Nothing Special   »   [go: up one dir, main page]

WO2019184214A1 - 一种实现监测发射功率的sr4器件和一种监测方法 - Google Patents

一种实现监测发射功率的sr4器件和一种监测方法 Download PDF

Info

Publication number
WO2019184214A1
WO2019184214A1 PCT/CN2018/101795 CN2018101795W WO2019184214A1 WO 2019184214 A1 WO2019184214 A1 WO 2019184214A1 CN 2018101795 W CN2018101795 W CN 2018101795W WO 2019184214 A1 WO2019184214 A1 WO 2019184214A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
laser light
planar
groove
planar groove
Prior art date
Application number
PCT/CN2018/101795
Other languages
English (en)
French (fr)
Inventor
雷奖清
朱腾飞
王衍勇
Original Assignee
昂纳信息技术(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昂纳信息技术(深圳)有限公司 filed Critical 昂纳信息技术(深圳)有限公司
Priority to US16/207,220 priority Critical patent/US10393974B1/en
Publication of WO2019184214A1 publication Critical patent/WO2019184214A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4286Optical modules with optical power monitoring
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4295Coupling light guides with opto-electronic elements coupling with semiconductor devices activated by light through the light guide, e.g. thyristors, phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • H01S5/02326Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0071Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Definitions

