Nothing Special   »   [go: up one dir, main page]

WO2019184610A1 - 基于新能源和市电供电的家庭负荷接入控制装置及方法 - Google Patents

基于新能源和市电供电的家庭负荷接入控制装置及方法 Download PDF

Info

Publication number
WO2019184610A1
WO2019184610A1 PCT/CN2019/074918 CN2019074918W WO2019184610A1 WO 2019184610 A1 WO2019184610 A1 WO 2019184610A1 CN 2019074918 W CN2019074918 W CN 2019074918W WO 2019184610 A1 WO2019184610 A1 WO 2019184610A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
power
class
new energy
selection controller
Prior art date
Application number
PCT/CN2019/074918
Other languages
English (en)
French (fr)
Inventor
于越
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Publication of WO2019184610A1 publication Critical patent/WO2019184610A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J13/0075
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/007Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • H02J2310/14The load or loads being home appliances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/126Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission

Definitions

  • the present invention relates to a home load access control apparatus and method based on new energy and utility power supply.
  • the current research focuses on how to integrate new energy into the home microgrid, so that the new energy source and the mains supply together supply power to the household load, but rarely from the household load side. If the appropriate classification control device and method can be used to achieve the energy efficiency of the new energy source, and minimize the harmonics and voltage fluctuations in the new energy energy, the power quality of the distribution network will be reduced. Improve the reliability of power supply in the home grid.
  • the object of the present invention is to propose a home load access control device based on new energy and commercial power supply, taking into account both the utilization efficiency of new energy and the impact of new energy on the power quality of the distribution network.
  • a home load access control device based on a new energy source and a mains supply includes a plurality of power supply selection controllers having the same structure, and each output of the power selection controller is connected to a type of load;
  • Each power selection controller includes an electrical signal acquisition unit, a data processing unit, a switch selection unit, and a wireless communication unit; [0009] a switch selection unit configured to access new energy or utility power and supply power to a corresponding load;
  • an electrical signal collecting unit configured to collect load data information when the utility power or the new energy power is supplied
  • a wireless communication unit configured to implement wireless communication between different power selection controllers
  • the switch selection unit, the electrical signal acquisition unit, and the wireless communication unit are all connected to the data processing unit; [0013] wherein the various types of loads are divided according to the self-characteristics of the load and the requirements of the power supply during the runtime load.
  • the switch selection unit includes a first switch and a second switch; wherein:
  • a switch No. 1 configured to connect the utility power and supply power to the corresponding load
  • the second switch is configured to connect the new energy energy and supply power to the corresponding load
  • the data processing unit is respectively connected to the first switch and the second switch, and the switch states of the first switch and the second switch are opposite.
  • the power selection controller further includes a keyboard and a display connected to the data processing unit.
  • the present invention also proposes a home load access control method based on new energy and mains power supply, which adopts the above-mentioned home load access control device based on new energy and mains power supply, and the specific technical solutions are as follows:
  • a home load access control method based on new energy and utility power supply includes the following steps:
  • the household load is divided into four categories, namely, Class A, Class B, Class C, and Class D; ;
  • Class A load is a high demand for power supply quality of the power supply and a household load that is not frequently used;
  • Class B load is a household load that requires long-term operation
  • Class C load is a household load of an electric water heater
  • the D load is a household load that has a small load during standby but a large load during operation
  • power selection controllers There are four power selection controllers, which are defined as power selection controllers No. 1, No. 2, No. 3 and No. 4, respectively.
  • the first power selection controller is connected with a type A load; the second power selection controller is connected with a type B load; the third power selection controller is connected with a type C load; the fourth power selection controller is connected with a D Class negative Load
  • the maximum allowable output power for defining new energy energy is Pnewmax
  • the power for defining Class A load is PA
  • the power for defining Class B load is PB
  • the power for defining Class C load is PC
  • the power for defining Class D load is PD.
  • the No. 1 power selection controller first determines whether there is a utility power input:
  • the No. 1 power selection controller connects the new energy source to the Class A load
  • the No. 1 power selection controller connects the new energy to the Class A load; [0037] s2. 3. If the Class B load is to be put into operation, the No. 2 power selection controller first judges the new energy. Is the power supply normal:
  • the No. 2 power selection controller connects the Class B load to the utility power; [0039] If the new energy is normal, it is determined whether Pnew+PB is less than or equal to Pnewmax:
  • the No. 2 power selection controller connects the Class B load to the new energy source
  • the No. 3 power selection controller and the No. 4 power selection controller are transmitted to the No. 3 power selection controller and the No. 4 power selection controller through the wireless network, and the C and D loads that have been connected to the new energy are sequentially disconnected in sequence, until When the condition is met, at this time, the No. 2 power selection controller will connect the new energy into the Class B load supply; [0042] s2.4. If the Class C load is to be put into operation, the No. 3 power selection controller first and No. 4 The power selection controller is linked and determines whether a Class D load is connected to the new energy source:
  • the class C load is connected to the new energy source when the class D load is in the standby state, and the class C load is in the running state. Class load from The new energy source is disconnected;
  • the No. 3 power selection controller connects the Class C load to the new energy source
  • the No. 3 power selection controller connects the Class C load to the utility power
  • the No. 4 power selection controller determines whether Pnew+PD is less than or equal to Pnewm ax:
  • the No. 4 power selection controller connects the Class D load to the new energy source
  • the No. 4 power selection controller connects the Class D load to the utility power.
  • the present invention divides the household load into four categories according to the self-characteristics of the load and the requirements of the power load during the running load, and designs a power selection controller for each type of load, and each of the power selection controllers performs wirelessly. Communication.
  • the invention classifies and controls the household load, and gives an optimized access control mode for different loads, so that the electric energy emitted by the new energy in the home power grid is used as much as possible in the household range, and the power distribution is reduced.
  • the network feeds back the electric energy, thereby minimizing the problems of the power quality degradation of the distribution network caused by harmonics and voltage fluctuations in the new energy.
  • FIG. 1 is a block diagram showing the structure of a home load access control device based on new energy and mains power supply according to an embodiment of the present invention
  • FIG. 2 is a structural block diagram of a power controller in an embodiment of the present invention.
  • the home load access control device based on the new energy source and the mains power supply includes a plurality of power supply selection controllers having the same structure, and each output of the power selection controller is connected to a type of load.
