WO2019198393A1 - Anti-vibration device for unmanned aircraft - Google Patents
Anti-vibration device for unmanned aircraft Download PDFInfo
- Publication number
- WO2019198393A1 WO2019198393A1 PCT/JP2019/009364 JP2019009364W WO2019198393A1 WO 2019198393 A1 WO2019198393 A1 WO 2019198393A1 JP 2019009364 W JP2019009364 W JP 2019009364W WO 2019198393 A1 WO2019198393 A1 WO 2019198393A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vibration
- unmanned aerial
- rubber
- aerial vehicle
- vehicle according
- Prior art date
Links
- 229920001971 elastomer Polymers 0.000 claims abstract description 106
- 239000005060 rubber Substances 0.000 claims abstract description 106
- 230000002093 peripheral effect Effects 0.000 claims abstract description 17
- 230000006835 compression Effects 0.000 claims abstract description 7
- 238000007906 compression Methods 0.000 claims abstract description 7
- 230000000149 penetrating effect Effects 0.000 claims 2
- 239000000463 material Substances 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 230000000116 mitigating effect Effects 0.000 description 2
- 239000000575 pesticide Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000003905 agrochemical Substances 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C25/00—Alighting gear
- B64C25/32—Alighting gear characterised by elements which contact the ground or similar surface
- B64C25/58—Arrangements or adaptations of shock-absorbers or springs
- B64C25/62—Spring shock-absorbers; Springs
- B64C25/64—Spring shock-absorbers; Springs using rubber or like elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U20/00—Constructional aspects of UAVs
- B64U20/70—Constructional aspects of the UAV body
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16B—DEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
- F16B5/00—Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them
- F16B5/02—Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of fastening members using screw-thread
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F1/00—Springs
- F16F1/36—Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F1/00—Springs
- F16F1/36—Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
- F16F1/38—Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/02—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
- F16F15/04—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
- F16F15/08—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with rubber springs ; with springs made of rubber and metal
Definitions
- the present invention relates to a vibration isolator for an unmanned aerial vehicle.
- An unmanned aerial vehicle consists of a fuselage body and legs.
- the fuselage itself is equipped with equipment for flying and controlling unmanned aerial vehicles such as receivers, flight controllers, propellers, motors, and batteries.
- the fuselage body plays the role of the brain in unmanned aerial vehicles.
- application equipment such as pumps and cameras are installed on the body.
- the legs are provided for the purpose of protecting the fuselage body during takeoff and landing of unmanned aerial vehicles.
- An object of the present invention is to provide a vibration isolator for an unmanned aerial vehicle that can suppress vibration from being transmitted from a leg portion to an airframe body.
- Another object of the present invention is to provide an anti-vibration device for an unmanned aerial vehicle that can alleviate the impact at the time of landing.
- Still another object of the present invention is to provide a vibration isolator for an unmanned aerial vehicle that does not extremely increase the weight of the aircraft.
- One aspect of the vibration isolator of the present invention includes a vibration isolating rubber interposed between a fuselage main body and legs of an unmanned aerial vehicle, and the anti-vibration rubber on the airframe main body side and the leg side.
- a fixing part for fixing is provided.
- the present invention it is possible to suppress vibration from being transmitted from the leg portion to the main body. According to one embodiment of the present invention, impact at the time of landing can be reduced. According to one embodiment of the present invention, it is possible to prevent the body weight from being extremely increased.
- Explanatory drawing which looked at the vibration isolator which concerns on 2nd Embodiment from the front direction Sectional drawing of the vibration isolator.
- the unmanned aerial vehicle 1 is a small unmanned aerial vehicle including a body body 11 and leg portions 21 connected to the body body 11.
- the airframe body 11 is equipped with equipment for flying and controlling an unmanned aerial vehicle such as a receiver, a flight controller, a propeller, a motor, and a battery.
- FIG. 1 shows a propeller 12 and a frame 13 of the fuselage main body 11.
- the legs 21 stably support the airframe body 11 in order to protect the airframe body 11 when the unmanned aircraft 1 takes off and landing.
- FIG. 1 shows the frame 23 and the grounding portion 24.
- the unmanned aerial vehicle 1 is also referred to as an unmanned multicopter or an unmanned rotorcraft, and is also referred to as a so-called drone.
- the machine body 11 and the leg 21 are not directly connected but elastically connected to each other via a vibration isolating rubber 31 included in the vibration isolating apparatus 101.
- the anti-vibration rubber 31 is interposed between the fuselage body 11 and the legs 21 of the unmanned aerial vehicle 1 connected to each other.
- the vibration isolator 101 has a fixing member 111.
- the fixing member 111 fixes the anti-vibration rubber 31 to the body body 11 side and the leg portion 21 side.
- the anti-vibration rubber 31 has cylindrical rubber elastic bodies 32, 33 interposed between a plurality of plates (mounting plates) 15, 16, 25 made of a rigid material (metal or hard resin).
- the anti-vibration mount 121 is configured.
- the anti-vibration mount 121 is relatively lightweight because the rubber elastic bodies 32 and 33 are made of a rubber material.
- the plurality of plates 15, 16, 25 are a first plate 15 and a second plate 16 provided in parallel to each other on the lower surface of the frame 13 of the body body 11, and a third plate provided on the upper surface of the frame 23 of the leg portion 21. It is a combination with the plate 25.
- These plates 15, 16, 25 are arranged in parallel along the vertical direction when the unmanned aerial vehicle 1 is in the landing posture. Accordingly, the two types of plates 15, 16 and 25, which are the first plate 15 and the second plate 16 on the body body 11 side and the plate 25 on the leg portion 21 side, are perpendicular to the horizontal landing surface of the unmanned aircraft 1. Make.
- vertical is used in the same meaning as vertical to the horizontal landing surface of the unmanned aerial vehicle 1, that is, vertical.
- the third plate 25 on the leg 21 side is disposed between the first plate 15 and the second plate 16 on the machine body 11 side.
- the rubber elastic bodies 32 and 33 are interposed between the first plate 15 and the third plate 25 and between the second plate 16 and the third plate 25, respectively.
- the rubber elastic bodies 32 and 33 are disposed coaxially with the central axis O in the horizontal direction and are pre-compressed in the axial direction.
- the vibration isolator 101 of this embodiment is provided with a mounting bolt 35 and a nut 36 as a fixing member 111 for fixing the vibration isolating rubber 31 to the body body 11 side and the leg 21 side.
- the plates 15, 16, 25 and the rubber elastic bodies 32, 33 are fixed by allowing the mounting bolt 35 to be inserted, screwing the nut 36 into the inserted mounting bolt 35, and tightening the nut 36.
- the cylindrical rubber elastic bodies 32 and 33 are respectively provided with shaft holes 32a and 33a through which the mounting bolts 35 are inserted.
- Each of the first plate 15 and the second plate 16 includes shaft holes 15a and 16a through which the mounting bolts 35 are inserted.
- the third plate 25 is also provided with a shaft hole 25a through which the mounting bolt 35 is inserted.
- the shaft hole 25a of the third plate 25 is radially between the mounting bolt 35 so that the third plate 25 can be displaced relative to the first plate 15 and the second plate 16 in the horizontal and vertical directions. Set the gap.
- the mounting bolt 35 is fitted in the shaft hole 25a of the third plate 25 with play.
- the three plates 15, 16, 25 and the two rubber elastic bodies 32, 33 constitute a set of elastic body units 32A.
- a plurality of elastic body units 32 ⁇ / b> A that are vibration-proof rubbers 31 are arranged on the plane of the unmanned aerial vehicle 1, and a plurality of sets are arranged along the periphery of the unmanned aircraft 1.
- the frames 13 and 23 have a rectangular plane, and four sets of elastic body units 32A are arranged along the four sides, and are arranged in directions parallel to the four sides. Yes.
- Each elastic body unit 32A is arranged at the center position in the longitudinal direction of each of the four sides.
- each elastic body unit 32A may be arranged in the vicinity of one end in the longitudinal direction of each of the four sides depending on the weight balance of the machine body 11, the rotation direction of the propeller 12, and the like.
- a plurality of sets (three sets in FIG. 5) of elastic body units 32 ⁇ / b> A have a circular shape. It arrange
- the vibration isolator 101 of the unmanned aerial vehicle 1 having the above-described configuration, the vibration isolating / buffering action of the anti-vibration rubber 31 disposed between the airframe body 11 and the leg portion 21 is exhibited.
- the transmission of vibration from the leg portion 21 to the body body 11 can be suppressed. It is also possible to suppress the impact at the time of landing of the unmanned aircraft 1 from the leg portion 21 to the body body 11.
- the anti-vibration rubber 31 is formed by an anti-vibration mount 121 including cylindrical rubber elastic bodies 32 and 33.
- the anti-vibration rubber 31 having such a structure is lighter than a coil spring or a laminated damper, and suppresses an excessive increase in the weight of the unmanned aircraft 1.
- the rubber elasticity by anti-vibration rubber 31 is divided into a vertical component D 1 and the horizontal component D 2.
- the vertical component D 1 preferably has a relatively low spring characteristic in order to insulate vibration caused by the leg due to the influence of wind or the like during the flight of the unmanned aircraft 1. That for the horizontal component D 2, during landing of the unmanned aerial vehicle 1, in order to achieve both anti-tip and shock inputs relaxation to machine body 11 in the horizontal component or the like flying an inertial force, which is characteristic of relatively high spring preferable.
- the anti-vibration rubber 31 having the above configuration receives the load component in the vertical direction in the unmanned aerial vehicle 1 due to the shear deformation of the anti-vibration rubber 31 when the central axis O is arranged in the horizontal direction. 1 is arranged to receive the horizontal load component in 1 by compression / tensile deformation of the vibration-proof rubber 31.
- the load in the vertical direction is received with the characteristics of a relatively low spring due to the shear deformation of the vibration-proof rubber 31.
- the load in the horizontal direction is received with a relatively high spring characteristic due to the compression / tensile deformation of the vibration-proof rubber 31.
- the vibration isolating rubber 31 receives the load in the vertical direction with a relatively low spring characteristic due to the shear deformation of the vibration isolating rubber 31, so that when the unmanned aerial vehicle 1 flies, the leg 21 is affected by wind and the like from the leg 21 to the body body 11. Insulates vibrations.
- the anti-vibration rubber 31 receives a load in the horizontal direction with a relatively high spring characteristic due to the compression / tensile deformation of the anti-vibration rubber 31. Mitigates and prevents the unmanned aircraft 1 from being overturned by the action of the horizontal component of the flight inertia force.
- the inner peripheral surfaces 32c and 33c of the cylindrical rubber elastic bodies 32 and 33 are generally cylindrical.
