framing rate of 600 fps and stored on a PC.
  • the point of the actual WCFF slight combustion becomes a curve which spreads to the HFO-1132 (E) side connecting the point J and the point K '(on the straight line AB) shown in FIG. Therefore, when it is on the line of straight line JK 'or below, it becomes WCFF slight flame retardance.
  • the R32 content ratio a (mass%) is 0 mass%, 7.1 mass%, 11.1 mass%, 14.5 mass%, 18.2 mass%, 21.9 mass%, 26.7 mass%, respectively.
  • the compositions are shown for 29.3% by weight, 36.7% by weight, 44.1% by weight and 47.8% by weight.
  • Point A is a point where the HFO-1123 content is 0% by mass and the refrigeration capacity ratio based on R410A is 85%. With respect to the point A, three points were obtained for each of the following five ranges by calculation, and their approximate expressions were obtained (Table 109).
  • Point B is a point at which the HFO-1132 (E) content rate is 0% by mass and the refrigeration capacity ratio based on R410A is 85%.
  • E HFO-1132
  • the point D ' is a point at which the HFO-1132 (E) content rate is 0% by mass and the COP ratio based on R410A is 95.5%.
  • the following three points were obtained by calculation and their approximate expressions were obtained (Table 111).
  • Point C is a point where the R1234yf content rate is 0% by mass and the COP ratio based on R410A is 95.5%.
  • point C the following three points were obtained by calculation, and their approximate expressions were obtained (Table 112).
  • the refrigerant D of the present disclosure is a mixture containing trans-1,2-difluoroethylene (HFO-1132 (E)), difluoromethane (R32) and 2,3,3,3-tetrafluoro-1-propene (R1234yf). It is a refrigerant.
  • the refrigerant D of the present disclosure has desirable characteristics as an R410A alternative refrigerant, having a cooling capacity equivalent to that of R410A, a sufficiently small GWP, and a slight flammability (2 L class) according to the ASHRAE standard.
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R1234yf, where x, y and z are mass% of HFO-1132 (E), R32 and R1234yf, respectively, based on their total sum.
  • the coordinates (x, y, z) are Point I (72.0, 0.0, 28.0), Point J (48.5, 18.3, 33.2), Point N (27.7, 18.2, 54.1) and point E (58.3, 0.0, 41.7)
  • the line segment IJ is Coordinates (0.0236y 2 -1.7616y +72.0, y, -0.0236y 2 + 0.7616y +28.0) Represented by
  • the line segment NE is Coordinates (0.012y 2 -1.9003y + 58.3, y, -0.012y 2 + 0.9003y + 41.7) It is preferable that the line segments JN and EI be straight lines.
  • the refrigerant of the present disclosure has a refrigeration capacity
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R1234yf, where x, y and z are mass% of HFO-1132 (E), R32 and R1234yf, respectively, based on their total sum.
  • the coordinates (x, y, z) are Point M (52.6, 0.0, 47.4), Point M '(39.2, 5.0, 55.8), Point N (27.7, 18.2, 54.1), Point V (11.0, 18.1, 70.9) and Point G (39.6, 0.0, 60.4)
  • the line segment MM ' is Coordinates (x, 0.132x 2 -3.34x + 52.6, -0.132x 2 + 2.34x + 47.4)
  • the line segment M'N is Coordinates (x, 0.0313x 2 -1.4551x + 43.824, -0.0313x 2 + 0.4551x + 56.
  • the line segment VG is Coordinates (0.0123y 2 -1.8033y + 39.6, y, -0.0123y 2 + 0.8033y + 60.4) It is preferable that the line segments NV and GM be straight.
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 70% or more based on R410A, a GWP of 125 or less, and ASHRAE slight burn.
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R1234yf, where x, y and z are mass% of HFO-1132 (E), R32 and R1234yf, respectively, based on their total sum.
  • the coordinates (x, y, z) are Point O (22.6, 36.8, 40.6), Point N (27.7, 18.2, 54.1) and point U (3.9, 36.7, 59.4)
  • the line segments ON, NU and UO respectively connecting the three points of The line segment ON is Coordinates (0.0072y 2 -0.6701y + 37.512, y , -0.0072y 2 -0.3299y + 62.488)
  • the line segment NU is Coordinates (0.0083y 2 -1.7403y +56.635, y, -0.0083y 2 + 0.7403y +43.365)
  • the line segment UO be a straight line.
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 80% or more based on R410A, a GWP of 250 or less, and ASHRAE slight burn.
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R1234yf, where x, y and z are mass% of HFO-1132 (E), R32 and R1234yf, respectively, based on their total sum.
  • the coordinates (x, y, z) are Point Q (44.6, 23.0, 32.4), Point R (25.5, 36.8, 37.7), Point T (8.6, 51.6, 39.8), Point L (28.9, 51.7, 19.4) and Point K (35.6, 36.8, 27.6)
  • Point Q 44.6, 23.0, 32.4
  • Point R (25.5, 36.8, 37.7)
  • Point T (8.6, 51.6, 39.8)
  • Point L 28.9, 51.7, 19.4
  • Point K (35.6, 36.8, 27.6)
  • the line segments QR, RT, TL, LK and KQ connecting the five points of The line segment QR is Coordinates (0.0099 y 2 -1. 975 y + 84.
  • the line segment RT is Coordinates (0.082y 2 -1.8683y + 83.126, y, -0.082y 2 + 0.8683y + 16.874)
  • the line segment LK is Coordinates (0.0049y 2 -0.8842y + 61.488, y, -0.0049y 2 -0.1158y + 38.512)
  • the line segment KQ is Coordinates (0.0095y 2 -1.2222y + 67.676, y, -0.0095y 2 + 0.2222y + 32.324) It is preferable that the line segment TL be a straight line.
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 92.5% or more based on R410A, a GWP of 350 or less, and WCF slight combustion.
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R1234yf, where x, y and z are mass% of HFO-1132 (E), R32 and R1234yf, respectively, based on their total sum.
  • the coordinates (x, y, z) are Point P (20.5, 51.7, 27.8), Point S (21.9, 39.7, 38.4) and point T (8.6, 51.6, 39.8)
  • the line segment PS is Coordinates (0.0064y 2 -0.7103y + 40.1, y, -0.0064y 2 -0.2897y + 59.9)
  • the line segment ST is Coordinates (0.082y 2 -1.8683y + 83.126, y, -0.082y 2 + 0.8683y + 16.874)
  • the line segment TP is a straight line.
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 92.5% or more based on R410A, a GWP of 350 or less, and ASHRAE incombustible when the above requirements are satisfied.
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R1234yf, where x, y and z are mass% of HFO-1132 (E), R32 and R1234yf, respectively, based on their total sum.
  • the coordinates (x, y, z) are Point a (71.1, 0.0, 28.9), Point c (36.5, 18.2, 45.3), Point f (47.6, 18.3, 34.1) and point d (72.0, 0.0, 28.0)
  • the line segment ac is Coordinates (0.0181y 2 -2.2288y + 71.096, y, -0.0181y 2 + 1.2288y +28.904)
  • the line segment fd is Coordinates (0.02y 2 -1.7y + 72, y , -0.02y 2 + 0.7y + 28)
  • the line segments cf and da are straight.
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 85% or more based on R410A, a GWP of 125 or less, and a slight flame retardancy (2 L class) according to the ASHRAE standard.
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R1234yf, where x, y and z are mass% of HFO-1132 (E), R32 and R1234yf, respectively, based on their total sum.
  • the coordinates (x, y, z) are Point a (71.1, 0.0, 28.9), Point b (42.6, 14.5, 42.9), Point e (51.4, 14.6, 34.0) and point d (72.0, 0.0, 28.0)
  • the line segment ab is Coordinates (0.0181y 2 -2.2288y + 71.096, y, -0.0181y 2 + 1.2288y +28.904)
  • the line segment ed is Coordinates (0.02y 2 -1.7y + 72, y , -0.02y 2 + 0.7y + 28)
  • the line segments be and da are straight lines.
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 85% or more based on R410A, a GWP of 100 or less, and a slight flame retardancy (2 L class) according to the ASHRAE standard.
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R1234yf, where x, y and z are mass% of HFO-1132 (E), R32 and R1234yf, respectively, based on their total sum.
  • the coordinates (x, y, z) are Point g (77.5, 6.9, 15.6), Point iI (55.1, 18.3, 26.6) and point j (77.5.
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 95% or more based on R410A, a GWP of 100 or less, and is resistant to changes such as polymerization or decomposition, and is excellent in stability. .
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R1234yf, where x, y and z are mass% of HFO-1132 (E), R32 and R1234yf, respectively, based on their total sum.
  • the coordinates (x, y, z) are Point g (77.5, 6.9, 15.6), Point h (61.8, 14.6, 23.6) and point k (77.5, 14.6, 7.9)
  • the line segments gh, hk and kg connecting the three points of The line segment gh is Coordinates (0.02y 2 -2.4583y + 93.396, y , -0.02y 2 + 1.4583y + 6.604)
  • the line segments hk and kg are straight.
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 95% or more based on R410A, a GWP of 100 or less, and is resistant to changes such as polymerization or decomposition, and is excellent in stability. .
  • the refrigerant D of the present disclosure may further contain other additional refrigerant in addition to HFO-1132 (E), R32 and R1234yf, as long as the above-mentioned properties and effects are not impaired.
  • the refrigerant D of the present disclosure preferably contains 99.5% by mass or more, more preferably 99.75% by mass or more, of the total of HFO-1132 (E), R32 and R1234yf with respect to the entire refrigerant. It is more preferable to contain mass% or more.
  • the additional refrigerant is not particularly limited and can be widely selected.
  • the mixed refrigerant may contain one kind alone as an additional refrigerant, or may contain two or more kinds.
  • Example of refrigerant D Below, the Example of the refrigerant
  • each mixed refrigerant of HFO-1132 (E), R32 and R1234yf is WCF, and according to the ASHRAE 34-2013 standard, equipment (Storage), Storage (Storage), Transportation (Shipping), Leakage (Leak) and Recharge (Recharge) Leakage simulation was performed according to NIST Standard Reference Data Base Refleak Version 4.0 under the following conditions, and the most flammable fraction was WCFF.
  • the burning rate test was done as follows using the apparatus shown in FIG. First, the mixed refrigerant used was 99.5% or more pure and degassed by repeated cycles of freezing, pumping and thawing until no traces of air were visible on the vacuum gauge. The burning rate was measured by the closure method. The initial temperature was ambient temperature. Ignition was performed by creating an electrical spark between the electrodes at the center of the sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using Schlieren photographs.
  • a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two acrylic windows for transmitting light was used as a sample cell, and a xenon lamp was used as a light source.
  • Schlieren images of flames were recorded with a high speed digital video camera at a framing rate of 600 fps and stored on a PC. The results are shown in Tables 113-115.
  • the coordinates (x, y, z) indicate line segments connecting point M, point M ′, point W, point J, point N, and point P, respectively.
  • a mixed refrigerant was prepared by mixing HFO-1132 (E), R32 and R1234yf in the% by mass shown in Tables 116 to 144, respectively, based on their total sum.
  • the coefficient of performance (coefficient of performance (COP)) ratio based on R410 and the refrigeration capacity ratio were determined. The calculation conditions were as follows.
  • the refrigerant D of the present disclosure is HFO-1132 (E), where x, y and z represent mass% of HFO-1132 (E), R32 and R1234yf based on their total sum, respectively.
  • the coordinates (x, y, z) are Point I (72.0, 0.0, 28.0), Point J (48.5, 18.3, 33.2), Point N (27.7, 18.2, 54.1) and point E (58.3, 0.0, 41.7)
  • the line segment IJ is Coordinates (0.0236y 2 -1.7616y +72.0, y, -0.0236y 2 + 0.7616y +28.0) Represented by The line segment NE is Coordinates (0.0236y 2 -1.7616y +72.0, y, -0.0236y 2 + 0.7616y +28.0) Represented by The line segment NE is Coordinates (0.0236y 2 -1.7616y +72.0, y, -0.0236y 2 + 0.76
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R32 when the mass% of HFO-1132 (E), R32 and R1234yf based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point M (52.6, 0.0, 47.4), Point M '(39.2, 5.0, 55.8), Point N (27.7, 18.2, 54.1), Point V (11.0, 18.1, 70.9) and Point G (39.6, 0.0, 60.4)
  • the line segment VG is Coordinates (0.0123y 2 -1.8033y + 39.6, y, -0.0123y 2 + 0.8033y + 60.4) It can be seen that when the line segments NV and GM are straight, the refrigeration capacity ratio based on R410A is 70% or more, the GWP is 125 or less, and ASHRAE slight burn is achieved.
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R32, where the mass% of HFO-1132 (E), R32 and R1234yf based on the total of these is respectively x, y and z.
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R32 when the mass% of HFO-1132 (E), R32 and R1234yf based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point Q (44.6, 23.0, 32.4), Point R (25.5, 36.8, 37.7), Point T (8.6, 51.6, 39.8), Point L (28.9, 51.7, 19.4) and Point K (35.6, 36.8, 27.6)
  • coordinates (x, y, z) are Point Q (44.6, 23.0, 32.4), Point R (25.5, 36.8, 37.7), Point T (8.6, 51.6, 39.8), Point L (28.9, 51.7, 19.4) and Point K (35.6, 36.8, 27.6)
  • the line segments QR, RT, TL, LK and KQ connecting the five points of The line segment QR is Coordinates (0.0099 y 2 -1.
  • the line segment RT is Coordinates (0.082y 2 -1.8683y + 83.126, y, -0.082y 2 + 0.8683y + 16.874)
  • the line segment LK is Coordinates (0.0049y 2 -0.8842y + 61.488, y, -0.0049y 2 -0.1158y + 38.512)
  • the line segment KQ is Coordinates (0.0095y 2 -1.2222y + 67.676, y, -0.0095y 2 + 0.2222y + 32.324)
  • the refrigerating capacity ratio based on R410A is 92.5% or more
  • the GWP is 350 or less
  • the WCF is slightly combustible.
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R32, where the mass% of HFO-1132 (E), R32 and R1234yf based on the total of these is respectively x, y and z.
  • the refrigerant E of the present disclosure is a mixed refrigerant containing trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoroethylene (HFO-1123) and difluoromethane (R32).
  • the refrigerant E of the present disclosure has desirable characteristics as an R410A alternative refrigerant, having a coefficient of performance equivalent to that of R410A, and a sufficiently small GWP.
  • the refrigerant E of the present disclosure is HFO-1132 (E), HFO-, where the mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point I (72.0, 28, 0, 0.0) Point K (48.4, 33.2, 18.4) Point B '(0.0, 81.6, 18.4) Point H (0.0, 84.2, 15.8) Point R (23.1, 67.4, 9.5) and Point G (38.5, 61.5, 0.0)
  • the line segment IK is Coordinates (0.025z 2 -1.7429z + 72.00, -0.025z 2 + 0.7429z + 28.0, z) Represented by The line segment HR is Coordinates (-
  • the refrigerant E of the present disclosure is HFO-1132 (E), HFO-, where the mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point I (72.0, 28, 0, 0.0) Point J (57.7, 32.8, 9.5) Point R (23.1, 67.4, 9.5) and Point G (38.5, 61.5, 0.0)
  • the line segment IJ is Coordinates (0.025z 2 -1.7429z + 72.0, -0.025z 2 + 0.7429z + 28.0, z)
  • the line segment RG is Coordinates ( ⁇ 0.0491z 2 -1.1544z + 38.5, 0.0491z 2 + 0.1544z + 61.5,
  • the refrigerant E of the present disclosure is HFO-1132 (E), HFO-, where the mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point M (47.1, 52.9, 0.0) Point P (31.8, 49.8, 18.4)
  • Point G (38.5, 61.5, 0.0)
  • the line segment MP is Coordinates (0.0083z 2 -0.984z + 47.1, -0.0083z 2 -0.016z + 52.9, z)
  • the line segment HR is Coordinates (-0.3123z
  • the refrigerant E of the present disclosure is HFO-1132 (E), HFO-, where the mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point M (47.1, 52.9, 0.0) Point N (38.5, 52.1, 9.5) Point R (23.1, 67.4, 9.5) and Point G (38.5, 61.5, 0.0)
  • the line segment MN is Coordinates (0.0083z 2 -0.984z + 47.1, -0.0083z 2 -0.016z + 52.9, z)
  • the line segment RG is Coordinates ( ⁇ 0.0491z 2 -1.1544z + 38.5, 0.
  • the refrigerant E of the present disclosure is HFO-1132 (E), HFO-, where the mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point P (31.8, 49.8, 18.4) Point S (25.4, 56.2, 18.4) and Point T (34.8, 51.0, 14.2)
  • the line segment ST is Coordinates (-0.0982z 2 + 0.9622z + 40.931, 0.0982z 2 -1.9622z + 59.069, z)
  • the line segment TP is Coordinates (0.0083z 2 -0.984z + 47.1, -0.0083z 2 -0.016z + 52.9, z) Represented by It is preferable that the line segment PS be a
  • the refrigerant E of the present disclosure is HFO-1132 (E), HFO-, where the mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point Q (28.6, 34.4, 37.0) Point B '' (0.0, 63.0, 37.0) Point D (0.0, 67.0, 33.0) and point U (28.7, 41.2, 30.1)
  • the line segment DU is The coordinates ( ⁇ 3.4962z 2 + 210.71z ⁇ 3146.1, 3.4962z 2 ⁇ 211.71z + 3246.1, z) are represented, and the line segment UQ is Represented by
  • the refrigerant E of the present disclosure is HFO-1132 (E), HFO-, where the mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point O (100.0, 0.0, 0.0), Point c '(56.7, 43.3, 0.0), Point d '(52.2, 38.3, 9.5), Point e '(41.8, 39.8, 18.4) and point a' (81.6, 0.0, 18.4)
  • the refrigerant E of the present disclosure is HFO-1132 (E), HFO-, where the mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point O (100.0, 0.0, 0.0), Point c (77.7, 22.3, 0.0), Point d (76.3, 14.2, 9.5), Point e (72.2, 9.4, 18.4) and point a '(81.6, 0.0, 18.4)
  • the line segment cde is It is preferable that the coordinates ( ⁇ 0.017z 2 + 0.0148z + 77.684,
  • the refrigerant E of the present disclosure is HFO-1132 (E), HFO-, where the mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point O (100.0, 0.0, 0.0), Point c '(56.7, 43.3, 0.0), Point d '(52.2, 38.3, 9.5) and point a (90.5, 0.0, 9.5)
  • the line segment c'd ' is It is preferable if it is represented by the coordinates ( ⁇ 0.0297z 2 ⁇ 0.1915z + 56.7
  • the refrigerant E of the present disclosure is HFO-1132 (E), HFO-, where the mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point O (100.0, 0.0, 0.0), Point c (77.7, 22.3, 0.0), Point d (76.3, 14.2, 9.5), Point a (90.5, 0.0, 9.5)
  • the line segment CD is It is preferable if it is represented by coordinates ( ⁇ 0.017z 2 + 0.0148z + 77.684, 0.017z 2 + 0.9852z + 22.316, z), and the line segments Oc, da and aO are straight lines.
  • the refrigerant E of the present disclosure may further contain other additional refrigerants in addition to HFO-1132 (E), HFO-1123, and R32, as long as the above-described properties and effects are not impaired.
  • the refrigerant E of the present disclosure preferably contains 99.5% by mass or more, more preferably 99.75% by mass or more, of the total of HFO-1132 (E), HFO-1123 and R32 with respect to the entire refrigerant. It is more preferable to contain 99.9 mass% or more.
  • the additional refrigerant is not particularly limited and can be widely selected.
  • the mixed refrigerant may contain one kind alone as an additional refrigerant, or may contain two or more kinds.
  • Example of refrigerant E Below, the Example of the refrigerant
  • a mixed refrigerant was prepared by mixing HFO-1132 (E), HFO-1123 and R32 in the mass% shown in Table 145 and Table 146, respectively, based on the total of these.
  • the composition of each mixture is WCF, and in accordance with the ASHRAE 34-2013 standard, the condition (Equipment), (Storage), (Shipping), (Shipping), (Leak) and Recharge the National Institute of Science and Technology (NIST) Leakage simulation was performed according to Standard Reference Data Base Refleak Version 4.0, and the most flammable fraction was WCFF.
  • the burning rate was measured in accordance with the ANSI / ASHRA 34-2013 standard.
  • the WCF composition and the WCFF composition having a burning rate of 10 cm / s or less correspond to the “2 L class (slight flammability)” in the flammability classification of ASHRAE.
  • the burning rate test was done as follows using the apparatus shown in FIG. First, the mixed refrigerant used was 99.5% or more pure and degassed by repeated cycles of freezing, pumping and thawing until no traces of air were visible on the vacuum gauge. The burning rate was measured by the closure method. The initial temperature was ambient temperature. Ignition was performed by creating an electrical spark between the electrodes at the center of the sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using Schlieren photographs.
  • a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two acrylic windows for transmitting light was used as a sample cell, and a xenon lamp was used as a light source.
  • Schlieren images of flames were recorded with a high speed digital video camera at a framing rate of 600 fps and stored on a PC.
  • the points on the line segment KL are approximated curves by the least squares method from three points of K (48.4, 33.2, 18.4), Example 10 (41.1, 31.2, 27.7) and L (35.5, 27.5, 37.0). Determined, determined the coordinates.
  • the line segment MP is represented by coordinates (0.0083z 2 -0.984z + 47.1, -0.0083z 2 -0.016z + 52.9, z), and the line segment PQ is represented by coordinates (0.0135z 2 -0.9181z). +44.133, -0.0135z 2 -0.0819z + 55.867, z).
  • the point on the line segment MP obtains an approximate curve from the three points M, N, and P by the least squares method
  • the point on the line segment PQ approximates the curve from the three points P, U, and Q by the least squares method
  • the refrigeration capacity of a composition containing a mixture of R410A and HFO-1132 (E) and HFO-1123 is as follows using the National Institute of Science and Technology (NIST) Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) It calculated
  • the coordinates (x, y, z) are Point O (100.0, 0.0, 0.0), Point A '' (63.0, 0.0, 37.0), Point B '' (0.0, 63.0, 37.0) and Point (0.0, 100.0, 0.0)
  • GWP becomes 250 or less.
  • the coordinates (x, y, z) are Point O (100.0, 0.0, 0.0), Point A '(81.6, 0.0, 18.4), Point B '(0.0, 81.6, 18.4) and point (0.0, 100.0, 0.0)
  • Point O (100.0, 0.0, 0.0)
  • Point A '(81.6, 0.0, 18.4) Point B '(0.0, 81.6, 18.4)
  • point (0.0, 100.0, 0.0) When it exists in the range of the figure enclosed by the line segment which respectively connects 4 points of, or on the said line segment, it turns out that GWP becomes 125 or less.
  • the coordinates (x, y, z) are Point O (100.0, 0.0, 0.0), Point A (90.5, 0.0, 9.5), Point B (0.0, 90.5, 9.5) and Point (0.0, 100.0, 0.0)
  • Point O 100.0, 0.0, 0.0
  • Point A 90.5, 0.0, 9.5
  • Point B 0.0, 90.5, 9.5
  • Point 0.0, 100.0, 0.0
  • the coordinates (x, y, z) are Point C (50.0, 31.6, 18.4), Point U (28.7, 41.2, 30.1) and Point D (52.2, 38.3, 9.5)
  • the COP ratio based on R410A is 96% or more when it is on the left side of the line segment connecting the three points of or on the line segment.
  • the line segment CU has coordinates ( ⁇ 0.0538z 2 + 0.7888z + 53.701, 0.0538z 2 ⁇ 1.7888z + 46.299, z)
  • the line segment UD has coordinates ( ⁇ 3.4962z 2 + 210.71z ⁇ 3146.1, 3.4962 z 2 -211.71 z + 3246.1, z).
  • the point on the line segment CU is obtained from the three points of the point C, the comparative example 10, and the point U by the least square method.
  • the point on the line segment UD is obtained by the least square method from the three points of the point U, the second embodiment, and the D.
  • the coordinates (x, y, z) are Point E (55.2, 44.8, 0.0), Point T (34.8, 51.0, 14.2)
  • Point E (55.2, 44.8, 0.0)
  • Point T (34.8, 51.0, 14.2)
  • the COP ratio based on R410A is 94.5% or more.
  • the line segment ET the coordinates (-0.0547z 2 -0.5327z + 53.4, 0.0547z 2 -0.4673z + 46.6, z)
  • the segment TF is coordinates (-0.0982z 2 + 0.9622z + 40.931, 0.0982 z 2 ⁇ 1.9622 z + 59.069, z).
  • the point on the line segment ET is obtained by the least square method from the three points of the point E, Example 2, and T.
  • the point on the line segment TG is obtained by the least square method from the three points T, S, and F.
  • the coordinates (x, y, z) are Point G (0.0, 76.7, 23.3), Point R (21.0, 69.5, 9.5) and point H (0.0, 85.9, 14.1)
  • point G 0.0, 76.7, 23.3
  • Point R (21.0, 69.5, 9.5)
  • point H 0.0, 85.9, 14.1
  • the line segment GR is represented by coordinates ( ⁇ 0.0491 2 -1.1544z + 38.5, 0.0491z 2 + 0.1544z + 61.5, z)
  • the line segment RH is represented by coordinates ( ⁇ 0.3123z 2 + 4.234z + 11.06, 0.3123z 2 -5.234z + 88.94, represented by z).
  • the point on the line segment GR is obtained from the three points of the point G, the fifth embodiment, and the point R by the least square method.
  • the point on the line segment RH is obtained from the three points of the point R, the example 7, and the point H by the least square method.
  • FIG. 16 is a schematic configuration diagram of a refrigerant circuit
  • FIG. 17 which is a schematic control block configuration diagram
  • an air conditioner 1 as a refrigeration cycle device according to a first embodiment explain.
  • the air conditioning apparatus 1 is an apparatus that harmonizes air in a target space by performing a vapor compression refrigeration cycle.
  • the air conditioner 1 mainly includes an outdoor unit 20, an indoor unit 30, a liquid side refrigerant communication pipe 6 and a gas side refrigerant communication pipe 5 connecting the outdoor unit 20 and the indoor unit 30, an input device and an output device. It has a remote controller (not shown) and a controller 7 for controlling the operation of the air conditioner 1.
  • the refrigerant circuit 10 is filled with a refrigerant for performing a vapor compression refrigeration cycle.
  • the refrigerant is a mixed refrigerant containing 1,2-difluoroethylene, and any of the refrigerants A to E described above can be used.
  • the refrigerant circuit 10 is filled with refrigeration oil together with the mixed refrigerant.
  • Outdoor unit 20 The outdoor unit 20 is connected to the indoor unit 30 via the liquid side refrigerant communication pipe 6 and the gas side refrigerant communication pipe 5, and constitutes a part of the refrigerant circuit 10.
  • the outdoor unit 20 mainly includes a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, an outdoor expansion valve 24, an outdoor fan 25, a liquid side shutoff valve 29, and a gas side shutoff valve 28. ,have.
  • the compressor 21 is a device that compresses the low pressure refrigerant in the refrigeration cycle to a high pressure.
  • a compressor of a closed type in which a rotary type or scroll type positive displacement type compression element (not shown) is rotationally driven by a compressor motor is used as the compressor 21 .
  • the compressor motor is for changing the capacity, and an inverter can control the operating frequency.
  • the compressor 21 is provided with an attached accumulator (not shown) on the suction side (note that the internal volume of the attached accumulator is smaller than each of a low pressure receiver, an intermediate pressure receiver, and a high pressure receiver described later, preferably Less than half).
  • the four-way switching valve 22 connects the discharge side of the compressor 21 and the outdoor heat exchanger 23 by switching the connection state, and connects the suction side of the compressor 21 and the gas side shut-off valve 28. It is possible to switch the state and the heating operation connection state in which the suction side of the compressor 21 and the outdoor heat exchanger 23 are connected while connecting the discharge side of the compressor 21 and the gas side closing valve 28.
  • the outdoor heat exchanger 23 is a heat exchanger that functions as a condenser of high pressure refrigerant in the refrigeration cycle during cooling operation, and functions as an evaporator of low pressure refrigerant in the refrigeration cycle during heating operation.
  • the outdoor fan 25 sucks the outdoor air into the outdoor unit 20, exchanges heat with the refrigerant in the outdoor heat exchanger 23, and then generates an air flow for discharge to the outside.
  • the outdoor fan 25 is rotationally driven by the outdoor fan motor.
  • the outdoor expansion valve 24 is provided between the liquid side end of the outdoor heat exchanger 23 and the liquid side closing valve 29.
  • the outdoor expansion valve 24 may be a mechanical expansion valve used together with a capillary tube or a temperature sensitive cylinder, but is preferably an electric expansion valve whose valve opening degree can be adjusted by control.
  • the liquid side shut-off valve 29 is a manual valve disposed at a connection portion of the outdoor unit 20 with the liquid side refrigerant communication pipe 6.
  • the gas side shut-off valve 28 is a manual valve disposed at a connection portion between the outdoor unit 20 and the gas side refrigerant communication pipe 5.
  • the outdoor unit 20 includes an outdoor unit control unit 27 that controls the operation of each component of the outdoor unit 20.
  • the outdoor unit control unit 27 includes a microcomputer including a CPU, a memory, and the like.
  • the outdoor unit control unit 27 is connected to the indoor unit control unit 34 of each indoor unit 30 via a communication line, and transmits and receives control signals and the like.
  • the outdoor unit 20 is provided with a discharge pressure sensor 61, a discharge temperature sensor 62, a suction pressure sensor 63, a suction temperature sensor 64, an outdoor heat exchange temperature sensor 65, an outside air temperature sensor 66, and the like. Each of these sensors is electrically connected to the outdoor unit control unit 27 and transmits a detection signal to the outdoor unit control unit 27.
  • the discharge pressure sensor 61 detects the pressure of the refrigerant flowing through a discharge pipe that connects the discharge side of the compressor 21 and one of the connection ports of the four-way switching valve 22.
  • the discharge temperature sensor 62 detects the temperature of the refrigerant flowing through the discharge pipe.
  • the suction pressure sensor 63 detects the pressure of the refrigerant flowing through a suction pipe that connects the suction side of the compressor 21 and one of the connection ports of the four-way switching valve 22.
  • the suction temperature sensor 64 detects the temperature of the refrigerant flowing through the suction pipe.
  • the outdoor heat exchange temperature sensor 65 detects the temperature of the refrigerant flowing through the outlet on the liquid side which is the opposite side of the outdoor heat exchanger 23 to which the four-way switching valve 22 is connected.
  • the outdoor temperature sensor 66 detects the temperature of the outdoor air before passing through the outdoor heat exchanger 23.
  • the indoor unit 30 is installed on a wall, a ceiling, or the like in the room, which is the target space.
  • the indoor unit 30 is connected to the outdoor unit 20 via the liquid side refrigerant communication pipe 6 and the gas side refrigerant communication pipe 5, and constitutes a part of the refrigerant circuit 10.
  • the indoor unit 30 includes an indoor heat exchanger 31 and an indoor fan 32.
  • the liquid side of the indoor heat exchanger 31 is connected to the liquid side refrigerant communication pipe 6, and the gas side end is connected to the gas side refrigerant communication pipe 5.
  • the indoor heat exchanger 31 is a heat exchanger that functions as an evaporator of low pressure refrigerant in the refrigeration cycle during cooling operation, and functions as a condenser of high pressure refrigerant in the refrigeration cycle during heating operation.
  • the indoor fan 32 sucks the indoor air into the indoor unit 30 and exchanges heat with the refrigerant in the indoor heat exchanger 31 to generate an air flow for discharge to the outside.
  • the indoor fan 32 is rotationally driven by an indoor fan motor.
  • the indoor unit 30 includes an indoor unit control unit 34 that controls the operation of each part constituting the indoor unit 30.
  • the indoor unit control unit 34 has a microcomputer including a CPU, a memory, and the like.
  • the indoor unit control unit 34 is connected to the outdoor unit control unit 27 via a communication line, and transmits and receives control signals and the like.
  • the indoor unit 30 is provided with an indoor fluid side heat exchange temperature sensor 71, an indoor air temperature sensor 72, and the like. Each of these sensors is electrically connected to the indoor unit control unit 34, and transmits a detection signal to the indoor unit control unit 34.
  • the indoor fluid side heat exchange temperature sensor 71 detects the temperature of the refrigerant flowing through the outlet on the liquid side which is the opposite side of the indoor heat exchanger 31 to the side where the four-way switching valve 22 is connected.
  • the indoor air temperature sensor 72 detects the temperature of air in the room before passing through the indoor heat exchanger 31.
  • controller 7 that controls the operation of the air conditioner 1 is connected by connecting the outdoor unit control unit 27 and the indoor unit control unit 34 via the communication line. It is configured.
  • the controller 7 mainly includes a CPU (central processing unit) and memories such as a ROM and a RAM. Note that various processing and control by the controller 7 are realized by the units included in the outdoor unit control unit 27 and / or the indoor unit control unit 34 functioning in an integrated manner.
  • a CPU central processing unit
  • memories such as a ROM and a RAM.
  • a cooling operation mode and a heating operation mode are provided.
  • the controller 7 determines and executes the cooling operation mode or the heating operation mode based on the instruction received from the remote controller or the like.
  • the connection state of the four-way switching valve 22 is connected to the discharge side of the compressor 21 and the outdoor heat exchanger 23 while the compressor 21 is connected.
  • the refrigerant filled in the refrigerant circuit 10 mainly includes the compressor 21, the outdoor heat exchanger 23, the outdoor expansion valve 24, and the indoor heat exchange It circulates in order of vessel 31.
  • the refrigerant is sucked into and compressed by the compressor 21 in the refrigerant circuit 10 and then discharged.
  • capacity control is performed according to the cooling load required by the indoor unit 30.
  • capacitance control is not specifically limited, For example, when the air conditioning apparatus 1 is controlled so that the indoor air temperature satisfy
  • the operating frequency of the compressor 21 is controlled to be a value corresponding to the difference between the above and the room temperature (the temperature detected by the room air temperature sensor 72).
  • the gas refrigerant discharged from the compressor 21 flows into the gas side end of the outdoor heat exchanger 23 through the four-way switching valve 22.
  • the gas refrigerant that has flowed into the gas side end of the outdoor heat exchanger 23 exchanges heat with the outdoor air supplied by the outdoor fan 25 in the outdoor heat exchanger 23, condenses, and becomes liquid refrigerant as outdoor heat exchange It flows out from the liquid side end of the vessel 23.
  • the refrigerant flowing out of the liquid side end of the outdoor heat exchanger 23 is depressurized when passing through the outdoor expansion valve 24.
  • the outdoor expansion valve 24 is controlled, for example, such that the degree of superheat of the refrigerant drawn into the compressor 21 becomes a predetermined target degree of superheat.
  • the degree of superheat of the refrigerant drawn into the compressor 21 is determined, for example, by subtracting the saturation temperature corresponding to the suction pressure (the pressure detected by the suction pressure sensor 63) from the suction temperature (the temperature detected by the suction temperature sensor 62). be able to.
  • the method for controlling the degree of opening of the outdoor expansion valve 24 is not particularly limited.
  • the discharge temperature of the refrigerant discharged from the compressor 21 may be controlled to be a predetermined temperature.
  • the degree of superheat of the refrigerant discharged from may be controlled to satisfy a predetermined condition.
  • the refrigerant decompressed by the outdoor expansion valve 24 flows into the indoor unit 30 through the liquid side shut-off valve 29 and the liquid side refrigerant communication pipe 6.
  • the refrigerant flowing into the indoor unit 30 flows into the indoor heat exchanger 31, and in the indoor heat exchanger 31, exchanges heat with the indoor air supplied by the indoor fan 32, evaporates, and becomes a gas refrigerant as indoor heat It flows out from the gas side end of the exchanger 31.
  • the gas refrigerant flowing out of the gas side end of the indoor heat exchanger 31 flows to the gas side refrigerant communication pipe 5.
  • the refrigerant having flowed through the gas-side refrigerant communication pipe 5 passes through the gas-side shut-off valve 28 and the four-way switching valve 22 and is again sucked into the compressor 21.
  • the connection state of the four-way switching valve 22 is established by connecting the discharge side of the compressor 21 and the gas side closing valve 28.
  • the refrigerant filled in the refrigerant circuit 10 mainly includes the compressor 21, the indoor heat exchanger 31, the outdoor expansion valve 24, and the outdoor heat exchange It circulates in order of vessel 23.
  • the refrigerant is sucked into and compressed by the compressor 21 in the refrigerant circuit 10 and then discharged.
  • capacity control is performed according to the heating load required by the indoor unit 30.
  • capacitance control is not specifically limited, For example, when the air conditioning apparatus 1 is controlled so that the indoor air temperature satisfy
  • the operating frequency of the compressor 21 is controlled to be a value corresponding to the difference between the above and the room temperature (the temperature detected by the room air temperature sensor 72).
  • the gas refrigerant discharged from the compressor 21 flows into the indoor unit 30 after flowing through the four-way switching valve 22 and the gas-side refrigerant communication pipe 5.
  • the refrigerant that has flowed into the indoor unit 30 flows into the gas side end of the indoor heat exchanger 31, and in the indoor heat exchanger 31, exchanges heat with the indoor air supplied by the indoor fan 32, condenses, and It flows out from the liquid side end of the indoor heat exchanger 31 as refrigerant or liquid refrigerant in a phase state.
  • the refrigerant that has flowed out from the liquid side end of the indoor heat exchanger 31 flows to the liquid side refrigerant communication pipe 6.
  • the refrigerant having flowed through the liquid-side refrigerant communication pipe 6 flows into the outdoor unit 20, passes through the liquid-side shutoff valve 29, and is decompressed in the outdoor expansion valve 24 to a low pressure in the refrigeration cycle.
  • the outdoor expansion valve 24 is controlled, for example, such that the degree of superheat of the refrigerant drawn into the compressor 21 becomes a predetermined target degree of superheat.
  • the method for controlling the degree of opening of the outdoor expansion valve 24 is not particularly limited.
  • the discharge temperature of the refrigerant discharged from the compressor 21 may be controlled to be a predetermined temperature.
  • the degree of superheat of the refrigerant discharged from may be controlled to satisfy a predetermined condition.
  • the refrigerant reduced in pressure by the outdoor expansion valve 24 flows into the liquid side end of the outdoor heat exchanger 23.
  • the refrigerant that has flowed in from the liquid side end of the outdoor heat exchanger 23 exchanges heat with the outdoor air supplied by the outdoor fan 25 in the outdoor heat exchanger 23, evaporates, and becomes a gas refrigerant as the outdoor heat exchanger 23 Flow out from the gas side end of the
  • the refrigerant that has flowed out from the gas side end of the outdoor heat exchanger 23 passes through the four-way switching valve 22 and is again drawn into the compressor 21.
  • the air conditioner 1 can perform the refrigeration cycle using a refrigerant containing 1,2-difluoroethylene, and thus performs the refrigeration cycle using a refrigerant with a small GWP. Is possible.
  • FIG. 18 is a schematic configuration diagram of a refrigerant circuit
  • FIG. 19 is a schematic control block configuration diagram. explain.
  • the difference with the air conditioning apparatus 1 of 1st Embodiment is mainly demonstrated.
  • the air conditioning apparatus 1a differs from the air conditioning apparatus 1 of the first embodiment in that the outdoor unit 20 includes a low pressure receiver 41.
  • the low-pressure receiver 41 is provided between the suction side of the compressor 21 and one of the connection ports of the four-way switching valve 22, and is a refrigerant container capable of storing surplus refrigerant in the refrigerant circuit 10 as liquid refrigerant. is there.
  • the suction pressure sensor 63 and the suction temperature sensor 64 are provided to detect the refrigerant flowing between the low pressure receiver 41 and the suction side of the compressor 21 as a target.
  • the compressor 21 is provided with an attached accumulator (not shown), and the low pressure receiver 41 is connected to the downstream side of the attached accumulator.
  • the evaporation temperature of the refrigerant in the refrigerant circuit 10 of the compressor 21 is the set temperature and the indoor temperature (the temperature detected by the indoor air temperature sensor 72)
  • the operating frequency is capacity-controlled so as to reach a target evaporation temperature determined according to the difference between
  • the evaporation temperature is not particularly limited, but may be grasped as, for example, the saturation temperature of the refrigerant corresponding to the pressure detected by the suction pressure sensor 63.
  • the gas refrigerant discharged from the compressor 21 flows in the order of the four-way switching valve 22, the outdoor heat exchanger 23, and the outdoor expansion valve 24.
  • the degree of opening of the outdoor expansion valve 24 is controlled such that, for example, the degree of subcooling of the refrigerant flowing through the liquid-side outlet of the outdoor heat exchanger 23 becomes a target value or the like.
  • the degree of supercooling of the refrigerant flowing through the liquid side outlet of the outdoor heat exchanger 23 is not particularly limited, for example, high pressure of the refrigerant circuit 10 (detection of the discharge pressure sensor 61 from detection temperature of the outdoor heat exchange temperature sensor 65) It can be determined by subtracting the saturation temperature of the refrigerant corresponding to the pressure).
  • the method for controlling the degree of opening of the outdoor expansion valve 24 is not particularly limited.
  • the discharge temperature of the refrigerant discharged from the compressor 21 may be controlled to be a predetermined temperature.
  • the degree of superheat of the refrigerant discharged from may be controlled to satisfy a predetermined condition.
  • the refrigerant depressurized by the outdoor expansion valve 24 flows into the indoor unit 30 via the liquid side shut-off valve 29 and the liquid side refrigerant communication pipe 6, is evaporated in the indoor heat exchanger 31, and flows to the gas side refrigerant communication pipe 5.
  • the refrigerant having flowed through the gas-side refrigerant communication pipe 5 passes through the gas-side shut-off valve 28, the four-way switching valve 22, and the low pressure receiver 41, and is again drawn into the compressor 21.
  • the low pressure receiver 41 the liquid refrigerant that has not been evaporated in the indoor heat exchanger 31 is stored as a surplus refrigerant.
  • the condensing temperature of the refrigerant in the refrigerant circuit 10 is the set temperature and the indoor temperature (the temperature detected by the indoor air temperature sensor 72)
  • the operating frequency is capacity-controlled so as to reach a target condensation temperature determined according to the difference between
  • the condensation temperature is not particularly limited, but may be grasped as, for example, the saturation temperature of the refrigerant corresponding to the pressure detected by the discharge pressure sensor 61.
  • the gas refrigerant discharged from the compressor 21 flows through the four-way switching valve 22 and the gas-side refrigerant communication pipe 5 and then flows into the gas-side end of the indoor heat exchanger 31 of the indoor unit 30. Condense at the The refrigerant flowing out from the liquid side end of the indoor heat exchanger 31 flows through the liquid side refrigerant communication pipe 6 into the outdoor unit 20, passes through the liquid side shut-off valve 29, and the low pressure in the refrigeration cycle at the outdoor expansion valve 24 The pressure is reduced to The outdoor expansion valve 24 is controlled such that the degree of subcooling of the refrigerant flowing through the liquid-side outlet of the indoor heat exchanger 31, for example, satisfies a predetermined condition such as reaching a target value.
  • the degree of subcooling of the refrigerant flowing through the liquid side outlet of the indoor heat exchanger 31 is not particularly limited, for example, from the detection temperature of the indoor liquid side heat exchange temperature sensor 71, the high pressure of the refrigerant circuit 10 (discharge pressure sensor 61 It can obtain
  • the method for controlling the degree of opening of the outdoor expansion valve 24 is not particularly limited.
  • the discharge temperature of the refrigerant discharged from the compressor 21 may be controlled to be a predetermined temperature.
  • the degree of superheat of the refrigerant discharged from may be controlled to satisfy a predetermined condition.
  • the refrigerant decompressed by the outdoor expansion valve 24 evaporates in the outdoor heat exchanger 23, passes through the four-way switching valve 22 and the low pressure receiver 41, and is again drawn into the compressor 21.
  • the low pressure receiver 41 the liquid refrigerant that has not been evaporated in the outdoor heat exchanger 23 is stored as a surplus refrigerant.
  • the refrigeration cycle can be performed using a refrigerant containing 1,2-difluoroethylene, so that the refrigeration cycle is performed using a refrigerant with a small GWP. Is possible.
  • control control of the outdoor expansion valve 24 that ensures that the degree of superheat of the refrigerant drawn into the compressor 21 becomes a predetermined value or more is not performed.
  • control control of the outdoor expansion valve 24
  • the degree of supercooling of the refrigerant flowing through the outlet of the outdoor heat exchanger 23 when functioning as a condenser (the same applies to the indoor heat exchanger 31 when functioning as a condenser) It is possible to control to secure enough.
  • FIG. 20 which is a schematic configuration diagram of a refrigerant circuit
  • FIG. 21 which is a schematic control block configuration diagram
  • an air conditioner 1b as a refrigeration cycle device according to a third embodiment. explain.
  • the difference with the air conditioning apparatus 1a of 2nd Embodiment is mainly demonstrated.
  • the air conditioner 1b is different from the air conditioner 1a of the second embodiment in that a plurality of indoor units are provided in parallel, and in each indoor unit. The difference is that an indoor expansion valve is provided on the liquid refrigerant side of the indoor heat exchanger.
  • the air conditioner 1 b has a first indoor unit 30 and a second indoor unit 35 connected in parallel to each other.
  • the first indoor unit 30 includes the first indoor heat exchanger 31 and the first indoor fan 32 as in the above embodiment, and the first indoor expansion valve on the liquid refrigerant side of the first indoor heat exchanger 31. 33 are provided.
  • the first indoor expansion valve 33 is preferably an electric expansion valve capable of adjusting the valve opening degree.
  • the first indoor unit control unit 34 and the first indoor liquid side heat exchange temperature sensor 71 electrically connected to the first indoor unit control unit 34 are provided to the first indoor unit 30 as in the above embodiment.
  • the first indoor air temperature sensor 72 is provided, and further, the first indoor gas side heat exchange temperature sensor 73 and the like are provided.
  • the first indoor liquid side heat exchange temperature sensor 71 detects the temperature of the refrigerant flowing through the outlet on the liquid refrigerant side of the first indoor heat exchanger 31.
  • the first indoor gas side heat exchange temperature sensor 73 detects the temperature of the refrigerant flowing through the outlet on the gas refrigerant side of the first indoor heat exchanger 31.
  • the second indoor unit 35 includes the second indoor heat exchanger 36 and the second indoor fan 37.
  • An expansion valve 38 is provided.
  • the second indoor expansion valve 38 is preferably an electric expansion valve capable of adjusting the valve opening degree.
  • the second indoor unit control unit 39 and a second indoor unit side heat exchange temperature electrically connected to the second indoor unit control unit 39 are provided to the second indoor unit 35.
  • a sensor 75, a second indoor air temperature sensor 76, and a second indoor gas side heat exchange temperature sensor 77 are provided.
  • the air conditioner 1b is different from the air conditioner 1a of the second embodiment in that the outdoor expansion valve 24 is not provided in the outdoor unit, and a bypass pipe 40 having a bypass expansion valve 49 is provided. Are different in that they
  • the bypass pipe 40 is a refrigerant pipe extending from the outlet on the liquid refrigerant side of the outdoor heat exchanger 23 to the liquid side shut-off valve 29 and a refrigerant pipe extending from one of the connection ports of the four-way switching valve 22 to the low pressure receiver 41 It is a refrigerant pipe to connect.
  • the bypass expansion valve 49 is preferably an electric expansion valve capable of adjusting the valve opening degree.
  • the bypass pipe 40 is not limited to the one provided with the motorized expansion valve capable of adjusting the opening degree, and may have, for example, a capillary tube and an electromagnetic valve that can be opened and closed.
  • the compressor 21 in the cooling operation mode, for example, the compressor 21 is capacity-controlled so that the evaporation temperature of the refrigerant in the refrigerant circuit 10 becomes the target evaporation temperature.
  • the target evaporation temperature it is preferable to set the target evaporation temperature according to the indoor unit 30, 35 that has the largest difference between the set temperature and the indoor temperature (the indoor unit with the largest load).
  • the evaporation temperature is not particularly limited, it can be grasped as, for example, the saturation temperature of the refrigerant corresponding to the pressure detected by the suction pressure sensor 63.
  • the gas refrigerant discharged from the compressor 21 is condensed in the outdoor heat exchanger 23 via the four-way switching valve 22.
  • the refrigerant that has flowed through the outdoor heat exchanger 23 is sent to the first indoor unit 30 and the second indoor unit 35 via the liquid side shut-off valve 29 and the liquid side refrigerant communication pipe 6.
  • the first indoor expansion valve 33 satisfies a predetermined condition such that the degree of superheat of the refrigerant flowing through the gas side outlet of the first indoor heat exchanger 31 becomes a target value.
  • the valve opening degree is controlled.
  • the degree of superheat of the refrigerant flowing through the gas-side outlet of the first indoor heat exchanger 31 is not particularly limited, for example, low pressure (intake of the refrigerant circuit 10 from the detection temperature of the first indoor gas-side heat exchange temperature sensor 73) It can be determined by subtracting the saturation temperature of the refrigerant corresponding to the pressure detected by the pressure sensor 63).
  • the degree of superheat of the refrigerant flowing through the gas side outlet of the second indoor heat exchanger 36 becomes the target value.
  • the valve opening degree is controlled to satisfy a predetermined condition such as.
  • the degree of superheat of the refrigerant flowing through the gas side outlet of the second indoor heat exchanger 36 is not particularly limited, for example, the low pressure of the refrigerant circuit 10 from the detection temperature of the second indoor gas side heat exchange temperature sensor 77 It can be determined by subtracting the saturation temperature of the refrigerant corresponding to the pressure detected by the suction pressure sensor 63).
  • each of the first indoor expansion valve 33 and the second indoor expansion valve 38 is a refrigerant obtained by subtracting the saturation temperature of the refrigerant corresponding to the pressure detected by the suction pressure sensor 63 from the temperature detected by the suction temperature sensor 64.
  • the valve opening degree may be controlled to satisfy a predetermined condition such as the degree of superheat becoming a target value.
  • the method of controlling the valve opening degree of the first indoor expansion valve 33 and the second indoor expansion valve 38 is not particularly limited. For example, control is performed such that the discharge temperature of the refrigerant discharged from the compressor 21 becomes a predetermined temperature. Alternatively, the degree of superheat of the refrigerant discharged from the compressor 21 may be controlled to satisfy a predetermined condition.
  • the refrigerant reduced in pressure by the first indoor expansion valve 33 is evaporated in the first indoor heat exchanger 31, and the refrigerant reduced in pressure by the second indoor expansion valve 38 is evaporated in the second indoor heat exchanger 36 and merged, It flows to the gas side refrigerant communication pipe 5.
  • the refrigerant having flowed through the gas-side refrigerant communication pipe 5 passes through the gas-side shut-off valve 28, the four-way switching valve 22, and the low pressure receiver 41, and is again drawn into the compressor 21.
  • the low pressure receiver 41 the liquid refrigerant that has not been evaporated in the first indoor heat exchanger 31 and the second indoor heat exchanger is stored as a surplus refrigerant.
  • the bypass expansion valve 49 of the bypass pipe 40 is controlled to be opened or the valve opening degree is increased when a predetermined condition regarding the excessive amount of refrigerant inside the outdoor heat exchanger 23 functioning as a condenser is satisfied. Is done.
  • the opening degree control of the bypass expansion valve 49 is not particularly limited. For example, when the condensation pressure (for example, the pressure detected by the discharge pressure sensor 61) is equal to or higher than a predetermined value, the opening degree is controlled to be opened or raised. Alternatively, control may be performed to switch between the open state and the closed state at predetermined time intervals so as to increase the flow rate.
  • the compressor 21 in the heating operation mode, for example, the compressor 21 is capacity-controlled so that the condensing temperature of the refrigerant in the refrigerant circuit 10 becomes the target condensing temperature. Ru.
  • the target condensing temperature is determined according to the largest difference between the set temperature and the indoor temperature in each of the indoor units 30 and 35 (the indoor unit with the largest load).
  • the condensation temperature is not particularly limited, but may be grasped as, for example, the saturation temperature of the refrigerant corresponding to the pressure detected by the discharge pressure sensor 61.
  • the gas refrigerant discharged from the compressor 21 flows through the four-way switching valve 22 and the gas-side refrigerant communication pipe 5, and a part of the refrigerant then flows to the gas side of the first indoor heat exchanger 31 of the first indoor unit 30. It flows into the end and condenses in the first indoor heat exchanger 31, and another part of the refrigerant flows into the gas side end of the second indoor heat exchanger 36 of the second indoor unit 35, and the second indoor heat exchange In the vessel 36.
  • the first indoor expansion valve 33 of the first indoor unit 30 is a valve so that the degree of subcooling of the refrigerant flowing on the liquid side of the first indoor heat exchanger 31 becomes a predetermined target value, etc.
  • the degree of opening is controlled.
  • a predetermined condition such as the degree of subcooling of the refrigerant flowing on the liquid side of the second indoor heat exchanger 36 becomes a predetermined target value, etc.
  • the valve opening degree is controlled.
  • the degree of subcooling of the refrigerant flowing on the liquid side of the first indoor heat exchanger 31 is the high pressure in the refrigerant circuit 10 from the detection temperature of the first indoor liquid side heat exchange temperature sensor 71 (the detection pressure of the discharge pressure sensor 61).
  • the high pressure in the refrigerant circuit 10 (the discharge pressure sensor 61 It can be determined by subtracting the saturation temperature of the refrigerant corresponding to the detected pressure).
  • the outdoor heat exchanger 23 After the refrigerant decompressed by the first indoor expansion valve 33 and the refrigerant decompressed by the second indoor expansion valve 38 merge and pass through the liquid side refrigerant communication pipe 6 and the liquid side shut-off valve 29, the outdoor heat exchanger 23 The refrigerant vaporizes in the air, passes through the four-way switching valve 22 and the low pressure receiver 41, and is again sucked into the compressor 21. In the low pressure receiver 41, the liquid refrigerant that has not been evaporated in the outdoor heat exchanger 23 is stored as a surplus refrigerant. In the heating operation, although not particularly limited, the bypass expansion valve 49 of the bypass pipe 40 may be maintained in a fully closed state, for example.
  • the air conditioner 1b can perform a refrigeration cycle using a refrigerant containing 1,2-difluoroethylene, and therefore, performs a refrigeration cycle using a refrigerant with a small GWP. Is possible.
  • the liquid pressure in the compressor 21 can be suppressed by providing the low pressure receiver 41. Further, at the time of cooling operation, the first indoor expansion valve 33 and the second indoor expansion valve 38 are superheated degree controlled, and at the time of heating operation, the first indoor expansion valve 33 and the second indoor expansion valve 38 are supercooled degree controlled. Thus, the capabilities of the first indoor heat exchanger 31 and the second indoor heat exchanger 36 can be sufficiently exhibited.
  • FIG. 22 is a schematic configuration diagram of a refrigerant circuit
  • FIG. 23 is a schematic control block configuration diagram. explain.
  • the difference with the air conditioning apparatus 1a of 2nd Embodiment is mainly demonstrated.
  • the indoor unit 30 also includes an indoor fluid side heat exchange temperature sensor 71 that detects the temperature of the refrigerant flowing on the liquid side of the indoor heat exchanger 31, an indoor air temperature sensor 72 that detects the temperature of the indoor air, and an indoor heat exchanger. And an indoor gas side heat exchange temperature sensor 73 for detecting the temperature of the refrigerant flowing on the gas side of 31.
  • the outdoor bridge circuit 26 is provided between the liquid side of the outdoor heat exchanger 23 and the liquid side closing valve 29, and has four connection points and a check valve provided between the connection points. There is. Among the four connection points of the outdoor bridge circuit 26, the high pressure receiver 42 extends from two points other than the point connected to the liquid side of the outdoor heat exchanger 23 and the point connected to the liquid side shut-off valve 29. Refrigerant piping is connected. Further, among the refrigerant pipes, an outdoor expansion valve 24 is provided in the middle of the refrigerant pipe extending from the gas region of the internal space of the high pressure receiver 42.
  • the evaporation temperature of the refrigerant in the refrigerant circuit 10 is the set temperature and the indoor temperature (the temperature detected by the indoor air temperature sensor 72)
  • the operating frequency is capacity-controlled so as to reach a target evaporation temperature determined according to the difference between
  • the evaporation temperature is not particularly limited, for example, it may be grasped as the detection temperature of the indoor fluid side heat exchange temperature sensor 71, or as the saturation temperature of the refrigerant corresponding to the detection pressure of the suction pressure sensor 63. It is also good.
  • the gas refrigerant discharged from the compressor 21 is condensed in the outdoor heat exchanger 23 via the four-way switching valve 22.
  • the refrigerant having flowed through the outdoor heat exchanger 23 flows into the high pressure receiver 42 through a part of the outdoor bridge circuit 26.
  • the surplus refrigerant in the refrigerant circuit 10 is stored as liquid refrigerant.
  • the gas refrigerant flowing out of the gas region of the high pressure receiver 42 is decompressed in the outdoor expansion valve 24.
  • the outdoor expansion valve 24 satisfies a predetermined condition such that the degree of superheat of the refrigerant flowing through the gas side outlet of the indoor heat exchanger 31 or the degree of superheat of the refrigerant flowing through the suction side of the compressor 21 becomes a target value, for example.
  • the valve opening degree is controlled.
  • the degree of superheat of the refrigerant flowing through the gas side outlet of the indoor heat exchanger 31 is not particularly limited, for example, from the detection temperature of the indoor gas side heat exchange temperature sensor 73, the low pressure of the refrigerant circuit 10 (in the suction pressure sensor 63 It may be determined by subtracting the saturation temperature of the refrigerant corresponding to the detected pressure).
  • the degree of superheat of the refrigerant flowing on the suction side of the compressor 21 may be determined by subtracting the saturation temperature of the refrigerant corresponding to the pressure detected by the suction pressure sensor 63 from the temperature detected by the suction temperature sensor 64.
  • the method for controlling the degree of opening of the outdoor expansion valve 24 is not particularly limited.
  • the discharge temperature of the refrigerant discharged from the compressor 21 may be controlled to be a predetermined temperature.
  • the degree of superheat of the refrigerant discharged from may be controlled to satisfy a predetermined condition.
  • the refrigerant decompressed by the outdoor expansion valve 24 flows through the other part of the outdoor bridge circuit 26 and flows into the indoor unit 30 via the liquid side shut-off valve 29 and the liquid side refrigerant communication pipe 6, and the indoor heat exchanger 31 Evaporate at
  • the refrigerant having flowed through the indoor heat exchanger 31 passes through the gas-side refrigerant communication pipe 5, the gas-side shut-off valve 28, and the four-way switching valve 22, and is again drawn into the compressor 21.
  • the condensing temperature of the refrigerant in the refrigerant circuit 10 is the set temperature and the indoor temperature (the temperature detected by the indoor air temperature sensor 72)
  • the operating frequency is capacity-controlled so as to reach a target condensation temperature determined according to the difference between
  • the condensation temperature is not particularly limited, but may be grasped as, for example, the saturation temperature of the refrigerant corresponding to the pressure detected by the discharge pressure sensor 61.
  • the gas refrigerant discharged from the compressor 21 flows through the four-way switching valve 22 and the gas-side refrigerant communication pipe 5 and then flows into the gas-side end of the indoor heat exchanger 31 of the indoor unit 30. Condense at the The refrigerant flowing out of the liquid side end of the indoor heat exchanger 31 flows through the liquid side refrigerant communication pipe 6 into the outdoor unit 20, passes through the liquid side shut-off valve 29, and flows through a part of the outdoor bridge circuit 26. , High pressure receiver 42. In the high pressure receiver 42, the surplus refrigerant in the refrigerant circuit 10 is stored as liquid refrigerant. The gas refrigerant flowing out of the gas region of the high pressure receiver 42 is decompressed in the outdoor expansion valve 24 to a low pressure in the refrigeration cycle.
  • the outdoor expansion valve 24 has its valve opening degree controlled such that, for example, the degree of superheat of the refrigerant drawn by the compressor 21 becomes a target value or other predetermined condition.
  • the degree of superheat of the refrigerant flowing on the suction side of the compressor 21 is not particularly limited, for example, it is determined by subtracting the saturation temperature of the refrigerant corresponding to the detection pressure of the suction pressure sensor 63 from the detection temperature of the suction temperature sensor 64 be able to.
  • the method for controlling the degree of opening of the outdoor expansion valve 24 is not particularly limited.
  • the discharge temperature of the refrigerant discharged from the compressor 21 may be controlled to be a predetermined temperature.
  • the degree of superheat of the refrigerant discharged from may be controlled to satisfy a predetermined condition.
  • the refrigerant decompressed by the outdoor expansion valve 24 flows through the other part of the outdoor bridge circuit 26, evaporates in the outdoor heat exchanger 23, passes through the four-way switching valve 22, and is again sucked into the compressor 21.
  • the air conditioner 1c can perform the refrigeration cycle using a refrigerant containing 1,2-difluoroethylene, and thus performs the refrigeration cycle using a refrigerant with a small GWP. Is possible.
  • the air conditioner 1c by providing the high pressure receiver 42, it becomes possible to store the surplus refrigerant in the refrigerant circuit 10.
  • FIG. 24 which is a schematic configuration diagram of a refrigerant circuit
  • FIG. 25 which is a schematic control block configuration diagram
  • an air conditioner 1d as a refrigeration cycle device according to a fifth embodiment explain.
  • the difference with the air conditioning apparatus 1c of 4th Embodiment is mainly demonstrated.
  • the air conditioning device 1d differs from the air conditioning device 1c of the fourth embodiment in that a plurality of indoor units are provided in parallel, and in each indoor unit. The difference is that an indoor expansion valve is provided on the liquid refrigerant side of the indoor heat exchanger.
  • the air conditioner 1d includes a first indoor unit 30 and a second indoor unit 35 connected in parallel to each other.
  • the first indoor unit 30 includes the first indoor heat exchanger 31 and the first indoor fan 32 as in the above embodiment, and the first indoor expansion valve on the liquid refrigerant side of the first indoor heat exchanger 31. 33 are provided.
  • the first indoor expansion valve 33 is preferably an electric expansion valve capable of adjusting the valve opening degree.
  • the first indoor unit control unit 34 and the first indoor liquid side heat exchange temperature sensor 71 electrically connected to the first indoor unit control unit 34 are provided to the first indoor unit 30 as in the above embodiment.
  • a first indoor air temperature sensor 72, a first indoor gas side heat exchange temperature sensor 73, and the like are provided.
  • the first indoor liquid side heat exchange temperature sensor 71 detects the temperature of the refrigerant flowing through the outlet on the liquid refrigerant side of the first indoor heat exchanger 31.
  • the first indoor gas side heat exchange temperature sensor 73 detects the temperature of the refrigerant flowing through the outlet on the gas refrigerant side of the first indoor heat exchanger 31.
  • the second indoor unit 35 includes the second indoor heat exchanger 36 and the second indoor fan 37.
  • An expansion valve 38 is provided.
  • the second indoor expansion valve 38 is preferably an electric expansion valve capable of adjusting the valve opening degree.
  • the second indoor unit control unit 39 and a second indoor unit side heat exchange temperature electrically connected to the second indoor unit control unit 39 are provided to the second indoor unit 35.
  • a sensor 75, a second indoor air temperature sensor 76, and a second indoor gas side heat exchange temperature sensor 77 are provided.
  • the compressor 21 in the cooling operation mode, for example, the compressor 21 is capacity-controlled such that the evaporation temperature of the refrigerant in the refrigerant circuit 10 becomes the target evaporation temperature.
  • the target evaporation temperature it is preferable to set the target evaporation temperature according to the indoor unit 30, 35 that has the largest difference between the set temperature and the indoor temperature (the indoor unit with the largest load).
  • the gas refrigerant discharged from the compressor 21 is condensed in the outdoor heat exchanger 23 via the four-way switching valve 22.
  • the refrigerant having flowed through the outdoor heat exchanger 23 flows into the high pressure receiver 42 through a part of the outdoor bridge circuit 26.
  • the surplus refrigerant in the refrigerant circuit 10 is stored as liquid refrigerant.
  • the gas refrigerant flowing out of the gas region of the high pressure receiver 42 is decompressed in the outdoor expansion valve 24.
  • the outdoor expansion valve 24 is controlled, for example, such that the valve opening degree is fully open.
  • the refrigerant having passed through the outdoor expansion valve 24 flows through the other part of the outdoor bridge circuit 26 and flows into the first indoor unit 30 and the second indoor unit 35 via the liquid side shut-off valve 29 and the liquid side refrigerant communication pipe 6 Do.
  • the refrigerant flowing into the first indoor unit 30 is depressurized by the first indoor expansion valve 33.
  • the degree of opening of the first indoor expansion valve 33 is controlled such that the degree of superheat of the refrigerant flowing through the gas-side outlet of the first indoor heat exchanger 31 satisfies a predetermined value such as the target value.
  • a predetermined value such as the target value.
  • the degree of superheat of the refrigerant flowing through the gas-side outlet of the first indoor heat exchanger 31 is not particularly limited, for example, low pressure (intake of the refrigerant circuit 10 from the detection temperature of the first indoor gas-side heat exchange temperature sensor 73) It may be determined by subtracting the saturation temperature of the refrigerant corresponding to the pressure detected by the pressure sensor 63).
  • the refrigerant flowing into the second indoor unit 35 is depressurized by the second indoor expansion valve 38.
  • the degree of opening of the second indoor expansion valve 38 is controlled such that the degree of superheat of the refrigerant flowing through the gas-side outlet of the second indoor heat exchanger 36 satisfies a predetermined value such as the target value.
  • a predetermined value such as the target value.
  • the degree of superheat of the refrigerant flowing through the gas-side outlet of the second indoor heat exchanger 36 is not particularly limited, for example, low pressure (intake of the refrigerant circuit 10 from the detection temperature of the second indoor gas-side heat exchange temperature sensor 77) It may be determined by subtracting the saturation temperature of the refrigerant corresponding to the pressure detected by the pressure sensor 63).
  • each of the first indoor expansion valve 33 and the second indoor expansion valve 38 is a refrigerant obtained by subtracting the saturation temperature of the refrigerant corresponding to the pressure detected by the suction pressure sensor 63 from the temperature detected by the suction temperature sensor 64.
  • the valve opening degree may be controlled to satisfy a predetermined condition such as the degree of superheat becoming a target value.
  • the method of controlling the valve opening degree of the first indoor expansion valve 33 and the second indoor expansion valve 38 is not particularly limited. For example, control is performed such that the discharge temperature of the refrigerant discharged from the compressor 21 becomes a predetermined temperature. Alternatively, the degree of superheat of the refrigerant discharged from the compressor 21 may be controlled to satisfy a predetermined condition.
  • the gas side refrigerant communication pipe 5 After the refrigerant evaporated in the first indoor heat exchanger 31 and the refrigerant evaporated in the second indoor heat exchanger 36 merge, the gas side refrigerant communication pipe 5, the gas side shut-off valve 28, the four-way switching valve 22 After that, it is again sucked into the compressor 21.
  • the compressor 21 in the heating operation mode, for example, the compressor 21 is capacity-controlled so that the condensing temperature of the refrigerant in the refrigerant circuit 10 becomes the target condensing temperature. Ru.
  • the target condensing temperature is determined according to the largest difference between the set temperature and the indoor temperature in each of the indoor units 30 and 35 (the indoor unit with the largest load).