  • the input terminals of the respective power selection controllers are simultaneously connected to the new energy supply line and the mains supply line. This design ensures that each power supply selection controller can select new energy power access or mains power supply access.
  • the number of power selection controllers is the same as the number of classes of loads, and both implement one-to-one control.
  • the family load can be divided into four categories, namely, Class A, Class B, Class C, and Class D. among them;
  • the type A load is a household load that requires high power supply quality of the power source and is infrequently used.
  • the load that requires high power supply quality may be, for example, a computer or a printer, and the household load that is not frequently used may be, for example, a hair dryer.
  • the type B load is a household load that requires long-time operation, and may be, for example, a lighting fixture or the like.
  • the type C load is a household load of an electric water heater.
  • a class D load is a household load that has a small load during standby but a large load during operation, such as a refrigerator, an air conditioner, and a washing machine.
  • the number of power selection controllers in this embodiment is four, which are defined as power selection controllers No. 1, No. 2, No. 3, and No. 4, respectively.
  • the first power selection controller is connected to the class A load; the second power selection controller is connected with the class B load; the third power selection controller is connected with the class C load; the fourth power selection controller is connected with the D Class load.
  • each power selection controller performs network communication through a wireless manner, so as to realize linkage between various types of loads in the connection of new energy and utility power, thereby ensuring optimal access allocation.
  • each power selection controller includes an electrical signal acquisition unit, a data processing unit, a switch selection unit, and a wireless communication unit. among them: [0068]
  • the switch selection unit is configured to access new energy or utility power and to supply power to the corresponding load.
  • the switch selection unit includes a first switch and a second switch; wherein:
  • a switch No. 1 is configured to access utility power and provide power for a corresponding load.
  • the second switch is configured to access new energy energy and supply power to the corresponding load.
  • the data processing unit is respectively connected to the first switch and the second switch, and the switch states of the first switch and the second switch are opposite.
  • the No. 1 switch and the No. 2 switch are controlled by the data processing unit, so that the new energy energy and the commercial power can only be accessed one by one.
  • the electrical signal collecting unit is configured to collect load data information when the utility power or the new energy power is supplied, and the load data information includes information such as a power access type and a current load power.
  • the electrical signal here can be, for example, a voltage signal, and of course can also be a current signal.
  • the wireless communication unit is configured to implement wireless communication between different power selection controllers such that each power selection control constitutes a distributed home power control network, thereby implementing linkage control.
  • the wireless communication unit in this embodiment may be, for example, a Zigbee network or the like.
  • the switch selection unit, the electrical signal acquisition unit, and the wireless communication unit are all connected to the data processing unit.
  • the selection of power access, the collection of load data information, and the wireless communication connection are all controlled by the data processing unit.
  • the power selection controller also includes a keyboard and display coupled to the data processing unit.
  • the keyboard and display can be used by the user to enter run commands or query information into the controller.
  • each power selection controller processes the data information obtained from the electrical signal acquisition unit, the user from the keyboard input, and other power selection controllers, and is used for switching control and monitoring protection of the power supply; On the other hand, it is passed to other controllers in the same control area network through the wireless communication unit.
  • this embodiment also proposes a home load access control method based on new energy and mains power supply, which adopts the above-mentioned home load access control device based on new energy and mains power supply.
  • the home load access control method based on new energy and mains power supply includes the following steps:
  • the household load is divided according to the self-characteristics of the load and the requirements of the power supply during the running load, By dividing, the household load is divided into four categories, namely, A, B, C, and D;
  • Class A load is a high demand for the power quality of the power source and a household load that is not frequently used;
  • Class B load is a household load that requires long-term operation
  • Class C load is a household load of an electric water heater
  • the Class D load is a household load that has a small load during standby but a large load during operation.
  • power selection controllers There are four power selection controllers, which are defined as power selection controllers No. 1, No. 2, No. 3 and No. 4, respectively.
  • the first power selection controller is connected with a type A load; the second power selection controller is connected with a type B load; the third power selection controller is connected with a type C load; the fourth power selection controller is connected with a D Class load.
  • Each of the power selection controllers performs networking communication by wireless.
  • the power of the class D load refers to the power of the class D load during operation (the standby power is negligible)
  • the No. 1 power selection controller first determines whether there is a utility power input:
  • the No. 1 power selection controller connects the new energy source to the Class A load
  • the information is transmitted to the No. 3 power selection controller and the No. 4 power selection controller through the wireless network, and the C and D loads that have been connected to the new energy are sequentially disconnected in sequence, until When the condition is met, at this time, the No. 1 power selection controller connects the new energy power into the Class A load.
  • the No. 2 power selection controller first determines whether the new energy source is normal: [0101] If the new energy energy is not normal, the No. 2 power selection controller connects the Class B load to the utility power;
  • the No. 2 power selection controller connects the Class B load to the new energy source
  • the information is transmitted to the No. 3 power selection controller and the No. 4 power selection controller through the wireless network, and the C and D loads that have been connected to the new energy are sequentially disconnected in sequence, until When the condition is met, at this time, the No. 2 power selection controller connects the new energy power into the Class B load.
  • the No. 3 power selection controller first associates with the No. 4 power selection controller, and determines whether there is a Class D load connected to the new energy:
  • the class C load is connected to the new energy source when the class D load is in the standby state, when the class D load is at Disconnect Class C load from new energy source during operation;
  • the No. 3 power selection controller connects the Class C load to the new energy source
  • the No. 3 power selection controller connects the Class C load to the utility power.
  • the No. 4 power selection controller connects the Class D load to the new energy source
  • the No. 4 power selection controller connects the Class D load to the utility power.
  • the method controls the household load by classification, and gives an optimized access control mode for different loads, so that the electric energy emitted by the new energy in the home power grid is used as much as possible within the household range, and the method is reduced.
  • the electric energy is fed back to the distribution network, which reduces the problems of power quality degradation of the distribution network caused by harmonics and voltage fluctuations in the new energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