  • the present invention relates to the field of optical transceiver devices, and in particular to a monitoring system for transmitting power of an SR4 device and a monitoring method.
  • the fiber used to connect to the server is only a few meters to several kilometers, which is more concerned. In-station interconnection is achieved by means of high-rate short-distance fiber optic modules.
  • SR4 optical module (4-channel Parallel-optical-module for short-distance optical links, a commonly used solution is to integrate four transceiver chips on the PCB, and achieve a total rate of up to 100 Gbps at a single channel rate of 25 Gbps.
  • the SR4 device needs to monitor the optical power of the transmitting end during use.
  • the existing method is the splitting method, and the spectroscopic prism guides the signal of the emitting light source to the monitoring chip, but this method will increase the difficulty of the processing of the device and the surface coating process. .
  • the technical problem to be solved by the present invention is to provide an SR4 device that realizes monitoring transmission power and solves the problem of monitoring the transmission power of the transmitting chip, in view of the above-mentioned drawbacks of the prior art.
  • the technical problem to be solved by the present invention is to provide a monitoring method for solving the above-mentioned defects of the prior art, and to solve the problem of monitoring the transmitting power of the transmitting chip.
  • the present invention provides an SR4 device for realizing monitoring of transmission power, the SR4 device comprising a transmitting component for emitting laser light, a receiving component for receiving laser light, and monitoring for transmitting power of the transmitting component
  • An assembly comprising a transmitting chip, a first planar groove for reflecting and transmitting laser light, and a second planar groove for total reflection laser, the receiving assembly including a third planar groove for receiving total reflection laser and receiving a chip, the first planar groove has an internal angle of 12°; wherein the transmitting chip emits laser light to the first planar groove, the first planar groove transmits a partial laser to the second planar groove, and the second planar groove Fully reflecting the transmitted laser light to the optical fiber; the first planar groove reflects part of the laser to the monitoring component, the monitoring component receives the reflected laser light and monitors the power parameter of the reflected laser; the laser passes through the optical fiber to the third planar slot, the third The planar slot totally reflects the laser light to the receiving chip, which
  • the transmitting component further includes a first collimating lens for collimating the laser, and the first collimating lens is disposed adjacent to the transmitting chip.
  • the transmitting component further includes a first focusing lens for focusing the laser, and the first focusing lens is disposed adjacent to the optical fiber.
  • the transmitting component further includes a fourth planar slot, the fourth planar slot and the first planar slot are horizontally disposed, and the internal angle of the fourth planar slot is 12°.
  • the receiving component further includes a fifth planar slot for reflecting and transmitting laser light, the fifth planar slot is disposed between the third planar slot and the receiving chip, wherein the fifth planar slot The internal angle is 12°.
  • the receiving component further includes a second collimating lens for collimating the laser, and the second collimating lens is disposed adjacent to the optical fiber.
  • the receiving component further includes a second focusing lens for focusing the laser, and the second focusing lens is disposed adjacent to the receiving chip.
  • the transmitting component further includes a sixth planar slot, wherein the sixth planar slot and the fifth planar slot are horizontally disposed, and the internal angle of the sixth planar slot is 12°.
  • the internal angles of the second planar groove and the third planar groove are both 45 degrees.
  • the present invention also provides a monitoring method for the SR4 device as described above, the monitoring method comprising the steps of:
  • Step 10 the transmitting chip emits laser light to the first plane slot
  • Step 20 the first plane groove transmits part of the laser to the second plane groove, and reflects part of the laser to the monitoring component;
  • Step 31 The second planar groove totally reflects the transmitted laser light to the optical fiber
  • Step 32 The monitoring component receives a reflected laser and monitors a power parameter of the reflected laser
  • Step 311 the laser light is directed through the optical fiber to the third planar slot
  • Step 312 the third planar slot totally reflects the laser light to the receiving chip
  • Step 313 The receiving chip receives the laser.
  • the invention has the beneficial effects that, compared with the prior art, the present invention designs a kind of SR4 device for monitoring the transmission power and a monitoring method, and the emitted laser beam is reflected by the first plane groove, and the focus is directed to the monitoring.
  • the chip monitors and directly monitors the emitted light power by receiving the reflected signal, eliminating the cumbersome process of processing the device and surface coating, and reducing the processing cost.
  • it is provided with a plurality of collimating lenses and a focusing lens to ensure the laser Can be successfully transmitted in SR4 devices.
  • Figure 1 is a schematic illustration of an SR4 device of the present invention
  • Figure 2 is a schematic view of a transmitting assembly of the present invention
  • Figure 3 is a schematic illustration of a receiving assembly of the present invention.
  • FIG. 4 is a flow chart of the monitoring method of the present invention.
  • the present invention provides a preferred embodiment of an SR4 device that achieves monitoring of transmit power.
