WO2019181449A1 - 表面処理方法、酸化膜付き焼結体の製造方法および酸化膜付き焼結体 - Google Patents
表面処理方法、酸化膜付き焼結体の製造方法および酸化膜付き焼結体 Download PDFInfo
- Publication number
- WO2019181449A1 WO2019181449A1 PCT/JP2019/008296 JP2019008296W WO2019181449A1 WO 2019181449 A1 WO2019181449 A1 WO 2019181449A1 JP 2019008296 W JP2019008296 W JP 2019008296W WO 2019181449 A1 WO2019181449 A1 WO 2019181449A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oxide film
- sintered body
- sintered
- raw material
- gear
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/10—Oxidising
- C23C8/12—Oxidising using elemental oxygen or ozone
- C23C8/14—Oxidising of ferrous surfaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H55/00—Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
- F16H55/02—Toothed members; Worms
- F16H55/06—Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties
Definitions
- the present invention relates to a surface treatment method, a method for producing a sintered body with an oxide film, and a sintered body with an oxide film.
- An object of the present invention is to provide a surface treatment method capable of forming an oxide film having a highly smooth surface and exhibiting an excellent rust prevention effect, and sintering with an oxide film capable of producing a sintered body provided with such an oxide film. It is providing the manufacturing method of a body, and a sintered compact with an oxide film.
- a sintered body of raw material powder containing raw material particles containing Fe is heated in an oxidizing atmosphere at a maximum temperature of 450 to 900 ° C. for a predetermined time to form an oxide film on the surface.
- a surface treatment method characterized by:
- another exemplary invention of the present application includes a step of compression molding raw material powder containing raw material particles containing Fe to obtain a molded body, a step of firing the molded body to obtain a sintered body, And heating the sintered body at a maximum temperature of 450 to 900 ° C. for a predetermined time in an oxidizing atmosphere to form an oxide film on the surface thereof, thereby obtaining a sintered body with an oxide film. It is a manufacturing method of the sintered compact with an oxide film.
- another exemplary invention of the present application includes a sintered body of raw material powder containing raw material particles containing Fe, and an oxide film that covers the surface of the sintered body and has an average thickness of 5 ⁇ m or more. It is a featured sintered body with an oxide film.
- an oxide film having a highly smooth surface and exhibiting an excellent antirust effect can be formed.
- top view (a) and sectional view (b) show typically composition of a sintering gear concerning one embodiment of the present invention. It is a figure which shows schematic structure of the shaping
- FIG. 1 is a plan view (a) and a cross-sectional view (b) schematically showing the configuration of a sintered gear according to an embodiment of the present invention
- FIG. 2 shows a molding apparatus used to manufacture the sintered gear. It is a figure which shows schematic structure.
- a sintered gear 1 shown in FIG. 1 includes a disc-shaped gear body 2 and a plurality of teeth 3 that are arranged along the circumferential direction of the gear body 2 and project radially outward. The plurality of teeth 3 are provided at substantially equal intervals.
- the sintered gear 1 is composed of a sintered body of raw material powder.
- the configuration of the raw material powder will be described in detail later.
- the size of the sintered gear 1 is not particularly limited because it is designed according to the application to be used, but when the sintered gear 1 is a gear for a robot hand (high-precision gear), for example, the following Designed as such.
- the tip circle diameter (indicated by “D” in FIG. 1) of the sintered gear 1 is preferably about 3 to 15 mm, more preferably about 5 to 10 mm.
- the number of teeth of the sintered gear 1 is preferably about 15 to 40, more preferably about 20 to 35.
- the module indicating the size (tooth thickness) of the teeth 12 is preferably about 0.15 to 0.3 mm, and more preferably about 0.15 to 0.25 mm. Even such a small (high accuracy) sintered gear 1 can be manufactured with high dimensional accuracy by using the raw material powder of the present invention.
- the tooth width of the tooth 12 (indicated by “W” in FIG. 1) is preferably about 1 to 10 mm, and more preferably about 2 to 5 mm.
- a sintered gear 1 is a so-called spur gear, the present invention is not limited to this, and may be, for example, a screw gear, a bevel gear, a worm gear, a hypoid gear, or the like.
- a sintered gear 1 is manufactured as follows. Hereinafter, a method for manufacturing the sintered gear 1 (a method for manufacturing a sintered gear) will be described.
- the method for manufacturing a sintered gear according to the present embodiment includes: [1] a molding step of compression molding raw material powder to obtain a molded body having a shape corresponding to the sintered gear 1, and [2] firing the molded body. And a firing step for obtaining a sintered body, and [3] a surface treatment step (corresponding to the surface treatment method of the present invention) for heat-treating the sintered body to form an oxide film covering the surface thereof.
- a molding step of compression molding raw material powder to obtain a molded body having a shape corresponding to the sintered gear 1
- a firing step for obtaining a sintered body and [3] a surface treatment step (corresponding to the surface treatment method of the present invention) for heat-treating the sintered body to form an oxide film covering the surface thereof.
- molding apparatus 10 shown in FIG. 2 is provided with the shaping
- the molding die 20 includes a die 21 having a through hole 211 that penetrates in the thickness direction, and an upper punch 22 and a lower punch 23 that are inserted into the through hole 211 of the die 21.
- the shape of the inner peripheral surface of the die 21 that defines the through-hole 211 corresponds to the shape (uneven shape) of the outer peripheral surface of the sintered gear 1 to be manufactured.
- the tip of the lower punch 23 is inserted below the through hole 211 of the die 21, and a cavity (space) 212 is formed by the die 21 and the lower punch 23 (FIG. 2A )reference).
- the feeder 30 is slid on the die 21 so as to cover the cavity 212 with the feeder 30, and the raw material powder is filled into the cavity 212 from the feeder 30 (see FIG. 2B).
- the feeder 30 is slid on the die 21 so as to be retracted from the cavity 212, the tip of the upper punch 22 is inserted into the cavity 212, and the raw powder is compressed by the lower punch 23 and the upper punch 22. (See FIG. 2C).
- the raw material powder used to manufacture the sintered gear 1 is preferably configured as follows.
- the raw material powder includes raw material particles having a particle size of a module [mm] or less of the sintered gear 1.
- the raw material particles can be filled not only into the tooth root portion of the cavity 212 but also into the tooth tip portion as necessary and sufficient.
- the particle size of the raw material particles is adjusted so that B / A is 10 or less. Has been. That is, it is adjusted so that the difference in particle size of the raw material particles contained in the raw material powder does not become large.
- B / A is preferably 7 or less, more preferably about 2 to 4.
- the maximum particle size B of the raw material particles is preferably not more than half that of the module of the sintered gear 1, and more preferably about 0.35 to 0.45 times the module.
- the specific value of the maximum particle size B of the raw material particles is preferably about 0.1 to 0.25 mm. More preferably, it is about 0.2 mm.
- the specific value of the minimum particle diameter A of the raw material particles is preferably about 0.02 to 0.05 mm, and more preferably about 0.025 to 0.04 mm.
- the raw material particles can be produced using, for example, an atomizing method such as a pulverizing method, a water atomizing method, a gas atomizing method, a reduction method, a carbonyl method, or the like.
- the constituent material of the raw material particles is a Fe (iron) simple substance, a metal material containing Fe such as an alloy containing Fe as a main component and an arbitrary element.