本发明公开了一种基于新能源和市电供电的家庭负荷接入控制装置及方法。其中,本发明按照负荷的自身特性以及运行时负荷对电源的要求,将家用负荷分为四类,针对每一类负荷设计一个电源选择控制器,各个电源选择控制器之间通过无线方式进行通信。本发明通过对家庭负荷进行分类控制,并且针对不同的负荷给出最优化的接入控制方式,使得家庭电网中新能源发出的电能在家庭范围内尽可能的消纳使用,减少了向配电网回馈电能,从而最大限度地减少了新能源电能中的谐波、电压波动等造成的配电网电能质量下降等问题。

Description

基于新能源和市电供电的家庭负荷接入控制装置及方法 技术领域
[0001] 本发明涉及一种基于新能源和市电供电的家庭负荷接入控制装置及方法。
背景技术
[0002] 随着新能源发电技术的快速发展, 越来越多的风、 光等新能源接入到家庭供电 系统中, 与此同时, 家庭中使用的负荷如冰箱、 空调、 电视、 电脑、 电热水器 等的种类变得越来越多, 由于这些负荷的特性差异很大, 其运行时对电源的要 求和影响也不相同。
[0003] 目前的研究主要集中在如何将新能源接入到家庭微电网中, 使新能源电源与市 电电源共同向家庭负荷供电, 然而很少从家庭负荷侧考虑。 如果能够通过合适 的分类控制装置及方法, 达到既能高效利用新能源发出的电能, 又尽可能减少 新能源电能中的谐波、 电压波动等造成配电网电能质量下降的问题, 将会大大 地提高家庭电网的供电可靠性。
发明概述
技术问题
问题的解决方案
技术解决方案
[0004] 本发明的目的在于提出一种基于新能源和市电供电的家庭负荷接入控制装置, 以同时兼顾新能源电能的利用效率以及新能源电能对配电网电能质量造成的影 响。
[0005] 本发明为了实现上述目的, 采用如下技术方案:
[0006] 基于新能源和市电供电的家庭负荷接入控制装置, 包括多个结构相同的电源选 择控制器, 每个电源选择控制器的输出端连接有一类负荷;
[0007] 各个电源选择控制器的输入端同时接入到新能源供电线和市电供电线上;
[0008] 每个电源选择控制器包括一个电信号采集单元、 一个数据处理单元、 一个开关 选择单元以及一个无线通信单元; 其中: [0009] 开关选择单元, 被配置为用于将新能源电能或市电电能接入并为相应的负荷供 电;
[0010] 电信号采集单元, 被配置为用于采集市电电能或新能源电能供电时的负荷数据 信息;
[0011] 无线通信单元, 被配置为用于实现不同电源选择控制器之间的无线通信;
[0012] 该开关选择单元、 电信号采集单元以及无线通信单元均与数据处理单元连接; [0013] 其中, 各类负荷是按照负荷的自身特性以及运行时负荷对电源的要求进行划分 的。
[0014] 优选地, 所述开关选择单元包括一个一号开关和一个二号开关; 其中:
[0015] 一号开关, 被配置为用于将市电电能接入并为相应的负荷进行供电;
[0016] 二号开关, 被配置为用于将新能源电能接入并为相应的负荷进行供电;
[0017] 数据处理单元分别与一号开关、 二号开关连接, 且一号开关和二号开关的开关 状态相反。
[0018] 优选地, 所述电源选择控制器还包括与数据处理单元连接的键盘和显示器。
[0019] 此外, 本发明还提出了一种基于新能源和市电供电的家庭负荷接入控制方法, 其采用上述基于新能源和市电供电的家庭负荷接入控制装置, 具体技术方案如 下:
[0020] 基于新能源和市电供电的家庭负荷接入控制方法, 包括如下步骤:
[0021] si.按照负荷的自身特性以及运行时负荷对电源的要求对家庭负荷进行划分, 通过划分, 将家庭负荷分为四类, 分别为 A类、 B类、 C类和 D类; 其中;
[0022] A类负荷为对电源的供电质量要求高以及不经常使用的家庭负荷;
[0023] B类负荷为需要长时间运行的家庭负荷;
[0024] C类负荷为电热水器类的家庭负荷;
[0025] D类负荷为待机时负荷较小但运行时负荷较大的家庭负荷;
[0026] 电源选择控制器有四个, 分别定义为一号、 二号、 三号和四号电源选择控制器
[0027] 其中, 一号电源选择控制器连接有 A类负载; 二号电源选择控制器连接有 B类 负载; 三号电源选择控制器连接有 C类负载; 四号电源选择控制器连接有 D类负 载;