  • the condensation temperature is not particularly limited, but may be grasped as, for example, the saturation temperature of the refrigerant corresponding to the pressure detected by the discharge pressure sensor 61.
  • the gas refrigerant discharged from the compressor 21 flows into the first indoor unit 30 and the second indoor unit 35 after flowing through the four-way switching valve 22 and the gas-side refrigerant communication pipe 5.
  • the gas refrigerant flowing into the first indoor heat exchanger 31 of the first indoor unit 30 is condensed in the first indoor heat exchanger 31.
  • the refrigerant having flowed through the first indoor heat exchanger 31 is decompressed in the first indoor expansion valve 33.
  • the degree of opening of the first indoor expansion valve 33 is controlled such that the degree of subcooling of the refrigerant flowing through the liquid side outlet of the first indoor heat exchanger 31 becomes a target value or other predetermined condition.
  • the degree of supercooling of the refrigerant flowing through the liquid side outlet of the first indoor heat exchanger 31 is, for example, saturation of the refrigerant corresponding to the detection pressure of the discharge pressure sensor 61 from the detection temperature of the first indoor liquid side heat exchange temperature sensor 71 It can be determined by subtracting the temperature.
  • the gas refrigerant flowing into the second indoor heat exchanger 36 of the second indoor unit 35 is similarly condensed in the second indoor heat exchanger 36.
  • the refrigerant having flowed through the second indoor heat exchanger 36 is decompressed in the second indoor expansion valve 38.
  • the degree of opening of the second indoor expansion valve 38 is controlled such that the degree of subcooling of the refrigerant flowing through the liquid side outlet of the second indoor heat exchanger 36 becomes a target value or other predetermined condition.
  • the degree of supercooling of the refrigerant flowing through the liquid-side outlet of the second indoor heat exchanger 36 is, for example, saturation of the refrigerant corresponding to the detected pressure of the discharge pressure sensor 61 from the detected temperature of the second indoor liquid-side heat exchange temperature sensor 75 It can be determined by subtracting the temperature.
  • the refrigerant flowing out of the liquid side end of the first indoor heat exchanger 31 and the refrigerant flowing out of the liquid side end of the second indoor heat exchanger 36 merge, and then pass through the liquid side refrigerant communication pipe 6 to the outdoor unit 20. To flow.
  • the refrigerant flowing into the outdoor unit 20 passes through the liquid side shut-off valve 29, flows through a part of the outdoor bridge circuit 26, and flows into the high pressure receiver 42.
  • the surplus refrigerant in the refrigerant circuit 10 is stored as liquid refrigerant.
  • the gas refrigerant flowing out of the gas region of the high pressure receiver 42 is decompressed in the outdoor expansion valve 24 to a low pressure in the refrigeration cycle. That is, in the heating operation, the high pressure receiver 42 stores a pseudo intermediate pressure refrigerant.
  • the outdoor expansion valve 24 has its valve opening degree controlled such that, for example, the degree of superheat of the refrigerant drawn by the compressor 21 becomes a target value or other predetermined condition.
  • the degree of superheat of the refrigerant sucked by the compressor 21 is not particularly limited, for example, it may be determined by subtracting the saturation temperature of the refrigerant corresponding to the pressure detected by the suction pressure sensor 63 from the temperature detected by the suction temperature sensor 64 it can.
  • the method for controlling the degree of opening of the outdoor expansion valve 24 is not particularly limited.
  • the discharge temperature of the refrigerant discharged from the compressor 21 may be controlled to be a predetermined temperature.
  • the degree of superheat of the refrigerant discharged from may be controlled to satisfy a predetermined condition.
  • the refrigerant decompressed by the outdoor expansion valve 24 flows through the other part of the outdoor bridge circuit 26, evaporates in the outdoor heat exchanger 23, passes through the four-way switching valve 22, and is again sucked into the compressor 21.
  • the air conditioning apparatus 1 d can perform the refrigeration cycle using a refrigerant containing 1,2-difluoroethylene, and thus performs the refrigeration cycle using a refrigerant with a small GWP. Is possible.
  • the first indoor expansion valve 33 and the second indoor expansion valve 38 It is possible to perform the degree of supercooling control so that the capabilities of the first indoor heat exchanger 31 and the second indoor heat exchanger 36 can be fully exhibited.
  • FIG. 26 which is a schematic configuration diagram of a refrigerant circuit
  • FIG. 27 which is a schematic control block configuration diagram
  • an air conditioner 1e as a refrigeration cycle device according to a sixth embodiment explain.
  • the difference with the air conditioning apparatus 1a of 2nd Embodiment is mainly demonstrated.
  • (11-1) Schematic Configuration of the Air Conditioner 1e
  • the air conditioner 1e is different from the air conditioner 1a of the second embodiment in that the outdoor unit 20 does not have the low pressure receiver 41, and the intermediate pressure receiver 43.
  • the difference is that the outdoor expansion valve 24 is not provided, and the first outdoor expansion valve 44 and the second outdoor expansion valve 45 are provided.
  • the intermediate pressure receiver 43 is provided between the liquid side of the outdoor heat exchanger 23 in the refrigerant circuit 10 and the liquid side closing valve 29, and is a refrigerant that can store surplus refrigerant in the refrigerant circuit 10 as liquid refrigerant. It is a container.
  • the first outdoor expansion valve 44 is provided in the middle of the refrigerant pipe extending from the liquid side of the outdoor heat exchanger 23 to the intermediate pressure receiver 43.
  • the second outdoor expansion valve 45 is provided in the middle of the refrigerant pipe extending from the intermediate pressure receiver 43 to the liquid side closing valve 29.
  • Each of the first outdoor expansion valve 44 and the second outdoor expansion valve 45 is preferably an electric expansion valve capable of adjusting the valve opening degree.
  • the evaporation temperature of the refrigerant in the refrigerant circuit 10 is the set temperature and the indoor temperature (the temperature detected by the indoor air temperature sensor 72)
  • the operating frequency is capacity-controlled so as to reach a target evaporation temperature determined according to the difference between
  • the gas refrigerant discharged from the compressor 21 passes through the four-way switching valve 22 and then condenses in the outdoor heat exchanger 23.
  • the refrigerant flowing through the outdoor heat exchanger 23 is depressurized to an intermediate pressure in the refrigeration cycle at the first outdoor expansion valve 44.
  • the degree of opening of the first outdoor expansion valve 44 is controlled such that, for example, the degree of subcooling of the refrigerant flowing through the liquid-side outlet of the outdoor heat exchanger 23 becomes a target value or the like. .
  • the refrigerant decompressed in the first outdoor expansion valve 44 flows into the intermediate pressure receiver 43.
  • the surplus refrigerant in the refrigerant circuit 10 is stored as liquid refrigerant.
  • the refrigerant that has passed through the intermediate pressure receiver 43 is decompressed to the low pressure of the refrigeration cycle in the second outdoor expansion valve 45.
  • the second outdoor expansion valve 45 satisfies a predetermined condition such that, for example, the degree of superheat of the refrigerant flowing on the gas side of the indoor heat exchanger 31 or the degree of superheat of the refrigerant sucked by the compressor 21 becomes a target value.
  • the valve opening degree is controlled.
  • the method for controlling the degree of opening of the second outdoor expansion valve 45 is not particularly limited.
  • the discharge temperature of the refrigerant discharged from the compressor 21 may be controlled to be a predetermined temperature, or may be compressed.
  • the degree of superheat of the refrigerant discharged from the device 21 may be controlled to satisfy a predetermined condition.
  • the refrigerant decompressed to the low pressure of the refrigeration cycle in the second outdoor expansion valve 45 flows into the indoor unit 30 via the liquid side shut-off valve 29 and the liquid side refrigerant communication pipe 6, and is evaporated in the indoor heat exchanger 31.
  • the refrigerant that has flowed through the indoor heat exchanger 31 flows through the gas side refrigerant communication pipe 5 and then is drawn into the compressor 21 again through the gas side shut-off valve 28 and the four-way switching valve 22.
  • the compressor 21 has, for example, the condensation temperature of the refrigerant in the refrigerant circuit 10 at the set temperature and the indoor temperature (the detection temperature of the indoor air temperature sensor 72
  • the operating frequency is capacity-controlled so as to reach a target condensation temperature determined according to the difference between
  • the gas refrigerant discharged from the compressor 21 flows through the four-way switching valve 22 and the gas-side refrigerant communication pipe 5 and then flows into the gas-side end of the indoor heat exchanger 31 of the indoor unit 30. Condense at the The refrigerant which has flowed out from the liquid side end of the indoor heat exchanger 31 flows through the liquid side refrigerant communication pipe 6 into the outdoor unit 20, passes through the liquid side shut-off valve 29, and the refrigeration cycle is performed in the second outdoor expansion valve 45. The pressure is reduced to an intermediate pressure at.
  • the degree of opening of the second outdoor expansion valve 45 is controlled such that, for example, the degree of subcooling of the refrigerant flowing through the liquid-side outlet of the indoor heat exchanger 31 becomes a target value or the like. .
  • the refrigerant decompressed in the second outdoor expansion valve 45 flows into the intermediate pressure receiver 43.
  • the surplus refrigerant in the refrigerant circuit 10 is stored as liquid refrigerant.
  • the refrigerant that has passed through the intermediate pressure receiver 43 is decompressed to the low pressure of the refrigeration cycle in the first outdoor expansion valve 44.
  • the degree of opening of the first outdoor expansion valve 44 is controlled such that, for example, the degree of superheat of the refrigerant sucked by the compressor 21 becomes a target value or other predetermined condition.
  • the method of controlling the degree of opening of the first outdoor expansion valve 44 is not particularly limited.
  • the discharge temperature of the refrigerant discharged from the compressor 21 may be controlled to a predetermined temperature, or the compression may be performed.
  • the degree of superheat of the refrigerant discharged from the device 21 may be controlled to satisfy a predetermined condition.
  • the refrigerant reduced in pressure by the first outdoor expansion valve 44 is evaporated in the outdoor heat exchanger 23, passes through the four-way switching valve 22, and is sucked into the compressor 21 again.
  • the air conditioner 1e can perform the refrigeration cycle using a refrigerant containing 1,2-difluoroethylene, and therefore, performs the refrigeration cycle using a refrigerant with a small GWP. Is possible.
  • the air conditioner 1e by providing the intermediate pressure receiver 43, it is possible to store excess refrigerant in the refrigerant circuit 10.
  • the first outdoor expansion valve 44 by controlling the first outdoor expansion valve 44 with the degree of subcooling, the capacity of the outdoor heat exchanger 23 can be easily exhibited sufficiently
  • the second outdoor expansion valve 45 By controlling the degree of supercooling, the capacity of the indoor heat exchanger 31 can be easily exhibited sufficiently.
  • FIG. 28 which is a schematic configuration diagram of a refrigerant circuit
  • FIG. 29, which is a schematic control block configuration diagram
  • an air conditioner 1f as a refrigeration cycle device according to a seventh embodiment explain.
  • the difference with the air conditioning apparatus 1e of 6th Embodiment is mainly demonstrated.
  • the air conditioner 1 f differs from the air conditioner 1 e of the sixth embodiment in the first outdoor heat exchanger 23 a and the first outdoor heat exchanger 23 a in which the outdoor units 20 are arranged in parallel to each other.
  • the first outdoor heat exchanger 23a has a first branch outdoor expansion valve 24a on the liquid refrigerant side
  • the second outdoor heat exchanger 23b has a second refrigerant on the liquid refrigerant side. It differs in that it has a branch outdoor expansion valve 24b.
  • the 1st branch outdoor expansion valve 24a and the 2nd branch outdoor expansion valve 24b are electric expansion valves which can adjust valve-opening degree.
  • the air conditioner 1f is different from the air conditioner 1e according to the sixth embodiment in that a plurality of indoor units are provided in parallel, and in each indoor unit, the indoor side of the indoor heat exchanger on the liquid refrigerant side It differs in that an expansion valve is provided.
  • the air conditioner 1 f includes a first indoor unit 30 and a second indoor unit 35 connected in parallel to each other.
  • the first indoor unit 30 includes the first indoor heat exchanger 31 and the first indoor fan 32 as in the above embodiment, and the first indoor expansion valve on the liquid refrigerant side of the first indoor heat exchanger 31. 33 are provided.
  • the first indoor expansion valve 33 is preferably an electric expansion valve capable of adjusting the valve opening degree.
  • the first indoor unit control unit 34 and the first indoor liquid side heat exchange temperature sensor 71 electrically connected to the first indoor unit control unit 34 are provided to the first indoor unit 30 as in the above embodiment.
  • a first indoor air temperature sensor 72, a first indoor gas side heat exchange temperature sensor 73, and the like are provided.
  • the first indoor liquid side heat exchange temperature sensor 71 detects the temperature of the refrigerant flowing through the outlet on the liquid refrigerant side of the first indoor heat exchanger 31.
  • the first indoor gas side heat exchange temperature sensor 73 detects the temperature of the refrigerant flowing through the outlet on the gas refrigerant side of the first indoor heat exchanger 31.
  • the second indoor unit 35 includes the second indoor heat exchanger 36 and the second indoor fan 37.
  • An expansion valve 38 is provided.
  • the second indoor expansion valve 38 is preferably an electric expansion valve capable of adjusting the valve opening degree.
  • the second indoor unit control unit 39 and a second indoor unit side heat exchange temperature electrically connected to the second indoor unit control unit 39 are provided to the second indoor unit 35.
  • a sensor 75, a second indoor air temperature sensor 76, and a second indoor gas side heat exchange temperature sensor 77 are provided.
  • the compressor 21 is capacity-controlled such that the evaporation temperature of the refrigerant in the refrigerant circuit 10 becomes the target evaporation temperature.
  • the gas refrigerant discharged from the compressor 21 is branched into the first outdoor heat exchanger 23a and the second outdoor heat exchanger 23b and flows, and the first outdoor heat exchanger 23a And condense in each of the second outdoor heat exchangers 23b.
  • the refrigerant having flowed through the first outdoor heat exchanger 23a is depressurized to an intermediate pressure in the refrigeration cycle in the first branch outdoor expansion valve 24a.
  • the refrigerant having flowed through the second outdoor heat exchanger 23 b is depressurized to an intermediate pressure in the refrigeration cycle in the second branch outdoor expansion valve 24 b.
  • both the first branch outdoor expansion valve 24a and the second branch outdoor expansion valve 24b may be controlled to be fully open.
  • the first outdoor heat exchanger The valve opening degree of the first branch outdoor expansion valve 24a is controlled such that the degree of subcooling of the refrigerant flowing through the liquid side outlet 23a becomes a common target value, and the liquid in the second outdoor heat exchanger 23b
  • the degree of opening of the second outdoor branch expansion valve 24b may be controlled such that the degree of subcooling of the refrigerant flowing through the side outlet reaches the same common target value or other predetermined conditions.
  • the refrigerant that has passed through the first outdoor branch expansion valve 24 a and the refrigerant that has passed through the second outdoor branch expansion valve 24 b flow into the intermediate pressure receiver 43 after merging.
  • the surplus refrigerant in the refrigerant circuit 10 is stored as liquid refrigerant.
  • the refrigerant having passed through the intermediate pressure receiver 43 flows through the liquid side shut-off valve 29 and the liquid side refrigerant communication pipe 6 and flows into the first indoor unit 31 and the second indoor unit 35, respectively.
  • the refrigerant flowing into the first indoor unit 31 is depressurized to the low pressure of the refrigeration cycle in the first indoor expansion valve 33. Further, the refrigerant flowing into the second indoor unit 35 is decompressed to the low pressure of the refrigeration cycle in the second indoor expansion valve 38.
  • the first indoor expansion valve 33 has predetermined conditions such that the degree of superheat of the refrigerant flowing on the gas side of the first indoor heat exchanger 31 or the degree of superheat of the refrigerant sucked by the compressor 21 becomes a target value.
  • the valve opening degree is controlled to satisfy the condition.
  • the second indoor expansion valve 38 for example, the degree of superheat of the refrigerant flowing on the gas side of the second indoor heat exchanger 36 or the degree of superheat of the refrigerant sucked by the compressor 21 becomes a target value
  • the valve opening is controlled to satisfy the condition.
  • the method of controlling the valve opening degree of the first indoor expansion valve 33 and the second indoor expansion valve 38 is not particularly limited. For example, control is performed such that the discharge temperature of the refrigerant discharged from the compressor 21 becomes a predetermined temperature. Alternatively, the degree of superheat of the refrigerant discharged from the compressor 21 may be controlled to satisfy a predetermined condition.
  • the refrigerant decompressed in the first indoor expansion valve 33 is evaporated in the first indoor heat exchanger 31, and the refrigerant decompressed in the second indoor expansion valve 38 is evaporated and merged in the second indoor heat exchanger 36. Thereafter, the refrigerant is drawn into the compressor 21 again through the gas side refrigerant communication pipe 5, the gas side shut-off valve 28, and the four-way switching valve 22.
  • the compressor 21 in the heating operation mode, for example, the compressor 21 is capacity-controlled so that the condensing temperature of the refrigerant in the refrigerant circuit 10 becomes the target condensing temperature. Ru.
  • the target condensing temperature is determined according to the largest difference between the set temperature and the indoor temperature in each of the indoor units 30 and 35 (the indoor unit with the largest load).
  • the gas refrigerant discharged from the compressor 21 flows into the first indoor unit 30 and the second indoor unit 35 after flowing through the four-way switching valve 22 and the gas-side refrigerant communication pipe 5.
  • the refrigerant flowing into the first indoor unit 30 condenses in the first indoor heat exchanger 31, and the refrigerant flowing into the second indoor unit 35 condenses in the second indoor heat exchanger.
  • the refrigerant that has flowed out from the liquid side end of the first indoor heat exchanger 31 is depressurized in the first indoor expansion valve 33 to an intermediate pressure of the refrigeration cycle.
  • the refrigerant flowing out of the liquid side end of the second indoor heat exchanger 36 is also depressurized in the second indoor expansion valve 38 to an intermediate pressure of the refrigeration cycle.
  • the degree of opening of the first indoor expansion valve 33 is controlled such that the degree of subcooling of the refrigerant flowing through the liquid-side outlet of the first indoor heat exchanger 31 becomes a target value, for example. Be done.
  • the valve opening degree such that the degree of subcooling of the refrigerant flowing through the liquid-side outlet of the second indoor heat exchanger 36 becomes a target value, etc. Is controlled.
  • the refrigerant that has passed through the first indoor expansion valve 33 and the refrigerant that has passed through the second indoor expansion valve 38 merge, and then flow through the liquid-side refrigerant communication pipe 6 into the outdoor unit 20.
  • the refrigerant flowing into the outdoor unit 20 passes through the liquid side shut-off valve 29 and is sent to the intermediate pressure receiver 43.
  • the intermediate pressure receiver 43 the surplus refrigerant in the refrigerant circuit 10 is stored as liquid refrigerant.
  • the refrigerant that has passed through the intermediate pressure receiver 43 flows separately into the first outdoor branch expansion valve 24a and the second outdoor branch expansion valve 24b.
  • the first branch outdoor expansion valve 24 a reduces the pressure of the refrigerant passing therethrough until it reaches a low pressure of the refrigeration cycle.
  • the second branch outdoor expansion valve 24b decompresses the refrigerant passing therethrough until it reaches a low pressure of the refrigeration cycle.
  • each of the first branch outdoor expansion valve 24a and the second branch outdoor expansion valve 24b has a valve opening degree such that the degree of superheat of the refrigerant sucked by the compressor 21 becomes a target value or other predetermined condition. It is controlled.
  • the method of controlling the valve opening degree of the first branch outdoor expansion valve 24a and the second branch outdoor expansion valve 24b is not particularly limited.
  • the discharge temperature of the refrigerant discharged from the compressor 21 is set to a predetermined temperature
  • the degree of superheat of the refrigerant discharged from the compressor 21 may be controlled to satisfy a predetermined condition.
  • the refrigerant decompressed by the first branch outdoor expansion valve 24a evaporates in the first outdoor heat exchanger 23a, and the refrigerant decompressed by the second branch outdoor expansion valve 24b evaporates in the second outdoor heat exchanger 23b, After joining, it passes through the four-way switching valve 22 and is again drawn into the compressor 21.
  • the air conditioner 1 f can perform the refrigeration cycle using a refrigerant containing 1,2-difluoroethylene, and thus performs the refrigeration cycle using a refrigerant with a small GWP. Is possible.
  • the air conditioner 1 f by providing the intermediate pressure receiver 43, it is possible to store the excess refrigerant in the refrigerant circuit 10.
  • the degree of supercooling of the first indoor expansion valve 33 and the second indoor expansion valve 38 it becomes possible to make the capacity of the indoor heat exchanger 31 sufficiently exhibit There is.
  • FIG. 30 which is a schematic configuration diagram of a refrigerant circuit
  • FIG. 31 which is a schematic control block configuration diagram
  • an air conditioner 1g as a refrigeration cycle device according to an eighth embodiment explain.
  • the difference with the air conditioning apparatus 1b of 3rd Embodiment is mainly demonstrated.
  • the air conditioning device 1g differs from the air conditioning device 1b of the third embodiment in that the bypass piping 40 having the bypass expansion valve 49 is not provided, supercooling heat A point at which the exchanger 47 is provided, a point at which the supercooling pipe 46 is provided, a point at which the first outdoor expansion valve 44 and a second outdoor expansion valve 45 are provided, a supercooling temperature sensor 67 is provided Differ in that they
  • the first outdoor expansion valve 44 is provided between the liquid side outlet of the outdoor heat exchanger 23 in the refrigerant circuit 10 and the liquid side closing valve 29.
  • the second outdoor expansion valve 45 is provided between the first outdoor expansion valve 44 and the liquid side closing valve 29 in the refrigerant circuit 10. It is preferable that each of the first outdoor expansion valve 44 and the second outdoor expansion valve 45 be an electric expansion valve capable of adjusting the valve opening degree.
  • the supercooling pipe 46 is branched from a branch portion between the first outdoor expansion valve 44 and the second outdoor expansion valve 45 in the refrigerant circuit 10, and one of the connection ports of the four-way switching valve 22 is a low pressure receiver It is provided so as to merge at the merging point up to 41.
  • a subcooling expansion valve 48 is provided in the subcooling pipe 46.
  • the subcooling expansion valve 48 is preferably an electric expansion valve capable of adjusting the valve opening degree.
  • the subcooling heat exchanger 47 is a refrigerant that flows in a portion from the first outdoor expansion valve 44 to the second outdoor expansion valve 45 in the refrigerant circuit 10, and a joining location side of the subcooling expansion valve 48 in the subcooling pipe 46. It is a heat exchanger that performs heat exchange with the flowing refrigerant.
  • the subcooling heat exchanger 47 is a portion between the first outdoor expansion valve 44 and the second outdoor expansion valve 45, and the second outdoor expansion valve 45 than the branch portion of the subcooling pipe 46. It is provided on the side.
  • the subcooling temperature sensor 67 is a portion of the portion of the refrigerant circuit 10 from the first outdoor expansion valve 44 to the second outdoor expansion valve 45 that flows on the second outdoor expansion valve 45 side with respect to the subcooling heat exchanger 47. Is a temperature sensor that detects the temperature of
  • Cooling Operation Mode In the air conditioner 1g, in the cooling operation mode, for example, the compressor 21 is capacity-controlled so that the evaporation temperature of the refrigerant in the refrigerant circuit 10 becomes the target evaporation temperature. .
  • the target evaporation temperature it is preferable to set the target evaporation temperature according to the indoor unit 30, 35 that has the largest difference between the set temperature and the indoor temperature (the indoor unit with the largest load).
  • the gas refrigerant discharged from the compressor 21 is condensed in the outdoor heat exchanger 23 via the four-way switching valve 22.
  • the refrigerant having flowed through the outdoor heat exchanger 23 passes through the first outdoor expansion valve 44.
  • the first outdoor expansion valve 44 is controlled to be fully open.
  • the refrigerant branched and flowed to the subcooling pipe 46 is depressurized in the subcooling expansion valve 48.
  • the refrigerant flowing from the first outdoor expansion valve 44 toward the second outdoor expansion valve 45 and the refrigerant flowing through the subcooling pipe 46 decompressed in the subcooling expansion valve 48 exchange heat. Be done.
  • the refrigerant flowing through the supercooling pipe 46 joins the junction from the one of the connection ports of the four-way switching valve 22 to the low pressure receiver 41 after heat exchange in the subcooling heat exchanger 47 is completed. As it flows.
  • the refrigerant flowing from the first outdoor expansion valve 44 toward the second outdoor expansion valve 45 is decompressed in the second outdoor expansion valve 45 after the heat exchange in the subcooling heat exchanger 47 is completed.
  • the second outdoor expansion valve 45 is controlled such that the degree of subcooling of the refrigerant flowing through the liquid-side outlet of the outdoor heat exchanger 23 satisfies a predetermined condition such as the target value.
  • valve opening degree of the subcooling expansion valve 48 extends from the second outdoor expansion valve 45 to the first indoor expansion valve 33 and the second indoor expansion valve 38 via the liquid side refrigerant communication pipe 6 in the refrigerant circuit 10.
  • the refrigerant reaching at least the first indoor expansion valve 33 and the second indoor expansion valve 38 is controlled to be in a gas-liquid two-phase state so that all of the parts up to the point are not filled with the liquid state refrigerant. .
  • the valve opening degree of the subcooling expansion valve 48 is a refrigerant that flows from the first outdoor expansion valve 44 toward the second outdoor expansion valve 45 and the specific enthalpy of the refrigerant that has passed through the subcooling heat exchanger 47 is It is preferable to control so as to be larger than the specific enthalpy at the intersection of the low pressure of the refrigeration cycle and the saturated hydrogland in the Mollier diagram.
  • the controller 7 holds in advance the Mollier chart data corresponding to the refrigerant, and detects the specific enthalpy of the refrigerant that has passed through the subcooling heat exchanger 47, the detection pressure of the discharge pressure sensor 61, and the subcooling temperature.
  • the degree of opening of the subcooling expansion valve 48 may be controlled using the temperature detected by the sensor 67 and the data of the Mollier chart corresponding to the refrigerant.
  • the valve opening degree of the subcooling expansion valve 48 is the temperature of the refrigerant that flows from the first outdoor expansion valve 44 toward the second outdoor expansion valve 45 and has passed through the subcooling heat exchanger 47 (overcooling It is more preferable that the temperature detected by the temperature sensor 67 be controlled to satisfy a predetermined condition such as reaching a target value.
  • the refrigerant decompressed in the second outdoor expansion valve 45 is sent to the first indoor unit 30 and the second indoor unit 35 via the liquid side shut-off valve 29 and the liquid side refrigerant communication pipe 6.
  • the first indoor expansion valve 33 satisfies a predetermined condition such that the degree of superheat of the refrigerant flowing through the gas side outlet of the first indoor heat exchanger 31 becomes a target value.
  • the valve opening degree is controlled.
  • the second indoor expansion valve 38 of the second indoor unit 35 as well, like the first indoor expansion valve 33, for example, the degree of superheat of the refrigerant flowing through the gas side outlet of the second indoor heat exchanger 36 becomes the target value.
  • the valve opening degree is controlled to satisfy a predetermined condition such as.
  • each of the first indoor expansion valve 33 and the second indoor expansion valve 38 is a refrigerant obtained by subtracting the saturation temperature of the refrigerant corresponding to the pressure detected by the suction pressure sensor 63 from the temperature detected by the suction temperature sensor 64.
  • the valve opening degree may be controlled to satisfy a predetermined condition such as the degree of superheat becoming a target value.
  • the method of controlling the valve opening degree of the first indoor expansion valve 33 and the second indoor expansion valve 38 is not particularly limited. For example, control is performed such that the discharge temperature of the refrigerant discharged from the compressor 21 becomes a predetermined temperature. Alternatively, the degree of superheat of the refrigerant discharged from the compressor 21 may be controlled to satisfy a predetermined condition.
  • the refrigerant reduced in pressure by the first indoor expansion valve 33 is evaporated in the first indoor heat exchanger 31, and the refrigerant reduced in pressure by the second indoor expansion valve 38 is evaporated in the second indoor heat exchanger 36 and merged, It flows to the gas side refrigerant communication pipe 5.
  • the refrigerant that has flowed through the gas-side refrigerant connection pipe 5 passes through the gas-side shutoff valve 28 and the four-way switching valve 22 and merges with the refrigerant that has flowed through the supercooling pipe 46.
  • the combined refrigerant passes through the low pressure receiver 41 and is again drawn into the compressor 21. In the low pressure receiver 41, the liquid refrigerant that can not be evaporated in the first indoor heat exchanger 31, the second indoor heat exchanger, and the subcooling heat exchanger 47 is stored as a surplus refrigerant.
  • the compressor 21 in the heating operation mode, for example, the compressor 21 is capacity-controlled so that the condensing temperature of the refrigerant in the refrigerant circuit 10 becomes the target condensing temperature. Ru.
  • the target condensing temperature is determined according to the largest difference between the set temperature and the indoor temperature in each of the indoor units 30 and 35 (the indoor unit with the largest load).
  • the gas refrigerant discharged from the compressor 21 flows through the four-way switching valve 22 and the gas-side refrigerant communication pipe 5, and a part of the refrigerant then flows to the gas side of the first indoor heat exchanger 31 of the first indoor unit 30. It flows into the end and condenses in the first indoor heat exchanger 31, and another part of the refrigerant flows into the gas side end of the second indoor heat exchanger 36 of the second indoor unit 35, and the second indoor heat exchange In the vessel 36.
  • the first indoor expansion valve 33 of the first indoor unit 30 is a valve so that the degree of subcooling of the refrigerant flowing on the liquid side of the first indoor heat exchanger 31 becomes a predetermined target value, etc.
  • the degree of opening is controlled.
  • a predetermined condition such as the degree of subcooling of the refrigerant flowing on the liquid side of the second indoor heat exchanger 36 becomes a predetermined target value, etc.
  • the valve opening degree is controlled.
  • the refrigerant decompressed by the first indoor expansion valve 33 and the refrigerant decompressed by the second indoor expansion valve 38 merge, flow through the liquid side refrigerant communication pipe 6, and flow into the outdoor unit 20.
  • the refrigerant that has passed through the liquid side shut-off valve 29 of the outdoor unit 20 passes through the second outdoor expansion valve 45 controlled to the fully open state, and exchanges heat with the refrigerant flowing through the supercooling pipe 46 in the subcooling heat exchanger 47 .
  • a part of the refrigerant that has passed through the second outdoor expansion valve 45 and the subcooling heat exchanger 47 is branched to the subcooling pipe 46, and the other part is sent to the first outdoor expansion valve 44.
  • the refrigerant branched and flowed to the supercooling pipe 46 is depressurized by the subcooling expansion valve 48, and then each indoor unit 30 at the merging point between one of the connection ports of the four-way switching valve 22 and the low pressure receiver 41. , Join with the refrigerant that has flowed from 35. Further, the refrigerant flowing from the subcooling heat exchanger 47 toward the first outdoor expansion valve 44 is decompressed in the first outdoor expansion valve 44 and flows into the outdoor heat exchanger 23.
  • the degree of opening of the first outdoor expansion valve 44 is controlled such that, for example, the degree of superheat of the refrigerant flowing on the suction side of the compressor 21 becomes a target value or other predetermined condition.
  • the method of controlling the degree of opening of the first outdoor expansion valve 44 is not particularly limited.
  • the discharge temperature of the refrigerant discharged from the compressor 21 may be controlled to a predetermined temperature, or the compression may be performed.
  • the degree of superheat of the refrigerant discharged from the device 21 may be controlled to satisfy a predetermined condition.
  • the degree of opening of the subcooling expansion valve 48 is controlled such that the degree of superheat of the refrigerant flowing on the suction side of the compressor 21 becomes a target value or other predetermined conditions.
  • the method of controlling the degree of opening of the subcooling expansion valve 48 is not particularly limited.
  • the discharge temperature of the refrigerant discharged from the compressor 21 may be controlled to be a predetermined temperature, or the compressor The degree of superheat of the refrigerant discharged from 21 may be controlled to satisfy a predetermined condition.
  • the subcooling expansion valve 48 may be controlled to be fully closed so that the refrigerant does not flow to the subcooling pipe 46.
  • the refrigerant decompressed by the first outdoor expansion valve 44 evaporates in the outdoor heat exchanger 23, passes through the four-way switching valve 22, and merges with the refrigerant flowing through the supercooling pipe 46.
  • the combined refrigerant passes through the low pressure receiver 41 and is again drawn into the compressor 21.
  • the liquid refrigerant that has not been evaporated in the outdoor heat exchanger 23 and the subcooling heat exchanger 47 is stored as a surplus refrigerant.
  • the air conditioner 1g can perform a refrigeration cycle using a refrigerant containing 1,2-difluoroethylene, so that a refrigeration cycle is performed using a refrigerant with a small GWP. Is possible.
  • the liquid pressure in the compressor 21 can be suppressed by providing the low pressure receiver 41. Further, at the time of cooling operation, the first indoor expansion valve 33 and the second indoor expansion valve 38 are superheated degree controlled, and at the time of heating operation, the first indoor expansion valve 33 and the second indoor expansion valve 38 are supercooled degree controlled. Thus, the capabilities of the first indoor heat exchanger 31 and the second indoor heat exchanger 36 can be sufficiently exhibited.
  • the air conditioner passes through the second outdoor expansion valve 45, passes through the liquid refrigerant communication pipe 6, and reaches the first indoor expansion valve 33 and the second indoor expansion valve 38.
  • the space inside the pipe is not filled in a liquid state, but controlled so that a gas-liquid two-phase refrigerant exists at least in part.
  • the refrigerant density of the corresponding portion is higher than when all the space inside the pipe from the second outdoor expansion valve 45 to the first indoor expansion valve 33 and the second indoor expansion valve 38 is filled with the liquid refrigerant. Can be lowered.
  • it is possible to perform the refrigeration cycle by suppressing the amount of the refrigerant sealed in the refrigerant circuit 10 to a small amount. Therefore, even if the refrigerant may leak from the refrigerant circuit 10, it is possible to reduce the amount of the leakage refrigerant.
  • FIG. 32 is a schematic configuration diagram of a refrigerant circuit
  • FIG. 33 which is a schematic control block configuration diagram. explain.
  • the difference with the air conditioning apparatus 1e of 6th Embodiment is mainly demonstrated.
  • the air conditioning device 1 h differs from the air conditioning device 1 e of the sixth embodiment in that it has a suction refrigerant heating unit 50.
  • the suction refrigerant heating unit 50 is configured by a portion where a part of the refrigerant pipe extending from one of the connection ports of the four-way switching valve 22 toward the suction side of the compressor 21 is located in the intermediate pressure receiver 43.
  • the refrigerant flowing in the refrigerant pipe extending from one of the connection ports of the four-way switching valve 22 toward the suction side of the compressor 21 and the refrigerant present in the intermediate pressure receiver 43 The refrigerants exchange heat with each other without mixing.
  • the evaporation temperature of the refrigerant in the refrigerant circuit 10 of the compressor 21 is the set temperature and the indoor temperature (the detection temperature of the indoor air temperature sensor 72
  • the operating frequency is capacity-controlled so as to reach a target evaporation temperature determined according to the difference between
  • the gas refrigerant discharged from the compressor 21 passes through the four-way switching valve 22 and then condenses in the outdoor heat exchanger 23.
  • the refrigerant flowing through the outdoor heat exchanger 23 is depressurized to an intermediate pressure in the refrigeration cycle at the first outdoor expansion valve 44.
  • the degree of opening of the first outdoor expansion valve 44 is controlled such that, for example, the degree of subcooling of the refrigerant flowing through the liquid-side outlet of the outdoor heat exchanger 23 becomes a target value or the like. .
  • the refrigerant decompressed in the first outdoor expansion valve 44 flows into the intermediate pressure receiver 43.
  • the surplus refrigerant in the refrigerant circuit 10 is stored as liquid refrigerant.
  • the refrigerant flowing into the intermediate pressure receiver 43 is cooled by heat exchange with the refrigerant flowing on the suction side of the compressor 21 in the suction refrigerant heating unit 50.
  • the refrigerant cooled in the suction refrigerant heating unit 50 in the intermediate pressure receiver 43 is decompressed to the low pressure of the refrigeration cycle in the second outdoor expansion valve 45.
  • the second outdoor expansion valve 45 satisfies a predetermined condition such that, for example, the degree of superheat of the refrigerant flowing on the gas side of the indoor heat exchanger 31 or the degree of superheat of the refrigerant sucked by the compressor 21 becomes a target value.
  • the valve opening degree is controlled.
  • the method for controlling the degree of opening of the second outdoor expansion valve 45 is not particularly limited.
  • the discharge temperature of the refrigerant discharged from the compressor 21 may be controlled to be a predetermined temperature, or may be compressed.
  • the degree of superheat of the refrigerant discharged from the device 21 may be controlled to satisfy a predetermined condition.
  • the refrigerant decompressed to the low pressure of the refrigeration cycle in the second outdoor expansion valve 45 flows into the indoor unit 30 via the liquid side shut-off valve 29 and the liquid side refrigerant communication pipe 6, and is evaporated in the indoor heat exchanger 31.
  • the refrigerant that has flowed through the indoor heat exchanger 31 flows through the gas side refrigerant communication pipe 5 and then flows through the gas side shut-off valve 28 and the four-way switching valve 22 and flows through the refrigerant pipe passing through the inside of the intermediate pressure receiver 43 .
  • the refrigerant flowing in the refrigerant pipe passing through the inside of the intermediate pressure receiver 43 is heated by heat exchange with the refrigerant stored in the intermediate pressure receiver 43 in the suction refrigerant heating unit 50 in the intermediate pressure receiver 43, and is again performed. , And is drawn into the compressor 21.
  • the compressor 21 has, for example, the condensation temperature of the refrigerant in the refrigerant circuit 10 at the set temperature and the indoor temperature (the detection temperature of the indoor air temperature sensor 72
  • the operating frequency is capacity-controlled so as to reach a target condensation temperature determined according to the difference between
  • the gas refrigerant discharged from the compressor 21 flows through the four-way switching valve 22 and the gas-side refrigerant communication pipe 5 and then flows into the gas-side end of the indoor heat exchanger 31 of the indoor unit 30. Condense at the The refrigerant which has flowed out from the liquid side end of the indoor heat exchanger 31 flows through the liquid side refrigerant communication pipe 6 into the outdoor unit 20, passes through the liquid side shut-off valve 29, and the refrigeration cycle is performed in the second outdoor expansion valve 45. The pressure is reduced to an intermediate pressure at.
  • the degree of opening of the second outdoor expansion valve 45 is controlled such that, for example, the degree of subcooling of the refrigerant flowing through the liquid-side outlet of the indoor heat exchanger 31 becomes a target value or the like. .
  • the refrigerant decompressed in the second outdoor expansion valve 45 flows into the intermediate pressure receiver 43.
  • the surplus refrigerant in the refrigerant circuit 10 is stored as liquid refrigerant.
  • the refrigerant flowing into the intermediate pressure receiver 43 is cooled by heat exchange with the refrigerant flowing on the suction side of the compressor 21 in the suction refrigerant heating unit 50.
  • the refrigerant cooled in the suction refrigerant heating unit 50 in the intermediate pressure receiver 43 is depressurized to the low pressure of the refrigeration cycle in the first outdoor expansion valve 44.
  • the degree of opening of the first outdoor expansion valve 44 is controlled such that, for example, the degree of superheat of the refrigerant sucked by the compressor 21 becomes a target value or other predetermined condition.
  • the method of controlling the degree of opening of the first outdoor expansion valve 44 is not particularly limited.
  • the discharge temperature of the refrigerant discharged from the compressor 21 may be controlled to a predetermined temperature, or the compression may be performed.
  • the degree of superheat of the refrigerant discharged from the device 21 may be controlled to satisfy a predetermined condition.
  • the refrigerant decompressed by the first outdoor expansion valve 44 evaporates in the outdoor heat exchanger 23, passes through the four-way switching valve 22, and flows in the refrigerant pipe passing through the inside of the intermediate pressure receiver 43.
  • the refrigerant flowing in the refrigerant pipe passing through the inside of the intermediate pressure receiver 43 is heated by heat exchange with the refrigerant stored in the intermediate pressure receiver 43 in the suction refrigerant heating unit 50 in the intermediate pressure receiver 43, and is again performed. , And is drawn into the compressor 21.
  • the air conditioning apparatus 1h can perform a refrigeration cycle using a refrigerant containing 1,2-difluoroethylene, and thus performs a refrigeration cycle using a refrigerant with a small GWP. Is possible.
  • the air conditioner 1h by providing the intermediate pressure receiver 43, it is possible to store the excess refrigerant in the refrigerant circuit 10.
  • the first outdoor expansion valve 44 by controlling the first outdoor expansion valve 44 with the degree of subcooling, the capacity of the outdoor heat exchanger 23 can be easily exhibited sufficiently
  • the second outdoor expansion valve 45 By controlling the degree of supercooling, the capacity of the indoor heat exchanger 31 can be easily exhibited sufficiently.
  • the refrigerant sucked by the compressor 21 is heated by the suction refrigerant heating unit 50 provided, and the liquid compression in the compressor 21 is suppressed, the room functioning as an evaporator of the refrigerant in the cooling operation It becomes possible to control so that the degree of superheat of the refrigerant which flows through the outlet of heat exchanger 31 becomes a small value. Further, also in the heating operation, it is possible to control so that the degree of superheat of the refrigerant flowing through the outlet of the outdoor heat exchanger 23 functioning as the evaporator of the refrigerant becomes a small value.
  • FIG. 34 is a schematic configuration diagram of a refrigerant circuit
  • FIG. 35 which is a schematic control block configuration diagram. explain.
  • the difference with the air conditioning apparatus 1h of 9th Embodiment is mainly demonstrated.
  • the air conditioner 1i is different from the air conditioner 1h of the ninth embodiment in that the first outdoor expansion valve 44 and the second outdoor expansion valve 45 are not provided. , An outdoor expansion valve 24 is provided, a plurality of indoor units (the first indoor unit 30 and the second indoor unit 35) are provided in parallel, and liquid in the indoor heat exchanger in each indoor unit The difference is that an indoor expansion valve is provided on the refrigerant side.
  • the outdoor expansion valve 24 is provided in the middle of the refrigerant pipe extending from the liquid side outlet of the outdoor heat exchanger 23 to the intermediate pressure receiver 43.
  • the outdoor expansion valve 24 is preferably an electric expansion valve capable of adjusting the valve opening degree.
  • the first indoor unit 30 includes the first indoor heat exchanger 31 and the first indoor fan 32 as in the above embodiment, and the first indoor expansion valve on the liquid refrigerant side of the first indoor heat exchanger 31. 33 are provided.
  • the first indoor expansion valve 33 is preferably an electric expansion valve capable of adjusting the valve opening degree.
  • the first indoor unit control unit 34 and the first indoor liquid side heat exchange temperature sensor 71 electrically connected to the first indoor unit control unit 34 are provided to the first indoor unit 30 as in the above embodiment.
  • a first indoor air temperature sensor 72, a first indoor gas side heat exchange temperature sensor 73, and the like are provided.
  • the second indoor unit 35 includes the second indoor heat exchanger 36 and the second indoor fan 37.
  • the second indoor unit on the liquid refrigerant side of the second indoor heat exchanger 36 An expansion valve 38 is provided.
  • the second indoor expansion valve 38 is preferably an electric expansion valve capable of adjusting the valve opening degree.
  • the second indoor unit control unit 39 and a second indoor unit side heat exchange temperature electrically connected to the second indoor unit control unit 39 are provided to the second indoor unit 35.
  • a sensor 75, a second indoor air temperature sensor 76, and a second indoor gas side heat exchange temperature sensor 77 are provided.
  • the compressor 21 in the cooling operation mode, for example, the compressor 21 is capacity-controlled so that the evaporation temperature of the refrigerant in the refrigerant circuit 10 becomes the target evaporation temperature.
  • the gas refrigerant discharged from the compressor 21 passes through the four-way switching valve 22 and then condenses in the outdoor heat exchanger 23.
  • the refrigerant that has flowed through the outdoor heat exchanger 23 passes through the outdoor expansion valve 24 controlled to the fully open state.
  • the refrigerant that has passed through the outdoor expansion valve 24 flows into the intermediate pressure receiver 43.
  • the surplus refrigerant in the refrigerant circuit 10 is stored as liquid refrigerant.
  • the refrigerant flowing into the intermediate pressure receiver 43 is cooled by heat exchange with the refrigerant flowing on the suction side of the compressor 21 in the suction refrigerant heating unit 50.
  • the refrigerant cooled in the suction refrigerant heating unit 50 in the intermediate pressure receiver 43 flows into the first indoor unit 30 and the second indoor unit 35 via the liquid side shut-off valve 29 and the liquid side refrigerant communication pipe 6 respectively.
  • the refrigerant flowing into the first indoor unit 31 is depressurized to the low pressure of the refrigeration cycle in the first indoor expansion valve 33. Further, the refrigerant flowing into the second indoor unit 35 is decompressed to the low pressure of the refrigeration cycle in the second indoor expansion valve 38.
  • the first indoor expansion valve 33 has predetermined conditions such that the degree of superheat of the refrigerant flowing on the gas side of the first indoor heat exchanger 31 or the degree of superheat of the refrigerant sucked by the compressor 21 becomes a target value.
  • the valve opening degree is controlled to satisfy the condition.
  • the degree of superheat of the refrigerant flowing on the gas side of the second indoor heat exchanger 36 or the degree of superheat of the refrigerant sucked by the compressor 21 becomes a target value
  • the valve opening is controlled to satisfy the condition.
  • the refrigerant decompressed in the first indoor expansion valve 33 is evaporated in the first indoor heat exchanger 31, and the refrigerant decompressed in the second indoor expansion valve 38 is evaporated and merged in the second indoor heat exchanger 36.
  • the gas flows through the gas side refrigerant communication pipe 5, flows through the gas side shut-off valve 28 and the four-way switching valve 22, and flows through the refrigerant pipe passing through the inside of the intermediate pressure receiver 43.
  • the refrigerant flowing in the refrigerant pipe passing through the inside of the intermediate pressure receiver 43 is heated by heat exchange with the refrigerant stored in the intermediate pressure receiver 43 in the suction refrigerant heating unit 50 in the intermediate pressure receiver 43, and is again performed. , And is drawn into the compressor 21.
  • the compressor 21 in the heating operation mode, for example, the compressor 21 is capacity-controlled so that the condensing temperature of the refrigerant in the refrigerant circuit 10 becomes the target condensing temperature. Ru.
  • the target condensing temperature is determined according to the largest difference between the set temperature and the indoor temperature in each of the indoor units 30 and 35 (the indoor unit with the largest load).
  • the gas refrigerant discharged from the compressor 21 flows into the first indoor unit 30 and the second indoor unit 35 after flowing through the four-way switching valve 22 and the gas-side refrigerant communication pipe 5.
  • the refrigerant flowing into the first indoor unit 30 condenses in the first indoor heat exchanger 31, and the refrigerant flowing into the second indoor unit 35 condenses in the second indoor heat exchanger.
  • the refrigerant that has flowed out from the liquid side end of the first indoor heat exchanger 31 is depressurized in the first indoor expansion valve 33 to an intermediate pressure of the refrigeration cycle.
  • the refrigerant flowing out of the liquid side end of the second indoor heat exchanger 36 is also depressurized in the second indoor expansion valve 38 to an intermediate pressure of the refrigeration cycle.
  • the degree of opening of the first indoor expansion valve 33 is controlled such that the degree of subcooling of the refrigerant flowing through the liquid-side outlet of the first indoor heat exchanger 31 becomes a target value, for example. Be done.
  • the valve opening degree such that the degree of subcooling of the refrigerant flowing through the liquid-side outlet of the second indoor heat exchanger 36 becomes a target value, etc. Is controlled.
  • the refrigerant that has passed through the first indoor expansion valve 33 and the refrigerant that has passed through the second indoor expansion valve 38 merge, and then flow through the liquid-side refrigerant communication pipe 6 into the outdoor unit 20.
  • the refrigerant flowing into the outdoor unit 20 passes through the liquid side shut-off valve 29 and flows into the intermediate pressure receiver 43.
  • the surplus refrigerant in the refrigerant circuit 10 is stored as liquid refrigerant.
  • the refrigerant flowing into the intermediate pressure receiver 43 is cooled by heat exchange with the refrigerant flowing on the suction side of the compressor 21 in the suction refrigerant heating unit 50.
  • the refrigerant cooled in the suction refrigerant heating unit 50 in the intermediate pressure receiver 43 is decompressed to the low pressure of the refrigeration cycle in the outdoor expansion valve 24.
  • the degree of opening of the outdoor expansion valve 24 is controlled such that, for example, the degree of superheat of the refrigerant sucked by the compressor 21 becomes a target value or other predetermined condition.
  • the method for controlling the degree of opening of the outdoor expansion valve 24 is not particularly limited.
  • the discharge temperature of the refrigerant discharged from the compressor 21 may be controlled to be a predetermined temperature.
  • the degree of superheat of the refrigerant discharged from may be controlled to satisfy a predetermined condition.
  • the refrigerant decompressed by the outdoor expansion valve 24 evaporates in the outdoor heat exchanger 23, passes through the four-way switching valve 22, and flows in the refrigerant pipe passing through the inside of the intermediate pressure receiver 43.
  • the refrigerant flowing in the refrigerant pipe passing through the inside of the intermediate pressure receiver 43 is heated by heat exchange with the refrigerant stored in the intermediate pressure receiver 43 in the suction refrigerant heating unit 50 in the intermediate pressure receiver 43, and is again performed. , And is drawn into the compressor 21.
  • the air conditioner 1i can perform a refrigeration cycle using a refrigerant containing 1,2-difluoroethylene, and therefore, performs a refrigeration cycle using a refrigerant with a small GWP. Is possible.
  • the air conditioner 1i by providing the intermediate pressure receiver 43, it is possible to store surplus refrigerant in the refrigerant circuit 10. Further, at the time of heating operation, the degree of supercooling of the second outdoor expansion valve 45 is controlled so that the capacity of the indoor heat exchanger 31 can be easily exhibited sufficiently.
  • the refrigerant sucked by the compressor 21 is heated by the suction refrigerant heating unit 50 provided, and the liquid compression in the compressor 21 is suppressed, the room functioning as an evaporator of the refrigerant in the cooling operation It becomes possible to control so that the degree of superheat of the refrigerant which flows through the outlet of heat exchanger 31 becomes a small value. Further, also in the heating operation, it is possible to control so that the degree of superheat of the refrigerant flowing through the outlet of the outdoor heat exchanger 23 functioning as the evaporator of the refrigerant becomes a small value.
  • FIG. 36 which is a schematic configuration diagram of a refrigerant circuit
  • FIG. 37 which is a schematic control block configuration diagram
  • an air conditioner 1j as a refrigeration cycle device according to an eleventh embodiment explain.
  • the difference with the air conditioning apparatus 1h of 9th Embodiment is mainly demonstrated.
  • the internal heat exchanger 51 extends from the refrigerant flowing between the first outdoor expansion valve 44 and the second outdoor expansion valve 45 and one of the connection ports of the four-way switching valve 22 toward the suction side of the compressor 21.
  • the heat exchanger exchanges heat with the refrigerant flowing through the refrigerant pipe.
  • the evaporation temperature of the refrigerant in the refrigerant circuit 10 of the compressor 21 is the set temperature and the indoor temperature (the detection temperature of the indoor air temperature sensor 72
  • the operating frequency is capacity-controlled so as to reach a target evaporation temperature determined according to the difference between
  • the gas refrigerant discharged from the compressor 21 passes through the four-way switching valve 22 and then condenses in the outdoor heat exchanger 23.
  • the refrigerant having flowed through the outdoor heat exchanger 23 passes through the first outdoor expansion valve 44 controlled to be fully open.
  • the refrigerant that has passed through the first outdoor expansion valve 44 is cooled in the internal heat exchanger 51 and decompressed to the low pressure of the refrigeration cycle in the second outdoor expansion valve 45.
  • the second outdoor expansion valve 45 satisfies a predetermined condition such that, for example, the degree of superheat of the refrigerant flowing on the gas side of the indoor heat exchanger 31 or the degree of superheat of the refrigerant sucked by the compressor 21 becomes a target value.
  • the valve opening degree is controlled.
  • the method for controlling the degree of opening of the second outdoor expansion valve 45 is not particularly limited.
  • the discharge temperature of the refrigerant discharged from the compressor 21 may be controlled to be a predetermined temperature, or may be compressed.
  • the degree of superheat of the refrigerant discharged from the device 21 may be controlled to satisfy a predetermined condition.
  • the refrigerant decompressed to the low pressure of the refrigeration cycle in the second outdoor expansion valve 45 flows into the indoor unit 30 via the liquid side shut-off valve 29 and the liquid side refrigerant communication pipe 6, and is evaporated in the indoor heat exchanger 31.
  • the refrigerant that has flowed through the indoor heat exchanger 31 flows through the gas side refrigerant communication pipe 5 and then is heated in the internal heat exchanger 51 through the gas side shut-off valve 28 and the four-way switching valve 22. Inhaled by
  • the compressor 21 has, for example, the condensation temperature of the refrigerant in the refrigerant circuit 10 at the set temperature and the indoor temperature (the detection temperature of the indoor air temperature sensor 72
  • the operating frequency is capacity-controlled so as to reach a target condensation temperature determined according to the difference between
  • the gas refrigerant discharged from the compressor 21 flows through the four-way switching valve 22 and the gas-side refrigerant communication pipe 5 and then flows into the gas-side end of the indoor heat exchanger 31 of the indoor unit 30. Condense at the The refrigerant that has flowed out from the liquid side end of the indoor heat exchanger 31 passes through the liquid side refrigerant communication pipe 6, flows into the outdoor unit 20, passes through the liquid side shut-off valve 29, and is controlled to the fully open state. It passes through the expansion valve 45. The refrigerant that has passed through the second outdoor expansion valve 45 is cooled in the internal heat exchanger 51 and decompressed in the first outdoor expansion valve 44 to an intermediate pressure in the refrigeration cycle.
  • the degree of opening of the first outdoor expansion valve 44 is controlled such that, for example, the degree of superheat of the refrigerant sucked by the compressor 21 becomes a target value or other predetermined condition.
  • the method of controlling the degree of opening of the first outdoor expansion valve 44 is not particularly limited.
  • the discharge temperature of the refrigerant discharged from the compressor 21 may be controlled to a predetermined temperature, or the compression may be performed.
  • the degree of superheat of the refrigerant discharged from the device 21 may be controlled to satisfy a predetermined condition.
  • the refrigerant reduced in pressure by the first outdoor expansion valve 44 is evaporated in the outdoor heat exchanger 23, passes through the four-way switching valve 22, is heated in the internal heat exchanger 51, and is again drawn into the compressor 21.
  • the air conditioning apparatus 1j can perform the refrigeration cycle using a refrigerant containing 1,2-difluoroethylene, the refrigeration cycle is performed using a refrigerant with a small GWP. Is possible.
  • the refrigerant drawn into the compressor 21 is heated, and liquid compression in the compressor 21 is suppressed. It is possible to control so that the degree of superheat of the refrigerant flowing through the outlet of the indoor heat exchanger 31 functioning as an evaporator becomes a small value. Further, also in the heating operation, it is possible to control so that the degree of superheat of the refrigerant flowing through the outlet of the outdoor heat exchanger 23 functioning as the evaporator of the refrigerant becomes a small value.
  • FIG. 38 which is a schematic configuration diagram of a refrigerant circuit
  • FIG. 39 which is a schematic control block configuration
  • an air conditioner 1k as a refrigeration cycle device according to a twelfth embodiment. explain.
  • the difference with the air conditioning apparatus 1j of 10th Embodiment is mainly demonstrated.
  • the air conditioner 1k is different from the air conditioner 1j of the tenth embodiment in that the first outdoor expansion valve 44 and the second outdoor expansion valve 45 are not provided. , An outdoor expansion valve 24 is provided, a plurality of indoor units (the first indoor unit 30 and the second indoor unit 35) are provided in parallel, and liquid in the indoor heat exchanger in each indoor unit The difference is that an indoor expansion valve is provided on the refrigerant side.
  • the outdoor expansion valve 24 is provided in the middle of the refrigerant pipe extending from the internal heat exchanger 51 to the liquid side shut-off valve 29.
  • the outdoor expansion valve 24 is preferably an electric expansion valve capable of adjusting the valve opening degree.
  • the first indoor unit 30 includes the first indoor heat exchanger 31 and the first indoor fan 32 as in the above embodiment, and the first indoor expansion valve on the liquid refrigerant side of the first indoor heat exchanger 31. 33 are provided.
  • the first indoor expansion valve 33 is preferably an electric expansion valve capable of adjusting the valve opening degree.
  • the first indoor unit control unit 34 and the first indoor liquid side heat exchange temperature sensor 71 electrically connected to the first indoor unit control unit 34 are provided to the first indoor unit 30 as in the above embodiment.
  • a first indoor air temperature sensor 72, a first indoor gas side heat exchange temperature sensor 73, and the like are provided.
  • the second indoor unit 35 includes the second indoor heat exchanger 36 and the second indoor fan 37.
  • the second indoor unit on the liquid refrigerant side of the second indoor heat exchanger 36 An expansion valve 38 is provided.
  • the second indoor expansion valve 38 is preferably an electric expansion valve capable of adjusting the valve opening degree.
  • the second indoor unit control unit 39 and a second indoor unit side heat exchange temperature electrically connected to the second indoor unit control unit 39 are provided to the second indoor unit 35.
  • a sensor 75, a second indoor air temperature sensor 76, and a second indoor gas side heat exchange temperature sensor 77 are provided.
  • the compressor 21 in the cooling operation mode, for example, the compressor 21 is capacity-controlled so that the evaporation temperature of the refrigerant in the refrigerant circuit 10 becomes the target evaporation temperature.
  • the gas refrigerant discharged from the compressor 21 passes through the four-way switching valve 22 and then condenses in the outdoor heat exchanger 23.
  • the refrigerant that has flowed through the outdoor heat exchanger 23 is cooled in the internal heat exchanger 51 and passes through the outdoor expansion valve 24 controlled to the fully open state, and the liquid side shut-off valve 29, the liquid side shut-off valve 29, the liquid side refrigerant communication It flows into the first indoor unit 30 and the second indoor unit 35 through the pipe 6 respectively.
  • the refrigerant flowing into the first indoor unit 31 is depressurized to the low pressure of the refrigeration cycle in the first indoor expansion valve 33. Further, the refrigerant flowing into the second indoor unit 35 is decompressed to the low pressure of the refrigeration cycle in the second indoor expansion valve 38.
  • the first indoor expansion valve 33 has predetermined conditions such that the degree of superheat of the refrigerant flowing on the gas side of the first indoor heat exchanger 31 or the degree of superheat of the refrigerant sucked by the compressor 21 becomes a target value.
  • the valve opening degree is controlled to satisfy the condition.
  • the degree of superheat of the refrigerant flowing on the gas side of the second indoor heat exchanger 36 or the degree of superheat of the refrigerant sucked by the compressor 21 becomes a target value
  • the valve opening is controlled to satisfy the condition.
  • the refrigerant decompressed in the first indoor expansion valve 33 is evaporated in the first indoor heat exchanger 31, and the refrigerant decompressed in the second indoor expansion valve 38 is evaporated and merged in the second indoor heat exchanger 36. Thereafter, it flows through the gas side refrigerant communication pipe 5, passes through the gas side shut-off valve 28 and the four-way switching valve 22, is heated in the internal heat exchanger 51, and is again drawn into the compressor 21.
  • the compressor 21 in the heating operation mode, for example, the compressor 21 is capacity-controlled so that the condensing temperature of the refrigerant in the refrigerant circuit 10 becomes the target condensing temperature. Ru.
  • the target condensing temperature is determined according to the largest difference between the set temperature and the indoor temperature in each of the indoor units 30 and 35 (the indoor unit with the largest load).
  • the gas refrigerant discharged from the compressor 21 flows into the first indoor unit 30 and the second indoor unit 35 after flowing through the four-way switching valve 22 and the gas-side refrigerant communication pipe 5.
  • the refrigerant flowing into the first indoor unit 30 condenses in the first indoor heat exchanger 31, and the refrigerant flowing into the second indoor unit 35 condenses in the second indoor heat exchanger.
  • the refrigerant that has flowed out from the liquid side end of the first indoor heat exchanger 31 is depressurized in the first indoor expansion valve 33 to an intermediate pressure of the refrigeration cycle.
  • the refrigerant flowing out of the liquid side end of the second indoor heat exchanger 36 is also depressurized in the second indoor expansion valve 38 to an intermediate pressure of the refrigeration cycle.
  • the refrigerant that has passed through the first indoor expansion valve 33 and the refrigerant that has passed through the second indoor expansion valve 38 merge, and then flow through the liquid-side refrigerant communication pipe 6 into the outdoor unit 20.
  • the refrigerant flowing into the outdoor unit 20 passes through the liquid side shut-off valve 29 and is depressurized to the low pressure of the refrigeration cycle in the outdoor expansion valve 24.
  • the degree of opening of the outdoor expansion valve 24 is controlled such that, for example, the degree of superheat of the refrigerant sucked by the compressor 21 becomes a target value or other predetermined condition.
  • the method for controlling the degree of opening of the outdoor expansion valve 24 is not particularly limited.
  • the discharge temperature of the refrigerant discharged from the compressor 21 may be controlled to be a predetermined temperature.
  • the degree of superheat of the refrigerant discharged from may be controlled to satisfy a predetermined condition.
  • the refrigerant decompressed by the outdoor expansion valve 24 evaporates in the outdoor heat exchanger 23, passes through the four-way switching valve 22, is heated in the internal heat exchanger 51, and is again drawn into the compressor 21.
  • the air conditioner 1k can perform a refrigeration cycle using a refrigerant containing 1,2-difluoroethylene, and therefore, performs a refrigeration cycle using a refrigerant with a small GWP. Is possible.
  • the first indoor heat exchanger 31 and the second indoor heat exchanger are controlled by controlling the degree of supercooling of the first indoor expansion valve 33 and the second indoor expansion valve 38. It has become possible to make it easy to fully demonstrate the 36 abilities.
  • the air conditioner 1k is provided with the internal heat exchanger 51, the refrigerant drawn into the compressor 21 is heated, and liquid compression in the compressor 21 is suppressed. It is possible to control so that the degree of superheat of the refrigerant flowing through the outlet of the first indoor heat exchanger 31 or the second indoor heat exchanger 36 functioning as the evaporator becomes a small value. Further, also in the heating operation, it is possible to control so that the degree of superheat of the refrigerant flowing through the outlet of the outdoor heat exchanger 23 functioning as the evaporator of the refrigerant becomes a small value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Signal Processing (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Lubricants (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Liquid Crystal Substances (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