- protrusions 37 are added to the inner peripheral surfaces 32c and 33c of the cylindrical rubber elastic body 32. More specifically, a plurality of circular arc-shaped projections 37 (eight in FIG. 7B) projecting radially inward from the inner peripheral surfaces 32c and 33c of the cylindrical rubber elastic body 32 are equally spaced.
- the anti-vibration rubber 31 also has a low spring characteristic at the initial stage where a load is applied, even with the structure having the protrusion 37.
- the anti-vibration device 101 having the above-described configuration combines the plates 15 and 16 on the body body 11 side and the plate 25 on the leg 21 side via bolts 35 and nuts 36.
- Such a coupling structure constitutes a fail-safe mechanism 131.
- the fail-safe mechanism 131 maintains the connection between the main body 11 and the leg 21 even if the vibration isolating rubber 32 is broken, and prevents the leg 21 from falling off the main body 11.
- the unmanned aerial vehicle 1 is a small unmanned aerial vehicle including a body body 11 and leg portions 21 connected to the body body 11.
- the airframe body 11 is equipped with equipment for flying and controlling an unmanned aerial vehicle such as a receiver, a flight controller, a propeller, a motor, and a battery.
- FIG. 1 shows a propeller 12 and a frame 13 of the fuselage main body 11.
- the legs 21 stably support the airframe body 11 in order to protect the airframe body 11 when the unmanned aircraft 1 takes off and landing.
- FIG. 1 shows the frame 23 and the grounding portion 24.
- the unmanned aerial vehicle 1 is also referred to as an unmanned multicopter or an unmanned rotorcraft, and is also referred to as a so-called drone.
- the machine body 11 and the leg 21 are not directly connected but elastically connected to each other via a vibration isolating rubber 31 included in the vibration isolating apparatus 101.
- the anti-vibration rubber 31 is interposed between the fuselage body 11 and the legs 21 of the unmanned aerial vehicle 1 connected to each other.
- the vibration isolator 101 has a fixing member 111.
- the fixing member 111 fixes the anti-vibration rubber 31 to the body body 11 side and the leg portion 21 side.
- the anti-vibration rubber 31 includes an anti-vibration bush in which a cylindrical rubber elastic body 44 is interposed between an outer cylinder 42 and an inner cylinder 43 made of a rigid material (metal or hard resin). 41 is constituted.
- the rubber elastic body 44 is bonded (vulcanized) to the inner peripheral surface of the outer cylinder 42 and the outer peripheral surface of the inner cylinder 43.
- the anti-vibration bush 41 is relatively lightweight because the cylindrical rubber elastic body 44 is made of a rubber material.
- the anti-vibration bush 41 is interposed between the airframe body 11 and the leg portion 21 with the central axis O directed in the vertical direction.
- the anti-vibration bush 41 is fixed to the frame 13 by fitting the outer cylinder 42 into the mounting hole 17 provided in the frame 13 of the main body 11.
- the outer cylinder 42 constitutes a fixing member 111.
- the anti-vibration bush 41 can be fixed to the frame 13 by a technique such as press fitting of the outer cylinder 42 into the mounting hole 17 or welding.
- the anti-vibration bush 41 has the inner cylinder 43 bolted to the frame 23 of the leg portion 21 using a combination of a bolt 45 and a nut 46.
- the bolt 45 and the nut 46 constitute a fixing member 111. With such a structure, the anti-vibration bush 41 is fixed to each of the main body 11 and the legs 21.
- a plurality of anti-vibration bushes 41 that are anti-vibration rubbers 31 are arranged on the plane of the unmanned aerial vehicle 1 and are arranged along the periphery of the unmanned aerial vehicle 1.
- the frames 13 and 23 have a rectangular planar shape, and four sets of anti-vibration bushes 41 are arranged at each of the four corners.
- one or both of the frames 13 and 23 have a circular planar shape, and a plurality of sets (three sets in FIG. 11) of anti-vibration bushes 41 are arranged at equal intervals on the circumference. ing.
- the rubber elastic body 44 having a rubber elastic body 44 included in the vibration isolating bush 41 disposed between the airframe main body 11 and the leg portion 21 is provided with a rubber material. Since the vibration / buffer action is exhibited, the transmission of vibration from the leg portion 21 to the body body 11 can be suppressed. It is also possible to suppress the impact at the time of landing of the unmanned aircraft 1 from the leg portion 21 to the body body 11.
- the anti-vibration bush 41 Since the anti-vibration bush 41 has a cylindrical shape, it is possible to receive inputs with the same rigidity for all inputs in the horizontal direction. Since the anti-vibration bush 41 has high radial elasticity, it is advantageous for mitigating horizontal impacts. Therefore, when the unmanned aerial vehicle 1 is landed, the attitude of the unmanned aerial vehicle 1 is easily stabilized, and it is possible to avoid breakage of each part due to a fall.
- the anti-vibration rubber 31 of the present embodiment is formed by an anti-vibration bush 41 that combines an outer cylinder 42 and an inner cylinder 43 and a cylindrical rubber elastic body 44.
- the anti-vibration bush 41 having such a structure is lighter than a coil spring or a laminated damper, and suppresses an excessive increase in the weight of the unmanned aircraft 1.
- the anti-vibration rubber 31 of the present embodiment receives a load in the vertical direction with a relatively low spring characteristic due to shear deformation of the rubber elastic body 44. For this reason, during the flight of the unmanned aerial vehicle 1, vibration from the leg portion 21 to the body body 11 due to the influence of wind or the like is easily insulated. On the other hand, the anti-vibration rubber 31 receives a load in the horizontal direction with a relatively high spring characteristic due to compression / tensile deformation of the rubber elastic body 44. For this reason, when the unmanned aerial vehicle 1 is landed, the impact input to the fuselage main body 11 is mitigated, and the unmanned aircraft 1 is prevented from falling due to the action of the horizontal component of the flight inertia force.
- FIG. 12 shows a modification of the second embodiment.
- a flange-like engagement portion 47 is provided at the upper end portion of the inner cylinder 43, and its outer diameter is set larger than the inner diameter of the outer cylinder 42.
- This structure constitutes a fail-safe mechanism 132.
- the fail-safe mechanism 132 engages the flange-shaped engaging portion 47 with the outer cylinder 42 and stops the fall of the leg portion 21 from the body body 11.
- the fail-safe mechanism 132 exhibits a fail-safe function that maintains the connection between the main body 11 and the leg portion 21 and prevents the leg portion 21 from falling off the main body 11.
- the vibration isolating bush 41 which is the vibration isolating rubber 31, may be arranged in a state rotated by 90 degrees.
- the anti-vibration bush 41 is interposed between the body body 11 and the leg portion 21 with the central axis O directed in the vertical direction.
- the center axis O of the anti-vibration bush 41 may be interposed between the body body 11 and the leg portion 21 in the horizontal direction.
- the unmanned aerial vehicle 1 is a small unmanned aerial vehicle including a body body 11 and leg portions 21 connected to the body body 11.
- the airframe body 11 is equipped with equipment for flying and controlling an unmanned aerial vehicle such as a receiver, a flight controller, a propeller, a motor, and a battery.
- FIG. 1 shows a propeller 12 and a frame 13 of the fuselage main body 11.
- the legs 21 stably support the airframe body 11 in order to protect the airframe body 11 when the unmanned aircraft 1 takes off and landing.
- FIG. 1 shows the frame 23 and the grounding portion 24.
- the unmanned aerial vehicle 1 is also referred to as an unmanned multicopter or an unmanned rotorcraft, and is also referred to as a so-called drone.
- the machine body 11 and the leg 21 are not directly connected but elastically connected to each other via a vibration isolating rubber 31 included in the vibration isolating apparatus 101.
- the anti-vibration rubber 31 is interposed between the fuselage body 11 and the legs 21 of the unmanned aerial vehicle 1 connected to each other.
- the vibration isolator 101 has a fixing member 111.
- the fixing member 111 fixes the anti-vibration rubber 31 to the body body 11 side and the leg portion 21 side.
- the anti-vibration rubber 31 constitutes an anti-vibration grommet 51 in which an annular mounting groove 53 is provided on the outer peripheral surface of a cylindrical rubber elastic body 52.
- the grommet 51 is assembled between the body body 11 and the leg portion 21 together with the collar 54 and the washer 55.
- the collar 54 is disposed at the lower end of the rubber elastic body 52 and is inserted into the inner periphery.
- the washer 55 is disposed at the upper end of the rubber elastic body 52. The washer 55 is pressed against the collar 54 inserted into the inner periphery of the rubber elastic body 52.
- the anti-vibration grommet 51 is fixed to the main body 11 and the leg 21 with the central axis O directed in the vertical direction, and is interposed between the main body 11 and the leg 21.
- the fixing member 111 for fixing the vibration isolating grommet 51 to the main body 11 is the mounting groove 53.
- the anti-vibration grommet 51 engages an opening peripheral portion 17 a of the mounting hole 17 provided in the frame 13 of the machine body 11 with an annular mounting groove 53 provided on the outer peripheral surface of the rubber elastic body 52. This engagement fixes the main body 11 and the vibration isolating grommet 51.
- the fixing member 111 that fixes the vibration isolating grommet 51 to the leg portion 21 is a bolt 56.
- the anti-vibration grommet 51 fastens the collar 54 and the washer 55 together with the anti-vibration bush 41 to the frame 23 of the leg portion 21 with bolts 56.
- a plurality of anti-vibration grommets 51 that are anti-vibration rubbers 31 are arranged on the plane of the unmanned aerial vehicle 1 and are arranged along the periphery of the unmanned aerial vehicle 1.
- the frames 13 and 23 have a rectangular planar shape, and four sets of anti-vibration grommets 51 are arranged at each of the four corners.
- one or both of the frames 13 and 23 have a circular planar shape, and a plurality of sets (three sets in FIG. 17) of anti-vibration grommets 51 are arranged at equal intervals on the circumference. ing.
- the rubber elastic body 52 of the rubber elastic body 52 included in the vibration isolating grommet 51 disposed between the airframe main body 11 and the leg portion 21 is prevented by the rubber material. Since the vibration / buffer action is exhibited, the transmission of vibration from the leg portion 21 to the body body 11 can be suppressed. It is also possible to suppress the impact at the time of landing of the unmanned aircraft 1 from the leg portion 21 to the body body 11.
- the anti-vibration grommet 51 Since the anti-vibration grommet 51 has a cylindrical shape, it is possible to receive inputs with the same rigidity for all inputs in the horizontal direction. Since the vibration-proof grommet 51 has high radial elasticity, it is advantageous for mitigating horizontal impact. Therefore, when the unmanned aerial vehicle 1 is landed, the attitude of the unmanned aerial vehicle 1 is easily stabilized, and it is possible to avoid breakage of each part due to a fall.