[0028] 各个电源选择控制器之间通过无线方式进行组网通信;
[0029] s2.各类负荷在投入运行时, 按照下述步骤选择接入新能源电能或市电电能:
[0030] s2.1.根据各个电源选择控制器中电信号采集单元采集的负荷数据信息, 计算出 当前新能源电能的输出功率, 将该当前新能源电能的输出功率记为 Pnew;
[0031] 定义新能源电能的最大允许输出功率为 Pnewmax, 定义 A类负荷的功率为 PA, 定义 B类负荷的功率为 PB, 定义 C类负荷的功率为 PC, 定义 D类负荷的功率为 PD
[0032] s2. 2.若 A类负荷要投入运行, 一号电源选择控制器首先判断是否有市电电能接 入:
[0033] 如果有市电电能接入, 则优先接入市电电能;
[0034] 如果没有市电电能接入, 则判断 Pnew+PA是否小于等于 Pnewmax:
[0035] 若满足条件, 则一号电源选择控制器将新能源电源接入为 A类负荷供电;
[0036] 若不满足条件, 则通过无线网络将信息传递至三号电源选择控制器和四号电源 选择控制器, 通过将已经接入新能源的 C、 D类负荷按照顺序依次断开, 直到满 足条件为止, 此时, 一号电源选择控制器将新能源电能接入为 A类负荷供电; [0037] s2. 3.若 B类负荷要投入运行, 二号电源选择控制器首先判断新能源电源是否正 常:
[0038] 如果新能源电能不正常, 则二号电源选择控制器将 B类负荷接入市电电能; [0039] 如果新能源电能正常, 则判断 Pnew+PB是否小于等于 Pnewmax:
[0040] 若满足条件, 则二号电源选择控制器将 B类负荷接入新能源电源;
[0041] 若不满足条件, 则通过无线网络将信息传递至三号电源选择控制器和四号电源 选择控制器, 通过将已经接入新能源的 C、 D类负荷按照顺序依次断开, 直到满 足条件为止, 此时, 二号电源选择控制器将新能源电能接入为 B类负荷供电; [0042] s2.4.若 C类负荷要投入运行, 三号电源选择控制器首先与四号电源选择控制器 联动, 并判断是否有 D类负荷接入到新能源电能中:
[0043] 若有 D类负荷且满足 Pnew-PD+PC^Pnewmax, 则在 D类负荷处于待机状态时将 C类负荷接入到新能源电源投入运行, 当 D类负荷处于运行状态时将 C类负荷从 新能源电源断开;
[0044] 若新能源电能中没有 D类负荷, 则判断 Pnew+PC是否小于等于 Pnewmax:
[0045] 如果满足条件, 则三号电源选择控制器将 C类负荷接入新能源电能;
[0046] 如果不满足条件, 则三号电源选择控制器将 C类负荷接入市电电能;
[0047] s2.5.
若 D类负荷要投入运行, 四号电源选择控制器判断 Pnew+PD是否小于等于 Pnewm ax:
[0048] 若满足条件, 则四号电源选择控制器将 D类负荷接入新能源电能;
[0049] 若不满足条件, 则四号电源选择控制器将 D类负荷接入市电电能。
发明的有益效果
有益效果
[0050] 本发明按照负荷的自身特性以及运行时负荷对电源的要求, 将家用负荷分为四 类, 针对每一类负荷设计一个电源选择控制器, 各个电源选择控制器之间通过 无线方式进行通信。 本发明通过对家庭负荷进行分类控制, 并且针对不同的负 荷给出最优化的接入控制方式, 使得家庭电网中新能源发出的电能在家庭范围 内尽可能的消纳使用, 减少了向配电网回馈电能, 从而最大限度地减少了新能 源电能中的谐波、 电压波动等造成的配电网电能质量下降等问题。
对附图的简要说明
附图说明
[0051] 图 1为本发明实施例中基于新能源和市电供电的家庭负荷接入控制装置的结构 框图;
[0052] 图 2为本发明实施例中电源控制器的结构框图。
发明实施例
本发明的实施方式
[0053] 下面结合附图以及具体实施方式对本发明作进一步详细说明:
[0054] 如图 1所示, 基于新能源和市电供电的家庭负荷接入控制装置包括多个结构相 同的电源选择控制器, 每个电源选择控制器的输出端连接有一类负荷。 [0055] 各个电源选择控制器的输入端同时接入到新能源供电线和市电供电线上。 此种 设计, 可以保证每个电源选择控制器均可以选择新能源电能接入或者市电供电 接入。