- elements added to the alloy include Cr (chromium), Mo (molybdenum), Mn (manganese), Ni (nickel), Cu (copper), W (tungsten), V (vanadium), and Co ( Cobalt), Si (silicon), C (carbon), and the like.
- Such raw material powder may contain a lubricant.
- liquidity of raw material powder can be improved more.
- the lubricant include fatty acids such as stearic acid, metal salts thereof, derivatives thereof (eg, amides, esters, etc.), fluorine resins, and the like. These compounds can be used individually by 1 type or in combination of 2 or more types.
- the amount of lubricant contained in the raw material powder is not particularly limited, but is preferably 5% by mass or less, more preferably about 0.1 to 3% by mass.
- the fluidity of the raw material powder can be adjusted to a sufficiently high value by containing a small amount (about 0.1 to 0.5% by mass) of a lubricant.
- the specific fluidity of the raw material powder is preferably about 25 to 50 sec / 50 g, more preferably about 30 to 40 sec / 50 g.
- a raw material powder having such a fluidity can be supplied to the cavity 212 with high stability.
- the fluidity can be measured in accordance with a metal powder-fluidity measurement method defined in JIS Z 2502 (2012).
- the pressure at which the raw material powder is compressed is not particularly limited, but is preferably about 0.5 to 3 tons, and more preferably about 1 to 2 tons.
- the molded body 11 having a shape corresponding to the sintered gear is obtained in the cavity 212. Thereafter, the die 21 and the lower punch 23 are relatively approached, and the molded body 11 is discharged from the cavity 212.
- the obtained molded body 11 is fired to obtain a sintered body.
- diffusion occurs at the interface between the raw material particles, leading to sintering.
- the molded body 11 is entirely contracted to obtain a high-density sintered body.
- the firing temperature is not particularly limited because it is set depending on the composition, particle size, and the like of the raw material powder used in the production of the molded body 11, but is preferably about 950 to 1300 ° C., and preferably about 1000 to 1200 ° C. Is more preferable.
- the firing time is preferably about 0.2 to 3 hours, and more preferably about 0.5 to 2 hours.
- the atmosphere at the time of baking is not particularly limited, but examples include an air atmosphere, an oxidizing atmosphere, a reducing atmosphere, an inert atmosphere, or a reduced pressure atmosphere obtained by reducing these atmospheres. Since the sintered body obtained in this way has extremely high dimensional accuracy, the sintered gear 1 can be formed without performing secondary processing such as forging and cutting.
- the secondary processing refers to processing that mechanically changes the shape of the sintered body, and the secondary processing does not include surface treatment (heating treatment) described later.
- the error between the dimension in the radial direction of the sintered gear 1 to be manufactured and the dimension in the radial direction of the obtained sintered body is 6 ⁇ , preferably 0.02 mm or less, more preferably 0.005 to 0. About .015 mm.
- the maximum temperature of the surface treatment may be about 450 to 900 ° C., preferably about 550 to 850 ° C., and more preferably about 650 to 800 ° C.
- the predetermined time is set according to the maximum temperature and is not particularly limited, but is preferably about 0.5 minutes to 1 hour, more preferably about 0.5 to 30 minutes. More preferably, it is about 1 to 10 minutes.
- An oxidizing atmosphere is an atmosphere containing a relatively large amount of oxidizing gas, excluding a water vapor atmosphere.
- the oxidizing atmosphere preferably contains oxygen gas and inert gas.
- the final hardness of the sintered gear 1 sintered gear 1 with oxide film
- the inert gas include rare gases such as argon gas, nitrogen gas, and the like. These gases can be used alone or in combination of two or more.
- the ratio of the oxygen gas to the inert gas is preferably about 1: 9 to 1:30, more preferably about 1:12 to 1:25 in terms of volume ratio.
- the average thickness of the formed oxide film is preferably 5 ⁇ m or more, more preferably about 7.5 to 25 ⁇ m, and further preferably about 10 to 20 ⁇ m. Thereby, a rust prevention effect can be improved more.
- Such a relatively thick oxide film is difficult to form by a conventional method using water vapor.
- the sintered gear 1 and the sintered gear 1 with an oxide film (sintered body with an oxide film) covering the surface of the sintered gear 1 and having an oxide film having an average thickness of 5 ⁇ m or more are obtained. It is done.
- the oxide film formed in this way has a small surface roughness (Ra) and high smoothness, and thus has excellent slidability. Therefore, breakage of the sintered gear 1 due to sliding of other members can be suitably prevented, that is, durability can be improved.
- the Vickers hardness of the oxide film is preferably about 400 to 750 Hv, and more preferably about 450 to 600 Hv. An oxide film having such hardness has particularly high slidability. According to such surface treatment, the conventional water vapor treatment and hardness adjustment treatment can be performed simultaneously in one step. Since the resulting oxide film is dense, a high antirust effect is expected.
- the sintered gear 1 is not only an industrial machine part such as a robot hand, but also, for example, an automobile part, a bicycle part, a railway vehicle part, a marine part, an aircraft part, a space transportation part, etc. It is used for parts for electronic equipment such as parts for transportation equipment, parts for personal computers and parts for portable terminals, parts for electric equipment such as refrigerators, washing machines and air conditioners, parts for plants, parts for watches, and the like.
- the sintered body is not limited to the sintered gear 1 and can be a component that allows other members to slide on the surface of the oxide film. Examples of such parts include bearings and cylinders.
- Example 1 [A] First, raw material particles containing Fe as a main component (maximum particle size B: 0.212 mm, manufactured by Höganäs) were prepared. [B] Next, particles having a particle diameter of less than 0.032 mm were removed from the raw material particles using a sieve. Therefore, B / A is 6.6.
- the obtained molded body was fired at 1200 ° C. for 1 hour in an air atmosphere to obtain a sintered gear (sintered body).
- the shape of the sintered gear was a tip diameter 9 mm, a module 0.3 mm, and 27 teeth.
- the obtained sintered gear was housed in a furnace, and heating was started. At this time, supply of air and argon gas into the furnace was also started. The maximum temperature was set to 750 ° C., and this maximum temperature was maintained for 10 minutes. Further, the supply amount of argon gas was sequentially increased, and the ratio of oxygen gas and inert gas when reaching the maximum temperature of 750 ° C. was set to be 1:15 in volume ratio. In this way, an oxide film was formed on the surface of the sintered gear. As a result, a sintered gear with an oxide film was obtained.
- Example 2 A sintered gear with an oxide film was obtained in the same manner as in Example 1 except that the maximum temperature during the surface treatment was 600 ° C. and was maintained at this maximum temperature for 15 minutes.
- Example 3 A sintered gear with an oxide film was obtained in the same manner as in Example 1 except that the maximum temperature during the surface treatment was set to 450 ° C. and was maintained at this maximum temperature for 40 minutes.
- Example 4 A sintered gear with an oxide film was obtained in the same manner as in Example 1 except that the maximum temperature during the surface treatment was 850 ° C. and was maintained at this maximum temperature for 5 minutes.
- Example 5 A sintered gear with an oxide film was obtained in the same manner as in Example 1 except that the maximum temperature during the surface treatment was 900 ° C. and was maintained at this maximum temperature for 1 hour.
- Example 6 A sintered gear with an oxide film was obtained in the same manner as in Example 1 except that the shape of the sintered gear was 6 mm in tip diameter, 0.2 mm in module, and 28 teeth.