GWPが小さい冷媒を用いて冷凍サイクルを行うことが可能な空調ユニットを提供する。冷凍サイクル装置(1、1a~1m)において、圧縮機(21)と凝縮器(23、31、36)と減圧部(24、44、45、33、38)と蒸発器(31、36、23)とを有する冷媒回路(10)と、冷媒回路(10)に封入された少なくとも1,2-ジフルオロエチレンを含む冷媒と、を備えている。

Description

冷凍サイクル装置
 本開示は、冷凍サイクル装置に関する。
 従来より、空気調和装置等の熱サイクルシステムでは、冷媒として、R410Aが多用されている。R410Aは、(CH2F2;HFC-32又はR32)とペンタフルオロエタン(C2HF5;HFC-125又はR125)との2成分混合冷媒であり、擬似共沸組成物である。
 しかし、R410Aの地球温暖化係数(GWP)は2088であり、近年、地球温暖化への懸念の高まりから、GWPがより低い冷媒であるR32がより多く使用されつつある。
 このため、例えば、特許文献1(国際公開第2015/141678号)においては、R410Aに代替可能な低GWP混合冷媒が種々提案されている。
 ところが、このようなGWPが小さい冷媒を用いることができる具体的な冷媒回路については、これまで、なんら検討されていない。
 本開示の内容は、上述した点に鑑みたものであり、GWPが小さい冷媒を用いて冷凍サイクルを行うことが可能な空調ユニットを提供することを目的とする。
 第1観点に係る冷凍サイクル装置は、冷媒回路と冷媒を備えている。冷媒回路は、圧縮機と凝縮器と減圧部と蒸発器とを有している。冷媒は、少なくとも1,2-ジフルオロエチレンを含んでいる。冷媒は、冷媒回路に封入されている。
 この冷凍サイクル装置は、圧縮機と凝縮器と減圧部と蒸発器とを有する冷媒回路において、1,2-ジフルオロエチレンを含む冷媒を用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
 第2観点に係る冷凍サイクル装置は、第1観点の冷凍サイクル装置であって、冷媒回路は、低圧レシーバをさらに有している。低圧レシーバは、蒸発器から圧縮機の吸入側に向かう冷媒流路の途中に設けられている。
 この冷凍サイクル装置は、冷媒回路における余剰冷媒を低圧レシーバに溜めながら冷凍サイクルを行うことが可能になる。
 第3観点に係る冷凍サイクル装置は、第1観点または第2観点の冷凍サイクル装置であって、冷媒回路は、高圧レシーバをさらに有している。高圧レシーバは、凝縮器から蒸発器に向かう冷媒流路の途中に設けられている。
 この冷凍サイクル装置では、冷媒回路における余剰冷媒を高圧レシーバに溜めながら冷凍サイクルを行うことが可能になる。
 第4観点に係る冷凍サイクル装置は、第1観点から第3観点のいずれかの冷凍サイクル装置であって、冷媒回路は、第1減圧部と第2減圧部と中間圧レシーバとさらに有している。第1減圧部と第2減圧部と中間圧レシーバは、いずれも、凝縮器から蒸発器に向かう冷媒流路の途中に設けられている。中間圧レシーバは、凝縮器から蒸発器に向かう冷媒流路における第1減圧部と第2減圧部との間に設けられている。
 この冷凍サイクル装置では、冷媒回路における余剰冷媒を中間圧レシーバに溜めながら冷凍サイクルを行うことが可能になる。
 第5観点に係る冷凍サイクル装置は、第1観点から第4観点のいずれかの冷凍サイクル装置であって、制御部をさらに備えている。冷媒回路は、第1減圧部と第2減圧部とをさらに有している。第1減圧部と第2減圧部は、凝縮器から蒸発器に向かう冷媒流路の途中に設けられている。制御部は、第1減圧部を通過する冷媒の減圧程度と第2減圧部を通過する冷媒の減圧程度との両方を調節する。
 この冷凍サイクル装置では、凝縮器から蒸発器に向かう冷媒流路の途中に設けられた第1減圧部と第2減圧部の各減圧程度を制御することにより、凝縮器から蒸発器に向かう冷媒流路の途中における第1減圧部と第2減圧部との間に位置する冷媒の密度を低下させることが可能になる。これにより、冷媒回路に封入された冷媒を、凝縮器および/または蒸発器に多く存在させやすくなり、能力を向上させることが可能になる。
 第6観点に係る冷凍サイクル装置は、第1観点から第5観点のいずれかの冷凍サイクル装置であって、冷媒回路は、冷媒熱交換部をさらに有している。冷媒熱交換部は、凝縮器から蒸発器に向かう冷媒と、蒸発器から圧縮機に向かう冷媒と、の間で熱交換を行わせる。
 この冷凍サイクル装置では、冷媒熱交換部において、蒸発器から圧縮機に向かう冷媒が凝縮器から蒸発器に向かう冷媒によって加熱される。このため、圧縮機における液圧縮を抑制することが可能になる。
 第7観点に係る冷凍サイクル装置は、第1観点から第6観点のいずれかの冷凍サイクル装置であって、冷媒は、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を含んでいる。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]及び成績係数[Coefficient of Performance(COP)]を有する、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
 第8観点に係る冷凍サイクル装置は、第7観点の冷凍サイクル装置であって、冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点A(68.6, 0.0, 31.4)、
  点A’(30.6, 30.0, 39.4)、
  点B(0.0, 58.7, 41.3)、
  点D(0.0, 80.4, 19.6)、
  点C’(19.5,70.5,10.0)、
  点C(32.9, 67.1, 0.0)及び
  点O(100.0, 0.0, 0.0)
の7点をそれぞれ結ぶ線分AA’、A’B、BD、DC’、C’C、CO及びOAで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分BD、CO及びOA上の点は除く)、
前記線分AA’は、
  座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
前記線分DC’は、
  座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
前記線分C’Cは、
  座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
で表わされ、かつ
前記線分BD、CO及びOAが直線である。
 第9観点に係る冷凍サイクル装置は、第7観点の冷凍サイクル装置であって、冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点G(72.0, 28.0, 0.0)、
  点I(72.0, 0.0, 28.0)、
  点A(68.6, 0.0, 31.4)、
  点A’(30.6, 30.0, 39.4)、
  点B(0.0, 58.7, 41.3)、
  点D(0.0, 80.4, 19.6)、
  点C’(19.5,70.5,10.0) 及び
  点C(32.9, 67.1, 0.0)
の8点をそれぞれ結ぶ線分GI、IA、AA’、A’B、BD、DC’、C’C及びCGで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分IA、BD及びCG上の点は除く)、
前記線分AA’は、
  座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
前記線分DC’は、
  座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
前記線分C’Cは、
  座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
で表わされ、かつ
前記線分GI、IA、BD及びCGが直線である。
 第10観点に係る冷凍サイクル装置は、第7観点の冷凍サイクル装置であって、冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点J(47.1, 52.9, 0.0)、
  点P(55.8, 42.0, 2.2)、
  点N(68.6, 16.3, 15.1)、
  点K(61.3, 5.4, 33.3)、
  点A’(30.6, 30.0, 39.4)、
  点B(0.0, 58.7, 41.3)、
  点D(0.0, 80.4, 19.6)、
  点C’(19.5,70.5,10.0) 及び
  点C(32.9, 67.1, 0.0)
の9点をそれぞれ結ぶ線分JP、PN、NK、KA’、A’B、BD、DC’、C’C及びCJで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分BD及びCJ上の点は除く)、
前記線分PNは、
  座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
前記線分NKは、
  座標(x, 0.2421x2-29.955x+931.91, -0.2421x2+28.955x-831.91)
で表わされ、
前記線分KA’は、
  座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
前記線分DC’は、
  座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
前記線分C’Cは、
  座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
で表わされ、かつ
前記線分JP、BD及びCGが直線である。
 第11観点に係る冷凍サイクル装置は、第7観点の冷凍サイクル装置であって、冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点J(47.1, 52.9, 0.0)、
  点P(55.8, 42.0, 2.2)、
  点L(63.1, 31.9, 5.0)、
  点M(60.3, 6.2, 33.5)、
  点A’(30.6, 30.0, 39.4)、
  点B(0.0, 58.7, 41.3)、
  点D(0.0, 80.4, 19.6)、
  点C’(19.5,70.5,10.0) 及び
  点C(32.9, 67.1, 0.0)
の9点をそれぞれ結ぶ線分JP、PL、LM、MA’、A’B、BD、DC’、C’C及びCJで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分BD及びCJ上の点は除く)、
前記線分PLは、
  座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
前記線分MA’は、
  座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
前記線分DC’は、
  座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
前記線分C’Cは、
  座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
で表わされ、かつ
前記線分JP、LM、BD及びCGが直線である。
 第12観点に係る冷凍サイクル装置は、第7観点の冷凍サイクル装置であって、冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点P(55.8, 42.0, 2.2)、
  点L(63.1, 31.9, 5.0)、
  点M(60.3, 6.2, 33.5)、
  点A’(30.6, 30.0, 39.4)、
  点B(0.0, 58.7, 41.3)、
  点F(0.0, 61.8, 38.2)及び
  点T(35.8, 44.9, 19.3)
の7点をそれぞれ結ぶ線分PL、LM、MA’、A’B、BF、FT及びTPで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分BF上の点は除く)、
前記線分PLは、
  座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
前記線分MA’は、
  座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
前記線分FTは、
  座標(x, 0.0078x2-0.7501x+61.8, -0.0078x2-0.2499x+38.2)
で表わされ、
前記線分TPは、
  座標(x, 0.0067x2-0.7607x+63.525, -0.0067x2-0.2393x+36.475)
で表わされ、かつ
前記線分LM及びBFが直線である。
 第13観点に係る冷凍サイクル装置は、第7観点の冷凍サイクル装置であって、冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点P(55.8, 42.0, 2.2)、
  点L(63.1, 31.9, 5.0)、
  点Q(62.8, 29.6, 7.6) 及び
  点R(49.8, 42.3, 7.9)
の4点をそれぞれ結ぶ線分PL、LQ、QR及びRPで囲まれる図形の範囲内又は前記線分上にあり、
前記線分PLは、
  座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
前記線分RPは、
  座標(x, 0.0067x2-0.7607x+63.525, -0.0067x2-0.2393x+36.475)
で表わされ、かつ
前記線分LQ及びQRが直線である。
 第14観点に係る冷凍サイクル装置は、第7観点の冷凍サイクル装置であって、冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点S(62.6, 28.3, 9.1)、
  点M(60.3, 6.2, 33.5)、
  点A’(30.6, 30.0, 39.4)、
  点B(0.0, 58.7, 41.3)、
  点F(0.0, 61.8, 38.2)及び
  点T(35.8, 44.9, 19.3)
の6点をそれぞれ結ぶ線分SM、MA’、A’B、BF、FT、及びTSで囲まれる図形の範囲内又は前記線分上にあり、
前記線分MA’は、
  座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
前記線分FTは、
  座標(x, 0.0078x2-0.7501x+61.8, -0.0078x2-0.2499x+38.2)
で表わされ、
前記線分TSは、
  座標(x, 0.0017x2-0.7869x+70.888, -0.0017x2-0.2131x+29.112)
で表わされ、かつ
前記線分SM及びBFが直線である。
 第15観点に係る冷凍サイクル装置は、第1観点から第6観点のいずれかの冷凍サイクル装置であって、冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))及びトリフルオロエチレン(HFO-1123)の合計を、該冷媒の全体に対して99.5質量%以上含み、かつ該冷媒が、HFO-1132(E)を、該冷媒の全体に対して62.0質量%~72.0質量%含む。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の成績係数[Coefficient of Performance(COP)]と冷凍能力[RefrigerationCapacity(Cooling Capacity、Capacityと表記されることもある)]とを有し、アメリカ暖房冷凍空調学会(ASHRAE)の規格で微燃性(2Lクラス)である、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
 第16観点に係る冷凍サイクル装置は、第1観点から第6観点のいずれかの冷凍サイクル装置であって、冷媒が、HFO-1132(E)及びHFO-1123の合計を、該冷媒の全体に対して99.5質量%以上含み、かつ該冷媒が、HFO-1132(E)を、該冷媒の全体に対して45.1質量%~47.1質量%含む。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の成績係数[Coefficient of Performance(COP)]と冷凍能力[RefrigerationCapacity(Cooling Capacity、Capacityと表記されることもある)]とを有し、アメリカ暖房冷凍空調学会(ASHRAE)の規格で微燃性(2Lクラス)である、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
 第17観点に係る冷凍サイクル装置は、第1観点から第6観点のいずれかの冷凍サイクル装置であって、冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)並びにジフルオロメタン(R32)を含み、
 前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yf並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる3成分組成図において、座標(x,y,z)が、
  0<a≦11.1のとき、
   点G(0.026a2-1.7478a+72.0, -0.026a2+0.7478a+28.0, 0.0)、
   点I(0.026a2-1.7478a+72.0, 0.0, -0.026a2+0.7478a+28.0)、
   点A(0.0134a2-1.9681a+68.6, 0.0, -0.0134a2+0.9681a+31.4)、
   点B(0.0, 0.0144a2-1.6377a+58.7, -0.0144a2+0.6377a+41.3)、
   点D’(0.0, 0.0224a2+0.968a+75.4, -0.0224a2-1.968a+24.6)及び
   点C(-0.2304a2-0.4062a+32.9, 0.2304a2-0.5938a+67.1, 0.0)
の6点をそれぞれ結ぶ直線GI、IA、AB、BD’、D’C及びCGで囲まれる図形の範囲内又は前記直線GI、AB及びD’C上にあり(ただし、点G、点I、点A、点B、点D’及び点Cは除く)、
  11.1<a≦18.2のとき、
   点G(0.02a2-1.6013a+71.105, -0.02a2+0.6013a+28.895, 0.0)、
   点I(0.02a2-1.6013a+71.105, 0.0, -0.02a2+0.6013a+28.895)、
   点A(0.0112a2-1.9337a+68.484, 0.0, -0.0112a2+0.9337a+31.516)、
   点B(0.0, 0.0075a2-1.5156a+58.199, -0.0075a2+0.5156a+41.801)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、
  18.2<a≦26.7のとき、
   点G(0.0135a2-1.4068a+69.727, -0.0135a2+0.4068a+30.273, 0.0)、
   点I(0.0135a2-1.4068a+69.727, 0.0, -0.0135a2+0.4068a+30.273)、
   点A(0.0107a2-1.9142a+68.305, 0.0, -0.0107a2+0.9142a+31.695)、
   点B(0.0, 0.009a2-1.6045a+59.318, -0.009a2+0.6045a+40.682)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、
  26.7<a≦36.7のとき、
   点G(0.0111a2-1.3152a+68.986, -0.0111a2+0.3152a+31.014, 0.0)、
   点I(0.0111a2-1.3152a+68.986, 0.0, -0.0111a2+0.3152a+31.014)、
   点A(0.0103a2-1.9225a+68.793, 0.0, -0.0103a2+0.9225a+31.207)、
   点B(0.0, 0.0046a2-1.41a+57.286, -0.0046a2+0.41a+42.714)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、及び
  36.7<a≦46.7のとき、
   点G(0.0061a2-0.9918a+63.902, -0.0061a2-0.0082a+36.098,0.0)、
   点I(0.0061a2-0.9918a+63.902, 0.0, -0.0061a2-0.0082a+36.098)、
   点A(0.0085a2-1.8102a+67.1, 0.0, -0.0085a2+0.8102a+32.9)、
   点B(0.0, 0.0012a2-1.1659a+52.95, -0.0012a2+0.1659a+47.05)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にある(ただし、点G、点I、点A、点B及び点Wは除く)。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]及び成績係数[Coefficient of Performance(COP)]を有する、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
 第18観点に係る冷凍サイクル装置は、第1観点から第6観点のいずれかの冷凍サイクル装置であって、冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)並びにジフルオロメタン(R32)を含み、
 前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yf並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる3成分組成図において、座標(x,y,z)が、
  0<a≦11.1のとき、
   点J(0.0049a2-0.9645a+47.1, -0.0049a2-0.0355a+52.9, 0.0)、
   点K’(0.0514a2-2.4353a+61.7, -0.0323a2+0.4122a+5.9, -0.0191a2+1.0231a+32.4)、
   点B(0.0, 0.0144a2-1.6377a+58.7, -0.0144a2+0.6377a+41.3)、
   点D’(0.0, 0.0224a2+0.968a+75.4, -0.0224a2-1.968a+24.6)及び
   点C(-0.2304a2-0.4062a+32.9, 0.2304a2-0.5938a+67.1, 0.0)
の5点をそれぞれ結ぶ直線JK’、K’B、BD’、D’C及びCJで囲まれる図形の範囲内又は前記直線JK’、K’B及びD’C上にあり(ただし、点J、点B、点D’及び点Cは除く)、
  11.1<a≦18.2のとき、
   点J(0.0243a2-1.4161a+49.725, -0.0243a2+0.4161a+50.275, 0.0)、
   点K’(0.0341a2-2.1977a+61.187, -0.0236a2+0.34a+5.636, -0.0105a2+0.8577a+33.177)、
   点B(0.0, 0.0075a2-1.5156a+58.199, -0.0075a2+0.5156a+41.801)及び
   点W(0.0, 100.0-a, 0.0)
の4点をそれぞれ結ぶ直線JK’、K’B、BW及びWJで囲まれる図形の範囲内又は前記直線JK’及びK’B上にあり(ただし、点J、点B及び点Wは除く)、
  18.2<a≦26.7のとき、
   点J(0.0246a2-1.4476a+50.184, -0.0246a2+0.4476a+49.816, 0.0)、
   点K’(0.0196a2-1.7863a+58.515, -0.0079a2-0.1136a+8.702, -0.0117a2+0.8999a+32.783)、
   点B(0.0, 0.009a2-1.6045a+59.318, -0.009a2+0.6045a+40.682)及び
   点W(0.0, 100.0-a, 0.0)
の4点をそれぞれ結ぶ直線JK’、K’B、BW及びWJで囲まれる図形の範囲内又は前記直線JK’及びK’B上にあり(ただし、点J、点B及び点Wは除く)、
  26.7<a≦36.7のとき、
   点J(0.0183a2-1.1399a+46.493, -0.0183a2+0.1399a+53.507, 0.0)、
   点K’(-0.0051a2+0.0929a+25.95, 0.0, 0.0051a2-1.0929a+74.05)、
   点A(0.0103a2-1.9225a+68.793, 0.0, -0.0103a2+0.9225a+31.207)、
   点B(0.0, 0.0046a2-1.41a+57.286, -0.0046a2+0.41a+42.714)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線JK’、K’A、AB、BW及びWJで囲まれる図形の範囲内又は前記直線JK’、K'A及びAB上にあり(ただし、点J、点B及び点Wは除く)、及び
  36.7<a≦46.7のとき、
   点J(-0.0134a2+1.0956a+7.13, 0.0134a2-2.0956a+92.87, 0.0)、
   点K’(-1.892a+29.443, 0.0, 0.892a+70.557)、
   点A(0.0085a2-1.8102a+67.1, 0.0, -0.0085a2+0.8102a+32.9)、
   点B(0.0, 0.0012a2-1.1659a+52.95, -0.0012a2+0.1659a+47.05)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線JK’、K’A、AB、BW及びWJで囲まれる図形の範囲内又は前記直線JK’、K'A及びAB上にある(ただし、点J、点B及び点Wは除く)。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]及び成績係数[Coefficient of Performance(COP)]を有する、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
 第19観点に係る冷凍サイクル装置は、第1観点から第6観点のいずれかの冷凍サイクル装置であって、冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、ジフルオロメタン(R32)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点I(72.0, 0.0, 28.0)、
   点J(48.5, 18.3, 33.2)、
   点N(27.7, 18.2, 54.1)及び
   点E(58.3, 0.0, 41.7)
の4点をそれぞれ結ぶ線分IJ、JN、NE、及びEIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分EI上にある点は除く)、
 前記線分IJは、
  座標(0.0236y2-1.7616y+72.0, y, -0.0236y2+0.7616y+28.0)
で表わされ、
 前記線分NEは、
  座標(0.012y2-1.9003y+58.3, y, -0.012y2+0.9003y+41.7)
で表わされ、かつ
 前記線分JN及びEIが直線である。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]を有し、アメリカ暖房冷凍空調学会(ASHRAE)の規格で微燃性(2Lクラス)である、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
 第20観点に係る冷凍サイクル装置は、第1観点から第6観点のいずれかの冷凍サイクル装置であって、冷媒が、HFO-1132(E)、R32及びR1234yfを含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点M(52.6, 0.0, 47.4)、
   点M’(39.2, 5.0, 55.8)、
   点N(27.7, 18.2, 54.1)、
   点V(11.0, 18.1, 70.9)及び
   点G(39.6, 0.0, 60.4)
の5点をそれぞれ結ぶ線分MM’、M’N、NV、VG、及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GM上にある点は除く)、
 前記線分MM’は、
  座標(x, 0.132x2-3.34x+52.6, -0.132x2+2.34x+47.4)
で表わされ、
 前記線分M’Nは、
  座標(0.0313y2-1.4551y+43.824, y, -0.0313y2+0.4551y+56.176)
で表わされ、
 前記線分VGは、
  座標(0.0123y2-1.8033y+39.6, y, -0.0123y2+0.8033y+60.4)
で表わされ、かつ
 前記線分NV及びGMが直線である。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]を有し、アメリカ暖房冷凍空調学会(ASHRAE)の規格で微燃性(2Lクラス)である、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
 第21観点に係る冷凍サイクル装置は、第1観点から第6観点のいずれかの冷凍サイクル装置であって、冷媒が、HFO-1132(E)、R32及びR1234yfを含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点O(22.6, 36.8, 40.6)、
   点N(27.7, 18.2, 54.1)及び
   点U(3.9, 36.7, 59.4)
の3点をそれぞれ結ぶ線分ON、NU及びUOで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分ONは、
  座標(0.0072y2-0.6701y+37.512, y, -0.0072y2-0.3299y+62.488)
で表わされ、
 前記線分NUは、
  座標(0.0083y2-1.7403y+56.635, y, -0.0083y2+0.7403y+43.365)
で表わされ、かつ
 前記線分UOが直線である。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]を有し、アメリカ暖房冷凍空調学会(ASHRAE)の規格で微燃性(2Lクラス)である、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
 第22観点に係る冷凍サイクル装置は、第1観点から第6観点のいずれかの冷凍サイクル装置であって、冷媒が、HFO-1132(E)、R32及びR1234yfを含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点Q(44.6, 23.0, 32.4)、
   点R(25.5, 36.8, 37.7)、
   点T(8.6, 51.6, 39.8)、
   点L(28.9, 51.7, 19.4)及び
   点K(35.6, 36.8, 27.6)
の5点をそれぞれ結ぶ線分QR、RT、TL、LK及びKQで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分QRは、
  座標(0.0099y2-1.975y+84.765, y, -0.0099y2+0.975y+15.235)
で表わされ、
 前記線分RTは、
  座標(0.082y2-1.8683y+83.126, y, -0.082y2+0.8683y+16.874)
で表わされ、
 前記線分LKは、
  座標(0.0049y2-0.8842y+61.488, y, -0.0049y2-0.1158y+38.512)
で表わされ、
 前記線分KQは、
  座標(0.0095y2-1.2222y+67.676, y, -0.0095y2+0.2222y+32.324)
で表わされ、かつ
 前記線分TLが直線である。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]を有し、アメリカ暖房冷凍空調学会(ASHRAE)の規格で微燃性(2Lクラス)である、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
 第23観点に係る冷凍サイクル装置は、第1観点から第6観点のいずれかの冷凍サイクル装置であって、冷媒が、HFO-1132(E)、R32及びR1234yfを含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点P(20.5, 51.7, 27.8)、
   点S(21.9, 39.7, 38.4)及び
   点T(8.6, 51.6, 39.8)
の3点をそれぞれ結ぶ線分PS、ST及びTPで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分PSは、
  座標(0.0064y2-0.7103y+40.1, y, -0.0064y2-0.2897y+59.9)
で表わされ、
 前記線分STは、
  座標(0.082y2-1.8683y+83.126, y, -0.082y2+0.8683y+16.874)
で表わされ、かつ
 前記線分TPが直線である。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]を有し、アメリカ暖房冷凍空調学会(ASHRAE)の規格で微燃性(2Lクラス)である、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
 第24観点に係る冷凍サイクル装置は、第1観点から第6観点のいずれかの冷凍サイクル装置であって、冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及びジフルオロメタン(R32)を含み、
 前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点I(72.0, 28,0, 0.0)
   点K(48.4, 33.2, 18.4)
   点B’(0.0, 81.6, 18.4)
   点H(0.0, 84.2, 15.8)
   点R(23.1, 67.4, 9.5)及び
   点G(38.5, 61.5, 0.0)
の6点をそれぞれ結ぶ線分IK、KB’、B’H、HR、RG及びGIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分B’H及びGI上の点を除く)、
 前記線分IKは、
  座標(0.025z2-1.7429z+72.00, -0.025z2+0.7429z+28.0, z)
で表わされ、
 前記線分HRは、
  座標(-0.3123z2+4.234z+11.06, 0.3123z2-5.234z+88.94, z)
で表わされ、
 前記線分RGは、
  座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
で表わされ、かつ
 前記線分KB’及びGIが直線である。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の成績係数[Coefficient of Performance(COP)]を有するという、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
 第25観点に係る冷凍サイクル装置は、第1観点から第6観点のいずれかの冷凍サイクル装置であって、冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
 前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点I(72.0, 28,0, 0.0)
   点J(57.7, 32.8, 9.5)
   点R(23.1, 67.4, 9.5)及び
   点G(38.5, 61.5, 0.0)
の4点をそれぞれ結ぶ線分IJ、JR、RG及びGIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GI上の点を除く)、
 前記線分IJは、
  座標(0.025z2-1.7429z+72.0, -0.025z2+0.7429z+28.0, z)
で表わされ、かつ
 前記線分RGは、
  座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
で表わされ、
 前記線分JR及びGIが直線である。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の成績係数[Coefficient of Performance(COP)]を有するという、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
 第26観点に係る冷凍サイクル装置は、第1観点から第6観点のいずれかの冷凍サイクル装置であって、冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
 前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点M(47.1, 52.9, 0.0)
   点P(31.8, 49.8, 18.4)
   点B’(0.0, 81.6, 18.4)
   点H(0.0, 84.2, 15.8)
   点R(23.1, 67.4, 9.5)及び
   点G(38.5, 61.5, 0.0)
の6点をそれぞれ結ぶ線分MP、PB’、B’H、HR、RG及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分B’H及びGM上の点を除く)、
 前記線分MPは、
  座標(0.0083z2-0.984z+47.1,-0.0083z2-0.016z+52.9, z)
で表わされ、
 前記線分HRは、
  座標(-0.3123z2+4.234z+11.06, 0.3123z2-5.234z+88.94, z)
で表わされ、
 前記線分RGは、
  座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
で表わされ、かつ
 前記線分PB’及びGMが直線である。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の成績係数[Coefficient of Performance(COP)]を有するという、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
 第27観点に係る冷凍サイクル装置は、第1観点から第6観点のいずれかの冷凍サイクル装置であって、冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
 前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点M(47.1, 52.9, 0.0)
   点N(38.5, 52.1, 9.5)
   点R(23.1, 67.4, 9.5)及び
   点G(38.5, 61.5, 0.0)
の4点をそれぞれ結ぶ線分MN、NR、RG及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GM上の点を除く)、
 前記線分MNは、
  座標(0.0083z2-0.984z+47.1,-0.0083z2-0.016z+52.9, z)
で表わされ、かつ
 前記線分RGは、
  座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
で表わされ、
 前記線分JR及びGIが直線である。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の成績係数[Coefficient of Performance(COP)]を有するという、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
 第28観点に係る冷凍サイクル装置は、第1観点から第6観点のいずれかの冷凍サイクル装置であって、冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
 前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点P(31.8, 49.8, 18.4)
   点S(25.4, 56.2, 18.4)及び
   点T(34.8, 51.0, 14.2)
の3点をそれぞれ結ぶ線分PS、ST及びTPで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分STは、
  座標(-0.0982z2+0.9622z+40.931, 0.0982z2-1.9622z+59.069, z)
で表わされ、かつ
 前記線分TPは、
  座標(0.0083z2-0.984z+47.1,-0.0083z2-0.016z+52.9, z)
で表わされ、
 前記線分PSが直線である。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の成績係数[Coefficient of Performance(COP)]を有するという、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
 第29観点に係る冷凍サイクル装置は、第1観点から第6観点のいずれかの冷凍サイクル装置であって、冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
 前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点Q(28.6, 34.4, 37.0)
   点B’’(0.0, 63.0, 37.0)
   点D(0.0, 67.0, 33.0)及び
   点U(28.7, 41.2, 30.1)
の4点をそれぞれ結ぶ線分QB’’、B’’D、DU及びUQで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分B’’D上の点を除く)、
 前記線分DUは、
  座標(-3.4962z2+210.71z-3146.1, 3.4962z2-211.71z+3246.1, z)で表わされ、かつ
 前記線分UQは、
  座標(0.0135z2-0.9181z+44.133, -0.0135z2-0.0819z+55.867, z)
で表わされ、
 前記線分QB’’及びB’’Dが直線である。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の成績係数[Coefficient of Performance(COP)]を有するという、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
燃焼性試験に用いた装置の模式図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図に、点A~T並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる3成分組成図に、点A~C、D’、G、I、J及びK’並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が92.9質量%(R32含有割合が7.1質量%)となる3成分組成図に、点A~C、D’、G、I、J及びK’並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が88.9質量%(R32含有割合が11.1質量%)となる3成分組成図に、点A~C、D’、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が85.5質量%(R32含有割合が14.5質量%)となる3成分組成図に、点A、B、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が81.8質量%(R32含有割合が18.2質量%)となる3成分組成図に、点A、B、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が78.1質量%(R32含有割合が21.9質量%)となる3成分組成図に、点A、B、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が73.3質量%(R32含有割合が26.7質量%)となる3成分組成図に、点A、B、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が70.7質量%(R32含有割合が29.3質量%)となる3成分組成図に、点A、B、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が63.3質量%(R32含有割合が36.7質量%)となる3成分組成図に、点A、B、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が55.9質量%(R32含有割合が44.1質量%)となる3成分組成図に、点A、B、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が52.2質量%(R32含有割合が47.8質量%)となる3成分組成図に、点A、B、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図に、点A~C、E、G、及びI~W並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図に、点A~U並びにそれらを互いに結ぶ線分を示した図である。 第1実施形態に係る冷媒回路の概略構成図である。 第1実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第2実施形態に係る冷媒回路の概略構成図である。 第2実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第3実施形態に係る冷媒回路の概略構成図である。 第3実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第4実施形態に係る冷媒回路の概略構成図である。 第4実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第5実施形態に係る冷媒回路の概略構成図である。 第5実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第6実施形態に係る冷媒回路の概略構成図である。 第6実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第7実施形態に係る冷媒回路の概略構成図である。 第7実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第8実施形態に係る冷媒回路の概略構成図である。 第8実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第9実施形態に係る冷媒回路の概略構成図である。 第9実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第10実施形態に係る冷媒回路の概略構成図である。 第10実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第11実施形態に係る冷媒回路の概略構成図である。 第11実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第12実施形態に係る冷媒回路の概略構成図である。 第12実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。
 (1)用語の定義
 本明細書において用語「冷媒」には、ISO817(国際標準化機構)で定められた、冷媒の種類を表すRで始まる冷媒番号(ASHRAE番号)が付された化合物が少なくとも含まれ、さらに冷媒番号が未だ付されていないとしても、それらと同等の冷媒としての特性を有するものが含まれる。冷媒は、化合物の構造の面で、「フルオロカーボン系化合物」と「非フルオロカーボン系化合物」とに大別される。「フルオロカーボン系化合物」には、クロロフルオロカーボン(CFC)、ハイドロクロロフルオロカーボン(HCFC)及びハイドロフルオロカーボン(HFC)が含まれる。「非フルオロカーボン系化合物」としては、プロパン(R290)、プロピレン(R1270)、ブタン(R600)、イソブタン(R600a)、二酸化炭素(R744)及びアンモニア(R717)等が挙げられる。
 本明細書において、用語「冷媒を含む組成物」には、(1)冷媒そのもの(冷媒の混合物を含む)と、(2)その他の成分をさらに含み、少なくとも冷凍機油と混合することにより冷凍機用作動流体を得るために用いることのできる組成物と、(3)冷凍機油を含有する冷凍機用作動流体とが少なくとも含まれる。本明細書においては、これら三態様のうち、(2)の組成物のことを、冷媒そのもの(冷媒の混合物を含む)と区別して「冷媒組成物」と表記する。また、(3)の冷凍機用作動流体のことを「冷媒組成物」と区別して「冷凍機油含有作動流体」と表記する。
 本明細書において、用語「代替」は、第一の冷媒を第二の冷媒で「代替」するという文脈で用いられる場合、第一の類型として、第一の冷媒を使用して運転するために設計された機器において、必要に応じてわずかな部品(冷凍機油、ガスケット、パッキン、膨張弁、ドライヤその他の部品のうち少なくとも一種)の変更及び機器調整のみを経るだけで、第二の冷媒を使用して、最適条件下で運転することができることを意味する。すなわち、この類型は、同一の機器を、冷媒を「代替」して運転することを指す。この類型の「代替」の態様としては、第二の冷媒への置き換えの際に必要とされる変更乃至調整の度合いが小さい順に、「ドロップイン(drop in)代替」、「ニアリー・ドロップイン(nealy drop in)代替」及び「レトロフィット(retrofit)」があり得る。
 第二の類型として、第二の冷媒を用いて運転するために設計された機器を、第一の冷媒の既存用途と同一の用途のために、第二の冷媒を搭載して用いることも、用語「代替」に含まれる。この類型は、同一の用途を、冷媒を「代替」して提供することを指す。
 本明細書において用語「冷凍機(refrigerator)」とは、物あるいは空間の熱を奪い去ることにより、周囲の外気よりも低い温度にし、かつこの低温を維持する装置全般のことをいう。言い換えれば、冷凍機は温度の低い方から高い方へ熱を移動させるために、外部からエネルギーを得て仕事を行いエネルギー変換する変換装置のことをいう。
 本明細書において冷媒が「WCF微燃」であるとは、米国ANSI/ASHRAE34-2013規格に従い最も燃えやすい組成(Worst case of formulation for flammability; WCF)が、燃焼速度が10cm/s以下であることを意味する。また、本明細書において冷媒が「ASHRAE微燃」であるとは、WCFの燃焼速度が10cm/s以下で、かつ、WCFを用いてANSI/ASHRAE34-2013に基づいた貯蔵、輸送、使用時の漏洩試験を行うことで特定される最も燃えやすい分画組成(Worst case of fractionation for flammability; WCFF)が、燃焼速度が10cm/s以下であり、米国ANSI/ASHRAE34-2013規格の燃焼性区分が「2Lクラス」と判断されることを意味する。
 本明細書において冷媒について「RCLがx%以上」というときは、かかる冷媒についての、米国ANSI/ASHRAE34-2013規格に従い算出される冷媒濃度限界(Refrigerant Concentration Limit; RCL)がx%以上であることを意味する。RCLとは、安全係数を考慮した空気中における濃度限界であり、人間が存在する密閉空間において、急性毒性、窒息及び可燃性の危険度を低減することを目的とした指標である。RCLは上記規格に従って決定される。具体的には、上記規格7.1.1、7.1.2及び7.1.3に従いそれぞれ算出される、急性毒性曝露限界(Acute-Toxicity Exposure Limit; ATEL)、酸欠濃度限界(Oxygen Deprivation Limit; ODL)及び可燃濃度限界(Flammable Concentration Limit; FCL)のうち、最も低い濃度がRCLとなる。
 本明細書において温度グライド(Temperature Glide)とは、冷媒システムの熱交換器内における本開示の冷媒を含む組成物の相変化過程の開始温度と終了温度の差の絶対値を意味する。
 (2)冷媒
 (2-1)冷媒成分
 詳細は後述するが、冷媒A、冷媒B、冷媒C、冷媒D、冷媒Eの各種冷媒のいずれか1種を冷媒として用いることができる。
 (2-2)冷媒の用途
 本開示の冷媒は、冷凍機における作動流体として好ましく使用することができる。
 本開示の組成物は、R410A、R407CおよびR404A等のHFC冷媒、並びにR22等のHCFC冷媒の代替冷媒としての使用に適している。
 (3)冷媒組成物
 本開示の冷媒組成物は、本開示の冷媒を少なくとも含み、本開示の冷媒と同じ用途のために使用することができる。また、本開示の冷媒組成物は、さらに少なくとも冷凍機油と混合することにより冷凍機用作動流体を得るために用いることができる。
 本開示の冷媒組成物は、本開示の冷媒に加え、さらに少なくとも一種のその他の成分を含有する。本開示の冷媒組成物は、必要に応じて、以下のその他の成分のうち少なくとも一種を含有していてもよい。上述の通り、本開示の冷媒組成物を、冷凍機における作動流体として使用するに際しては、通常、少なくとも冷凍機油と混合して用いられる。したがって、本開示の冷媒組成物は、好ましくは冷凍機油を実質的に含まない。具体的には、本開示の冷媒組成物は、冷媒組成物全体に対する冷凍機油の含有量が好ましくは0~1質量%であり、より好ましくは0~0.1質量%である。
 (3-1)水
 本開示の冷媒組成物は微量の水を含んでもよい。冷媒組成物における含水割合は、冷媒全体に対して、0.1質量%以下とすることが好ましい。冷媒組成物が微量の水分を含むことにより、冷媒中に含まれ得る不飽和のフルオロカーボン系化合物の分子内二重結合が安定化され、また、不飽和のフルオロカーボン系化合物の酸化も起こりにくくなるため、冷媒組成物の安定性が向上する。
 (3-2)トレーサー
 トレーサーは、本開示の冷媒組成物が希釈、汚染、その他何らかの変更があった場合、その変更を追跡できるように検出可能な濃度で本開示の冷媒組成物に添加される。
 本開示の冷媒組成物は、トレーサーとして、一種を単独で含有してもよいし、二種以上を含有してもよい。
 トレーサーとしては、特に限定されず、一般に用いられるトレーサーの中から適宜選択することができる。好ましくは、本開示の冷媒に不可避的に混入する不純物とはなり得ない化合物をトレーサーとして選択する。
 トレーサーとしては、例えば、ハイドロフルオロカーボン、ハイドロクロロフルオロカーボン、クロロフルオロカーボン、ハイドロクロロカーボン、フルオロカーボン、重水素化炭化水素、重水素化ハイドロフルオロカーボン、パーフルオロカーボン、フルオロエーテル、臭素化化合物、ヨウ素化化合物、アルコール、アルデヒド、ケトン、亜酸化窒素(N2O)等が挙げられる。
 トレーサーとしては、ハイドロフルオロカーボン、ハイドロクロロフルオロカーボン、クロロフルオロカーボン、ハイドロクロロカーボン、フルオロカーボン及びフルオロエーテルが特に好ましい。
 上記トレーサーとしては、具体的には、以下の化合物が好ましい。
 FC-14(テトラフルオロメタン、CF4
 HCC-40(クロロメタン、CHCl)
 HFC-23(トリフルオロメタン、CHF
 HFC-41(フルオロメタン、CHCl)
 HFC-125(ペンタフルオロエタン、CFCHF
 HFC-134a(1,1,1,2-テトラフルオロエタン、CFCHF)
 HFC-134(1,1,2,2-テトラフルオロエタン、CHFCHF
 HFC-143a(1,1,1-トリフルオロエタン、CFCH
 HFC-143(1,1,2-トリフルオロエタン、CHFCHF)
 HFC-152a(1,1-ジフルオロエタン、CHFCH
 HFC-152(1,2-ジフルオロエタン、CHFCHF)
 HFC-161(フルオロエタン、CHCHF)
 HFC-245fa(1,1,1,3,3-ペンタフルオロプロパン、CFCHCHF
 HFC-236fa(1,1,1,3,3,3-ヘキサフルオロプロパン、CFCHCF
 HFC-236ea(1,1,1,2,3,3-ヘキサフルオロプロパン、CFCHFCHF
 HFC-227ea(1,1,1,2,3,3,3-ヘプタフルオロプロパン、CFCHFCF)
 HCFC-22(クロロジフルオロメタン、CHClF
 HCFC-31(クロロフルオロメタン、CHClF)
 CFC-1113(クロロトリフルオロエチレン、CF=CClF)
 HFE-125(トリフルオロメチル-ジフルオロメチルエーテル、CFOCHF
 HFE-134a(トリフルオロメチル-フルオロメチルエーテル、CFOCHF)
 HFE-143a(トリフルオロメチル-メチルエーテル、CFOCH
 HFE-227ea(トリフルオロメチル-テトラフルオロエチルエーテル、CFOCHFCF
 HFE-236fa(トリフルオロメチル-トリフルオロエチルエーテル、CFOCHCF
 トレーサー化合物は、約10重量百万分率(ppm)~約1000ppmの合計濃度で冷媒組成物中に存在し得る。好ましくは、トレーサー化合物は約30ppm~約500ppmの合計濃度で冷媒組成物中に存在し、最も好ましくは、トレーサー化合物は約50ppm~約300ppmの合計濃度で冷媒組成物中に存在する。
 (3-3)紫外線蛍光染料
 本開示の冷媒組成物は、紫外線蛍光染料として、一種を単独で含有してもよいし、二種以上を含有してもよい。
 紫外線蛍光染料としては、特に限定されず、一般に用いられる紫外線蛍光染料の中から適宜選択することができる。
 紫外線蛍光染料としては、例えば、ナフタルイミド、クマリン、アントラセン、フェナントレン、キサンテン、チオキサンテン、ナフトキサンテン及びフルオレセイン、並びにこれらの誘導体が挙げられる。紫外線蛍光染料としては、ナフタルイミド及びクマリンのいずれか又は両方が特に好ましい。
 (3-4)安定剤
 本開示の冷媒組成物は、安定剤として、一種を単独で含有してもよいし、二種以上を含有してもよい。
 安定剤としては、特に限定されず、一般に用いられる安定剤の中から適宜選択することができる。
 安定剤としては、例えば、ニトロ化合物、エーテル類及びアミン類等が挙げられる。
 ニトロ化合物としては、例えば、ニトロメタン及びニトロエタン等の脂肪族ニトロ化合物、並びにニトロベンゼン及びニトロスチレン等の芳香族ニトロ化合物等が挙げられる。
 エーテル類としては、例えば、1,4-ジオキサン等が挙げられる。
 アミン類としては、例えば、2,2,3,3,3-ペンタフルオロプロピルアミン、ジフェニルアミン等が挙げられる。
 その他にも、ブチルヒドロキシキシレン、ベンゾトリアゾール等が挙げられる。
 安定剤の含有割合は、特に限定されず、冷媒全体に対して、通常、0.01~5質量%とすることが好ましく、0.05~2質量%とすることがより好ましい。
 (3-5)重合禁止剤
 本開示の冷媒組成物は、重合禁止剤として、一種を単独で含有してもよいし、二種以上を含有してもよい。
 重合禁止剤としては、特に限定されず、一般に用いられる重合禁止剤の中から適宜選択することができる。
 重合禁止剤としては、例えば、4-メトキシ-1-ナフトール、ヒドロキノン、ヒドロキノンメチルエーテル、ジメチル-t-ブチルフェノール、2,6-ジ-tert-ブチル-p-クレゾール、ベンゾトリアゾール等が挙げられる。
 重合禁止剤の含有割合は、特に限定されず、冷媒全体に対して、通常、0.01~5質量%とすることが好ましく、0.05~2質量%とすることがより好ましい。
 (4)冷凍機油含有作動流体
 本開示の冷凍機油含有作動流体は、本開示の冷媒又は冷媒組成物と、冷凍機油とを少なくとも含み、冷凍機における作動流体として用いられる。具体的には、本開示の冷凍機油含有作動流体は、冷凍機の圧縮機において使用される冷凍機油と、冷媒又は冷媒組成物とが互いに混じり合うことにより得られる。冷凍機油含有作動流体には冷凍機油は一般に10~50質量%含まれる。
 (4-1)冷凍機油
 冷凍機油としては、特に限定されず、一般に用いられる冷凍機油の中から適宜選択することができる。その際には、必要に応じて、前記混合物との相溶性(miscibility)及び前記混合物の安定性等を向上する作用等の点でより優れている冷凍機油を適宜選択することができる。
 冷凍機油の基油としては、例えば、ポリアルキレングリコール(PAG)、ポリオールエステル(POE)及びポリビニルエーテル(PVE)からなる群より選択される少なくとも一種が好ましい。
 冷凍機油は、基油に加えて、さらに添加剤を含んでいてもよい。添加剤は、酸化防止剤、極圧剤、酸捕捉剤、酸素捕捉剤、銅不活性化剤、防錆剤、油性剤及び消泡剤からなる群より選択される少なくとも一種であってもよい。
 冷凍機油として、40℃における動粘度が5~400 cStであるものが、潤滑の点で好ましい。
 本開示の冷凍機油含有作動流体は、必要に応じて、さらに少なくとも一種の添加剤を含んでもよい。添加剤としては例えば以下の相溶化剤等が挙げられる。
 (4-2)相溶化剤
 本開示の冷凍機油含有作動流体は、相溶化剤として、一種を単独で含有してもよいし、二種以上を含有してもよい。
 相溶化剤としては、特に限定されず、一般に用いられる相溶化剤の中から適宜選択することができる。
 相溶化剤としては、例えば、ポリオキシアルキレングリコールエーテル、アミド、ニトリル、ケトン、クロロカーボン、エステル、ラクトン、アリールエーテル、フルオロエーテルおよび1,1,1-トリフルオロアルカン等が挙げられる。相溶化剤としては、ポリオキシアルキレングリコールエーテルが特に好ましい。
 (5)各種冷媒
 以下、本実施形態において用いられる冷媒である冷媒A~冷媒Eについて、詳細に説明する。
 なお、以下の冷媒A、冷媒B、冷媒C、冷媒D、冷媒Eの各記載は、それぞれ独立しており、点や線分を示すアルファベット、実施例の番号および比較例の番号は、いずれも冷媒A、冷媒B、冷媒C、冷媒D、冷媒Eの間でそれぞれ独立であるものとする。例えば、冷媒Aの実施例1と冷媒Bの実施例1とは、互いに異なる実施例を示している。
 (5-1)冷媒A
 本開示の冷媒Aは、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を含む混合冷媒である。
 本開示の冷媒Aは、R410Aと同等の冷凍能力及び成績係数を有し、かつGWPが十分に小さい、という、R410A代替冷媒として望ましい諸特性を有する。
 本開示の冷媒Aは、HFO-1132(E)及びR1234yf、並びに必要に応じてHFO-1123を含む組成物であって、さらに以下の要件を満たすものであってもよい。この冷媒もR410Aと同等の冷凍能力及び成績係数を有し、かつGWPが十分に小さい、という、R410A代替冷媒として望ましい諸特性を有する。
 要件:
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点A(68.6, 0.0, 31.4)、
   点A’(30.6, 30.0, 39.4)、
   点B(0.0, 58.7, 41.3)、
   点D(0.0, 80.4, 19.6)、
   点C’(19.5, 70.5, 10.0)、
   点C(32.9, 67.1, 0.0)及び
   点O(100.0, 0.0, 0.0)
の7点をそれぞれ結ぶ線分AA’、A’B、BD、DC’、C’C、CO及びOAで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分CO上の点は除く)、
 前記線分AA’は、
  座標(x, 0.0016x2-0.9473x+57.497, 0.0016x2-0.0527x+42.503)
で表わされ、
 前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
 前記線分DC’は、
  座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
 前記線分C’Cは、
  座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
 で表わされ、かつ
 前記線分BD、CO及びOAが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が92.5%以上となる。
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
    点G(72.0, 28.0, 0.0)、
   点I(72.0, 0.0, 28.0)、
   点A(68.6, 0.0, 31.4)、
   点A’(30.6, 30.0, 39.4)、
   点B(0.0, 58.7, 41.3)、
   点D(0.0, 80.4, 19.6)、
   点C’(19.5, 70.5, 10.0)及び
   点C(32.9, 67.1, 0.0)
の8点をそれぞれ結ぶ線分GI、IA、AA’、A’B、BD、DC’、C’C及びCGで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分CG上の点は除く)、
 前記線分AA’は、
  座標(x, 0.0016x2-0.9473x+57.497, 0.0016x2-0.0527x+42.503)
で表わされ、
 前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
 前記線分DC’は、
  座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
 前記線分C’Cは、
  座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
で表わされ、かつ
 前記線分GI、IA、BD及びCGが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が92.5%以上となるだけでなく、さらにASHRAEの規格でWCF微燃性(WCF組成の燃焼速度が10cm/s以下)を示す。
 本開示の冷媒Aは、HFO-1132(E) HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点J(47.1, 52.9, 0.0)、
   点P(55.8, 42.0, 2.2)、