  • an SR4 device for monitoring transmission power includes a transmitting component for emitting laser light, a receiving component for receiving laser light, and a monitoring component for monitoring transmit power of the transmitting component.
  • the monitoring component 30 is a monitoring chip; the transmitting component emits laser light to a receiving component, the receiving component receives laser light, and the monitoring component 30 monitors the power of the laser light emitted by the transmitting component in real time.
  • the emission assembly includes a transmitting chip 11, a first planar groove 12 for reflecting and transmitting laser light, a second planar groove 13 for total reflection laser light, and a first collimating lens 14 for collimating laser light.
  • the internal angle of the first planar groove 12 is set to a set angle, which is associated with the position of the monitoring component 30,
  • the inner angle of the first planar groove 12 is preferably set to 12°
  • the fourth planar groove 16 is consistent with the inner angle of the first planar groove 12, and is horizontally disposed with each other, that is, preferably also set to 12°.
  • the inner angle of the two planar grooves 13 is 45°; the first collimating lens 14 is disposed adjacent to the transmitting chip 11, and the first planar groove 12 is disposed behind the first collimating lens 14 as the optical path is transmitted.
  • the fourth planar groove 16 is disposed adjacent to the first planar groove 12, the second planar groove 13 is disposed behind the fourth planar groove 16, the first focusing lens 15 is disposed adjacent to the optical fiber 40, and the first focusing The lens 15 is located behind the second planar groove 13.
  • the firing assembly also includes a third focusing lens 17 for focusing laser light, the third focusing lens 17 being disposed adjacent to the monitoring assembly 30.
  • the receiving assembly includes a third planar groove 22 for total reflection laser light, a receiving chip 21, a fifth planar groove 26 for reflecting and transmitting laser light, and a second collimating lens 24 for collimating laser light.
  • the internal angle of the fifth planar groove 26 is 12°
  • the sixth planar groove 23 and the fifth planar groove 26 are mutually Horizontally, the internal angle of the sixth planar groove 23 is 12°
  • the internal angle of the third planar groove 22 is 45°;
  • the second collimating lens 24 is disposed adjacent to the optical fiber 40, and transmits along with the optical path.
  • the third planar groove 22 is disposed behind the second collimating lens 24, and the fifth planar groove 26 is disposed between the third planar groove 22 and the receiving chip 21, specifically, the fifth planar groove 26 is disposed at After the third planar groove 22 and before the sixth planar groove 23, the second focusing lens 25 is disposed behind the sixth planar groove 23 adjacent to the receiving chip 21 as the optical path continues to be transmitted.
  • the fifth planar groove 26 and the sixth planar groove 23 can also be horizontal plane grooves, so that the laser can be directed to the receiving chip 21 vertically, which is not limited herein.
  • the optical path of the transmitting component is transmitted as follows: the transmitting chip 11 emits laser light outwardly, and is transmitted to the first planar slot 12 after being collimated by the first collimating lens 14, the first planar slot 12 After transmitting part of the laser light to the fourth planar groove 16, it is transmitted to the second planar groove 13, which totally reflects the transmitted laser light to the first focusing lens 15, and the first focusing lens 15 focuses the laser light onto the optical fiber 40.
  • the first planar groove 12 reflects a portion of the laser light to the third focusing lens 17, and is transmitted to the monitoring component 30 after being focused by the third focusing lens 17, and the monitoring component 30 receives the reflected laser light and monitors the power parameter of the reflected laser light. Thereby direct monitoring of the transmitted optical power is achieved.
  • the optical path of the receiving component is transmitted as follows: the laser light is incident on the second collimating lens 24 through the optical fiber 40, and is collimated by the second collimating lens 24 to be directed to the third planar groove 22, the third plane
  • the groove 22 totally reflects the laser light to the fifth planar groove 26, and the fifth planar groove 26 transmits a portion of the laser light or transmits all of the laser light to the sixth planar groove 23, and is transmitted to the second focusing lens 25 as the optical path is transmitted.
  • the focusing action of the second focus lens 25 is transmitted to the receiving chip 21, which receives the laser light.
  • the present invention also provides a preferred embodiment of a monitoring method.
  • a monitoring method for the SR4 device as described above includes the following steps:
  • Step 10 the transmitting chip emits laser light to the first plane slot
  • Step 20 the first plane groove transmits part of the laser to the second plane groove, and reflects part of the laser to the monitoring component;
  • Step 31 The second planar groove totally reflects the transmitted laser light to the optical fiber
  • Step 32 The monitoring component receives a reflected laser and monitors a power parameter of the reflected laser
  • Step 311 the laser light is directed through the optical fiber to the third planar slot
  • Step 312 the third planar slot totally reflects the laser light to the receiving chip
  • Step 313 The receiving chip receives the laser.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明涉及光收发器件领域,具体涉及一种实现监测发射功率的SR4器件和一种监测方法,所述SR4器件包括发射组件、接收组件和监测组件,所述发射组件包括发射芯片、第一平面槽和第二平面槽,所述接收组件包括第三平面槽和接收芯片,所述第一平面槽的内部角呈12°;其中,所述发射芯片发出激光至第一平面槽,所述第一平面槽透射部分激光至第二平面槽,所述第二平面槽将透射激光全反射到光纤;所述第一平面槽反射部分激光至监测组件,所述监测组件接收反射激光并监测反射激光的功率参数;激光通过光纤射向第三平面槽,所述第三平面槽将激光全反射到接收芯片,所述接收芯片接收激光。通过第二平面槽的反射,实现对发射芯片的发射功率的直接监测。