- Example 1 A sintered gear with an oxide film was obtained in the same manner as in Example 1 except that the maximum temperature during the surface treatment was 400 ° C. and was maintained at this maximum temperature for 1.5 hours.
- Comparative Example 2 A sintered gear with an oxide film was obtained in the same manner as in Example 1 except that the maximum temperature during the surface treatment was 1000 ° C. and this maximum temperature was maintained for 1 minute.
- Comparative Example 3 A sintered gear with an oxide film was formed in the same manner as in Example 1 except that instead of the combination of air and argon gas, heat treatment was performed on the sintered gear at 600 ° C. for 15 minutes using water vapor. Got.
- an oxide film having a sufficient thickness was obtained by subjecting the sintered gear to heat treatment in the temperature range of 450 to 900 ° C.
- the sintered gear provided with such an oxide film had a high surface hardness. It was also found that the surface roughness of the oxide film was small and the surface was smooth. These are considered to be involved in the high rust prevention effect.
- an oxide film having a sufficient thickness could not be obtained by performing heat treatment outside the above temperature range or by performing heat treatment using water vapor.
- the sintered gear provided with such an oxide film has a surface hardness that is not as high as expected. In addition, the surface roughness of the oxide film was large, and thus the antirust effect was low.
- the Vickers hardness of the oxide films of Examples 2 and 3 is about 500 to 550 Hv
- the Vickers hardness of the oxide films of Examples 4 and 5 is about 450 to 500 Hv
- Comparative Examples 1 and 2 The Vickers hardness of the oxide film is estimated to be less than 400 Hv.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Gears, Cams (AREA)
- Powder Metallurgy (AREA)
Abstract
【課題】平滑性の高い表面を有し、優れた防錆効果を発揮する酸化膜を形成し得る表面処理方法、かかる酸化膜を備える焼結体を製造し得る酸化膜付き焼結体の製造方法、および酸化膜付き焼結体を提供する。 【解決手段】 本発明の表面処理方法は、Feを含有する原料粒子を含む原料粉末の焼結体を、酸化性雰囲気中、450~900℃の最高温度で所定時間加熱して、その表面に酸化膜を形成する。所定時間が、0.5分間~1時間であることが好ましい。また、酸化性雰囲気が、酸素ガスと不活性ガスとを含み、最高温度に到達した時点における酸素ガスと不活性ガスとの比率が、容量比で1:9~1:30であることも好ましい。
Description
本発明は、表面処理方法、酸化膜付き焼結体の製造方法および酸化膜付き焼結体に関する。
従来、防錆効果を目的とした封孔処理には、水蒸気処理が用いられていた。この方法では、550~600℃の処理温度域において、高圧の水蒸気を用いることで、焼結体の表面を覆うFe3O4(黒錆)の酸化膜を形成する(例えば、特許文献1参照)。
また、製品の性質上、高い硬度が必要になる製品(特にギヤ等)については、水蒸気処理後に、(ガス)軟窒化または浸炭処理等を施すことにより、硬度を調整している。
また、製品の性質上、高い硬度が必要になる製品(特にギヤ等)については、水蒸気処理後に、(ガス)軟窒化または浸炭処理等を施すことにより、硬度を調整している。
本発明の目的は、平滑性の高い表面を有し、優れた防錆効果を発揮する酸化膜を形成し得る表面処理方法、かかる酸化膜を備える焼結体を製造し得る酸化膜付き焼結体の製造方法、および酸化膜付き焼結体を提供することにある。
本願の例示的な発明は、Feを含有する原料粒子を含む原料粉末の焼結体を、酸化性雰囲気中、450~900℃の最高温度で所定時間加熱して、その表面に酸化膜を形成することを特徴とする表面処理方法である。
また、本願の他の例示的な発明は、Feを含有する原料粒子を含む原料粉末を圧縮成形して、成形体を得る工程と、成形体を焼成して、焼結体を得る工程と、焼結体を、酸化性雰囲気中、450~900℃の最高温度で所定時間加熱して、その表面に酸化膜を形成することにより、酸化膜付き焼結体を得る工程とを有することを特徴とする酸化膜付き焼結体の製造方法である。
さらに、本願の他の例示的な発明は、Feを含有する原料粒子を含む原料粉末の焼結体と、焼結体の表面を被覆し、平均厚さ5μm以上の酸化膜とを有することを特徴とする酸化膜付き焼結体である。
本願の例示的な発明によれば、平滑性の高い表面を有し、優れた防錆効果を発揮する酸化膜を形成することができる。
以下、本発明の表面処理方法、酸化膜付き焼結体の製造方法および酸化膜付き焼結体を
添付図面に示す実施形態に基づいて詳細に説明する。
図1は、本発明の一実施形態に係る焼結ギアの構成を模式的に示す平面図(a)および断面図(b)、図2は、焼結ギアを製造するのに用いる成形装置の概略構成を示す図である。
添付図面に示す実施形態に基づいて詳細に説明する。
図1は、本発明の一実施形態に係る焼結ギアの構成を模式的に示す平面図(a)および断面図(b)、図2は、焼結ギアを製造するのに用いる成形装置の概略構成を示す図である。
以下では、焼結体を焼結ギアとする場合を代表に説明する。
なお、焼結ギアの中心軸に平行な方向(図1(a)の紙面に垂直な方向)を「軸方向」、中心軸に直交する方向を「径方向」、中心軸を中心とする軸周りの方向を「周方向」と言う。
図1に示す焼結ギア1は、円盤状のギア本体2と、ギア本体2の周方向に沿って配置され、径方向外側に突出する複数の歯3とを有している。複数の歯3は、ほぼ等間隔で設けられている。