   点N(68.6, 16.3, 15.1)、
   点K(61.3, 5.4, 33.3)、
   点A’(30.6, 30.0, 39.4)、
   点B(0.0, 58.7, 41.3)、
   点D(0.0, 80.4, 19.6)、
   点C’(19.5, 70.5, 10.0) 及び
   点C(32.9, 67.1, 0.0)
の9点をそれぞれ結ぶ線分JP、PN、NK、KA’、A’B、BD、DC’、C’C及びCJで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分CJ上の点は除く)、
 前記線分PNは、
  座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
 前記線分NKは、
  座標(x, 0.2421x2-29.955x+931.91, -0.2421x2+28.955x-831.91)
で表わされ、
 前記線分KA’は、
  座標(x, 0.0016x2-0.9473x+57.497, 0.0016x2-0.0527x+42.503)
で表わされ、
 前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
 前記線分DC’は、
  座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
 前記線分C’Cは、
  座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
で表わされ、かつ
 前記線分JP、BD及びCGが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が92.5%以上となるだけでなく、さらにASHRAEの規格で微燃性(2Lクラス(WCF組成及びWCFF組成の燃焼速度が10cm/s以下))を示す。
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点J(47.1, 52.9, 0.0)、
   点P(55.8, 42.0, 2.2)、
   点L(63.1, 31.9, 5.0)、
   点M(60.3, 6.2, 33.5)、
   点A’(30.6, 30.0, 39.4)、
   点B(0.0, 58.7, 41.3)、
   点D(0.0, 80.4, 19.6)、
   点C’(19.5, 70.5, 10.0)及び
   点C(32.9, 67.1, 0.0)
の9点をそれぞれ結ぶ線分JP、PL、LM、MA’、A’B、BD、DC’、C’C及びCJで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分CJ上の点は除く)、
 前記線分PLは、
  座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
 前記線分MA’は、
  座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
 前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
 前記線分DC’は、
  座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
 前記線分C’Cは、
  座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
で表わされ、かつ
 前記線分JP、LM、BD及びCGが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が92.5%以上となるだけでなく、さらにRCLが40g/m3以上となる。
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点P(55.8, 42.0, 2.2)、
   点L(63.1, 31.9, 5.0)、
   点M(60.3, 6.2, 33.5)、
   点A’(30.6, 30.0, 39.4)、
   点B(0.0, 58.7, 41.3)、
   点F(0.0, 61.8, 38.2)及び
   点T(35.8, 44.9, 19.3)
の7点をそれぞれ結ぶ線分PL、LM、MA’、A’B、BF、FT及びTPで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分BF上の点は除く)、
 前記線分PLは、
  座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
 前記線分MA’は、
  座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
 前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
 前記線分FTは、
  座標(x, 0.0078x2-0.7501x+61.8, -0.0078x2-0.2499x+38.2)
で表わされ、
 前記線分TPは、
  座標(x, 0.0067x2-0.7607x+63.525, -0.0067x2-0.2393x+36.475)
で表わされ、かつ
 前記線分LM及びBFが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が95%以上となるだけでなく、さらにRCLが40g/m3以上となる。
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点P(55.8, 42.0, 2.2)、
   点L(63.1, 31.9, 5.0)、
   点Q(62.8, 29.6, 7.6) 及び
   点R(49.8, 42.3, 7.9)
の4点をそれぞれ結ぶ線分PL、LQ、QR及びRPで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分PLは、
  座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
 前記線分RPは、
  座標(x, 0.0067x2-0.7607x+63.525, -0.0067x2-0.2393x+36.475)
で表わされ、かつ
 前記線分LQ及びQRが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とするCOP比が95%以上となり、かつRCLが40g/m3以上となるだけでなく、さらに凝縮温度グライドが1℃以下となる。
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点S(62.6, 28.3, 9.1)、
   点M(60.3, 6.2, 33.5)、
   点A’(30.6, 30.0, 39.4)、
   点B(0.0, 58.7, 41.3)、
   点F(0.0, 61.8, 38.2)及び
   点T(35.8, 44.9, 19.3)
の6点をそれぞれ結ぶ線分SM、MA’、A’B、BF、FT、及びTSで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分MA’は、
  座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
 前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
 前記線分FTは、
  座標(x, 0.0078x2-0.7501x+61.8, -0.0078x2-0.2499x+38.2)
で表わされ、
 前記線分TSは、
  座標(x, 0.0017x2-0.7869x+70.888, -0.0017x2-0.2131x+29.112)
で表わされ、かつ
 前記線分SM及びBFが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、R410Aを基準とするCOP比が95%以上となり、かつRCLが40g/m3以上となるだけでなく、さらにR410Aを基準とする吐出圧力比が105%以下となる。
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点d(87.6, 0.0, 12.4)、
   点g(18.2, 55.1, 26.7)、
   点h(56.7, 43.3, 0.0)及び
   点O(100.0, 0.0, 0.0)
の4点をそれぞれ結ぶ線分Od、dg、gh及びhOで囲まれる図形の範囲内又は前記線分Od、dg及びgh上にあり(ただし、点O及びhは除く)、
 前記線分dgは、
  座標(0.0047y2-1.5177y+87.598, y, -0.0047y2+0.5177y+12.402)
で表わされ、
 前記線分ghは、
  座標(-0.0134z2-1.0825z+56.692, 0.0134z2+0.0825z+43.308, z)
で表わされ、かつ
 前記線分hO及びOdが直線であれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が92.5%以上となり、かつR410Aを基準とするCOP比が92.5%以上となる。
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点l(72.5, 10.2, 17.3)、
   点g(18.2, 55.1, 26.7)、
   点h(56.7, 43.3, 0.0)及び
   点i(72.5, 27.5, 0.0)
の4点をそれぞれ結ぶ線分lg、gh、hi及びilで囲まれる図形の範囲内又は前記線分lg、gh及びil上にあり(ただし、点h及び点iは除く)、
 前記線分lgは、
  座標(0.0047y2-1.5177y+87.598, y, -0.0047y2+0.5177y+12.402)
で表わされ、
 前記線分ghは、
  座標(-0.0134z2-1.0825z+56.692, 0.0134z2+0.0825z+43.308, z)
で表わされ、かつ
 前記線分hi及びilが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が92.5%以上となり、かつR410Aを基準とするCOP比が92.5%以上となるだけでなく、さらにASHRAEの規格で微燃性(2Lクラス)を示す。
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点d(87.6, 0.0, 12.4)、
   点e(31.1, 42.9, 26.0)、
   点f(65.5, 34.5, 0.0)及び
   点O(100.0, 0.0, 0.0)
の4点をそれぞれ結ぶ線分Od、de、ef及びfOで囲まれる図形の範囲内又は前記線分Od、de及びef上にあり(ただし、点O及び点fは除く)、
 前記線分deは、
  座標(0.0047y2-1.5177y+87.598, y, -0.0047y2+0.5177y+12.402)
で表わされ、
 前記線分efは、
  座標(-0.0064z2-1.1565z+65.501, 0.0064z2+0.1565z+34.499, z)
で表わされ、かつ
 前記線分fO及びOdが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が93.5%以上となり、かつR410Aを基準とするCOP比が93.5%以上となる。
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点l(72.5, 10.2, 17.3)、
   点e(31.1, 42.9, 26.0)、
   点f(65.5, 34.5, 0.0)及び
   点i(72.5, 27.5, 0.0)
の4点をそれぞれ結ぶ線分le、ef、fi及びilで囲まれる図形の範囲内又は前記線分le、ef及びil上にあり(ただし、点f及び点iは除く)、
 前記線分LEは、
  座標(0.0047y2-1.5177y+87.598, y, -0.0047y2+0.5177y+12.402)
で表わされ、
 前記線分efは、
  座標(-0.0134z2-1.0825z+56.692, 0.0134z2+0.0825z+43.308, z)
で表わされ、かつ
 前記線分fi及びilが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が93.5%以上となり、かつR410Aを基準とするCOP比が93.5%以上となるだけでなく、さらにASHRAEの規格で微燃性(2Lクラス)を示す。
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点a(93.4, 0.0, 6.6)、
   点b(55.6, 26.6, 17.8)、
   点c(77.6, 22.4, 0.0)及び
   点O(100.0, 0.0, 0.0)
の4点をそれぞれ結ぶ線分Oa、ab、bc及びcOで囲まれる図形の範囲内又は前記線分Oa、ab及びbc上にあり(ただし、点O及び点cは除く)、
 前記線分abは、
  座標(0.0052y2-1.5588y+93.385, y, -0.0052y2+0. 5588y+6.615)
で表わされ、
 前記線分bcは、
  座標(-0.0032z2-1.1791z+77.593, 0.0032z2+0.1791z+22.407, z)
で表わされ、かつ
 前記線分cO及びOaが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が95%以上となり、かつR410Aを基準とするCOP比が95%以上となる。
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点k(72.5, 14.1, 13.4)、
   点b(55.6, 26.6, 17.8)及び
   点j(72.5, 23.2, 4.3)
の3点をそれぞれ結ぶ線分kb、bj及びjkで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分kbは、
  座標(0.0052y2-1.5588y+93.385, y, -0.0052y2+0. 5588y+6.615)
で表わされ、
 前記線分bjは、
  座標(-0.0032z2-1.1791z+77.593, 0.0032z2+0.1791z+22.407, z)
で表わされ、かつ
 前記線分jkが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が95%以上となり、かつR410Aを基準とするCOP比が95%以上となるだけでなく、さらにASHRAEの規格で微燃性(2Lクラス)を示す。
 本開示の冷媒Aは、上記の特性や効果を損なわない範囲内で、HFO-1132(E)、HFO-1123及びR1234yfに加えて、さらに他の追加的な冷媒を含有していてもよい。この点で、本開示の冷媒が、HFO-1132(E)、HFO-1123及びR1234yfの合計を、冷媒全体に対して99.5質量%以上含むことが好ましく、99.75質量%以上含むことがより好ましく、99.9質量%以上含むことがさらに好ましい。
 また、本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの合計を、冷媒全体に対して99.5質量%以上含むものであってよく、99.75質量%以上含むものであってもよく、さらに99.9質量%以上含むものであってもよい。
 追加的な冷媒としては、特に限定されず、幅広く選択できる。混合冷媒は、追加的な冷媒として、一種を単独で含んでいてもよいし、二種以上を含んでいてもよい。
 (冷媒Aの実施例)
 以下に、冷媒Aの実施例を挙げてさらに詳細に説明する。ただし、冷媒Aは、これらの実施例に限定されるものではない。
 R1234yf、及び、R410A(R32=50%/R125=50%)の混合物を含有する組成物のGWPは、IPCC(Intergovernmental Panel on Climate Change)第4次報告書の値に基づいて評価した。HFO-1132(E)のGWPは記載がないが、HFO-1132a(GWP=1以下)、HFO-1123(GWP=0.3,特許文献1に記載)から、そのGWPを1と想定した。R410A及びHFO-1132(E)、HFO-1123、R1234yfとの混合物を含有する組成物の冷凍能力は、National Institute of Science and Technology(NIST) Reference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使い、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
 また、混合物のRCLは、HFO-1132(E)のLFL=4.7vol%、HFO-1123のLFL=10vol%、R1234yfのLFL=6.2vol%として、ASHRAE34-2013に基づいて求めた。
 蒸発温度:5℃
 凝縮温度:45℃
 過熱度:5K
 過冷却度:5K
 圧縮機効率:70%
 これらの値を、各混合冷媒についてのGWPと合わせて表1~34に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
 これらの結果から、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点A(68.6, 0.0, 31.4)、
   点A’(30.6, 30.0, 39.4)、
   点B(0.0, 58.7, 41.3)、
   点D(0.0, 80.4, 19.6)、
   点C’(19.5, 70.5, 10.0)、
   点C(32.9, 67.1, 0.0)及び
   点O(100.0, 0.0, 0.0)
の7点をそれぞれ結ぶ線分AA’、A’B、BD、DC’、C’C、CO及びOAで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分CO上の点は除く)、
 前記線分AA’は、
  座標(x, 0.0016x2-0.9473x+57.497, 0.0016x2-0.0527x+42.503)
で表わされ、
 前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
 前記線分DC’は、
  座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
 前記線分C’Cは、
  座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
で表わされ、かつ
 前記線分BD、CO及びOAが直線である場合に、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が92.5%以上となることが判る。
 線分AA’上の点は、点A、実施例1、及び点A’の3点を結ぶ近似曲線を最小二乗法により求めることにより決定した。
 線分A’B上の点は、点A’、実施例3、及び点Bの3点を結ぶ近似曲線を最小二乗法により求めることにより決定した。
 線分DC’上の点は、点D、実施例6、及び点C’の3点を結ぶ近似曲線を最小二乗法により求めることにより決定した。
 線分C’C上の点は、点C’、実施例4、及び点Cの3点を結ぶ近似曲線を最小二乗法により求めることにより決定した。
 また、同様に、座標(x,y,z)が、
   点A(68.6, 0.0, 31.4)、
   点A’(30.6, 30.0, 39.4)、
   点B(0.0, 58.7, 41.3)、
   点F(0.0, 61.8, 38.2)、
   点T(35.8, 44.9, 19.3)、
   点E(58.0, 42.0, 0.0)及び
   点O(100.0, 0.0, 0.0)
の7点をそれぞれ結ぶ線分AA’、A’B、BF、FT、TE、EO及びOAで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分EO上の点は除く)、
 前記線分AA’は、
  座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
 前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
 前記線分FTは、
  座標(x, 0.0078x2-0.7501x+61.8, -0.0078x2-0.2499x+38.2)
で表わされ、
 前記線分TEは、
  座標(x, 0.0067x2-0.7607x+63.525, -0.0067x2-0.2393x+36.475)
で表わされ、かつ
 前記線分BF、FO及びOAが直線である場合に、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が95%以上となることが判る。
 線分FT上の点は、点T、E’、Fの3点を結ぶ近似曲線を最小二乗法により求めることにより決定した。
 線分TE上の点は、点E,R,Tの3点を結ぶ近似曲線を最小二乗法により求めることにより決定した。
 表1~34の結果から、HFO-1132(E)、HFO-1123及びR1234yfの混合冷媒においては、これらの総和が100質量%となる3成分組成図であって、点(0.0, 100.0, 0.0)及び点(0.0, 0.0, 100.0)を結ぶ線分を底辺とし、点(0.0, 100.0,0.0)を左側、点(0.0, 0.0, 100.0)を右側とする3成分組成図において、座標(x,y,z)が、
   点L(63.1, 31.9, 5.0)及び
   点M(60.3, 6.2, 33.5)
を結ぶ線分LMの上、又は当該線分の下側にある場合にRCLが40g/m3以上となることが明らかとなった。
 また、表1~34の結果から、HFO-1132(E)、HFO-1123及びR1234yfの混合冷媒においては、これらの総和が100質量%となる3成分組成図であって、点(0.0, 100.0, 0.0)及び点(0.0, 0.0, 100.0)を結ぶ線分を底辺とし、点(0.0, 100.0, 0.0)を左側、点(0.0, 0.0, 100.0)を右側とする3成分組成図において、座標(x,y,z)が、
   点Q(62.8, 29.6, 7.6) 及び
   点R(49.8, 42.3, 7.9)
を結ぶ線分QRの上、又は当該線分の左側にある場合に温度グライドが1℃以下となることが明らかとなった。
 また、表1~34の結果から、HFO-1132(E)、HFO-1123及びR1234yfの混合冷媒においては、これらの総和が100質量%となる3成分組成図であって、点(0.0, 100.0, 0.0)及び点(0.0, 0.0, 100.0)を結ぶ線分を底辺とし、点(0.0, 100.0, 0.0)を左側、点(0.0, 0.0, 100.0)を右側とする3成分組成図において、座標(x,y,z)が、
   点S(62.6, 28.3, 9.1)及び
   点T(35.8, 44.9, 19.3)
を結ぶ線分STの上、又は当該線分の右側にある場合にR410Aを基準とする吐出圧力比が105%以下となることが明らかとなった。
 なお、これらの組成物において、R1234yfは燃焼性の低下や重合等の変質抑制に寄与しており、これを含むことが好ましい。
 さらに、これらの各混合冷媒について、混合組成をWCF濃度としてANSI/ASHRAE34-2013規格に従い燃焼速度を測定した。燃焼速度が10 cm/s以下となるものは「2Lクラス(微燃性)」であるとした。
 なお、燃焼速度試験は図1に示す装置を用いて、以下の通り行った。なお、図1において、901は試料セルを、902は高速カメラを、903はキセノンランプを、904はコリメートレンズを、905はコリメートレンズを、906はリングフィルターをそれぞれ示す。まず、使用した混合冷媒は99.5%またはそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。閉鎖法により燃焼速度を測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。シュリーレン写真を使って炎の広がりを視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。
 また、WCFF濃度は、WCF濃度を初期濃度としてNIST Standard Reference Data Base Refleak Version 4.0により漏洩シミュレーションを行うことで求めた。
 結果を表35及び表36に示す。
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
 表35の結果から、HFO-1132(E)、HFO-1123及びR1234yfの混合冷媒においては、これらの総和を基準として、HFO-1132(E)を72.0質量%以下含む場合に、WCF微燃性と判断できることが明らかとなった。
 表36の結果から、HFO-1132(E)、HFO-1123及びR1234yfの混合冷媒においては、これらの総和が100質量%となる3成分組成図であって、点(0.0, 100.0,0.0)及び点(0.0, 0.0, 100.0)を結ぶ線分を底辺とする3成分組成図において、座標(x,y,z)が、
   点J(47.1, 52.9, 0.0)、
   点P(55.8, 42.0, 2.2)、
   点L(63.1,31.9,5.0)
   点N(68.6, 16.3, 15.1)
   点N’(65.0,7.7,27.3)及び
   点K(61.3, 5.4, 33.3)
の6点をそれぞれ結ぶ線分JP、PN及びNKの上、又は当該線分の下側にある場合に、WCF微燃、及びWCFF微燃性と判断できることが明らかとなった。
 ただし、前記線分PNは、
  座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
 前記線分NKは、
  座標(x, 0.2421x2-29.955x+931.91, -0.2421x2+28.955x-831.91)
で表わされる。
 線分PN上の点は、点P、点L、点Nの3点を結ぶ近似曲線を最小二乗法により求めることにより決定した。
 線分NK上の点は、点N、点N’、点Kの3点を結ぶ近似曲線を最小二乗法により求めることにより決定した。
 (5-2)冷媒B
 本開示の冷媒Bは、
 トランス-1,2-ジフルオロエチレン(HFO-1132(E))及びトリフルオロエチレン(HFO-1123)の合計を、該冷媒の全体に対して99.5質量%以上含み、かつ、該冷媒が、HFO-1132(E)を、該冷媒の全体に対して62.0質量%~72.0質量%又は45.1質量%~47.1質量%含む、混合冷媒であるか、または、
 HFO-1132(E)及びHFO-1123の合計を、該冷媒の全体に対して99.5質量%以上含み、かつ該冷媒が、HFO-1132(E)を、該冷媒の全体に対して45.1質量%~47.1質量%含む、混合冷媒である。
 本開示の冷媒Bは、(1)R410Aと同等の成績係数を有すること、(2)R410Aと同等の冷凍能力を有すること、(3)GWPが十分に小さいこと、及び(4)ASHRAEの規格で微燃性(2Lクラス)であること、という、R410A代替冷媒として望ましい諸特性を有する。
 本開示の冷媒Bは、HFO-1132(E)を72.0質量%以下含む混合冷媒であればWCF微燃となる。本開示の冷媒Bは、HFO-1132(E)を47.1%以下含む組成物であればWCF微燃及びWCFF微燃でASHRAE規格では微燃性冷媒である「2Lクラス」となり、取り扱いがさらに容易となる。
 本開示の冷媒Bは、HFO-1132(E)を、62.0質量%以上含む場合、R410Aを基準とする成績係数比が95%以上でより優れたものとなり、かつHFO-1132(E)及び/又はHFO-1123の重合反応がより抑制され、安定性がより優れたものとなる。本開示の冷媒Bは、HFO-1132(E)を、45.1質量%以上含む場合、R410Aを基準とする成績係数比が93%以上でより優れたものとなり、かつHFO-1132(E)及び/又はHFO-1123の重合反応がより抑制され、安定性がより優れたものとなる。
 本開示の冷媒Bは、上記の特性や効果を損なわない範囲内で、HFO-1132(E)及びHFO-1123に加えて、さらに他の追加的な冷媒を含有していてもよい。この点で、本開示の冷媒Bが、HFO-1132(E)及びHFO-1123の合計を、冷媒全体に対して99.75質量%以上含むことがより好ましく、99.9質量%以上含むことがさらに好ましい。
 追加的な冷媒としては、特に限定されず、幅広く選択できる。混合冷媒は、追加的な冷媒として、一種を単独で含んでいてもよいし、二種以上を含んでいてもよい。
 (冷媒Bの実施例)
 以下に、冷媒Bの実施例を挙げてさらに詳細に説明する。ただし、冷媒Bは、これらの実施例に限定されるものではない。
 HFO-1132(E)及びHFO-1123を、これらの総和を基準として表37及び表38にそれぞれ示した質量%(mass%)で混合した混合冷媒を調製した。
 R410A(R32=50%/R125=50%)の混合物を含有する組成物のGWPは、IPCC(Intergovernmental Panel on Climate Change)第4次報告書の値に基づいて評価した。HFO-1132(E)のGWPは記載がないが、HFO-1132a(GWP=1以下)、HFO-1123(GWP=0.3,特許文献1に記載)から、そのGWPを1と想定した。R410A及びHFO-1132(E)とHFO-1123との混合物を含有する組成物の冷凍能力は、National Institute of Science and Technology(NIST) Reference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使い、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
 蒸発温度5℃
 凝縮温度45℃
 過熱温度5K
 過冷却温度5K
 圧縮機効率70%
 また、各混合物の組成をWCFとし、ASHRAE34-2013規格に従って装置(Equipment)、貯蔵(Storage)、輸送(Shipping)、漏洩(Leak)及び再充填(Recharge)の条件でNIST Standard Reference Data Base Refleak Version 4.0により漏洩シミュレーションを行い、最も燃えやすい分画(fraction)をWCFFとした。
 また、これらの結果をもとに算出したGWP、COP及び冷凍能力を表1、表2に示す。なお、比COP及び比冷凍能力については、R410Aに対する割合を示す。
 成績係数(COP)は、次式により求めた。
 COP =(冷凍能力又は暖房能力)/消費電力量
 また、燃焼性はANSI/ASHRAE34-2013規格に従い燃焼速度を測定した。燃焼速度がWCF及びWCFFともに10 cm/s以下となるものは「2Lクラス(微燃性)」であるとした。
 燃焼速度試験は図1に示す装置を用いて、以下の通り行った。まず、使用した混合冷媒は99.5%またはそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。閉鎖法により燃焼速度を測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。シュリーレン写真を使って炎の広がりを視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
 組成物が、HFO-1132(E)を、該組成物の全体に対して62.0質量%~72.0質量%含む場合に、GWP=1という低いGWPを持ちつつも安定で、かつ、WCF微燃を確保し、更に驚くべきことにR410Aと同等の性能を確保することができる。また、組成物が、HFO-1132(E)を、該組成物の全体に対して45.1質量%~47.1質量%含む場合に、GWP=1という低いGWPを持ちつつも安定で、かつ、WCFF微燃を確保し、更に驚くべきことにR410Aと同等の性能を確保することができる。
 (5-3)冷媒C
 本開示の冷媒Cは、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)、並びにジフルオロメタン(R32)を含む組成物であって、さらに以下の要件を満たす。本開示の冷媒Cは、R410Aと同等の冷凍能力及び成績係数を有し、かつGWPが十分に小さい、という、R410A代替冷媒として望ましい諸特性を有する。
 要件:
 本開示の冷媒Cは、HFO-1132(E)、HFO-1123及びR1234yf、並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz、並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる3成分組成図において、座標(x,y,z)が、
 0<a≦11.1のとき、
   点G(0.026a2-1.7478a+72.0, -0.026a2+0.7478a+28.0, 0.0)、
   点I(0.026a2-1.7478a+72.0, 0.0, -0.026a2+0.7478a+28.0)、
   点A(0.0134a2-1.9681a+68.6, 0.0, -0.0134a2+0.9681a+31.4)、
   点B(0.0, 0.0144a2-1.6377a+58.7, -0.0144a2+0.6377a+41.3)、
   点D’(0.0, 0.0224a2+0.968a+75.4, -0.0224a2-1.968a+24.6)及び
   点C(-0.2304a2-0.4062a+32.9, 0.2304a2-0.5938a+67.1, 0.0)
の6点をそれぞれ結ぶ直線GI、IA、AB、BD’、D’C及びCGで囲まれる図形の範囲内又は前記直線GI、AB及びD’C上にあり(ただし、点G、点I、点A、点B、点D’及び点Cは除く)、
 11.1<a≦18.2のとき、
   点G(0.02a2-1.6013a+71.105, -0.02a2+0.6013a+28.895, 0.0)、
   点I(0.02a2-1.6013a+71.105, 0.0, -0.02a2+0.6013a+28.895)、
   点A(0.0112a2-1.9337a+68.484, 0.0, -0.0112a2+0.9337a+31.516)、
   点B(0.0, 0.0075a2-1.5156a+58.199, -0.0075a2+0.5156a+41.801)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、
 18.2<a≦26.7のとき、
   点G(0.0135a2-1.4068a+69.727, -0.0135a2+0.4068a+30.273, 0.0)、
   点I(0.0135a2-1.4068a+69.727, 0.0, -0.0135a2+0.4068a+30.273)、
   点A(0.0107a2-1.9142a+68.305, 0.0, -0.0107a2+0.9142a+31.695)、
   点B(0.0, 0.009a2-1.6045a+59.318, -0.009a2+0.6045a+40.682)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、
 26.7<a≦36.7のとき、
   点G(0.0111a2-1.3152a+68.986, -0.0111a2+0.3152a+31.014, 0.0)、
   点I(0.0111a2-1.3152a+68.986, 0.0, -0.0111a2+0.3152a+31.014)、
   点A(0.0103a2-1.9225a+68.793, 0.0, -0.0103a2+0.9225a+31.207)、
   点B(0.0, 0.0046a2-1.41a+57.286, -0.0046a2+0.41a+42.714)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、及び
 36.7<a≦46.7のとき、
   点G(0.0061a2-0.9918a+63.902, -0.0061a2-0.0082a+36.098, 0.0)、
   点I(0.0061a2-0.9918a+63.902, 0.0, -0.0061a2+0.0082a+36.098)、
   点A(0.0085a2-1.8102a+67.1, 0.0, -0.0085a2+0.8102a+32.9)、
   点B(0.0, 0.0012a2-1.1659a+52.95, -0.0012a2+0.1659a+47.05)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にある(ただし、点G、点I、点A、点B及び点Wは除く)ものが含まれる。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が92.5%以上となり、さらにWCF微燃性となる。
 本開示の冷媒Cは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる3成分組成図において、座標(x,y,z)が、
 0<a≦11.1のとき、
   点J(0.0049a2-0.9645a+47.1, -0.0049a2-0.0355a+52.9, 0.0)、
   点K’(0.0514a2-2.4353a+61.7, -0.0323a2+0.4122a+5.9, -0.0191a2+1.0231a+32.4)、
   点B(0.0, 0.0144a2-1.6377a+58.7, -0.0144a2+0.6377a+41.3)、
   点D’(0.0, 0.0224a2+0.968a+75.4, -0.0224a2-1.968a+24.6)及び
   点C(-0.2304a2-0.4062a+32.9, 0.2304a2-0.5938a+67.1, 0.0)
の5点をそれぞれ結ぶ直線JK’、K’B、BD’、D’C及びCJで囲まれる図形の範囲内又は前記直線JK’、K’B及びD’C上にあり(ただし、点J、点B、点D’及び点Cは除く)、
 11.1<a≦18.2のとき、
   点J(0.0243a2-1.4161a+49.725, -0.0243a2+0.4161a+50.275, 0.0)、
   点K’(0.0341a2-2.1977a+61.187, -0.0236a2+0.34a+5.636, -0.0105a2+0.8577a+33.177)、
   点B(0.0, 0.0075a2-1.5156a+58.199, -0.0075a2+0.5156a+41.801)及び
   点W(0.0, 100.0-a, 0.0)
の4点をそれぞれ結ぶ直線JK’、K’B、BW及びWJで囲まれる図形の範囲内又は前記直線JK’及びK’B上にあり(ただし、点J、点B及び点Wは除く)、
 18.2<a≦26.7のとき、
   点J(0.0246a2-1.4476a+50.184, -0.0246a2+0.4476a+49.816, 0.0)、
   点K’(0.0196a2-1.7863a+58.515, -0.0079a2-0.1136a+8.702, -0.0117a2+0.8999a+32.783)、
   点B(0.0, 0.009a2-1.6045a+59.318, -0.009a2+0.6045a+40.682)及び
   点W(0.0, 100.0-a, 0.0)
の4点をそれぞれ結ぶ直線JK’、K’B、BW及びWJで囲まれる図形の範囲内又は前記直線JK’及びK’B上にあり(ただし、点J、点B及び点Wは除く)、
 26.7<a≦36.7のとき、
   点J(0.0183a2-1.1399a+46.493, -0.0183a2+0.1399a+53.507, 0.0)、
   点K’(-0.0051a2+0.0929a+25.95, 0.0, 0.0051a2-1.0929a+74.05)、
   点A(0.0103a2-1.9225a+68.793, 0.0, -0.0103a2+0.9225a+31.207)、
   点B(0.0, 0.0046a2-1.41a+57.286, -0.0046a2+0.41a+42.714)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線JK’、K’A、AB、BW及びWJで囲まれる図形の範囲内又は前記直線JK’、K'A及びAB上にあり(ただし、点J、点B及び点Wは除く)、及び
 36.7<a≦46.7のとき、
   点J(-0.0134a2+1.0956a+7.13, 0.0134a2-2.0956a+92.87, 0.0)、
   点K’(-1.892a+29.443, 0.0, 0.892a+70.557)、
   点A(0.0085a2-1.8102a+67.1, 0.0, -0.0085a2+0.8102a+32.9)、
   点B(0.0, 0.0012a2-1.1659a+52.95, -0.0012a2+0.1659a+47.05)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線JK’、K’A、AB、BW及びWJで囲まれる図形の範囲内又は前記直線JK’、K'A及びAB上にある(ただし、点J、点B及び点Wは除く)ものが含まれる。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が92.5%以上となるだけでなく、さらにWCF微燃及びWCFF微燃でASHRAE規格では微燃性冷媒である「2Lクラス」を示す。
 本開示の冷媒Cは、HFO-1132(E)、HFO-1123及びR1234yfに加えて、さらにR32を含む場合、HFO-1132(E)、HFO-1123及びR1234yf並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる3成分組成図において、座標(x,y,z)が、
 0<a≦10.0のとき、
   点a(0.02a2-2.46a+93.4, 0, -0.02a2+2.46a+6.6)、
   点b’(-0.008a2-1.38a+56, 0.018a2-0.53a+26.3, -0.01a2+1.91a+17.7)、
   点c(-0.016a2+1.02a+77.6, 0.016a2-1.02a+22.4, 0)及び
   点o(100.0-a, 0.0, 0.0)
の4点をそれぞれ結ぶ直線で囲まれる図形の範囲内又は前記直線oa、ab’及びb’c上にあり(ただし、点o及び点cは除く)、
 10.0<a≦16.5のとき、
   点a(0.0244a2-2.5695a+94.056, 0, -0.0244a2+2.5695a+5.944)、
   点b’(0.1161a2-1.9959a+59.749, 0.014a2-0.3399a+24.8, -0.1301a2+2.3358a+15.451)、
   点c(-0.0161a2+1.02a+77.6, 0.0161a2-1.02a+22.4, 0)及び
   点o(100.0-a, 0.0, 0.0)
の4点をそれぞれ結ぶ直線で囲まれる図形の範囲内又は前記直線oa、ab’及びb’c上にあり(ただし、点o及び点cは除く)、又は
 16.5<a≦21.8のとき、
   点a(0.0161a2-2.3535a+92.742, 0, -0.0161a2+2.3535a+7.258)、
   点b’(-0.0435a2-0.0435a+50.406, -0.0304a2+1.8991a-0.0661, 0.0739a2-1.8556a+49.6601)、
   点c(-0.0161a2+0.9959a+77.851, 0.0161a2-0.9959a+22.149, 0)及び
   点o(100.0-a, 0.0, 0.0)
の4点をそれぞれ結ぶ直線で囲まれる図形の範囲内又は前記直線oa、ab’及びb’c上にあるものとすることができる(ただし、点o及び点cは除く)。なお、点b’は、前記3成分組成図において、R410Aを基準とする冷凍能力比が95%となり、かつR410Aを基準とするCOP比が95%となる点を点bとすると、R410Aを基準とするCOP比が95%となる点を結ぶ近似直線と、直線abとの交点である。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が95%以上となり、かつR410Aを基準とするCOP比が95%以上となる。
 本開示の冷媒Cは、上記の特性や効果を損なわない範囲内で、HFO-1132(E)、HFO-1123及びR1234yf並びにR32に加えて、さらに他の追加的な冷媒を含有していてもよい。この点で、本開示の冷媒が、HFO-1132(E)、HFO-1123及びR1234yf並びにR32の合計を、冷媒全体に対して99.5質量%以上含むことが好ましく、99.75質量%以上含むことがより好ましく、99.9質量%以上含むことがさらに好ましい。
 また、本開示の冷媒Cは、HFO-1132(E)、HFO-1123及びR1234yf並びにR32の合計を、冷媒全体に対して99.5質量%以上含むものであってよく、99.75質量%以上含むものであってもよく、さらに99.9質量%以上含むものであってもよい。
 追加的な冷媒としては、特に限定されず、幅広く選択できる。混合冷媒は、追加的な冷媒として、一種を単独で含んでいてもよいし、二種以上を含んでいてもよい。
 (冷媒Cの実施例)
 以下に、冷媒Cの実施例を挙げてさらに詳細に説明する。ただし、冷媒Cは、これらの実施例に限定されるものではない。
 HFO-1132(E)、HFO-1123及びR1234yf、並びにR32を、これらの総和を基準として、表39~96にそれぞれ示した質量%で混合した混合冷媒を調製した。
 R410A(R32=50%/R125=50%)の混合物を含有する組成物のGWPは、IPCC(Intergovernmental Panel on Climate Change)第4次報告書の値に基づいて評価した。HFO-1132(E)のGWPは記載がないが、HFO-1132a(GWP=1以下)、HFO-1123(GWP=0.3,特許文献1に記載)から、そのGWPを1と想定した。R410A及びHFO-1132(E)とHFO-1123との混合物を含有する組成物の冷凍能力は、National Institute of Science and Technology(NIST) Reference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使い、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
 これらの各混合冷媒について、R410を基準とするCOP比及び冷凍能力比をそれぞれ求めた。計算条件は以下の通りとした。
 蒸発温度:5℃
 凝縮温度:45℃
 過熱度:5K
 過冷却度;5K
 圧縮機効率70%
 これらの値を、各混合冷媒についてのGWPと合わせて表39~96に示す。なお、比COP及び比冷凍能力については、R410Aに対する割合を示す。
 成績係数(COP)は、次式により求めた。
 COP =(冷凍能力又は暖房能力)/消費電力量
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000078
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000080
Figure JPOXMLDOC01-appb-T000081
Figure JPOXMLDOC01-appb-T000082
Figure JPOXMLDOC01-appb-T000083
Figure JPOXMLDOC01-appb-T000084
Figure JPOXMLDOC01-appb-T000085
Figure JPOXMLDOC01-appb-T000086
Figure JPOXMLDOC01-appb-T000087
Figure JPOXMLDOC01-appb-T000088
Figure JPOXMLDOC01-appb-T000089
Figure JPOXMLDOC01-appb-T000090
Figure JPOXMLDOC01-appb-T000091
Figure JPOXMLDOC01-appb-T000092
Figure JPOXMLDOC01-appb-T000093
Figure JPOXMLDOC01-appb-T000094
Figure JPOXMLDOC01-appb-T000095
Figure JPOXMLDOC01-appb-T000096
 これらの結果から、HFO-1132(E)、HFO-1123及びR1234yf、並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz、並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる、点(0.0, 100.0-a, 0.0)と点(0.0, 0.0, 100,0-a)とを結ぶ直線を底辺とし、かつ点(0.0, 100.0-a, 0.0)が左側となる3成分組成図において、座標(x,y,z)が、
 0<a≦11.1のとき、
   点A(0.0134a2-1.9681a+68.6, 0.0, -0.0134a2+0.9681a+31.4)と
   点B(0.0, 0.0144a2-1.6377a+58.7, -0.0144a2+0.6377a+41.3)と
を結ぶ直線ABの線上又は左側、
 11.1<a≦18.2のとき、
   点A(0.0112a2-1.9337a+68.484, 0.0, -0.0112a2+0.9337a+31.516)と
   点B(0.0, 0.0075a2-1.5156a+58.199, -0.0075a2+0.5156a+41.801)と
を結ぶ直線ABの線上又は左側、
 18.2<a≦26.7のとき、
   点A(0.0107a2-1.9142a+68.305, 0.0, -0.0107a2+0.9142a+31.695)と
   点B(0.0, 0.009a2-1.6045a+59.318, -0.009a2+0.6045a+40.682)と
を結ぶ直線ABの線上又は左側、
 26.7<a≦36.7のとき、
   点A(0.0103a2-1.9225a+68.793, 0.0, -0.0103a2+0.9225a+31.207)と
   点B(0.0, 0.0046a2-1.41a+57.286, -0.0046a2+0.41a+42.714)と
を結ぶ直線ABの線上又は左側、並びに
 36.7<a≦46.7のとき、
   点A(0.0085a2-1.8102a+67.1, 0.0, -0.0085a2+0.8102a+32.9)と
   点B(0.0, 0.0012a2-1.1659a+52.95, -0.0012a2+0.1659a+47.05)と
を結ぶ直線ABの線上又は左側にある場合に、R410Aを基準とする冷凍能力比が85%以上となることが判る。なお、実際の冷凍能力比85%の点は、図3に示す点A、点Bを結ぶ1234yf側に広がった曲線となる。従って、直線ABの線上又は左側にある場合に、R410Aを基準とする冷凍能力比が85%以上となる。
 同様に、上記3成分組成図において、座標(x,y,z)が、
 0<a≦11.1のとき、
   点D’(0.0, 0.0224a2+0.968a+75.4, -0.0224a2-1.968a+24.6)と
   点C(-0.2304a2-0.4062a+32.9, 0.2304a2-0.5938a+67.1, 0.0)と
を結ぶ直線D’Cの線上又は右側にある場合に、また、
 11.1<a≦46.7のとき、
全ての領域内にある場合に、R410Aを基準とするCOP比が92.5%以上となることが判る。
 なお、図3においてCOP比が92.5%以上となるのは曲線CDであるが、図3ではR1234yf濃度が5質量%、10質量%のときにCOP比が92.5%となる点(26.6, 68.4,5),(19.5, 70.5, 10)、及び点C(32.9, 67.1, 0.0)の3点を結ぶ近似直線を求め、HFO-1132(E)濃度が0.0質量%との交点D’(0, 75.4, 24.6)と点Cを結ぶ直線を線分D’Cとした。また、図4では、COP比が92.5%となる点C(18.4, 74.5,0)、点(13.9, 76.5, 2.5)、点(8.7, 79.2, 5)を結ぶ近似曲線から同様にD’(0, 83.4, 9.5)を求め、点Cと結ぶ直線をD’Cとした。
 また、各混合物の組成をWCFとし、ASHRAE34-2013規格に従って装置(Equipment)、貯蔵(Storage)、輸送(Shipping)、漏洩(Leak)及び再充填(Recharge)の条件でNIST Standard Reference Data Base Refleak Version 4.0により漏洩シミュレーションを行い、最も燃えやすい分画(fraction)をWCFFとした。また、燃焼性はANSI/ASHRAE34-2013規格に従い燃焼速度を測定した。燃焼速度がWCF及びWCFFともに10 cm/s以下となるものは「2Lクラス(微燃性)」であるとした。
 なお、燃焼速度試験は図1に示す装置を用いて、以下の通り行った。まず、使用した混合冷媒は99.5%またはそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。閉鎖法により燃焼速度を測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。シュリーレン写真を使って炎の広がりを視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。
 結果を表97~104に示す。
Figure JPOXMLDOC01-appb-T000097
Figure JPOXMLDOC01-appb-T000098
Figure JPOXMLDOC01-appb-T000099
Figure JPOXMLDOC01-appb-T000100
Figure JPOXMLDOC01-appb-T000101
Figure JPOXMLDOC01-appb-T000102
Figure JPOXMLDOC01-appb-T000103
Figure JPOXMLDOC01-appb-T000104
 表97~100の結果から、HFO-1132(E)、HFO-1123及びR1234yf、並びにR32の混合冷媒においては、HFO-1132(E)、HFO-1123及びR1234yf、並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz、並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる、点(0.0,100.0-a, 0.0)と点(0.0, 0.0, 100,0-a)とを結ぶ直線を底辺とする3成分組成図において、
 0<a≦11.1のとき、
   点G(0.026a2-1.7478a+72.0, -0.026a2+0.7478a+28.0, 0.0)と
   点I(0.026a2-1.7478a+72.0, 0.0, -0.026a2+0.7478a+28.0)と
を結ぶ直線GIの線上又は下、
 11.1<a≦18.2のとき、
   点G(0.02a2-1.6013a+71.105, -0.02a2+0.6013a+28.895, 0.0)と
   点I(0.02a2-1.6013a+71.105, 0.0, -0.02a2+0.6013a+28.895)と
を結ぶ直線GIの線上又は下、
 18.2<a≦26.7のとき、
   点G(0.0135a2-1.4068a+69.727, -0.0135a2+0.4068a+30.273, 0.0)と
   点I(0.0135a2-1.4068a+69.727, 0.0, -0.0135a2+0.4068a+30.273)と
を結ぶ直線GIの線上又は下、
 26.7<a≦36.7のとき、
   点G(0.0111a2-1.3152a+68.986, -0.0111a2+0.3152a+31.014, 0.0)と
   点I(0.0111a2-1.3152a+68.986, 0.0, -0.0111a2+0.3152a+31.014)と
を結ぶ直線GIの線上又は下、及び
 36.7<a≦46.7のとき、
   点G(0.0061a2-0.9918a+63.902, -0.0061a2-0.0082a+36.098,0.0)と
   点I(0.0061a2-0.9918a+63.902, 0.0, -0.0061a2-0.0082a+36.098)と
を結ぶ直線GIの線上又は下にある場合に、WCF微燃性と判断できることが明らかとなった。なお、点G(表105)及びI(表106)は、計算により以下の5範囲毎に三点ずつを求め、これらの近似式を求めた。
Figure JPOXMLDOC01-appb-T000105
Figure JPOXMLDOC01-appb-T000106
 表101~104の結果から、HFO-1132(E)、HFO-1123及びR1234yf、並びにR32の混合冷媒においては、HFO-1132(E)、HFO-1123及びR1234yf、並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz、並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる、点(0.0,100.0-a, 0.0)と点(0.0, 0.0, 100,0-a)とを結ぶ直線を底辺とする3成分組成図において、
 0<a≦11.1のとき、
   点J(0.0049a2-0.9645a+47.1, -0.0049a2-0.0355a+52.9, 0.0)と
   点K’(0.0514a2-2.4353a+61.7, -0.0323a2+0.4122a+5.9, -0.0191a2+1.0231a+32.4)と
を結ぶ直線JK’の線上又は下、
 11.1<a≦18.2のとき、
   点J(0.0243a2-1.4161a+49.725, -0.0243a2+0.4161a+50.275, 0.0)と
   点K’(0.0341a2-2.1977a+61.187, -0.0236a2+0.34a+5.636, -0.0105a2+0.8577a+33.177)と
を結ぶ直線JK’の線上又は下、
 18.2<a≦26.7のとき、
   点J(0.0246a2-1.4476a+50.184, -0.0246a2+0.4476a+49.816, 0.0)と
   点K’(0.0196a2-1.7863a+58.515, -0.0079a2-0.1136a+8.702, -0.0117a2+0.8999a+32.783)とを結ぶ直線JK’の線上又は下、
 26.7<a≦36.7のとき、
   点J(0.0183a2-1.1399a+46.493, -0.0183a2+0.1399a+53.507, 0.0)と
   点K’(-0.0051a2+0.0929a+25.95, 0.0, 0.0051a2-1.0929a+74.05)と
を結ぶ直線JK’の線上又は下、及び
 36.7<a≦46.7のとき、
   点J(-0.0134a2+1.0956a+7.13, 0.0134a2-2.0956a+92.87, 0.0)と
   点K’(-1.892a+29.443, 0.0, 0.892a+70.557)と
を結ぶ直線JK’の線上又は下にある場合に、WCFF微燃性と判断でき、ASHRAE規格の燃焼性分類で「2L(微燃性)」になることが明らかとなった。
 なお、実際のWCFF微燃の点は、図3に示す点J、点K’(直線AB上)を結ぶHFO-1132(E)側に広がった曲線となる。従って、直線JK’の線上又は下側にある場合にはWCFF微燃性となる。
 なお、点J(表107)及びK’(表108)は、計算により以下の5範囲毎に三点ずつを求め、これらの近似式を求めた。
Figure JPOXMLDOC01-appb-T000107
Figure JPOXMLDOC01-appb-T000108
 なお、図3~13は、それぞれ、順に、R32含有割合a(質量%)が、0質量%、7.1質量%、11.1質量%、14.5質量%、18.2質量%、21.9質量%、26.7質量%、29.3質量%、36.7質量%、44.1質量%及び47.8質量%の場合の組成を表わしている。
 点A、B、C、D’は、近似計算によりそれぞれ以下のようにして求めた。
 点Aは、HFO-1123含有割合が0質量%であり、かつR410Aを基準とする冷凍能力比が85%となる点である。点Aについて、計算により以下の5範囲毎に三点ずつを求め、これらの近似式を求めた(表109)。
Figure JPOXMLDOC01-appb-T000109
 点Bは、HFO-1132(E)含有割合が0質量%であり、かつR410Aを基準とする冷凍能力比が85%となる点である。点Bについて、計算により以下の5範囲毎に三点ずつを求め、これらの近似式を求めた(表110)。
Figure JPOXMLDOC01-appb-T000110
 点D’は、HFO-1132(E)含有割合が0質量%であり、かつR410Aを基準とするCOP比が95.5%となる点である。点D’について、計算により以下の三点ずつを求め、これらの近似式を求めた(表111)。
Figure JPOXMLDOC01-appb-T000111
 点Cは、R1234yf含有割合が0質量%であり、かつR410Aを基準とするCOP比が95.5%となる点である。点Cについて、計算により以下の三点ずつを求め、これらの近似式を求めた(表112)。
Figure JPOXMLDOC01-appb-T000112
 (5-4)冷媒D
 本開示の冷媒Dは、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、ジフルオロメタン(R32)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を含む混合冷媒である。
 本開示の冷媒Dは、R410Aと同等の冷却能力を有し、GWPが十分に小さく、かつASHRAEの規格で微燃性(2Lクラス)である、という、R410A代替冷媒として望ましい諸特性を有する。
 本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点I(72.0, 0.0, 28.0)、
   点J(48.5, 18.3, 33.2)、
   点N(27.7, 18.2, 54.1)及び
   点E(58.3, 0.0, 41.7)
の4点をそれぞれ結ぶ線分IJ、JN、NE、及びEIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分EI上にある点は除く)、
 前記線分IJは、
  座標(0.0236y2-1.7616y+72.0, y, -0.0236y2+0.7616y+28.0)
で表わされ、
 前記線分NEは、
  座標(0.012y2-1.9003y+58.3, y, -0.012y2+0.9003y+41.7)
で表わされ、かつ
 前記線分JN及びEIが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が80%以上となり、GWPが125以下となり、かつWCF微燃となる。
 本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点M(52.6, 0.0, 47.4)、
   点M’(39.2, 5.0, 55.8)、
   点N(27.7, 18.2, 54.1)、
   点V(11.0, 18.1, 70.9)及び
   点G(39.6, 0.0, 60.4)
の5点をそれぞれ結ぶ線分MM’、M’N、NV、VG、及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GM上にある点は除く)、
 前記線分MM’は、
  座標(x, 0.132x2-3.34x+52.6, -0.132x2+2.34x+47.4)
で表わされ、
 前記線分M’Nは、
  座標(x, 0.0313x2-1.4551x+43.824, -0.0313x2+0.4551x+56.176)
で表わされ、
 前記線分VGは、
  座標(0.0123y2-1.8033y+39.6, y, -0.0123y2+0.8033y+60.4)
で表わされ、かつ
 前記線分NV及びGMが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が70%以上となり、GWPが125以下となり、かつASHRAE微燃となる。
 本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点O(22.6, 36.8, 40.6)、
   点N(27.7, 18.2, 54.1)及び
   点U(3.9, 36.7, 59.4)
の3点をそれぞれ結ぶ線分ON、NU及びUOで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分ONは、
  座標(0.0072y2-0.6701y+37.512, y, -0.0072y2-0.3299y+62.488)
で表わされ、
 前記線分NUは、
  座標(0.0083y2-1.7403y+56.635, y, -0.0083y2+0.7403y+43.365)
で表わされ、かつ
 前記線分UOが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が80%以上となり、GWPが250以下となり、かつASHRAE微燃となる。
 本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点Q(44.6, 23.0, 32.4)、
   点R(25.5, 36.8, 37.7)、
   点T(8.6, 51.6, 39.8)、
   点L(28.9, 51.7, 19.4)及び
   点K(35.6, 36.8, 27.6)
の5点をそれぞれ結ぶ線分QR、RT、TL、LK及びKQで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分QRは、
  座標(0.0099y2-1.975y+84.765, y, -0.0099y2+0.975y+15.235)
で表わされ、
 前記線分RTは、
  座標(0.082y2-1.8683y+83.126, y, -0.082y2+0.8683y+16.874)
で表わされ、
 前記線分LKは、
  座標(0.0049y2-0.8842y+61.488, y, -0.0049y2-0.1158y+38.512)
で表わされ、
 前記線分KQは、
  座標(0.0095y2-1.2222y+67.676, y, -0.0095y2+0.2222y+32.324)
で表わされ、かつ
 前記線分TLが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が92.5%以上となり、GWPが350以下となり、かつWCF微燃となる。
 本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準と
する質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの
総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点P(20.5, 51.7, 27.8)、