Description

一种实现监测发射功率的SR4器件和一种监测方法 技术领域
本发明涉及光收发器件领域,具体涉及一种SR4器件发射功率的监测系统和一种监测方法。
背景技术
目前,不同于在长距离网络中人们对频谱效率和距离-比特率乘积的关注,在大吞吐量数据中心的内部网络中,用来连接服务器的光纤仅仅为几米到几公里,人们更关注的是借助高速率短距离光纤模块实现站内互联。
而现有的SR4光模块 (4-channel parallel-optical-module for short reach optical links, 4通道短距离光模块),通常采用的方案是在PCB板上集成四路收发芯片,单通道速率25Gbps,即可实现高达100Gbps总速率。
SR4器件在使用过程中需要监测发射端的光功率,现有的方法为分光法,将分光棱镜将发射光源的信号引导到监测芯片上,但是该种方法将增加器件加工和表面镀膜工艺流程的难度。
技术问题
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种实现监测发射功率的SR4器件,解决监测发射芯片的发射功率的问题。
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种监测方法,解决监测发射芯片的发射功率的问题。
技术解决方案
为解决该技术问题,本发明提供一种实现监测发射功率的SR4器件,所述SR4器件包括用于发射激光的发射组件、用于接收激光的接收组件和用于监测发射组件的发射功率的监测组件,所述发射组件包括发射芯片、用于反射和透射激光的第一平面槽和用于全反射激光的第二平面槽,所述接收组件包括用于全反射激光的第三平面槽和接收芯片,所述第一平面槽的内部角呈12°;其中,所述发射芯片发出激光至第一平面槽,所述第一平面槽透射部分激光至第二平面槽,所述第二平面槽将透射激光全反射到光纤;所述第一平面槽反射部分激光至监测组件,所述监测组件接收反射激光并监测反射激光的功率参数;激光通过光纤射向第三平面槽,所述第三平面槽将激光全反射到接收芯片,所述接收芯片接收激光。
其中,较佳方案是:所述发射组件还包括用于准直激光的第一准直透镜,所述第一准直透镜邻近设置于发射芯片。
其中,较佳方案是:所述发射组件还包括用于聚焦激光的第一聚焦透镜,所述第一聚焦透镜邻近设置于光纤。
其中,较佳方案是:所述发射组件还包括第四平面槽,所述第四平面槽与第一平面槽相互水平设置,所述第四平面槽的内部角呈12°。
其中,较佳方案是:所述接收组件还包括用于反射和透射激光的第五平面槽,所述第五平面槽设置在第三平面槽和接收芯片之间,所述第五平面槽的内部角呈12°。
其中,较佳方案是:所述接收组件还包括用于准直激光的第二准直透镜,所述第二准直透镜邻近设置于光纤。
其中,较佳方案是:所述接收组件还包括用于聚焦激光的第二聚焦透镜,所述第二聚焦透镜邻近设置于接收芯片。
其中,较佳方案是:所述发射组件还包括第六平面槽,所述第六平面槽与第五平面槽相互水平设置,所述第六平面槽的内部角呈12°。
其中,较佳方案是:所述第二平面槽和第三平面槽的内部角均呈45°。
本发明还提供一种监测方法,所述监测方法用于如上所述的SR4器件,所述监测方法包括以下步骤:
步骤10、所述发射芯片发出激光至第一平面槽;
步骤20、所述第一平面槽透射部分激光至第二平面槽,反射部分激光至监测组件;
步骤31、所述第二平面槽将透射激光全反射到光纤;
步骤32、所述监测组件接收反射激光并监测反射激光的功率参数;
步骤311、激光通过光纤射向第三平面槽;
步骤312、所述第三平面槽将激光全反射到接收芯片;
步骤313、所述接收芯片接收激光。
有益效果
本发明的有益效果在于,与现有技术相比,本发明通过设计一种实现监测发射功率的SR4器件和一种监测方法,发射出的激光经过第一平面槽的反射后,聚焦射向监测芯片进行监测,通过接收反射信号实现对发射光功率的直接监测,省去了对器件加工和表面镀膜的繁琐工序,降低了加工成本;同时,设有多个准直透镜和聚焦透镜,保证激光能够在SR4器件中顺利传输。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明SR4器件的示意图;
图2是本发明发射组件的示意图;
图3是本发明接收组件的示意图;
图4是本发明监测方法的流程框图。
本发明的最佳实施方式
现结合附图,对本发明的较佳实施例作详细说明。
如图1至图3所示,本发明提供一种实现监测发射功率的SR4器件的优选实施例。
具体地,并参考图1,一种实现监测发射功率的SR4器件,所述SR4器件包括用于发射激光的发射组件、用于接收激光的接收组件和用于监测发射组件的发射功率的监测组件30,所述监测组件30即是监测芯片;所述发射组件发射激光到接收组件,所述接收组件接收激光,并且所述监测组件30实时监测发射组件所发射激光的功率。
参考图2,所述发射组件包括发射芯片11、用于反射和透射激光的第一平面槽12、用于全反射激光的第二平面槽13、用于准直激光的第一准直透镜14、用于聚焦激光的第一聚焦透镜15和用于透射激光的第四平面槽16;所述第一平面槽12的内部角设置为一设定角度,其与监测组件30的位置相联系,所述第一平面槽12的内部角优选设置为12°,所述第四平面槽16与第一平面槽12的内部角一致,相互呈水平设置,即亦优选设置为12°,所述第二平面槽13的内部角呈45°;所述第一准直透镜14邻近设置于发射芯片11,随着光路的传输,所述第一平面槽12设置于第一准直透镜14之后,所述第四平面槽16邻近设置于第一平面槽12,所述第二平面槽13设置在第四平面槽16之后,所述第一聚焦透镜15邻近设置于光纤40,并且所述第一聚焦透镜15位于第二平面槽13之后。所述发射组件还包括用于聚焦激光的第三聚焦透镜17,所述第三聚焦透镜17邻近设置于监测组件30。
参考图3,所述接收组件包括用于全反射激光的第三平面槽22、接收芯片21、用于反射和透射激光的第五平面槽26、用于准直激光的第二准直透镜24、用于聚焦激光的第二聚焦透镜25和用于透射激光的第六平面槽23;所述第五平面槽26的内部角呈12°所述第六平面槽23与第五平面槽26相互水平设置,所述第六平面槽23的内部角呈12°,所述第三平面槽22的内部角呈45°;所述第二准直透镜24邻近设置于光纤40,随着光路的传输,所述第三平面槽22设置在第二准直透镜24之后,所述第五平面槽26设置在第三平面槽22和接收芯片21之间,具体为所述第五平面槽26设置在第三平面槽22之后,以及第六平面槽23之前,随着光路的继续传输,所述第二聚焦透镜25设置在第六平面槽23之后,邻近设置于接收芯片21。当然,所述第五平面槽26和第六平面槽23亦可以为水平平面槽,保证激光能够垂直射向接收芯片21即可,此处不做唯一限定。
其中,所述发射组件的光路传输如下述:所述发射芯片11向外发散射出激光,经过第一准直透镜14的准直作用后传输至第一平面槽12,所述第一平面槽12透射部分激光至第四平面槽16后,传输至第二平面槽13,所述第二平面槽13将透射激光全反射第一聚焦透镜15,所述第一聚焦透镜15将激光聚焦到光纤40;所述第一平面槽12反射部分激光至第三聚焦透镜17,经过第三聚焦透镜17的聚焦作用后传输至监测组件30,所述监测组件30接收反射激光并监测反射激光的功率参数,从而实现对发射光功率的直接监测。
其中,所述接收组件的光路传输如下述:激光通过光纤40射向第二准直透镜24,经过第二准直透镜24的准直作用后射向第三平面槽22,所述第三平面槽22将激光全反射到第五平面槽26,所述第五平面槽26透射部分激光或者透射全部激光到第六平面槽23,随着光路传输,随后再传输至第二聚焦透镜25,经过第二聚焦透镜25的聚焦作用后传输至接收芯片21,所述接收芯片21接收激光。
如图4所示,本发明还提供一种监测方法的较佳实施例。
具体地,并参考图4,一种监测方法,所述监测方法用于如上所述的SR4器件,所述监测方法包括以下步骤:
步骤10、所述发射芯片发出激光至第一平面槽;
步骤20、所述第一平面槽透射部分激光至第二平面槽,反射部分激光至监测组件;
步骤31、所述第二平面槽将透射激光全反射到光纤;
步骤32、所述监测组件接收反射激光并监测反射激光的功率参数;
步骤311、激光通过光纤射向第三平面槽;
步骤312、所述第三平面槽将激光全反射到接收芯片;
步骤313、所述接收芯片接收激光。
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所做的任何修改,等同替换,改进等,均应包含在本发明的保护范围内。

Claims (10)

  1. 一种实现监测发射功率的SR4器件,其特征在于:所述SR4器件包括用于发射激光的发射组件、用于接收激光的接收组件和用于监测发射组件的发射功率的监测组件,所述发射组件包括发射芯片、用于反射和透射激光的第一平面槽和用于全反射激光的第二平面槽,所述接收组件包括用于全反射激光的第三平面槽和接收芯片,所述第一平面槽的内部角呈一设定角度;其中,
        所述发射芯片发出激光至第一平面槽,所述第一平面槽透射部分激光至第二平面槽,所述第二平面槽将透射激光全反射到光纤;所述第一平面槽反射部分激光至监测组件,所述监测组件接收反射激光并监测反射激光的功率参数;激光通过光纤射向第三平面槽,所述第三平面槽将激光全反射到接收芯片,所述接收芯片接收激光。
  2. 根据权利要求1所述的SR4器件,其特征在于:所述发射组件还包括用于准直激光的第一准直透镜,所述第一准直透镜邻近设置于发射芯片。
  3. 根据权利要求2所述的SR4器件,其特征在于:所述发射组件还包括用于聚焦激光的第一聚焦透镜,所述第一聚焦透镜邻近设置于光纤。
  4. 根据权利要求1所述的SR4器件,其特征在于:所述发射组件还包括第四平面槽,所述第四平面槽与第一平面槽的内部角一致,相互呈水平设置。
  5. 根据权利要求1所述的SR4器件,其特征在于:所述接收组件还包括用于反射和透射激光的第五平面槽,所述第五平面槽设置在第三平面槽和接收芯片之间,所述第五平面槽的内部角呈12°。
  6. 根据权利要求1或5所述的SR4器件,其特征在于:所述接收组件还包括用于准直激光的第二准直透镜,所述第二准直透镜邻近设置于光纤。
  7. 根据权利要求6所述的SR4器件,其特征在于:所述接收组件还包括用于聚焦激光的第二聚焦透镜,所述第二聚焦透镜邻近设置于接收芯片。
  8. 根据权利要求5所述的SR4器件,其特征在于:所述发射组件还包括第六平面槽,所述第六平面槽与第五平面槽相互水平设置,所述第六平面槽的内部角呈12°。
  9. 根据权利要求1所述的SR4器件,其特征在于:所述第二平面槽和第三平面槽的内部角均呈45°。
  10. 一种监测方法,所述监测方法用于如权利要求1至9任一所述的SR4器件,其特征在于,所述监测方法包括以下步骤:
    步骤10、所述发射芯片发出激光至第一平面槽;
    步骤20、所述第一平面槽透射部分激光至第二平面槽,反射部分激光至监测组件;
    步骤31、所述第二平面槽将透射激光全反射到光纤;
    步骤32、所述监测组件接收反射激光并监测反射激光的功率参数;
    步骤311、激光通过光纤射向第三平面槽;
    步骤312、所述第三平面槽将激光全反射到接收芯片;
    步骤313、所述接收芯片接收激光。
PCT/CN2018/101795 2018-03-30 2018-08-22 一种实现监测发射功率的sr4器件和一种监测方法 WO2019184214A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/207,220 US10393974B1 (en) 2018-03-30 2018-12-03 4-channel parallel-optical device for monitoring emission power and monitoring method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810276704.X 2018-03-30
CN201810276704.XA CN108494478A (zh) 2018-03-30 2018-03-30 一种实现监测发射功率的sr4器件和一种监测方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/207,220 Continuation US10393974B1 (en) 2018-03-30 2018-12-03 4-channel parallel-optical device for monitoring emission power and monitoring method thereof

Publications (1)

Publication Number Publication Date
WO2019184214A1 true WO2019184214A1 (zh) 2019-10-03

Family

ID=63317079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101795 WO2019184214A1 (zh) 2018-03-30 2018-08-22 一种实现监测发射功率的sr4器件和一种监测方法

Country Status (3)

Country Link
US (1) US10393974B1 (zh)
CN (1) CN108494478A (zh)
WO (1) WO2019184214A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062635A (zh) * 2010-12-02 2011-05-18 北京心润心激光医疗设备技术有限公司 激光功率监测装置
CN103887708A (zh) * 2014-03-04 2014-06-25 中国科学院上海光学精密机械研究所 具有功率监测的光纤耦合垂直腔面发射激光器
CN104377540A (zh) * 2014-12-14 2015-02-25 中国科学技术大学 一种自动优化输出功率的高功率固体激光器谐振腔系统
CN104597575A (zh) * 2014-12-25 2015-05-06 武汉电信器件有限公司 一种多波长复用/解复用的并行光收发组件
CN106299993A (zh) * 2016-03-11 2017-01-04 上海瑞柯恩激光技术有限公司 激光器装置以及激光功率监测反馈方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3453495B2 (ja) * 1996-07-26 2003-10-06 キヤノン株式会社 密着型イメージセンサ及び画像読取装置
JPH11237517A (ja) * 1998-02-23 1999-08-31 Fujitsu Ltd 光導波路素子
JP3858995B2 (ja) * 2002-07-02 2006-12-20 オムロン株式会社 光導波路装置の製造方法
US6888988B2 (en) * 2003-03-14 2005-05-03 Agilent Technologies, Inc. Small form factor all-polymer optical device with integrated dual beam path based on total internal reflection optical turn
KR100506215B1 (ko) * 2003-06-04 2005-08-05 삼성전자주식회사 평면 광파 회로 및 이를 이용한 광신호 모니터링 모듈
US7324723B2 (en) * 2003-10-06 2008-01-29 Mitsui Chemicals, Inc. Optical waveguide having specular surface formed by laser beam machining
JP4308712B2 (ja) * 2004-05-31 2009-08-05 富士通株式会社 光デバイス
JP2009069359A (ja) * 2007-09-12 2009-04-02 Fuji Xerox Co Ltd 光導波路デバイス、及び、光出力モジュール
US8503838B2 (en) * 2010-09-15 2013-08-06 Avago Technologies General Ip (Singapore) Pte. Ltd. Two-part optical coupling system having an air gap therein for reflecting light to provide optical feedback for monitoring optical output power levels in an optical transmitter (TX)
CN103293649B (zh) * 2013-05-06 2015-07-15 青岛海信宽带多媒体技术有限公司 透镜光学设备及基于透镜光学设备的光路传播方法
CN104714282A (zh) * 2015-04-02 2015-06-17 昂纳信息技术(深圳)有限公司 光模块及其激光器阵列光功率的实时测量方法
TWM553810U (zh) * 2017-09-08 2018-01-01 Forward Optics Co Ltd 具有監控分光路徑的光學元件
CN208112631U (zh) * 2018-03-30 2018-11-16 昂纳信息技术(深圳)有限公司 一种实现监测发射功率的sr4器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062635A (zh) * 2010-12-02 2011-05-18 北京心润心激光医疗设备技术有限公司 激光功率监测装置
CN103887708A (zh) * 2014-03-04 2014-06-25 中国科学院上海光学精密机械研究所 具有功率监测的光纤耦合垂直腔面发射激光器
CN104377540A (zh) * 2014-12-14 2015-02-25 中国科学技术大学 一种自动优化输出功率的高功率固体激光器谐振腔系统
CN104597575A (zh) * 2014-12-25 2015-05-06 武汉电信器件有限公司 一种多波长复用/解复用的并行光收发组件
CN106299993A (zh) * 2016-03-11 2017-01-04 上海瑞柯恩激光技术有限公司 激光器装置以及激光功率监测反馈方法

Also Published As

Publication number Publication date
US10393974B1 (en) 2019-08-27
CN108494478A (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
CN101833150B (zh) 一种大功率半导体激光器光纤耦合模块
US11073751B2 (en) Wavelength conversion apparatus, light source system and projection device
US8885992B2 (en) Optical reception module and method of manufacturing optical reception module
US9164247B2 (en) Apparatuses for reducing the sensitivity of an optical signal to polarization and methods of making and using the same
US10180543B2 (en) Optical path control system and optical module
JP2013506871A (ja) 角度劈開光ファイバ並びにその製造及び使用方法
US11828992B2 (en) Short-waveband active optical component based on vertical emitting laser and multi-mode optical fiber
CN104166194A (zh) 一种两发一收光组件及其装配方法
US9331782B2 (en) Optical transmission system
US20200408992A1 (en) Optical fiber bundle with beam overlapping mechanism
US20180039033A1 (en) Multi-channel optical module and manufacturing method thereof
TWI667505B (zh) 光耦合結構及光通訊裝置
CN208506305U (zh) 一种多波长合波光学模块
CN107462987B (zh) 光路控制系统及光模块
WO2019184214A1 (zh) 一种实现监测发射功率的sr4器件和一种监测方法
CN208112631U (zh) 一种实现监测发射功率的sr4器件
CN102566236B (zh) 光源装置、光源产生方法及包含光源装置的激光投影机
CN208209957U (zh) 一种实现监测发射功率的sr4器件
WO2019184215A1 (zh) 一种实现监测发射功率的sr4器件和一种监测方法
CN207504867U (zh) 一种sr4光模块发射功率的监控系统
WO2019071686A1 (zh) 一种sr4光模块发射功率的监控系统和监控方法
WO2019071685A1 (zh) 一种sr4光模块发射功率的监控系统和监控方法
WO2021026774A1 (zh) 一种多通道并行双向器件耦合装置
CN109669249B (zh) 一种双波长双向传输光组件及方法
US10162119B1 (en) Micro-beam shaping optics (MBSO)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912840

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18912840

Country of ref document: EP

Kind code of ref document: A1