なお、焼結ギアの中心軸に平行な方向(図1(a)の紙面に垂直な方向)を「軸方向」、中心軸に直交する方向を「径方向」、中心軸を中心とする軸周りの方向を「周方向」と言う。
図1に示す焼結ギア1は、円盤状のギア本体2と、ギア本体2の周方向に沿って配置され、径方向外側に突出する複数の歯3とを有している。複数の歯3は、ほぼ等間隔で設けられている。
この焼結ギア1は、原料粉末の焼結体で構成されている。なお、原料粉末の構成については、後に詳述する。
焼結ギア1のサイズは、使用する用途に応じて設計されるため、特に限定されないが、焼結ギア1を、例えばロボットハンド用のギア(高精度のギア)とする場合には、次のように設計される。
焼結ギア1の歯先円直径(図1中「D」で示す。)は、3~15mm程度であることが好ましく、5~10mm程度であることがより好ましい。また、焼結ギア1の歯数は、15~40枚程度であることが好ましく、20~35枚程度であることがより好ましい。
焼結ギア1のサイズは、使用する用途に応じて設計されるため、特に限定されないが、焼結ギア1を、例えばロボットハンド用のギア(高精度のギア)とする場合には、次のように設計される。
焼結ギア1の歯先円直径(図1中「D」で示す。)は、3~15mm程度であることが好ましく、5~10mm程度であることがより好ましい。また、焼結ギア1の歯数は、15~40枚程度であることが好ましく、20~35枚程度であることがより好ましい。
したがって、歯12の大きさ(歯厚)の程度を示すモジュールは、0.15~0.3mm程度であることが好ましく、0.15~0.25mm程度であることがより好ましい。このような小型(高精度)の焼結ギア1であっても、本発明の原料粉末を用いれば、高い寸法精度で製造することができる。
なお、歯12の歯幅(図1中「W」で示す。)は、1~10mm程度であることが好ましく、2~5mm程度であることがより好ましい。
なお、歯12の歯幅(図1中「W」で示す。)は、1~10mm程度であることが好ましく、2~5mm程度であることがより好ましい。
なお、図1に示す焼結ギア1は、いわゆる平歯車であるが、本発明はこれに限定されず、例えば、ねじ歯車、かさ歯車、ウォームギア、ハイポイドギア等であってもよい。
このような焼結ギア1は、次のようにして製造される。
以下、焼結ギア1を製造する方法(焼結ギアの製造方法)について説明する。
このような焼結ギア1は、次のようにして製造される。
以下、焼結ギア1を製造する方法(焼結ギアの製造方法)について説明する。
本実施形態の焼結ギアの製造方法は、[1]原料粉末を圧縮成形して、焼結ギア1に対応する形状を有する成形体を得る成形工程と、[2]成形体を焼成して、焼結体を得る焼成工程と、[3]焼結体を熱処理して、その表面を被覆する酸化膜を形成する表面処理工程(本発明の表面処理方法に相当する。)とを有する。以下、各工程について順次説明する。
[1]成形工程
まず、成形装置と、原料粉末とを用意する。
図2に示す成形装置10は、成形型20と、原料粉末を収容したフィーダー30とを備えている。
また、成形型20は、厚さ方向に貫通する貫通孔211を備えるダイ21と、このダイ21の貫通孔211内に挿入される上パンチ22および下パンチ23とを有している。そして、貫通孔211を規定するダイ21の内周面の形状が、製造すべき焼結ギア1の外周面の形状(凹凸形状)に対応している。
まず、成形装置と、原料粉末とを用意する。
図2に示す成形装置10は、成形型20と、原料粉末を収容したフィーダー30とを備えている。
また、成形型20は、厚さ方向に貫通する貫通孔211を備えるダイ21と、このダイ21の貫通孔211内に挿入される上パンチ22および下パンチ23とを有している。そして、貫通孔211を規定するダイ21の内周面の形状が、製造すべき焼結ギア1の外周面の形状(凹凸形状)に対応している。
かかる成形装置10では、まず、ダイ21の貫通孔211の下部に下パンチ23の先端
部を挿入して、ダイ21と下パンチ23とでキャビティー(空間)212を形成する(図2(a)参照)。次に、ダイ21上でフィーダー30をスライドさせ、フィーダー30でキャビティー212を覆った状態とし、フィーダー30から原料粉末をキャビティー212に充填する(図2(b)参照)。その後、ダイ21上でフィーダー30をスライドさせ、キャビティー212から後退させた状態とし、キャビティー212に上パンチ22の先端部を挿入して、下パンチ23と上パンチ22とで原料粉末を圧縮する(図2(c)参照)。
部を挿入して、ダイ21と下パンチ23とでキャビティー(空間)212を形成する(図2(a)参照)。次に、ダイ21上でフィーダー30をスライドさせ、フィーダー30でキャビティー212を覆った状態とし、フィーダー30から原料粉末をキャビティー212に充填する(図2(b)参照)。その後、ダイ21上でフィーダー30をスライドさせ、キャビティー212から後退させた状態とし、キャビティー212に上パンチ22の先端部を挿入して、下パンチ23と上パンチ22とで原料粉末を圧縮する(図2(c)参照)。
焼結ギア1を製造するのに用いられる原料粉末は、次のような構成であることが好ましい。
原料粉末は、焼結ギア1のモジュール[mm]以下の粒径を有する原料粒子を含んでいる。かかる構成により、原料粒子をキャビティー212の歯元部のみならず歯先部にまで必要かつ十分に充填することができる。
特に、本実施形態では、原料粒子の最小粒径をA[mm]とし、最大粒径をB[mm]としたとき、B/Aが10以下となるように、原料粒子の粒径が調整されている。すなわち、原料粉末中に含まれる原料粒子の粒径の差が大きくならないように調整されている。
原料粉末は、焼結ギア1のモジュール[mm]以下の粒径を有する原料粒子を含んでいる。かかる構成により、原料粒子をキャビティー212の歯元部のみならず歯先部にまで必要かつ十分に充填することができる。
特に、本実施形態では、原料粒子の最小粒径をA[mm]とし、最大粒径をB[mm]としたとき、B/Aが10以下となるように、原料粒子の粒径が調整されている。すなわち、原料粉末中に含まれる原料粒子の粒径の差が大きくならないように調整されている。
B/Aは、7以下であることが好ましく、2~4程度であることがより好ましい。B/Aを上記範囲に調整することにより、原料粉末の流動性の著しい低下を防止することができる。これにより、原料粉末をキャビティー212に安定的に供給して、高密度で充填することができる。また、この場合、廃棄する原料粒子の量が多くなり過ぎることを防止して、原料粉末のコスト、ひいては焼結ギア1の製造コストの増大を抑制し得る。
原料粒子の最大粒径Bは、焼結ギア1のモジュールの半分以下であることが好ましく、モジュールの0.35~0.45倍程度であることがより好ましい。これにより、原料粒子のキャビティー212の歯先部への充填密度をより高めることができる。
原料粒子の最大粒径Bは、焼結ギア1のモジュールの半分以下であることが好ましく、モジュールの0.35~0.45倍程度であることがより好ましい。これにより、原料粒子のキャビティー212の歯先部への充填密度をより高めることができる。
前述したような高精度(小型)の焼結ギア1を製造する場合、原料粒子の最大粒径Bの具体的な値は、0.1~0.25mm程度であることが好ましく、0.12~0.2mm程度であることがより好ましい。この場合、原料粒子の最小粒径Aの具体的な値は、0.02~0.05mm程度であることが好ましく、0.025~0.04mm程度であることがより好ましい。
原料粒子の最小粒径Aおよび最大粒径Bを前記範囲とすることにより、高精度の焼結ギア1を製造する場合であっても、原料粉末の流動性を低下させることなく、原料粒子をキャビティー212の歯先部にまで十分に充填することができる。
ここで、原料粒子の粒径は、例えば、レーザーによる投影像から測定することができる。