   点S(21.9, 39.7, 38.4)及び
   点T(8.6, 51.6, 39.8)
の3点をそれぞれ結ぶ線分PS、ST及びTPで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分PSは、
  座標(0.0064y2-0.7103y+40.1, y, -0.0064y2-0.2897y+59.9)
で表わされ、
 前記線分STは、
  座標(0.082y2-1.8683y+83.126, y, -0.082y2+0.8683y+16.874)
で表わされ、かつ
 前記線分TPが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が92.5%以上となり、GWPが350以下となり、かつASHRAE微燃となる。
 本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点a(71.1, 0.0, 28.9)、
   点c(36.5, 18.2, 45.3)、
   点f(47.6, 18.3, 34.1)及び
   点d(72.0, 0.0, 28.0)
の4点をそれぞれ結ぶ線分ac、cf、fd、及びdaで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分acは、
  座標(0.0181y2-2.2288y+71.096, y, -0.0181y2+1.2288y+28.904)
で表わされ、
 前記線分fdは、
  座標(0.02y2-1.7y+72, y, -0.02y2+0.7y+28)
で表わされ、かつ
 前記線分cf及びdaが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、GWPが125以下となり、かつASHRAEの規格で微燃性(2Lクラス)となる。
 本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点a(71.1, 0.0, 28.9)、
   点b(42.6, 14.5, 42.9)、
   点e(51.4, 14.6, 34.0)及び
   点d(72.0, 0.0, 28.0)
の4点をそれぞれ結ぶ線分ab、be、ed、及びdaで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分abは、
  座標(0.0181y2-2.2288y+71.096, y, -0.0181y2+1.2288y+28.904)
で表わされ、
 前記線分edは、
  座標(0.02y2-1.7y+72, y, -0.02y2+0.7y+28)
で表わされ、かつ
 前記線分be及びdaが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、GWPが100以下となり、かつASHRAEの規格で微燃性(2Lクラス)となる。
 本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点g(77.5, 6.9, 15.6)、
   点iI(55.1, 18.3, 26.6)及び
   点j(77.5. 18.4, 4.1)
の3点をそれぞれ結ぶ線分gi、ij及びjkで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分giは、
  座標(0.02y2-2.4583y+93.396, y, -0.02y2+1.4583y+6.604)
で表わされ、かつ
 前記線分ij及びjkが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が95%以上となり、GWPが100以下となり、かつ重合や分解などの変化を起こしにくく、安定性に優れている。
 本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点g(77.5, 6.9, 15.6)、
   点h(61.8, 14.6, 23.6)及び
   点k(77.5, 14.6, 7.9)
の3点をそれぞれ結ぶ線分gh、hk及びkgで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分ghは、
  座標(0.02y2-2.4583y+93.396, y, -0.02y2+1.4583y+6.604)
で表わされ、かつ
 前記線分hk及びkgが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が95%以上となり、GWPが100以下となり、かつ重合や分解などの変化を起こしにくく、安定性に優れている。
 本開示の冷媒Dは、上記の特性や効果を損なわない範囲内で、HFO-1132(E)、R32及びR1234yfに加えて、さらに他の追加的な冷媒を含有していてもよい。この点で、本開示の冷媒Dが、HFO-1132(E)、R32及びR1234yfの合計を、冷媒全体に対して99.5質量%以上含むことが好ましく、99.75質量%以上含むことがより好ましく、99.9質量%以上含むことがさらに好ましい。
 追加的な冷媒としては、特に限定されず、幅広く選択できる。混合冷媒は、追加的な冷媒として、一種を単独で含んでいてもよいし、二種以上を含んでいてもよい。
 (冷媒Dの実施例)
 以下に、冷媒Dの実施例を挙げてさらに詳細に説明する。ただし、冷媒Dは、これらの実施例に限定されるものではない。
 HFO-1132(E)、R32及びR1234yfの各混合冷媒の組成をWCFとし、ASHRAE34-2013規格に従って装置(Equipment)、貯蔵(Storage)、輸送(Shipping)、漏洩(Leak)及び再充填(Recharge)の条件でNIST Standard Reference Data Base Refleak Version 4.0により漏洩シミュレーションを行い、最も燃えやすい分画(fraction)をWCFFとした。
 なお、燃焼速度試験は図1に示す装置を用いて、以下の通り行った。まず、使用した混合冷媒は99.5%またはそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。閉鎖法により燃焼速度を測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。シュリーレン写真を使って炎の広がりを視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。結果を表113~115に示す。
Figure JPOXMLDOC01-appb-T000113
Figure JPOXMLDOC01-appb-T000114
Figure JPOXMLDOC01-appb-T000115
 これらの結果から、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる図14の3成分組成図において、座標(x,y,z)が、点I、点J、点K及び点Lをそれぞれ結ぶ線分上又は該線分よりも下側にある場合、WCF微燃となることが判る。
 また、これらの結果から、図14の3成分組成図において、上記座標(x,y,z)が、点M、点M’、点W、点J、点N及び点Pをそれぞれ結ぶ線分上又は該線分よりも下側にある場合、ASHRAE微燃となることが判る。
 HFO-1132(E)、R32及びR1234yfを、これらの総和を基準として、表116~144にそれぞれ示した質量%で混合した混合冷媒を調製した。表116~144の各混合冷媒について、R410を基準とする成績係数[Coefficient of Performance(COP)]比及び冷凍能力比をそれぞれ求めた。計算条件は以下の通りとした。
 蒸発温度:5℃
 凝縮温度:45℃
 過熱度:5K
 過冷却度;5K
 圧縮機効率70%
 これらの値を、各混合冷媒についてのGWPと合わせて表116~144に示す。
Figure JPOXMLDOC01-appb-T000116
Figure JPOXMLDOC01-appb-T000117
Figure JPOXMLDOC01-appb-T000118
Figure JPOXMLDOC01-appb-T000119
Figure JPOXMLDOC01-appb-T000120
Figure JPOXMLDOC01-appb-T000121
Figure JPOXMLDOC01-appb-T000122
Figure JPOXMLDOC01-appb-T000123
Figure JPOXMLDOC01-appb-T000124
Figure JPOXMLDOC01-appb-T000125
Figure JPOXMLDOC01-appb-T000126
Figure JPOXMLDOC01-appb-T000127
Figure JPOXMLDOC01-appb-T000128
Figure JPOXMLDOC01-appb-T000129
Figure JPOXMLDOC01-appb-T000130
Figure JPOXMLDOC01-appb-T000131
Figure JPOXMLDOC01-appb-T000132
Figure JPOXMLDOC01-appb-T000133
Figure JPOXMLDOC01-appb-T000134
Figure JPOXMLDOC01-appb-T000135
Figure JPOXMLDOC01-appb-T000136
Figure JPOXMLDOC01-appb-T000137
Figure JPOXMLDOC01-appb-T000138
Figure JPOXMLDOC01-appb-T000139
Figure JPOXMLDOC01-appb-T000140
Figure JPOXMLDOC01-appb-T000141
Figure JPOXMLDOC01-appb-T000142
Figure JPOXMLDOC01-appb-T000143
Figure JPOXMLDOC01-appb-T000144
 これらの結果から、本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点I(72.0, 0.0, 28.0)、
   点J(48.5, 18.3, 33.2)、
   点N(27.7, 18.2, 54.1)及び
   点E(58.3, 0.0, 41.7)
の4点をそれぞれ結ぶ線分IJ、JN、NE、及びEIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分EI上にある点は除く)、
 前記線分IJは、
  座標(0.0236y2-1.7616y+72.0, y, -0.0236y2+0.7616y+28.0)
で表わされ、
 前記線分NEは、
  座標(0.012y2-1.9003y+58.3, y, -0.012y2+0.9003y+41.7)
で表わされ、かつ
 前記線分JN及びEIが直線である場合、R410Aを基準とする冷凍能力比が80%以上となり、GWPが125以下となり、かつWCF微燃となることが判る。
 また、本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点M(52.6, 0.0, 47.4)、
   点M’(39.2, 5.0, 55.8)、
   点N(27.7, 18.2, 54.1)、
   点V(11.0, 18.1, 70.9)及び
   点G(39.6, 0.0, 60.4)
の5点をそれぞれ結ぶ線分MM’、M’N、NV、VG、及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GM上にある点は除く)、
 前記線分MM’は、
  座標(x, 0.132x2-3.34x+52.6, -0.132x2+2.34x+47.4)
で表わされ、
 前記線分M’Nは、
  座標(x, 0.0313x2-1.4551x+43.824, -0.0313x2+0.4551x+56.176)
で表わされ、
 前記線分VGは、
   座標(0.0123y2-1.8033y+39.6, y, -0.0123y2+0.8033y+60.4)
で表わされ、かつ
 前記線分NV及びGMが直線である場合、R410Aを基準とする冷凍能力比が70%以上となり、GWPが125以下となり、かつASHRAE微燃となることが判る。
 さらに、本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点O(22.6, 36.8, 40.6)、
   点N(27.7, 18.2, 54.1)及び
   点U(3.9, 36.7, 59.4)
の3点をそれぞれ結ぶ線分ON、NU及びUOで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分ONは、
  座標(0.0072y2-0.6701y+37.512, y, -0.0072y2-0.3299y+62.488)
で表わされ、
 前記線分NUは、
  座標(0.0083y2-1.7403y+56.635, y, -0.0083y2+0.7403y+43.365)
で表わされ、かつ
 前記線分UOが直線である場合、R410Aを基準とする冷凍能力比が80%以上となり、GWPが250以下となり、かつASHRAE微燃となることが判る。
 また、本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点Q(44.6, 23.0, 32.4)、
   点R(25.5, 36.8, 37.7)、
   点T(8.6, 51.6, 39.8)、
   点L(28.9, 51.7, 19.4)及び
   点K(35.6, 36.8, 27.6)
の5点をそれぞれ結ぶ線分QR、RT、TL、LK及びKQで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分QRは、
  座標(0.0099y2-1.975y+84.765, y, -0.0099y2+0.975y+15.235)
で表わされ、
 前記線分RTは、
  座標(0.082y2-1.8683y+83.126, y, -0.082y2+0.8683y+16.874)
で表わされ、
 前記線分LKは、
  座標(0.0049y2-0.8842y+61.488, y, -0.0049y2-0.1158y+38.512)
で表わされ、
 前記線分KQは、
  座標(0.0095y2-1.2222y+67.676, y, -0.0095y2+0.2222y+32.324)
で表わされ、かつ
 前記線分TLが直線である場合、R410Aを基準とする冷凍能力比が92.5%以上となり、GWPが350以下となり、かつWCF微燃となることが判る。
 さらに、本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点P(20.5, 51.7, 27.8)、
   点S(21.9, 39.7, 38.4)及び
   点T(8.6, 51.6, 39.8)
の3点をそれぞれ結ぶ線分PS、ST及びTPで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分PSは、
  座標(0.0064y2-0.7103y+40.1, y, -0.0064y2-0.2897y+59.9)
で表わされ、
 前記線分STは、
  座標(0.082y2-1.8683y+83.126, y, -0.082y2+0.8683y+16.874)
で表わされ、かつ
 前記線分TPが直線である場合、R410Aを基準とする冷凍能力比が92.5%以上となり、GWPが350以下となり、かつASHRAE微燃となることが判る。
 (5-5)冷媒E
 本開示の冷媒Eは、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及びジフルオロメタン(R32)を含む混合冷媒である。
 本開示の冷媒Eは、R410Aと同等の成績係数を有し、かつGWPが十分に小さい、という、R410A代替冷媒として望ましい諸特性を有する。
 本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点I(72.0, 28,0, 0.0)
   点K(48.4, 33.2, 18.4)
   点B’(0.0, 81.6, 18.4)
   点H(0.0, 84.2, 15.8)
   点R(23.1, 67.4, 9.5)及び
   点G(38.5, 61.5, 0.0)
の6点をそれぞれ結ぶ線分IK、KB’、B’H、HR、RG及びGIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分B’H及びGI上の点を除く)、
 前記線分IKは、
  座標(0.025z2-1.7429z+72.00, -0.025z2+0.7429z+28.0, z)
で表わされ、
 前記線分HRは、
  座標(-0.3123z2+4.234z+11.06, 0.3123z2-5.234z+88.94, z)
で表わされ、
 前記線分RGは、
  座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
で表わされ、かつ
 前記線分KB’及びGIが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、WCF微燃であり、R410Aを基準とするCOP比が93%以上となり、かつGWPが125以下となる。
 本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点I(72.0, 28,0, 0.0)
   点J(57.7, 32.8, 9.5)
   点R(23.1, 67.4, 9.5)及び
   点G(38.5, 61.5, 0.0)
の4点をそれぞれ結ぶ線分IJ、JR、RG及びGIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GI上の点を除く)、
 前記線分IJは、
   座標(0.025z2-1.7429z+72.0, -0.025z2+0.7429z+28.0, z)
で表わされ、かつ
 前記線分RGは、
  座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
で表わされ、
 前記線分JR及びGIが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、WCF微燃であり、R410Aを基準とするCOP比が93%以上となり、かつGWPが125以下となる。
 本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点M(47.1, 52.9, 0.0)
   点P(31.8, 49.8, 18.4)
   点B’(0.0, 81.6, 18.4)
   点H(0.0, 84.2, 15.8)
   点R(23.1, 67.4, 9.5)及び
   点G(38.5, 61.5, 0.0)
の6点をそれぞれ結ぶ線分MP、PB’、B’H、HR、RG及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分B’H及びGM上の点を除く)、
 前記線分MPは、
  座標(0.0083z2-0.984z+47.1,-0.0083z2-0.016z+52.9, z)
で表わされ、
 前記線分HRは、
  座標(-0.3123z2+4.234z+11.06, 0.3123z2-5.234z+88.94, z)
で表わされ、
 前記線分RGは、
  座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
で表わされ、かつ
 前記線分PB’及びGMが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、ASHRAE微燃であり、R410Aを基準とするCOP比が93%以上となり、かつGWPが125以下となる。
 本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点M(47.1, 52.9, 0.0)
   点N(38.5, 52.1, 9.5)
   点R(23.1, 67.4, 9.5)及び
   点G(38.5, 61.5, 0.0)
の4点をそれぞれ結ぶ線分MN、NR、RG及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GM上の点を除く)、
 前記線分MNは、
  座標(0.0083z2-0.984z+47.1,-0.0083z2-0.016z+52.9, z)
で表わされ、かつ
 前記線分RGは、
  座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
で表わされ、
 前記線分JR及びGIが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、ASHRAE微燃であり、R410Aを基準とするCOP比が93%以上となり、かつGWPが65以下となる。
 本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点P(31.8, 49.8, 18.4)
   点S(25.4, 56.2, 18.4)及び
   点T(34.8, 51.0, 14.2)
の3点をそれぞれ結ぶ線分PS、ST及びTPで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分STは、
  座標(-0.0982z2+0.9622z+40.931, 0.0982z2-1.9622z+59.069, z)
で表わされ、かつ
 前記線分TPは、
  座標(0.0083z2-0.984z+47.1,-0.0083z2-0.016z+52.9, z)
で表わされ、
 前記線分PSが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、ASHRAE微燃であり、R410Aを基準とするCOP比が94.5%以上となり、かつGWPが125以下となる。
 本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点Q(28.6, 34.4, 37.0)
   点B’’(0.0, 63.0, 37.0)
   点D(0.0, 67.0, 33.0)及び
   点U(28.7, 41.2, 30.1)
の4点をそれぞれ結ぶ線分QB’’、B’’D、DU及びUQで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分B’’D上の点を除く)、
 前記線分DUは、
  座標(-3.4962z2+210.71z-3146.1, 3.4962z2-211.71z+3246.1, z)で表わされ、かつ
 前記線分UQは、
  座標(0.0135z2-0.9181z+44.133, -0.0135z2-0.0819z+55.867, z)で表わされ、
 前記線分QB’’及びB’’Dが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、ASHRAE微燃であり、R410Aを基準とするCOP比が96%以上となり、かつGWPが250以下となる。
 本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点O(100.0, 0.0, 0.0)、
   点c’(56.7, 43.3, 0.0)、
   点d’(52.2, 38.3, 9.5)、
   点e’(41.8, 39.8, 18.4)及び
   点a’(81.6, 0.0, 18.4)
の5点をそれぞれ結ぶ線分Oc’、c’d’、d’e’、e’a’及びa’Oで囲まれる図形の範囲内又は前記線分c’d’、d’e’及びe’a’上にあり(ただし、点c’及びa’を除く)、
 前記線分c’d’は、
  座標(-0.0297z2-0.1915z+56.7, 0.0297z2+1.1915z+43.3, z)
で表わされ、
 前記線分d’e’は、
  座標(-0.0535z2+0.3229z+53.957, 0.0535z2+0.6771z+46.043, z)で表わされ、かつ
 前記線分Oc’、e’a’及びa’Oが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とするCOP比が92.5%以上となり、かつGWPが125以下となる。
 本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点O(100.0, 0.0, 0.0)、
   点c(77.7, 22.3, 0.0)、
   点d(76.3, 14.2, 9.5)、
   点e(72.2, 9.4, 18.4)及び
   点a’(81.6, 0.0, 18.4)
の5点をそれぞれ結ぶ線分Oc、cd、de、ea’及びa’Oで囲まれる図形の範囲内又は前記線分cd、de及びea’上にあり(ただし、点c及びa’を除く)、
 前記線分cdeは、
  座標(-0.017z2+0.0148z+77.684, 0.017z2+0.9852z+22.316, z)で表わされ、かつ
 前記線分Oc、ea’及びa’Oが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とするCOP比が95%以上となり、かつGWPが125以下となる。
 本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点O(100.0, 0.0, 0.0)、
   点c’(56.7, 43.3, 0.0)、
   点d’(52.2, 38.3, 9.5)及び
   点a(90.5, 0.0, 9.5)
の5点をそれぞれ結ぶ線分Oc’、c’d’、d’a及びaOで囲まれる図形の範囲内又は前記線分c’d’及びd’a上にあり(ただし、点c’及びaを除く)、
 前記線分c’d’は、
  座標(-0.0297z2-0.1915z+56.7, 0.0297z2+1.1915z+43.3, z)で表わされ、かつ
 前記線分Oc’、d’a及びaOが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とするCOP比が93.5%以上となり、かつGWPが65以下となる。
 本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点O(100.0, 0.0, 0.0)、
   点c(77.7, 22.3, 0.0)、
   点d(76.3, 14.2, 9.5)、
   点a(90.5, 0.0, 9.5)
の5点をそれぞれ結ぶ線分Oc、cd、da及びaOで囲まれる図形の範囲内又は前記線分cd及びda上にあり(ただし、点c及びaを除く)、
 前記線分CDは、
  座標(-0.017z2+0.0148z+77.684, 0.017z2+0.9852z+22.316, z)で表わされ、かつ
 前記線分Oc、da及びaOが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とするCOP比が95%以上となり、かつGWPが65以下となる。
 本開示の冷媒Eは、上記の特性や効果を損なわない範囲内で、HFO-1132(E)、HFO-1123及びR32に加えて、さらに他の追加的な冷媒を含有していてもよい。この点で、本開示の冷媒Eが、HFO-1132(E)、HFO-1123及びR32の合計を、冷媒全体に対して99.5質量%以上含むことが好ましく、99.75質量%以上含むことがより好ましく、99.9質量%以上含むことがさらに好ましい。
 追加的な冷媒としては、特に限定されず、幅広く選択できる。混合冷媒は、追加的な冷媒として、一種を単独で含んでいてもよいし、二種以上を含んでいてもよい。
 (冷媒Eの実施例)
 以下に、冷媒Eの実施例を挙げてさらに詳細に説明する。ただし、冷媒Eは、これらの実施例に限定されるものではない。
 HFO-1132(E)、HFO-1123及びR32を、これらの総和を基準として、表145及び表146にそれぞれ示した質量%で混合した混合冷媒を調製した。各混合物の組成をWCFとし、ASHRAE34-2013規格に従って装置(Equipment)、貯蔵(Storage)、輸送(Shipping)、漏洩(Leak)及び再充填(Recharge)の条件でNational Institute of Science and Technology (NIST) Standard Reference Data Base Refleak Version 4.0により漏洩シミュレーションを行い、最も燃えやすい分画(fraction)をWCFFとした。
 これらの各混合冷媒について、ANSI/ASHRAE34-2013規格に従い燃焼速度を測定した。WCF組成、及びWCFF組成の燃焼速度が10 cm/s以下となるものはASHRAEの燃焼性分類で「2Lクラス(微燃性)」に相当する。
 なお、燃焼速度試験は図1に示す装置を用いて、以下の通り行った。まず、使用した混合冷媒は99.5%またはそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。閉鎖法により燃焼速度を測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。シュリーレン写真を使って炎の広がりを視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。
 結果を表145及び表146に示す。
Figure JPOXMLDOC01-appb-T000145
Figure JPOXMLDOC01-appb-T000146
 表145の結果から、HFO-1132(E)、HFO-1123及びR32の混合冷媒においては、これらの総和が100質量%となる3成分組成図であって、点(0.0, 100.0, 0.0)及び点(0.0, 0.0, 100.0)を結ぶ線分を底辺とし、点(0.0, 100.0, 0.0)を左側、点(0.0, 0.0, 100.0)を右側とする3成分組成図において、座標(x,y,z)が、
   点I(72.0, 28,0, 0.0)
   点K(48.4, 33.2, 18.4)及び
   点L(35.5, 27.5, 37.0)
の3点をそれぞれ結ぶ線分IK及びKLの上、又は当該線分の下側にあり、
 前記線分IKは、
  座標(0.025z2-1.7429z+72.00, -0.025z2+0.7429z+28.00, z)で表わされ、かつ
 前記線分KLは、
  座標(0.0098z2-1.238z+67.852, -0.0098z2+0.238z+32.148, z)で表わされる場合にWCF微燃と判断できることが明らかとなった。
 線分IK上の点は、I(72.0, 28,0, 0.0)、J(57.7, 32.8, 9.5)、K(48.4, 33.2, 18.4)の3点から最小二乗法により近似曲線x=0.025z2-1.7429z+72.00を求め、座標(x=0.025z2-1.7429z+72.00, y=100-z-x=-0.00922z2+0.2114z+32.443, z)を求めた。
 以下同様に線分KL上の点は、K(48.4, 33.2, 18.4)、実施例10(41.1, 31.2, 27.7)、L(35.5, 27.5, 37.0)の3点から最小二乗法により近似曲線を求め、座標を定めた。
 表146の結果から、HFO-1132(E)、HFO-1123及びR32の混合冷媒においては、これらの総和が100質量%となる3成分組成図であって、点(0.0, 100.0, 0.0)及び点(0.0, 0.0, 100.0)を結ぶ線分を底辺とし、点(0.0, 100.0, 0.0)を左側、点(0.0, 0.0, 100.0)を右側とする3成分組成図において、座標(x,y,z)が、
   点M(47.1, 52.9, 0.0)、
   点P(31.8, 49.8, 18.4)及び
   点Q(28.6, 34.4, 37.0)
の3点をそれぞれ結ぶ線分MP及びPQの上、又は当該線分の下側にある場合にASHRAE微燃と判断できることが明らかとなった。ただし、前記線分MPは、座標(0.0083z2-0.984z+47.1, -0.0083z2-0.016z+52.9,z)で表わされ、前記線分PQは、座標(0.0135z2-0.9181z+44.133, -0.0135z2-0.0819z+55.867,z)で表わされる。
 線分MP上の点は、点M,N,Pの3点から最小二乗法により近似曲線を求め、線分PQ上の点は点P,U,Qの3点から最小二乗法により近似曲線を求め、座標を定めた。
 また、R410A(R32=50%/R125=50%)の混合物を含有する組成物のGWPは、IPCC(Intergovernmental Panel on Climate Change)第4次報告書の値に基づいて評価した。HFO-1132(E)のGWPは記載がないが、HFO-1132a(GWP=1以下)、HFO-1123(GWP=0.3,特許文献1に記載)から、そのGWPを1と想定した。R410A及びHFO-1132(E)とHFO-1123との混合物を含有する組成物の冷凍能力は、National Institute of Science and Technology(NIST) Reference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使い、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。これらの各混合冷媒について、R410を基準とするCOP比及び冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]比をそれぞれ求めた。計算条件は以下の通りとした。
 蒸発温度:5℃
 凝縮温度:45℃
 過熱度:5K
 過冷却度;5K
 圧縮機効率70%
 これらの値を、各混合冷媒についてのGWPと合わせて表147~166に示す。
Figure JPOXMLDOC01-appb-T000147
Figure JPOXMLDOC01-appb-T000148
Figure JPOXMLDOC01-appb-T000149
Figure JPOXMLDOC01-appb-T000150
Figure JPOXMLDOC01-appb-T000151
Figure JPOXMLDOC01-appb-T000152
Figure JPOXMLDOC01-appb-T000153
Figure JPOXMLDOC01-appb-T000154
Figure JPOXMLDOC01-appb-T000155
Figure JPOXMLDOC01-appb-T000156
Figure JPOXMLDOC01-appb-T000157
Figure JPOXMLDOC01-appb-T000158
Figure JPOXMLDOC01-appb-T000159
Figure JPOXMLDOC01-appb-T000160
Figure JPOXMLDOC01-appb-T000161
Figure JPOXMLDOC01-appb-T000162
Figure JPOXMLDOC01-appb-T000163
Figure JPOXMLDOC01-appb-T000164
Figure JPOXMLDOC01-appb-T000165
Figure JPOXMLDOC01-appb-T000166
 これらの結果から、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となり、点(0.0, 100.0, 0.0)と点(0.0, 0.0, 100.0)とを結ぶ線分を底辺とし、点(0.0, 100.0, 0.0)を左側とする3成分組成図において、座標(x,y,z)が、
   点O(100.0, 0.0, 0.0)、
   点A’’(63.0, 0.0, 37.0)、
   点B’’(0.0, 63.0, 37.0)及び
   点(0.0, 100.0, 0.0)
の4点をそれぞれ結ぶ線分で囲まれる図形の範囲内又は前記線分上にある場合、GWPが250以下となることが判る。
 また、同様に、座標(x,y,z)が、
   点O(100.0, 0.0, 0.0)、
   点A’(81.6, 0.0, 18.4)、
   点B’(0.0, 81.6, 18.4)及び
   点(0.0, 100.0, 0.0)
の4点をそれぞれ結ぶ線分で囲まれる図形の範囲内又は前記線分上にある場合、GWPが125以下となることが判る。
 また、同様に、座標(x,y,z)が、
   点O(100.0, 0.0, 0.0)、
   点A(90.5, 0.0, 9.5)、
   点B(0.0, 90.5, 9.5)及び
   点(0.0, 100.0, 0.0)
の4点をそれぞれ結ぶ線分で囲まれる図形の範囲内又は前記線分上にある場合、GWPが65以下となることが判る。
 また、同様に、座標(x,y,z)が、
   点C(50.0, 31.6, 18.4)、
   点U(28.7, 41.2, 30.1)及び
   点D(52.2, 38.3, 9.5)
の3点をそれぞれ結ぶ線分の左側又は前記線分上にある場合、R410Aを基準とするCOP比が96%以上となることが判る。ただし、前記線分CUは、座標(-0.0538z2+0.7888z+53.701, 0.0538z2-1.7888z+46.299, z)前記線分UDは、座標(-3.4962z2+210.71z-3146.1, 3.4962z2-211.71z+3246.1, z)で表わされる。
 線分CU上の点は、点C,比較例10,点Uの3点から最小二乗法にて求められる。
 線分UD上の点は、点U,実施例2, Dの3点から最小二乗法にて求められる。
 また、同様に、座標(x,y,z)が、
   点E(55.2, 44.8, 0.0)と、
   点T(34.8, 51.0, 14.2)
   点F(0.0, 76.7, 23.3)と
の3点をそれぞれ結ぶ線分の左側又は前記線分上にある場合、R410Aを基準とするCOP比が94.5%以上となることが判る。ただし、前記線分ETは、座標(-0.0547z2-0.5327z+53.4, 0.0547z2-0.4673z+46.6, z)前記線分TFは、座標(-0.0982z2+0.9622z+40.931, 0.0982z2-1.9622z+59.069, z)で表わされる。線分ET上の点は、点E,実施例2,Tの3点から最小二乗法にて求められる。
 線分TG上の点は、点T,S,Fの3点から最小二乗法にて求められる。
 また、同様に、座標(x,y,z)が、
   点G(0.0, 76.7, 23.3)、
   点R(21.0, 69.5, 9.5)及び
   点H(0.0, 85.9, 14.1)
の3点をそれぞれ結ぶ線分の左側又は前記線分上にある場合、R410Aを基準とするCOP比が93%以上となることが判る。ただし、前記線分GRは、座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)で表わされ、かつ前記線分RHは、座標(-0.3123z2+4.234z+11.06, 0.3123z2-5.234z+88.94, z)で表わされる。
 線分GR上の点は、点G,実施例5、点Rの3点から最小二乗法にて求められる。
 線分RH上の点は、点R,実施例7,点Hの3点から最小二乗法にて求められる。
 一方、比較例8、9、13、15、17及び18等に示されるようにR32を含まない場合、二重結合を持つHFO-1132(E)及びHFO-1123の濃度が相対的に高くなり、冷媒化合物において分解等の変質や重合を招くため、好ましくない。
 (6)第1実施形態
 以下、冷媒回路の概略構成図である図16、概略制御ブロック構成図である図17を参照しつつ、第1実施形態に係る冷凍サイクル装置としての空気調和装置1について説明する。
 空気調和装置1は、蒸気圧縮式の冷凍サイクルを行うことで、対象空間の空気を調和させる装置である。
 空気調和装置1は、主として、室外ユニット20と、室内ユニット30と、室外ユニット20と室内ユニット30を接続する液側冷媒連絡配管6およびガス側冷媒連絡配管5と、入力装置および出力装置としての図示しないリモコンと、空気調和装置1の動作を制御するコントローラ7と、を有している。
 空気調和装置1では、冷媒回路10内に封入された冷媒が、圧縮され、冷却又は凝縮され、減圧され、加熱又は蒸発された後に、再び圧縮される、という冷凍サイクルが行われる。本実施形態では、冷媒回路10には、蒸気圧縮式の冷凍サイクルを行うための冷媒が充填されている。当該冷媒は、1,2-ジフルオロエチレンを含む混合冷媒であり、上述した冷媒A~Eのいずれかを用いることができる。また、冷媒回路10には、当該混合冷媒と共に、冷凍機油が充填されている。
 (6-1)室外ユニット20
 室外ユニット20は、液側冷媒連絡配管6およびガス側冷媒連絡配管5を介して室内ユニット30と接続されており、冷媒回路10の一部を構成している。室外ユニット20は、主として、圧縮機21と、四路切換弁22と、室外熱交換器23と、室外膨張弁24と、室外ファン25と、液側閉鎖弁29と、ガス側閉鎖弁28と、を有している。
 圧縮機21は、冷凍サイクルにおける低圧の冷媒を高圧になるまで圧縮する機器である。ここでは、圧縮機21として、ロータリ式やスクロール式等の容積式の圧縮要素(図示省略)が圧縮機モータによって回転駆動される密閉式構造の圧縮機が使用されている。圧縮機モータは、容量を変化させるためのものであり、インバータにより運転周波数の制御が可能である。なお、圧縮機21には、吸入側において、図示しない付属アキュムレータが設けられている(なお、当該付属アキュムレータの内容積は、後述する低圧レシーバ、中間圧レシーバ、高圧レシーバのそれぞれより小さく、好ましくは半分以下である)。
 四路切換弁22は、接続状態を切り換えることで、圧縮機21の吐出側と室外熱交換器23とを接続しつつ圧縮機21の吸入側とガス側閉鎖弁28とを接続する冷房運転接続状態と、圧縮機21の吐出側とガス側閉鎖弁28とを接続しつつ圧縮機21の吸入側と室外熱交換器23とを接続する暖房運転接続状態と、を切り換えることができる。
 室外熱交換器23は、冷房運転時には冷凍サイクルにおける高圧の冷媒の凝縮器として機能し、暖房運転時には冷凍サイクルにおける低圧の冷媒の蒸発器として機能する熱交換器である。
 室外ファン25は、室外ユニット20内に室外の空気を吸入して、室外熱交換器23において冷媒と熱交換させた後に、外部に排出するための空気流れを生じさせる。室外ファン25は、室外ファンモータによって回転駆動される。
 室外膨張弁24は、室外熱交換器23の液側端部と液側閉鎖弁29との間に設けられている。室外膨張弁24は、キャピラリーチューブ又は感温筒と共に用いられる機械式膨張弁であってもよいが、制御により弁開度を調節可能な電動膨張弁であることが好ましい。
 液側閉鎖弁29は、室外ユニット20における液側冷媒連絡配管6との接続部分に配置された手動弁である。
 ガス側閉鎖弁28は、室外ユニット20におけるとガス側冷媒連絡配管5との接続部分に配置された手動弁である。
 室外ユニット20は、室外ユニット20を構成する各部の動作を制御する室外ユニット制御部27を有している。室外ユニット制御部27は、CPUやメモリ等を含むマイクロコンピュータを有している。室外ユニット制御部27は、各室内ユニット30の室内ユニット制御部34と通信線を介して接続されており、制御信号等の送受信を行う。
 室外ユニット20には、吐出圧力センサ61、吐出温度センサ62、吸入圧力センサ63、吸入温度センサ64、室外熱交温度センサ65、外気温度センサ66等が設けられている。これらの各センサは、室外ユニット制御部27と電気的に接続されており、室外ユニット制御部27に対して検出信号を送信する。吐出圧力センサ61は、圧縮機21の吐出側と四路切換弁22の接続ポートの1つとを接続する吐出配管を流れる冷媒の圧力を検出する。吐出温度センサ62は、吐出配管を流れる冷媒の温度を検出する。吸入圧力センサ63は、圧縮機21の吸入側と四路切換弁22の接続ポートの1つとを接続する吸入配管を流れる冷媒の圧力を検出する。吸入温度センサ64は、吸入配管を流れる冷媒の温度を検出する。室外熱交温度センサ65は、室外熱交換器23のうち四路切換弁22が接続されている側とは反対側である液側の出口を流れる冷媒の温度を検出する。外気温度センサ66は、室外熱交換器23を通過する前の屋外の空気温度を検出する。
 (6-2)室内ユニット30
 室内ユニット30は、対象空間である室内の壁面や天井等に設置されている。室内ユニット30は、液側冷媒連絡配管6およびガス側冷媒連絡配管5を介して室外ユニット20と接続されており、冷媒回路10の一部を構成している。
 室内ユニット30は、室内熱交換器31と、室内ファン32と、を有している。
 室内熱交換器31は、液側が、液側冷媒連絡配管6と接続され、ガス側端が、ガス側冷媒連絡配管5とを接続されている。室内熱交換器31は、冷房運転時には冷凍サイクルにおける低圧の冷媒の蒸発器として機能し、暖房運転時には冷凍サイクルにおける高圧の冷媒の凝縮器として機能する熱交換器である。
 室内ファン32は、室内ユニット30内に室内の空気を吸入して、室内熱交換器31において冷媒と熱交換させた後に、外部に排出するための空気流れを生じさせる。室内ファン32は、室内ファンモータによって回転駆動される。
 また、室内ユニット30は、室内ユニット30を構成する各部の動作を制御する室内ユニット制御部34を有している。室内ユニット制御部34は、CPUやメモリ等を含むマイクロコンピュータを有している。室内ユニット制御部34は、室外ユニット制御部27と通信線を介して接続されており、制御信号等の送受信を行う。
 室内ユニット30には、室内液側熱交温度センサ71、室内空気温度センサ72等が設けられている。これらの各センサは、室内ユニット制御部34と電気的に接続されており、室内ユニット制御部34に対して検出信号を送信する。室内液側熱交温度センサ71は、室内熱交換器31のうち四路切換弁22が接続されている側とは反対側である液側の出口を流れる冷媒の温度を検出する。室内空気温度センサ72は、室内熱交換器31を通過する前の室内の空気温度を検出する。
 (6-3)コントローラ7の詳細
 空気調和装置1では、室外ユニット制御部27と室内ユニット制御部34が通信線を介して接続されることで、空気調和装置1の動作を制御するコントローラ7が構成されている。
 コントローラ7は、主として、CPU(中央演算処理装置)と、ROMやRAM等のメモリを有している。なお、コントローラ7による各種処理や制御は、室外ユニット制御部27および/又は室内ユニット制御部34に含まれる各部が一体的に機能することによって実現されている。
 (6-4)運転モード
 以下、運転モードについて説明する。
 運転モードとしては、冷房運転モードと暖房運転モードとが設けられている。
 コントローラ7は、リモコン等から受け付けた指示に基づいて、冷房運転モードか暖房運転モードかを判断し、実行する。
 (6-4-1)冷房運転モード
 空気調和装置1では、冷房運転モードでは、四路切換弁22の接続状態を圧縮機21の吐出側と室外熱交換器23とを接続しつつ圧縮機21の吸入側とガス側閉鎖弁28とを接続する冷房運転接続状態とし、冷媒回路10に充填されている冷媒を、主として、圧縮機21、室外熱交換器23、室外膨張弁24、室内熱交換器31の順に循環させる。
 より具体的には、冷房運転モードが開始されると、冷媒回路10内において、冷媒が圧縮機21に吸入されて圧縮された後に吐出される。
 圧縮機21では、室内ユニット30で要求される冷却負荷に応じた容量制御が行われる。当該容量制御は、特に限定されず、例えば、空気調和装置1が室内の空気温度が設定温度を満たすように制御される場合には、吐出温度(吐出温度センサ62の検出温度)が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じた値となるように、圧縮機21の運転周波数を制御する。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22を経て、室外熱交換器23のガス側端に流入する。
 室外熱交換器23のガス側端に流入したガス冷媒は、室外熱交換器23において、室外ファン25によって供給される室外側空気と熱交換を行って凝縮し、液冷媒となって室外熱交換器23の液側端から流出する。
 室外熱交換器23の液側端から流出した冷媒は、室外膨張弁24を通過する際に減圧される。なお、室外膨張弁24は、例えば、圧縮機21に吸入される冷媒の過熱度が所定の過熱度目標値となるように制御される。ここで、圧縮機21の吸入冷媒の過熱度は、例えば、吸入圧力(吸入圧力センサ63の検出圧力)に相当する飽和温度を、吸入温度(吸入温度センサ62の検出温度)から差し引くことにより求めることができる。なお、室外膨張弁24の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 室外膨張弁24で減圧された冷媒は、液側閉鎖弁29および液側冷媒連絡配管6を経て、室内ユニット30に流入する。
 室内ユニット30に流入した冷媒は、室内熱交換器31に流入し、室内熱交換器31において、室内ファン32によって供給される室内空気と熱交換を行って蒸発し、ガス冷媒となって室内熱交換器31のガス側端から流出する。室内熱交換器31のガス側端から流出したガス冷媒は、ガス側冷媒連絡配管5に流れていく。
 ガス側冷媒連絡配管5を流れた冷媒は、ガス側閉鎖弁28、四路切換弁22を経て、再び、圧縮機21に吸入される。
 (6-4-2)暖房運転モード
 空気調和装置1では、暖房運転モードでは、四路切換弁22の接続状態を圧縮機21の吐出側とガス側閉鎖弁28とを接続しつつ圧縮機21の吸入側と室外熱交換器23とを接続する暖房運転接続状態とし、冷媒回路10に充填されている冷媒を、主として、圧縮機21、室内熱交換器31、室外膨張弁24、室外熱交換器23の順に循環させる。
 より具体的には、暖房運転モードが開始されると、冷媒回路10内において、冷媒が圧縮機21に吸入されて圧縮された後に吐出される。
 圧縮機21では、室内ユニット30で要求される暖房負荷に応じた容量制御が行われる。当該容量制御は、特に限定されず、例えば、空気調和装置1が室内の空気温度が設定温度を満たすように制御される場合には、吐出温度(吐出温度センサ62の検出温度)が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じた値となるように、圧縮機21の運転周波数を制御する。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22およびガス側冷媒連絡配管5を流れた後、室内ユニット30に流入する。
 室内ユニット30に流入した冷媒は、室内熱交換器31のガス側端に流入し、室内熱交換器31において、室内ファン32によって供給される室内空気と熱交換を行って凝縮し、気液二相状態の冷媒または液冷媒となって室内熱交換器31の液側端から流出する。室内熱交換器31の液側端から流出した冷媒は、液側冷媒連絡配管6に流れていく。
 液側冷媒連絡配管6を流れた冷媒は、室外ユニット20に流入し、液側閉鎖弁29を通過し、室外膨張弁24において冷凍サイクルにおける低圧になるまで減圧される。なお、室外膨張弁24は、例えば、圧縮機21に吸入される冷媒の過熱度が所定の過熱度目標値となるように制御される。なお、室外膨張弁24の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 室外膨張弁24で減圧された冷媒は、室外熱交換器23の液側端に流入する。
 室外熱交換器23の液側端から流入した冷媒は、室外熱交換器23において、室外ファン25によって供給される室外空気と熱交換を行って蒸発し、ガス冷媒となって室外熱交換器23のガス側端から流出する。
 室外熱交換器23のガス側端から流出した冷媒は、四路切換弁22を経て、再び、圧縮機21に吸入される。
 (6-5)第1実施形態の特徴
 空気調和装置1では、1,2-ジフルオロエチレンを含む冷媒を用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
 (7)第2実施形態
 以下、冷媒回路の概略構成図である図18、概略制御ブロック構成図である図19を参照しつつ、第2実施形態に係る冷凍サイクル装置としての空気調和装置1aについて説明する。なお、以下では、第1実施形態の空気調和装置1との違いを主に説明する。
 (7-1)空気調和装置1aの概略構成
 空気調和装置1aは、上記第1実施形態の空気調和装置1とは、室外ユニット20が低圧レシーバ41を備えている点で異なっている。
 低圧レシーバ41は、圧縮機21の吸入側と四路切換弁22の接続ポートの1つとの間に設けられており、冷媒回路10における余剰冷媒を液冷媒として貯留することが可能な冷媒容器である。なお、本実施形態では、吸入圧力センサ63及び吸入温度センサ64は、低圧レシーバ41と圧縮機21の吸入側との間を流れる冷媒を対象として検出するように設けられている。また、圧縮機21には、図示しない付属のアキュムレータが設けられており、低圧レシーバ41は、当該付属のアキュムレータの下流側に接続されている。
 (7-2)冷房運転モード
 空気調和装置1aでは、冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じて定まる目標蒸発温度になるように、運転周波数が容量制御される。なお、蒸発温度は、特に限定されないが、例えば、吸入圧力センサ63の検出圧力に相当する冷媒の飽和温度として把握してもよい。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22、室外熱交換器23、室外膨張弁24の順に流れる。
 ここで、室外膨張弁24は、例えば、室外熱交換器23の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、室外熱交換器23の液側出口を流れる冷媒の過冷却度は、特に限定されないが、例えば、室外熱交温度センサ65の検出温度から、冷媒回路10の高圧(吐出圧力センサ61の検出圧力)に相当する冷媒の飽和温度を差し引くことにより求めることができる。なお、室外膨張弁24の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 室外膨張弁24で減圧された冷媒は、液側閉鎖弁29、液側冷媒連絡配管6を介して室内ユニット30に流入し、室内熱交換器31において蒸発し、ガス側冷媒連絡配管5に流れていく。ガス側冷媒連絡配管5を流れた冷媒は、ガス側閉鎖弁28、四路切換弁22、低圧レシーバ41を経て、再び、圧縮機21に吸入される。なお、低圧レシーバ41では、室内熱交換器31において蒸発しきれなかった液冷媒が余剰冷媒として貯留される。
 (7-3)暖房運転モード
 空気調和装置1aでは、暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じて定まる目標凝縮温度になるように、運転周波数が容量制御される。なお、凝縮温度は、特に限定されないが、例えば、吐出圧力センサ61の検出圧力に相当する冷媒の飽和温度として把握してもよい。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、室内ユニット30の室内熱交換器31のガス側端に流入し、室内熱交換器31において凝縮する。室内熱交換器31の液側端から流出した冷媒は、液側冷媒連絡配管6を経て、室外ユニット20に流入し、液側閉鎖弁29を通過して、室外膨張弁24において冷凍サイクルにおける低圧になるまで減圧される。なお、室外膨張弁24は、例えば、室内熱交換器31の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、室内熱交換器31の液側出口を流れる冷媒の過冷却度は、特に限定されないが、例えば、室内液側熱交温度センサ71の検出温度から、冷媒回路10の高圧(吐出圧力センサ61の検出圧力)に相当する冷媒の飽和温度を差し引くことにより求めることができる。なお、室外膨張弁24の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 室外膨張弁24で減圧された冷媒は、室外熱交換器23において蒸発し、四路切換弁22、低圧レシーバ41を経て、再び、圧縮機21に吸入される。なお、低圧レシーバ41では、室外熱交換器23において蒸発しきれなかった液冷媒が余剰冷媒として貯留される。
 (7-4)第2実施形態の特徴
 空気調和装置1aでは、1,2-ジフルオロエチレンを含む冷媒を用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
 また、空気調和装置1aでは、低圧レシーバ41を設けることにより、圧縮機21に吸入される冷媒の過熱度が所定値以上となることが確保される制御(室外膨張弁24の制御)を行わなくても、液圧縮が生じることを抑制させることが可能になっている。このため、室外膨張弁24の制御としては、凝縮器として機能させる場合の室外熱交換器23(凝縮器として機能させる場合の室内熱交換器31も同様)について、出口を流れる冷媒の過冷却度を十分に確保するように制御させることが可能になっている。
 (8)第3実施形態
 以下、冷媒回路の概略構成図である図20、概略制御ブロック構成図である図21を参照しつつ、第3実施形態に係る冷凍サイクル装置としての空気調和装置1bについて説明する。なお、以下では、第2実施形態の空気調和装置1aとの違いを主に説明する。
 (8-1)空気調和装置1bの概略構成
 空気調和装置1bは、上記第2実施形態の空気調和装置1aとは、複数の室内ユニットが並列に設けられている点、および、各室内ユニットにおいて室内熱交換器の液冷媒側に室内膨張弁が設けられている点で異なっている。
 空気調和装置1bは、互いに並列に接続された第1室内ユニット30と第2室内ユニット35とを有している。第1室内ユニット30は、上記実施形態と同様に、第1室内熱交換器31、第1室内ファン32を有しており、第1室内熱交換器31の液冷媒側において第1室内膨張弁33が設けられている。第1室内膨張弁33は、弁開度を調節可能な電動膨張弁であることが好ましい。第1室内ユニット30には、上記実施形態と同様に、第1室内ユニット制御部34と、第1室内ユニット制御部34に対して電気的に接続された第1室内液側熱交温度センサ71、第1室内空気温度センサ72が設けられており、さらに、第1室内ガス側熱交温度センサ73等が設けられている。第1室内液側熱交温度センサ71は、第1室内熱交換器31の液冷媒側の出口を流れる冷媒の温度を検出する。第1室内ガス側熱交温度センサ73は、第1室内熱交換器31のガス冷媒側の出口を流れる冷媒の温度を検出する。第2室内ユニット35は、第1室内ユニット30と同様に、第2室内熱交換器36、第2室内ファン37を有しており、第2室内熱交換器36の液冷媒側において第2室内膨張弁38が設けられている。第2室内膨張弁38は、弁開度を調節可能な電動膨張弁であることが好ましい。第2室内ユニット35には、第1室内ユニット30と同様に、第2室内ユニット制御部39と、第2室内ユニット制御部39に対して電気的に接続された第2室内液側熱交温度センサ75、第2室内空気温度センサ76、および、第2室内ガス側熱交温度センサ77が設けられている。
 また、空気調和装置1bは、上記第2実施形態の空気調和装置1aとは、室外ユニットにおいて、室外膨張弁24が設けられていない点、および、バイパス膨張弁49を有するバイパス配管40が設けられている点で異なっている。
 バイパス配管40は、室外熱交換器23の液冷媒側の出口から液側閉鎖弁29まで延びる冷媒配管と、四路切換弁22の接続ポートの1つから低圧レシーバ41まで延びる冷媒配管と、を接続する冷媒配管である。バイパス膨張弁49は、弁開度を調節可能な電動膨張弁であることが好ましい。なお、バイパス配管40には、開度調節可能な電動膨張弁が設けられたものに限られず、例えば、キャピラリーチューブと開閉可能な電磁弁を有したものであってもよい。
 (8-2)冷房運転モード
 空気調和装置1bでは、冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が目標蒸発温度になるように、運転周波数が容量制御される。ここで、目標蒸発温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。なお、蒸発温度は、特に限定されないが、例えば、吸入圧力センサ63の検出圧力に相当する冷媒の飽和温度として把握することができる。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22を介して、室外熱交換器23において凝縮する。室外熱交換器23を流れた冷媒は、液側閉鎖弁29、液側冷媒連絡配管6を介して、第1室内ユニット30および第2室内ユニット35に送られる。
 ここで、第1室内ユニット30では、第1室内膨張弁33は、例えば、第1室内熱交換器31のガス側出口を流れる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第1室内熱交換器31のガス側出口を流れる冷媒の過熱度は、特に限定されないが、例えば、第1室内ガス側熱交温度センサ73の検出温度から、冷媒回路10の低圧(吸入圧力センサ63の検出圧力)に相当する冷媒の飽和温度を差し引くことにより求めることができる。また、第2室内ユニット35の第2室内膨張弁38も、第1室内膨張弁33と同様に、例えば、第2室内熱交換器36のガス側出口を流れる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第2室内熱交換器36のガス側出口を流れる冷媒の過熱度についても、特に限定されないが、例えば、第2室内ガス側熱交温度センサ77の検出温度から、冷媒回路10の低圧(吸入圧力センサ63の検出圧力)に相当する冷媒の飽和温度を差し引くことにより求めることができる。また、第1室内膨張弁33と第2室内膨張弁38は、いずれも、吸入温度センサ64の検出温度から吸入圧力センサ63の検出圧力に相当する冷媒の飽和温度を差し引くことで得られる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御されてもよい。さらに、第1室内膨張弁33および第2室内膨張弁38の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 第1室内膨張弁33で減圧された冷媒は第1室内熱交換器31において蒸発し、第2室内膨張弁38で減圧された冷媒は第2室内熱交換器36において蒸発し、合流した後、ガス側冷媒連絡配管5に流れていく。ガス側冷媒連絡配管5を流れた冷媒は、ガス側閉鎖弁28、四路切換弁22、低圧レシーバ41を経て、再び、圧縮機21に吸入される。なお、低圧レシーバ41では、第1室内熱交換器31および第2室内熱交換器において蒸発しきれなかった液冷媒が余剰冷媒として貯留される。なお、バイパス配管40のバイパス膨張弁49は、凝縮器として機能する室外熱交換器23の内部の冷媒量が過剰であることに関する所定条件を満たした場合に開けられるまたは弁開度が上げられる制御が行われる。バイパス膨張弁49の開度制御としては、特に限定されないが、例えば、凝縮圧力(例えば、吐出圧力センサ61の検出圧力)が所定値以上である場合に、開けるまたは開度が上げられる制御であってもよいし、通過流量を増大させるように所定の時間間隔で開状態と閉状態とを切り換える制御であってもよい。
 (8-3)暖房運転モード
 空気調和装置1bでは、暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、目標凝縮温度になるように、運転周波数が容量制御される。ここで、目標凝縮温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。なお、凝縮温度は、特に限定されないが、例えば、吐出圧力センサ61の検出圧力に相当する冷媒の飽和温度として把握してもよい。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、一部の冷媒が、第1室内ユニット30の第1室内熱交換器31のガス側端に流入し、第1室内熱交換器31において凝縮し、他の一部の冷媒が、第2室内ユニット35の第2室内熱交換器36のガス側端に流入し、第2室内熱交換器36において凝縮する。
 なお、第1室内ユニット30の第1室内膨張弁33は、第1室内熱交換器31の液側を流れる冷媒の過冷却度が所定の目標値になる等の所定条件を満たすように、弁開度が制御される。第2室内ユニット35の第2室内膨張弁38についても同様に、第2室内熱交換器36の液側を流れる冷媒の過冷却度が所定の目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第1室内熱交換器31の液側を流れる冷媒の過冷却度は、第1室内液側熱交温度センサ71の検出温度から、冷媒回路10における高圧(吐出圧力センサ61の検出圧力)に相当する冷媒の飽和温度を差し引くことで求めることができる。また、第2室内熱交換器36の液側を流れる冷媒の過冷却度についても同様に、第2室内液側熱交温度センサ75の検出温度から、冷媒回路10における高圧(吐出圧力センサ61の検出圧力)に相当する冷媒の飽和温度を差し引くことで求めることができる。
 第1室内膨張弁33で減圧された冷媒および第2室内膨張弁38で減圧された冷媒は、合流し、液側冷媒連絡配管6、液側閉鎖弁29を通過した後、室外熱交換器23において蒸発し、四路切換弁22、低圧レシーバ41を経て、再び、圧縮機21に吸入される。なお、低圧レシーバ41では、室外熱交換器23において蒸発しきれなかった液冷媒が余剰冷媒として貯留される。なお、暖房運転時には、特に限定されないが、バイパス配管40のバイパス膨張弁49は、例えば、全閉状態に維持されていてもよい。
 (8-4)第3実施形態の特徴
 空気調和装置1bでは、1,2-ジフルオロエチレンを含む冷媒を用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
 また、空気調和装置1bでは、低圧レシーバ41を設けることにより、圧縮機21における液圧縮を抑制することができている。また、冷房運転時には、第1室内膨張弁33、第2室内膨張弁38を過熱度制御することで、暖房運転時には、第1室内膨張弁33、第2室内膨張弁38を過冷却度制御することで、第1室内熱交換器31、第2室内熱交換器36における能力を十分に発揮させやすい。
 (9)第4実施形態
 以下、冷媒回路の概略構成図である図22、概略制御ブロック構成図である図23を参照しつつ、第4実施形態に係る冷凍サイクル装置としての空気調和装置1cについて説明する。なお、以下では、第2実施形態の空気調和装置1aとの違いを主に説明する。
 (9-1)空気調和装置1cの概略構成
 空気調和装置1cは、上記第2実施形態の空気調和装置1aとは、室外ユニット20が低圧レシーバ41を備えていない点、高圧レシーバ42を備えている点、室外ブリッジ回路26を備えている点で異なっている。
 また、室内ユニット30は、室内熱交換器31の液側を流れる冷媒温度を検出する室内液側熱交温度センサ71と、室内の空気温度を検出する室内空気温度センサ72と、室内熱交換器31のガス側を流れる冷媒温度を検出する室内ガス側熱交温度センサ73と、を有している。
 室外ブリッジ回路26は、室外熱交換器23の液側と液側閉鎖弁29との間に設けられており、4つの接続箇所および各接続箇所の間に設けられた逆止弁を有している。室外ブリッジ回路26が有する4つの接続箇所のうち、室外熱交換器23の液側に接続される箇所と液側閉鎖弁29に接続される箇所以外の2箇所からは、それぞれ高圧レシーバ42まで延びた冷媒配管が接続されている。また、これらの冷媒配管のうち、高圧レシーバ42の内部空間のうちのガス領域から延びだしている冷媒配管には、途中に室外膨張弁24が設けられている。
 (9-2)冷房運転モード
 空気調和装置1cでは、冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じて定まる目標蒸発温度になるように、運転周波数が容量制御される。なお、蒸発温度は、特に限定されないが、例えば、室内液側熱交温度センサ71の検出温度として把握してもよいし、吸入圧力センサ63の検出圧力に相当する冷媒の飽和温度として把握してもよい。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22を介して、室外熱交換器23において凝縮する。室外熱交換器23を流れた冷媒は、室外ブリッジ回路26の一部を介して、高圧レシーバ42に流入する。なお、高圧レシーバ42では、冷媒回路10における余剰冷媒が液冷媒として貯留される。高圧レシーバ42のガス領域から流出したガス冷媒は、室外膨張弁24において減圧される。
 ここで、室外膨張弁24は、例えば、室内熱交換器31のガス側出口を流れる冷媒の過熱度または圧縮機21の吸入側を流れる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、室内熱交換器31のガス側出口を流れる冷媒の過熱度は、特に限定されないが、例えば、室内ガス側熱交温度センサ73の検出温度から、冷媒回路10の低圧(吸入圧力センサ63の検出圧力)に相当する冷媒の飽和温度を差し引くことにより求めてもよい。また、圧縮機21の吸入側を流れる冷媒の過熱度は、吸入温度センサ64の検出温度から、吸入圧力センサ63の検出圧力に相当する冷媒の飽和温度を差し引くことにより求めてもよい。なお、室外膨張弁24の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 室外膨張弁24で減圧された冷媒は、室外ブリッジ回路26の他の一部を流れ、液側閉鎖弁29、液側冷媒連絡配管6を介して室内ユニット30に流入し、室内熱交換器31において蒸発する。室内熱交換器31を流れた冷媒は、ガス側冷媒連絡配管5、ガス側閉鎖弁28、四路切換弁22を経て、再び、圧縮機21に吸入される。
 (9-3)暖房運転モード
 空気調和装置1cでは、暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じて定まる目標凝縮温度になるように、運転周波数が容量制御される。なお、凝縮温度は、特に限定されないが、例えば、吐出圧力センサ61の検出圧力に相当する冷媒の飽和温度として把握してもよい。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、室内ユニット30の室内熱交換器31のガス側端に流入し、室内熱交換器31において凝縮する。室内熱交換器31の液側端から流出した冷媒は、液側冷媒連絡配管6を経て、室外ユニット20に流入し、液側閉鎖弁29を通過して、室外ブリッジ回路26の一部を流れ、高圧レシーバ42に流入する。なお、高圧レシーバ42では、冷媒回路10における余剰冷媒が液冷媒として貯留される。高圧レシーバ42のガス領域から流出したガス冷媒は、室外膨張弁24において冷凍サイクルにおける低圧になるまで減圧される。
 なお、室外膨張弁24は、例えば、圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、圧縮機21の吸入側を流れる冷媒の過熱度は、特に限定されないが、例えば、吸入温度センサ64の検出温度から、吸入圧力センサ63の検出圧力に相当する冷媒の飽和温度を差し引いて求めることができる。なお、室外膨張弁24の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 室外膨張弁24で減圧された冷媒は、室外ブリッジ回路26の他の一部を流れ、室外熱交換器23において蒸発し、四路切換弁22を経て、再び、圧縮機21に吸入される。
 (9-4)第4実施形態の特徴
 空気調和装置1cでは、1,2-ジフルオロエチレンを含む冷媒を用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
 また、空気調和装置1cでは、高圧レシーバ42を設けることにより、冷媒回路10における余剰冷媒を貯留することが可能になる。
 (10)第5実施形態
 以下、冷媒回路の概略構成図である図24、概略制御ブロック構成図である図25を参照しつつ、第5実施形態に係る冷凍サイクル装置としての空気調和装置1dについて説明する。なお、以下では、第4実施形態の空気調和装置1cとの違いを主に説明する。
 (10-1)空気調和装置1dの概略構成
 空気調和装置1dは、上記第4実施形態の空気調和装置1cとは、複数の室内ユニットが並列に設けられている点、および、各室内ユニットにおいて室内熱交換器の液冷媒側に室内膨張弁が設けられている点で異なっている。
 空気調和装置1dは、互いに並列に接続された第1室内ユニット30と第2室内ユニット35とを有している。第1室内ユニット30は、上記実施形態と同様に、第1室内熱交換器31、第1室内ファン32を有しており、第1室内熱交換器31の液冷媒側において第1室内膨張弁33が設けられている。第1室内膨張弁33は、弁開度を調節可能な電動膨張弁であることが好ましい。第1室内ユニット30には、上記実施形態と同様に、第1室内ユニット制御部34と、第1室内ユニット制御部34に対して電気的に接続された第1室内液側熱交温度センサ71、第1室内空気温度センサ72、第1室内ガス側熱交温度センサ73等が設けられている。第1室内液側熱交温度センサ71は、第1室内熱交換器31の液冷媒側の出口を流れる冷媒の温度を検出する。第1室内ガス側熱交温度センサ73は、第1室内熱交換器31のガス冷媒側の出口を流れる冷媒の温度を検出する。第2室内ユニット35は、第1室内ユニット30と同様に、第2室内熱交換器36、第2室内ファン37を有しており、第2室内熱交換器36の液冷媒側において第2室内膨張弁38が設けられている。第2室内膨張弁38は、弁開度を調節可能な電動膨張弁であることが好ましい。第2室内ユニット35には、第1室内ユニット30と同様に、第2室内ユニット制御部39と、第2室内ユニット制御部39に対して電気的に接続された第2室内液側熱交温度センサ75、第2室内空気温度センサ76、第2室内ガス側熱交温度センサ77が設けられている。
 (10-2)冷房運転モード
 空気調和装置1cでは、冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が目標蒸発温度になるように、運転周波数が容量制御される。ここで、目標蒸発温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22を介して、室外熱交換器23において凝縮する。室外熱交換器23を流れた冷媒は、室外ブリッジ回路26の一部を介して、高圧レシーバ42に流入する。なお、高圧レシーバ42では、冷媒回路10における余剰冷媒が液冷媒として貯留される。高圧レシーバ42のガス領域から流出したガス冷媒は、室外膨張弁24において減圧される。ここで、冷房運転時は、室外膨張弁24は、例えば、弁開度が全開状態となるように制御される。
 室外膨張弁24を通過した冷媒は、室外ブリッジ回路26の他の一部を流れ、液側閉鎖弁29、液側冷媒連絡配管6を介して第1室内ユニット30および第2室内ユニット35に流入する。
 第1室内ユニット30に流入した冷媒は、第1室内膨張弁33において減圧される。第1室内膨張弁33は、第1室内熱交換器31のガス側出口を流れる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第1室内熱交換器31のガス側出口を流れる冷媒の過熱度は、特に限定されないが、例えば、第1室内ガス側熱交温度センサ73の検出温度から、冷媒回路10の低圧(吸入圧力センサ63の検出圧力)に相当する冷媒の飽和温度を差し引くことにより求めてもよい。同様に、第2室内ユニット35に流入した冷媒は、第2室内膨張弁38において減圧される。第2室内膨張弁38は、第2室内熱交換器36のガス側出口を流れる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第2室内熱交換器36のガス側出口を流れる冷媒の過熱度は、特に限定されないが、例えば、第2室内ガス側熱交温度センサ77の検出温度から、冷媒回路10の低圧(吸入圧力センサ63の検出圧力)に相当する冷媒の飽和温度を差し引くことにより求めてもよい。また、第1室内膨張弁33と第2室内膨張弁38は、いずれも、吸入温度センサ64の検出温度から吸入圧力センサ63の検出圧力に相当する冷媒の飽和温度を差し引くことで得られる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御されてもよい。さらに、第1室内膨張弁33および第2室内膨張弁38の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 第1室内熱交換器31において蒸発した冷媒と、第2室内熱交換器36において蒸発した冷媒とは、合流した後、ガス側冷媒連絡配管5、ガス側閉鎖弁28、四路切換弁22を経て、再び、圧縮機21に吸入される。
 (10-3)暖房運転モード
 空気調和装置1cでは、暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、目標凝縮温度になるように、運転周波数が容量制御される。ここで、目標凝縮温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。なお、凝縮温度は、特に限定されないが、例えば、吐出圧力センサ61の検出圧力に相当する冷媒の飽和温度として把握してもよい。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、第1室内ユニット30および第2室内ユニット35にそれぞれ流入する。
 第1室内ユニット30の第1室内熱交換器31に流入したガス冷媒は、第1室内熱交換器31において凝縮する。第1室内熱交換器31を流れた冷媒は、第1室内膨張弁33において減圧される。第1室内膨張弁33は、第1室内熱交換器31の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。第1室内熱交換器31の液側出口を流れる冷媒の過冷却度は、例えば、第1室内液側熱交温度センサ71の検出温度から、吐出圧力センサ61の検出圧力に相当する冷媒の飽和温度を差し引くことで求めることができる。
 第2室内ユニット35の第2室内熱交換器36に流入したガス冷媒は、同様に、第2室内熱交換器36において凝縮する。第2室内熱交換器36を流れた冷媒は、第2室内膨張弁38において減圧される。第2室内膨張弁38は、第2室内熱交換器36の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。第2室内熱交換器36の液側出口を流れる冷媒の過冷却度は、例えば、第2室内液側熱交温度センサ75の検出温度から、吐出圧力センサ61の検出圧力に相当する冷媒の飽和温度を差し引くことで求めることができる。
 第1室内熱交換器31の液側端から流出した冷媒および第2室内熱交換器36の液側端から流出した冷媒は、合流した後、液側冷媒連絡配管6を経て、室外ユニット20に流入する。
 室外ユニット20に流入した冷媒は、液側閉鎖弁29を通過して、室外ブリッジ回路26の一部を流れ、高圧レシーバ42に流入する。なお、高圧レシーバ42では、冷媒回路10における余剰冷媒が液冷媒として貯留される。高圧レシーバ42のガス領域から流出したガス冷媒は、室外膨張弁24において冷凍サイクルにおける低圧になるまで減圧される。すなわち、暖房運転時は、高圧レシーバ42は、擬似的な中間圧冷媒が貯留されることとなる。
 なお、室外膨張弁24は、例えば、圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、圧縮機21が吸入する冷媒の過熱度は、特に限定されないが、例えば、吸入温度センサ64の検出温度から、吸入圧力センサ63の検出圧力に相当する冷媒の飽和温度を差し引いて求めることができる。なお、室外膨張弁24の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 室外膨張弁24で減圧された冷媒は、室外ブリッジ回路26の他の一部を流れ、室外熱交換器23において蒸発し、四路切換弁22を経て、再び、圧縮機21に吸入される。
 (10-4)第5実施形態の特徴
 空気調和装置1dでは、1,2-ジフルオロエチレンを含む冷媒を用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
 また、空気調和装置1dでは、高圧レシーバ42を設けることにより、冷媒回路10における余剰冷媒を貯留することが可能になる。
 なお、暖房運転時において、室外膨張弁24の弁開度が過熱度制御されることにより圧縮機21の信頼性が確保されるため、第1室内膨張弁33および第2室内膨張弁38については、第1室内熱交換器31および第2室内熱交換器36における能力を十分に発揮させるように、過冷却度制御を行うことが可能となっている。
 (11)第6実施形態
 以下、冷媒回路の概略構成図である図26、概略制御ブロック構成図である図27を参照しつつ、第6実施形態に係る冷凍サイクル装置としての空気調和装置1eについて説明する。なお、以下では、第2実施形態の空気調和装置1aとの違いを主に説明する。
 (11-1)空気調和装置1eの概略構成
 空気調和装置1eは、上記第2実施形態の空気調和装置1aとは、室外ユニット20が低圧レシーバ41を有していない点、中間圧レシーバ43を有している点、室外膨張弁24を有していない点、第1室外膨張弁44および第2室外膨張弁45を有している点で異なっている。
 中間圧レシーバ43は、冷媒回路10における室外熱交換器23の液側から液側閉鎖弁29までの間に設けられており、冷媒回路10における余剰冷媒を液冷媒として貯留することが可能な冷媒容器である。
 第1室外膨張弁44は、室外熱交換器23の液側から中間圧レシーバ43まで延びる冷媒配管の途中に設けられている。第2室外膨張弁45は、中間圧レシーバ43から液側閉鎖弁29まで延びる冷媒配管の途中に設けられている。第1室外膨張弁44および第2室外膨張弁45は、いずれも、弁開度を調節可能な電動膨張弁であることが好ましい。
 (11-2)冷房運転モード
 空気調和装置1eでは、冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じて定まる目標蒸発温度になるように、運転周波数が容量制御される。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22を通過した後、室外熱交換器23において凝縮する。室外熱交換器23を流れた冷媒は、第1室外膨張弁44において、冷凍サイクルにおける中間圧力まで減圧される。
 ここで、第1室外膨張弁44は、例えば、室外熱交換器23の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。
 第1室外膨張弁44において減圧された冷媒は、中間圧レシーバ43に流入する。中間圧レシーバ43では、冷媒回路10における余剰冷媒が液冷媒として貯留される。中間圧レシーバ43を通過した冷媒は、第2室外膨張弁45において、冷凍サイクルの低圧まで減圧される。
 ここで、第2室外膨張弁45は、例えば、室内熱交換器31のガス側を流れる冷媒の過熱度または圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第2室外膨張弁45の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 第2室外膨張弁45において冷凍サイクルの低圧まで減圧された冷媒は、液側閉鎖弁29、液側冷媒連絡配管6を介して室内ユニット30に流入し、室内熱交換器31において蒸発する。室内熱交換器31を流れた冷媒は、ガス側冷媒連絡配管5を流れた後、ガス側閉鎖弁28、四路切換弁22を経て、再び、圧縮機21に吸入される。
 (11-3)暖房運転モード
 空気調和装置1eでは、暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じて定まる目標凝縮温度になるように、運転周波数が容量制御される。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、室内ユニット30の室内熱交換器31のガス側端に流入し、室内熱交換器31において凝縮する。室内熱交換器31の液側端から流出した冷媒は、液側冷媒連絡配管6を経て、室外ユニット20に流入し、液側閉鎖弁29を通過して、第2室外膨張弁45において冷凍サイクルにおける中間圧になるまで減圧される。
 ここで、第2室外膨張弁45は、例えば、室内熱交換器31の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。
 第2室外膨張弁45において減圧された冷媒は、中間圧レシーバ43に流入する。中間圧レシーバ43では、冷媒回路10における余剰冷媒が液冷媒として貯留される。中間圧レシーバ43を通過した冷媒は、第1室外膨張弁44において、冷凍サイクルの低圧まで減圧される。
 ここで、第1室外膨張弁44は、例えば、圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第1室外膨張弁44の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 第1室外膨張弁44で減圧された冷媒は、室外熱交換器23において蒸発し、四路切換弁22を経て、再び、圧縮機21に吸入される。
 (11-4)第6実施形態の特徴
 空気調和装置1eでは、1,2-ジフルオロエチレンを含む冷媒を用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
 また、空気調和装置1eでは、中間圧レシーバ43を設けることにより、冷媒回路10における余剰冷媒を貯留させることが可能になっている。また、冷房運転時においては、第1室外膨張弁44を過冷却度制御させることにより、室外熱交換器23の能力を十分に発揮させやすく、暖房運転時においては、第2室外膨張弁45を過冷却度制御させることにより、室内熱交換器31の能力を十分に発揮させやすくすることが可能になっている。
 (12)第7実施形態
 以下、冷媒回路の概略構成図である図28、概略制御ブロック構成図である図29を参照しつつ、第7実施形態に係る冷凍サイクル装置としての空気調和装置1fについて説明する。なお、以下では、第6実施形態の空気調和装置1eとの違いを主に説明する。
 (12-1)空気調和装置1fの概略構成
 空気調和装置1fは、上記第6実施形態の空気調和装置1eとは、室外ユニット20が互いに並列に配置された第1室外熱交換器23aおよび第2室外熱交換器23bを有している点、第1室外熱交換器23aの液冷媒側に第1分岐室外膨張弁24aを有し、第2室外熱交換器23bの液冷媒側に第2分岐室外膨張弁24bを有している点で異なっている。なお、第1分岐室外膨張弁24aおよび第2分岐室外膨張弁24bは、弁開度を調節可能な電動膨張弁であることが好ましい。
 また、空気調和装置1fは、上記第6実施形態の空気調和装置1eとは、複数の室内ユニットが並列に設けられている点、および、各室内ユニットにおいて室内熱交換器の液冷媒側に室内膨張弁が設けられている点で異なっている。
 空気調和装置1fは、互いに並列に接続された第1室内ユニット30と第2室内ユニット35とを有している。第1室内ユニット30は、上記実施形態と同様に、第1室内熱交換器31、第1室内ファン32を有しており、第1室内熱交換器31の液冷媒側において第1室内膨張弁33が設けられている。第1室内膨張弁33は、弁開度を調節可能な電動膨張弁であることが好ましい。第1室内ユニット30には、上記実施形態と同様に、第1室内ユニット制御部34と、第1室内ユニット制御部34に対して電気的に接続された第1室内液側熱交温度センサ71、第1室内空気温度センサ72、第1室内ガス側熱交温度センサ73等が設けられている。第1室内液側熱交温度センサ71は、第1室内熱交換器31の液冷媒側の出口を流れる冷媒の温度を検出する。第1室内ガス側熱交温度センサ73は、第1室内熱交換器31のガス冷媒側の出口を流れる冷媒の温度を検出する。第2室内ユニット35は、第1室内ユニット30と同様に、第2室内熱交換器36、第2室内ファン37を有しており、第2室内熱交換器36の液冷媒側において第2室内膨張弁38が設けられている。第2室内膨張弁38は、弁開度を調節可能な電動膨張弁であることが好ましい。第2室内ユニット35には、第1室内ユニット30と同様に、第2室内ユニット制御部39と、第2室内ユニット制御部39に対して電気的に接続された第2室内液側熱交温度センサ75、第2室内空気温度センサ76、第2室内ガス側熱交温度センサ77が設けられている。
 (12-2)冷房運転モード
 空気調和装置1fでは、冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が目標蒸発温度になるように、運転周波数が容量制御される。ここで、目標蒸発温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22を通過した後、第1室外熱交換器23aと第2室外熱交換器23bとに分岐して流れ、第1室外熱交換器23aと第2室外熱交換器23bのそれぞれにおいて凝縮する。第1室外熱交換器23aを流れた冷媒は、第1分岐室外膨張弁24aにおいて、冷凍サイクルにおける中間圧力まで減圧される。また、第2室外熱交換器23bを流れた冷媒は、第2分岐室外膨張弁24bにおいて、冷凍サイクルにおける中間圧力まで減圧される。
 ここで、第1分岐室外膨張弁24aおよび第2分岐室外膨張弁24bは、例えば、いずれも全開状態となるように制御してもよい。
 また、第1室外熱交換器23aと第2室外熱交換器23bとにおいて、構造上または冷媒配管の接続上、冷媒の流れやすさにおいて違いが生じている場合には、第1室外熱交換器23aの液側出口を流れる冷媒の過冷却度が共通目標値になる等の所定条件を満たすように第1分岐室外膨張弁24aの弁開度を制御し、第2室外熱交換器23bの液側出口を流れる冷媒の過冷却度が同じ共通目標値になる等の所定条件を満たすように第2分岐室外膨張弁24bの弁開度を制御してもよい。この制御により、第1室外熱交換器23aと第2室外熱交換器23bとの間の冷媒の偏流を小さく抑えることが可能になる。
 第1分岐室外膨張弁24aを通過した冷媒および第2分岐室外膨張弁24bを通過した冷媒は、合流した後に、中間圧レシーバ43に流入する。中間圧レシーバ43では、冷媒回路10における余剰冷媒が液冷媒として貯留される。中間圧レシーバ43を通過した冷媒は、液側閉鎖弁29、液側冷媒連絡配管6を流れて、第1室内ユニット31および第2室内ユニット35にそれぞれ流入する。
 第1室内ユニット31に流入した冷媒は、第1室内膨張弁33において、冷凍サイクルの低圧まで減圧される。また、第2室内ユニット35に流入した冷媒は、第2室内膨張弁38において、冷凍サイクルの低圧まで減圧される。
 ここで、第1室内膨張弁33は、例えば、第1室内熱交換器31のガス側を流れる冷媒の過熱度または圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。また、第2室内膨張弁38も、同様に、例えば、第2室内熱交換器36のガス側を流れる冷媒の過熱度または圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第1室内膨張弁33および第2室内膨張弁38の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 第1室内膨張弁33において減圧された冷媒は、第1室内熱交換器31において蒸発し、第2室内膨張弁38において減圧された冷媒は、第2室内熱交換器36において蒸発し、合流した後、ガス側冷媒連絡配管5、ガス側閉鎖弁28、四路切換弁22を経て、再び、圧縮機21に吸入される。
 (12-3)暖房運転モード
 空気調和装置1fでは、暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、目標凝縮温度になるように、運転周波数が容量制御される。ここで、目標凝縮温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、第1室内ユニット30と第2室内ユニット35にそれぞれ流入する。
 第1室内ユニット30に流入した冷媒は、第1室内熱交換器31において凝縮し、第2室内ユニット35に流入した冷媒は、第2室内熱交換器36において凝縮する。
 第1室内熱交換器31の液側端から流出した冷媒は、第1室内膨張弁33において、冷凍サイクルの中間圧となるまで減圧される。第2室内熱交換器36の液側端から流出した冷媒も、同様に、第2室内膨張弁38において、冷凍サイクルの中間圧となるまで減圧される。
 ここで、第1室内膨張弁33は、例えば、第1室内熱交換器31の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。また、第2室内膨張弁38についても同様に、例えば、第2室内熱交換器36の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。
 第1室内膨張弁33を通過した冷媒と第2室内膨張弁38を通過した冷媒は、合流した後、液側冷媒連絡配管6を経て、室外ユニット20に流入する。
 室外ユニット20に流入した冷媒は、液側閉鎖弁29を通過して、中間圧レシーバ43に送られる。中間圧レシーバ43では、冷媒回路10における余剰冷媒が液冷媒として貯留される。中間圧レシーバ43を通過した冷媒は、第1分岐室外膨張弁24aと第2分岐室外膨張弁24bとに分離して流れる。
 第1分岐室外膨張弁24aは、通過する冷媒を、冷凍サイクルの低圧となるまで減圧する。第2分岐室外膨張弁24bも同様に、通過する冷媒を、冷凍サイクルの低圧となるまで減圧する。
 ここで、第1分岐室外膨張弁24aおよび第2分岐室外膨張弁24bは、例えば、圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第1分岐室外膨張弁24aおよび第2分岐室外膨張弁24bの弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 第1分岐室外膨張弁24aで減圧された冷媒は、第1室外熱交換器23aにおいて蒸発し、第2分岐室外膨張弁24bで減圧された冷媒は、第2室外熱交換器23bにおいて蒸発し、合流した後、四路切換弁22を経て、再び、圧縮機21に吸入される。
 (12-4)第7実施形態の特徴
 空気調和装置1fでは、1,2-ジフルオロエチレンを含む冷媒を用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
 また、空気調和装置1fでは、中間圧レシーバ43を設けることにより、冷媒回路10における余剰冷媒を貯留させることが可能になっている。また、暖房運転時においては、第1室内膨張弁33と第2室内膨張弁38を過冷却度制御させることにより、室内熱交換器31の能力を十分に発揮させやすくすることが可能になっている。
 (13)第8実施形態
 以下、冷媒回路の概略構成図である図30、概略制御ブロック構成図である図31を参照しつつ、第8実施形態に係る冷凍サイクル装置としての空気調和装置1gについて説明する。なお、以下では、第3実施形態の空気調和装置1bとの違いを主に説明する。
 (13-1)空気調和装置1gの概略構成
 空気調和装置1gは、上記第3実施形態の空気調和装置1bとは、バイパス膨張弁49を有するバイパス配管40が設けられていない点、過冷却熱交換器47が設けられている点、過冷却配管46が設けられている点、第1室外膨張弁44および第2室外膨張弁45が設けられている点、過冷却温度センサ67が設けられている点において異なっている。
 第1室外膨張弁44は、冷媒回路10における室外熱交換器23の液側出口から液側閉鎖弁29までの間に設けられている。第2室外膨張弁45は、冷媒回路10における第1室外膨張弁44から液側閉鎖弁29までの間に設けられている。第1室外膨張弁44と第2室外膨張弁45とは、いずれも、弁開度を調節可能な電動膨張弁であることが好ましい。
 過冷却配管46は、冷媒回路10において、第1室外膨張弁44から第2室外膨張弁45までの間の分岐部分から分岐しており、四路切換弁22の接続ポートの1つから低圧レシーバ41に至るまでの間の合流箇所に合流するように設けられている。過冷却配管46には、過冷却膨張弁48が設けられている。過冷却膨張弁48は、弁開度を調節可能な電動膨張弁であることが好ましい。
 過冷却熱交換器47は、冷媒回路10において第1室外膨張弁44から第2室外膨張弁45までの間の部分を流れる冷媒と、過冷却配管46において過冷却膨張弁48の合流箇所側を流れる冷媒と、の間で熱交換を行わせる熱交換器である。本実施形態では、過冷却熱交換器47は、第1室外膨張弁44から第2室外膨張弁45までの間の部分であって、過冷却配管46の分岐部分よりも第2室外膨張弁45側に設けられている。
 過冷却温度センサ67は、冷媒回路10において第1室外膨張弁44から第2室外膨張弁45までの間の部分のうち、過冷却熱交換器47よりも第2室外膨張弁45側を流れる冷媒の温度を検出する温度センサである。
 (13-2)冷房運転モード
 空気調和装置1gでは、冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が目標蒸発温度になるように、運転周波数が容量制御される。ここで、目標蒸発温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22を介して、室外熱交換器23において凝縮する。室外熱交換器23を流れた冷媒は、第1室外膨張弁44を通過する。なお、この場合には、第1室外膨張弁44は、全開状態となるように制御されている。
 第1室外膨張弁44を通過した冷媒は、一部が第2室外膨張弁45側に向けて流れ、他の一部が、過冷却配管46に分岐して流れる。過冷却配管46に分岐して流れた冷媒は、過冷却膨張弁48において減圧される。過冷却熱交換器47では、第1室外膨張弁44から第2室外膨張弁45側に向けて流れる冷媒と、過冷却膨張弁48において減圧された過冷却配管46を流れる冷媒と、が熱交換される。過冷却配管46を流れる冷媒は、過冷却熱交換器47での熱交換を終えた後、四路切換弁22の接続ポートの1つから低圧レシーバ41に至るまでの間の合流箇所に合流するように流れる。第1室外膨張弁44から第2室外膨張弁45側に向けて流れる冷媒は、過冷却熱交換器47での熱交換を終えた後、第2室外膨張弁45において減圧される。
 以上において、第2室外膨張弁45は、室外熱交換器23の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように制御される。
 また、過冷却膨張弁48の弁開度は、冷媒回路10のうち、第2室外膨張弁45から液側冷媒連絡配管6を介して第1室内膨張弁33および第2室内膨張弁38に至るまでの部分の全てが液状態の冷媒で満たされることがないように、少なくとも第1室内膨張弁33および第2室内膨張弁38に到達する冷媒が気液二相状態となるように制御される。例えば、過冷却膨張弁48の弁開度は、第1室外膨張弁44から第2室外膨張弁45側に向けて流れる冷媒であって過冷却熱交換器47を通過した冷媒の比エンタルピーが、モリエル線図において冷凍サイクルの低圧と飽和液腺とが交わる箇所の比エンタルピーよりも大きくなるように制御されることが好ましい。ここで、コントローラ7は、冷媒に対応するモリエル線図のデータを予め保持しておき、上記過冷却熱交換器47を通過した冷媒の比エンタルピーを、吐出圧力センサ61の検出圧力、過冷却温度センサ67の検出温度と、当該冷媒に対応するモリエル線図のデータと、を用いて過冷却膨張弁48の弁開度を制御してもよい。なお、過冷却膨張弁48の弁開度は、第1室外膨張弁44から第2室外膨張弁45側に向けて流れる冷媒であって過冷却熱交換器47を通過した冷媒の温度(過冷却温度センサ67の検出温度)が、目標値になる等の所定条件を満たすように制御されることがより好ましい。
 第2室外膨張弁45において減圧された冷媒は、液側閉鎖弁29、液側冷媒連絡配管6を介して、第1室内ユニット30および第2室内ユニット35に送られる。
 ここで、第1室内ユニット30では、第1室内膨張弁33は、例えば、第1室内熱交換器31のガス側出口を流れる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。また、第2室内ユニット35の第2室内膨張弁38も、第1室内膨張弁33と同様に、例えば、第2室内熱交換器36のガス側出口を流れる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。また、第1室内膨張弁33と第2室内膨張弁38は、いずれも、吸入温度センサ64の検出温度から吸入圧力センサ63の検出圧力に相当する冷媒の飽和温度を差し引くことで得られる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御されてもよい。さらに、第1室内膨張弁33および第2室内膨張弁38の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 第1室内膨張弁33で減圧された冷媒は第1室内熱交換器31において蒸発し、第2室内膨張弁38で減圧された冷媒は第2室内熱交換器36において蒸発し、合流した後、ガス側冷媒連絡配管5に流れていく。ガス側冷媒連絡配管5を流れた冷媒は、ガス側閉鎖弁28、四路切換弁22を経て、過冷却配管46を流れた冷媒と合流する。合流した冷媒は、低圧レシーバ41を経て、再び、圧縮機21に吸入される。なお、低圧レシーバ41では、第1室内熱交換器31、第2室内熱交換器、過冷却熱交換器47において蒸発しきれなかった液冷媒が余剰冷媒として貯留される。
 (13-3)暖房運転モード
 空気調和装置1gでは、暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、目標凝縮温度になるように、運転周波数が容量制御される。ここで、目標凝縮温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、一部の冷媒が、第1室内ユニット30の第1室内熱交換器31のガス側端に流入し、第1室内熱交換器31において凝縮し、他の一部の冷媒が、第2室内ユニット35の第2室内熱交換器36のガス側端に流入し、第2室内熱交換器36において凝縮する。
 なお、第1室内ユニット30の第1室内膨張弁33は、第1室内熱交換器31の液側を流れる冷媒の過冷却度が所定の目標値になる等の所定条件を満たすように、弁開度が制御される。第2室内ユニット35の第2室内膨張弁38についても同様に、第2室内熱交換器36の液側を流れる冷媒の過冷却度が所定の目標値になる等の所定条件を満たすように、弁開度が制御される。
 第1室内膨張弁33で減圧された冷媒および第2室内膨張弁38で減圧された冷媒は、合流し、液側冷媒連絡配管6を流れて、室外ユニット20に流入する。
 室外ユニット20の液側閉鎖弁29を通過した冷媒は、全開状態に制御された第2室外膨張弁45を通過し、過冷却熱交換器47において、過冷却配管46を流れる冷媒と熱交換する。第2室外膨張弁45を通過して過冷却熱交換器47を通過した冷媒は、一部が過冷却配管46に分岐され、他の一部が第1室外膨張弁44に送られる。過冷却配管46に分岐して流れた冷媒は、過冷却膨張弁48において減圧された後、四路切換弁22の接続ポートの1つと低圧レシーバ41との間の合流箇所において、各室内ユニット30、35から流れてきた冷媒と合流する。また、過冷却熱交換器47から第1室外膨張弁44に向けて流れてきた冷媒は、第1室外膨張弁44において減圧され、室外熱交換器23に流入する。
 ここで、第1室外膨張弁44は、例えば、圧縮機21の吸入側を流れる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第1室外膨張弁44の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 また、過冷却膨張弁48は、圧縮機21の吸入側を流れる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、過冷却膨張弁48の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。また、暖房運転時においては、過冷却配管46に冷媒が流れないように、過冷却膨張弁48を全閉状態に制御してもよい。
 第1室外膨張弁44で減圧された冷媒は、室外熱交換器23において蒸発し、四路切換弁22を経て、過冷却配管46を流れた冷媒と合流する。合流した冷媒は、低圧レシーバ41を経て、再び、圧縮機21に吸入される。なお、低圧レシーバ41では、室外熱交換器23、過冷却熱交換器47において蒸発しきれなかった液冷媒が余剰冷媒として貯留される。
 (13-4)第8実施形態の特徴
 空気調和装置1gでは、1,2-ジフルオロエチレンを含む冷媒を用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
 また、空気調和装置1gでは、低圧レシーバ41を設けることにより、圧縮機21における液圧縮を抑制することができている。また、冷房運転時には、第1室内膨張弁33、第2室内膨張弁38を過熱度制御することで、暖房運転時には、第1室内膨張弁33、第2室内膨張弁38を過冷却度制御することで、第1室内熱交換器31、第2室内熱交換器36における能力を十分に発揮させやすい。
 さらに、空気調和装置1gでは、冷房運転時において、第2室外膨張弁45を通過して、液側冷媒連絡配管6を経て、第1室内膨張弁33、第2室内膨張弁38に至るまでの配管内部の空間を、液状態で満たすのではなく、少なくとも一部において気液二相状態の冷媒が存在するように制御されている。このため、第2室外膨張弁45から第1室内膨張弁33および第2室内膨張弁38に至るまでの配管内部の空間が全て液冷媒で満たされている場合と比べて、当該箇所の冷媒密度を低下させることができる。このため、冷媒回路10に封入されている冷媒の量を少なく抑えて、冷凍サイクルを行うことが可能になっている。したがって、仮に、冷媒回路10から冷媒が漏洩することがあったとしても、漏洩冷媒量を少なく抑えることが可能になっている。
 (14)第9実施形態
 以下、冷媒回路の概略構成図である図32、概略制御ブロック構成図である図33を参照しつつ、第9実施形態に係る冷凍サイクル装置としての空気調和装置1hについて説明する。なお、以下では、第6実施形態の空気調和装置1eとの違いを主に説明する。
 (14-1)空気調和装置1hの概略構成
 空気調和装置1hは、上記第6実施形態の空気調和装置1eとは、吸入冷媒加熱部50を有している点で異なっている。
 吸入冷媒加熱部50は、四路切換弁22の接続ポートの1つから圧縮機21の吸入側に向けて延びる冷媒配管の一部が中間圧レシーバ43内に位置する部分により構成されている。この吸入冷媒加熱部50では、四路切換弁22の接続ポートの1つから圧縮機21の吸入側に向けて延びる冷媒配管を流れる冷媒と、中間圧レシーバ43内に存在している冷媒とは、冷媒同士は混ざり合うことなく、互いに熱交換を行う。
 (14-2)冷房運転モード
 空気調和装置1hでは、冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じて定まる目標蒸発温度になるように、運転周波数が容量制御される。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22を通過した後、室外熱交換器23において凝縮する。室外熱交換器23を流れた冷媒は、第1室外膨張弁44において、冷凍サイクルにおける中間圧力まで減圧される。
 ここで、第1室外膨張弁44は、例えば、室外熱交換器23の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。
 第1室外膨張弁44において減圧された冷媒は、中間圧レシーバ43に流入する。中間圧レシーバ43では、冷媒回路10における余剰冷媒が液冷媒として貯留される。ここで、中間圧レシーバ43に流入した冷媒は、吸入冷媒加熱部50における圧縮機21の吸入側を流れる冷媒との熱交換により、冷却される。中間圧レシーバ43内の吸入冷媒加熱部50において冷却された冷媒は、第2室外膨張弁45において、冷凍サイクルの低圧まで減圧される。
 ここで、第2室外膨張弁45は、例えば、室内熱交換器31のガス側を流れる冷媒の過熱度または圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第2室外膨張弁45の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 第2室外膨張弁45において冷凍サイクルの低圧まで減圧された冷媒は、液側閉鎖弁29、液側冷媒連絡配管6を介して室内ユニット30に流入し、室内熱交換器31において蒸発する。室内熱交換器31を流れた冷媒は、ガス側冷媒連絡配管5を流れた後、ガス側閉鎖弁28、四路切換弁22を経て、中間圧レシーバ43の内部を通過する冷媒配管内を流れる。中間圧レシーバ43の内部を通過する冷媒配管内を流れる冷媒は、中間圧レシーバ43内の吸入冷媒加熱部50において中間圧レシーバ43に貯留されている冷媒と熱交換を行うことで加熱され、再び、圧縮機21に吸入される。
 (14-3)暖房運転モード
 空気調和装置1hでは、暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じて定まる目標凝縮温度になるように、運転周波数が容量制御される。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、室内ユニット30の室内熱交換器31のガス側端に流入し、室内熱交換器31において凝縮する。室内熱交換器31の液側端から流出した冷媒は、液側冷媒連絡配管6を経て、室外ユニット20に流入し、液側閉鎖弁29を通過して、第2室外膨張弁45において冷凍サイクルにおける中間圧になるまで減圧される。
 ここで、第2室外膨張弁45は、例えば、室内熱交換器31の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。
 第2室外膨張弁45において減圧された冷媒は、中間圧レシーバ43に流入する。中間圧レシーバ43では、冷媒回路10における余剰冷媒が液冷媒として貯留される。ここで、中間圧レシーバ43に流入した冷媒は、吸入冷媒加熱部50における圧縮機21の吸入側を流れる冷媒との熱交換により、冷却される。中間圧レシーバ43内の吸入冷媒加熱部50において冷却された冷媒は、第1室外膨張弁44において、冷凍サイクルの低圧まで減圧される。
 ここで、第1室外膨張弁44は、例えば、圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第1室外膨張弁44の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 第1室外膨張弁44で減圧された冷媒は、室外熱交換器23において蒸発し、四路切換弁22を経て、中間圧レシーバ43の内部を通過する冷媒配管内を流れる。中間圧レシーバ43の内部を通過する冷媒配管内を流れる冷媒は、中間圧レシーバ43内の吸入冷媒加熱部50において中間圧レシーバ43に貯留されている冷媒と熱交換を行うことで加熱され、再び、圧縮機21に吸入される。
 (14-4)第9実施形態の特徴
 空気調和装置1hでは、1,2-ジフルオロエチレンを含む冷媒を用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
 また、空気調和装置1hでは、中間圧レシーバ43を設けることにより、冷媒回路10における余剰冷媒を貯留させることが可能になっている。また、冷房運転時においては、第1室外膨張弁44を過冷却度制御させることにより、室外熱交換器23の能力を十分に発揮させやすく、暖房運転時においては、第2室外膨張弁45を過冷却度制御させることにより、室内熱交換器31の能力を十分に発揮させやすくすることが可能になっている。
 さらに、吸入冷媒加熱部50が設けられていることで、圧縮機21に吸入される冷媒が加熱され、圧縮機21における液圧縮が抑制されるため、冷房運転において冷媒の蒸発器として機能する室内熱交換器31の出口を流れる冷媒の過熱度が小さい値となるように制御させることが可能になる。また、暖房運転においても同様に、冷媒の蒸発器として機能する室外熱交換器23の出口を流れる冷媒の過熱度が小さい値となるように制御させることが可能になる。これにより、冷房運転と暖房運転のいずれにおいても、冷媒として非共沸混合冷媒が用いられることで蒸発器内において温度グライドが生じる場合であっても、蒸発器として機能させる熱交換器において十分に能力を発揮させることができる。
 (15)第10実施形態
 以下、冷媒回路の概略構成図である図34、概略制御ブロック構成図である図35を参照しつつ、第10実施形態に係る冷凍サイクル装置としての空気調和装置1iについて説明する。なお、以下では、第9実施形態の空気調和装置1hとの違いを主に説明する。
 (15-1)空気調和装置1iの概略構成
 空気調和装置1iは、上記第9実施形態の空気調和装置1hとは、第1室外膨張弁44と第2室外膨張弁45が設けられておらず、室外膨張弁24が設けられている点、複数の室内ユニット(第1室内ユニット30と第2室内ユニット35)が並列に設けられている点、および、各室内ユニットにおいて室内熱交換器の液冷媒側に室内膨張弁が設けられている点で異なっている。
 室外膨張弁24は、室外熱交換器23の液側の出口から中間圧レシーバ43に至るまで延びている冷媒配管の途中に設けられている。室外膨張弁24は、弁開度を調節可能な電動膨張弁であることが好ましい。
 第1室内ユニット30は、上記実施形態と同様に、第1室内熱交換器31、第1室内ファン32を有しており、第1室内熱交換器31の液冷媒側において第1室内膨張弁33が設けられている。第1室内膨張弁33は、弁開度を調節可能な電動膨張弁であることが好ましい。第1室内ユニット30には、上記実施形態と同様に、第1室内ユニット制御部34と、第1室内ユニット制御部34に対して電気的に接続された第1室内液側熱交温度センサ71、第1室内空気温度センサ72、第1室内ガス側熱交温度センサ73等が設けられている。第2室内ユニット35は、第1室内ユニット30と同様に、第2室内熱交換器36、第2室内ファン37を有しており、第2室内熱交換器36の液冷媒側において第2室内膨張弁38が設けられている。第2室内膨張弁38は、弁開度を調節可能な電動膨張弁であることが好ましい。第2室内ユニット35には、第1室内ユニット30と同様に、第2室内ユニット制御部39と、第2室内ユニット制御部39に対して電気的に接続された第2室内液側熱交温度センサ75、第2室内空気温度センサ76、第2室内ガス側熱交温度センサ77が設けられている。
 (15-2)冷房運転モード
 空気調和装置1iでは、冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が目標蒸発温度になるように、運転周波数が容量制御される。ここで、目標蒸発温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22を通過した後、室外熱交換器23において凝縮する。室外熱交換器23を流れた冷媒は、全開状態に制御された室外膨張弁24を通過する。
 室外膨張弁24を通過した冷媒は、中間圧レシーバ43に流入する。中間圧レシーバ43では、冷媒回路10における余剰冷媒が液冷媒として貯留される。ここで、中間圧レシーバ43に流入した冷媒は、吸入冷媒加熱部50における圧縮機21の吸入側を流れる冷媒との熱交換により、冷却される。中間圧レシーバ43内の吸入冷媒加熱部50において冷却された冷媒は、液側閉鎖弁29、液側冷媒連絡配管6を介して、第1室内ユニット30および第2室内ユニット35にそれぞれ流入する。
 第1室内ユニット31に流入した冷媒は、第1室内膨張弁33において、冷凍サイクルの低圧まで減圧される。また、第2室内ユニット35に流入した冷媒は、第2室内膨張弁38において、冷凍サイクルの低圧まで減圧される。
 ここで、第1室内膨張弁33は、例えば、第1室内熱交換器31のガス側を流れる冷媒の過熱度または圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。また、第2室内膨張弁38も、同様に、例えば、第2室内熱交換器36のガス側を流れる冷媒の過熱度または圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。
 第1室内膨張弁33において減圧された冷媒は、第1室内熱交換器31において蒸発し、第2室内膨張弁38において減圧された冷媒は、第2室内熱交換器36において蒸発し、合流した後、ガス側冷媒連絡配管5を流れ、ガス側閉鎖弁28、四路切換弁22を経て、中間圧レシーバ43の内部を通過する冷媒配管内を流れる。中間圧レシーバ43の内部を通過する冷媒配管内を流れる冷媒は、中間圧レシーバ43内の吸入冷媒加熱部50において中間圧レシーバ43に貯留されている冷媒と熱交換を行うことで加熱され、再び、圧縮機21に吸入される。
 (15-3)暖房運転モード
 空気調和装置1iでは、暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、目標凝縮温度になるように、運転周波数が容量制御される。ここで、目標凝縮温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、第1室内ユニット30と第2室内ユニット35にそれぞれ流入する。
 第1室内ユニット30に流入した冷媒は、第1室内熱交換器31において凝縮し、第2室内ユニット35に流入した冷媒は、第2室内熱交換器36において凝縮する。
 第1室内熱交換器31の液側端から流出した冷媒は、第1室内膨張弁33において、冷凍サイクルの中間圧となるまで減圧される。第2室内熱交換器36の液側端から流出した冷媒も、同様に、第2室内膨張弁38において、冷凍サイクルの中間圧となるまで減圧される。
 ここで、第1室内膨張弁33は、例えば、第1室内熱交換器31の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。また、第2室内膨張弁38についても同様に、例えば、第2室内熱交換器36の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。
 第1室内膨張弁33を通過した冷媒と第2室内膨張弁38を通過した冷媒は、合流した後、液側冷媒連絡配管6を経て、室外ユニット20に流入する。
 室外ユニット20に流入した冷媒は、液側閉鎖弁29を通過して、中間圧レシーバ43に流入する。中間圧レシーバ43では、冷媒回路10における余剰冷媒が液冷媒として貯留される。ここで、中間圧レシーバ43に流入した冷媒は、吸入冷媒加熱部50における圧縮機21の吸入側を流れる冷媒との熱交換により、冷却される。中間圧レシーバ43内の吸入冷媒加熱部50において冷却された冷媒は、室外膨張弁24において、冷凍サイクルの低圧まで減圧される。
 ここで、室外膨張弁24は、例えば、圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、室外膨張弁24の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 室外膨張弁24で減圧された冷媒は、室外熱交換器23において蒸発し、四路切換弁22を経て、中間圧レシーバ43の内部を通過する冷媒配管内を流れる。中間圧レシーバ43の内部を通過する冷媒配管内を流れる冷媒は、中間圧レシーバ43内の吸入冷媒加熱部50において中間圧レシーバ43に貯留されている冷媒と熱交換を行うことで加熱され、再び、圧縮機21に吸入される。
 (15-4)第10実施形態の特徴
 空気調和装置1iでは、1,2-ジフルオロエチレンを含む冷媒を用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
 また、空気調和装置1iでは、中間圧レシーバ43を設けることにより、冷媒回路10における余剰冷媒を貯留させることが可能になっている。また、暖房運転時においては、第2室外膨張弁45を過冷却度制御させることにより、室内熱交換器31の能力を十分に発揮させやすくすることが可能になっている。
 さらに、吸入冷媒加熱部50が設けられていることで、圧縮機21に吸入される冷媒が加熱され、圧縮機21における液圧縮が抑制されるため、冷房運転において冷媒の蒸発器として機能する室内熱交換器31の出口を流れる冷媒の過熱度が小さい値となるように制御させることが可能になる。また、暖房運転においても同様に、冷媒の蒸発器として機能する室外熱交換器23の出口を流れる冷媒の過熱度が小さい値となるように制御させることが可能になる。これにより、冷房運転と暖房運転のいずれにおいても、冷媒として非共沸混合冷媒が用いられることで蒸発器内において温度グライドが生じる場合であっても、蒸発器として機能させる熱交換器において十分に能力を発揮させることができる。
 (16)第11実施形態
 以下、冷媒回路の概略構成図である図36、概略制御ブロック構成図である図37を参照しつつ、第11実施形態に係る冷凍サイクル装置としての空気調和装置1jについて説明する。なお、以下では、第9実施形態の空気調和装置1hとの違いを主に説明する。
 (16-1)空気調和装置1jの概略構成
 空気調和装置1jは、上記第9実施形態の空気調和装置1hとは、吸入冷媒加熱部50が設けられておらず、内部熱交換器51が設けられている点で異なっている。
 内部熱交換器51は、第1室外膨張弁44と第2室外膨張弁45との間を流れる冷媒と、四路切換弁22の接続ポートの1つから圧縮機21の吸入側に向けて延びる冷媒配管を流れる冷媒と、の間で熱交換を行わせる熱交換器である。
 (16-2)冷房運転モード
 空気調和装置1jでは、冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じて定まる目標蒸発温度になるように、運転周波数が容量制御される。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22を通過した後、室外熱交換器23において凝縮する。室外熱交換器23を流れた冷媒は、全開状態に制御された第1室外膨張弁44を通過する。第1室外膨張弁44を通過した冷媒は、内部熱交換器51において冷却され、第2室外膨張弁45において冷凍サイクルの低圧まで減圧される。
 ここで、第2室外膨張弁45は、例えば、室内熱交換器31のガス側を流れる冷媒の過熱度または圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第2室外膨張弁45の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 第2室外膨張弁45において冷凍サイクルの低圧まで減圧された冷媒は、液側閉鎖弁29、液側冷媒連絡配管6を介して室内ユニット30に流入し、室内熱交換器31において蒸発する。室内熱交換器31を流れた冷媒は、ガス側冷媒連絡配管5を流れた後、ガス側閉鎖弁28、四路切換弁22を経て、内部熱交換器51において加熱され、再び、圧縮機21に吸入される。
 (16-3)暖房運転モード
 空気調和装置1jでは、暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じて定まる目標凝縮温度になるように、運転周波数が容量制御される。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、室内ユニット30の室内熱交換器31のガス側端に流入し、室内熱交換器31において凝縮する。室内熱交換器31の液側端から流出した冷媒は、液側冷媒連絡配管6を経て、室外ユニット20に流入し、液側閉鎖弁29を通過して、全開状態に制御された第2室外膨張弁45を通過する。第2室外膨張弁45を通過した冷媒は、内部熱交換器51において冷却され、第1室外膨張弁44において冷凍サイクルにおける中間圧になるまで減圧される。
 ここで、第1室外膨張弁44は、例えば、圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第1室外膨張弁44の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 第1室外膨張弁44で減圧された冷媒は、室外熱交換器23において蒸発し、四路切換弁22を経て、内部熱交換器51において加熱され、再び、圧縮機21に吸入される。
 (16-4)第11実施形態の特徴
 空気調和装置1jでは、1,2-ジフルオロエチレンを含む冷媒を用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
 また、空気調和装置1jでは、内部熱交換器51が設けられていることで、圧縮機21に吸入される冷媒が加熱され、圧縮機21における液圧縮が抑制されるため、冷房運転において冷媒の蒸発器として機能する室内熱交換器31の出口を流れる冷媒の過熱度が小さい値となるように制御させることが可能になる。また、暖房運転においても同様に、冷媒の蒸発器として機能する室外熱交換器23の出口を流れる冷媒の過熱度が小さい値となるように制御させることが可能になる。これにより、冷房運転と暖房運転のいずれにおいても、冷媒として非共沸混合冷媒が用いられることで蒸発器内において温度グライドが生じる場合であっても、蒸発器として機能させる熱交換器において十分に能力を発揮させることができる。
 (17)第12実施形態
 以下、冷媒回路の概略構成図である図38、概略制御ブロック構成図である図39を参照しつつ、第12実施形態に係る冷凍サイクル装置としての空気調和装置1kについて説明する。なお、以下では、第10実施形態の空気調和装置1jとの違いを主に説明する。
 (17-1)空気調和装置1kの概略構成
 空気調和装置1kは、上記第10実施形態の空気調和装置1jとは、第1室外膨張弁44と第2室外膨張弁45が設けられておらず、室外膨張弁24が設けられている点、複数の室内ユニット(第1室内ユニット30と第2室内ユニット35)が並列に設けられている点、および、各室内ユニットにおいて室内熱交換器の液冷媒側に室内膨張弁が設けられている点で異なっている。
 室外膨張弁24は、内部熱交換器51から液側閉鎖弁29まで延びる冷媒配管の途中に設けられている。室外膨張弁24は、弁開度を調節可能な電動膨張弁であることが好ましい。
 第1室内ユニット30は、上記実施形態と同様に、第1室内熱交換器31、第1室内ファン32を有しており、第1室内熱交換器31の液冷媒側において第1室内膨張弁33が設けられている。第1室内膨張弁33は、弁開度を調節可能な電動膨張弁であることが好ましい。第1室内ユニット30には、上記実施形態と同様に、第1室内ユニット制御部34と、第1室内ユニット制御部34に対して電気的に接続された第1室内液側熱交温度センサ71、第1室内空気温度センサ72、第1室内ガス側熱交温度センサ73等が設けられている。第2室内ユニット35は、第1室内ユニット30と同様に、第2室内熱交換器36、第2室内ファン37を有しており、第2室内熱交換器36の液冷媒側において第2室内膨張弁38が設けられている。第2室内膨張弁38は、弁開度を調節可能な電動膨張弁であることが好ましい。第2室内ユニット35には、第1室内ユニット30と同様に、第2室内ユニット制御部39と、第2室内ユニット制御部39に対して電気的に接続された第2室内液側熱交温度センサ75、第2室内空気温度センサ76、第2室内ガス側熱交温度センサ77が設けられている。
 (17-2)冷房運転モード
 空気調和装置1kでは、冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が目標蒸発温度になるように、運転周波数が容量制御される。ここで、目標蒸発温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22を通過した後、室外熱交換器23において凝縮する。室外熱交換器23を流れた冷媒は、内部熱交換器51において冷却され、全開状態に制御された室外膨張弁24を通過し、液側閉鎖弁29、液側閉鎖弁29、液側冷媒連絡配管6を介して第1室内ユニット30および第2室内ユニット35にそれぞれ流入する。
 第1室内ユニット31に流入した冷媒は、第1室内膨張弁33において、冷凍サイクルの低圧まで減圧される。また、第2室内ユニット35に流入した冷媒は、第2室内膨張弁38において、冷凍サイクルの低圧まで減圧される。
 ここで、第1室内膨張弁33は、例えば、第1室内熱交換器31のガス側を流れる冷媒の過熱度または圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。また、第2室内膨張弁38も、同様に、例えば、第2室内熱交換器36のガス側を流れる冷媒の過熱度または圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。
 第1室内膨張弁33において減圧された冷媒は、第1室内熱交換器31において蒸発し、第2室内膨張弁38において減圧された冷媒は、第2室内熱交換器36において蒸発し、合流した後、ガス側冷媒連絡配管5を流れ、ガス側閉鎖弁28、四路切換弁22を経て、内部熱交換器51において加熱され、再び、圧縮機21に吸入される。
 (17-3)暖房運転モード
 空気調和装置1kでは、暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、目標凝縮温度になるように、運転周波数が容量制御される。ここで、目標凝縮温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、第1室内ユニット30と第2室内ユニット35にそれぞれ流入する。
 第1室内ユニット30に流入した冷媒は、第1室内熱交換器31において凝縮し、第2室内ユニット35に流入した冷媒は、第2室内熱交換器36において凝縮する。
 第1室内熱交換器31の液側端から流出した冷媒は、第1室内膨張弁33において、冷凍サイクルの中間圧となるまで減圧される。第2室内熱交換器36の液側端から流出した冷媒も、同様に、第2室内膨張弁38において、冷凍サイクルの中間圧となるまで減圧される。
 ここで、第1室内膨張弁33は、例えば、第1室内熱交換器31の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。また、第2室内膨張弁38についても同様に、例えば、第2室内熱交換器36の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。
 第1室内膨張弁33を通過した冷媒と第2室内膨張弁38を通過した冷媒は、合流した後、液側冷媒連絡配管6を経て、室外ユニット20に流入する。
 室外ユニット20に流入した冷媒は、液側閉鎖弁29を通過して、室外膨張弁24において、冷凍サイクルの低圧まで減圧される。
 ここで、室外膨張弁24は、例えば、圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、室外膨張弁24の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 室外膨張弁24で減圧された冷媒は、室外熱交換器23において蒸発し、四路切換弁22を経て、内部熱交換器51において加熱され、再び、圧縮機21に吸入される。
 (17-4)第12実施形態の特徴
 空気調和装置1kでは、1,2-ジフルオロエチレンを含む冷媒を用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
 また、空気調和装置1kでは、暖房運転時においては、第1室内膨張弁33、第2室内膨張弁38を過冷却度制御させることにより、第1室内熱交換器31および第2室内熱交換器36の能力を十分に発揮させやすくすることが可能になっている。
 さらに、空気調和装置1kには、内部熱交換器51が設けられていることで、圧縮機21に吸入される冷媒が加熱され、圧縮機21における液圧縮が抑制されるため、冷房運転において冷媒の蒸発器として機能する第1室内熱交換器31や第2室内熱交換器36の出口を流れる冷媒の過熱度が小さい値となるように制御させることが可能になる。また、暖房運転においても同様に、冷媒の蒸発器として機能する室外熱交換器23の出口を流れる冷媒の過熱度が小さい値となるように制御させることが可能になる。これにより、冷房運転と暖房運転のいずれにおいても、冷媒として非共沸混合冷媒が用いられることで蒸発器内において温度グライドが生じる場合であっても、蒸発器として機能させる熱交換器において十分に能力を発揮させることができる。
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
  1、1a~1m 空気調和装置(冷凍サイクル装置)
  7 コントローラ(制御部)
 10 冷媒回路
 20 室外ユニット
 21 圧縮機
 23 室外熱交換器(凝縮器、蒸発器)
 24 室外膨張弁(減圧部)
 25 室外ファン
 26 室内ブリッジ回路
 27 室外ユニット制御部(制御部)
 30 室内ユニット、第1室内ユニット
 31 室内熱交換器、第1室内熱交換器(蒸発器、凝縮器)
 32 室内ファン、第1室内ファン
 33 室内膨張弁、第1室内膨張弁(減圧部)
 34 室内ユニット制御部、第1室内ユニット制御部(制御部)
 35 第2室内ユニット
 36 第2室内熱交換器(蒸発器、凝縮器)
 37 第2室内ファン
 38 第2室内膨張弁(減圧部)
 39 第2室内ユニット制御部(制御部)
 40 バイパス配管
 41 低圧レシーバ
 42 高圧レシーバ
 43 中間圧レシーバ
 44 第1室外膨張弁(減圧部、第1減圧部)
 45 第2室外膨張弁(減圧部、第2減圧部)
 46 過冷却配管
 47 過冷却熱交換器
 48 過冷却膨張弁
 49 バイパス膨張弁
 50 吸入冷媒加熱部(冷媒熱交換部)
 51 内部熱交換器(冷媒熱交換部)
 53 室外ブリッジ回路
 54 室内ブリッジ回路、第1室内ブリッジ回路
 55 第2室内ブリッジ回路
 61 吐出圧力センサ
 62 吐出温度センサ
 63 吸入圧力センサ
 64 吸入温度センサ
 65 室外熱交温度センサ
 66 外気温度センサ
 67 過冷却温度センサ
 71 室内液側熱交温度センサ、第1室内液側熱交温度センサ
 72 室内空気温度センサ、第1室内空気温度センサ
 73 室内ガス側熱交温度センサ、第1室内ガス側熱交温度センサ
 75 第2室内液側熱交温度センサ
 76 第2室内空気温度センサ
 77 第2室内ガス側熱交温度センサ
 81 室内流入側熱交温度センサ、第1室内流入側熱交温度センサ
 83 室内流出側熱交温度センサ、第1室内流出側熱交温度センサ
 85 第2室内流入側熱交温度センサ
 87 第2室内流出側熱交温度センサ
国際公開第2015/141678号

Claims (29)

  1.  圧縮機(21)と凝縮器(23、31、36)と減圧部(24、44、45、33、38)と蒸発器(31、36、23)とを有する冷媒回路(10)と、
     前記冷媒回路に封入された少なくとも1,2-ジフルオロエチレンを含む冷媒と、
    を備えた冷凍サイクル装置(1、1a~1m)。
  2.  前記冷媒回路は、前記蒸発器から前記圧縮機の吸入側に向かう冷媒流路の途中に設けられた低圧レシーバ(41)をさらに有している、
    請求項1に記載の冷凍サイクル装置(1a、1b、1g、1l、1m)。
  3.  前記冷媒回路は、前記凝縮器から前記蒸発器に向かう冷媒流路の途中に設けられた高圧レシーバ(42)をさらに有している、
    請求項1または2に記載の冷凍サイクル装置(1c、1d)。
  4.  前記冷媒回路は、前記凝縮器から前記蒸発器に向かう冷媒流路の途中に設けられた第1減圧部(44)と第2減圧部(45)と中間圧レシーバ(43)とさらに有しており、
     前記中間圧レシーバは、前記凝縮器から前記蒸発器に向かう冷媒流路における前記第1減圧部と前記第2減圧部との間に設けられている、
    請求項1から3のいずれか1項に記載の冷凍サイクル装置(1e、1f、1h、1i)。
  5.  前記冷媒回路は、前記凝縮器から前記蒸発器に向かう冷媒流路の途中に設けられた第1減圧部(44)と第2減圧部(45)とをさらに有しており、
     前記第1減圧部を通過する冷媒の減圧程度と前記第2減圧部を通過する冷媒の減圧程度との両方を調節する制御部(7、27)をさらに備えた、
    請求項1から3のいずれか1項に記載の冷凍サイクル装置(1g)。
  6.  前記冷媒回路は、前記凝縮器から前記蒸発器に向かう冷媒と、前記蒸発器から前記圧縮機に向かう冷媒と、の間で熱交換を行わせる冷媒熱交換部(50、51)をさらに有している、
    請求項1から5のいずれか1項に記載の冷凍サイクル装置(1h、1i、1j、1k)。
  7.  前記冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を含む、
    請求項1から6のいずれか1項に記載の冷凍サイクル装置。
  8.  前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
      点A(68.6, 0.0, 31.4)、
      点A’(30.6, 30.0, 39.4)、
      点B(0.0, 58.7, 41.3)、
      点D(0.0, 80.4, 19.6)、
      点C’(19.5,70.5,10.0)、
      点C(32.9, 67.1, 0.0)及び
      点O(100.0, 0.0, 0.0)
    の7点をそれぞれ結ぶ線分AA’、A’B、BD、DC’、C’C、CO及びOAで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分BD、CO及びOA上の点は除く)、
    前記線分AA’は、
      座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
    で表わされ、
    前記線分A’Bは、
      座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
    で表わされ、
    前記線分DC’は、
      座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
    で表わされ、
    前記線分C’Cは、
      座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
    で表わされ、かつ
    前記線分BD、CO及びOAが直線である、
    請求項7に記載の冷凍サイクル装置。
  9.  前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
      点G(72.0, 28.0, 0.0)、
      点I(72.0, 0.0, 28.0)、
      点A(68.6, 0.0, 31.4)、
      点A’(30.6, 30.0, 39.4)、
      点B(0.0, 58.7, 41.3)、
      点D(0.0, 80.4, 19.6)、
      点C’(19.5,70.5,10.0) 及び
      点C(32.9, 67.1, 0.0)
    の8点をそれぞれ結ぶ線分GI、IA、AA’、A’B、BD、DC’、C’C及びCGで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分IA、BD及びCG上の点は除く)、
    前記線分AA’は、
      座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
    で表わされ、
    前記線分A’Bは、
      座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
    で表わされ、
    前記線分DC’は、
      座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
    で表わされ、
    前記線分C’Cは、
      座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
    で表わされ、かつ
    前記線分GI、IA、BD及びCGが直線である、
    請求項7に記載の冷凍サイクル装置。
  10.  前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
      点J(47.1, 52.9, 0.0)、
      点P(55.8, 42.0, 2.2)、
      点N(68.6, 16.3, 15.1)、
      点K(61.3, 5.4, 33.3)、
      点A’(30.6, 30.0, 39.4)、
      点B(0.0, 58.7, 41.3)、
      点D(0.0, 80.4, 19.6)、
      点C’(19.5,70.5,10.0) 及び
      点C(32.9, 67.1, 0.0)
    の9点をそれぞれ結ぶ線分JP、PN、NK、KA’、A’B、BD、DC’、C’C及びCJで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分BD及びCJ上の点は除く)、
    前記線分PNは、
      座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
    で表わされ、
    前記線分NKは、
      座標(x, 0.2421x2-29.955x+931.91, -0.2421x2+28.955x-831.91)
    で表わされ、
    前記線分KA’は、
      座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
    で表わされ、
    前記線分A’Bは、
      座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
    で表わされ、
    前記線分DC’は、
      座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
    で表わされ、
    前記線分C’Cは、
      座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
    で表わされ、かつ
    前記線分JP、BD及びCGが直線である、
    請求項7に記載の冷凍サイクル装置。
  11.  前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
      点J(47.1, 52.9, 0.0)、
      点P(55.8, 42.0, 2.2)、
      点L(63.1, 31.9, 5.0)、
      点M(60.3, 6.2, 33.5)、
      点A’(30.6, 30.0, 39.4)、
      点B(0.0, 58.7, 41.3)、
      点D(0.0, 80.4, 19.6)、
      点C’(19.5,70.5,10.0) 及び
      点C(32.9, 67.1, 0.0)
    の9点をそれぞれ結ぶ線分JP、PL、LM、MA’、A’B、BD、DC’、C’C及びCJで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分BD及びCJ上の点は除く)、
    前記線分PLは、
      座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
    で表わされ、
    前記線分MA’は、
      座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
    で表わされ、
    前記線分A’Bは、
      座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
    で表わされ、
    前記線分DC’は、
      座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
    で表わされ、
    前記線分C’Cは、
      座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
    で表わされ、かつ
    前記線分JP、LM、BD及びCGが直線である、
    請求項7に記載の冷凍サイクル装置。
  12.  前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
      点P(55.8, 42.0, 2.2)、
      点L(63.1, 31.9, 5.0)、
      点M(60.3, 6.2, 33.5)、
      点A’(30.6, 30.0, 39.4)、
      点B(0.0, 58.7, 41.3)、
      点F(0.0, 61.8, 38.2)及び
      点T(35.8, 44.9, 19.3)
    の7点をそれぞれ結ぶ線分PL、LM、MA’、A’B、BF、FT及びTPで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分BF上の点は除く)、
    前記線分PLは、
      座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
    で表わされ、
    前記線分MA’は、
      座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
    で表わされ、
    前記線分A’Bは、
      座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
    で表わされ、
    前記線分FTは、
      座標(x, 0.0078x2-0.7501x+61.8, -0.0078x2-0.2499x+38.2)
    で表わされ、
    前記線分TPは、
      座標(x, 0.0067x2-0.7607x+63.525, -0.0067x2-0.2393x+36.475)
    で表わされ、かつ
    前記線分LM及びBFが直線である、
    請求項7に記載の冷凍サイクル装置。
  13.  前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
      点P(55.8, 42.0, 2.2)、
      点L(63.1, 31.9, 5.0)、
      点Q(62.8, 29.6, 7.6) 及び
      点R(49.8, 42.3, 7.9)
    の4点をそれぞれ結ぶ線分PL、LQ、QR及びRPで囲まれる図形の範囲内又は前記線分上にあり、
    前記線分PLは、
      座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
    で表わされ、
    前記線分RPは、
      座標(x, 0.0067x2-0.7607x+63.525, -0.0067x2-0.2393x+36.475)
    で表わされ、かつ
    前記線分LQ及びQRが直線である、
    請求項7に記載の冷凍サイクル装置。
  14.  前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
      点S(62.6, 28.3, 9.1)、
      点M(60.3, 6.2, 33.5)、
      点A’(30.6, 30.0, 39.4)、
      点B(0.0, 58.7, 41.3)、
      点F(0.0, 61.8, 38.2)及び
      点T(35.8, 44.9, 19.3)
    の6点をそれぞれ結ぶ線分SM、MA’、A’B、BF、FT、及びTSで囲まれる図形の範囲内又は前記線分上にあり、
    前記線分MA’は、
      座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
    で表わされ、
    前記線分A’Bは、
      座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
    で表わされ、
    前記線分FTは、
      座標(x, 0.0078x2-0.7501x+61.8, -0.0078x2-0.2499x+38.2)
    で表わされ、
    前記線分TSは、
      座標(x, 0.0017x2-0.7869x+70.888, -0.0017x2-0.2131x+29.112)
    で表わされ、かつ
    前記線分SM及びBFが直線である、
    請求項7に記載の冷凍サイクル装置。
  15.  前記冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))及びトリフルオロエチレン(HFO-1123)の合計を、該冷媒の全体に対して99.5質量%以上含み、かつ該冷媒が、HFO-1132(E)を、該冷媒の全体に対して62.0質量%~72.0質量%含む、
    請求項1から6のいずれか1項に記載の冷凍サイクル装置。
  16.  前記冷媒が、HFO-1132(E)及びHFO-1123の合計を、該冷媒の全体に対して99.5質量%以上含み、かつ該冷媒が、HFO-1132(E)を、該冷媒の全体に対して45.1質量%~47.1質量%含む、
    請求項1から6のいずれか1項に記載の冷凍サイクル装置。
  17.  前記冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)並びにジフルオロメタン(R32)を含み、
     前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yf並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる3成分組成図において、座標(x,y,z)が、
      0<a≦11.1のとき、
       点G(0.026a2-1.7478a+72.0, -0.026a2+0.7478a+28.0, 0.0)、
       点I(0.026a2-1.7478a+72.0, 0.0, -0.026a2+0.7478a+28.0)、
       点A(0.0134a2-1.9681a+68.6, 0.0, -0.0134a2+0.9681a+31.4)、
       点B(0.0, 0.0144a2-1.6377a+58.7, -0.0144a2+0.6377a+41.3)、
       点D’(0.0, 0.0224a2+0.968a+75.4, -0.0224a2-1.968a+24.6)及び
       点C(-0.2304a2-0.4062a+32.9, 0.2304a2-0.5938a+67.1, 0.0)
    の6点をそれぞれ結ぶ直線GI、IA、AB、BD’、D’C及びCGで囲まれる図形の範囲内又は前記直線GI、AB及びD’C上にあり(ただし、点G、点I、点A、点B、点D’及び点Cは除く)、
      11.1<a≦18.2のとき、
       点G(0.02a2-1.6013a+71.105, -0.02a2+0.6013a+28.895, 0.0)、
       点I(0.02a2-1.6013a+71.105, 0.0, -0.02a2+0.6013a+28.895)、
       点A(0.0112a2-1.9337a+68.484, 0.0, -0.0112a2+0.9337a+31.516)、
       点B(0.0, 0.0075a2-1.5156a+58.199, -0.0075a2+0.5156a+41.801)及び
       点W(0.0, 100.0-a, 0.0)
    の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、
      18.2<a≦26.7のとき、
       点G(0.0135a2-1.4068a+69.727, -0.0135a2+0.4068a+30.273, 0.0)、
       点I(0.0135a2-1.4068a+69.727, 0.0, -0.0135a2+0.4068a+30.273)、
       点A(0.0107a2-1.9142a+68.305, 0.0, -0.0107a2+0.9142a+31.695)、
       点B(0.0, 0.009a2-1.6045a+59.318, -0.009a2+0.6045a+40.682)及び
       点W(0.0, 100.0-a, 0.0)
    の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、
      26.7<a≦36.7のとき、
       点G(0.0111a2-1.3152a+68.986, -0.0111a2+0.3152a+31.014, 0.0)、
       点I(0.0111a2-1.3152a+68.986, 0.0, -0.0111a2+0.3152a+31.014)、
       点A(0.0103a2-1.9225a+68.793, 0.0, -0.0103a2+0.9225a+31.207)、
       点B(0.0, 0.0046a2-1.41a+57.286, -0.0046a2+0.41a+42.714)及び
       点W(0.0, 100.0-a, 0.0)
    の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、及び
      36.7<a≦46.7のとき、
       点G(0.0061a2-0.9918a+63.902, -0.0061a2-0.0082a+36.098,0.0)、
       点I(0.0061a2-0.9918a+63.902, 0.0, -0.0061a2-0.0082a+36.098)、
       点A(0.0085a2-1.8102a+67.1, 0.0, -0.0085a2+0.8102a+32.9)、
       点B(0.0, 0.0012a2-1.1659a+52.95, -0.0012a2+0.1659a+47.05)及び
       点W(0.0, 100.0-a, 0.0)
    の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にある(ただし、点G、点I、点A、点B及び点Wは除く)、
    請求項1から6のいずれか1項に記載の冷凍サイクル装置。
  18.  前記冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)並びにジフルオロメタン(R32)を含み、
     前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yf並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる3成分組成図において、座標(x,y,z)が、
      0<a≦11.1のとき、
       点J(0.0049a2-0.9645a+47.1, -0.0049a2-0.0355a+52.9, 0.0)、
       点K’(0.0514a2-2.4353a+61.7, -0.0323a2+0.4122a+5.9, -0.0191a2+1.0231a+32.4)、
       点B(0.0, 0.0144a2-1.6377a+58.7, -0.0144a2+0.6377a+41.3)、
       点D’(0.0, 0.0224a2+0.968a+75.4, -0.0224a2-1.968a+24.6)及び
       点C(-0.2304a2-0.4062a+32.9, 0.2304a2-0.5938a+67.1, 0.0)
    の5点をそれぞれ結ぶ直線JK’、K’B、BD’、D’C及びCJで囲まれる図形の範囲内又は前記直線JK’、K’B及びD’C上にあり(ただし、点J、点B、点D’及び点Cは除く)、
      11.1<a≦18.2のとき、
       点J(0.0243a2-1.4161a+49.725, -0.0243a2+0.4161a+50.275, 0.0)、
       点K’(0.0341a2-2.1977a+61.187, -0.0236a2+0.34a+5.636, -0.0105a2+0.8577a+33.177)、
       点B(0.0, 0.0075a2-1.5156a+58.199, -0.0075a2+0.5156a+41.801)及び
       点W(0.0, 100.0-a, 0.0)
    の4点をそれぞれ結ぶ直線JK’、K’B、BW及びWJで囲まれる図形の範囲内又は前記直線JK’及びK’B上にあり(ただし、点J、点B及び点Wは除く)、
      18.2<a≦26.7のとき、
       点J(0.0246a2-1.4476a+50.184, -0.0246a2+0.4476a+49.816, 0.0)、
       点K’(0.0196a2-1.7863a+58.515, -0.0079a2-0.1136a+8.702, -0.0117a2+0.8999a+32.783)、
       点B(0.0, 0.009a2-1.6045a+59.318, -0.009a2+0.6045a+40.682)及び
       点W(0.0, 100.0-a, 0.0)
    の4点をそれぞれ結ぶ直線JK’、K’B、BW及びWJで囲まれる図形の範囲内又は前記直線JK’及びK’B上にあり(ただし、点J、点B及び点Wは除く)、
      26.7<a≦36.7のとき、
       点J(0.0183a2-1.1399a+46.493, -0.0183a2+0.1399a+53.507, 0.0)、
       点K’(-0.0051a2+0.0929a+25.95, 0.0, 0.0051a2-1.0929a+74.05)、
       点A(0.0103a2-1.9225a+68.793, 0.0, -0.0103a2+0.9225a+31.207)、
       点B(0.0, 0.0046a2-1.41a+57.286, -0.0046a2+0.41a+42.714)及び
       点W(0.0, 100.0-a, 0.0)
    の5点をそれぞれ結ぶ直線JK’、K’A、AB、BW及びWJで囲まれる図形の範囲内又は前記直線JK’、K'A及びAB上にあり(ただし、点J、点B及び点Wは除く)、及び
      36.7<a≦46.7のとき、
       点J(-0.0134a2+1.0956a+7.13, 0.0134a2-2.0956a+92.87, 0.0)、
       点K’(-1.892a+29.443, 0.0, 0.892a+70.557)、
       点A(0.0085a2-1.8102a+67.1, 0.0, -0.0085a2+0.8102a+32.9)、
       点B(0.0, 0.0012a2-1.1659a+52.95, -0.0012a2+0.1659a+47.05)及び
       点W(0.0, 100.0-a, 0.0)
    の5点をそれぞれ結ぶ直線JK’、K’A、AB、BW及びWJで囲まれる図形の範囲内又は前記直線JK’、K'A及びAB上にある(ただし、点J、点B及び点Wは除く)、
    請求項1から6のいずれか1項に記載の冷凍サイクル装置。
  19.  前記冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、ジフルオロメタン(R32)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
       点I(72.0, 0.0, 28.0)、
       点J(48.5, 18.3, 33.2)、
       点N(27.7, 18.2, 54.1)及び
       点E(58.3, 0.0, 41.7)
    の4点をそれぞれ結ぶ線分IJ、JN、NE、及びEIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分EI上にある点は除く)、
     前記線分IJは、
      座標(0.0236y2-1.7616y+72.0, y, -0.0236y2+0.7616y+28.0)
    で表わされ、
     前記線分NEは、
      座標(0.012y2-1.9003y+58.3, y, -0.012y2+0.9003y+41.7)
    で表わされ、かつ
     前記線分JN及びEIが直線である、
    請求項1から6のいずれか1項に記載の冷凍サイクル装置。
  20.  前記冷媒が、HFO-1132(E)、R32及びR1234yfを含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
       点M(52.6, 0.0, 47.4)、
       点M’(39.2, 5.0, 55.8)、
       点N(27.7, 18.2, 54.1)、
       点V(11.0, 18.1, 70.9)及び
       点G(39.6, 0.0, 60.4)
    の5点をそれぞれ結ぶ線分MM’、M’N、NV、VG、及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GM上にある点は除く)、
     前記線分MM’は、
      座標(x, 0.132x2-3.34x+52.6, -0.132x2+2.34x+47.4)
    で表わされ、
     前記線分M’Nは、
      座標(0.0313y2-1.4551y+43.824, y, -0.0313y2+0.4551y+56.176)
    で表わされ、
     前記線分VGは、
      座標(0.0123y2-1.8033y+39.6, y, -0.0123y2+0.8033y+60.4)
    で表わされ、かつ
     前記線分NV及びGMが直線である、
    請求項1から6のいずれか1項に記載の冷凍サイクル装置。
  21.  前記冷媒が、HFO-1132(E)、R32及びR1234yfを含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
       点O(22.6, 36.8, 40.6)、
       点N(27.7, 18.2, 54.1)及び
       点U(3.9, 36.7, 59.4)
    の3点をそれぞれ結ぶ線分ON、NU及びUOで囲まれる図形の範囲内又は前記線分上にあり、
     前記線分ONは、
      座標(0.0072y2-0.6701y+37.512, y, -0.0072y2-0.3299y+62.488)
    で表わされ、
     前記線分NUは、
      座標(0.0083y2-1.7403y+56.635, y, -0.0083y2+0.7403y+43.365)
    で表わされ、かつ
     前記線分UOが直線である、
    請求項1から6のいずれか1項に記載の冷凍サイクル装置。
  22.  前記冷媒が、HFO-1132(E)、R32及びR1234yfを含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
       点Q(44.6, 23.0, 32.4)、
       点R(25.5, 36.8, 37.7)、
       点T(8.6, 51.6, 39.8)、
       点L(28.9, 51.7, 19.4)及び
       点K(35.6, 36.8, 27.6)
    の5点をそれぞれ結ぶ線分QR、RT、TL、LK及びKQで囲まれる図形の範囲内又は前記線分上にあり、
     前記線分QRは、
      座標(0.0099y2-1.975y+84.765, y, -0.0099y2+0.975y+15.235)
    で表わされ、
     前記線分RTは、
      座標(0.082y2-1.8683y+83.126, y, -0.082y2+0.8683y+16.874)
    で表わされ、
     前記線分LKは、
      座標(0.0049y2-0.8842y+61.488, y, -0.0049y2-0.1158y+38.512)
    で表わされ、
     前記線分KQは、
      座標(0.0095y2-1.2222y+67.676, y, -0.0095y2+0.2222y+32.324)
    で表わされ、かつ
     前記線分TLが直線である、
    請求項1から6のいずれか1項に記載の冷凍サイクル装置。
  23.  前記冷媒が、HFO-1132(E)、R32及びR1234yfを含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
       点P(20.5, 51.7, 27.8)、
       点S(21.9, 39.7, 38.4)及び
       点T(8.6, 51.6, 39.8)
    の3点をそれぞれ結ぶ線分PS、ST及びTPで囲まれる図形の範囲内又は前記線分上にあり、
     前記線分PSは、
      座標(0.0064y2-0.7103y+40.1, y, -0.0064y2-0.2897y+59.9)
    で表わされ、
     前記線分STは、
      座標(0.082y2-1.8683y+83.126, y, -0.082y2+0.8683y+16.874)
    で表わされ、かつ
     前記線分TPが直線である、
    請求項1から6のいずれか1項に記載の冷凍サイクル装置。
  24.  前記冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及びジフルオロメタン(R32)を含み、
     前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
       点I(72.0, 28,0, 0.0)
       点K(48.4, 33.2, 18.4)
       点B’(0.0, 81.6, 18.4)
       点H(0.0, 84.2, 15.8)
       点R(23.1, 67.4, 9.5)及び
       点G(38.5, 61.5, 0.0)
    の6点をそれぞれ結ぶ線分IK、KB’、B’H、HR、RG及びGIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分B’H及びGI上の点を除く)、
     前記線分IKは、
      座標(0.025z2-1.7429z+72.00, -0.025z2+0.7429z+28.0, z)
    で表わされ、
     前記線分HRは、
      座標(-0.3123z2+4.234z+11.06, 0.3123z2-5.234z+88.94, z)
    で表わされ、
     前記線分RGは、
      座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
    で表わされ、かつ
     前記線分KB’及びGIが直線である、
    請求項1から6のいずれか1項に記載の冷凍サイクル装置。
  25.  前記冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
     前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
       点I(72.0, 28,0, 0.0)
       点J(57.7, 32.8, 9.5)
       点R(23.1, 67.4, 9.5)及び
       点G(38.5, 61.5, 0.0)
    の4点をそれぞれ結ぶ線分IJ、JR、RG及びGIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GI上の点を除く)、
     前記線分IJは、
      座標(0.025z2-1.7429z+72.0, -0.025z2+0.7429z+28.0, z)
    で表わされ、かつ
     前記線分RGは、
      座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
    で表わされ、
     前記線分JR及びGIが直線である、
    請求項1から6のいずれか1項に記載の冷凍サイクル装置。
  26.  前記冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
     前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
       点M(47.1, 52.9, 0.0)
       点P(31.8, 49.8, 18.4)
       点B’(0.0, 81.6, 18.4)
       点H(0.0, 84.2, 15.8)
       点R(23.1, 67.4, 9.5)及び
       点G(38.5, 61.5, 0.0)
    の6点をそれぞれ結ぶ線分MP、PB’、B’H、HR、RG及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分B’H及びGM上の点を除く)、
     前記線分MPは、
      座標(0.0083z2-0.984z+47.1,-0.0083z2-0.016z+52.9, z)
    で表わされ、
     前記線分HRは、
      座標(-0.3123z2+4.234z+11.06, 0.3123z2-5.234z+88.94, z)
    で表わされ、
     前記線分RGは、
      座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
    で表わされ、かつ
     前記線分PB’及びGMが直線である、
    請求項1から6のいずれか1項に記載の冷凍サイクル装置。
  27.  前記冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
     前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
       点M(47.1, 52.9, 0.0)
       点N(38.5, 52.1, 9.5)
       点R(23.1, 67.4, 9.5)及び
       点G(38.5, 61.5, 0.0)
    の4点をそれぞれ結ぶ線分MN、NR、RG及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GM上の点を除く)、
     前記線分MNは、
      座標(0.0083z2-0.984z+47.1,-0.0083z2-0.016z+52.9, z)
    で表わされ、かつ
     前記線分RGは、
      座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
    で表わされ、
     前記線分JR及びGIが直線である、
    請求項1から6のいずれか1項に記載の冷凍サイクル装置。
  28.  前記冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
     前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
       点P(31.8, 49.8, 18.4)
       点S(25.4, 56.2, 18.4)及び
       点T(34.8, 51.0, 14.2)
    の3点をそれぞれ結ぶ線分PS、ST及びTPで囲まれる図形の範囲内又は前記線分上にあり、
     前記線分STは、
      座標(-0.0982z2+0.9622z+40.931, 0.0982z2-1.9622z+59.069, z)
    で表わされ、かつ
     前記線分TPは、
      座標(0.0083z2-0.984z+47.1,-0.0083z2-0.016z+52.9, z)
    で表わされ、
     前記線分PSが直線である、
    請求項1から6のいずれか1項に記載の冷凍サイクル装置。
  29.  前記冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
     前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
       点Q(28.6, 34.4, 37.0)
       点B’’(0.0, 63.0, 37.0)
       点D(0.0, 67.0, 33.0)及び
       点U(28.7, 41.2, 30.1)
    の4点をそれぞれ結ぶ線分QB’’、B’’D、DU及びUQで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分B’’D上の点を除く)、
     前記線分DUは、
      座標(-3.4962z2+210.71z-3146.1, 3.4962z2-211.71z+3246.1, z)で表わされ、かつ
     前記線分UQは、
      座標(0.0135z2-0.9181z+44.133, -0.0135z2-0.0819z+55.867, z)
    で表わされ、
     前記線分QB’’及びB’’Dが直線である、
    請求項1から6のいずれか1項に記載の冷凍サイクル装置。
PCT/JP2018/045290 2017-12-18 2018-12-10 冷凍サイクル装置 WO2019124140A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2019560982A JP7212265B2 (ja) 2017-12-18 2018-12-10 冷凍サイクル装置
US16/955,465 US20210003323A1 (en) 2017-12-18 2018-12-10 Refrigeration cycle apparatus
AU2018387884A AU2018387884B2 (en) 2017-12-18 2018-12-10 Refrigeration Cycle Apparatus
CN201880081269.3A CN111480040B (zh) 2017-12-18 2018-12-10 制冷循环装置
KR1020207020709A KR102655073B1 (ko) 2017-12-18 2018-12-10 냉동 사이클 장치
BR112020010676-3A BR112020010676A2 (pt) 2017-12-18 2018-12-10 aparelho de ciclo de refrigeração
EP18892942.6A EP3730870A4 (en) 2017-12-18 2018-12-10 COOLING CYCLE DEVICE
PH12020550914A PH12020550914A1 (en) 2017-12-18 2020-06-16 Refrigeration cycle apparatus
US16/912,003 US11506425B2 (en) 2017-12-18 2020-06-25 Refrigeration cycle apparatus

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
JP2017242187 2017-12-18
JP2017-242186 2017-12-18
JP2017-242183 2017-12-18
JP2017242186 2017-12-18
JP2017-242185 2017-12-18
JP2017242185 2017-12-18
JP2017242183 2017-12-18
JP2017-242187 2017-12-18
JPPCT/JP2018/037483 2018-10-05
PCT/JP2018/037483 WO2019123782A1 (ja) 2017-12-18 2018-10-05 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
JPPCT/JP2018/038749 2018-10-17
PCT/JP2018/038746 WO2019123804A1 (ja) 2017-12-18 2018-10-17 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
PCT/JP2018/038749 WO2019123807A1 (ja) 2017-12-18 2018-10-17 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
PCT/JP2018/038747 WO2019123805A1 (ja) 2017-12-18 2018-10-17 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
JPPCT/JP2018/038747 2018-10-17
PCT/JP2018/038748 WO2019123806A1 (ja) 2017-12-18 2018-10-17 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
JPPCT/JP2018/038746 2018-10-17
JPPCT/JP2018/038748 2018-10-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/955,465 A-371-Of-International US20210003323A1 (en) 2017-12-18 2018-12-10 Refrigeration cycle apparatus
US16/912,003 Continuation-In-Part US11506425B2 (en) 2017-12-18 2020-06-25 Refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
WO2019124140A1 true WO2019124140A1 (ja) 2019-06-27

Family

ID=66994059

Family Applications (10)

Application Number Title Priority Date Filing Date
PCT/JP2018/045290 WO2019124140A1 (ja) 2017-12-18 2018-12-10 冷凍サイクル装置
PCT/JP2018/045335 WO2019124145A1 (ja) 2017-12-18 2018-12-10 空気調和機
PCT/JP2018/045336 WO2019124146A1 (ja) 2017-12-18 2018-12-10 冷凍サイクル
PCT/JP2018/045557 WO2019124169A1 (ja) 2017-12-18 2018-12-11 空気調和装置
PCT/JP2018/046435 WO2019124330A1 (ja) 2017-12-18 2018-12-17 蓄熱装置
PCT/JP2018/046434 WO2019124329A1 (ja) 2017-12-18 2018-12-17 冷凍サイクル装置
PCT/JP2018/046530 WO2019124359A1 (ja) 2017-12-18 2018-12-18 空気調和機
PCT/JP2018/046628 WO2019124396A1 (ja) 2017-12-18 2018-12-18 空調機
PCT/JP2018/046627 WO2019124395A1 (ja) 2017-12-18 2018-12-18 空調機
PCT/JP2018/046581 WO2019124379A1 (ja) 2017-12-18 2018-12-18 冷凍サイクル装置

Family Applications After (9)

Application Number Title Priority Date Filing Date
PCT/JP2018/045335 WO2019124145A1 (ja) 2017-12-18 2018-12-10 空気調和機
PCT/JP2018/045336 WO2019124146A1 (ja) 2017-12-18 2018-12-10 冷凍サイクル
PCT/JP2018/045557 WO2019124169A1 (ja) 2017-12-18 2018-12-11 空気調和装置
PCT/JP2018/046435 WO2019124330A1 (ja) 2017-12-18 2018-12-17 蓄熱装置
PCT/JP2018/046434 WO2019124329A1 (ja) 2017-12-18 2018-12-17 冷凍サイクル装置
PCT/JP2018/046530 WO2019124359A1 (ja) 2017-12-18 2018-12-18 空気調和機
PCT/JP2018/046628 WO2019124396A1 (ja) 2017-12-18 2018-12-18 空調機
PCT/JP2018/046627 WO2019124395A1 (ja) 2017-12-18 2018-12-18 空調機
PCT/JP2018/046581 WO2019124379A1 (ja) 2017-12-18 2018-12-18 冷凍サイクル装置

Country Status (1)

Country Link
WO (10) WO2019124140A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022191211A1 (ja) * 2021-03-09 2022-09-15 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116278639A (zh) 2018-07-17 2023-06-23 大金工业株式会社 汽车用制冷循环装置
EP3825381B1 (en) 2018-07-17 2024-08-21 Daikin Industries, Ltd. Use of a refrigerant-containing composition
WO2020017521A1 (ja) 2018-07-17 2020-01-23 ダイキン工業株式会社 冷媒サイクル装置
CN114656931A (zh) 2019-01-30 2022-06-24 大金工业株式会社 含有制冷剂的组合物、以及使用该组合物的冷冻方法、冷冻装置的运转方法和冷冻装置
WO2020158170A1 (ja) 2019-01-30 2020-08-06 ダイキン工業株式会社 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置
WO2020162401A1 (ja) 2019-02-05 2020-08-13 ダイキン工業株式会社 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置
EP3922923A4 (en) 2019-02-06 2022-12-07 Daikin Industries, Ltd. COMPOSITION CONTAINING A REFRIGERANT, AND REFRIGERATION METHOD, REFRIGERATION DEVICE OPERATING METHOD AND REFRIGERATION DEVICE USING THE SAME COMPOSITION
JP7092397B2 (ja) * 2020-10-13 2022-06-28 株式会社モナテック 平板状ヒートパイプ用冷媒及び平板状ヒートパイプ
WO2023112987A1 (ja) * 2021-12-15 2023-06-22 ダイキン工業株式会社 冷凍サイクル装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115252A1 (ja) * 2014-01-31 2015-08-06 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015141678A1 (ja) 2014-03-18 2015-09-24 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015186557A1 (ja) * 2014-06-06 2015-12-10 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015186670A1 (ja) * 2014-06-06 2015-12-10 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム
WO2016157538A1 (ja) * 2015-04-03 2016-10-06 三菱電機株式会社 冷凍サイクル装置
JP2017067428A (ja) * 2015-09-30 2017-04-06 ダイキン工業株式会社 冷凍装置
WO2017115636A1 (ja) * 2015-12-28 2017-07-06 旭硝子株式会社 冷凍サイクル装置

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198968A (en) 1981-05-29 1982-12-06 Hitachi Ltd Heat pump type refrigerator
JPH0719627A (ja) * 1993-06-30 1995-01-20 Daikin Ind Ltd 非共沸混合冷媒用の熱交換器
JPH07190571A (ja) * 1993-12-24 1995-07-28 Matsushita Electric Ind Co Ltd 非共沸混合冷媒を用いた冷凍装置
JPH11206001A (ja) * 1998-01-07 1999-07-30 Meidensha Corp 電動機の保護装置
JP2000161805A (ja) * 1998-11-27 2000-06-16 Daikin Ind Ltd 冷凍装置
JP2000234767A (ja) * 1999-02-10 2000-08-29 Mitsubishi Electric Corp 冷却装置及び空気調和機の冷却装置
JP2000304302A (ja) * 1999-04-19 2000-11-02 Daikin Ind Ltd 空気調和装置
JP4312894B2 (ja) * 1999-09-09 2009-08-12 東芝キヤリア株式会社 空気調和機の室内ユニット
JP3952769B2 (ja) * 2001-02-19 2007-08-01 株式会社デンソー ヒートポンプ式チラー
JP2003018776A (ja) * 2001-03-30 2003-01-17 Sanyo Electric Co Ltd 誘導同期電動機
JP2006313027A (ja) * 2005-05-06 2006-11-16 Mitsubishi Electric Corp 換気空調装置
US8496845B2 (en) 2008-07-01 2013-07-30 Daikin Industries, Ltd. Refrigerant composition comprising difluoromethane (HFC32), pentafluoroethane (HFC125) and 2, 3, 3, 3-tetrafluoropropene (HFO1234yf)
JP4654423B2 (ja) * 2008-07-22 2011-03-23 独立行政法人産業技術総合研究所 電力変換装置
JP2010164222A (ja) * 2009-01-14 2010-07-29 Panasonic Corp フィン付き熱交換器
JP2011043304A (ja) * 2009-08-24 2011-03-03 Hitachi Appliances Inc 空気調和機
JP2011202738A (ja) * 2010-03-25 2011-10-13 Toshiba Carrier Corp 空気調和機
JP2012132637A (ja) * 2010-12-22 2012-07-12 Daikin Industries Ltd 空気調和装置の室外ユニット
JP5539928B2 (ja) 2011-07-01 2014-07-02 ダイキン工業株式会社 モータ駆動装置、それを用いたファン制御装置およびヒートポンプ装置
JP6065429B2 (ja) * 2011-12-08 2017-01-25 パナソニック株式会社 空気調和機
JP5506770B2 (ja) 2011-12-16 2014-05-28 三菱電機株式会社 空気調和機
JP6111520B2 (ja) * 2012-02-22 2017-04-12 ダイキン工業株式会社 電力変換装置
JP5536817B2 (ja) * 2012-03-26 2014-07-02 日立アプライアンス株式会社 冷凍サイクル装置
JP6044238B2 (ja) * 2012-09-28 2016-12-14 ダイキン工業株式会社 空気調和機
JP6252211B2 (ja) * 2014-02-03 2017-12-27 ダイキン工業株式会社 空調システム
JPWO2015140827A1 (ja) * 2014-03-17 2017-04-06 三菱電機株式会社 ヒートポンプ装置
JP2015218912A (ja) * 2014-05-14 2015-12-07 パナソニックIpマネジメント株式会社 空気調和装置及びそれに使用される負荷調整装置
WO2016017460A1 (ja) * 2014-07-31 2016-02-04 三菱電機株式会社 冷媒分配器、熱交換器および冷凍サイクル装置
EP3222934B1 (en) * 2014-12-26 2019-06-26 Daikin Industries, Ltd. Regenerative air conditioner
CN204648544U (zh) * 2015-03-27 2015-09-16 中国建筑科学研究院 室内环境控制机组和系统以及建筑系统和被动式建筑物
JP2017046430A (ja) * 2015-08-26 2017-03-02 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド モータ制御装置、流体機械、空気調和機およびプログラム
JP2017053285A (ja) * 2015-09-10 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 圧縮機
CN205261858U (zh) * 2015-11-12 2016-05-25 珠海丽日帐篷有限公司 一种中大型整体式篷房用空调

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115252A1 (ja) * 2014-01-31 2015-08-06 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015141678A1 (ja) 2014-03-18 2015-09-24 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015186557A1 (ja) * 2014-06-06 2015-12-10 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015186670A1 (ja) * 2014-06-06 2015-12-10 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム
WO2016157538A1 (ja) * 2015-04-03 2016-10-06 三菱電機株式会社 冷凍サイクル装置
JP2017067428A (ja) * 2015-09-30 2017-04-06 ダイキン工業株式会社 冷凍装置
WO2017115636A1 (ja) * 2015-12-28 2017-07-06 旭硝子株式会社 冷凍サイクル装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022191211A1 (ja) * 2021-03-09 2022-09-15 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
JP2022138149A (ja) * 2021-03-09 2022-09-22 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法

Also Published As

Publication number Publication date
WO2019124330A1 (ja) 2019-06-27
WO2019124329A1 (ja) 2019-06-27
WO2019124359A1 (ja) 2019-06-27
WO2019124145A1 (ja) 2019-06-27
WO2019124395A1 (ja) 2019-06-27
WO2019124396A1 (ja) 2019-06-27
WO2019124146A1 (ja) 2019-06-27
WO2019124169A1 (ja) 2019-06-27
WO2019124379A1 (ja) 2019-06-27

Similar Documents

Publication Publication Date Title
KR102655073B1 (ko) 냉동 사이클 장치
US11506425B2 (en) Refrigeration cycle apparatus
US20200393178A1 (en) Refrigeration cycle apparatus
US11435118B2 (en) Heat source unit and refrigeration cycle apparatus
US11549695B2 (en) Heat exchange unit
WO2019124140A1 (ja) 冷凍サイクル装置
WO2019124139A1 (ja) 冷凍サイクル装置および冷凍サイクル装置における冷媒封入量の決定方法
US20200325375A1 (en) Refrigeration cycle apparatus and method of determining refrigerant enclosure amount in refrigeration cycle apparatus
US20200325376A1 (en) Refrigeration cycle apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892942

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019560982

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018387884

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2018387884

Country of ref document: AU

Date of ref document: 20181210

Kind code of ref document: A

Ref document number: 20207020709

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018892942

Country of ref document: EP

Effective date: 20200720

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020010676

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020010676

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200527