[0056] 电源选择控制器的数量与负荷的类数相同, 二者实现了一对一控制。
[0057] 在本实施例中, 按照负荷的自身特性以及运行时负荷对电源的要求, 可以将家 庭负荷划分为四类, 分别为 A类、 B类、 C类和 D类。 其中;
[0058] A类负荷为对电源的供电质量要求高以及不经常使用的家庭负荷, 供电质量要 求高的负荷例如可以是电脑和打印机等, 不经常使用的家庭负荷例如可以是电 吹风等。
[0059] B类负荷为需要长时间运行的家庭负荷, 例如可以是照明灯具等。
[0060] C类负荷为电热水器类的家庭负荷。
[0061] D类负荷为待机时负荷较小但运行时负荷较大的家庭负荷, 例如冰箱、 空调和 洗衣机。
[0062] 通过将家庭负荷按照上述原则进行分类, 便于实现对各类家庭符合的精细化控 制, 在兼顾家庭负荷对电能质量要求的前提下, 最大程度的在家庭范围内充分 利用新能源电能, 以此, 减小新能源电能中的谐波、 电压波动等造成配电网电 能质量下降的问题。
[0063] 为了与各类负荷相适应, 本实施例中的电源选择控制器数量为四个, 分别定义 为一号、 二号、 三号和四号电源选择控制器。
[0064] 其中, 一号电源选择控制器连接有 A类负载; 二号电源选择控制器连接有 B类 负载; 三号电源选择控制器连接有 C类负载; 四号电源选择控制器连接有 D类负 载。
[0065] 如此设计, 实现了各个电源选择控制器对相应类负荷的一对一控制。
[0066] 另外, 本实施例中各个电源选择控制器之间通过无线方式进行组网通信, 以便 实现各类负荷在新能源和市电供电接入时的联动, 从而保证了最优化接入分配
[0067] 如图 2所示, 每个电源选择控制器包括一个电信号采集单元、 一个数据处理单 元、 一个开关选择单元以及一个无线通信单元。 其中: [0068] 开关选择单元, 被配置为用于将新能源电能或市电电能接入并为相应的负荷供 电。
[0069] 具体的, 该开关选择单元包括一个一号开关和一个二号开关; 其中:
[0070] 一号开关, 被配置为用于将市电电能接入并为相应的负荷进行供电。
[0071] 二号开关, 被配置为用于将新能源电能接入并为相应的负荷进行供电。
[0072] 数据处理单元分别与一号开关、 二号开关连接, 且一号开关和二号开关的开关 状态相反。 通过数据处理单元控制一号开关和二号开关, 使得新能源电能和市 电电能只能择一接入。
[0073] 电信号采集单元, 被配置为用于采集市电电能或新能源电能供电时的负荷数据 信息, 该负荷数据信息包括电能接入类型以及当前负荷的功率等信息。
[0074] 此处的电信号, 例如可以为电压信号, 当然也可以为电流信号。
[0075] 无线通信单元, 被配置为用于实现不同电源选择控制器之间的无线通信, 使得 各个电源选择控制组成一个分布式家庭供电控制网络, 从而实现联动控制。
[0076] 本实施例中的无线通信单元例如可以是 Zigbee网络等。
[0077] 该开关选择单元、 电信号采集单元以及无线通信单元均与数据处理单元连接。
电能接入的选择、 负荷数据信息的采集以及无线通信连接均是由数据处理单元 控制的。
[0078] 当然, 电源选择控制器还包括与所述数据处理单元连接的键盘和显示器。 键盘 以及显示器可用于用户向控制器输入运行指令或查询信息。
[0079] 本发明中各个电源选择控制器的联动过程为:
[0080] 每个电源选择控制器的数据处理单元将从电信号采集单元、 用户从键盘输入以 及其他电源选择控制器处获得的数据信息处理后, 一方面用于电源的切换控制 及监测保护; 另一方面, 通过无线通信单元传递给同一个控制局域网中的其他 控制器。
[0081] 此外, 本实施例还提出了一种基于新能源和市电供电的家庭负荷接入控制方法 , 其采用上述基于新能源和市电供电的家庭负荷接入控制装置。
[0082] 基于新能源和市电供电的家庭负荷接入控制方法, 包括如下步骤:
[0083] si.按照负荷的自身特性以及运行时负荷对电源的要求对家庭负荷进行划分, 通过划分, 将家庭负荷分为四类, 分别为 A类、 B类、 C类和 D类; 其中;
[0084] A类负荷为对电源的供电质量要求高以及不经常使用的家庭负荷;