原料粒子の最小粒径Aおよび最大粒径Bを前記範囲とすることにより、高精度の焼結ギア1を製造する場合であっても、原料粉末の流動性を低下させることなく、原料粒子をキャビティー212の歯先部にまで十分に充填することができる。
ここで、原料粒子の粒径は、例えば、レーザーによる投影像から測定することができる。
原料粒子は、例えば、粉砕法、水アトマイズ法、ガスアトマイズ法のようなアトマイズ法、還元法、カルボニル法等を用いて製造することができる。
また、原料粒子の構成材料としては、Fe(鉄)単体、主成分のFeと任意の元素とを含む合金のようなFeを含有する金属材料である。なお、合金に添加される元素としては、例えば、Cr(クロム)、Mo(モリブデン)、Mn(マンガン)、Ni(ニッケル)、Cu(銅)、W(タングステン)、V(バナジウム)、Co(コバルト)、Si(珪素)、C(炭素)等のうちの少なくとも1種が挙げられる。
また、原料粒子の構成材料としては、Fe(鉄)単体、主成分のFeと任意の元素とを含む合金のようなFeを含有する金属材料である。なお、合金に添加される元素としては、例えば、Cr(クロム)、Mo(モリブデン)、Mn(マンガン)、Ni(ニッケル)、Cu(銅)、W(タングステン)、V(バナジウム)、Co(コバルト)、Si(珪素)、C(炭素)等のうちの少なくとも1種が挙げられる。
このような原料粉末は、滑剤を含有してもよい。これにより、原料粉末の流動性をより高めることができる。
滑剤としては、例えば、ステアリン酸のような脂肪酸、その金属塩、その誘導体(例えば、アミド、エステル等)、フッ素系樹脂等が挙げられる。これらの化合物は、1種を単独で、または2種以上を組み合わせて用いることができる。
この場合、原料粉末中に含まれる滑剤の量は、特に限定されないが、5質量%以下であることが好ましく、0.1~3質量%程度であることがより好ましい。
滑剤としては、例えば、ステアリン酸のような脂肪酸、その金属塩、その誘導体(例えば、アミド、エステル等)、フッ素系樹脂等が挙げられる。これらの化合物は、1種を単独で、または2種以上を組み合わせて用いることができる。
この場合、原料粉末中に含まれる滑剤の量は、特に限定されないが、5質量%以下であることが好ましく、0.1~3質量%程度であることがより好ましい。
なお、本実施形態では、粒径が相対的に小さい原料粒子を取り除いているため、滑剤を含まない原料粉末自体の流動性が高い。このため、少量(0.1~0.5質量%程度)の滑剤を含有することで、原料粉末の流動度を十分に高い値に調整することができる。
原料粉末の具体的な流動度は、25~50sec/50g程度であることが好ましく、30~40sec/50g程度であることがより好ましい。このような流動度を有する原料粉末であれば、高い安定性でキャビティー212へ供給することができる。ここで、流動度は、JIS Z 2502(2012年)に規定された金属粉-流動度測定法に準拠して測定することができる。
原料粉末の具体的な流動度は、25~50sec/50g程度であることが好ましく、30~40sec/50g程度であることがより好ましい。このような流動度を有する原料粉末であれば、高い安定性でキャビティー212へ供給することができる。ここで、流動度は、JIS Z 2502(2012年)に規定された金属粉-流動度測定法に準拠して測定することができる。
原料粉末を圧縮する際の圧力(成形圧力)は、特に限定されないが、0.5~3ton程度であることが好ましく、1~2ton程度であることがより好ましい。
以上のようにして、キャビティー212内に、焼結ギアに対応する形状を有する成形体11が得られる。
その後、ダイ21と下パンチ23とを相対的に接近させ、キャビティー212から成形体11を排出する。
以上のようにして、キャビティー212内に、焼結ギアに対応する形状を有する成形体11が得られる。
その後、ダイ21と下パンチ23とを相対的に接近させ、キャビティー212から成形体11を排出する。
[2]焼成工程
次に、得られた成形体11を、焼成して焼結体を得る。
この焼結により、成形体11では、原料粒子同士の界面で拡散が生じて焼結に至る。この際、成形体11は、全体的に収縮して高密度の焼結体が得られる。本発明では、前述したような原料粉末を用いるため、その効果が特に高い。
焼成温度は、成形体11の製造に用いた原料粉末の組成や粒径等によって、設定されるため特に限定されないが、950~1300℃程度であることが好ましく、1000~1200℃程度であることがより好ましい。
次に、得られた成形体11を、焼成して焼結体を得る。
この焼結により、成形体11では、原料粒子同士の界面で拡散が生じて焼結に至る。この際、成形体11は、全体的に収縮して高密度の焼結体が得られる。本発明では、前述したような原料粉末を用いるため、その効果が特に高い。
焼成温度は、成形体11の製造に用いた原料粉末の組成や粒径等によって、設定されるため特に限定されないが、950~1300℃程度であることが好ましく、1000~1200℃程度であることがより好ましい。
焼成時間は、0.2~3時間程度であることが好ましく、0.5~2時間程度であることがより好ましい。
また、焼成の際の雰囲気は、特に限定されないが、大気雰囲気、酸化性雰囲気、還元性雰囲気、不活性雰囲気またはこれらの雰囲気を減圧した減圧雰囲気等が挙げられる。
このようにして得られた焼結体は、寸法精度が極めて高いため、鍛造、切削のような二次加工を施すことなく、焼結ギア1とすることができる。なお、二次加工とは、機械的に焼結体の形状を変化させる加工を言い、二次加工には、後述する表面処理(加熱処理)は含まれない。
また、焼成の際の雰囲気は、特に限定されないが、大気雰囲気、酸化性雰囲気、還元性雰囲気、不活性雰囲気またはこれらの雰囲気を減圧した減圧雰囲気等が挙げられる。
このようにして得られた焼結体は、寸法精度が極めて高いため、鍛造、切削のような二次加工を施すことなく、焼結ギア1とすることができる。なお、二次加工とは、機械的に焼結体の形状を変化させる加工を言い、二次加工には、後述する表面処理(加熱処理)は含まれない。
なお、製造予定の焼結ギア1の径方向における寸法と得られた焼結体の径方向における寸法との誤差は、6σで好ましくは0.02mm以下であり、より好ましくは0.005~0.015mm程度である。前述したような粒径を有する原料粒子を用いることにより、かかる寸法精度の高い焼結ギア1を得ることができる。
[3]表面処理工程
次に、焼結体には、酸化性雰囲気中、450~900℃の最高温度で所定時間加熱して、その表面に酸化膜(Fe3O4:黒錆)を形成するための表面処理を行う。
この表面処理により、焼結ギア1に対して封孔処理が施され、その表面の平滑性が高まる。その結果、焼結ギア1の歯3の表面の摺動性がより向上する。また、表面に酸化膜が形成されることにより、酸化膜付き焼結ギア1は、酸化膜の厚さ分サイズが大きくなるため、製造予定の焼結ギア1との寸法誤差をより小さくすることができる。
次に、焼結体には、酸化性雰囲気中、450~900℃の最高温度で所定時間加熱して、その表面に酸化膜(Fe3O4:黒錆)を形成するための表面処理を行う。
この表面処理により、焼結ギア1に対して封孔処理が施され、その表面の平滑性が高まる。その結果、焼結ギア1の歯3の表面の摺動性がより向上する。また、表面に酸化膜が形成されることにより、酸化膜付き焼結ギア1は、酸化膜の厚さ分サイズが大きくなるため、製造予定の焼結ギア1との寸法誤差をより小さくすることができる。
表面処理の最高温度は、450~900℃程度であればよいが、550~850℃程度であることが好ましく、650~800℃程度であることがより好ましい。かかる最高温度とすれば、表面処理の時間を短縮することができる。
所定時間(処理時間)は、最高温度に応じて設定されるため、特に限定されないが、0.5分間~1時間程度であることが好ましく、0.5~30分間程度であることがより好ましく、1~10分間程度であることがさらに好ましい。かかる時間の間、前記最高温度で表面処理を行うことにより、十分な厚さを有する酸化膜が形成される。