- the anti-vibration rubber 31 of the present embodiment is formed by an anti-vibration grommet 51 in which an annular mounting groove 53 is provided on the outer peripheral surface of a cylindrical rubber elastic body 52.
- the anti-vibration grommet 51 having such a structure is lighter than a coil spring or a laminated damper, and suppresses an excessive increase in the weight of the unmanned aircraft 1.
- the anti-vibration rubber 31 receives a load in the vertical direction with a relatively low spring characteristic due to shear deformation of the rubber elastic body 52. For this reason, during the flight of the unmanned aerial vehicle 1, vibration from the leg portion 21 to the body body 11 due to the influence of wind or the like is easily insulated. On the other hand, the anti-vibration rubber 31 receives the load in the horizontal direction with a relatively high spring characteristic due to the compression / tensile deformation of the rubber elastic body 52. For this reason, when the unmanned aerial vehicle 1 is landed, the impact input to the fuselage main body 11 is mitigated, and the unmanned aircraft 1 is prevented from falling due to the action of the horizontal component of the flight inertia force.
- the outer diameter of the washer 55 of the vibration isolating grommet 51 is the inner diameter of the mounting groove 53, that is, the mounting hole 17 provided in the frame 13 of the body body 11. It is set larger than the inner diameter.
- This dimension setting constitutes a fail-safe mechanism 133.
- the fail-safe mechanism 133 engages the opening peripheral edge portion 17a of the mounting hole 17 with the washer 55, and stops the fall of the leg portion 21 from the body body 11.
- the fail-safe mechanism 133 maintains a connection between the body body 11 and the leg portion 21 and exhibits a fail-safe function that prevents the leg portion 21 from falling off the body body 11.
- the anti-vibration grommet 51 that is the anti-vibration rubber 31 may be arranged in a state rotated by 90 degrees. As described above, in the third embodiment, the anti-vibration grommet 51 is interposed between the body body 11 and the leg portion 21 with the central axis O directed in the vertical direction. On the other hand, similarly to the first embodiment, the vibration isolation grommet 51 may be interposed between the main body 11 and the leg portion 21 with the central axis O of the antivibration grommet 51 oriented in the horizontal direction.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Springs (AREA)
- Vibration Prevention Devices (AREA)
Abstract
This anti-vibration device for an unmanned aircraft is configured by an anti-vibration rubber being interposed between the airframe body and legs of the unmanned aircraft which are connected to each other, the anti-vibration rubber being fixed to the airframe body and the legs by means of fixing members. As one example of the anti-vibration rubber, an anti-vibration mount having a rubber elastic body interposed between a plate provided on the airframe body and plates provided on legs may be used. As another example, an anti-vibration bushing having a cylindrical rubber elastic body interposed between an outer cylinder and an inner cylinder may be used. As yet another example, an anti-vibration grommet having an annular mounting groove provided in the outer peripheral surface of a cylindrical rubber elastic body may be used. The fixing members position the anti-vibration rubber in, for example, a direction which receives a vertical load component by shear deformation and a horizontal load component by compression/tensile deformation.
Description
本発明は、無人航空機の防振装置に関する。
The present invention relates to a vibration isolator for an unmanned aerial vehicle.
昨今、所謂ドローンなどと称される小型の無人航空機が開発され、農薬散布や空中撮影の分野で活用されている。建築や土木の分野での検査や測量と云った新たな用途の開拓も進んでおり、機体制御などの関連技術も日々向上している。無人航空機は、市場規模を拡大しつつある。
Recently, small unmanned aerial vehicles called so-called drones have been developed and used in the fields of pesticide spraying and aerial photography. Development of new applications such as inspection and surveying in the field of construction and civil engineering is also progressing, and related technologies such as aircraft control are improving daily. The market for unmanned aerial vehicles is expanding.
無人航空機は、機体本体と脚部から構成されている。機体本体は、受信機、フライトコントローラー、プロペラ、モーター、バッテリーなどの無人航空機を飛行させ制御するための機器を搭載している。機体本体は、無人航空機における脳の役割を担っている。農薬散布や空中撮影の分野ではポンプやカメラ等の用途機器がこの機体本体に搭載される。脚部は、無人航空機の離着陸時に機体本体を保護する目的で設けられている。
An unmanned aerial vehicle consists of a fuselage body and legs. The fuselage itself is equipped with equipment for flying and controlling unmanned aerial vehicles such as receivers, flight controllers, propellers, motors, and batteries. The fuselage body plays the role of the brain in unmanned aerial vehicles. In the fields of pesticide spraying and aerial photography, application equipment such as pumps and cameras are installed on the body. The legs are provided for the purpose of protecting the fuselage body during takeoff and landing of unmanned aerial vehicles.
無人航空機では、飛行時、風等の影響により脚部から機体本体に振動が伝わることで、用途機器の作動に影響を及ぼすことが懸念される。例えば撮影する映像にブレを生じさせたり、農薬散布領域にズレを生じさせたりすることが起こり得る。着陸時の衝撃で機体のバランスが崩れることで機体が転倒し、プロペラや用途機器が破損することも懸念事項の一つである。
In unmanned aerial vehicles, there is a concern that during flight, vibrations may be transmitted from the legs to the fuselage body due to the influence of wind or the like, thereby affecting the operation of the application equipment. For example, it may occur that the video to be photographed is blurred or the agricultural chemical spraying area is shifted. One of the concerns is that the aircraft will fall due to the impact of landing and the aircraft will fall, causing damage to the propellers and equipment.
これらの懸念事項に対する対策として、無人航空機の脚部に金属製のコイルばねや積層ダンパーを設置することが考えられる。しかしながらコイルばねや積層ダンパーの設置は無人航空機の機体重量の極端な増加に繋がる。この種の対策を採用すると、機体重量のバランスの見直しが必要になるなど、新たな不都合を生じかねない。
As a countermeasure against these concerns, it is conceivable to install metal coil springs and laminated dampers on the legs of unmanned aerial vehicles. However, installation of coil springs and laminated dampers leads to an extreme increase in the weight of the unmanned aircraft. If this type of measure is adopted, new inconveniences may arise, such as the need to review the balance of the aircraft weight.
本発明の課題は、脚部から機体本体に振動が伝わるのを抑制することができる無人航空機の防振装置を提供することである。
An object of the present invention is to provide a vibration isolator for an unmanned aerial vehicle that can suppress vibration from being transmitted from a leg portion to an airframe body.
本発明の別の課題は、着陸時の衝撃を緩和することができる無人航空機の防振装置を提供することである。
Another object of the present invention is to provide an anti-vibration device for an unmanned aerial vehicle that can alleviate the impact at the time of landing.
本発明の更に別の課題は、機体重量を極端に増加させない無人航空機の防振装置を提供することである。
Still another object of the present invention is to provide a vibration isolator for an unmanned aerial vehicle that does not extremely increase the weight of the aircraft.
本発明の防振装置の一態様は、互いに連結される無人航空機の機体本体と脚部との間に介在する防振ゴムと、前記防振ゴムを前記機体本体側と前記脚部側とに固定する固定部とを備える。
One aspect of the vibration isolator of the present invention includes a vibration isolating rubber interposed between a fuselage main body and legs of an unmanned aerial vehicle, and the anti-vibration rubber on the airframe main body side and the leg side. A fixing part for fixing.
本発明の一態様によれば、脚部から機体本体に振動が伝わるのを抑制することができる。本発明の一態様によれば、着陸時の衝撃を緩和することができる。本発明の一態様によれば、機体重量が極端に増加するのを防止することができる。
According to one aspect of the present invention, it is possible to suppress vibration from being transmitted from the leg portion to the main body. According to one embodiment of the present invention, impact at the time of landing can be reduced. According to one embodiment of the present invention, it is possible to prevent the body weight from being extremely increased.
[第1実施の形態]
第1実施の形態を図1ないし図7(A)(B)に基づいて説明する。 [First Embodiment]
1st Embodiment is described based on FIG. 1 thru | or FIG. 7 (A) (B).
第1実施の形態を図1ないし図7(A)(B)に基づいて説明する。 [First Embodiment]
1st Embodiment is described based on FIG. 1 thru | or FIG. 7 (A) (B).
図1に示すように、本実施の形態の無人航空機1は、機体本体11および機体本体11に連結される脚部21を備える小型の無人航空機である。機体本体11は、受信機、フライトコントローラー、プロペラ、モーター、バッテリーなど無人航空機を飛行させ制御するための機器を搭載している。図1は、プロペラ12と、機体本体11のフレーム13とを示している。脚部21は、無人航空機1の離着陸時に機体本体11を保護するために、機体本体11を安定的に支持する。図1は、フレーム23と接地部24とを示している。無人航空機1は無人マルチコプターもしくは無人回転翼機とも称され、所謂ドローンなどとも称される。
As shown in FIG. 1, the unmanned aerial vehicle 1 according to the present embodiment is a small unmanned aerial vehicle including a body body 11 and leg portions 21 connected to the body body 11. The airframe body 11 is equipped with equipment for flying and controlling an unmanned aerial vehicle such as a receiver, a flight controller, a propeller, a motor, and a battery. FIG. 1 shows a propeller 12 and a frame 13 of the fuselage main body 11. The legs 21 stably support the airframe body 11 in order to protect the airframe body 11 when the unmanned aircraft 1 takes off and landing. FIG. 1 shows the frame 23 and the grounding portion 24. The unmanned aerial vehicle 1 is also referred to as an unmanned multicopter or an unmanned rotorcraft, and is also referred to as a so-called drone.
機体本体11および脚部21は、直接連結されるのではなく、防振装置101が有する防振ゴム31を介して互いに弾性的に連結されている。防振ゴム31は、互いに連結される無人航空機1の機体本体11と脚部21との間に介在している。防振装置101は、固定用の部材111を有している。固定用の部材111は、防振ゴム31を機体本体11側と脚部21側とに固定する。
The machine body 11 and the leg 21 are not directly connected but elastically connected to each other via a vibration isolating rubber 31 included in the vibration isolating apparatus 101. The anti-vibration rubber 31 is interposed between the fuselage body 11 and the legs 21 of the unmanned aerial vehicle 1 connected to each other. The vibration isolator 101 has a fixing member 111. The fixing member 111 fixes the anti-vibration rubber 31 to the body body 11 side and the leg portion 21 side.
図2に示すように、防振ゴム31は、剛材(金属または硬質樹脂など)製の複数のプレート(取付プレート)15,16,25の間に円筒形のゴム弾性体32,33を介在させた防振マウント121を構成している。防振マウント121は、ゴム弾性体32,33がゴム材質よりなるため、比較的軽量である。
As shown in FIG. 2, the anti-vibration rubber 31 has cylindrical rubber elastic bodies 32, 33 interposed between a plurality of plates (mounting plates) 15, 16, 25 made of a rigid material (metal or hard resin). The anti-vibration mount 121 is configured. The anti-vibration mount 121 is relatively lightweight because the rubber elastic bodies 32 and 33 are made of a rubber material.