[0085] B类负荷为需要长时间运行的家庭负荷;
[0086] C类负荷为电热水器类的家庭负荷;
[0087] D类负荷为待机时负荷较小但运行时负荷较大的家庭负荷。
[0088] 电源选择控制器有四个, 分别定义为一号、 二号、 三号和四号电源选择控制器
[0089] 其中, 一号电源选择控制器连接有 A类负载; 二号电源选择控制器连接有 B类 负载; 三号电源选择控制器连接有 C类负载; 四号电源选择控制器连接有 D类负 载。
[0090] 各个电源选择控制器之间通过无线方式进行组网通信。
[0091] s2.各类负荷在投入运行时, 按照下述步骤选择接入新能源电能或市电电能:
[0092] s2.1.根据各个电源选择控制器中电信号采集单元采集的负荷数据信息, 计算出 当前新能源电能的输出功率, 将该当前新能源电能的输出功率记
Figure imgf000009_0001
[0093] 定义新能源电能的最大允许输出功率 SP _max, 定义 A类负荷的功率 SP A, 定 义 B类负荷的功率为 P B, 定义 C类负荷的功率为 P c, 定义 D类负荷的功率为 P D
[0094] 其中, 此处的 D类负荷的功率是指 D类负荷在运行时的功率 (待机功率可忽略
[0095] s2. 2.若 A类负荷要投入运行, 一号电源选择控制器首先判断是否有市电电能接 入:
[0096] 如果有市电电能接入, 则优先接入市电电能;
[0097] 如果没有市电电能接入, 则判断?_+? 是否小于等于?_ :
[0098] 若满足条件, 则一号电源选择控制器将新能源电源接入为 A类负荷供电;
[0099] 若不满足条件, 则通过无线网络将信息传递至三号电源选择控制器和四号电源 选择控制器, 通过将已经接入新能源的 C、 D类负荷按照顺序依次断开, 直到满 足条件为止, 此时, 一号电源选择控制器将新能源电能接入为 A类负荷供电。
[0100] s2. 3.若 B类负荷要投入运行, 二号电源选择控制器首先判断新能源电源是否正 常: [0101] 如果新能源电能不正常, 则二号电源选择控制器将 B类负荷接入市电电能;
[0102] 如果新能源电能正常, 则判断 P new+P B是否小于等于 P newmax :
[0103] 若满足条件, 则二号电源选择控制器将 B类负荷接入新能源电源;
[0104] 若不满足条件, 则通过无线网络将信息传递至三号电源选择控制器和四号电源 选择控制器, 通过将已经接入新能源的 C、 D类负荷按照顺序依次断开, 直到满 足条件为止, 此时, 二号电源选择控制器将新能源电能接入为 B类负荷供电。
[0105] s2.4.若 C类负荷要投入运行, 三号电源选择控制器首先与四号电源选择控制器 联动, 并判断是否有 D类负荷接入到新能源电能中:
[0106] 若有 D类负荷且满 SP _-P D+P c^P _max, 则在 D类负荷处于待机状态时将 C类 负荷接入到新能源电源投入运行, 当 D类负荷处于运行状态时将 C类负荷从新能 源电源断开;
[0107] 若新能源电能中没有 D类负荷, 贝判断 _+P c是否小于等于 P n-ax:
[0108] 如果满足条件, 则三号电源选择控制器将 C类负荷接入新能源电能;
[0109] 如果不满足条件, 则三号电源选择控制器将 C类负荷接入市电电能。
[0110] s2.5.若 D类负荷要投入运行, 四号电源选择控制器判断?_^。是否小于等于 P newmax*
[0111] 若满足条件, 则四号电源选择控制器将 D类负荷接入新能源电能;
[0112] 若不满足条件, 则四号电源选择控制器将 D类负荷接入市电电能。
[0113] 本方法通过对家庭负荷进行分类控制, 并且针对不同的负荷给出最优化的接入 控制方式, 使得家庭电网中新能源发出的电能在家庭范围内尽可能的消纳使用 , 减少了向配电网回馈电能, 减少了新能源电能中的谐波、 电压波动等造成的 配电网电能质量下降等问题。
[0114] 当然, 以上说明仅仅为本发明的较佳实施例, 本发明并不限于列举上述实施例 , 应当说明的是, 任何熟悉本领域的技术人员在本说明书的教导下, 所做出的 所有等同替代、 明显变形形式, 均落在本说明书的实质范围之内, 理应受到本 发明的保护。

Claims

权利要求书
[权利要求 1] 基于新能源和市电供电的家庭负荷接入控制装置, 其特征在于, 包括 多个结构相同的电源选择控制器, 每个电源选择控制器的输出端连接 有一类负荷;
各个电源选择控制器的输入端同时接入到新能源供电线和市电供电线 上;
每个电源选择控制器包括一个电信号采集单元、 一个数据处理单元、 一个开关选择单元以及一个无线通信单元; 其中: 开关选择单元, 被配置为用于将新能源电能或市电电能接入并为相应 的负荷供电;
电信号采集单元, 被配置为用于采集市电电能或新能源电能供电时的 负荷数据信息;
无线通信单元, 被配置为用于实现不同电源选择控制器之间的无线通 信;
该开关选择单元、 电信号采集单元以及无线通信单元均与数据处理单 元连接;
其中, 各类负荷是按照负荷的自身特性以及运行时负荷对电源的要求 进行划分的。
[权利要求 2] 根据权利要求 i所述的基于新能源和市电供电的家庭负荷接入控制装 置, 其特征在于, 所述开关选择单元包括一个一号开关和一个二号开 关; 其中:
一号开关, 被配置为用于将市电电能接入并为相应的负荷进行供电; 二号开关, 被配置为用于将新能源电能接入并为相应的负荷进行供电 数据处理单元分别与一号开关、 二号开关连接, 且一号开关和二号开 关的开关状态相反。
[权利要求 3] 根据权利要求 1或 2所述的基于新能源和市电供电的家庭负荷接入控制 装置, 其特征在于, 所述电源选择控制器还包括与数据处理单元连接 的键盘和显示器。
[权利要求 4] 基于新能源和市电供电的家庭负荷接入控制方法, 采用如上述权利要 求 1所述的基于新能源和市电供电的家庭负荷接入控制装置, 其特征 在于, 所述控制方法包括如下步骤:
Si.按照负荷的自身特性以及运行时负荷对电源的要求对家庭负荷进 行划分, 通过划分, 将家庭负荷分为四类, 分别为 A类、 B类、 C类和 D类; 其中;
A类负荷为对电源的供电质量要求高以及不经常使用的家庭负荷;
B类负荷为需要长时间运行的家庭负荷;
C类负荷为电热水器类的家庭负荷;
D类负荷为待机时负荷较小但运行时负荷较大的家庭负荷; 电源选择控制器有四个, 分别定义为一号、 二号、 三号和四号电源选 择控制器;
其中, 一号电源选择控制器连接有 A类负载; 二号电源选择控制器连 接有 B类负载; 三号电源选择控制器连接有 C类负载; 四号电源选择 控制器连接有 D类负载;
各个电源选择控制器之间通过无线方式进行组网通信;
s2.各类负荷在投入运行时, 按照下述步骤选择接入新能源电能或市 电电能:
S2.1.根据各个电源选择控制器中电信号采集单元采集的负荷数据信 息, 计算出当前新能源电能的输出功率, 将该当前新能源电能的输出 功率记为 _;
定义新能源电能的最大允许输出功率为 P 定义 A类负荷的功率 为 P A, 定义 B类负荷的功率为 P B, 定义 C类负荷的功率为 P C, 定义 D 类负荷的功率为 P D ;
s2. 2.若 A类负荷要投入运行, 一号电源选择控制器首先判断是否有 市电电能接入:
如果有市电电能接入, 则优先接入市电电能; 如果没有市电电能接入, 则判断 P new+P A是否小于等于 P newmax: 若满足条件, 则一号电源选择控制器将新能源电源接入为 A类负荷供 电;
若不满足条件, 则通过无线网络将信息传递至三号电源选择控制器和 四号电源选择控制器, 通过将已经接入新能源的 C、 D类负荷按照顺 序依次断开, 直到满足条件为止, 此时, 一号电源选择控制器将新能 源电能接入为 A类负荷供电;
s2. 3.若 B类负荷要投入运行, 二号电源选择控制器首先判断新能源电 源是否正常:
如果新能源电能不正常, 则二号电源选择控制器将 B类负荷接入市电 电能;
如果新能源电能正常, 则判断 P new+P B是否小于等于 P newmax: 若满足条件, 则二号电源选择控制器将 B类负荷接入新能源电源; 若不满足条件, 则通过无线网络将信息传递至三号电源选择控制器和 四号电源选择控制器, 通过将已经接入新能源的 C、 D类负荷按照顺 序依次断开, 直到满足条件为止, 此时, 二号电源选择控制器将新能 源电能接入为 B类负荷供电;
s2.4.若 C类负荷要投入运行, 三号电源选择控制器首先与四号电源选 择控制器联动, 并判断是否有 D类负荷接入到新能源电能中: 若有 D类负荷且满足 P new-P D+P c<P 则在 D类负荷处于待机状态 时将 C类负荷接入到新能源电源投入运行, 当 D类负荷处于运行状态 时将 C类负荷从新能源电源断开;
若新能源电能中没有 D类负荷, 则判断 P new+P c是否小于等于 P newmax : 如果满足条件, 则三号电源选择控制器将 C类负荷接入新能源电能; 如果不满足条件, 则三号电源选择控制器将 C类负荷接入市电电能; s2.5.若 D类负荷要投入运行, 四号电源选择控制器判断?_+?。是否 小于等于 P newmax
若满足条件, 则四号电源选择控制器将 D类负荷接入新能源电能; 若不满足条件, 则四号电源选择控制器将 D类负荷接入市电电能。
PCT/CN2019/074918 2018-03-28 2019-02-13 基于新能源和市电供电的家庭负荷接入控制装置及方法 WO2019184610A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810261220.8A CN108347053B (zh) 2018-03-28 2018-03-28 基于新能源和市电供电的家庭负荷接入控制装置及方法
CN201810261220.8 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019184610A1 true WO2019184610A1 (zh) 2019-10-03