所定時間(処理時間)は、最高温度に応じて設定されるため、特に限定されないが、0.5分間~1時間程度であることが好ましく、0.5~30分間程度であることがより好ましく、1~10分間程度であることがさらに好ましい。かかる時間の間、前記最高温度で表面処理を行うことにより、十分な厚さを有する酸化膜が形成される。
酸化性雰囲気とは、水蒸気雰囲気を除く、酸化性ガスを比較的多く含む雰囲気である。酸化性雰囲気は、酸素ガスと不活性ガスとを含むことが好ましい。かかる構成により、不活性ガスの種類を適宜選択すれば、焼結ギア1(酸化膜付き焼結ギア1)の最終的な硬度をコントロールすることができる。したがって、製品規格に合わせて、焼結ギア1の硬度を容易に調整することができる。
不活性ガスとしては、アルゴンガスのような希ガス、窒素ガス等が挙げられる。これらのガスは、1種を単独で、または2種以上を組み合わせて用いることができる。
不活性ガスとしては、アルゴンガスのような希ガス、窒素ガス等が挙げられる。これらのガスは、1種を単独で、または2種以上を組み合わせて用いることができる。
また、焼結ギア1の加熱を開始した後、酸素ガスの比率を低下させるように、酸化性雰囲気中への不活性ガスの供給を開始することが好ましい。これにより、焼結ギア1の表面酸化が急激に進行することを防止すること、換言すれば、表面酸化をマイルドな条件で進行させることができる。このため、厚さおよび質のバラつきの少ない酸化膜が形成される。
最高温度に到達した時点における酸素ガスと不活性ガスとの比率が、容量比で1:9~1:30程度であることが好ましく、1:12~1:25程度であることがより好ましい。最高温度に到達した時点における酸素ガスと不活性ガスとの比率を前記範囲とすることにより、Fe2O3(赤錆)の発生を抑制することができる。
最高温度に到達した時点における酸素ガスと不活性ガスとの比率が、容量比で1:9~1:30程度であることが好ましく、1:12~1:25程度であることがより好ましい。最高温度に到達した時点における酸素ガスと不活性ガスとの比率を前記範囲とすることにより、Fe2O3(赤錆)の発生を抑制することができる。
形成される酸化膜の平均厚さは、5μm以上であることが好ましく、7.5~25μm程度であることがより好ましく、10~20μm程度であることがさらに好ましい。これにより、防錆効果をより向上させることができる。なお、このような比較的厚い酸化膜は、従来の水蒸気を用いる方法では形成することが困難である。
以上のようにして、焼結ギア1と、焼結ギア1の表面を被覆し、平均厚さ5μm以上の酸化膜とを有する酸化膜付き焼結ギア1(酸化膜付き焼結体)が得られる。
以上のようにして、焼結ギア1と、焼結ギア1の表面を被覆し、平均厚さ5μm以上の酸化膜とを有する酸化膜付き焼結ギア1(酸化膜付き焼結体)が得られる。
このようにして形成される酸化膜は、その表面粗さ(Ra)が小さく、平滑性が高いことで摺動性に優れる。よって、他の部材が摺れることによる焼結ギア1の破損を好適に防止すること、すなわち耐久性を向上することができる。
また、酸化膜のビッカース硬度は、400~750Hv程度であることが好ましく、450~600Hv程度であることがより好ましい。このような硬度を有する酸化膜は、摺動性が特に高い。
このような表面処理によれば、1工程で、従来の水蒸気処理と硬度調整処理とを同時に行うことができる。得られる酸化膜は、緻密であるため、高い防錆効果が期待される。
また、酸化膜のビッカース硬度は、400~750Hv程度であることが好ましく、450~600Hv程度であることがより好ましい。このような硬度を有する酸化膜は、摺動性が特に高い。
このような表面処理によれば、1工程で、従来の水蒸気処理と硬度調整処理とを同時に行うことができる。得られる酸化膜は、緻密であるため、高い防錆効果が期待される。
以上、本発明の表面処理方法、酸化膜付き焼結体の製造方法および酸化膜付き焼結体について、好適な実施形態に基づいて説明したが、本発明はこれらに限定されるものではない。
また、焼結ギア1は、ロボットハンドのような産業機械用部品の他、例えば、自動車用部品、自転車用部品、鉄道車両用部品、船舶用部品、航空機用部品、宇宙輸送機用部品のような輸送機器用部品、パソコン用部品、携帯端末用部品のような電子機器用部品、冷蔵庫、洗濯機、冷暖房機のような電気機器用部品、プラント用部品、時計用部品等に用いられる。
また、焼結ギア1は、ロボットハンドのような産業機械用部品の他、例えば、自動車用部品、自転車用部品、鉄道車両用部品、船舶用部品、航空機用部品、宇宙輸送機用部品のような輸送機器用部品、パソコン用部品、携帯端末用部品のような電子機器用部品、冷蔵庫、洗濯機、冷暖房機のような電気機器用部品、プラント用部品、時計用部品等に用いられる。
さらに、焼結体は、焼結ギア1に限らず、酸化膜の表面に他の部材が摺れる部品とすることもできる。かかる部品としては、例えば、軸受け、シリンダ等が挙げられる。
次に、本発明の実施例について説明する。
1.酸化膜付き焼結ギアの製造
1.酸化膜付き焼結ギアの製造
(実施例1)
[A]まず、Feを主成分とする原料粒子(最大粒径B:0.212mm、ヘガネス社製)を用意した。
[B]次に、篩を用いて、原料粒子から0.032mm未満の粒径を有する粒子を取り除いた。したがってB/Aは6.6である。
[A]まず、Feを主成分とする原料粒子(最大粒径B:0.212mm、ヘガネス社製)を用意した。
[B]次に、篩を用いて、原料粒子から0.032mm未満の粒径を有する粒子を取り除いた。したがってB/Aは6.6である。
[C]次に、原料粒子と、滑剤としてN,N’-エチレンビスステアラミド(花王株式会社製、「KAO WAX EB-FF」)とを、V型混合機で30分間混合して、原料粉末を得た。なお、原料粉末中に含まれるN,N’-エチレンビスステアラミドの量が0.2質量%となるように調製した。また、得られた原料粉末の流動度を、流動度測定装置(自社製、JIS Z 2502(2012年)に準拠)を用いて測定しところ、30sec/50gであった。
次に、この原料粉末を、図2に示す成形装置を用いて圧縮成形し、成形体を得た。なお、圧縮成形の際の圧力を1.1tonとし、温度を室温とした。
次に、この原料粉末を、図2に示す成形装置を用いて圧縮成形し、成形体を得た。なお、圧縮成形の際の圧力を1.1tonとし、温度を室温とした。
[D]次に、得られた成形体を、大気雰囲気中、1200℃で1時間焼成して、焼結ギア(焼結体)を得た。なお、焼結ギアの形状は、歯先円直径9mm、モジュール0.3mm、歯数27枚とした。この時点で、焼結ギアの厚さ方向における寸法誤差をマイクロメータにより測定した結果。6σで0.02mmであった。
[E]次に、得られた焼結ギアを炉内に収納して、加熱を開始した。このとき、炉内への大気とアルゴンガスとの供給も開始した。なお、最高温度750℃に設定し、この最高温度に10分間保持するようにした。また、アルゴンガスの供給量を順次増加させて、最高温度750℃に到達した時点における酸素ガスと不活性ガスとの比率が、容量比で1:15となるように設定した。
このようにして、焼結ギアの表面に酸化膜を形成した。これにより、酸化膜付き焼結ギアを得た。
このようにして、焼結ギアの表面に酸化膜を形成した。これにより、酸化膜付き焼結ギアを得た。
(実施例2)
表面処理時の最高温度を600℃とし、この最高温度に15分間保持するようにした以外は、前記実施例1と同様にして、酸化膜付き焼結ギアを得た。
(実施例3)
表面処理時の最高温度を450℃とし、この最高温度に40分間保持するようにした以外は、前記実施例1と同様にして、酸化膜付き焼結ギアを得た。
表面処理時の最高温度を600℃とし、この最高温度に15分間保持するようにした以外は、前記実施例1と同様にして、酸化膜付き焼結ギアを得た。
(実施例3)