複数のプレート15,16,25は、機体本体11のフレーム13の下面に互いに平行に設けられた第1プレート15および第2プレート16と、脚部21のフレーム23の上面に設けられた第3プレート25との組み合わせである。これらのプレート15,16,25は、無人航空機1が着陸姿勢にあるとき、鉛直方向に沿って平行に配置される。したがって機体本体11側の第1プレート15及び第2プレート16と、脚部21側のプレート25とからなる二種類のプレート15,16と25は、無人航空機1の水平な着陸面に対して垂直をなす。
The plurality of plates 15, 16, 25 are a first plate 15 and a second plate 16 provided in parallel to each other on the lower surface of the frame 13 of the body body 11, and a third plate provided on the upper surface of the frame 23 of the leg portion 21. It is a combination with the plate 25. These plates 15, 16, 25 are arranged in parallel along the vertical direction when the unmanned aerial vehicle 1 is in the landing posture. Accordingly, the two types of plates 15, 16 and 25, which are the first plate 15 and the second plate 16 on the body body 11 side and the plate 25 on the leg portion 21 side, are perpendicular to the horizontal landing surface of the unmanned aircraft 1. Make.
以下本明細書では、「垂直」の用語を無人航空機1の水平な着陸面に対して垂直、つまり鉛直と同じ意味で用いる。
Hereinafter, in this specification, the term “vertical” is used in the same meaning as vertical to the horizontal landing surface of the unmanned aerial vehicle 1, that is, vertical.
脚部21側の第3プレート25は、機体本体11側の第1プレート15と第2プレート16との間に配置される。ゴム弾性体32,33は、第1プレート15と第3プレート25との間、および第2プレート16と第3プレート25の間にそれぞれ介在している。ゴム弾性体32,33は、その中心軸線Oを水平方向に向けて互いに同軸上に配置され、かつ軸方向に予圧縮された状態で設けられている。
The third plate 25 on the leg 21 side is disposed between the first plate 15 and the second plate 16 on the machine body 11 side. The rubber elastic bodies 32 and 33 are interposed between the first plate 15 and the third plate 25 and between the second plate 16 and the third plate 25, respectively. The rubber elastic bodies 32 and 33 are disposed coaxially with the central axis O in the horizontal direction and are pre-compressed in the axial direction.
本実施の形態の防振装置101は、防振ゴム31を機体本体11側と脚部21側とに固定する固定用の部材111として、取付ボルト35とナット36とを設けている。プレート15,16,25およびゴム弾性体32,33は、取付ボルト35の差し込みを許容し、差し込まれた取付ボルト35にナット36をねじ込み、ナット36を締め付けることによって固定されている。
The vibration isolator 101 of this embodiment is provided with a mounting bolt 35 and a nut 36 as a fixing member 111 for fixing the vibration isolating rubber 31 to the body body 11 side and the leg 21 side. The plates 15, 16, 25 and the rubber elastic bodies 32, 33 are fixed by allowing the mounting bolt 35 to be inserted, screwing the nut 36 into the inserted mounting bolt 35, and tightening the nut 36.
図3に示すように、円筒形のゴム弾性体32,33はそれぞれ、取付ボルト35を差し通すための軸穴32a,33aを備えている。第1プレート15および第2プレート16はそれぞれ、取付ボルト35を差し通すための軸穴15a,16aを備えている。第3プレート25も、取付ボルト35を差し通すための軸穴25aを備えている。第3プレート25の軸穴25aは、第1プレート15および第2プレート16に対して第3プレート25が水平方向および垂直方向に相対変位可能となるように、取付ボルト35との間に径方向の隙間を設定する。取付ボルト35は、第3プレート25の軸穴25aに、遊びをもって嵌合する。3枚のプレート15,16,25および2つのゴム弾性体32,33は、1組の弾性体ユニット32Aを構成している。
As shown in FIG. 3, the cylindrical rubber elastic bodies 32 and 33 are respectively provided with shaft holes 32a and 33a through which the mounting bolts 35 are inserted. Each of the first plate 15 and the second plate 16 includes shaft holes 15a and 16a through which the mounting bolts 35 are inserted. The third plate 25 is also provided with a shaft hole 25a through which the mounting bolt 35 is inserted. The shaft hole 25a of the third plate 25 is radially between the mounting bolt 35 so that the third plate 25 can be displaced relative to the first plate 15 and the second plate 16 in the horizontal and vertical directions. Set the gap. The mounting bolt 35 is fitted in the shaft hole 25a of the third plate 25 with play. The three plates 15, 16, 25 and the two rubber elastic bodies 32, 33 constitute a set of elastic body units 32A.
防振ゴム31である弾性体ユニット32Aは、無人航空機1の平面上に複数組配置され、無人航空機1の周辺に沿って複数組配置されている。
A plurality of elastic body units 32 </ b> A that are vibration-proof rubbers 31 are arranged on the plane of the unmanned aerial vehicle 1, and a plurality of sets are arranged along the periphery of the unmanned aircraft 1.
図4(A)に示す一例では、フレーム13,23は長方形の平面を有し、4組の弾性体ユニット32Aを4辺それぞれに沿わせ、4辺それぞれと平行な方向に向けて配置している。各弾性体ユニット32Aは、4辺それぞれの長手方向中央位置に配置されている。
In the example shown in FIG. 4A, the frames 13 and 23 have a rectangular plane, and four sets of elastic body units 32A are arranged along the four sides, and are arranged in directions parallel to the four sides. Yes. Each elastic body unit 32A is arranged at the center position in the longitudinal direction of each of the four sides.
図4(B)に示すように、機体本体11の重量バランスやプロペラ12の回転方向等によっては、各弾性体ユニット32Aは、4辺それぞれの長手方向一端近傍位置に配置されてもよい。
As shown in FIG. 4B, each elastic body unit 32A may be arranged in the vicinity of one end in the longitudinal direction of each of the four sides depending on the weight balance of the machine body 11, the rotation direction of the propeller 12, and the like.
図5に示すように、いずれか一方または双方のフレーム13,23が平面円形とされるような場合には、一例として、複数組(図5では3組)の弾性体ユニット32Aは、円形の接線に沿って接線と平行な方向に向けて均等な間隔で配置される。
As shown in FIG. 5, when one or both of the frames 13 and 23 have a circular shape, as an example, a plurality of sets (three sets in FIG. 5) of elastic body units 32 </ b> A have a circular shape. It arrange | positions at equal intervals toward the direction parallel to a tangent along a tangent.
上記構成の無人航空機1の防振装置101によれば、機体本体11と脚部21との間に挟まれて配置される防振ゴム31のゴム材質による防振・緩衝作用が発揮されるため、脚部21から機体本体11への振動の伝達を抑制することができる。無人航空機1の着陸時の衝撃が脚部21から機体本体11へ伝わることも抑制することができる。
According to the vibration isolator 101 of the unmanned aerial vehicle 1 having the above-described configuration, the vibration isolating / buffering action of the anti-vibration rubber 31 disposed between the airframe body 11 and the leg portion 21 is exhibited. The transmission of vibration from the leg portion 21 to the body body 11 can be suppressed. It is also possible to suppress the impact at the time of landing of the unmanned aircraft 1 from the leg portion 21 to the body body 11.
本実施の形態では、防振ゴム31は、円筒形のゴム弾性体32,33を備える防振マウント121によって形成されている。このような構造の防振ゴム31は、コイルばねや積層ダンパーと比較して軽量であり、無人航空機1の重量が極端に増加するのを抑制する。
In the present embodiment, the anti-vibration rubber 31 is formed by an anti-vibration mount 121 including cylindrical rubber elastic bodies 32 and 33. The anti-vibration rubber 31 having such a structure is lighter than a coil spring or a laminated damper, and suppresses an excessive increase in the weight of the unmanned aircraft 1.
図6に示すように、防振ゴム31によるゴム弾性は、垂直成分D1および水平成分D2に分けられる。垂直成分D1については、無人航空機1の飛行時、風等の影響による脚部起因の振動を絶縁するために、比較的低バネの特性であることが好ましい。水平成分D2については、無人航空機1の着陸時、飛行慣性力の水平成分等での転倒防止および機体本体11への衝撃入力緩和を両立するために、比較的高バネの特性であることが好ましい。
As shown in FIG. 6, the rubber elasticity by anti-vibration rubber 31 is divided into a vertical component D 1 and the horizontal component D 2. The vertical component D 1 preferably has a relatively low spring characteristic in order to insulate vibration caused by the leg due to the influence of wind or the like during the flight of the unmanned aircraft 1. That for the horizontal component D 2, during landing of the unmanned aerial vehicle 1, in order to achieve both anti-tip and shock inputs relaxation to machine body 11 in the horizontal component or the like flying an inertial force, which is characteristic of relatively high spring preferable.
この点、上記構成の防振ゴム31は、その中心軸線Oが水平方向に向けて配置されることにより、無人航空機1における垂直方向の荷重成分を防振ゴム31のせん断変形で受け、無人航空機1における水平方向の荷重成分を防振ゴム31の圧縮・引張り変形で受けるよう配置されている。その結果垂直方向の荷重は、防振ゴム31のせん断変形による比較的低バネの特性で受け止められる。水平方向の荷重は、防振ゴム31の圧縮・引張り変形による比較的高バネの特性で受け止められる。
In this respect, the anti-vibration rubber 31 having the above configuration receives the load component in the vertical direction in the unmanned aerial vehicle 1 due to the shear deformation of the anti-vibration rubber 31 when the central axis O is arranged in the horizontal direction. 1 is arranged to receive the horizontal load component in 1 by compression / tensile deformation of the vibration-proof rubber 31. As a result, the load in the vertical direction is received with the characteristics of a relatively low spring due to the shear deformation of the vibration-proof rubber 31. The load in the horizontal direction is received with a relatively high spring characteristic due to the compression / tensile deformation of the vibration-proof rubber 31.
したがって防振ゴム31は、垂直方向の荷重を防振ゴム31のせん断変形による比較的低バネの特性で受け止めるため、無人航空機1の飛行時、風等の影響による脚部21から機体本体11への振動を絶縁する。その一方で防振ゴム31は、水平方向の荷重を防振ゴム31の圧縮・引張り変形による比較的高バネの特性で受け止めるため、無人航空機1の着陸時、機体本体11へ入力される衝撃を緩和し、飛行慣性力の水平成分の作用による無人航空機1の転倒を抑制する。
Accordingly, the vibration isolating rubber 31 receives the load in the vertical direction with a relatively low spring characteristic due to the shear deformation of the vibration isolating rubber 31, so that when the unmanned aerial vehicle 1 flies, the leg 21 is affected by wind and the like from the leg 21 to the body body 11. Insulates vibrations. On the other hand, the anti-vibration rubber 31 receives a load in the horizontal direction with a relatively high spring characteristic due to the compression / tensile deformation of the anti-vibration rubber 31. Mitigates and prevents the unmanned aircraft 1 from being overturned by the action of the horizontal component of the flight inertia force.
上記垂直成分D1については、無人航空機1の着陸時、機体本体11へ入力される衝撃を緩和してクッション性を確保するため、荷重が加わる初期段階でのバネ特性を比較的低バネの特性とすることが好ましい。この点については、円筒形のゴム弾性体32,33の内周面に突起を付加して初期荷重をこの突起で受け止めることにより、荷重が加わる初期段階での低バネの特性を実現することが可能である。
For the vertical component D 1, during landing of the unmanned aircraft 1, in order to ensure cushioning to reduce impact is input to the machine body 11, a relatively low spring characteristics the spring characteristics at the initial stage of load is applied It is preferable that With respect to this point, by adding a protrusion to the inner peripheral surface of the cylindrical rubber elastic bodies 32 and 33 and receiving the initial load with this protrusion, it is possible to realize the characteristics of a low spring in the initial stage where the load is applied. Is possible.
図7(A)に示すように、円筒形のゴム弾性体32,33の内周面32c,33cは、通常、円筒面状である。本実施の形態では、図7(B)に示すように、円筒形のゴム弾性体32の内周面32c,33cに突起37が付加されている。詳しくは、円筒形のゴム弾性体32の内周面32c,33cから径方向内方へ向けて突出する断面円弧形の突起37が複数個(図7(B)では8個)、均等間隔で配列されている。防振ゴム31は、突起37を持つ構造によっても、荷重が加わる初期段階での低バネの特性を実現している。
As shown in FIG. 7A, the inner peripheral surfaces 32c and 33c of the cylindrical rubber elastic bodies 32 and 33 are generally cylindrical. In the present embodiment, as shown in FIG. 7B, protrusions 37 are added to the inner peripheral surfaces 32c and 33c of the cylindrical rubber elastic body 32. More specifically, a plurality of circular arc-shaped projections 37 (eight in FIG. 7B) projecting radially inward from the inner peripheral surfaces 32c and 33c of the cylindrical rubber elastic body 32 are equally spaced. Are arranged in The anti-vibration rubber 31 also has a low spring characteristic at the initial stage where a load is applied, even with the structure having the protrusion 37.
上記構成の防振装置101は、機体本体11側のプレート15,16と脚部21側のプレート25とをボルト35およびナット36を介して結合している。このような結合構造は、フェールセーフ機構131を構成する。このフェールセーフ機構131は、防振ゴム32が万一破断することがあっても、機体本体11と脚部21との結合を維持し、機体本体11からの脚部21の脱落を防止する。
The anti-vibration device 101 having the above-described configuration combines the plates 15 and 16 on the body body 11 side and the plate 25 on the leg 21 side via bolts 35 and nuts 36. Such a coupling structure constitutes a fail-safe mechanism 131. The fail-safe mechanism 131 maintains the connection between the main body 11 and the leg 21 even if the vibration isolating rubber 32 is broken, and prevents the leg 21 from falling off the main body 11.
[第2実施の形態]
第2実施の形態を図8ないし図12に基づいて説明する。第1実施の形態と同一部分は適宜同一符号で示し、説明も省略する。 [Second Embodiment]
A second embodiment will be described with reference to FIGS. The same parts as those of the first embodiment are appropriately denoted by the same reference numerals, and the description thereof is also omitted.
第2実施の形態を図8ないし図12に基づいて説明する。第1実施の形態と同一部分は適宜同一符号で示し、説明も省略する。 [Second Embodiment]
A second embodiment will be described with reference to FIGS. The same parts as those of the first embodiment are appropriately denoted by the same reference numerals, and the description thereof is also omitted.
図8に示すように、本実施の形態の無人航空機1は、機体本体11および機体本体11に連結される脚部21を備える小型の無人航空機である。機体本体11は、受信機、フライトコントローラー、プロペラ、モーター、バッテリーなど無人航空機を飛行させ制御するための機器を搭載している。図1は、プロペラ12と、機体本体11のフレーム13とを示している。脚部21は、無人航空機1の離着陸時に機体本体11を保護するために、機体本体11を安定的に支持する。図1は、フレーム23と接地部24とを示している。無人航空機1は無人マルチコプターもしくは無人回転翼機とも称され、所謂ドローンなどとも称される。
As shown in FIG. 8, the unmanned aerial vehicle 1 according to the present embodiment is a small unmanned aerial vehicle including a body body 11 and leg portions 21 connected to the body body 11. The airframe body 11 is equipped with equipment for flying and controlling an unmanned aerial vehicle such as a receiver, a flight controller, a propeller, a motor, and a battery. FIG. 1 shows a propeller 12 and a frame 13 of the fuselage main body 11. The legs 21 stably support the airframe body 11 in order to protect the airframe body 11 when the unmanned aircraft 1 takes off and landing. FIG. 1 shows the frame 23 and the grounding portion 24. The unmanned aerial vehicle 1 is also referred to as an unmanned multicopter or an unmanned rotorcraft, and is also referred to as a so-called drone.
機体本体11および脚部21は、直接連結されるのではなく、防振装置101が有する防振ゴム31を介して互いに弾性的に連結されている。防振ゴム31は、互いに連結される無人航空機1の機体本体11と脚部21との間に介在している。防振装置101は、固定用の部材111を有している。固定用の部材111は、防振ゴム31を機体本体11側と脚部21側とに固定する。
The machine body 11 and the leg 21 are not directly connected but elastically connected to each other via a vibration isolating rubber 31 included in the vibration isolating apparatus 101. The anti-vibration rubber 31 is interposed between the fuselage body 11 and the legs 21 of the unmanned aerial vehicle 1 connected to each other. The vibration isolator 101 has a fixing member 111. The fixing member 111 fixes the anti-vibration rubber 31 to the body body 11 side and the leg portion 21 side.
図9に示すように、防振ゴム31は、剛材(金属または硬質樹脂など)製の外筒42と内筒43との間に、円筒形のゴム弾性体44を介在させた防振ブッシュ41を構成している。ゴム弾性体44は、外筒42の内周面および内筒43の外周面にそれぞれ接着(加硫接着)されている。防振ブッシュ41は、円筒形のゴム弾性体44がゴム材質よりなるため、比較的軽量である。
As shown in FIG. 9, the anti-vibration rubber 31 includes an anti-vibration bush in which a cylindrical rubber elastic body 44 is interposed between an outer cylinder 42 and an inner cylinder 43 made of a rigid material (metal or hard resin). 41 is constituted. The rubber elastic body 44 is bonded (vulcanized) to the inner peripheral surface of the outer cylinder 42 and the outer peripheral surface of the inner cylinder 43. The anti-vibration bush 41 is relatively lightweight because the cylindrical rubber elastic body 44 is made of a rubber material.
防振ブッシュ41は、その中心軸線Oを垂直方向に向けた状態で、機体本体11と脚部21との間に介在している。
The anti-vibration bush 41 is interposed between the airframe body 11 and the leg portion 21 with the central axis O directed in the vertical direction.
防振ブッシュ41は、外筒42を、機体本体11のフレーム13に設けた取付孔17に嵌合させ、フレーム13に固定している。外筒42は、固定用の部材111を構成する。フレーム13への防振ブッシュ41の固定は、例えば取付孔17への外筒42の圧入、溶接などの手法によって実現可能である。防振ブッシュ41は、内筒43を、ボルト45およびナット46の組み合わせを用いて、脚部21のフレーム23にボルト止めしている。ボルト45およびナット46は、固定用の部材111を構成する。このような構造によって防振ブッシュ41は、機体本体11および脚部21のそれぞれに固定されている。
The anti-vibration bush 41 is fixed to the frame 13 by fitting the outer cylinder 42 into the mounting hole 17 provided in the frame 13 of the main body 11. The outer cylinder 42 constitutes a fixing member 111. The anti-vibration bush 41 can be fixed to the frame 13 by a technique such as press fitting of the outer cylinder 42 into the mounting hole 17 or welding. The anti-vibration bush 41 has the inner cylinder 43 bolted to the frame 23 of the leg portion 21 using a combination of a bolt 45 and a nut 46. The bolt 45 and the nut 46 constitute a fixing member 111. With such a structure, the anti-vibration bush 41 is fixed to each of the main body 11 and the legs 21.
防振ゴム31である防振ブッシュ41は、無人航空機1の平面上に複数個配置され、無人航空機1の周辺に沿って複数個配置されている。
A plurality of anti-vibration bushes 41 that are anti-vibration rubbers 31 are arranged on the plane of the unmanned aerial vehicle 1 and are arranged along the periphery of the unmanned aerial vehicle 1.
図10に示す一例では、フレーム13,23は長方形の平面形状を有し、4組の防振ブッシュ41を4隅のそれぞれに配置している。図11に示す一例では、いずれか一方または双方のフレーム13,23は円形の平面形状を有し、複数組(図11では3組)の防振ブッシュ41を円周上に均等間隔で配列している。
In the example shown in FIG. 10, the frames 13 and 23 have a rectangular planar shape, and four sets of anti-vibration bushes 41 are arranged at each of the four corners. In one example shown in FIG. 11, one or both of the frames 13 and 23 have a circular planar shape, and a plurality of sets (three sets in FIG. 11) of anti-vibration bushes 41 are arranged at equal intervals on the circumference. ing.
上記構成の無人航空機1に設けられた防振装置101によれば、機体本体11と脚部21との間に挟まれて配置される防振ブッシュ41が有するゴム弾性体44のゴム材質による防振・緩衝作用が発揮されるため、脚部21から機体本体11への振動の伝達を抑制することができる。無人航空機1の着陸時の衝撃が脚部21から機体本体11へ伝わることも抑制することができる。
According to the vibration isolator 101 provided in the unmanned aerial vehicle 1 having the above-described configuration, the rubber elastic body 44 having a rubber elastic body 44 included in the vibration isolating bush 41 disposed between the airframe main body 11 and the leg portion 21 is provided with a rubber material. Since the vibration / buffer action is exhibited, the transmission of vibration from the leg portion 21 to the body body 11 can be suppressed. It is also possible to suppress the impact at the time of landing of the unmanned aircraft 1 from the leg portion 21 to the body body 11.
防振ブッシュ41は円筒形状であるため、水平方向の全ての入力に対して同じ剛性で入力を受けることが可能である。防振ブッシュ41は径方向の弾性が高いため、水平方向の衝撃の緩和に有利である。よって無人航空機1の着陸時に、無人航空機1の姿勢が安定しやすく、転倒による各部の破損を回避することが可能である。
Since the anti-vibration bush 41 has a cylindrical shape, it is possible to receive inputs with the same rigidity for all inputs in the horizontal direction. Since the anti-vibration bush 41 has high radial elasticity, it is advantageous for mitigating horizontal impacts. Therefore, when the unmanned aerial vehicle 1 is landed, the attitude of the unmanned aerial vehicle 1 is easily stabilized, and it is possible to avoid breakage of each part due to a fall.
本実施の形態の防振ゴム31は、外筒42および内筒43と、円筒形のゴム弾性体44とを組み合わせた防振ブッシュ41によって形成されている。このような構造の防振ブッシュ41は、コイルばねや積層ダンパーと比較して軽量であり、無人航空機1の重量が極端に増加するのを抑制する。
The anti-vibration rubber 31 of the present embodiment is formed by an anti-vibration bush 41 that combines an outer cylinder 42 and an inner cylinder 43 and a cylindrical rubber elastic body 44. The anti-vibration bush 41 having such a structure is lighter than a coil spring or a laminated damper, and suppresses an excessive increase in the weight of the unmanned aircraft 1.
本実施の形態の防振ゴム31は、垂直方向の荷重をゴム弾性体44のせん断変形による比較的低バネの特性で受け止める。このため無人航空機1の飛行時、風等の影響による脚部21から機体本体11への振動が絶縁されやすい。その一方で防振ゴム31は、水平方向の荷重をゴム弾性体44の圧縮・引張り変形による比較的高バネの特性で受け止める。このため無人航空機1の着陸時、機体本体11へ入力される衝撃が緩和され、飛行慣性力の水平成分の作用による無人航空機1の転倒が抑制される。
The anti-vibration rubber 31 of the present embodiment receives a load in the vertical direction with a relatively low spring characteristic due to shear deformation of the rubber elastic body 44. For this reason, during the flight of the unmanned aerial vehicle 1, vibration from the leg portion 21 to the body body 11 due to the influence of wind or the like is easily insulated. On the other hand, the anti-vibration rubber 31 receives a load in the horizontal direction with a relatively high spring characteristic due to compression / tensile deformation of the rubber elastic body 44. For this reason, when the unmanned aerial vehicle 1 is landed, the impact input to the fuselage main body 11 is mitigated, and the unmanned aircraft 1 is prevented from falling due to the action of the horizontal component of the flight inertia force.
図12は、第2実施の形態の変形例を示す。本例は、内筒43の上端部にフランジ状の係合部47を設け、その外径を外筒42の内径よりも大きく設定している。この構造は、フェールセーフ機構132を構成する。このフェールセーフ機構132は、ゴム弾性体44が破断したとき、フランジ状の係合部47を外筒42に係合させ、機体本体11からの脚部21の落下を停止させる。フェールセーフ機構132は、機体本体11と脚部21との結合を維持し、機体本体11からの脚部21の脱落を防止するフェールセーフ機能を発揮する。
FIG. 12 shows a modification of the second embodiment. In this example, a flange-like engagement portion 47 is provided at the upper end portion of the inner cylinder 43, and its outer diameter is set larger than the inner diameter of the outer cylinder 42. This structure constitutes a fail-safe mechanism 132. When the rubber elastic body 44 is broken, the fail-safe mechanism 132 engages the flange-shaped engaging portion 47 with the outer cylinder 42 and stops the fall of the leg portion 21 from the body body 11. The fail-safe mechanism 132 exhibits a fail-safe function that maintains the connection between the main body 11 and the leg portion 21 and prevents the leg portion 21 from falling off the main body 11.
第2実施の形態の別の変形例としては、防振ゴム31である防振ブッシュ41を90度回転させた状態で配置するようにしてもよい。上記したように、第2実施の形態では、中心軸線Oを垂直方向に向けた状態で、機体本体11と脚部21間との間に防振ブッシュ41を介在させている。これに対して第1実施の形態と同様に、防振ブッシュ41の中心軸線Oを水平方向に向けた状態で機体本体11と脚部21との間に介在させるようにしてもよい。
As another modification of the second embodiment, the vibration isolating bush 41, which is the vibration isolating rubber 31, may be arranged in a state rotated by 90 degrees. As described above, in the second embodiment, the anti-vibration bush 41 is interposed between the body body 11 and the leg portion 21 with the central axis O directed in the vertical direction. On the other hand, as in the first embodiment, the center axis O of the anti-vibration bush 41 may be interposed between the body body 11 and the leg portion 21 in the horizontal direction.
[第3実施の形態]
第3実施の形態を図13ないし図17に基づいて説明する。第1及び第2実施の形態と同一部分は適宜同一符号で示し、説明も省略する。 [Third Embodiment]
A third embodiment will be described with reference to FIGS. The same parts as those in the first and second embodiments are appropriately denoted by the same reference numerals, and description thereof is also omitted.
第3実施の形態を図13ないし図17に基づいて説明する。第1及び第2実施の形態と同一部分は適宜同一符号で示し、説明も省略する。 [Third Embodiment]
A third embodiment will be described with reference to FIGS. The same parts as those in the first and second embodiments are appropriately denoted by the same reference numerals, and description thereof is also omitted.
図13に示すように、本実施の形態の無人航空機1は、機体本体11および機体本体11に連結される脚部21を備える小型の無人航空機である。機体本体11は、受信機、フライトコントローラー、プロペラ、モーター、バッテリーなど無人航空機を飛行させ制御するための機器を搭載している。図1は、プロペラ12と、機体本体11のフレーム13とを示している。脚部21は、無人航空機1の離着陸時に機体本体11を保護するために、機体本体11を安定的に支持する。図1は、フレーム23と接地部24とを示している。無人航空機1は無人マルチコプターもしくは無人回転翼機とも称され、所謂ドローンなどとも称される。
As shown in FIG. 13, the unmanned aerial vehicle 1 according to the present embodiment is a small unmanned aerial vehicle including a body body 11 and leg portions 21 connected to the body body 11. The airframe body 11 is equipped with equipment for flying and controlling an unmanned aerial vehicle such as a receiver, a flight controller, a propeller, a motor, and a battery. FIG. 1 shows a propeller 12 and a frame 13 of the fuselage main body 11. The legs 21 stably support the airframe body 11 in order to protect the airframe body 11 when the unmanned aircraft 1 takes off and landing. FIG. 1 shows the frame 23 and the grounding portion 24. The unmanned aerial vehicle 1 is also referred to as an unmanned multicopter or an unmanned rotorcraft, and is also referred to as a so-called drone.
機体本体11および脚部21は、直接連結されるのではなく、防振装置101が有する防振ゴム31を介して互いに弾性的に連結されている。防振ゴム31は、互いに連結される無人航空機1の機体本体11と脚部21との間に介在している。防振装置101は、固定用の部材111を有している。固定用の部材111は、防振ゴム31を機体本体11側と脚部21側とに固定する。
The machine body 11 and the leg 21 are not directly connected but elastically connected to each other via a vibration isolating rubber 31 included in the vibration isolating apparatus 101. The anti-vibration rubber 31 is interposed between the fuselage body 11 and the legs 21 of the unmanned aerial vehicle 1 connected to each other. The vibration isolator 101 has a fixing member 111. The fixing member 111 fixes the anti-vibration rubber 31 to the body body 11 side and the leg portion 21 side.
図14および図15に示すように、防振ゴム31は、円筒形のゴム弾性体52の外周面に環状の取付溝53を設けた防振グロメット51を構成している。グロメット51は、カラー54およびワッシャ55とともに、機体本体11と脚部21との間に組み付けられている。カラー54は、ゴム弾性体52の下端に配置され、内周に差し込まれている。ワッシャ55は、ゴム弾性体52の上端に配置されている。ワッシャ55は、ゴム弾性体52の内周に差し込まれたカラー54に押し当てられる。
14 and 15, the anti-vibration rubber 31 constitutes an anti-vibration grommet 51 in which an annular mounting groove 53 is provided on the outer peripheral surface of a cylindrical rubber elastic body 52. The grommet 51 is assembled between the body body 11 and the leg portion 21 together with the collar 54 and the washer 55. The collar 54 is disposed at the lower end of the rubber elastic body 52 and is inserted into the inner periphery. The washer 55 is disposed at the upper end of the rubber elastic body 52. The washer 55 is pressed against the collar 54 inserted into the inner periphery of the rubber elastic body 52.
防振グロメット51は、その中心軸線Oを垂直方向に向けた状態で機体本体11と脚部21とに固定され、これらの機体本体11と脚部21との間に介在している。
The anti-vibration grommet 51 is fixed to the main body 11 and the leg 21 with the central axis O directed in the vertical direction, and is interposed between the main body 11 and the leg 21.
防振グロメット51を機体本体11に固定する固定用の部材111は、取付溝53である。防振グロメット51は、ゴム弾性体52の外周面に設けた環状の取付溝53を機体本体11のフレーム13に設けた取付孔17の開口周縁部17aに係合する。この係合は、機体本体11と防振グロメット51とを固定する。
The fixing member 111 for fixing the vibration isolating grommet 51 to the main body 11 is the mounting groove 53. The anti-vibration grommet 51 engages an opening peripheral portion 17 a of the mounting hole 17 provided in the frame 13 of the machine body 11 with an annular mounting groove 53 provided on the outer peripheral surface of the rubber elastic body 52. This engagement fixes the main body 11 and the vibration isolating grommet 51.
防振グロメット51を脚部21に固定する固定用の部材111は、ボルト56である。防振グロメット51は、防振ブッシュ41とともにカラー54およびワッシャ55を脚部21のフレーム23にボルト56で締結する。
The fixing member 111 that fixes the vibration isolating grommet 51 to the leg portion 21 is a bolt 56. The anti-vibration grommet 51 fastens the collar 54 and the washer 55 together with the anti-vibration bush 41 to the frame 23 of the leg portion 21 with bolts 56.
防振ゴム31である防振グロメット51は、無人航空機1の平面上に複数個配置され、無人航空機1の周辺に沿って複数個配置されている。
A plurality of anti-vibration grommets 51 that are anti-vibration rubbers 31 are arranged on the plane of the unmanned aerial vehicle 1 and are arranged along the periphery of the unmanned aerial vehicle 1.
図16に示す一例では、フレーム13,23は長方形の平面形状を有し、4組の防振グロメット51を4隅のそれぞれに配置している。図17に示す一例では、いずれか一方または双方のフレーム13,23は円形の平面形状を有し、複数組(図17では3組)の防振グロメット51を円周上に均等間隔で配列している。
In the example shown in FIG. 16, the frames 13 and 23 have a rectangular planar shape, and four sets of anti-vibration grommets 51 are arranged at each of the four corners. In one example shown in FIG. 17, one or both of the frames 13 and 23 have a circular planar shape, and a plurality of sets (three sets in FIG. 17) of anti-vibration grommets 51 are arranged at equal intervals on the circumference. ing.
上記構成の無人航空機1に設けられた防振装置101によれば、機体本体11と脚部21との間に挟まれて配置される防振グロメット51が有するゴム弾性体52のゴム材質による防振・緩衝作用が発揮されるため、脚部21から機体本体11への振動の伝達を抑制することができる。無人航空機1の着陸時の衝撃が脚部21から機体本体11へ伝わることも抑制することができる。
According to the vibration isolator 101 provided in the unmanned aerial vehicle 1 having the above-described configuration, the rubber elastic body 52 of the rubber elastic body 52 included in the vibration isolating grommet 51 disposed between the airframe main body 11 and the leg portion 21 is prevented by the rubber material. Since the vibration / buffer action is exhibited, the transmission of vibration from the leg portion 21 to the body body 11 can be suppressed. It is also possible to suppress the impact at the time of landing of the unmanned aircraft 1 from the leg portion 21 to the body body 11.
防振グロメット51は円筒形状であるため、水平方向の全ての入力に対して同じ剛性で入力を受けることが可能である。防振グロメット51は径方向の弾性が高いため、水平方向の衝撃の緩和に有利である。よって無人航空機1の着陸時に、無人航空機1の姿勢が安定しやすく、転倒による各部の破損を回避することが可能である。
Since the anti-vibration grommet 51 has a cylindrical shape, it is possible to receive inputs with the same rigidity for all inputs in the horizontal direction. Since the vibration-proof grommet 51 has high radial elasticity, it is advantageous for mitigating horizontal impact. Therefore, when the unmanned aerial vehicle 1 is landed, the attitude of the unmanned aerial vehicle 1 is easily stabilized, and it is possible to avoid breakage of each part due to a fall.
本実施の形態の防振ゴム31は、円筒形のゴム弾性体52の外周面に環状の取付溝53を設けた防振グロメット51によって形成されている。このような構造の防振グロメット51は、コイルばねや積層ダンパーと比較して軽量であり、無人航空機1の重量が極端に増加するのを抑制する。
The anti-vibration rubber 31 of the present embodiment is formed by an anti-vibration grommet 51 in which an annular mounting groove 53 is provided on the outer peripheral surface of a cylindrical rubber elastic body 52. The anti-vibration grommet 51 having such a structure is lighter than a coil spring or a laminated damper, and suppresses an excessive increase in the weight of the unmanned aircraft 1.
本実施の形態の防振ゴム31は、垂直方向の荷重をゴム弾性体52のせん断変形による比較的低バネの特性で受け止める。このため無人航空機1の飛行時、風等の影響による脚部21から機体本体11への振動が絶縁されやすい。その一方で防振ゴム31は、水平方向の荷重をゴム弾性体52の圧縮・引張り変形による比較的高バネの特性で受け止める。このため無人航空機1の着陸時、機体本体11へ入力される衝撃が緩和され、飛行慣性力の水平成分の作用による無人航空機1の転倒が抑制される。
The anti-vibration rubber 31 according to the present embodiment receives a load in the vertical direction with a relatively low spring characteristic due to shear deformation of the rubber elastic body 52. For this reason, during the flight of the unmanned aerial vehicle 1, vibration from the leg portion 21 to the body body 11 due to the influence of wind or the like is easily insulated. On the other hand, the anti-vibration rubber 31 receives the load in the horizontal direction with a relatively high spring characteristic due to the compression / tensile deformation of the rubber elastic body 52. For this reason, when the unmanned aerial vehicle 1 is landed, the impact input to the fuselage main body 11 is mitigated, and the unmanned aircraft 1 is prevented from falling due to the action of the horizontal component of the flight inertia force.
図14に示すように、本実施の形態の防振装置101では、防振グロメット51のワッシャ55の外径は、取付溝53の内径、つまり機体本体11のフレーム13に設けた取付孔17の内径よりも大きく設定されている。この寸法設定は、フェールセーフ機構133を構成する。このフェールセーフ機構133は、ゴム弾性体52が破断したとき、取付孔17の開口周縁部17aをワッシャ55に係合させ、機体本体11からの脚部21の落下を停止させる。フェールセーフ機構133は、機体本体11と脚部21との結合を維持し、機体本体11からの脚部21の脱落を防止するフェールセーフ機能を発揮する。
As shown in FIG. 14, in the vibration isolator 101 of the present embodiment, the outer diameter of the washer 55 of the vibration isolating grommet 51 is the inner diameter of the mounting groove 53, that is, the mounting hole 17 provided in the frame 13 of the body body 11. It is set larger than the inner diameter. This dimension setting constitutes a fail-safe mechanism 133. When the rubber elastic body 52 is broken, the fail-safe mechanism 133 engages the opening peripheral edge portion 17a of the mounting hole 17 with the washer 55, and stops the fall of the leg portion 21 from the body body 11. The fail-safe mechanism 133 maintains a connection between the body body 11 and the leg portion 21 and exhibits a fail-safe function that prevents the leg portion 21 from falling off the body body 11.
第3実施の形態の変形例としては、防振ゴム31である防振グロメット51を90度回転させた状態で配置するようにしてもよい。上記したように、第3実施の形態では、中心軸線Oを垂直方向に向けた状態で、機体本体11と脚部21間との間に防振グロメット51を介在させている。これに対して第1実施の形態と同様に、防振グロメット51の中心軸線Oを水平方向に向けた状態で機体本体11と脚部21との間に介在させるようにしてもよい。
As a modification of the third embodiment, the anti-vibration grommet 51 that is the anti-vibration rubber 31 may be arranged in a state rotated by 90 degrees. As described above, in the third embodiment, the anti-vibration grommet 51 is interposed between the body body 11 and the leg portion 21 with the central axis O directed in the vertical direction. On the other hand, similarly to the first embodiment, the vibration isolation grommet 51 may be interposed between the main body 11 and the leg portion 21 with the central axis O of the antivibration grommet 51 oriented in the horizontal direction.
1 無人航空機
11 機体本体
12 プロペラ
13,23 フレーム
15,16,25 プレート
15a,16a,25a 軸穴
17 取付孔
17a 開口周縁部
21 脚部
24 接地部
31 防振ゴム
32,33,44,52 ゴム弾性体
32A 弾性体ユニット
32a,33a 軸穴
32c,33c 内周面
35,45,56 取付ボルト(固定用の部材)
36,46 ナット(固定用の部材)
37 突起
41 防振ブッシュ
42 外筒
43 内筒
47 係合部
51 防振グロメット
53 取付溝
54 カラー
55 ワッシャ
101 防振装置
111 固定用の部材
121 防振マウント
131,132,133 フェールセーフ機構
O 中心軸線
D1 垂直成分
D2 水平成分 DESCRIPTION OFSYMBOLS 1 Unmanned aerial vehicle 11 Airframe body 12 Propeller 13, 23 Frame 15, 16, 25 Plate 15a, 16a, 25a Shaft hole 17 Mounting hole 17a Opening peripheral part 21 Leg part 24 Grounding part 31 Anti-vibration rubber 32, 33, 44, 52 Rubber Elastic body 32A Elastic body unit 32a, 33a Shaft hole 32c, 33c Inner peripheral surface 35, 45, 56 Mounting bolt (fixing member)
36, 46 Nut (fixing member)
37Projection 41 Anti-vibration bush 42 Outer cylinder 43 Inner cylinder 47 Engagement part 51 Anti-vibration grommet 53 Mounting groove 54 Collar 55 Washer 101 Anti-vibration device 111 Fixing member 121 Anti-vibration mount 131, 132, 133 Fail-safe mechanism O Center Axis D 1 Vertical component D 2 Horizontal component
11 機体本体
12 プロペラ
13,23 フレーム
15,16,25 プレート
15a,16a,25a 軸穴
17 取付孔
17a 開口周縁部
21 脚部
24 接地部
31 防振ゴム
32,33,44,52 ゴム弾性体
32A 弾性体ユニット
32a,33a 軸穴
32c,33c 内周面
35,45,56 取付ボルト(固定用の部材)
36,46 ナット(固定用の部材)
37 突起
41 防振ブッシュ
42 外筒
43 内筒
47 係合部
51 防振グロメット
53 取付溝
54 カラー
55 ワッシャ
101 防振装置
111 固定用の部材
121 防振マウント
131,132,133 フェールセーフ機構
O 中心軸線
D1 垂直成分
D2 水平成分 DESCRIPTION OF
36, 46 Nut (fixing member)
37
Claims (12)
- 互いに連結される無人航空機の機体本体と脚部との間に介在する防振ゴムと、
前記防振ゴムを前記機体本体側と前記脚部側とに固定する固定用の部材と、
を備える無人航空機の防振装置。 Anti-vibration rubber interposed between the fuselage body and legs of the unmanned aerial vehicle connected to each other;
A fixing member for fixing the anti-vibration rubber to the main body side and the leg side;
Anti-vibration device for unmanned aerial vehicles. - 前記固定用の部材は、鉛直方向の荷重成分をせん断変形で受け、水平方向の荷重成分を圧縮・引張り変形で受ける向きに前記防振ゴムを配置している、
請求項1に記載の無人航空機の防振装置。 The fixing member receives the load component in the vertical direction by shear deformation and arranges the anti-vibration rubber in a direction to receive the load component in the horizontal direction by compression / tensile deformation.
The vibration isolator for an unmanned aerial vehicle according to claim 1. - 前記防振ゴムは、前記機体本体に設けたプレートと前記脚部に設けたプレートとの間にゴム弾性体を介在させた防振マウントであり、
前記固定用の部材は、前記二種類のプレートと前記ゴム弾性体とを一体に固定している、
請求項2に記載の無人航空機の防振装置。 The anti-vibration rubber is an anti-vibration mount in which a rubber elastic body is interposed between a plate provided on the main body and a plate provided on the leg,
The fixing member integrally fixes the two types of plates and the rubber elastic body.
The vibration isolator for an unmanned aerial vehicle according to claim 2. - 前記防振マウントは、前記二種類のプレートを鉛直方向に平行に配置している、
請求項3に記載の無人航空機の防振装置。 The anti-vibration mount has the two types of plates arranged in parallel in the vertical direction.
A vibration isolator for an unmanned aerial vehicle according to claim 3. - 前記固定用の部材は、前記二種類のプレートとこれらのプレートの間に位置する筒形の前記ゴム弾性体とを貫通する取付ボルトをナットで締結するフェールセーフ機構を形成している、
請求項3に記載の無人航空機の防振装置。 The fixing member forms a fail-safe mechanism for fastening a mounting bolt that penetrates the two types of plates and the cylindrical rubber elastic body positioned between these plates with a nut.