Family

ID=62958287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074918 WO2019184610A1 (zh) 2018-03-28 2019-02-13 基于新能源和市电供电的家庭负荷接入控制装置及方法

Country Status (2)

Country Link
CN (1) CN108347053B (zh)
WO (1) WO2019184610A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108347053B (zh) * 2018-03-28 2022-02-15 山东科技大学 基于新能源和市电供电的家庭负荷接入控制装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202197142U (zh) * 2011-08-20 2012-04-18 福建先行新能源科技有限公司 太阳能光伏发电与市电互为备用系统
CN102832691A (zh) * 2011-06-14 2012-12-19 株式会社日立制作所 供电电源切换装置和方法
CN102856901A (zh) * 2012-08-30 2013-01-02 海尔集团公司 家用电器负载供电线路
CN106356901A (zh) * 2016-10-09 2017-01-25 江苏现代能源微网系统有限公司 一种适用于单体民居的微网能源调控方法
CN108336732A (zh) * 2018-03-28 2018-07-27 山东科技大学 一种基于新能源和市电供电的家庭灵活供电系统
CN108347053A (zh) * 2018-03-28 2018-07-31 山东科技大学 基于新能源和市电供电的家庭负荷接入控制装置及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105844365A (zh) * 2016-04-08 2016-08-10 北方工业大学 一种家庭能量管理系统的优化方法及装置
CN106785708B (zh) * 2016-12-28 2019-03-29 广东工业大学 一种插座及其线路管理方法
CN207939203U (zh) * 2018-03-28 2018-10-02 山东科技大学 基于新能源和市电供电的家庭负荷接入控制装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102832691A (zh) * 2011-06-14 2012-12-19 株式会社日立制作所 供电电源切换装置和方法
CN202197142U (zh) * 2011-08-20 2012-04-18 福建先行新能源科技有限公司 太阳能光伏发电与市电互为备用系统
CN102856901A (zh) * 2012-08-30 2013-01-02 海尔集团公司 家用电器负载供电线路
CN106356901A (zh) * 2016-10-09 2017-01-25 江苏现代能源微网系统有限公司 一种适用于单体民居的微网能源调控方法
CN108336732A (zh) * 2018-03-28 2018-07-27 山东科技大学 一种基于新能源和市电供电的家庭灵活供电系统
CN108347053A (zh) * 2018-03-28 2018-07-31 山东科技大学 基于新能源和市电供电的家庭负荷接入控制装置及方法

Also Published As

Publication number Publication date
CN108347053B (zh) 2022-02-15
CN108347053A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
CN102437569B (zh) 电子装置、包括电子装置的电力管理系统及其控制方法
CN103676846B (zh) 一种新型家庭能量管理系统的智能控制算法
CN104901307A (zh) 一种多网络混合的家庭微电网用能互动管理系统及方法
WO2018076554A1 (zh) 一种交直流智能家庭微网协同系统及其运行方法
CN109709910A (zh) 一种家庭能源优化调度管理系统及方法
CN113007776B (zh) 一种即插即用的无增容电力载波电暖器及其工作方法
CN110190614B (zh) 一种用于消减电网功率缺额的电热负荷控制方法
CN106685313B (zh) 用于光伏电站的发电控制方法、装置及光伏电站
CN102868173A (zh) 一种分布式独立光伏发电系统及发电方法
CN105515055A (zh) 一种智能家居电能控制方法及系统
CN105634127A (zh) 基于sdn控制器的能源管理方法
CN115514097A (zh) 基于分布式光伏供需互动协调控制的村域cps调控系统及方法
WO2023015786A1 (zh) 一种能量转换管理系统及方法
CN105071521B (zh) 空调器的供电控制方法与空调器
WO2019184610A1 (zh) 基于新能源和市电供电的家庭负荷接入控制装置及方法
CN206370695U (zh) 一种光伏电站
CN109510310A (zh) 一种智能能量光伏管理系统
CN108336732B (zh) 一种基于新能源和市电供电的家庭灵活供电系统
CN216014019U (zh) 一种智能电量控制系统
CN115149636A (zh) 一种分布式电源智能接入系统及供电方法
CN207939203U (zh) 基于新能源和市电供电的家庭负荷接入控制装置
Hagh et al. Smart hybrid nanogrids using modular multiport power electronic interface
CN112034246A (zh) 一种能源管理控制器以及能源管理方法
CN111641209A (zh) 基于5g通讯的分布式光伏组件工作模式切换方法及系统
Nandish et al. IoT as a Platform for State-of-the-Art Load Modeling in Domestic Utility

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19777076

Country of ref document: EP

Kind code of ref document: A1