表面処理時の最高温度を450℃とし、この最高温度に40分間保持するようにした以外は、前記実施例1と同様にして、酸化膜付き焼結ギアを得た。
(実施例4)
表面処理時の最高温度を850℃とし、この最高温度に5分間保持するようにした以外は、前記実施例1と同様にして、酸化膜付き焼結ギアを得た。
(実施例5)
表面処理時の最高温度を900℃とし、この最高温度に1時間保持するようにした以外は、前記実施例1と同様にして、酸化膜付き焼結ギアを得た。
(実施例6)
焼結ギアの形状を、歯先円直径6mm、モジュール0.2mm、歯数28枚とした以外は、前記実施例1と同様にして、酸化膜付き焼結ギアを得た。なお、焼結ギアの径方向における寸法誤差を工場顕微鏡(測定顕微鏡)により測定した結果。6σで0.02mmであった。
表面処理時の最高温度を850℃とし、この最高温度に5分間保持するようにした以外は、前記実施例1と同様にして、酸化膜付き焼結ギアを得た。
(実施例5)
表面処理時の最高温度を900℃とし、この最高温度に1時間保持するようにした以外は、前記実施例1と同様にして、酸化膜付き焼結ギアを得た。
(実施例6)
焼結ギアの形状を、歯先円直径6mm、モジュール0.2mm、歯数28枚とした以外は、前記実施例1と同様にして、酸化膜付き焼結ギアを得た。なお、焼結ギアの径方向における寸法誤差を工場顕微鏡(測定顕微鏡)により測定した結果。6σで0.02mmであった。
(比較例1)
表面処理時の最高温度を400℃とし、この最高温度に1.5時間保持するようにした以外は、前記実施例1と同様にして、酸化膜付き焼結ギアを得た。
(比較例2)
表面処理時の最高温度を1000℃、この最高温度に1分間保持するようにした以外は、前記実施例1と同様にして、酸化膜付き焼結ギアを得た。
(比較例3)
大気とアルゴンガスとの組み合わせに代えて、水蒸気を用いて600℃で15分間、焼結ギアに対して加熱処理を施した以外は、前記実施例1と同様にして、酸化膜付き焼結ギアを得た。
表面処理時の最高温度を400℃とし、この最高温度に1.5時間保持するようにした以外は、前記実施例1と同様にして、酸化膜付き焼結ギアを得た。
(比較例2)
表面処理時の最高温度を1000℃、この最高温度に1分間保持するようにした以外は、前記実施例1と同様にして、酸化膜付き焼結ギアを得た。
(比較例3)
大気とアルゴンガスとの組み合わせに代えて、水蒸気を用いて600℃で15分間、焼結ギアに対して加熱処理を施した以外は、前記実施例1と同様にして、酸化膜付き焼結ギアを得た。
2.測定および評価
2-1.酸化膜の平均厚さの測定
各実施例および各比較例で形成された酸化膜の平均厚さを、断面観察法により測定した。
2-2.表面硬度の測定
各実施例および各比較例で得られた酸化膜付き焼結ギアについて、マイクロビッカース硬度計を用いて、その表面のビッカース硬度を測定した。
2-1.酸化膜の平均厚さの測定
各実施例および各比較例で形成された酸化膜の平均厚さを、断面観察法により測定した。
2-2.表面硬度の測定
各実施例および各比較例で得られた酸化膜付き焼結ギアについて、マイクロビッカース硬度計を用いて、その表面のビッカース硬度を測定した。
2-3.防錆効果の評価
各実施例および各比較例において、酸化膜付き焼結体を10個ずつ製造した。各酸化膜付き焼結ギアに対して5質量%の塩水を噴霧して、その表面の状態を経時的に目視で観察した。
そして、以下の4段階の評価基準に従って、赤錆の発生の程度を評価した。
各実施例および各比較例において、酸化膜付き焼結体を10個ずつ製造した。各酸化膜付き焼結ギアに対して5質量%の塩水を噴霧して、その表面の状態を経時的に目視で観察した。
そして、以下の4段階の評価基準に従って、赤錆の発生の程度を評価した。
[評価基準]
A:塩水噴霧24時間後においても、赤錆の発生がほとんど確認されない。
B:塩水噴霧24時間後において、若干の赤錆の発生が確認される。
C:塩水噴霧24時間後において、多くの赤錆の発生が確認される。
D:塩水噴霧8時間後において、多くの赤錆の発生が確認される。
これらの測定結果および評価結果を、原料粉末の構成と併せて、以下の表1に示す。
A:塩水噴霧24時間後においても、赤錆の発生がほとんど確認されない。
B:塩水噴霧24時間後において、若干の赤錆の発生が確認される。
C:塩水噴霧24時間後において、多くの赤錆の発生が確認される。
D:塩水噴霧8時間後において、多くの赤錆の発生が確認される。
これらの測定結果および評価結果を、原料粉末の構成と併せて、以下の表1に示す。
以上のように、焼結ギアに対して450~900℃の温度範囲で加熱処理を施すことにより、十分な厚さを有する酸化膜が得られた。かかる酸化膜を備える焼結ギアは、その表面硬度が高かった。また、酸化膜の表面粗さが小さく、その表面が滑らかであることが判った。これらが高い防錆効果に関与するものと考えられる。
これに対して、上記温度範囲外で加熱処理を施したり、水蒸気を用いた加熱処理を施したりすることにより、十分な厚さを有する酸化膜を得ることができなかった。かかる酸化膜を備える焼結ギアは、その表面硬度が期待する程高くなかった。また、酸化膜の表面粗さも大きく、よって防錆効果も低い結果であった。
なお、防錆効果の結果から、実施例2および3の酸化膜のビッカース硬度は、500~550Hv程度、実施例4および5の酸化膜のビッカース硬度は、450~500Hv程度、比較例1および2の酸化膜のビッカース硬度は、400Hv未満であると推定される。
これに対して、上記温度範囲外で加熱処理を施したり、水蒸気を用いた加熱処理を施したりすることにより、十分な厚さを有する酸化膜を得ることができなかった。かかる酸化膜を備える焼結ギアは、その表面硬度が期待する程高くなかった。また、酸化膜の表面粗さも大きく、よって防錆効果も低い結果であった。
なお、防錆効果の結果から、実施例2および3の酸化膜のビッカース硬度は、500~550Hv程度、実施例4および5の酸化膜のビッカース硬度は、450~500Hv程度、比較例1および2の酸化膜のビッカース硬度は、400Hv未満であると推定される。
1…焼結ギア
11…成形体
2…ギア本体
3…歯
10…成形装置
20…成形型
21…ダイ
211…貫通孔
212…キャビティー
22…上パンチ
23…下パンチ
30…フィーダー
11…成形体
2…ギア本体
3…歯
10…成形装置
20…成形型
21…ダイ
211…貫通孔
212…キャビティー
22…上パンチ
23…下パンチ
30…フィーダー
Claims (14)
- Feを含有する原料粒子を含む原料粉末の焼結体を、酸化性雰囲気中、450~900℃の最高温度で所定時間加熱して、その表面に酸化膜を形成することを特徴とする表面処理方法。
- 前記所定時間が、0.5分間~1時間である請求項1に記載の表面処理方法。
- 前記酸化性雰囲気が、酸素ガスと不活性ガスとを含み、
前記最高温度に到達した時点における前記酸素ガスと前記不活性ガスとの比率が、容量比で1:9~1:30である請求項1または2に記載の表面処理方法。 - 前記焼結体の加熱を開始した後、前記酸素ガスの比率を低下させるように、前記酸化性雰囲気中への前記不活性ガスの供給を開始する請求項3に記載の表面処理方法。
- 前記酸化膜の平均厚さが、5μm以上である請求項1ないし4のいずれか1項に記載の表面処理方法。
- Feを含有する原料粒子を含む原料粉末を圧縮成形して、成形体を得る工程と、
前記成形体を焼成して、焼結体を得る工程と、
前記焼結体を、酸化性雰囲気中、450~900℃の最高温度で所定時間加熱して、その表面に酸化膜を形成することにより、酸化膜付き焼結体を得る工程とを有することを特徴とする酸化膜付き焼結体の製造方法。 - 前記焼結体が、焼結ギアであり、
前記原料粒子が、前記焼結ギアのモジュール[mm]以下の粒径を有し、
前記原料粒子の最小粒径をA[mm]とし、最大粒径をB[mm]としたとき、B/Aが10以下である請求項6に記載の酸化膜付き焼結体の製造方法。 - 前記焼結ギアの前記モジュールが、0.15~0.3mmである請求項7に記載の酸化膜付き焼結体の製造方法。