A vibration isolator for an unmanned aerial vehicle according to claim 3. - 前記ゴム弾性体は、その内周面に前記取付ボルトの外周面に接触する突起を有している、
請求項5に記載の無人航空機の防振装置。 The rubber elastic body has a protrusion on its inner peripheral surface that contacts the outer peripheral surface of the mounting bolt.
The vibration isolator for an unmanned aerial vehicle according to claim 5. - 前記防振ゴムは、外筒と内筒との間に筒形のゴム弾性体を介在させた防振ブッシュであり、
前記固定用の部材は、前記外筒及び前記内筒を含む二種類の筒を前記機体本体と前記脚部とにそれぞれ固定している、
請求項1に記載の無人航空機の防振装置。 The anti-vibration rubber is an anti-vibration bush in which a cylindrical rubber elastic body is interposed between the outer cylinder and the inner cylinder.
The fixing member fixes two types of cylinders including the outer cylinder and the inner cylinder to the main body and the leg, respectively.
The vibration isolator for an unmanned aerial vehicle according to claim 1. - 前記防振ブッシュは、前記二種類の筒の軸方向を鉛直方向に向けて配置している、
請求項7に記載の無人航空機の防振装置。 The anti-vibration bushing is arranged with the axial direction of the two types of cylinders oriented vertically.
The vibration isolator for an unmanned aerial vehicle according to claim 7. - 前記防振ゴムは、前記二種類の筒を抜け止めするフェールセーフ機構を有している、
請求項7に記載の無人航空機の防振装置。 The anti-vibration rubber has a fail-safe mechanism for preventing the two types of cylinders from coming off,
The vibration isolator for an unmanned aerial vehicle according to claim 7. - 前記防振ゴムは、筒形のゴム弾性体の外周面に環状の取付溝を設けた防振グロメットであり、
前記固定用の部材は、前記ゴム弾性体を貫通する取付ボルトと前記取付溝とによって前記防振ゴムを前記機体本体側と前記脚部側とに固定している、
請求項1に記載の無人航空機の防振装置。 The anti-vibration rubber is an anti-vibration grommet provided with an annular mounting groove on the outer peripheral surface of a cylindrical rubber elastic body,
The fixing member fixes the anti-vibration rubber to the body main body side and the leg side by means of a mounting bolt and the mounting groove penetrating the rubber elastic body.
The vibration isolator for an unmanned aerial vehicle according to claim 1. - 前記防振グロメットは、前記取付ボルトを貫通させる軸方向を鉛直方向に向けて配置している、
請求項10に記載の無人航空機の防振装置。 The anti-vibration grommet is arranged with the axial direction penetrating the mounting bolt oriented in the vertical direction.
The vibration isolator for an unmanned aerial vehicle according to claim 10. - 前記防振ゴムは、前記取付溝に嵌合する前記機体本体と前記脚部とのいずれか一方の部材を前記防振グロメットから抜け止めするフェールセーフ機構を有している、
請求項10に記載の無人航空機の防振装置。 The anti-vibration rubber has a fail-safe mechanism that prevents any one member of the machine body and the leg fitted in the mounting groove from the anti-vibration grommet.
The vibration isolator for an unmanned aerial vehicle according to claim 10.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020513123A JP7153065B2 (en) | 2018-04-13 | 2019-03-08 | Anti-vibration device for unmanned aerial vehicle, and unmanned aerial vehicle |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-077649 | 2018-04-13 | ||
JP2018077649 | 2018-04-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019198393A1 true WO2019198393A1 (en) | 2019-10-17 |
Family
ID=68163545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/009364 WO2019198393A1 (en) | 2018-04-13 | 2019-03-08 | Anti-vibration device for unmanned aircraft |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7153065B2 (en) |
WO (1) | WO2019198393A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112027054A (en) * | 2020-10-06 | 2020-12-04 | 许昌学院 | Arm mechanism and unmanned aerial vehicle comprising same |
US20210107681A1 (en) * | 2018-06-26 | 2021-04-15 | SZ DJI Technology Co., Ltd. | Sensor assembly and unmanned aerial vehicle |
CN113562184A (en) * | 2021-07-27 | 2021-10-29 | 广西电网有限责任公司电力科学研究院 | Lifting protection device and unmanned aerial vehicle |
JP2022114550A (en) * | 2021-01-27 | 2022-08-08 | 株式会社レールテック | Unmanned aircraft |
EP4067226A1 (en) * | 2021-03-31 | 2022-10-05 | Airbus Operations | Assembly for connection between two structures of an aircraft, part of an aircraft comprising such an assembly, and aircraft |
CN116062154A (en) * | 2023-01-03 | 2023-05-05 | 广州诺森新材料科技有限公司 | Flexible bushing and aircraft propeller |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000193003A (en) * | 1998-11-10 | 2000-07-14 | Tokai Rubber Ind Ltd | Engine roll mount for automobile |
JP2007239917A (en) * | 2006-03-09 | 2007-09-20 | Toyo Tire & Rubber Co Ltd | Vibration control bush |
JP2010185539A (en) * | 2009-02-13 | 2010-08-26 | Kajima Corp | Three-dimensional base isolation unit |
JP3163200U (en) * | 2010-02-19 | 2010-10-07 | 末則 西川 | Anti-vibration device for unmanned helicopters |
JP2011140289A (en) * | 2010-01-08 | 2011-07-21 | Mitsubishi Motors Corp | Stabilizer bush device |
JP2013060154A (en) * | 2011-09-14 | 2013-04-04 | Kubota Corp | Tractor |
JP2013194746A (en) * | 2012-03-15 | 2013-09-30 | Takenaka Komuten Co Ltd | Vibration control damper and vibration control structure |
JP2016175426A (en) * | 2015-03-18 | 2016-10-06 | 日信工業株式会社 | Brake fluid pressure control device for vehicle |
-
2019
- 2019-03-08 WO PCT/JP2019/009364 patent/WO2019198393A1/en active Application Filing
- 2019-03-08 JP JP2020513123A patent/JP7153065B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000193003A (en) * | 1998-11-10 | 2000-07-14 | Tokai Rubber Ind Ltd | Engine roll mount for automobile |
JP2007239917A (en) * | 2006-03-09 | 2007-09-20 | Toyo Tire & Rubber Co Ltd | Vibration control bush |
JP2010185539A (en) * | 2009-02-13 | 2010-08-26 | Kajima Corp | Three-dimensional base isolation unit |
JP2011140289A (en) * | 2010-01-08 | 2011-07-21 | Mitsubishi Motors Corp | Stabilizer bush device |
JP3163200U (en) * | 2010-02-19 | 2010-10-07 | 末則 西川 | Anti-vibration device for unmanned helicopters |
JP2013060154A (en) * | 2011-09-14 | 2013-04-04 | Kubota Corp | Tractor |
JP2013194746A (en) * | 2012-03-15 | 2013-09-30 | Takenaka Komuten Co Ltd | Vibration control damper and vibration control structure |
JP2016175426A (en) * | 2015-03-18 | 2016-10-06 | 日信工業株式会社 | Brake fluid pressure control device for vehicle |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210107681A1 (en) * | 2018-06-26 | 2021-04-15 | SZ DJI Technology Co., Ltd. | Sensor assembly and unmanned aerial vehicle |
CN112027054A (en) * | 2020-10-06 | 2020-12-04 | 许昌学院 | Arm mechanism and unmanned aerial vehicle comprising same |
JP2022114550A (en) * | 2021-01-27 | 2022-08-08 | 株式会社レールテック | Unmanned aircraft |
JP7270324B2 (en) | 2021-01-27 | 2023-05-10 | 株式会社レールテック | unmanned aerial vehicle |
EP4067226A1 (en) * | 2021-03-31 | 2022-10-05 | Airbus Operations | Assembly for connection between two structures of an aircraft, part of an aircraft comprising such an assembly, and aircraft |
FR3121427A1 (en) * | 2021-03-31 | 2022-10-07 | Airbus Operations Sas | CONNECTION ASSEMBLY BETWEEN TWO STRUCTURES OF AN AIRCRAFT, PART OF AIRCRAFT COMPRISING SUCH AN ASSEMBLY, AND AIRCRAFT. |
CN113562184A (en) * | 2021-07-27 | 2021-10-29 | 广西电网有限责任公司电力科学研究院 | Lifting protection device and unmanned aerial vehicle |
CN113562184B (en) * | 2021-07-27 | 2023-08-18 | 广西电网有限责任公司电力科学研究院 | Lifting protection device and unmanned aerial vehicle |
CN116062154A (en) * | 2023-01-03 | 2023-05-05 | 广州诺森新材料科技有限公司 | Flexible bushing and aircraft propeller |
Also Published As
Publication number | Publication date |
---|---|
JP7153065B2 (en) | 2022-10-13 |
JPWO2019198393A1 (en) | 2021-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019198393A1 (en) | Anti-vibration device for unmanned aircraft | |
EP2180203B1 (en) | Vibration isolators | |
US11125296B2 (en) | Vibration damper | |
JP2010112555A5 (en) | ||
US8770513B2 (en) | Resilient aircraft engine mounts and aircraft engine mounting systems including the same | |
JPS6124573B2 (en) | ||
US20180223947A1 (en) | Payload shock and vibration isolator | |
US20130026689A1 (en) | Vibration isolation device and system | |
US20180118357A1 (en) | Mount mechanism of accessory gearbox | |
JP2015021546A (en) | Vibration control structure | |
JP5264400B2 (en) | Vibration isolator | |
US6565061B1 (en) | Radial snubber for vibration isolator | |
US9169892B2 (en) | Mechanical connection device | |
US5523530A (en) | Elastomeric acoustic insulator | |
US20120112394A1 (en) | Dampening device | |
JP6334254B2 (en) | Engine device support structure and engine device installation method | |
CN112855846B (en) | Combined vibration reduction structure and assembling and adjusting method | |
US8360405B2 (en) | Mounting apparatus for a vibration-sensitive module | |
CN113847385B (en) | Nacelle shock absorber and shock absorbing system | |
US11518239B2 (en) | Drive assembly for a motor vehicle | |
JP6184705B2 (en) | Multi-function anti-vibration mount | |
JP2010270873A (en) | Vibration damping device | |
RU2414637C1 (en) | Ship vibro-isolated platform for operator | |
JP2010053966A (en) | Dynamic damper | |
KR100812836B1 (en) | Anti vibration apparatus for body of model helicopter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19784454 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020513123 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19784454 Country of ref document: EP Kind code of ref document: A1 |