- 前記焼結体を得た後、前記焼結体に対して二次加工を施すことなく、前記焼結体を前記焼結ギアとする請求項7または8に記載の酸化膜付き焼結体の製造方法。
- 製造予定の前記焼結ギアの径方向における寸法と得られた前記焼結体の径方向における寸法との誤差が、6σで0.02mm以下である請求項7ないし9のいずれか1項に記載の酸化膜付き焼結体の製造方法。
- Feを含有する原料粒子を含む原料粉末の焼結体と、
該焼結体の表面を被覆し、平均厚さ5μm以上の酸化膜とを有することを特徴とする酸化膜付き焼結体。 - 前記酸化膜のビッカース硬度が、400~750Hvである請求項11に記載の酸化膜付き焼結体。
- 前記酸化膜の表面が、他の部材が摺れる面である請求項11または12に記載の酸化膜付き焼結体。
- 前記焼結体が、焼結ギアである請求項11ないし13のいずれか1項に記載の酸化膜付
き焼結体。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-054552 | 2018-03-22 | ||
JP2018054552 | 2018-03-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019181449A1 true WO2019181449A1 (ja) | 2019-09-26 |
Family
ID=67987690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/008296 WO2019181449A1 (ja) | 2018-03-22 | 2019-03-04 | 表面処理方法、酸化膜付き焼結体の製造方法および酸化膜付き焼結体 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019181449A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5051912A (ja) * | 1973-09-11 | 1975-05-09 | ||
JPS5521583A (en) * | 1978-05-31 | 1980-02-15 | Federal Mogul Corp | Producing metal element from low alloy ferric powder |
JP2000170791A (ja) * | 1998-09-29 | 2000-06-20 | Nippon Piston Ring Co Ltd | シンクロナイザーリング |
JP2001294905A (ja) * | 2000-02-08 | 2001-10-26 | Nippon Kagaku Yakin Co Ltd | 微小モジュール歯車の製造方法 |
US20150211621A1 (en) * | 2014-01-28 | 2015-07-30 | Ruebig Gesellschaft m.b.H. & Co. KG. | Sintered component |
-
2019
- 2019-03-04 WO PCT/JP2019/008296 patent/WO2019181449A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5051912A (ja) * | 1973-09-11 | 1975-05-09 | ||
JPS5521583A (en) * | 1978-05-31 | 1980-02-15 | Federal Mogul Corp | Producing metal element from low alloy ferric powder |
JP2000170791A (ja) * | 1998-09-29 | 2000-06-20 | Nippon Piston Ring Co Ltd | シンクロナイザーリング |
JP2001294905A (ja) * | 2000-02-08 | 2001-10-26 | Nippon Kagaku Yakin Co Ltd | 微小モジュール歯車の製造方法 |
US20150211621A1 (en) * | 2014-01-28 | 2015-07-30 | Ruebig Gesellschaft m.b.H. & Co. KG. | Sintered component |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6688287B2 (ja) | プレアロイ鉄基粉末、プレアロイ鉄基粉末を含有する鉄基粉末混合物、及び鉄基粉末混合物からプレス成形および焼結した部品を製造する方法 | |
CN107262707B (zh) | 粉末冶金用金属粉末、复合物、造粒粉末以及烧结体 | |
CN104942278B (zh) | 粉末冶金用金属粉末、复合物、造粒粉末以及烧结体 | |
JP6376179B2 (ja) | 粉末冶金用金属粉末、コンパウンド、造粒粉末および焼結体 | |
EP3018228A1 (en) | Sintered mechanical component and manufacturing method therefor | |
EP3097999A1 (en) | Sintered machine part and manufacturing method thereof | |
WO2019181449A1 (ja) | 表面処理方法、酸化膜付き焼結体の製造方法および酸化膜付き焼結体 | |
CN105834413B (zh) | 粉末冶金用金属粉末、复合物、造粒粉末以及烧结体 | |
WO2019181451A1 (ja) | 原料粉末、焼結ギアの製造方法および焼結ギア | |
CN107584126B (zh) | 齿轮、减速装置、机器人以及移动体 | |
CN105750536B (zh) | 粉末冶金用金属粉末、复合物、造粒粉末及烧结体 | |
WO2019181452A1 (ja) | 原料粉末、焼結ギアの製造方法および焼結ギア | |
US12013022B2 (en) | Method for producing a sintered component with a toothing | |
WO2019181453A1 (ja) | 原料粉末、焼結ギアの製造方法および焼結ギア | |
JP2022052308A (ja) | 焼結機械部品の製造方法 | |
CN113272088A (zh) | 烧结体的制造方法 | |
WO2019181454A1 (ja) | 焼結体の製造方法 | |
WO2020145221A1 (ja) | 焼結ギアの製造方法および焼結ギア | |
JP2016125099A (ja) | 粉末冶金用金属粉末、コンパウンド、造粒粉末および焼結体 | |
US20220226944A1 (en) | Method for manufacturing sintered gear | |
JP5276491B2 (ja) | 焼結体の表面緻密化方法 | |
CN114269960A (zh) | 烧结材料及烧结材料的制造方法 | |
JP2020139203A (ja) | 粉末冶金用析出硬化系ステンレス鋼粉末、コンパウンド、造粒粉末および析出硬化系ステンレス鋼焼結体 | |
JP7435161B2 (ja) | 金属複合焼結体の製造方法 | |
JP2020172698A (ja) | 焼結部品の製造方法、及び焼結部品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19770278 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19770278 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |