Nothing Special   »   [go: up one dir, main page]

WO2019160037A1 - 酸ハロゲン化物による化合物の製造方法 - Google Patents

酸ハロゲン化物による化合物の製造方法 Download PDF

Info

Publication number
WO2019160037A1
WO2019160037A1 PCT/JP2019/005345 JP2019005345W WO2019160037A1 WO 2019160037 A1 WO2019160037 A1 WO 2019160037A1 JP 2019005345 W JP2019005345 W JP 2019005345W WO 2019160037 A1 WO2019160037 A1 WO 2019160037A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
production method
stirred
amine
compound
Prior art date
Application number
PCT/JP2019/005345
Other languages
English (en)
French (fr)
Inventor
智彦 大和田
陸人 大塚
和夫 丸橋
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=67619450&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019160037(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Priority to JP2020500554A priority Critical patent/JP7364841B2/ja
Publication of WO2019160037A1 publication Critical patent/WO2019160037A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B57/00Separation of optically-active compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/02Preparation of carboxylic acid amides from carboxylic acids or from esters, anhydrides, or halides thereof by reaction with ammonia or amines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/02Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • C07C233/04Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C233/05Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/02Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • C07C233/04Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C233/07Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/12Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by halogen atoms or by nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/16Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms
    • C07C233/17Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/18Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/64Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings
    • C07C233/66Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by halogen atoms or by nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/64Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings
    • C07C233/67Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms
    • C07C233/68Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/73Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom of a carbon skeleton containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/64Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings
    • C07C233/81Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/12Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C273/00Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C273/18Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of substituted ureas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C275/00Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C275/46Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups containing any of the groups, X being a hetero atom, Y being any atom, e.g. acylureas
    • C07C275/48Y being a hydrogen or a carbon atom
    • C07C275/54Y being a carbon atom of a six-membered aromatic ring, e.g. benzoylureas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/26Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids
    • C07C303/28Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids by reaction of hydroxy compounds with sulfonic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/36Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of amides of sulfonic acids
    • C07C303/38Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of amides of sulfonic acids by reaction of ammonia or amines with sulfonic acids, or with esters, anhydrides, or halides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/01Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms
    • C07C311/02Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C311/03Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton having the nitrogen atoms of the sulfonamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C311/04Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton having the nitrogen atoms of the sulfonamide groups bound to hydrogen atoms or to acyclic carbon atoms to acyclic carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/15Sulfonamides having sulfur atoms of sulfonamide groups bound to carbon atoms of six-membered aromatic rings
    • C07C311/16Sulfonamides having sulfur atoms of sulfonamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the sulfonamide groups bound to hydrogen atoms or to an acyclic carbon atom
    • C07C311/17Sulfonamides having sulfur atoms of sulfonamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the sulfonamide groups bound to hydrogen atoms or to an acyclic carbon atom to an acyclic carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/14Preparation of carboxylic acid esters from carboxylic acid halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/08Indoles; Hydrogenated indoles with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/81Amides; Imides
    • C07D213/82Amides; Imides in position 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D217/00Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
    • C07D217/02Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with only hydrogen atoms or radicals containing only carbon and hydrogen atoms, directly attached to carbon atoms of the nitrogen-containing ring; Alkylene-bis-isoquinolines
    • C07D217/06Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with only hydrogen atoms or radicals containing only carbon and hydrogen atoms, directly attached to carbon atoms of the nitrogen-containing ring; Alkylene-bis-isoquinolines with the ring nitrogen atom acylated by carboxylic or carbonic acids, or with sulfur or nitrogen analogues thereof, e.g. carbamates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D217/00Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
    • C07D217/02Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with only hydrogen atoms or radicals containing only carbon and hydrogen atoms, directly attached to carbon atoms of the nitrogen-containing ring; Alkylene-bis-isoquinolines
    • C07D217/08Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with only hydrogen atoms or radicals containing only carbon and hydrogen atoms, directly attached to carbon atoms of the nitrogen-containing ring; Alkylene-bis-isoquinolines with a hetero atom directly attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/02General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length in solution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides

Definitions

  • the present invention relates to a method for producing a compound using an acid halide, and particularly relates to a method for producing a carboxylic acid amide compound, a sulfonic acid amide compound and an ester compound using an acid halide.
  • the most common reaction for forming a normal amide bond is a condensation reaction between an acid halide and an amine.
  • hydrogen halide such as hydrogen chloride
  • the hydrogen halide and the raw material amine form a salt.
  • the reaction was saturated at about 50%, and the amide compound could not be obtained in high yield.
  • An object of the present invention is to provide a novel method for producing a carboxylic acid amide compound, a sulfonic acid amide compound and an ester compound using an acid halide.
  • the amine is one or more selected from the group consisting of aliphatic amines, aromatic amines, zwitterionic molecules and derivatives thereof.
  • the amide solvent is N, N-dimethylacetamide (DMAC), N, N-diethylacetamide (DEA), N, N-dimethylformamide (DMF), N, N-diethylformamide (DEF), N Any one of the above [1] to [10], which is one or more solvents selected from the group consisting of -methyl-2-pyrrolidone (NMP) and N-ethyl-2-pyrrolidone (NEP) The manufacturing method as described. [12] The production method according to any one of the above [1] to [9], wherein the solvent is a urea solvent.
  • the urea solvent is selected from the group consisting of N, N′-dimethylpropyleneurea (DMPU), tetramethylurea (TMU) and 1,3-dimethyl-2-imidazolidinone (DMI) 1
  • DMPU N, N′-dimethylpropyleneurea
  • TNU tetramethylurea
  • DMI 1,3-dimethyl-2-imidazolidinone
  • hydrogen halide such as hydrogen chloride is generated by a condensation reaction, which adversely affects the progress of the reaction and has problems such as safety and equipment limitations.
  • a problem can be solved without the addition of a base catalyst for capturing hydrogen fluoride.
  • the production method of the present invention is also advantageous in that the amide formation reaction proceeds efficiently even with amines and amide compounds that are weakly basic and have low reactivity.
  • FIG. 1 is a diagram showing an HPLC chromatogram of a mixture of the product obtained in Example F5 (1) and the product obtained in Example F5 (2) (LD mixed sample).
  • FIG. 2 shows the HPLC chromatogram of the product mixture (L preparation) obtained in Example F5 (1).
  • FIG. 3 shows the HPLC chromatogram of the product mixture (D preparation) obtained in Example F5 (2).
  • alkyl as all or part of the group is a linear, branched or cyclic hydrocarbon chain having 1 to 8 carbon atoms (preferably 1 to 6 or 1 to 4 carbon atoms). Which may contain a plurality of double bonds or triple bonds), for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, cyclopropyl, cyclobutyl , Cyclopentyl, cyclohexyl, ethenyl, ethynyl, propenyl and butenyl.
  • halogen and halogen atom include chlorine (Cl), bromine (Br), fluorine (F), and iodine (I), with chlorine (Cl) being preferred.
  • the acid halide is an acid chloride (acid chloride).
  • “may be substituted” means that one or more hydrogen atoms on a group to be substituted or an atom are substituted with another group.
  • the number of carbon atoms of the “aliphatic hydrocarbon group” represented by 8 , R 9 , R 10 , R 12 , R 14 , R 15 , R 18 , R 19 and R 20 can be 1 to 22, It is preferably 1 to 12, more preferably 1 to 8, still more preferably 1 to 6, 1 to 5, or 1 to 4.
  • the aliphatic hydrocarbon group may be linear, branched or cyclic, and may contain one or more double bonds or triple bonds in the group.
  • linear and branched aliphatic hydrocarbon groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, ethenyl, ethynyl, propenyl and butenyl. However, it is not limited to these examples.
  • a cyclic aliphatic hydrocarbon group means that the group contains at least one cyclic structure, and may be composed of only a cyclic structure.
  • the cyclic structure may be carbocyclic or heterocyclic.
  • the carbocyclic ring structure is a 3- to 10-membered saturated or unsaturated carbocycle (aliphatic carbocycle), which may be monocyclic or bicyclic, for example, cyclopropane , Cyclobutane, cyclopentane, cyclohexane, cycloheptane and cyclooctane.
  • the heterocyclic ring structure includes 3 to 10-membered saturated or saturated ring members containing one or more (for example, 1 to 3) different atoms selected from an oxygen atom, a nitrogen atom and a sulfur atom.
  • Unsaturated heterocycle (aliphatic heterocycle), which may be monocyclic or bicyclic, such as oxetane, pyrrolidine, piperidine, piperazine, morpholine, indoline, tetrahydrofuran and tetrahydrothiophene Can be mentioned.
  • aromatic ring group represented by R 21 and R 102 refers to a ring system compound having aromatic characteristics or a portion thereof, for example, a stable structure including a cyclic conjugated system having 4n + 2 ⁇ electrons. Have.
  • the “aromatic ring group” may be an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • aromatic hydrocarbon group is a 6-18 membered (preferably 6-14 membered) unsaturated carbocyclic ring, which may be monocyclic, 2, 3 or 4 cyclic (preferably 2 or 3 (Cyclic) aromatic condensed ring group, and examples thereof include benzene, naphthalene, anthracene, phenanthrene, naphthacene and pyrene.
  • the “aromatic heterocyclic group” includes one or more (for example, 1 to 3 or 1 to 2) hetero atoms selected from an oxygen atom, a nitrogen atom and a sulfur atom as ring member atoms.
  • a 14-membered heterocyclic ring which may be monocyclic or bicyclic or tricyclic fused aromatic heterocyclic group, such as furan, thiophene, pyrrole, imidazole, pyridine, pyrimidine, quinoline , Isoquinoline, indole and 1,10-phenanthroline.
  • the hydroxyl group represents —OH
  • the carboxyl group represents —COOH
  • the sulfonic acid group represents (—S ( ⁇ O) 2 OH)
  • the carbonyl group represents —CO — (— C ( ⁇ O) —
  • the thiocarbonyl group represents —CS — (— C ( ⁇ S) —).
  • ⁇ Raw material Amine>
  • amines that can be used as a raw material for the production method of the present invention include aliphatic amines, aromatic amines, and zwitterionic molecules.
  • Aliphatic amine means an amine having an aliphatic hydrocarbon chain.
  • the aliphatic amine is represented by, for example, the formula 1: HN (—R 1 ) (— R 2 ) (wherein R 1 and R 2 may be the same or different and are each a hydrogen atom or an aliphatic hydrocarbon. R 1 and R 2 together may form a cyclic aliphatic hydrocarbon group, provided that R 1 and R 2 do not represent a hydrogen atom at the same time) be able to.
  • One of R 1 and R 2 preferably represents a hydrogen atom, and the other represents an aliphatic hydrocarbon group.
  • Examples of the cyclic aliphatic hydrocarbon group formed by R 1 and R 2 together include 1,2,3,4-tetrahydroisoquinoline and pyrrolidine.
  • the aliphatic hydrocarbon group constituting the aliphatic amine may be substituted with one or a plurality of substituents.
  • substituents include a halogen atom, a group —R 101 —R 102 (where R 101 represents A single bond, —O—, —O— (C ⁇ O) —, — (C ⁇ O) —O—, —NHCO— or —CONH—, wherein R 102 represents an aromatic ring group), a hydroxyl group , Alkoxy groups, alkylcarbonyl groups, alkoxycarbonyl groups, alkylcarbonyloxy groups, carboxyl groups, sulfonic acid groups, amino groups, nitro groups and cyano groups (hereinafter referred to as substituent A).
  • the amino group may be further substituted with one or more substituents, and examples of the substituent include an alkyl group.
  • the alkoxy group, alkylcarbonyl group, alkoxycarbonyl group, and alkylcarbonyloxy group may be further substituted with one or more substituents.
  • the substituent include a halogen atom, a hydroxyl group , Alkoxy groups, alkylcarbonyl groups, alkoxycarbonyl groups, alkylcarbonyloxy groups, carboxyl groups, sulfonic acid groups, amino groups, nitro groups, and cyano groups.
  • the group —R 101 —R 102 may be further substituted with one or more substituents.
  • substituents include a halogen atom, a hydroxyl group, an alkyl group, an alkoxy group, an alkyl group
  • substituents include carbonyl group, alkoxycarbonyl group, alkylcarbonyloxy group, carboxyl group, sulfonic acid group, amino group, nitro group and cyano group.
  • the substituents may be the same or different.
  • Aromatic amine means an amine having a structure in which at least one aromatic ring group is directly bonded to the amine.
  • the aromatic amine may be, for example, formula 2: HN (—R 3 ) (— R 4 ) (wherein R 3 and R 4 may be the same or different and each represents a hydrogen atom or an aromatic ring group, Alternatively, R 3 represents an aromatic ring group, R 4 represents an aliphatic hydrocarbon group having 3 to 5 carbon atoms (which may have 1 or 2 double bonds in the group), and R 4
  • the aliphatic hydrocarbon group represented by R 3 together with the aromatic ring group represented by R 3 forms a bicyclic or tricyclic heterocyclic ring, provided that R 3 and R 4 do not represent a hydrogen atom at the same time) Can be represented.
  • R 3 and R 4 preferably represents a hydrogen atom, and the other represents an aromatic ring group.
  • Examples of the bicyclic or tricyclic heterocyclic compound formed by combining R 3 and R 4 include indoline, 1,2,3,4-tetrahydroquinoline and 2,3,4,5-tetrahydrobenzoazepine. Is mentioned.
  • the aromatic ring group constituting the aromatic amine may be substituted with one or a plurality of substituents.
  • substituents include a halogen atom, a group —R 201 —R 202 (where R 201 represents a single group).
  • R 202 represents an aromatic ring group
  • R 202 represents an aromatic ring group
  • R 202 represents an aromatic ring group
  • substituent B the amino group may be further substituted with one or more substituents, and examples of the substituent include an alkyl group.
  • the alkyl group, alkoxy group, alkylcarbonyl group, alkoxycarbonyl group, and alkylcarbonyloxy group may be further substituted with one or more substituents. Atoms, hydroxyl groups, alkoxy groups, alkylcarbonyl groups, alkoxycarbonyl groups, alkylcarbonyloxy groups, carboxyl groups, sulfonic acid groups, amino groups, nitro groups, and cyano groups can be mentioned.
  • the group —R 201 —R 202 may be further substituted with one or more substituents.
  • substituents examples include a halogen atom, a hydroxyl group, an alkyl group, an alkoxy group, an alkyl group
  • substituents include carbonyl group, alkoxycarbonyl group, alkylcarbonyloxy group, carboxyl group, sulfonic acid group, amino group, nitro group and cyano group.
  • the substituent of the aromatic ring group constituting the aromatic amine is preferably the substituent A which may be further substituted. When the aromatic amine is substituted with a plurality of substituents, the substituents may be the same or different.
  • Zwitterionic molecule means a molecule having an amino group (basic group) and a carboxyl group (acidic group) in the molecule and having both positive and negative charges, and is synonymous with zwitterionic molecule.
  • the aliphatic amines and aromatic amines include those having an amino group in the molecule. When such a molecule further has a carboxyl group, It can be called a zwitterionic molecule.
  • a zwitterionic molecule in which a carboxyl group is esterified that is, an ester of a zwitterionic molecule
  • a zwitterionic molecule in which a carboxyl group or an amino group is amidated that is, a zwitterion
  • Derivatives of zwitterionic molecules such as molecular amides can also be used as raw materials for the production method of the present invention.
  • HN (-R 1) ( - R 2) wherein, although R 1 and R 2 are as defined above, R 1 and / Or the aliphatic hydrocarbon group represented by R 2 is substituted by a substituent containing at least one carboxyl group or alkoxycarbonyl group, which substituent preferably contains at least one carboxyl group or alkoxycarbonyl group
  • the substituent A may be further substituted
  • the above formula 2 HN (—R 3 ) (— R 4 ) (wherein R 3 and R 4 are as defined above, but R 3 And / or the aromatic ring group represented by R 4 is substituted with a substituent containing at least one carboxyl group or alkoxycarbonyl group.
  • a typical example of a zwitterionic molecule is an amino acid.
  • amino acids in the present invention include ⁇ -amino acids (particularly, 20 types of amino acids constituting proteins), but are not limited thereto, and amino acids in which an amino group is bonded to a carbon atom other than the ⁇ carbon (for example, , ⁇ -amino acid, ⁇ -amino acid, ⁇ -amino acid, ⁇ -amino acid).
  • some amino acids have at least one asymmetric carbon atom and have optical activity, and any optically active form (for example, D form and L form) is included in the amino acid.
  • zwitterionic molecules include not only amino acids but also peptides formed by polymerizing a plurality of amino acids and compounds containing amino acids.
  • amino acid and peptide derivatives for example, carboxyl groups formed esters.
  • ester forms and amide forms in which an amino group forms an amide are also included.
  • zwitterionic molecules include, but are not limited to, anthranilic acid, 3-carboxyaniline and 4-carboxyaniline.
  • the degree of basicity can be determined using the pK BH + value as an index (for example, Tso, W.-W .; Snyder, CH; Powell, HBJ Org. Chem., 1970, 35,849-850, Benedetti, IE; Di Blasio, B .; Baine, PJ Chem. Soc. Perkin 2, 1980, 500-503 and Arnett, EM, Quantitative Comparisons of Weak Organic Bases, Progress in Physical Organic Chemistry, vol.
  • examples of the amine having low basicity include amines having a small pK BH + value, for example, amines having a pK BH + value of 2 or less (preferably a pK BH + value of 1 or less), and these include weakly basic amines and neutral amines. Classified as amine.
  • the pK BH + value can be obtained as an experimental value or a calculated value.
  • amines with low basicity include aromatic amines in which an amino group is directly bonded to an aromatic ring, and aromatic rings are nitro, cyano, halogen atoms, alkylcarbonyl, alkylcarbonyloxy, alkoxycarbonyl, sulfonamide, amide, Aromatic amines substituted with electron withdrawing groups such as sulfonyl are mentioned, the latter being less basic amines.
  • raw materials having low basicity other than amines include amide compounds described later, and according to the production method of the present invention, a condensation reaction with an acid halide can also be efficiently advanced.
  • the amide compound that can be used as a raw material for the production method of the present invention is used to include a compound having an amide structure (—NHCO—) and a compound having a thioamide structure (—NHCS—).
  • the amide compound that can be used as a raw material for the production method of the present invention includes a compound having a urea structure (—NHCONH—) (hereinafter referred to as a urea compound), a compound having a thiourea structure (—NHCSNH—) (hereinafter referred to as thiourea).
  • Compound carbamic acid and carbamate, and thiocarbamic acid and thiocarbamate.
  • R 6 represents a single bond, —O— or — (N (—R 9 )) — (wherein R 9 represents a hydrogen atom, an amino group, an aliphatic hydrocarbon group or an aromatic ring group)
  • R 7 and R 8 may be the same or different and each represents a hydrogen atom or an aliphatic hydrocarbon group
  • Q represents an oxygen atom or a sulfur atom, provided that when R 6 represents a single bond, R 5 represents a group other than a hydrogen atom.
  • One of R 7 and R 8 preferably represents a hydrogen atom, and the other represents a hydrogen atom or an aliphatic hydrocarbon group.
  • the aliphatic hydrocarbon group and / or the aromatic ring group constituting the amide compound may be substituted with one or a plurality of substituents, and as the substituent, the above-described substituent A and And the substituent of the aliphatic hydrocarbon group is preferably the above-described substituent A which may be further substituted, and the substituent of the aromatic ring group is preferably further substituted.
  • the substituents may be the same or different.
  • R 6 represents — (N (—R 9 )) — and Q represents an oxygen atom
  • the compound of Formula 3 represents a urea compound
  • R 5 , R 7 , R 8, and R 9 further represent
  • the compound of formula 3 represents urea
  • R 5 , R 7 and R 8 further represent a hydrogen atom
  • the compound of formula 3 represents a semicarbazide.
  • R 7 , R 8 and R 9 preferably represent a hydrogen atom.
  • R 6 represents — (N (—R 9 )) — and Q represents a sulfur atom
  • the compound of Formula 3 represents a thiourea compound
  • R 5 , R 7 , R 8, and R 9 further represent
  • R 5 , R 7 , R 8 further represent a hydrogen atom
  • R 9 further represents an amino group
  • the compound of formula 3 represents a thiosemicarbazide.
  • R 7 , R 8 and R 9 preferably represent a hydrogen atom.
  • R 6 represents —O— and Q represents an oxygen atom
  • the compound of Formula 3 represents a carbamate (when R 5 is a hydrogen atom) and a carbamate compound (when R 5 is other than a hydrogen atom).
  • R 7 and R 8 preferably represent a hydrogen atom.
  • R 6 represents —O— and Q represents a sulfur atom
  • the compound of Formula 3 is a thiocarbamic acid (when R 5 is a hydrogen atom) and a thiocarbamate compound (when R 5 is other than a hydrogen atom).
  • R 7 and R 8 preferably represent a hydrogen atom.
  • the compound of Formula 3 represents an amide compound other than a urea compound, a thiourea compound, a carbamic acid, a carbamate compound, a thiocarbamic acid, and a thiocarbamate.
  • R 7 and R 8 preferably represent a hydrogen atom.
  • Alcohol examples of the alcohol that can be used as a raw material for the production method of the present invention include aliphatic alcohols and aromatic alcohols.
  • An aliphatic alcohol means an alcohol having an aliphatic hydrocarbon chain.
  • the aliphatic alcohol can be represented, for example, by the formula 4: R 10 —OH (wherein R 10 represents an aliphatic hydrocarbon group).
  • the aliphatic hydrocarbon group constituting the aliphatic alcohol may be substituted with one or a plurality of substituents, and examples of the substituent include the substituent A which may be further substituted.
  • the substituents may be the same or different.
  • An aromatic alcohol means an alcohol having an aromatic ring.
  • the aromatic alcohol can be represented by, for example, Formula 5: R 11 —OH (wherein R 11 represents an aromatic ring group).
  • the aromatic ring group constituting the aromatic alcohol may be substituted with one or a plurality of substituents, and examples of the substituent include the substituent A and the substituent B which may be further substituted.
  • the substituent B may be further substituted.
  • the aromatic alcohol is substituted with a plurality of substituents, the substituents may be the same or different.
  • Acid halide examples include carboxylic acid halides and sulfonic acid halides.
  • Carboxylic acid halides include aliphatic carboxylic acids and aromatic carboxylic acids.
  • the aliphatic carboxylic acid means a carboxylic acid having an aliphatic hydrocarbon chain as a basic skeleton.
  • the aliphatic carboxylic acid may be, for example, the formula 6: R 12 —R 13 —COOH (wherein R 12 represents a hydrogen atom or an aliphatic hydrocarbon group, R 13 represents a single bond or —NR 14 —, R 14 represents a hydrogen atom or an aliphatic hydrocarbon group.
  • the ⁇ -carbon and aliphatic hydrocarbon group of the carboxylic acid may be substituted with one or more substituents, and examples of the substituent include the substituent A which may be further substituted.
  • the substituents may be the same or different.
  • the aliphatic carboxylic acid halide includes, for example, formula 7: R 12 -R 13 -COHal (wherein R 12 represents a hydrogen atom or an aliphatic hydrocarbon group, Hal represents a halogen atom, R 13 represents a single bond or —NR 14 —, and R 14 represents a hydrogen atom or an aliphatic hydrocarbon group.
  • R 12 represents a hydrogen atom or an aliphatic hydrocarbon group
  • Hal represents a halogen atom
  • R 13 represents a single bond or —NR 14 —
  • R 14 represents a hydrogen atom or an aliphatic hydrocarbon group.
  • the aliphatic carboxylic acid in Formula 7 may be substituted with a substituent.
  • the halide of an aliphatic carboxylic acid includes a halide of an ester of an aliphatic carboxylic acid.
  • a halide can be represented by, for example, the formula 7a: R 12 —COR 15 (wherein R 12 represents a halogen atom or an aliphatic hydrocarbon group substituted by a halogen atom, and R 15 represents an aliphatic hydrocarbon group. It can be expressed by As described above, the aliphatic carboxylic acid in Formula 7a may be substituted with a substituent.
  • Aliphatic carboxylic acid halides can be prepared according to known methods, for example, by reacting an aliphatic carboxylic acid or an ester thereof with a halogenating agent such as thionyl chloride or sulfuryl chloride. By carrying out this reaction in the presence of one or more solvents selected from the group consisting of amide solvents and urea solvents, the produced aliphatic carboxylic acid or its ester halide can be isolated. Without delay, the next reaction can proceed as it is (one-pot reaction).
  • a halogenating agent such as thionyl chloride or sulfuryl chloride.
  • the above zwitterionic molecule halide can be used as the carboxylic acid halide. That is, the zwitterionic molecule has a carboxyl group in addition to an amino group in the molecule, and a molecule in which a hydrogen atom of the carboxyl group is substituted with a halogen atom is a halide of the zwitterionic molecule.
  • Such a zwitterionic halide can be prepared in the same manner as the aliphatic carboxylic halide.
  • typical examples of zwitterionic molecules include amino acids. That is, in the present invention, an amino acid halide obtained by halogenating an ⁇ -carboxyl group can be used as a carboxylic acid halide. As described above, the zwitterionic molecule includes a peptide obtained by polymerizing a plurality of amino acids. Therefore, in the present invention, a peptide halide obtained by halogenating the C-terminal ⁇ -carboxyl group can also be used as the carboxylic acid halide. As described later, a peptide can be synthesized by carrying out the production method of the present invention using an amino acid halide or peptide halide as a carboxylic acid halide and using another amino acid or peptide as an amine.
  • the aromatic carboxylic acid means a carboxylic acid having an aromatic ring as a basic skeleton.
  • the aromatic carboxylic acid may be, for example, formula 8: R 16 —R 17 —COOH (wherein R 16 represents an aromatic ring group, R 17 represents a single bond or —NR 18 —, and R 18 represents a hydrogen atom or Represents an aliphatic hydrocarbon group).
  • the aromatic ring group constituting the aromatic carboxylic acid may be substituted with one or more substituents, and examples of the substituent include the substituent A and the substituent B which may be further substituted.
  • the substituent B may be further substituted.
  • the aromatic carboxylic acid is substituted with a plurality of substituents, the substituents may be the same or different.
  • the aromatic carboxylic acid halide is represented by, for example, formula 9: R 16 -R 17 -COHal (wherein R 16 represents an aromatic ring group, Hal represents a halogen atom, and R 17 represents a single bond or —NR 18 —, wherein R 18 represents a hydrogen atom or an aliphatic hydrocarbon group.
  • R 16 represents an aromatic ring group
  • Hal represents a halogen atom
  • R 17 represents a single bond or —NR 18 —
  • R 18 represents a hydrogen atom or an aliphatic hydrocarbon group.
  • the aromatic carboxylic acid in Formula 9 may be substituted with a substituent.
  • the aromatic carboxylic acid halide includes an aromatic carboxylic acid ester halide.
  • a halide is, for example, the formula 9a: R 16 -COR 19 (wherein R 16 represents a halogen atom or an aromatic ring group substituted by a halogen atom, and R 19 represents an aliphatic hydrocarbon group)
  • R 16 represents a halogen atom or an aromatic ring group substituted by a halogen atom
  • R 19 represents an aliphatic hydrocarbon group
  • the halide of aromatic carboxylic acid can be prepared according to a known method.
  • it can be prepared by reacting aromatic carboxylic acid or its ester with a halogenating agent such as thionyl chloride or sulfuryl chloride.
  • a halogenating agent such as thionyl chloride or sulfuryl chloride.
  • the produced aromatic carboxylic acid or its ester halide can be isolated. Without delay, the next reaction can proceed as it is (one-pot reaction).
  • Sulfonic acid halides examples include aliphatic sulfonic acids and aromatic sulfonic acids.
  • the aliphatic sulfonic acid means a sulfonic acid having an aliphatic hydrocarbon chain.
  • the aliphatic sulfonic acid can be represented, for example, by the formula 10: R 20 —S ( ⁇ O) 2 OH (wherein R 20 represents an aliphatic hydrocarbon group).
  • the aliphatic hydrocarbon group constituting the aliphatic sulfonic acid may be substituted with one or a plurality of substituents, and examples of the substituent include the substituent A which may be further substituted.
  • the substituents may be the same or different.
  • the halide of the aliphatic sulfonic acid is, for example, the formula 11: R 20 —S ( ⁇ O) 2 Hal (wherein R 20 represents an aliphatic hydrocarbon group and Hal represents a halogen atom).
  • R 20 represents an aliphatic hydrocarbon group and Hal represents a halogen atom.
  • R 20 represents an aliphatic hydrocarbon group and Hal represents a halogen atom.
  • the aliphatic hydrocarbon group in Formula 11 may be substituted with a substituent.
  • the halide of aliphatic sulfonic acid can be prepared according to a known method, for example, by reacting aliphatic sulfonic acid or a metal salt thereof with a halogenating agent such as thionyl chloride or sulfuryl chloride. By carrying out this reaction in the presence of one or two or more solvents selected from the group consisting of amide solvents and urea solvents, the produced aliphatic sulfonic acid halide is not isolated and is used as it is. The reaction can proceed.
  • the aromatic sulfonic acid means a sulfonic acid having an aromatic ring.
  • the aromatic sulfonic acid can be represented by, for example, Formula 12: R 21 —S ( ⁇ O) 2 OH (wherein R 21 represents an aromatic ring group).
  • the aromatic ring group constituting the aromatic sulfonic acid may be substituted with one or a plurality of substituents, and examples of the substituent include the substituent A and the substituent B which may be further substituted.
  • the substituent B may be further substituted.
  • the aromatic sulfonic acid is substituted with a plurality of substituents, the substituents may be the same or different.
  • the aromatic sulfonic acid halide is, for example, represented by the formula 13: R 21 —S ( ⁇ O) 2 Hal (wherein R 21 represents an aromatic ring group and Hal represents a halogen atom). Can do. As described above, the aromatic ring group in formula 13 may be substituted with a substituent.
  • the halide of aromatic sulfonic acid can be prepared according to a known method.
  • it can be prepared by reacting aromatic sulfonic acid or a metal salt thereof with a halogenating agent such as thionyl chloride or sulfuryl chloride.
  • a halogenating agent such as thionyl chloride or sulfuryl chloride.
  • an amide solvent and a urea solvent can be used as the reaction solvent.
  • an amide solvent and a urea solvent serve as a potential Bronsted base (proton acceptor), and a synthetic reaction using an acid halide. Can solve the problems caused by the hydrogen halide generated.
  • the amide solvent and the urea solvent may be used alone or in combination.
  • a solvent other than an amide solvent or a urea solvent for example, an aprotic polar solvent such as acetone or ethyl acetate or a nonpolar solvent such as dichloromethane
  • An amide solvent and / or a urea solvent may be added.
  • the amide solvent and the urea solvent can be added so as to be 1 to 6 equivalents (preferably 1 to 2 equivalents) with respect to the amine, the amide compound, and the alcohol that are raw materials. From the viewpoint of the yield of the final product and the ease of recovery of the reaction product, it is preferable to use the amide solvent and the urea solvent alone or in combination as the reaction solvent.
  • amide solvents examples include organic solvents having an amide structure (—NHCO—) (particularly a dialkylamide structure (> N—CO—)), such as N, N-dimethylacetamide (DMAC). ), N, N-diethylacetamide (DEA), N, N-dimethylformamide (DMF), N, N-diethylformamide (DEF), N-methyl-2-pyrrolidone (NMP) and N-ethyl-2-pyrrolidone (NEP).
  • DMAC N-dimethylacetamide
  • DEA N, N-diethylacetamide
  • DMF N-dimethylformamide
  • DEF N-diethylformamide
  • NMP N-methyl-2-pyrrolidone
  • NEP N-ethyl-2-pyrrolidone
  • urea solvents examples include organic solvents having a urea structure (—NHCONH—), such as N, N′-dimethylpropyleneurea (DMPU), tetramethylurea (TMU) and 1,3. -Dimethyl-2-imidazolidinone (DMI).
  • DMPU N, N′-dimethylpropyleneurea
  • TNU tetramethylurea
  • DI 1,3. -Dimethyl-2-imidazolidinone
  • a urea solvent is used as a reaction solvent in an amide formation reaction and an ester formation reaction using an acid halide
  • adverse effects on the reaction progress due to hydrogen halide are suppressed.
  • the formation of salts (precipitates) of raw materials such as amines and hydrogen halides and the formation of precipitates of reaction products are suppressed.
  • the use of a urea-based solvent as a reaction solvent in the production method of the present invention is advantageous in that an amide compound and an ester compound can be produced in a high yield on an industrial scale without hindering stirring.
  • the amount of reaction components is not particularly limited as long as the amide formation reaction and the ester formation reaction using an acid halide proceed.
  • a stoichiometric amount is used.
  • either one of the raw materials may be excessive.
  • the ratio of the acid halide and the amine, amide compound or alcohol in the reaction system can be 1: 0.5 to 1: 2, preferably 1: 0. .95 to 1: 1.05.
  • the reaction temperature and time of the amide formation reaction and the ester formation reaction can be appropriately determined according to the reactivity between the raw material components. (Ie, addition to one of the other) can be carried out in the range of ⁇ 15 ° C. to 100 ° C., and preferably ⁇ 15 ° C. from the viewpoint of suppressing heat generation during mixing and increasing the yield
  • the mixing can be performed at ⁇ 35 ° C., more preferably at 0 ° C.-20 ° C.
  • This mixing step is preferably carried out with stirring from the viewpoint of preventing the salt of hydrogen halide and amine or the like, or the salt of hydrogen halide and solvent to form a precipitate as it is.
  • the mixing step is performed at ⁇ 15 ° C. from the viewpoint of suppressing the generation of hydrogen halide gas (for example, hydrogen chloride gas) due to the reaction with an acid halide and improving the yield of the final product. It is preferably carried out in the temperature range of ⁇ 35 ° C.
  • hydrogen halide gas for example, hydrogen chloride gas
  • the reaction of the acid halide with the amine, amide compound or alcohol can be continued by subsequently stirring the mixed solution.
  • the reaction temperature can be ⁇ 15 ° C. to 35 ° C. (preferably 0 ° C. to 20 ° C.).
  • an amide formation reaction and an ester formation reaction using an acid halide can proceed without substantially generating hydrogen halide from the reaction system.
  • This effect can be exhibited more effectively by adjusting the temperature of the mixing step of the acid halide and the amine, amide compound or alcohol as described above. Therefore, the production method of the present invention is advantageous in that it can be carried out in a reaction system that substantially does not contain a base catalyst that captures hydrogen halide produced by the reaction.
  • the reaction product is subjected to silica gel chromatography, column chromatography, filtration, crystallization. It can be separated and purified by known methods such as
  • the post-treatment after the amide formation reaction and the ester formation reaction includes the following treatments. That is, when an amide solvent or urea solvent is used as a reaction solvent, the reaction product is precipitated and precipitated by adding a poor solvent (eg, 1 to 5 times the amount of the reaction solution) to the reaction solution. This can be easily collected by a method such as filtration (precipitation method).
  • a poor solvent eg, 1 to 5 times the amount of the reaction solution
  • the poor solvent include solvents that do not dissolve reaction products such as water, methanol, ethanol, acetone, toluene, and benzene, and water and toluene can be preferably used.
  • the reaction product can be extracted into an organic layer by treating the reaction solution with an organic solvent such as ethyl acetate, chloroform, or methyl ethyl ketone (extraction method).
  • an extraction method can be used when it is difficult to recover the reaction product by the precipitation method.
  • the carboxylic acid amide compound a carboxylic acid halide (e.g., Formula 7 or a compound of formula 9) and an amine (e.g., a compound of Formula 1 or Formula 2) and the amide solvent and / or Provided is a method for producing a carboxylic acid amide compound comprising a step of reacting in the presence of a urea-based solvent.
  • a carboxylic acid amide compound comprising a step of reacting in the presence of a urea-based solvent.
  • the carboxylic acid amide compound of the reaction product includes a urea compound and a carbamate compound
  • the urea compound and the carbamate compound can be produced by appropriately selecting the carboxylic acid halide and amine to be reacted.
  • a urea compound can be produced by using a compound in which R 13 represents —NR 14 — in formula 7 or a compound in which R 17 represents —NR 18 — in formula 9 as a carboxylic acid halide and reacting with an amine.
  • a carbamate compound can be produced by using a halide of a carboxylic acid ester of formula 7a or 9a as a carboxylic acid halide and reacting with an amine.
  • a carboxylic acid halide for example, a compound of formula 7 or 9
  • an amide compound for example, a compound of formula 3
  • a method for producing a carboxylic acid amide compound comprising the step of: In carrying out this production method, raw materials, solvents, reaction conditions and procedures can be determined according to the description in this specification.
  • the carboxylic acid amide compound of the reaction product contains a urea compound
  • the urea compound can be produced by appropriately selecting the carboxylic acid halide and amine to be reacted.
  • a urea compound in which R 6 in formula 3 represents — (N (—R 9 )) — and Q represents an oxygen atom is used as an amide compound, and reacted with a carboxylic acid halide to react with acetyl urea (ureido).
  • Urea compounds such as can be produced.
  • the present invention of the sulfonic acid amide, sulfonic acid halides (e.g., a compound of Formula 11 or Formula 13) with an amine (e.g., a compound of Formula 1 or Formula 2) and the amide solvent and / or urea Provided is a method for producing a sulfonic acid amide compound comprising a step of reacting in the presence of a system solvent.
  • raw materials, solvents, reaction conditions and procedures can be determined according to the description in this specification.
  • a carboxylic acid halide for example, a compound of formula 7 or 9
  • an alcohol for example, a compound of formula 4 or 5
  • a method for producing a carboxylic acid ester compound comprising a step of reacting in the presence of
  • raw materials, solvents, reaction conditions and procedures can be determined according to the description in this specification.
  • a sulfonic acid halide for example, a compound of formula 11 or formula 13
  • an alcohol for example, a compound of formula 4 or formula 5
  • a sulfonate compound comprising a step of reacting.
  • raw materials, solvents, reaction conditions and procedures can be determined according to the description in this specification.
  • the amino acid halide or peptide halide, an amino acid or peptide comprising the step of reacting in the presence of an amide-based solvent and / or urea-based solvent, the production method of peptide Provided.
  • raw materials, solvents, reaction conditions and procedures can be determined according to the description of the present specification.
  • peptide is not limited by the chain length of amino acid residues, but is meant to include oligopeptides, polypeptides, and proteins.
  • an amino acid halide having an ⁇ -carboxyl group halogenated can be used as the amino acid halide, and the amino group of the amino acid is a protecting group (for example, a fluorenylmethoxycarbonyl group (Fmoc). ), Benzyloxycarbonyl group and tert-butoxycarbonyl group).
  • a protecting group for example, a fluorenylmethoxycarbonyl group (Fmoc).
  • Fmoc fluorenylmethoxycarbonyl group
  • Benzyloxycarbonyl group and tert-butoxycarbonyl group for example, a fluorenylmethoxycarbonyl group (Fmoc).
  • peptide halide a peptide in which the C-terminal ⁇ -carboxyl group is halogenated can be used, and the amino group at the N-terminal of the peptide is a protecting group (for example, a fluorenylmethoxycarbonyl group (Fmoc), Benzyloxycarbonyl group and tert-butoxycarbonyl group).
  • a protecting group for example, a fluorenylmethoxycarbonyl group (Fmoc), Benzyloxycarbonyl group and tert-butoxycarbonyl group.
  • an amino acid to be reacted with an acid halide can be an amino acid in which an amino group forming an amide bond is not protected, and the carboxyl group of the amino acid is a protective group (for example, methyl It may be protected by a carboxylic acid ester group such as ester, ethyl ester or benzyl ester).
  • a peptide in which the N-terminal ⁇ -amino group forming an amide bond is not protected can be used, and the C-terminal carboxyl group of the peptide is a protecting group (for example, methyl It may be protected by a carboxylic acid ester group such as ester, ethyl ester or benzyl ester).
  • an amino acid halide or peptide halide and an amino acid or peptide are reacted in the presence of an amide solvent and / or a urea solvent to advance the amide formation reaction, It can be performed according to a known peptide synthesis method.
  • a functional group that does not participate in the amide formation reaction can be protected in advance, and deprotected with an appropriate deprotecting agent after completion of the reaction.
  • the method for producing a peptide of the present invention has a higher efficiency of amide formation reaction than the conventional method, and can produce the target peptide with high yield.
  • the target peptide can be produced in a high yield without protecting the C-terminal amino acid or the carboxyl group of the peptide.
  • the peptide synthesis method of the present invention is advantageous in that the amide formation reaction can proceed continuously.
  • the peptide production method of the present invention can also be scaled up because it can be carried out in a liquid phase, and can be used for large-scale synthesis of peptides.
  • the peptide production method of the present invention is also advantageous in that the target peptide can be easily purified and recovered by the precipitation method using the poor solvent as described above.
  • an optically active carboxylic acid comprising a step of reacting a carboxylic acid halide with an optically active amino acid in the presence of an amide solvent and / or a urea solvent.
  • a method for producing an acid amide compound is provided. That is, when the production method of the present invention is carried out using an optically active amino acid (for example, L-form amino acid, D-form amino acid) as a raw material, an optical isomer carboxylic acid amide compound is produced without racemization. be able to.
  • the amino acid that can be used as a raw material for producing the optically active carboxylic acid amide compound is not particularly limited as long as it is an amino acid having optical activity.
  • L-alanine, D-alanine, L-phenylalanine, D-phenylalanine, Examples include L-valine and D-valine.
  • the above production method is advantageous in that the amide formation reaction using an acid halide proceeds efficiently even though the amino group of the amino acid used as a raw material shows almost no basicity.
  • raw materials, solvents, reaction conditions and procedures can be determined according to the description of the present specification.
  • a step of reacting an acid halide with two or more amines and / or amide compounds having different basicities in the presence of an amide solvent and / or a urea solvent There is provided a method for selectively producing any one of two or more carboxylic acid amide compounds or sulfonic acid amide compounds comprising: According to the above production method, a carboxylic acid amide or a sulfonic acid amide of an amine or amide compound having the smallest basicity among the two or more kinds of amine and / or amide compounds can be selectively produced.
  • “selectively producing” means an amount exceeding the total amount of other reaction products (preferably 2 times or more, 3 times or more, 5 times or more, 10 times or more of the total amount of other reaction products, Means to manufacture in a quantity of 15 times or more, 20 times or more).
  • the amine and amide compound that are the raw materials for the selective production method between different molecules of the present invention are different from one or more different amines even if they are two or more different amines or two or more different amide compounds. It may be a combination of two or more amide compounds.
  • the ratio of two or more carboxylic acid amide compounds or sulfonic acid amide compounds can be adjusted by adding an acid or a base to the reaction system. Specifically, an acid (pKa5 or less; for example, 1.5 to 5 equivalents with respect to the total of two or more amines and amide compounds having different basicities that are reacted with an acid halide) is added to the reaction system.
  • an acid pKa5 or less; for example, 1.5 to 5 equivalents with respect to the total of two or more amines and amide compounds having different basicities that are reacted with an acid halide
  • the ratio of the carboxylic acid amide compound or the sulfonic acid amide compound of the amine having the smallest basicity can be increased.
  • Examples of the additive as an acid include acetic acid, trifluoroacetic acid, citric acid, oxalic acid, formic acid, trichloroacetic acid, and sulfuric acid.
  • a base pK BH + 10 or more; for example, 1.5 to 5 equivalents with respect to the total of two or more amines and amide compounds having different basicities to be reacted with an acid halide
  • the ratio of the carboxylic acid amide compound or the sulfonic acid amide compound of the amine having the smallest basicity can be reduced.
  • Examples of the additive as a base include triethylamine.
  • the reaction can be carried out in the presence of one or more solvents selected from the group consisting of an amide solvent and a urea solvent, but is carried out in the presence of an amide solvent.
  • the amide solvents are preferably DMAC and DMF, and particularly preferably DMAC.
  • an acid halide and an amine or amide compound having two or more amino groups having different basicities are combined in the presence of an amide solvent and / or a urea solvent.
  • a method for producing a carboxylic acid amide compound or a sulfonic acid amide compound in which an amide bond is selectively formed with respect to any one of the amino groups is provided.
  • an amide bond can be selectively formed in the amino group with the smallest basicity among the said 2 or more types of amino groups.
  • “selectively formed” means an amount exceeding the total of amide bonds formed in other amino groups (preferably 2 times or more and 3 times the total of amide bonds formed in other amino groups).
  • the basicity degree (namely, pKBH + value) for every amino group can be calculated on the assumption that the amino group exists independently and the other amino group does not exist.
  • the pKBH + value can be determined as an experimental value or a calculated value according to the above description.
  • the two or more amino groups having different basicities of the amine and amide compound that are the raw materials for the intramolecular selective production method of the present invention are amino groups bonded to an aliphatic hydrocarbon chain as shown in Formula 1.
  • amino groups constituting an amide structure, thioamide structure, urea structure, thiourea structure, semicarbazide structure, thiosemicarbazide structure, and the like are included.
  • the ratio of the amide bond originating in 2 or more types of amino groups can be adjusted by adding an acid or a base to a reaction system.
  • an acid pKa 5 or less; for example, 1.5 to 5 equivalents with respect to the total amino groups
  • the additive as an acid can use the same thing as the above.
  • a base pK BH + 10 or more; for example, 1.5 to 5 equivalents relative to the total of amino groups
  • the ratio of the amide bond of the amino group having the smallest basicity can be reduced.
  • the additive as the base the same ones as described above can be used.
  • the amine and amide compounds that are raw materials for the intramolecular selective production method of the present invention include, for example, Formula 1: HN (—R 1 ) (— R 2 ) (wherein R 1 and R 2 have the same meanings as described above, but the aliphatic hydrocarbon group represented by R 1 and / or R 2 is at least Substituted with a substituent containing one amino group, which substituent is preferably said substituent A which contains at least one amino group and may be further substituted)
  • R 5 -R 6- (C Q) (-NR 7 R 8 ) (wherein R 5 , R 6 ,
  • the substituent A or the optionally substituted group A or A substituent B is the substituent A which includes at least one amino group and may be further substituted, and is a substituent of the aromatic ring group Is the above-mentioned substituent A or substituent B which contains at least one amino group and may be further substituted) It can be expressed as
  • Examples of amine and amide compounds that are raw materials for the intramolecular selective production method of the present invention include 4-aminobenzylamine, 3-aminobenzylamine, semicarbazide (H 2 N— (C ⁇ O) —NH—NH 2 ), thiosemicarbazide (H 2 N— (C ⁇ S) —NH—NH 2 ), but is not limited thereto.
  • an amide bond can be selectively formed at one terminal amino group due to the difference in basicity between the amino groups at both ends of the molecule.
  • the reaction can be carried out in the presence of one or more solvents selected from the group consisting of an amide solvent and a urea solvent, but is carried out in the presence of an amide solvent.
  • the amide solvents are preferably DMAC and DMF, and particularly preferably DMAC.
  • Example A Synthesis of carboxylic acid amide compound (1)
  • a carboxylic acid amide compound was synthesized by reacting an aliphatic amine and an acid chloride in various organic solvents.
  • 4-Methoxybenzylamine (1.4012 g, 10.214 mmol) was dissolved in 5 mL of DMAC at room temperature to obtain an amine solution.
  • Chloroacetyl chloride (1.1045 g, 9.780 mmol) was dissolved in 5 mL of DMAC to make an acid chloride solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 0 ° C. in an ice water bath.
  • the amine solution was added to the acid chloride solution with stirring at 0 ° C. over 4 minutes. A white precipitate was formed. The mixture was stirred at 0 ° C. for 10 minutes.
  • 4-Methoxybenzylamine (1.2448 g, 9.074 mmol) was dissolved in 5 mL of dichloromethane at room temperature to form an amine solution.
  • Chloroacetyl chloride (1.3261 g, 11.742 mmol) was dissolved in 5 mL of dichloromethane at room temperature to form an acid chloride solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 0 ° C. in an ice water bath.
  • the amine solution was added to the acid chloride solution with stirring at 0 ° C. over 3 minutes. A white precipitate was formed. The mixture was stirred at 0 ° C. for 10 minutes.
  • Dichloromethane was added to N, N-dimethylaniline (2.4331 g, 20.788 mmol) to prepare 5 mL of a solution (N, N-dimethylaniline-dichloromethane solvent).
  • 4-Methoxybenzylamine (1.4435 g, 10.523 mmol) was dissolved in 5 mL of N, N-dimethylaniline-dichloromethane solvent to give an amine solution.
  • Chloroacetyl chloride (1.1316 g, 10.020 mmol) was dissolved in 5 mL of dichloromethane at room temperature to make an acid chloride solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 0 ° C. in an ice water bath.
  • the amine solution was added to the acid chloride solution with stirring at 0 ° C. over 3 minutes, and then the mixture was stirred at 0 ° C. for 10 minutes.
  • the ice water bath was replaced with a water bath and the whole was stirred at 23 ° C. for 2 hours.
  • 30 mL of water was added to the mixture.
  • the mixture was extracted 4 times with 20 mL of dichloromethane and the combined organic fractions were washed 3 times with 50 mL of 0.01M hydrochloric acid solution and dried over magnesium sulfate.
  • Dichloromethane was added to triethylamine (2.0332 g, 20.093 mmol) to prepare 10 mL of a solution (triethylamine-dichloromethane solvent).
  • 4-Methoxybenzylamine (1.4373 g, 10.477 mmol) was dissolved in 5 mL of triethylamine-dichloromethane solvent to prepare an amine solution.
  • Chloroacetyl chloride (1.1313 g, 10.17 mmol) was dissolved in 5 mL of triethylamine-dichloromethane solvent at room temperature to obtain an acid chloride solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 0 ° C. in an ice water bath.
  • the amine solution was added to the acid chloride solution over 5 minutes with stirring at 0 ° C., and then the mixture was stirred at 0 ° C. for 10 minutes.
  • the ice water bath was replaced with a water bath and the whole was stirred at 23 ° C. for 2 hours.
  • 30 mL of water was added to the mixture, followed by 8 mL of 2M hydrochloric acid solution.
  • the mixture was extracted 4 times with 20 mL of dichloromethane and the combined organic fractions were washed 3 times with 50 mL of water and dried using magnesium sulfate.
  • Dichloromethane was added to DMAC (0.4341 g, 4.983 mmol) to prepare 10 mL of a solution (DMAC-dichloromethane solvent).
  • 4-Methoxybenzylamine (1.4469 g, 10.547 mmol) was dissolved in 5 mL of DMAC-dichloromethane solvent to give an amine solution.
  • Chloroacetyl chloride (1.1383 g, 10.079 mmol) was dissolved in 5 mL of DMAC-dichloromethane solvent at room temperature to give an acid chloride solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 0 ° C. in an ice water bath.
  • Dichloromethane was added to DMAC (0.8725 g, 10.15 mmol) to prepare 10 mL of a solution (DMAC-dichloromethane solvent).
  • 4-Methoxybenzylamine (1.4385 g, 10.486 mmol) was dissolved in 5 mL of DMAC-dichloromethane solvent to give an amine solution.
  • Chloroacetyl chloride (1.1329 g, 10.031 mmol) was dissolved in 5 mL of DMAC-dichloromethane solvent at room temperature to form an acid chloride solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 0 ° C. in an ice water bath.
  • Dichloromethane was added to DMAC (1.7638 g, 20.297 mmol (2 equivalents)) to prepare 10 mL of the solution (DMAC-dichloromethane solvent).
  • 4-Methoxybenzylamine (1.4384 g, 10.485 mmol) was dissolved in 5 mL of DMAC-dichloromethane solvent to give an amine solution.
  • Chloroacetyl chloride (1.1303 g, 10.008 mmol) was dissolved in 5 mL of DMAC-dichloromethane solvent at room temperature to obtain an acid chloride solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 0 ° C. in an ice water bath.
  • the amine solution was added to the acid chloride solution with stirring at 0 ° C. over 3 minutes, and then the mixture was stirred at 0 ° C. for 10 minutes.
  • the ice water bath was replaced with a water bath and the whole was stirred at 23 ° C. for 17 hours.
  • 30 mL of water was added to the mixture.
  • the mixture was extracted 4 times with 20 mL of dichloromethane and the combined organic fractions were washed 3 times with 50 mL of water and dried using magnesium sulfate.
  • the organic solvent was evaporated to give a white solid and dried in vacuo to give 1.7519 g of the title compound 4a (white solid) (yield: 82%).
  • the precipitate was pure enough to give a satisfactory combustion analysis without further purification.
  • the product was identical to the real compound in terms of 1 H-NMR (CDCl 3 ) and combustion analysis.
  • Dichloromethane was added to DMAC (1.7376 g, 19.994 mmol (2 eq)) to prepare 10 mL of the solution (DMAC-dichloromethane solvent).
  • 4-Methoxybenzylamine (1.4426 g, 10.516 mmol) was dissolved in 5 mL of DMAC-dichloromethane solvent to give an amine solution.
  • Chloroacetyl chloride (1.1336 g, 10.037 mmol) was dissolved in 5 mL of DMAC-dichloromethane solvent at room temperature to give an acid chloride solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 0 ° C. in an ice water bath.
  • the amine solution was added to the acid chloride solution with stirring at 0 ° C. over 3 minutes, and then the mixture was stirred at 0 ° C. for 10 minutes.
  • the ice water bath was replaced with a water bath and the whole was stirred at 23 ° C. for 2 hours.
  • 30 mL of water was added to the mixture.
  • the mixture was extracted 4 times with 20 mL of dichloromethane and the combined organic fractions were washed 3 times with 50 mL of water and dried using magnesium sulfate.
  • the organic solvent was evaporated to give a white solid and dried in vacuo to give 1.2890 g of the title compound 4a (white solid) (yield: 60%).
  • the precipitate was pure enough to give a satisfactory combustion analysis without further purification.
  • the product was identical to the real compound in terms of 1 H-NMR (CDCl 3 ) and combustion analysis.
  • 4-Methoxybenzylamine (1.4388 g, 10.488 mmol) was dissolved in 5 mL of acetone to make an amine solution.
  • Chloroacetyl chloride (1.1301 g, 10.006 mmol) was dissolved in 5 mL of acetone at room temperature to obtain an acid chloride solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 0 ° C. in an ice water bath.
  • the amine solution was added to the acid chloride solution with stirring at 0 ° C. over 3 minutes, and then the mixture was stirred at 0 ° C. for 10 minutes.
  • the ice water bath was replaced with a water bath and the whole was stirred at 23 ° C.
  • 4-Methoxybenzylamine (1.4433 g, 10.521 mmol) was dissolved in 5 mL of ethyl acetate to obtain an amine solution.
  • Chloroacetyl chloride (1.1336 g, 10.037 mmol) was dissolved in 5 mL of ethyl acetate at room temperature to obtain an acid chloride solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 0 ° C. in an ice water bath.
  • the amine solution was added to the acid chloride solution with stirring and cooling at 0 ° C. over 4 minutes, and then the mixture was stirred at 0 ° C. for 10 minutes.
  • Acetone was added to DMAC (1.7431 g, 20.008 mmol (2 equivalents)) to prepare 10 mL of a solution (DMAC-acetone solvent).
  • 4-Methoxybenzylamine (1.4497 g, 10.568 mmol) was dissolved in 5 mL of DMAC-acetone solvent to obtain an amine solution.
  • Chloroacetyl chloride (1.1360 g, 10.59 mmol) was dissolved in 5 mL of DMAC-acetone solvent at room temperature to obtain an acid chloride solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 0 ° C. in an ice water bath.
  • the amine solution was added to the acid chloride solution with stirring at 0 ° C. over 3 minutes, and then the mixture was stirred at 0 ° C. for 10 minutes.
  • the ice water bath was replaced with a water bath and the whole was stirred at 23 ° C. for 17 hours.
  • 30 mL of water was added to the mixture.
  • a white precipitate was formed.
  • the mixture was stirred at 23 ° C. for 22 hours.
  • the solid was filtered off with suction and washed with 70 mL of water. Then, it was dried in vacuum to obtain 1.5788 g of the title compound 4a (white solid) (yield: 73%).
  • the precipitate was pure enough to give a satisfactory combustion analysis without further purification.
  • the product was identical to the real compound in terms of 1 H-NMR (CDCl 3 ) and combustion analysis.
  • Ethyl acetate was added to DMAC (1.7483 g, 20.0.067 mmol (2 equivalents)) to prepare 10 mL of a solution (DMAC-ethyl acetate solvent).
  • 4-Methoxybenzylamine (1.4362 g, 10.469 mmol) was dissolved in 5 mL of DMAC-ethyl acetate solvent to obtain an amine solution.
  • Chloroacetyl chloride (1.1232 g, 9.945 mmol) was dissolved in 5 mL of DMAC-ethyl acetate solvent at room temperature to obtain an acid chloride solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 0 ° C.
  • Example B Synthesis of Carboxamide Compound (2)
  • a carboxylic acid amide compound was synthesized by reacting an aliphatic amine with an acid chloride in various organic solvents.
  • organic solvent DMAC, amide solvents other than DMAC, and urea solvents were used.
  • Example B1 Synthesis of 2-chloro-N- (4-methoxybenzyl) acetamide (4a) (1) Synthesized as described in Example A1 above.
  • Example C Synthesis of carboxylic acid amide compound (3)
  • a carboxylic acid amide compound was synthesized by reacting an aromatic amine and an acid chloride in various organic solvents.
  • an amide solvent and a urea solvent were used.
  • 4-Bromoaniline (1.8025 g, 10.48 mmol) was dissolved in 5 mL of DMAC to prepare an amine solution.
  • Chloroacetyl chloride (1.0934 g, 9.68 mmol) was dissolved in 5 mL of DMAC at room temperature to form an acid chloride solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 0 ° C. in an ice water bath.
  • the amine solution was added to the acid chloride solution over 5 minutes with stirring at 0 ° C., and then the mixture was stirred at 0 ° C. for 10 minutes.
  • the ice water bath was replaced with a water bath and the whole was stirred at 23 ° C. for 1.5 hours.
  • 4-Bromoaniline (1.8398 g, 10.69 mmol) was dissolved in 5 mL of DMF to make an amine solution.
  • Chloroacetyl chloride (1.1276 g, 9.98 mmol) was dissolved in 5 mL of DMF at room temperature to form an acid chloride solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 0 ° C. in an ice water bath.
  • the amine solution was added to the acid chloride solution over 5 minutes with stirring at 0 ° C., and then the mixture was stirred at 0 ° C. for 10 minutes.
  • the ice water bath was replaced with a water bath and the whole was stirred at 23 ° C. for 1.5 hours.
  • 4-Bromoaniline (1.8148 g, 10.55 mmol) was dissolved in 5 mL of TMU, and this was used as an amine solution.
  • Chloroacetyl chloride (1.1526 g, 10.21 mmol) was dissolved in 5 mL of TMU at room temperature to obtain an acid chloride solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 5 ° C. in an ice water bath.
  • the amine solution was added to the acid chloride solution with stirring and cooling at 5 ° C. over 5 minutes, and then the mixture was stirred at 5 ° C. for 10 minutes. A precipitate was not formed.
  • 4-Bromoaniline (1.8394 g, 10.69 mmol) was dissolved in 5 mL of DMI to make an amine solution.
  • Chloroacetyl chloride (1.1451 g, 10.14 mmol) was dissolved in 5 mL of DMI at room temperature to obtain an acid chloride solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 0 ° C. in an ice water bath.
  • the amine solution was added to the acid chloride solution over 5 minutes with stirring and cooling at 0 ° C. The mixture turned yellow. The mixture was stirred at 0 ° C. for 10 minutes. A precipitate was not formed.
  • Example D Synthesis of carboxamide compound (4)
  • either an aliphatic amine or an aromatic amine is combined as an amine and either a fatty acid chloride or an aromatic acid chloride is combined as an acid chloride, and the combination is reacted in an amide solvent to obtain a carboxylic acid amide compound. Synthesized.
  • Example D1 Synthesis of 2-chloro-N- (4-methoxybenzyl) acetamide (4a) Synthesized as described in Example A1 above.
  • Example D2 Synthesis of N- (4-bromophenyl) -2-chloroacetamide (4b) Synthesized as described in Example C1 above.
  • Dibenzylamine (2.0800 g, 10.54 mmol) was dissolved in 5 mL of DMAC to prepare an amine solution.
  • Chloroacetyl chloride (1.1269 g, 9.98 mmol) was dissolved in 5 mL of DMAC to make an acid chloride solution.
  • the amine solution was added to the pre-cooled acid chloride solution at 0 ° C. (on ice water bath) over 4 minutes.
  • the ice water bath was replaced with a water bath and the whole was stirred at 23 ° C. for 2 hours. Completion of the reaction was confirmed by thin layer chromatography. Then 20 mL of water was added to the mixture. An oily component was produced.
  • 1,2,3,4-Tetrahydroisoquinoline (1.3964 g, 10.484 mmol) was dissolved in 5 mL of DMAC to prepare an amine solution.
  • Chloroacetyl chloride (1.1255 g, 9.966 mmol) was dissolved in 5 mL of DMAC to make an acid chloride solution.
  • the amine solution was added to the pre-cooled acid chloride solution (0 ° C. in an ice water bath) over 4 minutes, and the whole was stirred at 0 ° C. for 10 minutes. A yellow precipitate was formed.
  • the ice water bath was replaced with a water bath and the whole was stirred at 23 ° C. for 3 hours. Completion of the reaction was confirmed by thin layer chromatography.
  • 2-Chlorobenzylamine (1.4868 g, 10.500 mmol) was dissolved in 5 mL of DMAC to prepare an amine solution.
  • Chloroacetyl chloride (1.1367 g, 10.065 mmol) was dissolved in 5 mL of DMAC at room temperature to form an acid chloride solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 0 ° C. in an ice water bath.
  • the amine solution was added to the acid chloride solution with stirring at 0 ° C. over 5 minutes, and the whole was stirred at 0 ° C. for 14 minutes. A white precipitate was formed.
  • 4-Methoxybenzylamine (1.4389 g, 10.389 mmol) was dissolved in 5 mL of DMAC at room temperature to obtain an amine solution.
  • 2-Phenylacetyl chloride (1.5344 g, 9.925 mmol) was dissolved in 5 mL of DMAC to make an acid chloride solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 0 ° C. in an ice water bath.
  • the amine solution was added to the acid chloride solution with stirring at 0 ° C. over 4 minutes, and then the whole was stirred at 0 ° C. for 12 minutes.
  • the ice water bath was replaced with a water bath and the whole was stirred at 23 ° C.
  • 2,2-diphenylethane-1-amine (2.2351 g, 11.33 mmol) was dissolved in 5 mL of DMAC to prepare an amine solution.
  • Benzoyl chloride (1.4247 g, 10.14 mmol) was dissolved in 5 mL of DMAC at room temperature to form an acid chloride solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 0 ° C. in an ice water bath.
  • the amine solution was added to the acid chloride solution with stirring at 0 ° C. over 8 minutes, and the whole was stirred at 0 ° C. for 10 minutes.
  • the ice water bath was replaced with a water bath and the whole was stirred at 23 ° C.
  • 2-Chlorobenzylamine (1.4838 g, 10.479 mmol) was dissolved in 5 mL of DMAC to prepare an amine solution.
  • Benzoyl chloride (1.4000 g, 9.960 mmol) was dissolved in 5 mL of DMAC to make an acid chloride solution.
  • the amine solution was added to the pre-cooled acid chloride solution at 0 ° C. over 3 minutes, and the whole was stirred at 0 ° C. for 10 minutes. A white precipitate was formed.
  • the ice water bath was replaced with a water bath and the whole was stirred at 23 ° C. for 4 hours. Completion of the reaction was confirmed by thin layer chromatography. Then 40 mL of water was added to the mixture. A white precipitate was formed.
  • Dibenzylamine (2.0790 g, 10.54 mmol) was dissolved in 5 mL of DMAC to prepare an amine solution.
  • 4-Fluorobenzoyl chloride (1.5871 g, 10.19 mmol) was dissolved in 5 mL of DMAC to obtain an acid chloride solution.
  • the whole was stirred at 0 ° C. for 3 minutes.
  • a white precipitate was formed.
  • the ice water bath was replaced with a water bath and the whole was stirred at 23 ° C. for 18 hours. Completion of the reaction was confirmed by thin layer chromatography. Then 30 mL of water was added to the mixture. A white precipitate was formed.
  • the resulting precipitate was collected by suction filtration and the solid was washed with water. It was then dried in vacuum. It was contaminated with p-fluorobenzene acid. For this, the solid was dissolved in 100 mL dichloromethane and the organic layer was washed with 50 mL saturated aqueous sodium bicarbonate and 40 mL brine. Drying with magnesium sulfate and evaporation of the solvent gave 2.2358 g of the title compound 4i (white powder) (yield: 70%). The precipitate was pure enough to give a satisfactory combustion analysis without further purification.
  • 2-Chlorobenzylamine (1.4865 g, 10.498 mmol) was dissolved in 5 mL of DMAC to prepare an amine solution.
  • 4-Fluorobenzoyl chloride (1.5893 g, 10.024 mmol) was dissolved in 5 mL of DMAC at room temperature to form an acid chloride solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 0 ° C. in an ice water bath.
  • the amine solution was added to the acid chloride solution with stirring at 0 ° C. over 5 minutes, and the whole was stirred at 0 ° C. for 10 minutes.
  • the ice water bath was replaced with a water bath and the whole was stirred at 23 ° C.
  • 4-Methoxybenzylamine (0.8560 g, 6.240 mmol) was dissolved in 3 mL of DMAC at room temperature to obtain an amine solution.
  • 6-chloronicotinoyl chloride (1.0476 g, 5.952 mmol) was dissolved in 3 mL of DMAC, and this was used as an acid chloride solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 0 ° C. in an ice water bath.
  • the amine solution was added to the acid chloride solution with stirring at 0 ° C. over 3 minutes, and the whole was stirred at 0 ° C. for 4 minutes.
  • the ice water bath was replaced with a water bath and the whole was stirred at 23 ° C. for 0.5 hour. Completion of the reaction was confirmed by thin layer chromatography. Then 20 mL of water was added to the mixture. A white precipitate was formed. The whole was stirred at 23 ° C. for 19 hours. The solid was filtered off with suction and washed with 100 mL of water. Then, it was dried in vacuum to obtain 1.1792 g of the title compound 4k (white solid) (yield: 72%). The precipitate was pure enough to give a satisfactory combustion analysis without further purification.
  • 4-Methoxybenzylamine (1.4443 g, 10.528 mmol) was dissolved in 5 mL of DMAC to obtain an amine solution.
  • Benzoyl chloride (1.4187 g, 10.093 mmol) was dissolved in 5 mL of DMAC at room temperature to form an acid chloride solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 0 ° C. in an ice water bath.
  • the amine solution was added to the acid chloride solution with stirring at 0 ° C. over 4 minutes. A white precipitate was formed. The whole was stirred at 0 ° C. for 10 minutes.
  • 4-Methoxybenzylamine (1.4391 g, 10.490 mmol) was dissolved in 5 mL of DMAC to prepare an amine solution.
  • 4-Fluorobenzoyl chloride (1.5893 g, 10.024 mmol) was dissolved in 5 mL of DMAC at room temperature to form an acid chloride solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 0 ° C. in an ice water bath.
  • the amine solution was added to the acid chloride solution with stirring at 0 ° C. over 4 minutes. A white precipitate was formed. The whole was stirred at 0 ° C. for 10 minutes.
  • N-methylaniline (1.1122 g, 10.379 mmol) was dissolved in 5 mL of DMAC to obtain an amine solution.
  • Chloroacetyl chloride (1.1219 g, 9.934 mmol) was dissolved in 5 mL of DMAC to make an acid chloride solution.
  • the whole was stirred at 0 ° C. for 10 minutes.
  • a white precipitate was formed.
  • the ice water bath was replaced with a water bath and the whole was stirred at 23 ° C. for 5 hours. Then 30 mL of water was added to the mixture. A white precipitate appeared. The mixture was stirred at 23 ° C. for 1 hour.
  • 4-Bromoaniline (1.7920 g, 10.417 mmol) was dissolved in 5 mL of DMAC to prepare an amine solution.
  • 4-Fluorobenzoyl chloride (1.5672 g, 9.884 mmol) was dissolved in 5 mL of DMAC at room temperature to form an acid chloride solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 0 ° C. in an ice water bath.
  • the amine solution was added to the acid chloride solution with stirring and cooling at 0 ° C. over 4 minutes, and the whole was stirred at 0 ° C. for 10 minutes.
  • the ice water bath was replaced with a water bath and the whole was stirred at 23 ° C.
  • Indoline (1.2728 g, 10.68 mmol) was dissolved in 5 mL of DMAC to prepare an amine solution.
  • 4-Fluorobenzoyl chloride (1.6248 g, 10.25 mmol) was dissolved in 5 mL of DMAC at room temperature to form an acid chloride solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 0 ° C. in an ice water bath.
  • the amine solution was added to the acid chloride solution over 5 minutes with stirring at 0 ° C. A white precipitate formed immediately.
  • the whole was stirred at 0 ° C. for 10 minutes.
  • the ice water bath was replaced with a water bath and the whole was stirred at 23 ° C.
  • Indoline (0.7543 g, 6.330 mmol) was dissolved in 3 mL of DMAC to prepare an amine solution.
  • 6-Chloronicotinoyl chloride (1.0557 g, 5.998 mmol) was dissolved in 3 mL of DMAC at room temperature to form an acid chloride solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 0 ° C. in an ice water bath.
  • the amine solution was added to the acid chloride solution with stirring at 0 ° C. over 3 minutes, and the whole was stirred at 0 ° C. for 4 minutes.
  • the ice water bath was replaced with a water bath and the whole was stirred at 23 ° C. for 45 minutes.
  • Example E Synthesis of carboxamide compound (5) In Example E, various weakly basic amines and neutral amines and acid chlorides were reacted in an amide solvent to synthesize carboxylic acid amide compounds.
  • Example E1 Synthesis of isobutyl 4-benzamide benzoate (5a-1)
  • Isopropyl 4-aminobenzoate (1.8565 g, 10.359 mmol) was dissolved in 5 mL of DMAC to obtain an amine solution.
  • Benzoyl chloride (1.3828 g, 9.873 mmol) was dissolved in 5 mL of DMAC at room temperature to form an acid chloride solution.
  • the amine solution was added to the pre-cooled acid chloride solution over 3 minutes with stirring at 0 ° C., and the whole was stirred at 0 ° C. for 10 minutes.
  • the ice water bath was replaced with a water bath and the whole was stirred at 23 ° C. for 3 hours. 30 mL of water was added to the mixture.
  • Methyl anthranilate (1.5264 g, 10.10 mmol) was dissolved in 5 mL of DMAC to prepare an amine solution.
  • Benzoyl chloride (1.4040 g, 9.99 mmol) was dissolved in 5 mL of DMAC to make an acid chloride solution.
  • the amine solution was added to the pre-cooled acid chloride solution over 2 minutes, and the whole was stirred at 0 ° C. for 10 minutes. A white precipitate was formed.
  • the ice water bath was replaced with a water bath and the whole was stirred at 23 ° C. for 1.5 hours. Completion of the reaction was confirmed by thin layer chromatography. 50 mL of water was added to the mixture.
  • 2-Nitroaniline (1.4482 g, 10.485 mmol) was dissolved in 5 mL of DMAC to prepare an amine solution.
  • Benzoyl chloride (1.4035 g, 9.985 mmol) was dissolved in 5 mL of DMAC at room temperature to form an acid chloride solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 0 ° C. in an ice water bath.
  • the amine solution was added to the acid chloride solution with stirring at 0 ° C. over 3 minutes and cooled, and then the whole was stirred at 0 ° C. for 10 minutes.
  • the ice water bath was replaced with a water bath and the whole was stirred at 23 ° C.
  • 4-Aminobenzonitrile (1.2370 g, 10.471 mmol) was dissolved in 5 mL of DMAC to prepare an amine solution.
  • Benzoyl chloride (1.4051 g, 9.996 mmol) was dissolved in 5 mL of DMAC at room temperature to form an acid chloride solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 0 ° C. in an ice water bath.
  • the amine solution was added to the acid chloride solution with stirring and cooling at 0 ° C. over 4 minutes, and the whole was stirred at 0 ° C. for 10 minutes.
  • the ice water bath was replaced with a water bath and the whole was stirred at 23 ° C.
  • Table 5 shows the chemical structure, stirring temperature and time, and yield (a: yield by precipitation method) of the compounds synthesized in Examples E1 to E9.
  • Example F Synthesis of carboxylic acid amide compound (6)
  • various zwitterionic molecules and acid chlorides were reacted in an amide solvent to synthesize a carboxylic acid amide compound.
  • Anthranilic acid (1.3716 g, 10.00 mmol) was dissolved in 5 mL of DMAC to prepare an anthranilic acid solution.
  • Benzoyl chloride (1.4057 g, 10.00 mmol) was dissolved in 5 mL of DMAC to make an acid chloride solution.
  • the anthranilic acid solution was added to the pre-cooled acid chloride solution at 0 ° C. (on ice water bath) over 5 minutes. A white precipitate was formed. The whole was stirred at 0 ° C. for 5 minutes.
  • the ice water bath was replaced with a water bath and the whole was stirred at 23 ° C. for 1.5 hours. 40 mL of water was added to the mixture. A white precipitate was formed.
  • Anthranilic acid (1.3740 g, 10.00 mmol) was dissolved in 5 mL of DMPU to prepare an anthranilic acid solution.
  • Benzoyl chloride (1.4063 g, 10.00 mmol) was dissolved in 5 mL of DMPU to make an acid chloride solution.
  • the anthranilic acid solution was added to the precooled acid chloride solution at 0 ° C. (on an ice-water bath) over 4 minutes, and then the whole was stirred at 0 ° C. for 3 minutes. A precipitate was not formed.
  • the ice water bath was replaced with a water bath and the whole was stirred at 23 ° C. for 1.5 hours. A precipitate was not formed. 40 mL of water was added to the mixture.
  • Benzoyl chloride (1.4039 g, 9.99 mmol) was dissolved in 5 mL of DMAC to obtain an acid chloride solution. Pure glycine (748.0 mg, 9.96 mmol) was added to the pre-cooled acid chloride solution at 0 ° C. (on ice water bath) over 1 minute and the whole was stirred at 0 ° C. for 20 minutes. The ice water bath was replaced with a water bath and the whole was stirred at 23 ° C. for 4 hours. Completion of the reaction was confirmed by thin layer chromatography. To the mixture was added 11 mL of water. The resulting precipitate was collected by suction filtration and dried in vacuo to give 1.2561 g of the title compound 6b (white solid) (yield: 70%). The precipitate was pure enough to give a satisfactory combustion analysis without further purification.
  • Benzoyl chloride (1.4031 g, 9.982 mmol) was dissolved in 10 mL of DMAC at room temperature to obtain an acid chloride solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 0 ° C. in an ice water bath.
  • Pure L-phenylalanine (1.7290 g, 10.467 mmol) was added to the acid chloride solution at 0 ° C. (on ice water bath) at 0 ° C. over 9 minutes with cooling and the whole was then added at 0 ° C. Stir for 10 minutes.
  • the ice water bath was replaced with a water bath and the whole was stirred at 23 ° C. for 21 hours.
  • Example F5 Optical purity of benzoylated phenylalanine (1) Synthesis of benzoyl-L-phenylalanine and methylation of the product carboxylic acid
  • Benzoyl chloride (1.4143 g, 10.061 mmol) was dissolved in 10 mL of DMAC at room temperature to obtain an acid chloride solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 0 ° C. in an ice water bath.
  • L-phenylalanine (1.7408 g, 10.538 mmol)
  • the whole was stirred at 0 ° C. for 10 minutes.
  • the ice bath was replaced with a water bath and the mixture was stirred at 23 ° C. for 22 hours.
  • 30 mL of water was added to the mixture. A white precipitate was formed.
  • the mixture was stirred at 23 ° C. for 2 hours.
  • the solid was filtered off with suction and washed with 60 mL of water. Then, it was dried in vacuum to obtain 1.5603 g of benzoyl-L-phenylalanine 6c (white solid) (yield: 5
  • Benzoyl chloride (1.4104 g, 10.034 mol) was dissolved in 10 mL of DMAC at room temperature to obtain an acid chloride solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 0 ° C. in an ice water bath.
  • D-phenylalanine (1.7035 g, 10.1212 mmol)
  • the ice bath was replaced with a water bath and the mixture was stirred at 23 ° C. for 19 hours.
  • 40 mL of water was added to the mixture. A white precipitate was formed.
  • the mixture was stirred at 23 ° C. for 2 hours.
  • the HPLC chromatograms were as shown in FIGS. It was shown that two peaks (30.67 minutes, 45.55 minutes) of the chromatogram (FIG. 1) of the LD mixed preparation were derived from D-form or L-form, respectively.
  • the peak of 1% or more of the integrated value of the peak derived from the L standard does not exist at the time corresponding to the peak of the D standard.
  • the reaction product of the product was shown to be L-form having an optical purity of 99% or more.
  • the reaction product of the D standard was D form having an optical purity of 99% or more. From these results, it was shown that phenylalanine can be benzoylated without racemization according to the production method of the present invention.
  • Benzoyl chloride (1.3990 g, 9.953 mmol) was dissolved in 10 mL of DMAC to obtain an acid chloride solution. After adding pure L-valine (1.2298 g, 10.498 mmol) to the pre-cooled acid chloride solution over 1 minute, the whole was stirred at 0 ° C. for 10 minutes. The ice water bath was replaced with a water bath and the whole was stirred at 23 ° C. for 26 hours. To the mixture was added 5 mL of methanol. The mixture was stirred at 23 ° C. for 5 hours. 5 mL of 2M hydrochloric acid solution was added. The mixture was extracted 3 times with 30 mL of ethyl diethyl ether.
  • Example G Synthesis of amide compound (7)
  • a selective carboxylic acid amide compound was synthesized by reacting two kinds of amines having different basicities with an acid chloride in an amide solvent.
  • Example G1 Synthesis of N-phenylbenzamide (4s)
  • Aniline (0.9779 g, 10.500 mmol) was dissolved in 5 mL of DMAC at room temperature to obtain an amine solution.
  • Benzoyl chloride (1.4129 g, 10.52 mmol) was dissolved in 5 mL of DMAC to make an acid chloride solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 0 ° C. in an ice water bath.
  • the amine solution was added to the acid chloride solution with stirring at 0 ° C. over 3 minutes, and the whole was stirred at 0 ° C. for 10 minutes.
  • the ice water bath was replaced with a water bath and the whole was stirred at 23 ° C. for 2 hours.
  • 4-methoxybenzylamine (0.4849 g, 5.207 mmol) and aniline (0.6940 g, 5.059 mmol) were placed in a 30 mL round bottom flask equipped with a stir bar. The flask was immersed in an ice water bath (0 ° C.). 5 mL of DMAC was added with stirring. Then, an acid chloride solution in which benzoyl chloride (0.7000 g, 4.980 mmol) was dissolved in 5 mL of DMAC at room temperature was added at 0 ° C. over 5 minutes, and the whole was stirred at 0 ° C. for 10 minutes. The ice water bath was replaced with a water bath and the whole was stirred at 23 ° C. for 3 hours.
  • Example H Synthesis of Carbamate Compound
  • a carbamate compound was synthesized by reacting various amines with a carboxylic acid ester chloride in an amide solvent.
  • Methyl chloroformate (0.9470 g, 10.12 mmol) was dissolved in 5 mL of DMAC to obtain an acid chloride solution.
  • Dibenzylamine (2.0735 g, 10.510 mmol) was dissolved in 5 mL of DMAC at room temperature to obtain an amine solution.
  • the amine solution was transferred to a 30 mL round bottom flask and the whole was cooled to 1 ° C. in an ice water bath.
  • the acid chloride solution was added to the amine solution with stirring and cooling at 1 ° C. over 5 minutes. A white precipitate was formed. The whole was stirred at 1 ° C. for 10 minutes. The ice bath was removed and the mixture was stirred at room temperature for 1296 minutes.
  • Methyl chloroformate (0.9461 g, 10.12 mmol) was dissolved in 5 mL of DMAC at room temperature to obtain an acid chloride solution.
  • Indoline (1.2503 g, 10.492 mmol) was dissolved in 5 mL of DMAC to make an amine solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 1 ° C. in an ice water bath.
  • the amine solution was added to the acid chloride solution over 5 minutes with stirring at 1 ° C. A pale yellow precipitate was formed. The whole was stirred at 1 ° C. for 10 minutes.
  • the ice bath was removed and the mixture was stirred at room temperature for 234 minutes.
  • Methyl chloroformate (0.9441 g, 9.991 mmol) was dissolved in 5 mL of DMAC to obtain an acid chloride solution.
  • Dibenzylamine (2.0728 g, 10.507 mmol) was dissolved in 5 mL of DMAC at room temperature to obtain an amine solution.
  • the amine solution was transferred to a 30 mL round bottom flask and the whole was cooled to 1 ° C. in an ice water bath.
  • the acid chloride solution was added to the amine solution with stirring and cooling at 1 ° C. over 5 minutes. A white precipitate was formed.
  • the mixture was stirred at 1 ° C. for 10 minutes.
  • the ice bath was removed and the mixture was stirred at room temperature for 1432 minutes.
  • Methyl chloroformate (0.9542 g, 10.098 mmol) was dissolved in 5 mL of DMAC at room temperature to obtain an acid chloride solution.
  • 1,2,3,4-Tetrahydroisoquinoline (1.2406 g, 10.411 mmol) was dissolved in 5 mL of DMAC to make an amine solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 1 ° C. in an ice water bath.
  • the amine solution was added to the acid chloride solution over 5 minutes at 1 ° C. with stirring and cooling. The whole was stirred at 1 ° C. for 10 minutes.
  • the ice water bath was removed and the mixture was stirred at room temperature for 1200 minutes.
  • Indoline (1.2406 g, 10.411 mmol) was dissolved in 5 mL of DMAC to prepare an amine solution.
  • Dimethylcarbamic acid chloride (1.0663 g, 9.916 mmol) was dissolved in 5 mL of DMAC at room temperature to obtain an acid chloride solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 1 ° C. in an ice water bath.
  • the amine solution was added to the acid chloride solution with stirring and cooling at 1 ° C. over 4 minutes, and the whole was stirred at 1 ° C. for 53 minutes.
  • the ice water bath was removed and the mixture was stirred at room temperature for 1200 minutes.
  • Example J Synthesis of sulfonamide compound
  • various amines and sulfonic acid chlorides were reacted in an amide solvent to synthesize a sulfonamide compound.
  • Tosyl chloride (1.9225 g, 10.084 mmol) was dissolved in 5 mL of DMAC to obtain an acid chloride solution.
  • Indoline (1.2731 g, 10.683 mmol) was dissolved in 5 mL of DMAC at room temperature to form an amine solution.
  • the amine solution was transferred to a 30 mL round bottom flask and the whole was cooled to 1 ° C. in an ice water bath.
  • the acid chloride solution was added to the amine solution with stirring and cooling at 1 ° C. over 5 minutes. A white precipitate was formed. The whole was stirred at 1 ° C. for 10 minutes. The ice bath was removed and the mixture was stirred at room temperature for 1405 minutes.
  • Tosyl chloride (1.9063 g, 9.999 mmol) was dissolved in 5 mL of DMAC to obtain an acid chloride solution.
  • Indoline (1.2568 g, 10.469 mmol) was dissolved in 5 mL of DMAC at room temperature to make an amine solution.
  • the amine solution was transferred to a 30 mL round bottom flask and the whole was heated to 47 ° C. in an oil bath.
  • the acid chloride solution was added to the amine solution with stirring and heating at 47 ° C. over 5 minutes. A white precipitate was formed. The whole was stirred at 47 ° C. for 144 minutes. Completion of the reaction was confirmed by thin layer chromatography. The oil bath was removed and the mixture was stirred at room temperature for 6 minutes.
  • Tosyl chloride (1.9130 g, 10.035 mmol) was dissolved in 5 mL of DMAC to obtain an acid chloride solution.
  • Indoline (1.2473 g, 10.467 mmol) was dissolved in 5 mL of DMAC at room temperature to make an amine solution.
  • the amine solution was transferred to a 30 mL round bottom flask and the whole was cooled to 1 ° C. in an ice water bath.
  • the acid chloride solution was added to the amine solution with stirring and cooling at 1 ° C. over 5 minutes. A brown precipitate was formed. The whole was stirred at 1 ° C. for 161 minutes. Completion of the reaction was confirmed by thin layer chromatography.
  • Tosyl chloride (1.9050 g, 9.993 mmol) was dissolved in 5 mL of DMAC to obtain an acid chloride solution.
  • 4-Methoxybenzylamine (1.4479 g, 10.555 mmol) was dissolved in 5 mL of DMAC at room temperature to obtain an amine solution.
  • the amine solution was transferred to a 30 mL round bottom flask and the whole was heated to 65 ° C. in an oil bath.
  • the acid chloride solution was added to the amine solution with stirring and heating at 65 ° C. over 5 minutes. A yellow precipitate was formed. The whole was stirred at 65 ° C. for 78 minutes. Completion of the reaction was confirmed by thin layer chromatography.
  • Tosyl chloride (1.9090 g, 10.14 mmol) was dissolved in 5 mL of 1,3-dimethyl-2-imidazolidinone to obtain an acid chloride solution.
  • 4-Methoxybenzylamine (1.4367 g, 10.473 mmol) was dissolved in 5 mL of 1,3-dimethyl-2-imidazolidinone at room temperature to form an amine solution.
  • the amine solution was transferred to a 30 mL round bottom flask and the whole was heated to 65 ° C. in an oil bath.
  • the acid chloride solution was added to the amine solution over 5 minutes with stirring at 65 ° C. A yellow precipitate was formed. The whole was stirred at 65 ° C. for 78 minutes.
  • Octane-1-sulfonyl chloride (2.1403 g, 10.061 mmol) was dissolved in 5 mL of DMAC at room temperature to obtain an acid chloride solution.
  • 4-Methoxybenzylamine (1.4340 g, 10.453 mmol) was dissolved in 5 mL of DMAC at room temperature to obtain an amine solution.
  • the acid chloride solution was transferred to a 30 mL round bottom flask and the whole was cooled to 1 ° C. in an ice water bath.
  • the amine solution was added to the acid chloride solution over 5 minutes at 1 ° C. with stirring and cooling. The whole was stirred at 1 ° C. for 10 minutes.
  • the ice water bath was removed and the mixture was stirred in a 22 ° C.
  • Benzyl alcohol (1.1240 g, 10.394 mmol) was dissolved in 5 mL of DMAC to prepare a benzyl alcohol solution.
  • Benzoyl chloride (1.3974 g, 9.941 mmol) was dissolved in 5 mL of DMAC to make an acid chloride solution.
  • the benzyl alcohol solution was added to the previously cooled acid chloride solution at 0 ° C. over 3 minutes, and the whole was stirred at 0 ° C. for 10 minutes.
  • the ice water bath was replaced with a water bath and the whole was stirred at 23 ° C. for 26 hours. Completion of the reaction was confirmed by thin layer chromatography. 30 mL of water was added to the mixture.
  • Example L Synthesis of amide compound (8)
  • an amine having two amino groups having different basicities in the same molecule was reacted with an acid chloride in an amide solvent to selectively form an amide bond.
  • Example L1 Selective synthesis of an aromatic amide (N- (4-aminomethylphenyl) -benzamide) in the presence of an aliphatic amine
  • 4-Aminobenzylamine (0.6536 g, 5.350 mmol) was placed in a 30 mL round bottom flask equipped with a stir bar. The flask was immersed in an ice water bath (0 ° C.). DMAC 5 mL and trifluoroacetic acid (2 mL, 26.118 mmol) were added with stirring. Next, an acid chloride solution in which benzoyl chloride (0.6536 g, 4.650 mmol) was dissolved in 5 mL of DMAC at room temperature was added at 0 ° C. over 5 minutes, and then the whole was stirred at 0 ° C. for 10 minutes. The ice water bath was replaced with a water bath and the whole was stirred at 23 ° C.
  • Example L2 Selective synthesis of an aromatic amide (N- (3-aminomethylphenyl) -benzamide) in the presence of an aliphatic amine
  • 3-Aminobenzylamine (0.6536 g, 5.350 mmol) was placed in a 30 mL round bottom flask equipped with a stir bar. The flask was immersed in an ice water bath (0 ° C.). DMAC 5 mL and trifluoroacetic acid (2 mL, 26.118 mmol) were added with stirring. Next, an acid chloride solution in which benzoyl chloride (0.6536 g, 4.650 mmol) was dissolved in 5 mL of DMAC at room temperature was added at 0 ° C. over 5 minutes, and then the whole was stirred at 0 ° C. for 10 minutes. The ice water bath was replaced with a water bath and the whole was stirred at 23 ° C.
  • Example L3 Selective synthesis of an aromatic amide (N- (4-aminomethyl-phenyl) -2-chloroacetamide) in the presence of an aliphatic amine
  • Example M Synthesis of amide compound (9)
  • a dipeptide was synthesized by reacting two amino acids in an amide solvent.
  • Fmoc-Phe-OH (0.7620 g, 1.967 mmol) was placed in a 30 mL round bottom flask equipped with a stir bar. The flask was immersed in an ice water bath (0 ° C.). 2 mL of DMAC and thionyl chloride (0.16 mL, 2.203 mmol) were added with stirring. The whole was stirred at 23 ° C. for 1 hour. L-valine methyl ester hydrochloride (0.3610 g, 2.153 mmol) was added. The whole was stirred at 23 ° C. for 4 hours. 40 mL of water was added. A white precipitate was formed. The mixture was stirred at 23 ° C. for 1 hour. The solid was filtered off with suction and washed with 60 mL of water. Dry in vacuum. 0.8895 g (yield: 90%) of the title compound (white solid) was obtained.
  • Fmoc-Phe-OH (0.7796 g, 2.012 mmol) was placed in a 30 mL round bottom flask equipped with a stir bar. The flask was immersed in an ice water bath (0 ° C.). 2 mL of DMAC and thionyl chloride (0.16 mL, 2.203 mmol) were added with stirring. The whole was stirred at 23 ° C. for 2 hours. L-Phenylalanine methyl ester hydrochloride (0.4431 g, 2.054 mmol) was added. The whole was stirred at 23 ° C. for 4 hours. 40 mL of 0.5 M aqueous sodium bicarbonate solution was added. A white precipitate was formed.
  • Fmoc-Ala-OH (0.6284 g, 2.018 mmol) was placed in a 30 mL round bottom flask equipped with a stir bar. The flask was immersed in an ice water bath (0 ° C.). 2 mL of DMAC and thionyl chloride (0.16 mL, 2.203 mmol) were added with stirring. The whole was stirred at 23 ° C. for 1 hour. L-valine methyl ester hydrochloride (0.3603 g, 2.149 mmol) was added. The whole was stirred at 23 ° C. for 4 hours. 40 mL of water was added. A white precipitate was formed. The mixture was stirred at 23 ° C. for 1 hour. The solid was filtered off with suction and washed with 60 mL of water. Dry in vacuum. 0.7024 g (yield: 82%) of the title compound (white solid) was obtained.
  • Fmoc-Ala-OH (0.3150 g, 1.012 mmol) was placed in a 30 mL round bottom flask equipped with a stir bar. The flask was immersed in an ice water bath (0 ° C.). 1 mL of DMAC and thionyl chloride (0.08 mL, 1.101 mmol) were added with stirring. The whole was stirred at 23 ° C. for 1 hour. L-phenylalanine methyl ester hydrochloride (0.2254 g, 1.045 mmol) was added. The whole was stirred at 23 ° C. for 4 hours. 40 mL of water was added. A white precipitate was formed. The mixture was stirred at 23 ° C. for 1 hour. The solid was filtered off with suction and washed with 60 mL of water. Dry in vacuum. 0.4371 g (yield: 91%) of the title compound (white solid) was obtained.
  • Fmoc-Leu-OH (0.7058 g, 1.997 mmol) was placed in a 30 mL round bottom flask equipped with a stir bar. The flask was immersed in an ice water bath (0 ° C.). 2 mL of DMAC and thionyl chloride (0.16 mL, 2.203 mmol) were added with stirring. The whole was stirred at 23 ° C. for 1 hour. L-valine methyl ester hydrochloride (0.3552 g, 2.119 mmol) was added. The whole was stirred at 23 ° C. for 4 hours. 40 mL of 0.5 M aqueous sodium bicarbonate solution was added. A white precipitate was formed. The mixture was stirred at 23 ° C. for 1 hour. The solid was filtered off with suction and washed with 50 mL of 0.5 M aqueous sodium bicarbonate. Dry in vacuum. 0.8370 g (yield: 90%) of the title compound (white solid) was obtained.
  • Fmoc-Leu-OH (0.7026 g, 1.988 mmol) was placed in a 30 mL round bottom flask equipped with a stir bar. The flask was immersed in an ice water bath (0 ° C.). 2 mL of DMAC and thionyl chloride (0.16 mL, 2.203 mmol) were added with stirring. The whole was stirred at 23 ° C. for 1 hour. L-phenylalanine methyl ester hydrochloride (0.5430 g, 2.341 mmol) was added. The whole was stirred at 23 ° C. for 4 hours. 40 mL of 0.5 M aqueous sodium bicarbonate solution was added. A white precipitate was formed.
  • Fmoc-Leu-OH (0.3556 g, 1.006 mmol) was placed in a 30 mL round bottom flask equipped with a stir bar. The flask was immersed in an ice water bath (0 ° C.). 1 mL of DMAC and thionyl chloride (0.08 mL, 1.102 mmol) were added with stirring. The whole was stirred at 23 ° C. for 1 hour. L-valine (0.1349 g, 1.152 mmol) was added. The whole was stirred at 23 ° C. for 4 hours. 30 mL of water was added. A white precipitate was formed. The solid was filtered off with suction and washed with 60 mL of water. Dry in vacuum.
  • Fmoc-Leu-OH (0.3522 g, 0.997 mmol) was placed in a 30 mL round bottom flask equipped with a stir bar. The flask was immersed in an ice water bath (0 ° C.). 1 mL of DMAC and thionyl chloride (0.08 mL, 1.102 mmol) were added with stirring. The whole was stirred at 23 ° C. for 1 hour. L-phenylalanine (0.1910 g, 1.156 mmol) was added. The whole was stirred at 23 ° C. for 4 hours. 30 mL of water was added. A white precipitate was formed. The solid was filtered off with suction and washed with 60 mL of water. Dry in vacuum.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pyridine Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Indole Compounds (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本発明は、酸ハロゲン化物を用いたカルボン酸アミド化合物、スルホン酸アミド化合物およびエステル化合物の製造方法の提供を目的とする。本発明によれば、酸ハロゲン化物と、アミン、アミド化合物またはアルコールとをアミド系溶媒および/またはウレア系溶媒の存在下で反応させる工程を含んでなる、カルボン酸アミド化合物、スルホン酸アミド化合物またはエステル化合物の製造方法が提供される。前記アミンは、脂肪族アミン、芳香族アミン並びに双性イオン分子およびその誘導体から選択することができ、前記酸ハロゲン化物は、カルボン酸ハロゲン化物およびスルホン酸ハロゲン化物から選択することができる。

Description

酸ハロゲン化物による化合物の製造方法 関連出願の参照
 本願は、先行する日本国出願である特願2018-23935(出願日:2018年2月14日)の優先権の利益を享受するものであり、その開示内容全体は引用することにより本明細書の一部とされる。
 本発明は、酸ハロゲン化物による化合物の製造方法に関し、詳細には、酸ハロゲン化物を用いたカルボン酸アミド化合物、スルホン酸アミド化合物およびエステル化合物の製造方法に関する。
 通常のアミド結合を形成する反応で最も一般的な反応は、酸ハロゲン化物とアミンの縮合反応である。この反応過程においては、塩化水素などのハロゲン化水素を発生し、ハロゲン化水素と原料アミンが塩を形成してしまう。このため、反応は50%程度で飽和し、アミド化合物を収率高く得ることができなかった。
 この問題を解決するために反応系に塩基触媒を添加し、ハロゲン化水素を中和する技術が開発されている。しかし、塩基触媒を添加すると、後処理で塩基の塩を処理する必要が生じ、合成工程が増加して実用的ではなかった。また、ほとんど塩基性がない(求核性の低い)アミンは、通常、酸ハロゲン化物と反応しないと考えられてきたが、すべてのアミンに適用できるアミド形成反応の開発が望まれていた。
多田出一三ら、北海道大学工学部研究報告、70:99-105(1974) Raymond J. Cvetovich & Lisa DiMichele, Organic Process Research & Development 10:944-946(2006)
 本発明は、酸ハロゲン化物を用いたカルボン酸アミド化合物、スルホン酸アミド化合物およびエステル化合物の新規な製造方法を提供することを目的とする。
 本発明によれば以下の発明が提供される。
[1]酸ハロゲン化物と、アミン、アミド化合物および/またはアルコールとをアミド系溶媒およびウレア系溶媒からなる群から選択される1種または2種以上の溶媒の存在下で反応させる工程を含んでなる、カルボン酸アミド化合物、スルホン酸アミド化合物またはエステル化合物の製造方法。
[2]前記アミンが、脂肪族アミン、芳香族アミン並びに双性イオン分子およびその誘導体からなる群から選択される1種または2種以上である、上記[1]に記載の製造方法。
[3]前記双性イオン分子が、アミノ酸、アントラニル酸、3-カルボキシアニリンまたは4-カルボキシアニリンである、上記[2]に記載の製造方法。
[4]前記アミンが、pKBH+値が2以下のアミンである、上記[1]~[3]のいずれかに記載の製造方法。
[5]前記アミド化合物が、ウレア化合物、カルバミン酸、カルバメート、チオウレア化合物、チオカルバミン酸および/またはチオカルバメートである、上記[1]に記載の製造方法。
[6]前記アルコールが、脂肪族アルコールまたは芳香族アルコールである、上記[1]に記載の製造方法。
[7]前記酸ハロゲン化物が、カルボン酸ハロゲン化物またはスルホン酸ハロゲン化物である、上記[1]~[6]のいずれかに記載の製造方法。
[8]前記酸ハロゲン化物が、アミノ酸のハロゲン化物またはペプチドのハロゲン化物である、上記[1]~[6]のいずれかに記載の製造方法。
[9]前記酸ハロゲン化物が、酸塩化物である、上記[1]~[8]のいずれかに記載の製造方法。
[10]前記溶媒が、アミド系溶媒である、上記[1]~[9]のいずれかに記載の製造方法。
[11]前記アミド系溶媒が、N,N-ジメチルアセトアミド(DMAC)、N,N-ジエチルアセトアミド(DEA)、N,N-ジメチルホルムアミド(DMF)、N,N-ジエチルホルムアミド(DEF)、N-メチル-2-ピロリドン(NMP)およびN-エチル-2-ピロリドン(NEP)からなる群から選択される1種または2種以上の溶媒である、上記[1]~[10]のいずれかに記載の製造方法。
[12]前記溶媒が、ウレア系溶媒である、上記[1]~[9]のいずれかに記載の製造方法。
[13]前記ウレア系溶媒が、N,N’-ジメチルプロピレン尿素(DMPU)、テトラメチル尿素(TMU)および1,3-ジメチル-2-イミダゾリジノン(DMI)からなる群から選択される1種または2種以上の溶媒である、上記[1]~[9]および[12]のいずれかに記載の製造方法。
[14]前記溶媒を反応溶媒として使用する、上記[1]~[13]のいずれかに記載の製造方法。
[15]酸ハロゲン化物とアミン、アミド化合物および/またはアルコールとを-15℃~35℃で混合する工程をさらに含んでなる、上記[1]~[14]のいずれかに記載の製造方法。
[16]前記混合工程の後に、混合物を-15℃~35℃で撹拌する工程をさらに含んでなる、上記[15]に記載の製造方法。
[17]前記工程を、反応により生成するハロゲン化水素を捕捉する塩基触媒を実質的に含まない反応系で実施する、上記[1]~[16]のいずれかに記載の製造方法。
[18]酸ハロゲン化物としてカルボン酸ハロゲン化物をアミンと反応させてカルボン酸アミド化合物を製造する、上記[1]~[17]のいずれかに記載の製造方法。
[18-1]前記アミンが、脂肪族アミンである、上記[18]に記載の製造方法。
[18-2]前記アミンが、芳香族アミンである、上記[18]に記載の製造方法。
[18-3]前記アミンが、アミノ酸である、上記[18]に記載の製造方法。
[18-4]前記アミンが、アントラニル酸またはそのエステルである、上記[18]に記載の製造方法。
[18-5]前記カルボン酸ハロゲン化物が、アミノ酸のハロゲン化物またはペプチドのハロゲン化物である、上記[18]に記載の製造方法。
[19]酸ハロゲン化物としてカルボン酸ハロゲン化物をアミド化合物と反応させてカルボン酸アミド化合物を製造する、上記[1]~[17]のいずれかに記載の製造方法。
[19-1]前記アミド化合物が、ウレア化合物である、上記[19]に記載の製造方法。
[20]酸ハロゲン化物としてスルホン酸ハロゲン化物をアミンと反応させてスルホン酸アミド化合物を製造する、上記[1]~[17]のいずれかに記載の製造方法。
[21]酸ハロゲン化物としてカルボン酸ハロゲン化物をアルコールと反応させてエステル化合物を製造する、上記[1]~[17]のいずれかに記載の製造方法。
[22]酸ハロゲン化物としてスルホン酸ハロゲン化物をアルコールと反応させてエステル化合物を製造する、上記[1]~[17]のいずれかに記載の製造方法。
[23]前記酸ハロゲン化物が、アミノ酸ハロゲン化物またはペプチドハロゲン化物であり、前記アミンが、アミノ酸またはペプチドであり、製造されたカルボン酸アミド化合物が、ペプチドである、上記[1]~[17]のいずれかに記載の製造方法。
[24]前記酸ハロゲン化物が、カルボン酸ハロゲン化物であり、前記アミンが、光学活性を有するアミノ酸であり、製造されたカルボン酸アミド化合物が、光学活性を有するカルボン酸アミド化合物である、上記[1]~[18]のいずれかに記載の製造方法。
[25]酸ハロゲン化物と、塩基性が異なる2種以上のアミンおよび/またはアミド化合物とを反応させて、2種以上のカルボン酸アミド化合物またはスルホン酸アミド化合物のうちいずれか一つを選択的に製造することを特徴とする、上記[1]~[19]のいずれかに記載の製造方法。
[26]酸ハロゲン化物と、塩基性が異なる2種以上のアミノ基を有するアミンまたはアミド化合物とを反応させて、前記アミノ基のうちいずれか一つについてアミド結合を選択的に形成させることを特徴とする、上記[1]~[20]のいずれかに記載の製造方法。
 酸ハロゲン化物を用いる合成反応では縮合反応により塩化水素などのハロゲン化水素が発生し、反応の進行に悪影響を与えるとともに、安全性や設備の制約等の問題があるが、本発明によればハロゲン化水素を捕捉するための塩基触媒の添加なしにこのような問題点を解決できる。本発明の製造方法ではまた、塩基性が弱く反応性が低いアミンやアミド化合物でもアミド形成反応が効率的に進行する点で有利である。
図1は、例F5(1)で得られた生成物と例F5(2)で得られた生成物の混合物(LD混合標品)のHPLCクロマトグラムを示した図である。 図2は、例F5(1)で得られた生成物の混合物(L体標品)のHPLCクロマトグラムを示した図である。 図3は、例F5(2)で得られた生成物の混合物(D体標品)のHPLCクロマトグラムを示した図である。
発明の具体的説明
<定義>
 本発明において基の全部または一部としてのアルキルは、炭素数1~8個(好ましくは1~6個または1~4個)の直鎖状、分岐状または環状の炭化水素鎖(1個または複数個の二重結合または三重結合を含んでいてもよい)を意味し、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、エテニル、エチニル、プロペニルおよびブテニルが挙げられる。
 本発明において「ハロゲン」および「ハロゲン原子」としては、塩素(Cl)、臭素(Br)、フッ素(F)、ヨウ素(I)が挙げられ、塩素(Cl)が好ましい。例えば、酸ハロゲン化物のハロゲン部分が塩素の場合、該酸ハロゲン化物は酸塩化物(酸クロライド)である。
 本発明において「置換されていてもよい」とは、置換される基または原子上の1または複数個の水素原子が別の基に置換されることを意味する。
 「脂肪族アミン」、「脂肪族アルコール」、「脂肪族カルボン酸」および「脂肪族スルホン酸」を構成する「脂肪族炭化水素鎖」および基R、R、R、R、R、R、R10、R12、R14、R15、R18、R19およびR20により表される「脂肪族炭化水素基」の炭素数は、1~22とすることができ、好ましくは1~12、より好ましくは1~8、さらに好ましくは1~6、1~5または1~4である。脂肪族炭化水素基は、直鎖状、分岐状および環状のいずれであってもよく、また、基内に1個または複数個の二重結合または三重結合を含んでいてもよい。
 直鎖状および分岐状の脂肪族炭化水素基の例としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、エテニル、エチニル、プロペニルおよびブテニルが挙げられるが、これらの例に限定されるものではない。
 環状の脂肪族炭化水素基は、その基が少なくとも1つの環状構造を含むことを意味し、環状構造のみから構成されていてもよい。また、環状構造は、炭素環式であっても、複素環式であってもよい。炭素環式の環状構造は、3~10員の飽和または不飽和の炭素環(脂肪族炭素環)であり、単環式であっても、2環式であってもよく、例えば、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタンおよびシクロオクタンが挙げられる。複素環式の環状構造は、酸素原子、窒素原子および硫黄原子から選択される1個または複数個(例えば、1~3個)の異種原子を環員原子として含む、3~10員の飽和または不飽和の複素環(脂肪族複素環)であり、単環式であっても、2環式であってもよく、例えば、オキセタン、ピロリジン、ピペリジン、ピペラジン、モルホリン、インドリン、テトラヒドロフランおよびテトラヒドロチオフェンが挙げられる。
 「芳香族アミン」、「芳香族アルコール」、「芳香族カルボン酸」および「芳香族スルホン酸」を構成する「芳香環」および基R、R、R、R、R11、R16、R21およびR102により表される「芳香環基」は、芳香族の特性を有する環系化合物またはその部分をいい、例えば、π電子が4n+2個ある環状共役系を含む安定な構造を有する。「芳香環基」は、芳香族炭化水素基であっても、芳香族複素環基であってもよい。「芳香族炭化水素基」は、6~18員(好ましくは6~14員)の不飽和炭素環であり、単環式であっても、2、3または4環式(好ましくは2または3環式)の芳香族縮合環基であってもよく、例えば、ベンゼン、ナフタレン、アントラセン、フェナントレン、ナフタセンおよびピレンが挙げられる。「芳香族複素環基」は、酸素原子、窒素原子および硫黄原子から選択される1個または複数個(例えば、1~3個または1~2個)の異種原子を環員原子として含む、5~14員の複素環であり、単環式であっても、2または3環式の芳香族縮合複素環基であってもよく、例えば、フラン、チオフェン、ピロール、イミダゾール、ピリジン、ピリミジン、キノリン、イソキノリン、インドールおよび1,10-フェナントロリンが挙げられる。
 本発明において、水酸基は-OHを表し、カルボキシル基は-COOHを表し、スルホン酸基は(-S(=O)OH)を表し、カルボニル基は-CO-(-C(=O)-)を表し、チオカルボニル基は-CS-(-C(=S)-)を表す。
<原料:アミン>
 本発明の製造方法の原料として用いることができるアミンとしては、脂肪族アミン、芳香族アミンおよび双性イオン分子が挙げられる。
脂肪族アミン
 脂肪族アミンは、脂肪族炭化水素鎖を有するアミンを意味する。本発明において脂肪族アミンは、例えば、式1:HN(-R)(-R)(式中、RおよびRは、同一または異なっていてもよく、水素原子または脂肪族炭化水素基を表すか、あるいは、RおよびRは一緒になって環状の脂肪族炭化水素基を形成してもよく、但し、RおよびRが同時に水素原子を表すことはない)で表すことができる。RおよびRは、好ましくは一方が水素原子を表し、他方が脂肪族炭化水素基を表す。RおよびRが一緒になって形成する環状の脂肪族炭化水素基としては、1,2,3,4-テトラヒドロイソキノリンおよびピロリジンが挙げられる。
 脂肪族アミンを構成する脂肪族炭化水素基は、1または複数個の置換基により置換されていてもよく、置換基としては、ハロゲン原子、基-R101-R102(ここで、R101は、単結合、-O-、-O-(C=O)-、-(C=O)-O-、-NHCO-または-CONH-を表し、R102は、芳香環基を表す)、水酸基、アルコキシ基、アルキルカルボニル基、アルコキシカルボニル基、アルキルカルボニルオキシ基、カルボキシル基、スルホン酸基、アミノ基、ニトロ基およびシアノ基が挙げられる(以下、置換基Aとする)。上記置換基Aのうち、アミノ基は、さらに、1または複数個の置換基により置換されていてもよく、置換基としては、アルキル基が挙げられる。上記置換基Aのうち、アルコキシ基、アルキルカルボニル基、アルコキシカルボニル基、アルキルカルボニルオキシ基は、さらに、1または複数個の置換基により置換されていてもよく、置換基としては、ハロゲン原子、水酸基、アルコキシ基、アルキルカルボニル基、アルコキシカルボニル基、アルキルカルボニルオキシ基、カルボキシル基、スルホン酸基、アミノ基、ニトロ基およびシアノ基が挙げられる。上記置換基Aのうち、基-R101-R102は、さらに、1または複数個の置換基により置換されていてもよく、置換基としては、ハロゲン原子、水酸基、アルキル基、アルコキシ基、アルキルカルボニル基、アルコキシカルボニル基、アルキルカルボニルオキシ基、カルボキシル基、スルホン酸基、アミノ基、ニトロ基およびシアノ基が挙げられる。脂肪族アミンが複数の置換基により置換されている場合には、該置換基は同一または異なっていてもよい。
芳香族アミン
 芳香族アミンは、少なくとも一つの芳香環基が直接アミンに結合した構造を有するアミンを意味する。芳香族アミンは、例えば、式2:HN(-R)(-R)(式中、RおよびRは、同一または異なっていてもよく、水素原子または芳香環基を表すか、あるいは、Rは芳香環基を表し、Rは炭素数3~5の脂肪族炭化水素基(基内に1または2個の二重結合を有していてもよい)を表し、Rが表す脂肪族炭化水素基はRが表す芳香環基と一緒になって2または3環式の複素環を形成し、但し、RおよびRが同時に水素原子を表すことはない)で表すことができる。RおよびRは、好ましくは一方が水素原子を表し、他方が芳香環基を表す。また、RおよびRが一緒になって形成する2または3環式の複素環化合物としては、インドリン、1,2,3,4-テトラヒドロキノリンおよび2,3,4,5-テトラヒドロベンゾアゼピンが挙げられる。
 芳香族アミンを構成する芳香環基は、1または複数個の置換基により置換されていてもよく、置換基としては、ハロゲン原子、基-R201-R202(ここで、R201は、単結合、-O-、-O-(C=O)-、-(C=O)-O-、-NHCO-または-CONH-を表し、R202は、芳香環基を表す)、水酸基、アルキル基、アルコキシ基、アルキルカルボニル基、アルコキシカルボニル基、アルキルカルボニルオキシ基、カルボキシル基、スルホン酸基、アミノ基、ニトロ基およびシアノ基が挙げられる(以下、置換基Bとする)。上記置換基Bのうち、アミノ基は、さらに、1または複数個の置換基により置換されていてもよく、置換基としては、アルキル基が挙げられる。上記置換基Bのうち、アルキル基、アルコキシ基、アルキルカルボニル基、アルコキシカルボニル基、アルキルカルボニルオキシ基は、さらに、1または複数個の置換基により置換されていてもよく、置換基としては、ハロゲン原子、水酸基、アルコキシ基、アルキルカルボニル基、アルコキシカルボニル基、アルキルカルボニルオキシ基、カルボキシル基、スルホン酸基、アミノ基、ニトロ基およびシアノ基が挙げられる。上記置換基Bのうち、基-R201-R202は、さらに、1または複数個の置換基により置換されていてもよく、置換基としては、ハロゲン原子、水酸基、アルキル基、アルコキシ基、アルキルカルボニル基、アルコキシカルボニル基、アルキルカルボニルオキシ基、カルボキシル基、スルホン酸基、アミノ基、ニトロ基およびシアノ基が挙げられる。芳香族アミンを構成する芳香環基の置換基は、好ましくは、さらに置換されていてもよい前記置換基Aである。芳香族アミンが複数の置換基により置換されている場合には、該置換基は同一または異なっていてもよい。
双性イオン分子
 双性イオン分子は、分子中にアミノ基(塩基性基)およびカルボキシル基(酸性基)を有し、正負両電荷を持つ分子を意味し、両性イオン分子と同義である。前記の脂肪族アミンおよび芳香族アミンには、分子中にアミノ基を有しているものが含まれているが、このような分子がさらにカルボキシル基を有している場合には、該分子を双性イオン分子と呼ぶことができる。
 本発明においてはまた、カルボキシル基がエステル化された双性イオン分子(すなわち、双性イオン分子のエステル体)や、カルボキシル基またはアミノ基がアミド化された双性イオン分子(すなわち、双性イオン分子のアミド体)などの双性イオン分子の誘導体も本発明の製造方法の原料として用いることができる。
 すなわち、本発明において双性イオン分子およびそのエステルは、前記式1:HN(-R)(-R)(式中、RおよびRは前記と同義であるが、Rおよび/またはRにより表される脂肪族炭化水素基は少なくとも1つのカルボキシル基またはアルコキシカルボニル基を含む置換基により置換されており、この置換基は好ましくは、少なくとも1つのカルボキシル基またはアルコキシカルボニル基を含む、さらに置換されていてもよい前記置換基Aである)および前記式2:HN(-R)(-R)(式中、RおよびRは前記と同義であるが、Rおよび/またはRにより表される芳香環基は少なくとも1つのカルボキシル基またはアルコキシカルボニル基を含む置換基により置換されており、この置換基は好ましくは、少なくとも1つのカルボキシル基またはアルコキシカルボニル基を含む、さらに置換されていてもよい前記置換基Aまたは置換基Bである)で表すことができる。
 双性イオン分子の典型例としては、アミノ酸が挙げられる。本発明においてアミノ酸としては、α-アミノ酸(特に、タンパク質を構成する20種のアミノ酸)が挙げられるが、これに限定されず、アミノ基がα炭素以外の炭素原子に結合しているアミノ酸(例えば、β-アミノ酸、γ-アミノ酸、δ-アミノ酸、ω-アミノ酸)も含む意味で用いられる。また、アミノ酸には少なくとも一つの不斉炭素原子を持ち、光学的活性を有するものがあるが、いずれの光学活性体(例えば、D体、L体)もアミノ酸に含まれる。また、双性イオン分子には、アミノ酸のみならず、アミノ酸が複数個重合してなるペプチドやアミノ酸を含む化合物が含まれ、さらには、アミノ酸およびペプチドの誘導体(例えば、カルボキシル基がエステルを形成したエステル体、アミノ基がアミドを形成したアミド体)も含まれる。
 双性イオン分子の他の例としては、特に限定されないが、アントラニル酸、3-カルボキシアニリンおよび4-カルボキシアニリンが挙げられる。
弱塩基性アミンおよび中性アミン
 後記実施例に示される通り、本発明の製造方法では、塩基性が低いアミンほど酸ハロゲン化物との縮合反応を効率的に進行させることができる。塩基性の程度はpKBH+値を指標にして決定することができる(例えば、Tso, W.-W.; Snyder, C. H.; Powell, H. B. J. Org. Chem., 1970, 35,849-850、Benedetti, I. E.; Di Blasio, B.; Baine, P. J. Chem. Soc. Perkin 2, 1980, 500-503およびArnett, E. M., Quantitative Comparisons of Weak Organic Bases, Progress in Physical Organic Chemistry, vol. 1, Eds, Cohen, S. G.; Streitwieser, A.; Taft, R. W., p223-403, 1963, Interscience Publishers, New York参照)。すなわち、塩基性が低いアミンとしては、pKBH+値が小さいアミン、例えば、pKBH+値が2以下(好ましくはpKBH+値が1以下)のアミンが挙げられ、これらは弱塩基性アミンおよび中性アミンに分類される。pKBH+値は、実験値または計算値として求めることができる。pKBH+値の計算は公知であり、例えば、COSMOtherm(COSMOlogic社製)やEpik(Journal of Computer-Aided Molecular Design, 2007, Volume 21, Issue 12, pp 681-691)などのソフトウェアを使用して算出することができる。塩基性が低いアミンの具体例としては、アミノ基が直接芳香環に結合した芳香族アミンや、芳香環がニトロ、シアノ、ハロゲン原子、アルキルカルボニル、アルキルカルボニルオキシ、アルコキシカルボニル、スルホンアミド、アミド、スルホニルなどの電子吸引基により置換された芳香族アミンが挙げられ、後者はより塩基性が低いアミンである。アミン以外の塩基性が低い原料としては、後述するアミド化合物が挙げられ、本発明の製造方法によればこれらについても酸ハロゲン化物との縮合反応を効率的に進行させることができる。
<原料:アミド化合物>
 本発明の製造方法の原料として用いることができるアミド化合物は、アミド構造(-NHCO-)を有する化合物と、チオアミド構造(-NHCS-)を有する化合物を含む意味で用いられる。本発明の製造方法の原料として用いることができるアミド化合物はまた、ウレア構造(-NHCONH-)を有する化合物(以下、ウレア化合物とする)、チオウレア構造(-NHCSNH-)を有する化合物(以下、チオウレア化合物とする)、カルバミン酸およびカルバメート並びにチオカルバミン酸およびチオカルバメートが挙げられる。
 本発明においてアミド化合物は、例えば、式3:R-R-(C=Q)(-NR)(式中、Rは、水素原子、脂肪族炭化水素基または芳香環基を表し、Rは、単結合、-O-または-(N(-R))-(式中、Rは、水素原子、アミノ基、脂肪族炭化水素基または芳香環基を表す)を表し、RおよびRは、同一または異なっていてもよく、水素原子または脂肪族炭化水素基を表し、Qは酸素原子または硫黄原子を表し、但し、Rが単結合を表す場合、Rは水素原子以外の基を表す)で表すことができる。RおよびRは、好ましくは一方が水素原子を表し、他方が水素原子または脂肪族炭化水素基を表す。
 アミド化合物を構成する脂肪族炭化水素基および/または芳香環基は、1または複数個の置換基により置換されていてもよく、置換基としては、さらに置換されていてもよい前記置換基Aおよび置換基Bが挙げられ、脂肪族炭化水素基の置換基は好ましくは、さらに置換されていてもよい前記置換基Aであり、芳香環基の置換基は好ましくは、さらに置換されていてもよい前記置換基Aまたは置換基Bである。アミド化合物が複数の置換基により置換されている場合には、該置換基は同一または異なっていてもよい。
 式3においてRが-(N(-R))-を表し、Qが酸素原子を表すとき、式3の化合物はウレア化合物を表し、R、R、RおよびRがさらに水素原子を表すときは式3の化合物は尿素を、R、RおよびRがさらに水素原子を表し、Rがさらにアミノ基を表すときは式3の化合物はセミカルバジドをそれぞれ表す。上記の場合、R、RおよびRは、好ましくは水素原子を表す。
 式3においてRが-(N(-R))-を表し、Qが硫黄原子を表すとき、式3の化合物はチオウレア化合物を表し、R、R、RおよびRがさらに水素原子を表すときは式3の化合物はチオ尿素を、R、RおよびRがさらに水素原子を表し、Rがさらにアミノ基を表すときは式3の化合物はチオセミカルバジドをそれぞれ表す。上記の場合、R、RおよびRは、好ましくは水素原子を表す。
 式3においてRが-O-を表し、Qが酸素原子を表すとき、式3の化合物はカルバミン酸(Rが水素原子の場合)およびカルバメート化合物(Rが水素原子以外の場合)を表す。この場合、RおよびRは、好ましくは水素原子を表す。
 式3においてRが-O-を表し、Qが硫黄原子を表すとき、式3の化合物はチオカルバミン酸(Rが水素原子の場合)およびチオカルバメート化合物(Rが水素原子以外の場合)を表す。この場合、RおよびRは、好ましくは水素原子を表す。
 式3においてRが単結合を表すとき、式3の化合物は、ウレア化合物、チオウレア化合物、カルバミン酸、カルバメート化合物、チオカルバミン酸およびチオカルバメート以外のアミド化合物を表す。この場合、RおよびRは、好ましくは水素原子を表す。
<原料:アルコール>
 本発明の製造方法の原料として用いることができるアルコールとしては、脂肪族アルコールおよび芳香族アルコールが挙げられる。
 脂肪族アルコールは、脂肪族炭化水素鎖を有するアルコールを意味する。本発明において脂肪族アルコールは、例えば、式4:R10-OH(式中、R10は、脂肪族炭化水素基を表す)で表すことができる。
 脂肪族アルコールを構成する脂肪族炭化水素基は、1または複数個の置換基により置換されていてもよく、置換基としては、さらに置換されていてもよい前記置換基Aが挙げられる。脂肪族アルコールが複数の置換基により置換されている場合には、該置換基は同一または異なっていてもよい。
 芳香族アルコールは、芳香環を有するアルコールを意味する。本発明において芳香族アルコールは、例えば、式5:R11-OH(式中、R11は、芳香環基を表す)で表すことができる。
 芳香族アルコールを構成する芳香環基は、1または複数個の置換基により置換されていてもよく、置換基としては、さらに置換されていてもよい前記置換基Aおよび置換基Bが挙げられ、好ましくは、さらに置換されていてもよい前記置換基Bである。芳香族アルコールが複数の置換基により置換されている場合には、該置換基は同一または異なっていてもよい。
<原料:酸ハロゲン化物>
 本発明の製造方法の原料として用いることができる酸ハロゲン化物としては、カルボン酸ハロゲン化物およびスルホン酸ハロゲン化物が挙げられる。
カルボン酸ハロゲン化物
 カルボン酸ハロゲン化物のカルボン酸としては、脂肪族カルボン酸および芳香族カルボン酸が挙げられる。
 本発明において脂肪族カルボン酸は、脂肪族炭化水素鎖を基本骨格とするカルボン酸を意味する。脂肪族カルボン酸は、例えば、式6:R12-R13-COOH(式中、R12は水素原子または脂肪族炭化水素基を表し、R13は単結合または-NR14-を表し、R14は水素原子または脂肪族炭化水素基を表す)で表すことができる。
 カルボン酸のα炭素および脂肪族炭化水素基は、1または複数個の置換基により置換されていてもよく、置換基としては、さらに置換されていてもよい前記置換基Aが挙げられる。脂肪族カルボン酸が複数の置換基により置換されている場合には、該置換基は同一または異なっていてもよい。
 本発明において脂肪族カルボン酸のハロゲン化物は、例えば、式7:R12-R13-COHal(式中、R12は水素原子または脂肪族炭化水素基を表し、Halはハロゲン原子を表し、R13は単結合または-NR14-を表し、R14は水素原子または脂肪族炭化水素基を表す)で表すことができる。式7中の脂肪族カルボン酸が置換基により置換されていてもよいことは前記の通りである。
 本発明においては脂肪族カルボン酸のハロゲン化物は、脂肪族カルボン酸のエステル体のハロゲン化物も含む。このようなハロゲン化物は、例えば、式7a:R12-COR15(式中、R12はハロゲン原子またはハロゲン原子により置換された脂肪族炭化水素基を表し、R15は脂肪族炭化水素基を表す)で表すことができる。式7a中の脂肪族カルボン酸が置換基により置換されていてもよいことは前記の通りである。
 脂肪族カルボン酸のハロゲン化物は公知の方法に従って調製することができ、例えば、脂肪族カルボン酸またはそのエステル体を塩化チオニル、塩化スルフリル等のハロゲン化剤と反応させることにより調製することができる。この反応をアミド系溶媒およびウレア系溶媒からなる群から選択される1種または2種以上の溶媒の存在下で実施することで、生成した脂肪族カルボン酸またはそのエステル体のハロゲン化物を単離せずそのまま次の反応を進行させることができる(ワンポット反応)。
 本発明においては、前記の双性イオン分子のハロゲン化物をカルボン酸ハロゲン化物として使用することができる。すなわち、双性イオン分子はその分子内にアミノ基に加えてカルボキシル基を有しており、該カルボキシル基の水素原子がハロゲン原子で置換された分子が双性イオン分子のハロゲン化物である。このような双性イオン分子のハロゲン化物は脂肪族カルボン酸のハロゲン化物と同様の方法で調製することができる。
 前記の通り双性イオン分子の典型例としては、アミノ酸が挙げられる。すなわち本発明においては、α-カルボキシル基がハロゲン化されてなるアミノ酸のハロゲン化物をカルボン酸ハロゲン化物として使用することができる。また前記の通り双性イオン分子にはアミノ酸が複数個重合してなるペプチドも含まれる。このため本発明においては、C末端のα-カルボキシル基がハロゲン化されてなるペプチドのハロゲン化物をカルボン酸ハロゲン化物として使用することもできる。後述のように、アミノ酸ハロゲン化物またはペプチドハロゲン化物をカルボン酸ハロゲン化物として使用し、別のアミノ酸またはペプチドをアミンとして使用して本発明の製造方法を実施することでペプチドを合成することができる。
 本発明において芳香族カルボン酸は、芳香環を基本骨格とするカルボン酸を意味する。芳香族カルボン酸は、例えば、式8:R16-R17-COOH(式中、R16は芳香環基を表し、R17は単結合または-NR18-を表し、R18は水素原子または脂肪族炭化水素基を表す)で表すことができる。
 芳香族カルボン酸を構成する芳香環基は、1または複数個の置換基により置換されていてもよく、置換基としては、さらに置換されていてもよい前記置換基Aおよび置換基Bが挙げられ、好ましくは、さらに置換されていてもよい前記置換基Bである。芳香族カルボン酸が複数の置換基により置換されている場合には、該置換基は同一または異なっていてもよい。
 本発明において芳香族カルボン酸のハロゲン化物は、例えば、式9:R16-R17-COHal(式中、R16は芳香環基を表し、Halはハロゲン原子を表し、R17は単結合または-NR18-を表し、R18は水素原子または脂肪族炭化水素基を表す)で表すことができる。式9中の芳香族カルボン酸が置換基により置換されていてもよいことは前記の通りである。
 本発明においては芳香族カルボン酸のハロゲン化物は、芳香族カルボン酸のエステル体のハロゲン化物も含む。このようなハロゲン化物は、例えば、式9a:R16-COR19(式中、R16はハロゲン原子またはハロゲン原子により置換された芳香環基を表し、R19は脂肪族炭化水素基を表す)で表すことができる。式9a中の芳香族カルボン酸が置換基により置換されていてもよいことは前記の通りである。
 芳香族カルボン酸のハロゲン化物は公知の方法に従って調製することができ、例えば、芳香族カルボン酸またはそのエステル体を塩化チオニル、塩化スルフリル等のハロゲン化剤と反応させることにより調製することができる。この反応をアミド系溶媒およびウレア系溶媒からなる群から選択される1種または2種以上の溶媒の存在下で実施することで、生成した芳香族カルボン酸またはそのエステル体のハロゲン化物を単離せずそのまま次の反応を進行させることができる(ワンポット反応)。
スルホン酸ハロゲン化物
 スルホン酸ハロゲン化物のスルホン酸としては、脂肪族スルホン酸および芳香族スルホン酸が挙げられる。
 本発明において脂肪族スルホン酸は、脂肪族炭化水素鎖を有するスルホン酸を意味する。脂肪族スルホン酸は、例えば、式10:R20-S(=O)OH(式中、R20は脂肪族炭化水素基を表す)で表すことができる。
 脂肪族スルホン酸を構成する脂肪族炭化水素基は、1または複数個の置換基により置換されていてもよく、置換基としては、さらに置換されていてもよい前記置換基Aが挙げられる。脂肪族スルホン酸が複数の置換基により置換されている場合には、該置換基は同一または異なっていてもよい。
 本発明において脂肪族スルホン酸のハロゲン化物は、例えば、式11:R20-S(=O)Hal(式中、R20は脂肪族炭化水素基を表し、Halはハロゲン原子を表す)で表すことができる。式11中の脂肪族炭化水素基が置換基により置換されていてもよいことは前記の通りである。
 脂肪族スルホン酸のハロゲン化物は公知の方法に従って調製することができ、例えば、脂肪族スルホン酸またはその金属塩を塩化チオニル、塩化スルフリル等のハロゲン化剤と反応させることにより調製することができる。この反応をアミド系溶媒およびウレア系溶媒からなる群から選択される1種または2種以上の溶媒の存在下で実施することで、生成した脂肪族スルホン酸のハロゲン化物を単離せずそのまま次の反応を進行させることができる。
 本発明において芳香族スルホン酸は、芳香環を有するスルホン酸を意味する。芳香族スルホン酸は、例えば、式12:R21-S(=O)OH(式中、R21は芳香環基を表す)で表すことができる。
 芳香族スルホン酸を構成する芳香環基は、1または複数個の置換基により置換されていてもよく、置換基としては、さらに置換されていてもよい前記置換基Aおよび置換基Bが挙げられ、好ましくは、さらに置換されていてもよい前記置換基Bである。芳香族スルホン酸が複数の置換基により置換されている場合には、該置換基は同一または異なっていてもよい。
 本発明において芳香族スルホン酸のハロゲン化物は、例えば、式13:R21-S(=O)Hal(式中、R21は芳香環基を表し、Halはハロゲン原子を表す)で表すことができる。式13中の芳香環基が置換基により置換されていてもよいことは前記の通りである。
 芳香族スルホン酸のハロゲン化物は公知の方法に従って調製することができ、例えば、芳香族スルホン酸またはその金属塩を塩化チオニル、塩化スルフリル等のハロゲン化剤と反応させることにより調製することができる。この反応をアミド系溶媒およびウレア系溶媒からなる群から選択される1種または2種以上の溶媒の存在下で実施することで、生成した芳香族スルホン酸のハロゲン化物を単離せずそのまま次の反応を進行させることができる。
<製造方法>
溶媒
 本発明の製造方法において反応溶媒は、アミド系溶媒およびウレア系溶媒を使用することができる。後記実施例に示されるように、本発明の製造方法においては、アミド系溶媒およびウレア系溶媒は潜在的なブレンステッドの塩基(プロトン受容体)としての役割を果たし、酸ハロゲン化物を用いる合成反応により発生するハロゲン化水素に起因する問題点を解決することができる。
 本発明の製造方法においては、アミド系溶媒およびウレア系溶媒は、それぞれ単独で用いても、両者を組み合わせて用いてもよい。本発明の製造方法においてはまた、アミド系溶媒およびウレア系溶媒以外の溶媒(例えば、アセトンや酢酸エチルなどの非プロトン性極性溶媒、ジクロロメタンなどの非極性溶媒)を反応溶媒として使用し、これにアミド系溶媒および/またはウレア系溶媒を添加してもよい。この場合、アミド系溶媒およびウレア系溶媒は、原料であるアミン、アミド化合物およびアルコールに対して、1~6当量(好ましくは1~2当量)となるように添加することができる。最終産物の収率や反応産物の回収のしやすさの観点から、アミド系溶媒およびウレア系溶媒を単独であるいは組み合わせて反応溶媒として使用することが好ましい。
 本発明に使用できるアミド系溶媒としては、アミド構造(-NHCO-)(特に、ジアルキルアミド構造(>N-CO-))を有する有機溶媒が挙げられ、例えば、N,N-ジメチルアセトアミド(DMAC)、N,N-ジエチルアセトアミド(DEA)、N,N-ジメチルホルムアミド(DMF)、N,N-ジエチルホルムアミド(DEF)、N-メチル-2-ピロリドン(NMP)およびN-エチル-2-ピロリドン(NEP)が挙げられる。
 本発明に使用できるウレア系溶媒としては、ウレア構造(-NHCONH-)を有する有機溶媒が挙げられ、例えば、N,N’-ジメチルプロピレン尿素(DMPU)、テトラメチル尿素(TMU)および1,3-ジメチル-2-イミダゾリジノン(DMI)が挙げられる。
 後記実施例に示されるように、ウレア系溶媒を、酸ハロゲン化物を用いたアミド形成反応およびエステル形成反応に反応溶媒として用いると、塩化水素などのハロゲン化水素による反応進行への悪影響が抑制され、さらには、アミンなどの原料とハロゲン化水素との塩(沈殿物)の形成や、反応生成物の沈殿物の形成が抑制される。このため本発明の製造方法においてウレア系溶媒を反応溶媒として使用すると、撹拌障害なしに工業規模でアミド化合物およびエステル化合物を高収率で製造できる点で有利である。
反応条件および手順
 本発明の製造方法においては、酸ハロゲン化物を用いたアミド形成反応およびエステル形成反応が進行する限り反応成分の使用量に特に制限はなく、例えば、化学量論量を使用しても、原料のいずれか一方を過剰にしてもよい。本発明の製造方法においては、反応系における酸ハロゲン化物と、アミン、アミド化合物またはアルコールとの比を、モル比で1:0.5~1:2とすることができ、好ましくは1:0.95~1:1.05とすることができる。
 本発明の製造方法においては、アミド形成反応およびエステル形成反応の反応温度および時間は、原料成分同士の反応性に従って適宜決定することができるが、例えば、酸ハロゲン化物と、アミン、アミド化合物またはアルコールとの混合(すなわち、いずれか一方の他方への添加)は、-15℃~100℃の範囲で行うことができ、混合時の発熱を抑え、収率を高める観点から、好ましくは-15℃~35℃、より好ましくは0℃~20℃で混合することができる。この混合工程は、ハロゲン化水素とアミン等との塩や、ハロゲン化水素と溶媒との塩がそのまま沈殿を形成することを防ぐ観点から、撹拌しながら行うことが好ましい。
 本発明の製造方法においては、酸ハロゲン化物との反応によるハロゲン化水素ガス(例えば、塩化水素ガス)の発生の抑制や、最終生産物の収率向上の観点から、上記混合工程は-15℃~35℃の温度範囲で行うことが好ましい。
 酸ハロゲン化物と、アミン、アミド化合物またはアルコールとの混合が完了した後、引き続いて混合液を撹拌することにより酸ハロゲン化物と、アミン、アミド化合物またはアルコールとの反応を引き続き進行させることができる。この場合の反応温度は-15℃~35℃(好ましくは0℃~20℃)とすることができる。
 本発明の製造方法においては、反応系からハロゲン化水素を実質的に発生させずに、酸ハロゲン化物を用いたアミド形成反応およびエステル形成反応を進行させることができる。この効果は、酸ハロゲン化物と、アミン、アミド化合物またはアルコールとの混合工程の温度を前記の通り調整することにより、より効果的に発揮させることができる。従って、本発明の製造方法は、反応により生成するハロゲン化水素を捕捉する塩基触媒を実質的に含まない反応系で実施できる点で有利である。
 本発明の製造方法は、酸ハロゲン化物を用いたアミド形成反応およびエステル形成反応の後、必要に応じて後処理を行った後、反応産物をシリカゲルクロマトグラフィー、カラムクロマトグラフィー、ろ取、結晶化などの公知の方法により分離・精製することができる。
 ここで、アミド形成反応およびエステル形成反応の後の後処理としては、以下の処理が挙げられる。すなわち、アミド系溶媒およびウレア系溶媒を反応溶媒として使用した場合には、反応溶液に貧溶媒(例えば、反応溶液に対して1~5倍量)を添加することにより、反応産物を析出・沈殿させ、これを濾取などの方法により容易に採取することができる(沈殿法)。貧溶媒としては、水、メタノール、エタノール、アセトン、トルエン、ベンゼン等の反応生成物を溶解させない溶媒が挙げられ、好適には水やトルエンを用いることができる。あるいは、反応溶液を酢酸エチル、クロロホルム、メチルエチルケトンなどの有機溶媒で処理することにより、反応産物を有機層に抽出することができる(抽出法)。反応産物の回収のしやすさや収率の観点から沈殿法を用いることが好ましいが、沈殿法によって反応産物を回収することが難しい場合には、抽出法を利用することができる。
カルボン酸アミド化合物の製造方法
 本発明によれば、カルボン酸ハロゲン化物(例えば、式7または式9の化合物)と、アミン(例えば、式1または式2の化合物)とをアミド系溶媒および/またはウレア系溶媒の存在下で反応させる工程を含んでなる、カルボン酸アミド化合物の製造方法が提供される。この製造方法の実施に当たって、原料、溶媒、反応条件および手順は、本明細書の記載に従って決定することができる。
 ここで、反応産物のカルボン酸アミド化合物にはウレア化合物やカルバメート化合物が含まれ、反応させるカルボン酸ハロゲン化物およびアミンを適宜選択することにより、ウレア化合物やカルバメート化合物を製造することができる。例えば、式7においてR13が-NR14-を表す化合物あるいは式9においてR17が-NR18-を表す化合物をカルボン酸ハロゲン化物として使用し、アミンと反応させることによりウレア化合物を製造することができる。また、式7aまたは式9aのカルボン酸エステル体のハロゲン化物をカルボン酸ハロゲン化物として使用し、アミンと反応させることによりカルバメート化合物を製造することができる。
 本発明によればまた、カルボン酸ハロゲン化物(例えば、式7または式9の化合物)と、アミド化合物(例えば、式3の化合物)とをアミド系溶媒および/またはウレア系溶媒の存在下で反応させる工程を含んでなる、カルボン酸アミド化合物の製造方法が提供される。この製造方法の実施に当たって、原料、溶媒、反応条件および手順は、本明細書の記載に従って決定することができる。
 ここで、反応産物のカルボン酸アミド化合物にはウレア化合物が含まれ、反応させるカルボン酸ハロゲン化物およびアミンを適宜選択することにより、ウレア化合物を製造することができる。例えば、式3においてRが-(N(-R))-を表し、Qが酸素原子を表すウレア化合物をアミド化合物として使用し、カルボン酸ハロゲン化物と反応させることによりアセチルウレア(ウレイド)などのウレア化合物を製造することができる。
スルホン酸アミド化合物の製造方法
 本発明によれば、スルホン酸ハロゲン化物(例えば、式11または式13の化合物)とアミン(例えば、式1または式2の化合物)とをアミド系溶媒および/またはウレア系溶媒の存在下で反応させる工程を含んでなる、スルホン酸アミド化合物の製造方法が提供される。この製造方法の実施に当たって、原料、溶媒、反応条件および手順は、本明細書の記載に従って決定することができる。
エステル化合物の製造方法
 本発明によれば、カルボン酸ハロゲン化物(例えば、式7または式9の化合物)とアルコール(例えば、式4または式5の化合物)とをアミド系溶媒および/またはウレア系溶媒の存在下で反応させる工程を含んでなる、カルボン酸エステル化合物の製造方法が提供される。この製造方法の実施に当たって、原料、溶媒、反応条件および手順は、本明細書の記載に従って決定することができる。
 本発明によればまた、スルホン酸ハロゲン化物(例えば、式11または式13の化合物)とアルコール(例えば、式4または式5の化合物)とをアミド系溶媒および/またはウレア系溶媒の存在下で反応させる工程を含んでなる、スルホン酸エステル化合物の製造方法が提供される。この製造方法の実施に当たって、原料、溶媒、反応条件および手順は、本明細書の記載に従って決定することができる。
ペプチドの製造方法
 本発明によれば、アミノ酸ハロゲン化物またはペプチドハロゲン化物と、アミノ酸またはペプチドとをアミド系溶媒および/またはウレア系溶媒の存在下で反応させる工程を含んでなる、ペプチドの製造方法が提供される。この製造方法の実施に当たっては、特に言及しない限り、原料、溶媒、反応条件および手順は、本明細書の記載に従って決定することができる。また、本発明において「ペプチド」はアミノ酸残基の鎖長により限定されるものではなく、オリゴペプチド、ポリペプチド、タンパクを含む意味で用いられるものとする。
 本発明のペプチドの製造方法において、アミノ酸ハロゲン化物は、α-カルボキシル基がハロゲン化されたアミノ酸を使用することができ、該アミノ酸のアミノ基は保護基(例えば、フルオレニルメトキシカルボニル基(Fmoc)、ベンジルオキシカルボニル基およびtert-ブトキシカルボニル基)により保護しておくことができる。また、ペプチドハロゲン化物はC末端のα-カルボキシル基がハロゲン化されたペプチドを使用することができ、該ペプチドのN末端のアミノ基は保護基(例えば、フルオレニルメトキシカルボニル基(Fmoc)、ベンジルオキシカルボニル基およびtert-ブトキシカルボニル基)により保護しておくことができる。
 本発明のペプチドの製造方法において、酸ハロゲン化物と反応させるアミノ酸は、アミド結合を形成するアミノ基が保護されていないアミノ酸を使用することができ、該アミノ酸のカルボキシル基は保護基(例えば、メチルエステル、エチルエステル、ベンジルエステル等のカルボン酸エステル基)により保護されていてもよい。また、酸ハロゲン化物と反応させるペプチドはアミド結合を形成するN末端のα-アミノ基が保護されていないペプチドを使用することができ、該ペプチドのC末端のカルボキシル基は保護基(例えば、メチルエステル、エチルエステル、ベンジルエステル等のカルボン酸エステル基)により保護されていてもよい。
 本発明のペプチドの製造方法においては、アミノ酸ハロゲン化物またはペプチドハロゲン化物と、アミノ酸またはペプチドとをアミド系溶媒および/またはウレア系溶媒の存在下で反応させてアミド形成反応を進行させること以外は、公知のペプチド合成方法に従って実施することができる。例えば、アミド形成反応に関与しない官能基をあらかじめ保護し、反応終了後、適切な脱保護剤により脱保護することができる。
 本発明のペプチドの製造方法は、従来法と比較してアミド形成反応の効率が高く、高い収率で目的のペプチドを製造できる。特に、C末端側のアミノ酸またはペプチドのカルボキシル基を保護しなくても高い収率で目的のペプチドを製造することができる。このため本発明のペプチドの合成方法では、連続的にアミド形成反応を進行させることが可能である点で有利である。本発明のペプチドの製造方法はまた、液相で実施することができるためスケールアップが可能であり、ペプチドの大規模合成に利用することができる。本発明のペプチドの製造方法はまた、前記のような貧溶媒を用いた沈殿法により目的のペプチドを容易に精製し、回収することができる点でも有利である。
<光学活性を有するカルボン酸アミド化合物の製造方法>
 本発明の製造方法の一側面によれば、カルボン酸ハロゲン化物と光学活性を有するアミノ酸とをアミド系溶媒および/またはウレア系溶媒の存在下で反応させる工程を含んでなる、光学活性を有するカルボン酸アミド化合物の製造方法が提供される。すなわち、原料として光学活性を有するアミノ酸(例えば、L体アミノ酸、D体アミノ酸)を使用して本発明の製造方法を実施すると、ラセミ化せずに、光学異性体のカルボン酸アミド化合物を製造することができる。光学活性を有するカルボン酸アミド化合物の製造原料として使用することができるアミノ酸は光学活性を有するアミノ酸であれば特に限定されないが、例えば、L-アラニン、D-アラニン、L-フェニルアラニン、D-フェニルアラニン、L-バリンおよびD-バリンが挙げられる。上記製造方法は、原料となるアミノ酸のアミノ基が殆ど塩基性を示していないにも関わらず、酸ハロゲン化物を用いたアミド形成反応が効率的に進行する点でも有利である。この製造方法の実施に当たっては、特に言及しない限り、原料、溶媒、反応条件および手順は、本明細書の記載に従って決定することができる。
<カルボン酸アミド化合物およびスルホン酸アミド化合物の選択的製造方法>
 本発明の製造方法の他の側面によれば、酸ハロゲン化物と、塩基性が異なる2種以上のアミンおよび/またはアミド化合物とをアミド系溶媒および/またはウレア系溶媒の存在下で反応させる工程を含んでなる、2種以上のカルボン酸アミド化合物またはスルホン酸アミド化合物のうちいずれか一つを選択的に製造する方法が提供される。上記製造方法によれば、前記2種以上のアミンおよび/またはアミド化合物のうち塩基性が最も小さいアミンまたはアミド化合物のカルボン酸アミドまたはスルホン酸アミドを選択的に製造することができる。ここで、「選択的に製造」とは、他の反応産物の合計量を上回る量で(好ましくは他の反応産物の合計量の2倍以上、3倍以上、5倍以上、10倍以上、15倍以上、20倍以上の量で)製造することを意味する。
 本発明の異なる分子間の選択的製造方法の原料となるアミンおよびアミド化合物は、異なる2種以上のアミンや、異なる2種以上のアミド化合物であっても、異なる1種以上のアミンと異なる1種以上のアミド化合物の組み合わせであってもよい。
 上記製造方法によれば、反応系に酸もしくは塩基を添加することにより2種以上のカルボン酸アミド化合物またはスルホン酸アミド化合物の比率を調整することができる。具体的には、反応系に酸(pKa5以下;酸ハロゲン化物と反応させる、塩基性が異なる2種以上のアミンおよびアミド化合物の合計に対して例えば1.5~5等量)を添加することにより、塩基性が最も小さいアミンのカルボン酸アミド化合物またはスルホン酸アミド化合物の比率を増加させることができる。酸としての添加剤としては、例えば、酢酸、トリフルオロ酢酸、クエン酸、シュウ酸、ギ酸、トリクロル酢酸および硫酸が挙げられる。一方、反応系に塩基(pKBH+10以上;酸ハロゲン化物と反応させる、塩基性が異なる2種以上のアミンおよびアミド化合物の合計に対して例えば1.5~5等量)を添加することにより、塩基性が最も小さいアミンのカルボン酸アミド化合物またはスルホン酸アミド化合物の比率を減少させることができる。塩基としての添加剤は、例えば、トリエチルアミンが挙げられる。
 上記製造方法においては、アミド系溶媒およびウレア系溶媒からなる群から選択される1種または2種以上の溶媒の存在下で反応を実施することができるが、アミド系溶媒の存在下で実施することが好ましく、アミド系溶媒としてはDMACおよびDMFが好ましく、DMACが特に好ましい。
 上記製造方法の実施に当たっては、特に言及しない限り、原料、溶媒、反応条件および手順は、本明細書の記載に従って決定することができる。
 本発明の製造方法のさらに他の側面によれば、酸ハロゲン化物と、塩基性が異なる2種以上のアミノ基を有するアミンまたはアミド化合物とをアミド系溶媒および/またはウレア系溶媒の存在下で反応させる工程を含んでなる、前記アミノ基のうちいずれか一つについてアミド結合を選択的に形成させたカルボン酸アミド化合物またはスルホン酸アミド化合物の製造方法が提供される。上記製造方法によれば、前記2種以上のアミノ基のうち塩基性が最も小さいアミノ基にアミド結合を選択的に形成させることができる。ここで、「選択的に形成」とは、他のアミノ基において形成されたアミド結合の合計を上回る量で(好ましくは他のアミノ基において形成されたアミド結合の合計の2倍以上、3倍以上、5倍以上、10倍以上、15倍以上、20倍以上で)アミド結合を形成させることを意味する。なお、アミノ基ごとの塩基性の程度(すなわち、pKBH+値)は、そのアミノ基が単独で存在し、他のアミノ基が存在しない化合物を仮定して算出することができる。pKBH+値は、前記の記載に従って実験値または計算値として求めることができる。
 本発明の分子内の選択的製造方法の原料となるアミンおよびアミド化合物が有する塩基性が異なる2種以上のアミノ基は、式1に示されたような脂肪族炭化水素鎖に結合したアミノ基、式2に示されたような芳香環に結合したアミノ基以外に、アミド構造、チオアミド構造、ウレア構造、チオウレア構造、セミカルバジド構造、チオセミカルバジド構造等を構成するアミノ基が含まれる。
 上記製造方法によれば、反応系に酸もしくは塩基を添加することにより2種以上のアミノ基に由来するアミド結合の比率を調整することができる。具体的には、反応系に酸(pKa5以下;アミノ基の合計に対して例えば1.5~5等量)を添加することにより、塩基性が最も小さいアミノ基のアミド結合の比率を増加させることができる。酸としての添加剤は、前記と同様のものを使用することができる。一方、反応系に塩基(pKBH+10以上;アミノ基の合計に対して例えば1.5~5等量)を添加することにより、塩基性が最も小さいアミノ基のアミド結合の比率を減少させることができる。塩基としての添加剤は、前記と同様のものを使用することができる。
 本発明の分子内の選択的製造方法の原料となるアミンおよびアミド化合物は、例えば、
前記式1:HN(-R)(-R)(式中、RおよびRは前記と同義であるが、Rおよび/またはRにより表される脂肪族炭化水素基は少なくとも1つのアミノ基を含む置換基により置換されており、この置換基は好ましくは、少なくとも1つのアミノ基を含む、さらに置換されていてもよい前記置換基Aである)、
前記式2:HN(-R)(-R)(式中、RおよびRは前記と同義であるが、Rおよび/またはRにより表される芳香環基は少なくとも1つのアミノ基を含む置換基により置換されており、この置換基は好ましくは、少なくとも1つのアミノ基を含む、さらに置換されていてもよい前記置換基Aまたは置換基Bである)、および
前記式3:R-R-(C=Q)(-NR)(式中、R、R、R、RおよびRは前記と同義であるが、R、R、RおよびRにより表される脂肪族炭化水素基および芳香環基は少なくとも1つのアミノ基を含む置換基により置換されており、この置換基は好ましくは、少なくとも1つのアミノ基を含む、さらに置換されていてもよい前記置換基Aまたは置換基Bであり、より好ましくは、前記脂肪族炭化水素基の置換基は、少なくとも1つのアミノ基を含む、さらに置換されていてもよい前記置換基Aであり、前記芳香環基の置換基は、少なくとも1つのアミノ基を含む、さらに置換されていてもよい前記置換基Aまたは置換基Bである)
で表すことができる。
 本発明の分子内の選択的製造方法の原料となるアミンおよびアミド化合物としては、例えば、4-アミノベンジルアミン、3-アミノベンジルアミン、セミカルバジド(HN-(C=O)-NH-NH)、チオセミカルバジド(HN-(C=S)-NH-NH)が挙げられるが、これらに限定されない。これらを反応基質として用いた場合、分子両端のアミノ基の塩基性の違いから、一方の末端アミノ基にアミド結合を選択的に形成させることができる。
 上記製造方法においては、アミド系溶媒およびウレア系溶媒からなる群から選択される1種または2種以上の溶媒の存在下で反応を実施することができるが、アミド系溶媒の存在下で実施することが好ましく、アミド系溶媒としてはDMACおよびDMFが好ましく、DMACが特に好ましい。
 上記製造方法の実施に当たっては、特に言及しない限り、原料、溶媒、反応条件および手順は、本明細書の記載に従って決定することができる。
 以下の例に基づき本発明をより具体的に説明するが、本発明はこれらの例に限定されるものではない。
 本実施例において、原料化合物および溶媒は市販品を用いた。また、本実施例において、化合物の測定に用いた機器は、以下の通りである。
H-NMR測定:Bruker Avance 400、Bruke社製
薄層クロマトグラフィー:TLCガラスプレート シリカゲル60 F254、Merck社製
例A:カルボン酸アミド化合物の合成(1)
 例Aでは、脂肪族アミンと酸クロライドとを各種有機溶媒中で反応させてカルボン酸アミド化合物を合成した。
例A1:2-クロロ-N-(4-メトキシベンジル)アセトアミド(4a)の合成(1)
<酸塩化物にアミンを添加する>
Figure JPOXMLDOC01-appb-C000001
 4-メトキシベンジルアミン(1.4370g、10.475mmol)を5mLのDMACに溶解させ、これをアミン溶液とした。クロロアセチルクロライド(1.1315g、10.019mmol)を5mLのDMACに溶解させ、これを酸塩化物溶液とした。予め冷却した酸塩化物溶液に0℃(氷水浴上)でアミン溶液を3分かけて添加した後、混合物を0℃で10分間攪拌した。白色沈殿物が形成された。氷水浴を水浴に置き換え、全体を23℃で2時間攪拌した。反応の完了を薄層クロマトグラフィー法により確認した。反応容器に水30mLを添加して、白色の沈殿物を形成させた。混合物を23℃で5時間攪拌した。得られた沈殿物を吸引濾過によって集め、固体を水70mLで洗浄した。次いで、真空中で乾燥させて、表題化合物4a(白色固体)1.6713gを得た(収率:78%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。濾液中の表題化合物4aの残存量を調べるため、濾液をジクロロメタン20mLで4回抽出し、合わせた有機画分を水50mLで3回洗浄し、硫酸マグネシウムを用いて乾燥させた。有機溶媒を蒸発させ、表題化合物4aとDMACの混合物である無色液体(1.0910g)を得た。H-NMRシグナルの積分に基づき、抽出物中の表題化合物4aの計算量は0.1420g(6.6%)であり、表題化合物4aの総収率(沈殿物と濾液から抽出した生成物)は85%であった。
4a: 融点: 102℃ (無色板状).
1H-NMR (400 MHz, CDCl3): 7.220 (2H, d, J=8.8 Hz), 6.880 (2H, d, J=8.8 Hz), 6.832 (1H, br), 4.418 (2H, d, J=5.6 Hz), 4.075 (2H, s), 3.800 (3H, s).13C-NMR (100 MHz, CDCl3): 165.79, 159.35, 129.45, 129.32, 114.30, 55.41, 43.46, 42.71. 
分析結果:C10H12ClNO2、計算値:C, 56.22; H, 5.66; N, 6.56、測定値:C, 55.98; H, 5.63; N, 6.61、HRMS (ESI-TOF, [N+Na]+): 分析結果:C10H12ClNO2Na、計算値: 236.0449. 測定値:236.0451.
<逆添加:アミンに酸塩化物を添加する>
Figure JPOXMLDOC01-appb-C000002
 4-メトキシベンジルアミン(1.4423g、10.51mmol)を5mLのDMACに溶解させ、これをアミン溶液とした。クロロアセチルクロライド(1.1357g、10.06mmol)を5mLのDMACに溶解させ、これを酸塩化物溶液とした。予め冷却(0℃、氷水浴中)したアミン溶液に酸塩化物溶液を5分かけて添加した。白色沈殿物が形成された。全体を0℃で10分間撹拌した。氷水浴を水浴に置き換え、混合物を23℃で2時間撹拌した。反応の完了を薄層クロマトグラフィー法により確認した。反応容器に水40mLを添加して、白色の沈殿物を形成させた。混合物を23℃で一晩攪拌した。得られた沈殿物を吸引濾過によって集め、固体を水で洗浄し、真空中で乾燥させて、表題化合物4a(白色固体)1.7549gを得た(収率:82%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。生成物はH-NMR(CDCl)および燃焼分析の点で本物の化合物と同一であった。
4a: 分析結果:C10H12ClNO2、計算値:C, 56.22; H, 5.66; N, 6.56、測定値:C, 55.99; H, 5.65; N, 6.60.
例A2:2-クロロ-N-(4-メトキシベンジル)アセトアミド(4a)の合成(2)
Figure JPOXMLDOC01-appb-C000003
 4-メトキシベンジルアミン(1.4012g、10.214mmol)を5mLのDMACに室温で溶解させ、これをアミン溶液とした。クロロアセチルクロライド(1.1045g、9.780mmol)を5mLのDMACに溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で0℃に冷却した。酸塩化物溶液にアミン溶液を4分かけて0℃で攪拌しながら添加した。白色沈殿物が形成された。混合物を0℃で10分間攪拌した。氷水浴を水浴に置き換え、全体を23℃で17時間攪拌した。混合物に水30mLを添加した。混合物を23℃で23時間攪拌した。得られた沈殿物を吸引濾過によって集め、固体を水100mLで洗浄した。次いで、真空中で乾燥させて、表題化合物4a(白色固体)1.6547gを得た(収率:79%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。生成物はH-NMR(CDCl)および燃焼分析の点で本物の化合物と同一であった。
4a: 1H-NMR (400 MHz, CDCl3):7.227 (2H, d, J=8.8 Hz), 6.886 (2H, d, J=8.7 Hz), 6.784 (1H, br, s), 4.429 (2H, d, J=5.7 Hz), 4.093 (2H, s), 3.808 (3H, s). 
分析結果:C10H12ClNO2、計算値:C, 56.22; H, 5.66; N, 6.56、測定値:C, 56.08; H, 5.69; N, 6.63.
例A3:2-クロロ-N-(4-メトキシベンジル)アセトアミド(4a)の合成(3)
Figure JPOXMLDOC01-appb-C000004
 4-メトキシベンジルアミン(1.2448g、9.074mmol)を5mLのジクロロメタンに室温で溶解させ、これをアミン溶液とした。クロロアセチルクロライド(1.3261g、11.742mmol)を5mLのジクロロメタンに室温で溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で0℃に冷却した。酸塩化物溶液にアミン溶液を3分かけて0℃で攪拌しながら添加した。白色沈殿物が形成された。混合物を0℃で10分間攪拌した。氷水浴を水浴に置き換え、全体を23℃で17時間攪拌した。混合物に水30mLを添加した。混合物をジクロロメタン20mLで3回抽出し、合わせた有機画分を水で3回洗浄(総量150mL)し、硫酸マグネシウムを用いて乾燥させた。有機溶媒を蒸発させ白色固体を得て、真空中で乾燥させて、表題化合物4a(白色固体)0.8788gを得た(収率:45%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。生成物はH-NMR(CDCl)および燃焼分析の点で本物の化合物と同一であった。
 水酸化ナトリウム(固体)0.96gを添加して、水画分を塩基化した。水画分をジクロロメタン20mLで4回抽出し、有機層を硫酸マグネシウムを用いて乾燥させた。溶媒を蒸発させ、無色油(0.5663g)として回収された4-メトキシベンジルアミンを得た(収率:45%回収)
4a:1H-NMR (400 MHz, CDCl3):7.223 (2H, d, d, d, J=8.8, 2.9, 2.2 Hz), 6.883 (2H, d, d, d, J=8.7, 3.0, 2.2 Hz), 6.816 (1H, br), 4.423 (2H, d, J=5.7 Hz), 4.084 (2H, s), 3.804 (3H, s). 13C-NMR (100 MHz, CDCl3):165.82, 159.38, 129.45, 129.34, 114.34, 55.44, 43.50, 42.74. 分析結果:C10H12ClNO2、計算値:C, 56.22; H, 5.66; N, 6.56、測定値:C, 55.97; H, 5.73; N, 6.40. HRMS (ESI-TOF, [N+Na]+): 計算値: C10H12ClNO2Na, 236.0449.
測定値:236.0446.
回収されたアミン 2a: 1H-NMR (400 MHz, CDCl3): 7.232 (2H, d, d, d, J= 8.2, 2.8, 2.1 Hz), 6.870 (2H, d, d, d, J= 8.7, 2.9, 2.1 Hz), 4.084 (2H, s), 3.804 (3H, s). 
13C-NMR (100 MHz, CDCl3):158.63, 135.71, 128.40, 114.05, 55.43, 46.05.
例A4:2-クロロ-N-(4-メトキシベンジル)アセトアミド(4a)の合成(4)
Figure JPOXMLDOC01-appb-C000005
 N,N-ジメチルアニリン(2.4331g、20.078mmol)にジクロロメタンを添加して、溶液(N,N-ジメチルアニリン-ジクロロメタン溶媒)5mLを調製した。4-メトキシベンジルアミン(1.4435g、10.523mmol)を5mLのN,N-ジメチルアニリン-ジクロロメタン溶媒に溶解させ、これをアミン溶液とした。クロロアセチルクロライド(1.1316g、10.020mmol)を5mLのジクロロメタンに室温で溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で0℃に冷却した。酸塩化物溶液にアミン溶液を3分かけて0℃で攪拌しながら添加した後、混合物を0℃で10分間攪拌した。氷水浴を水浴に置き換え、全体を23℃で2時間攪拌した。混合物に水30mLを添加した。混合物をジクロロメタン20mLで4回抽出し、合わせた有機画分を0.01M塩酸溶液50mLで3回洗浄し、硫酸マグネシウムを用いて乾燥させた。有機溶媒を蒸発させ白色固体を得て、水50mLおよびn-ヘキサン50mLで洗浄し、真空中で乾燥させて、表題化合物4a(白色固体)1.8619gを得た(収率:87%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。生成物はH-NMR(CDCl)および燃焼分析の点で本物の化合物と同一であった。
4a:1H-NMR (400 MHz, CDCl3):7.226 (2H, d, J=8.8 Hz), 6.885 (2H, d, J=8.8 Hz), 4.428 (2H, d, J=5.7 Hz), 4.091 (2H, s), 3.807 (3H, s). 分析結果:C10H12ClNO2、計算値:C, 56.22; H, 5.66; N, 6.56、測定値:C, 56.11; H, 5.61; N, 6.63.
例A5:2-クロロ-N-(4-メトキシベンジル)アセトアミド(4a)の合成(5)
Figure JPOXMLDOC01-appb-C000006
 トリエチルアミン(2.0332g、20.093mmol)にジクロロメタンを添加して、溶液(トリエチルアミン-ジクロロメタン溶媒)10mLを調製した。4-メトキシベンジルアミン(1.4373g、10.477mmol)を5mLのトリエチルアミン-ジクロロメタン溶媒に溶解させ、これをアミン溶液とした。クロロアセチルクロライド(1.1313g、10.017mmol)を5mLのトリエチルアミン-ジクロロメタン溶媒に室温で溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で0℃に冷却した。酸塩化物溶液にアミン溶液を5分かけて0℃で攪拌しながら添加した後、混合物を0℃で10分間攪拌した。氷水浴を水浴に置き換え、全体を23℃で2時間攪拌した。混合物に水30mLを添加し、次いで、2M塩酸溶液8mLを添加した。混合物をジクロロメタン20mLで4回抽出し、合わせた有機画分を水50mLで3回洗浄し、硫酸マグネシウムを用いて乾燥させた。有機溶媒を蒸発させ黒色固体を得て、真空中で乾燥させて、(黒色固体)1.5088gを得た。生成物はオープンカラムクロマトグラフィー(エチルアセテート:ヘキサン=1:1)により精製され、表題化合物4a(白色固体)1.329gを得た(収率:53%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。生成物はH-NMR(CDCl)および燃焼分析の点で本物の化合物と同一であった。
4a: 1H-NMR (400 MHz, CDCl3): 7.228 (2H, d, J=8.8 Hz), 6.887 (2H, d, J=8.7 Hz), 6.783 (1H, br, s), 4.430 (2H, d, J=5.7 Hz), 4.095 (2H, s), 3.809 (3H, s). 分析結果:C10H12ClNO2、計算値:C, 56.22; H, 5.66; N, 6.56、測定値:C, 56.16; H, 5.71; N, 6.57 (カラムクロマトグラフィー後).
例A6:2-クロロ-N-(4-メトキシベンジル)アセトアミド(4a)の合成(6)
Figure JPOXMLDOC01-appb-C000007
 DMAC(0.4341g、4.983mmol)にジクロロメタンを添加して、溶液(DMAC-ジクロロメタン溶媒)10mLを調製した。4-メトキシベンジルアミン(1.4469g、10.547mmol)を5mLのDMAC-ジクロロメタン溶媒に溶解させ、これをアミン溶液とした。クロロアセチルクロライド(1.1383g、10.079mmol)を5mLのDMAC-ジクロロメタン溶媒に室温で溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で0℃に冷却した。酸塩化物溶液にアミン溶液を4分かけて添加した後、混合物を0℃で12分間攪拌した。氷水浴を水浴に置き換え、全体を23℃で17時間攪拌した。混合物に水30mLを添加した。混合物をジクロロメタン20mLで4回抽出し、合わせた有機画分を水50mLで3回洗浄し、硫酸マグネシウムを用いて乾燥させた。有機溶媒を蒸発させ白色固体を得て、真空中で乾燥させて、表題化合物4a(白色固体)1.1791gを得た(収率:55%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。生成物はH-NMR(CDCl)および燃焼分析の点で本物の化合物と同一であった。
4a:1H-NMR (400 MHz, CDCl3) 7.272-7.210 (2H, m), 6.901-6.869 (2H, m), 6.803 (1H, br, s), 4.434 (2H, s), 4.092 (2H, s), 3.809 (3H, s). 分析結果:C10H12ClNO2、計算値:C, 56.22; H, 5.66; N, 6.56、測定値:C, 55.98; H, 5.66; N, 6.58.
例A7:2-クロロ-N-(4-メトキシベンジル)アセトアミド(4a)の合成(7)
Figure JPOXMLDOC01-appb-C000008
 DMAC(0.8725g、10.015mmol)にジクロロメタンを添加して、溶液(DMAC-ジクロロメタン溶媒)10mLを調製した。4-メトキシベンジルアミン(1.4385g、10.486mmol)を5mLのDMAC-ジクロロメタン溶媒に溶解させ、これをアミン溶液とした。クロロアセチルクロライド(1.1329g、10.031mmol)を5mLのDMAC-ジクロロメタン溶媒に室温で溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で0℃に冷却した。酸塩化物溶液にアミン溶液を4分かけて添加した後、混合物を0℃で10分間攪拌した。氷水浴を水浴に置き換え、全体を23℃で17時間攪拌した。混合物に水30mLを添加した。混合物をジクロロメタン20mLで4回抽出し、合わせた有機画分を水50mLで3回洗浄し、硫酸マグネシウムを用いて乾燥させた。有機溶媒を蒸発させ白色固体を得て、真空中で乾燥させて、表題化合物4a(白色固体)1.5062gを得た(収率:70%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。生成物はH-NMR(CDCl)および燃焼分析の点で本物の化合物と同一であった。
4a: 1H-NMR (400 MHz, CDCl3):7.227 (2H, d, J=8.8 Hz), 6.886 (2H, d, J=8.7 Hz), 4.429 (2H, d, J=5.7 Hz), 4.093 (2H, s), 3.806 (3H, s). 分析結果:C10H12ClNO2、計算値:C, 56.22; H, 5.66; N, 6.56、測定値:C, 56.09; H, 5.62; N, 6.60.
例A8:2-クロロ-N-(4-メトキシベンジル)アセトアミド(4a)の合成(8)
Figure JPOXMLDOC01-appb-C000009
 DMAC(1.7638g、20.297mmol(2当量))にジクロロメタンを添加して、溶液(DMAC-ジクロロメタン溶媒)10mLを調製した。4-メトキシベンジルアミン(1.4384g、10.485mmol)を5mLのDMAC-ジクロロメタン溶媒に溶解させ、これをアミン溶液とした。クロロアセチルクロライド(1.1303g、10.008mmol)を5mLのDMAC-ジクロロメタン溶媒に室温で溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で0℃に冷却した。酸塩化物溶液にアミン溶液を3分かけて0℃で攪拌しながら添加した後、混合物を0℃で10分間攪拌した。氷水浴を水浴に置き換え、全体を23℃で17時間攪拌した。混合物に水30mLを添加した。混合物をジクロロメタン20mLで4回抽出し、合わせた有機画分を水50mLで3回洗浄し、硫酸マグネシウムを用いて乾燥させた。有機溶媒を蒸発させ白色固体を得て、真空中で乾燥させて、表題化合物4a(白色固体)1.7519gを得た(収率:82%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。生成物はH-NMR(CDCl)および燃焼分析の点で本物の化合物と同一であった。
4a: 1H-NMR (400 MHz, CDCl3):7.220 (2H, d, J=9.0 Hz), 6.886 (2H, d, J=8.8 Hz), 4.428 (2H, d, J=5.7 Hz), 4.092 (2H, s), 3.807 (3H, s). 分析結果:C10H12ClNO2、計算値:C, 56.22; H, 5.66; N, 6.56、測定値:C, 56.05; H, 5.54; N, 6.44.
例A9:2-クロロ-N-(4-メトキシベンジル)アセトアミド(4a)の合成(9)
Figure JPOXMLDOC01-appb-C000010
 DMAC(1.7376g、19.994mmol(2当量))にジクロロメタンを添加して、溶液(DMAC-ジクロロメタン溶媒)10mLを調製した。4-メトキシベンジルアミン(1.4426g、10.516mmol)を5mLのDMAC-ジクロロメタン溶媒に溶解させ、これをアミン溶液とした。クロロアセチルクロライド(1.1336g、10.037mmol)を5mLのDMAC-ジクロロメタン溶媒に室温で溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で0℃に冷却した。酸塩化物溶液にアミン溶液を3分かけて0℃で攪拌しながら添加した後、混合物を0℃で10分間攪拌した。氷水浴を水浴に置き換え、全体を23℃で2時間攪拌した。混合物に水30mLを添加した。混合物をジクロロメタン20mLで4回抽出し、合わせた有機画分を水50mLで3回洗浄し、硫酸マグネシウムを用いて乾燥させた。有機溶媒を蒸発させ白色固体を得て、真空中で乾燥させて、表題化合物4a(白色固体)1.2890gを得た(収率:60%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。生成物はH-NMR(CDCl)および燃焼分析の点で本物の化合物と同一であった。
4a: 1H-NMR (400 MHz, CDCl3):7.225 (2H, d, J=8.8 Hz), 6.885 (2H, d, J=8.8 Hz), 4.426 (2H, d, J=5.7 Hz), 4.089 (2H, s), 3.806 (3H, s). 分析結果:C10H12ClNO2、計算値:C, 56.22; H, 5.66; N, 6.56、測定値:C, 56.10; H, 5.67; N, 6.60.
例A10:2-クロロ-N-(4-メトキシベンジル)アセトアミド(4a)の合成(10)
Figure JPOXMLDOC01-appb-C000011
 4-メトキシベンジルアミン(1.4388g、10.488mmol)を5mLのアセトンに溶解させ、これをアミン溶液とした。クロロアセチルクロライド(1.1301g、10.006mmol)を5mLのアセトンに室温で溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で0℃に冷却した。酸塩化物溶液にアミン溶液を3分かけて0℃で攪拌しながら添加した後、混合物を0℃で10分間攪拌した。氷水浴を水浴に置き換え、全体を23℃で17時間攪拌した。混合物に水30mLを添加した。白色沈殿物が形成された。混合物を23℃で4時間攪拌した。固体を吸引濾過し、水100mLで洗浄した。次いで、真空中で乾燥させて、表題化合物4a(白色固体)0.8124gを得た(収率:38%)。濾液中に生成物が存在しないことを薄層クロマトグラフィー法により確認した。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。生成物はH-NMR(CDCl)および燃焼分析の点で本物の化合物と同一であった。
4a: 1H-NMR (400 MHz, CDCl3):7.227 (2H, d, J=8.8 Hz), 6.887 (2H, d, J=8.7 Hz), 4.430 (2H, d, J=5.7 Hz), 4.094 (2H, s), 3.808 (3H, s). 分析結果:C10H12ClNO2、計算値:C, 56.22; H, 5.66; N, 6.56、測定値:C, 56.20; H, 5.82; N, 6.56.
例A11:2-クロロ-N-(4-メトキシベンジル)アセトアミド(4a)の合成(11)
Figure JPOXMLDOC01-appb-C000012
 4-メトキシベンジルアミン(1.4433g、10.521mmol)を5mLの酢酸エチルに溶解させ、これをアミン溶液とした。クロロアセチルクロライド(1.1336g、10.037mmol)を5mLの酢酸エチルに室温で溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で0℃に冷却した。酸塩化物溶液にアミン溶液を4分かけて0℃で攪拌して冷却しながら添加した後、混合物を0℃で10分間攪拌した。氷水浴を水浴に置き換え、全体を23℃で17時間攪拌した。混合物に水30mLを添加した。混合物を23℃で15時間攪拌した。固体を吸引濾過し、水100mLで洗浄した。次いで、真空中で乾燥させて、表題化合物4a(白色固体)0.8124gを得た(収率:38%)。濾液をジクロロメタン20mLで4回抽出し、合わせた有機画分を水50mLで3回洗浄し、硫酸マグネシウムを用いて乾燥させた。有機溶媒を蒸発させ白色固体を得て、真空中で乾燥させて、表題化合物4a(白色固体)0.2302gを得た。合わせて1.0426gを得た(合わせた収率:49%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。生成物はH-NMR(CDCl)および燃焼分析の点で本物の化合物と同一であった。
沈殿した化合物 (4a):1H-NMR (400 MHz, CDCl3):7.227 (2H, d, J=8.4 Hz), 6.887 (2H, d, J=8.4 Hz), 6.790 (1H, br, s), 4.429 (2H, d, J=5.5 Hz), 4.093 (2H, s), 3.808 (3H, s). 分析結果:C10H12ClNO2、計算値:C, 56.22; H, 5.66; N, 6.56、測定値:C, 56.28; H, 5.94; N, 6.58.
濾液からの化合物 (4a):1H-NMR (400 MHz, CDCl3):7.225 (2H, d, J=8.8 Hz), 6.887 (2H, d, J=8.7 Hz), 6.782 (1H, br, s), 4.430 (2H, d, J=5.7 Hz), 4.094 (2H, s), 3.808 (3H, s). 分析結果:C10H12ClNO2、計算値:C, 56.22; H, 5.66; N, 6.56、測定値:C, 55.92; H, 5.65; N, 6.55.
例A12:2-クロロ-N-(4-メトキシベンジル)アセトアミド(4a)の合成(12)
Figure JPOXMLDOC01-appb-C000013
 DMAC(1.7431g、20.008mmol(2当量))にアセトンを添加して、溶液(DMAC-アセトン溶媒)10mLを調製した。4-メトキシベンジルアミン(1.4497g、10.568mmol)を5mLのDMAC-アセトン溶媒に溶解させ、これをアミン溶液とした。クロロアセチルクロライド(1.1360g、10.059mmol)を5mLのDMAC-アセトン溶媒に室温で溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で0℃に冷却した。酸塩化物溶液にアミン溶液を3分かけて0℃で攪拌しながら添加した後、混合物を0℃で10分間攪拌した。氷水浴を水浴に置き換え、全体を23℃で17時間攪拌した。混合物に水30mLを添加した。白色沈殿物が形成された。混合物を23℃で22時間攪拌した。固体を吸引濾過し、水70mLで洗浄した。次いで、真空中で乾燥させて、表題化合物4a(白色固体)1.5788gを得た(収率:73%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。生成物はH-NMR(CDCl)および燃焼分析の点で本物の化合物と同一であった。
4a: 1H-NMR (400 MHz, CDCl3):7.227 (2H, d, J=8.8 Hz), 6.887 (2H, d, J=8.7 Hz), 6.783 (1H, br, s), 4.430 (2H, d, J=5.7 Hz), 4.094 (2H, s), 3.809 (3H, s). 分析結果:C10H12ClNO2、計算値:C, 56.22; H, 5.66; N, 6.56、測定値:C, 56.01; H, 5.60; N, 6.55.
例A13:2-クロロ-N-(4-メトキシベンジル)アセトアミド(4a)の合成(13)
Figure JPOXMLDOC01-appb-C000014
 DMAC(1.7483g、20.067mmol(2当量))に酢酸エチルを添加して、溶液(DMAC-酢酸エチル溶媒)10mLを調製した。4-メトキシベンジルアミン(1.4362g、10.469mmol)を5mLのDMAC-酢酸エチル溶媒に溶解させ、これをアミン溶液とした。クロロアセチルクロライド(1.1232g、9.945mmol)を5mLのDMAC-酢酸エチル溶媒に室温で溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で0℃に冷却した。酸塩化物溶液にアミン溶液を3分かけて0℃で攪拌しながら添加した後、混合物を0℃で10分間攪拌した。氷水浴を水浴に置き換え、全体を23℃で17時間攪拌した。反応の完了を薄層クロマトグラフィー法により確認した。混合物に水30mLを添加した。白色沈殿物が形成された。混合物を23℃で2時間攪拌した。固体を吸引濾過し、水60mLで洗浄した。次いで、真空中で乾燥させて、表題化合物4a(白色固体)1.5788gを得た(収率:74%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。生成物はH-NMR(CDCl)および燃焼分析の点で本物の化合物と同一であった。
4a: 1H-NMR (400 MHz, CDCl3):7.225 (2H, d, J=8.7 Hz), 6.885 (2H, d, J=8.7 Hz), 6.801 (1H, br, s), 4.427 (2H, d, J=5.7 Hz), 4.089 (2H, s), 3.806 (3H, s). 分析結果:C10H12ClNO2、計算値:C, 56.22; H, 5.66; N, 6.56、測定値:C, 56.41; H, 5.77; N, 6.53.
 例A1~A13の手順および収率をまとめると表1の通りである。
Figure JPOXMLDOC01-appb-T000015
例B:カルボン酸アミド化合物の合成(2)
 例Bでは、脂肪族アミンと酸塩化物とを各種有機溶媒中で反応させてカルボン酸アミド化合物を合成した。有機溶媒は、DMAC、DMAC以外のアミド系溶媒およびウレア系溶媒を使用した。
例B1:2-クロロ-N-(4-メトキシベンジル)アセトアミド(4a)の合成(1)
 上記例A1の記載に従って合成した。
例B2:2-クロロ-N-(4-メトキシベンジル)アセトアミド(4a)の合成(2)
Figure JPOXMLDOC01-appb-C000016
 4-メトキシベンジルアミン(1.4460g、10.541mmol)を5mLのジメチルホルムアミド(DMF)に溶解させ、これをアミン溶液とした。クロロアセチルクロライド(1.1353g、10.053mmol)を5mLのDMFに室温で溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で0℃に冷却した。酸塩化物溶液にアミン溶液を3分かけて0℃で攪拌しながら添加した後、混合物を0℃で10分間攪拌した。氷水浴を水浴に置き換え、全体を25℃で2時間攪拌した。反応の完了を薄層クロマトグラフィー法により確認した。混合物に水30mLを添加した。白色沈殿物が形成された。混合物を23℃で21時間攪拌した。固体を吸引濾過し、水80mLで洗浄した。次いで、真空中で乾燥させて、表題化合物4a(白色固体)1.5134gを得た(収率:70%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。生成物はH-NMR(CDCl)および燃焼分析の点で本物の化合物と同一であった。
4a: 1H-NMR (400 MHz, CDCl3): 7.226 (2H, d, J=8.8 Hz), 6.885 (2H, d, J=8.7 Hz), 6.796 (1H, br, s), 4.427 (2H, d, J=5.7 Hz), 4.090 (2H, s), 3.807 (3H, s). 分析結果:C10H12ClNO2、計算値:C, 56.22; H, 5.66; N, 6.56、測定値:C, 55.93; H, 5.58; N, 6.54.
例B3:2-クロロ-N-(4-メトキシベンジル)アセトアミド(4a)の合成(3)
Figure JPOXMLDOC01-appb-C000017
 4-メトキシベンジルアミン(1.4619g、10.66mmol)を5mLの1-メチル-2-ピロリジノン(NMP)に溶解させ、これをアミン溶液とした。クロロアセチルクロライド(1.1283g、9.99mmol)を5mLのNMPに溶解させ、これを酸塩化物溶液とした。予め冷却した酸塩化物溶液にアミン溶液を2分かけて添加した後、混合物を0℃で5分間攪拌した。氷水浴を水浴に置き換え、全体を23℃で2時間攪拌した。反応容器に水30mLを添加して、白色の沈殿物を形成させた。得られた沈殿物を吸引濾過によって集め、水で洗浄した。次いで、真空中で乾燥させて、表題化合物4a(白色固体)1.6086gを得た(収率:75%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。生成物はH-NMR(CDCl)および燃焼分析の点で本物の化合物と同一であった。
4a: 1H-NMR (400 MHz, CDCl3):7.223 (2H, d, J=8.4 Hz), 6.882 (2H, d, J=8.8 Hz), 4.425 (2H, d, J=6.0 Hz), 4.088(2H, s), 3.804 (3H, s). 分析結果:C10H12ClNO2、計算値:C, 56.22; H, 5.66; N, 6.56、測定値:C, 56.25; H, 5.75; N, 6.37.
例B4:2-クロロ-N-(4-メトキシベンジル)アセトアミド(4a)の合成(4)
Figure JPOXMLDOC01-appb-C000018
(1)沈殿法
 4-メトキシベンジルアミン(1.4351g、10.461mmol)を5mLのN,N’-ジメチルプロピレン尿素(DMPU)に溶解させ、これをアミン溶液とした。クロロアセチルクロライド(1.1294g、10.000mmol)を5mLのDMPUに室温で溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で0℃に冷却した。酸塩化物溶液にアミン溶液を3分かけて0℃で攪拌しながら添加した後、全体を0℃で10分間攪拌した。沈殿物は形成されなかった。氷水浴を水浴に置き換え、全体を23℃で2時間攪拌した。沈殿物は形成されなかった。反応の完了を薄層クロマトグラフィー法により確認した。混合物に水30mLを添加した。白色沈殿物が形成された。混合物を23℃で17時間攪拌した。固体を吸引濾過し、水70mLで洗浄した。次いで、真空中で乾燥させて、表題化合物4a(白色固体)1.3800gを得た(収率:65%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。生成物はH-NMR(CDCl)および燃焼分析の点で本物の化合物と同一であった。
4a: 1H-NMR (400 MHz, CDCl3): 7.227 (2H, d, J=8.8 Hz), 6.887 (2H, d, J=8.7 Hz), 6.781 (1H, br, s), 4.430 (2H, d, J=5.7 Hz), 4.094 (2H, s), 3.809 (3H, s). 分析結果:C10H12ClNO2、計算値:C, 56.22; H, 5.66; N, 6.56、測定値:C, 56.03; H, 5.66; N, 6.59.
(2)抽出法
 4-メトキシベンジルアミン(1.3758g、10.03mmol)を5mLのDMPUに溶解させ、これをアミン溶液とした。クロロアセチルクロライド(1.1324g、10.03mmol)にDMPU5mLを4分かけて0℃(氷水浴)で添加し、これを酸塩化物溶液とした。酸塩化物溶液にアミン溶液を5分かけて0℃で撹拌しながら添加した後、混合物を0℃で5分間撹拌した。沈殿物は形成されなかった。氷水浴を水浴に置き換え、全体を23℃で2時間攪拌した。沈殿物は形成されなかった。淡黄色の粘稠な溶液が得られた。反応の完了を薄層クロマトグラフィー法により確認した。混合物に水80mLを添加した。白色沈殿物が形成された。有機層を水280mLで繰り返し洗浄し、濾過残渣を硫酸マグネシウムを用いて乾燥させた。有機溶媒を蒸発させて、表題化合物4a(白色固体)1.3736gを得た(収率:64%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。生成物はH-NMR(CDCl)および燃焼分析の点で本物の化合物と同一であった。
4a: 分析結果:C10H12ClNO2+0.1H2O、計算値:C, 55.75; H, 5.71; N, 6.50、測定値:C, 55.76; H, 5.63; N, 6.53.
例B5:2-クロロ-N-(4-メトキシベンジル)アセトアミド(4a)の合成(5)
Figure JPOXMLDOC01-appb-C000019
(1)沈殿法
 4-メトキシベンジルアミン(1.4426g、10.52mmol)を5mLのテトラメチル尿素(TMU)に溶解させ、これをアミン溶液とした。クロロアセチルクロライド(1.1417g、10.11mmol)を5mLのTMUに溶解させ、これを酸塩化物溶液とした。予め冷却した酸塩化物溶液(0℃、氷水浴中)にアミン溶液を4分かけて添加した後、全体を0℃で30分間攪拌した。沈殿物は形成されなかった。氷水浴を水浴に置き換え、全体を23℃で2時間攪拌した。沈殿物は形成されなかった。反応容器に水60mLを添加して、白色の沈殿物を形成させた。得られた沈殿物を吸引濾過によって集め、固体を水で洗浄した。次いで、真空中で乾燥させて、表題化合物4a(白色固体)386.0mgを得た(収率:18%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。生成物はH-NMR(CDCl)および燃焼分析の点で本物の化合物と同一であった。
4a: 分析結果:C10H12ClNO2、計算値:C, 56.22; H, 5.66; N, 6.56、測定値:C, 56.06; H, 5.50; N, 6.53.
(2)抽出法
 予め冷却したクロロアセチルクロライド(1.1305g、10.01mmol)のTMU溶液(0℃、氷水浴中)に、4-メトキシベンジルアミン(1.3778g、10.04mmol)のTMU溶液5mLを0℃で2分かけて添加した。混合物を0℃で5分間撹拌した。沈殿物は形成されなかった。氷水浴を水浴に置き換え、全体を23℃で2時間撹拌した。沈殿物は形成されなかった。反応容器に水40mLを添加して、白色の沈殿物を形成させた。全体を酢酸エチル180mLで抽出し、合わせた有機層を水200mLで洗浄し、硫酸マグネシウムを用いて乾燥させた。有機溶媒を蒸発させて、表題化合物4a(白色固体)1.2852gを得た(収率:60%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。生成物はH-NMR(CDCl)および燃焼分析の点で本物の化合物と同一であった。
4a: 分析結果:C10H12ClNO2、計算値:C, 56.22; H, 5.66; N, 6.56、測定値:C, 55.82; H, 5.64; N, 6.56.
例B6:2-クロロ-N-(4-メトキシベンジル)アセトアミド(4a)の合成(6)
Figure JPOXMLDOC01-appb-C000020
(1)沈殿法
 4-メトキシベンジルアミン(1.4574g、10.47mmol)を5mLの1,3-ジメチル-2-イミダゾリジノン(DMI)に溶解させ、これをアミン溶液とした。クロロアセチルクロライド(1.1263g、9.97mmol)を5mLのDMIに溶解させ、これを酸塩化物溶液とした。予め冷却した酸塩化物溶液(0℃、氷水浴中)にアミン溶液を2分かけて添加した後、全体を0℃で20分間攪拌した。沈殿物は形成されなかった。氷水浴を水浴に置き換え、全体を23℃で2時間攪拌した。沈殿物は形成されなかった。反応容器に水20mLを添加して、白色の沈殿物を形成させた。得られた沈殿物を吸引濾過によって集め、固体を水で洗浄した。次いで、真空中で乾燥させて、表題化合物4a(白色固体)1.0840gを得た(収率:51%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。生成物はH-NMR(CDCl)および燃焼分析の点で本物の化合物と同一であった。
4a: 分析結果:C10H12ClNO2、計算値:C, 56.22; H, 5.66; N, 6.56、測定値:C, 56.04; H, 5.63; N, 6.46.
(2)抽出法
 予め冷却したクロロアセチルクロライド(1.1275g、9.98mmol)のDMI溶液(0℃、氷水浴中)に、4-メトキシベンジルアミン(1.3795g、10.06mmol)のDMI溶液5mLを0℃で3分かけて添加した。混合物を0℃で5分間撹拌した。沈殿物は形成されなかった。氷水浴を水浴に置き換え、全体を23℃で2時間撹拌した。沈殿物は形成されなかった。反応容器に水50mLを添加して、白色の沈殿物を形成させた。全体を酢酸エチル80mLで抽出し、合わせた有機層を水200mLで繰り返し洗浄し、硫酸マグネシウムを用いて乾燥させた。有機溶媒を蒸発させて、表題化合物4a(白色固体)1.1778gを得た(収率:55%)。生成物はH-NMR(CDCl)および燃焼分析の点で本物の化合物と同一であった。
4a: 無色板状, ジクロロメタン/n-ヘキサンから再結晶: 分析結果:C10H12ClNO2、計算値:C, 56.22; H, 5.66; N, 6.56、測定値:C, 56.22; H, 5.66; N, 6.56.
 例B1~B6の手順および収率(a:沈殿法による収率、b:抽出法による収率)をまとめると表2の通りである。
Figure JPOXMLDOC01-appb-T000021
例C:カルボン酸アミド化合物の合成(3)
 例Cでは、芳香族アミンと酸塩化物とを各種有機溶媒中で反応させてカルボン酸アミド化合物を合成した。有機溶媒は、アミド系溶媒およびウレア系溶媒を使用した。
例C1:N-(4-ブロモフェニル)-2-クロロアセトアミド(4b)の合成(1)
Figure JPOXMLDOC01-appb-C000022
 4-ブロモアニリン(1.8025g、10.48mmol)を5mLのDMACに溶解させ、これをアミン溶液とした。クロロアセチルクロライド(1.0934g、9.68mmol)を5mLのDMACに室温で溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で0℃に冷却した。酸塩化物溶液にアミン溶液を5分かけて0℃で攪拌しながら添加した後、混合物を0℃で10分間攪拌した。氷水浴を水浴に置き換え、全体を23℃で1.5時間攪拌した。反応の完了を薄層クロマトグラフィー法により確認した。次いで、混合物に水30mLを添加して、白色の沈殿を形成させた。混合物を23℃で一晩撹拌した。固体を吸引濾過し、水100mLで洗浄した。次いで、真空中で乾燥させて、表題化合物4b(白色固体)2.1606gを得た(収率:90%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。
4b: 融点: 178-179℃ (白色粉末), 69-75℃ (無色板状, メタノールから再結晶). 1H-NMR (400 MHz, DMSO-d6): 10.430 (1H, s) 7.567 (2H, d, J=8.8 Hz), 7.515 (2H, d, J=9.2 Hz), 4.255 (2H, s). 13C-NMR (100 MHz, DMSO-d6): 164.79, 137.83, 131.68, 121.25, 115.47, 43.52. 分析結果:C8H7BrClNO、計算値:C, 38.67; H, 2.84; N, 5.64、測定値:C, 38.53; H, 2.98; N, 5.62. HRMS (ESI-TOF, [N+Na]+): 計算値: C8H7BrClNONa, 269.9292、測定値:269.9294.
例C2:N-(4-ブロモフェニル)-2-クロロアセトアミド(4b)の合成(2)
Figure JPOXMLDOC01-appb-C000023
 4-ブロモアニリン(1.8398g、10.69mmol)を5mLのDMFに溶解させ、これをアミン溶液とした。クロロアセチルクロライド(1.1276g、9.98mmol)を5mLのDMFに室温で溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で0℃に冷却した。酸塩化物溶液にアミン溶液を5分かけて0℃で攪拌しながら添加した後、混合物を0℃で10分間攪拌した。氷水浴を水浴に置き換え、全体を23℃で1.5時間攪拌した。反応の完了を薄層クロマトグラフィー法により確認した。次いで、混合物に水30mLを添加して、白色の沈殿を形成させた。混合物を23℃で17時間撹拌した。固体を吸引濾過し、水100mLで洗浄した。次いで、真空中で乾燥させて、表題化合物4b(白色固体)2.1918gを得た(収率:88%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。生成物はH-NMR(CDCl)および燃焼分析の点で本物の化合物と同一であった。
4b: 1H NMR (400 MHz, DMSO-d6): 10.427 (1H, s), 7.572 (2H, d, J=8.8 Hz), 7.512 (2H, d, J=8.8 Hz), 4.255 (2H, s). 分析結果:C8H7BrClNO、計算値:C, 38.67; H, 2.84; N, 5.64、測定値:C, 38.53; H, 2.98; N, 5.62.
例C3:N-(4-ブロモフェニル)-2-クロロアセトアミド(4b)の合成(3)
Figure JPOXMLDOC01-appb-C000024
 4-ブロモアニリン(1.7196g、10.00mmol)を5mLのDMPUに溶解させ、これをアミン溶液とした。クロロアセチルクロライド(1.1222g、9.94mmol)を5mLのDMPUに溶解させ、これを酸塩化物溶液とした。予め冷却した酸塩化物溶液にアミン溶液を2分かけて添加した後、混合物を0℃で10分間攪拌した。沈殿物は形成されなかった。氷水浴を水浴に置き換え、全体を23℃で1.5時間攪拌した。沈殿物は形成されなかった。次いで、混合物に水80mLを添加して、白色の沈殿を形成させた。得られた沈殿物を吸引濾過によって集め、固体を水で洗浄した。次いで、真空中で乾燥させて、表題化合物4b(白色固体)2.0077gを得た(収率:81%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。生成物はH-NMR(CDCl)および燃焼分析の点で本物の化合物と同一であった。
4b: 分析結果:C8H7BrClNO、計算値:C, 38.67; H, 2.84; N, 5.64、測定値:C, 38.59; H, 2.99; N, 5.68.
例C4:N-(4-ブロモフェニル)-2-クロロアセトアミド(4b)の合成(4)
Figure JPOXMLDOC01-appb-C000025
 4-ブロモアニリン(1.8148g、10.55mmol)を5mLのTMUに溶解させ、これをアミン溶液とした。クロロアセチルクロライド(1.1526g、10.21mmol)を5mLのTMUに室温で溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で5℃に冷却した。酸塩化物溶液にアミン溶液を5分かけて5℃で攪拌して冷却しながら添加した後、混合物を5℃で10分間攪拌した。沈殿物は形成されなかった。氷水浴を水浴に置き換え、全体を23℃で1.5時間攪拌した。沈殿物は形成されなかった。反応の完了を薄層クロマトグラフィー法により確認した。次いで、混合物に水30mLを添加して、白色の沈殿を形成させた。混合物を23℃で一晩撹拌した。固体を吸引濾過し、水100mLで洗浄した。次いで、真空中で乾燥させて、表題化合物4b(白色固体)2.2709gを得た(収率:90%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。生成物はH-NMR(CDCl)および燃焼分析の点で本物の化合物と同一であった。
4b: 融点: 178-179℃ (白色粉末). 1H-NMR (400 MHz, DMSO-d6): 10.423 (1H, s), 7.571(2H, d, J=8.8 Hz), 7.510 (2H, d, J=9.2 Hz), 4.253 (2H, s).  13C-NMR (100 MHz, DMSO-d6): 164.75, 137.81, 131.64, 121.23, 115.45, 43.49.分析結果:C8H7BrClNO、計算値:C, 38.67; H, 2.84; N, 5.64、測定値:C, 38.55; H, 2.95; N, 5.65.HRMS (ESI-TOF, [N+Na]+): 計算値: C8H7BrClNONa, 269.9292、測定値:269.9297.
例C5:N-(4-ブロモフェニル)-2-クロロアセトアミド(4b)の合成(5)
Figure JPOXMLDOC01-appb-C000026
 4-ブロモアニリン(1.8394g、10.69mmol)を5mLのDMIに溶解させ、これをアミン溶液とした。クロロアセチルクロライド(1.1451g、10.14mmol)を5mLのDMIに室温で溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で0℃に冷却した。酸塩化物溶液にアミン溶液を5分かけて0℃で攪拌して冷却しながら添加した。混合物は黄色に変わった。混合物を0℃で10分間攪拌した。沈殿物は形成されなかった。氷水浴を水浴に置き換え、全体を23℃で1.5時間攪拌した。沈殿物は形成されなかった。反応の完了を薄層クロマトグラフィー法により確認した。次いで、混合物に水30mLを添加して、白色の沈殿を形成させた。混合物を23℃で一晩撹拌した。固体を吸引濾過し、水100mLで洗浄した。次いで、真空中で乾燥させて、表題化合物4b(白色固体)2.3506gを得た(収率:93%)。生成物はH-NMR(CDCl)および燃焼分析の点で本物の化合物と同一であった。
4b: 融点: 174-177℃.
1H-NMR (400 MHz, DMSO-d6): 10.426 (1H, s), 7.571(2H, d, J=9.2 Hz), 7.514 (2H, d, J=9.2 Hz), 4.255 (2H, s). 13C-NMR (100 MHz, DMSO-d6): 164.78, 137.83, 131.67, 121.26, 115.47, 43.52. 分析結果:C8H7BrClNO、計算値:C, 38.67; H, 2.84; N, 5.64、測定値:C, 38.56; H, 2.99; N, 5.58. HRMS (ESI-TOF, [N+Na]+): 計算値: C8H7BrClNONa, 269.9292、測定値:269.9330.
 例C1~C5の手順および収率(a:沈殿法による収率)をまとめると表3の通りである。
Figure JPOXMLDOC01-appb-T000027
例D:カルボン酸アミド化合物の合成(4)
 例Dでは、アミンとして脂肪族アミンおよび芳香族アミンのいずれかと、酸塩化物として脂肪酸クロライドおよび芳香族酸クロライドのいずれかとを組み合わせ、該組み合わせをアミド系溶媒中で反応させてカルボン酸アミド化合物を合成した。
例D1:2-クロロ-N-(4-メトキシベンジル)アセトアミド(4a)の合成
 上記例A1の記載に従って合成した。
例D2:N-(4-ブロモフェニル)-2-クロロアセトアミド(4b)の合成
 上記例C1の記載に従って合成した。
例D3:N,N-ジベンジル-2-クロロアセトアミド(4c)の合成
Figure JPOXMLDOC01-appb-C000028
 ジベンジルアミン(2.0800g、10.54mmol)を5mLのDMACに溶解させ、これをアミン溶液とした。クロロアセチルクロライド(1.1269g、9.98mmol)を5mLのDMACに溶解させ、これを酸塩化物溶液とした。予め冷却した酸塩化物溶液に0℃(氷水浴上)でアミン溶液を4分かけて添加した。氷水浴を水浴に置き換え、全体を23℃で2時間攪拌した。反応の完了を薄層クロマトグラフィー法により確認した。次いで、混合物に水20mLを添加した。油性成分が生成した。全体を酢酸エチル(合計100mL)で抽出し、合わせた有機画分を塩水200mLで洗浄した。有機画分を蒸発させて無色の粘性油状物を得、これを酢酸エチル:n-ヘキサン(1:4)でフラッシュカラムクロマトグラフィーに付して、表題化合物4c(無色油状物)2.3008gを得た(収率:84%)。生成物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。
4c: 1H-NMR (400 MHz, CDCl3): 7.392-7.148 (10H, m), 4.613 (2H, s), 4.509 (2H, s), 4.141 (2H, s). 13C-NMR (100 MHz,): 167.28, 136.32, 135.60, 129.08, 128.69, 128.19, 127.94, 127.64, 126.40, 50.23, 48.60, 41.31.
分析結果:C16H16ClNO、計算値:C, 70.20; H, 5.89; N, 5.12、測定値:C, 70.27; H, 6.04; N, 5.10.HRMS (ESI-TOF, [N+Na]+): 計算値: C16H16ClNONa+: 296.08126、測定値:296.08137.
例D4:2-クロロ-1-(3,4-ジヒドロイソキノリン-2(1H)-イル)エタン-1-オン(4d)の合成
Figure JPOXMLDOC01-appb-C000029
 1,2,3,4-テトラヒドロイソキノリン(1.3964g、10.484mmol)を5mLのDMACに溶解させ、これをアミン溶液とした。クロロアセチルクロライド(1.1255g、9.966mmol)を5mLのDMACに溶解させ、これを酸塩化物溶液とした。予め冷却した酸塩化物溶液(0℃、氷水浴中)にアミン溶液を4分かけて添加した後、全体を0℃で10分間攪拌した。黄色の沈殿物が形成された。氷水浴を水浴に置き換え、全体を23℃で3時間攪拌した。反応の完了を薄層クロマトグラフィー法により確認した。次いで、混合物に水30mLおよび2M HCl水溶液2mLを添加した。混合物を酢酸エチル/n-ヘキサン(v/v 2/1)25mLで4回抽出し、有機層を水50mLで2回洗浄した。有機画分を硫酸マグネシウムを用いて乾燥させ、溶媒を蒸発させて、表題化合物4d(淡黄色固体)1.8638gを得た(収率:89%)。生成物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。
4d: 融点: 50-51℃ (無色板状, メタノールから再結晶).
1H-NMR (400 MHz, CDCl3): 7.249 (4H, m), 4.231 (2H, s), 3.833 (2H, t, J=6.7 Hz), 2.744 (2H, t, J=6.3 Hz), 2.001 (2H, t, J=6.7 Hz). 13C-NMR (100 MHz, CDCl3): 166.2, 138.5, 128.8, 126.7, 126.2, 123.8, 44.0, 42.0, 26.7, 23.9. 
分析結果:C11H12ClNO、計算値:C, 63.01; H, 5.77; N, 6.68、測定値:C, 62.87; H, 5.84; N, 6.68. HRMS (ESI-TOF, [N+Na]+): 計算値:C11H12ClNNaO+: 232.0500、測定値:232.0505.
例D5:2-クロロ-N-(2-クロロベンジル)アセトアミド(4e)の合成
Figure JPOXMLDOC01-appb-C000030
 2-クロロベンジルアミン(1.4868g、10.500mmol)を5mLのDMACに溶解させ、これをアミン溶液とした。クロロアセチルクロライド(1.1367g、10.065mmol)を5mLのDMACに室温で溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で0℃に冷却した。酸塩化物溶液にアミン溶液を5分かけて0℃で攪拌しながら添加した後、全体を0℃で14分間攪拌した。白色の沈殿物が形成された。氷水浴を水浴に置き換え、全体を23℃で1.5時間攪拌した。反応の完了を薄層クロマトグラフィー法により確認した。次いで、混合物に水30mLを添加した。白色の沈殿物が形成された。混合物を23℃で14時間撹拌した。固体を吸引濾過し、水100mLで洗浄した。次いで、真空中で乾燥させて、表題化合物4e(白色固体)1.3640gを得た(収率:62%)。生成物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。
4e: 融点: 76-77℃ (白色粉末), 75-77℃ (無色針状, メタノールから再結晶). 1H-NMR (400 MHz, CDCl3): 7.414-7.359 (2H, m), 7.270 (1H, d, d, J=3.9, 3.5 Hz), 7.247 (1H, d, d, J=3.3, 3.3 Hz), 7.068 (1H, br, s), 4.587 (2H, d, J=6.1 Hz), 4.086 (2H, s). 13C-NMR (100 MHz, CDCl3):165.96, 134.89, 133.89, 130.35, 129.81, 129.42, 127.33, 42.75, 41.95. 分析結果: C9H9Cl2NO、計算値:C, 49.57; H, 4.16; N, 6.42、測定値:C, 49.37; H, 4.18; N, 6.43. HRMS (ESI-TOF, [N+H]+): 計算値: C9H10Cl2NO+: 218.0134、測定値:218.0137.
例D6:N-(4-メトキシベンジル)-2-フェニルアセトアミド(4f)の合成
Figure JPOXMLDOC01-appb-C000031
 4-メトキシベンジルアミン(1.4389g、10.489mmol)を5mLのDMACに室温で溶解させ、これをアミン溶液とした。2-フェニルアセチルクロライド(1.5344g、9.925mmol)を5mLのDMACに溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で0℃に冷却した。酸塩化物溶液にアミン溶液を4分かけて0℃で攪拌しながら添加した後、全体を0℃で12分間攪拌した。氷水浴を水浴に置き換え、全体を23℃で2時間攪拌した。反応の完了を薄層クロマトグラフィー法により確認した。次いで、混合物に水30mLを添加した。混合物を23℃で18時間撹拌した。混合物をジクロロメタン20mLで4回抽出し、合わせた有機画分を水50mLで3回洗浄した。有機画分を硫酸マグネシウムを用いて乾燥させ、溶媒を蒸発させて白色固体を得、これを真空中で乾燥させた(2.0831g、82%)。固体を水100mLで洗浄し、濾過し、真空中で乾燥させて、表題化合物4f(白色固体)1.5137gを得た(収率:60%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。
4f : 融点: 139-140℃ (無色針状, メタノールから再結晶).
1H-NMR (400 MHz, CDCl3): 7.366-7.294 (5H, m), 7.107 (2H, d, d, d, J=8.7, 2.9, 2.1 Hz), 6.824 (2H, d, d, d, J=8.7, 2.9, 2.0 Hz), 4.345 (2H, d, J=5.7 Hz), 3.782 (3H, s), 3.617 (2H, s). 13C-NMR (100 MHz, CDCl3):170.72, 158.90, 134.79, 130.17, 129.38, 128.98, 128.84, 127.31, 113.98, 55.23, 43.78, 43.04. 分析結果:C16H17NO2、計算値:C, 75.27; H, 6.71; N, 5.49、測定値:C, 75.21; H, 6.77; N, 5.47. HRMS (ESI-TOF, [N+Na]+): 計算値: C16H17NO2+Na+: 278.11515、測定値:278.11732.
例D7:N-(2,2-ジフェニルエチル)ベンズアミド(4g)の合成
Figure JPOXMLDOC01-appb-C000032
 2,2-ジフェニルエタン-1-アミン(2.2351g、11.33mmol)を5mLのDMACに溶解させ、これをアミン溶液とした。ベンゾイルクロライド(1.4247g、10.14mmol)を5mLのDMACに室温で溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で0℃に冷却した。酸塩化物溶液にアミン溶液を8分かけて0℃で攪拌しながら添加した後、全体を0℃で10分間攪拌した。氷水浴を水浴に置き換え、全体を23℃で1.5時間攪拌した。反応の完了を薄層クロマトグラフィー法により確認した。次いで、混合物に水20mLを添加した。白色の沈殿物が形成された。混合物を23℃で一晩撹拌した。固体を吸引濾過し、水100mLで洗浄した。次いで、真空中で乾燥させて、表題化合物4g(白色固体)2.0365gを得た(収率:67%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。
4g: 融点: 144-145℃ (沈殿物, 白色粉末), 145-146℃ (無色針状, メタノールから再結晶).
1H-NMR (400 MHz, CDCl3): 7.571 (2H, d, J=7.2 Hz), 7.44 (1H, t, t, J=7.4, 1.2 Hz), 7.372-7.213 (12H, m), 4.325 (1H, t, J=8.0 Hz), 4.089 (2H, d, d, J=8.0 Hz, 6.0 Hz). 13C-NMR (100 MHz, CDCl3):167.60, 141.95, 134.70, 131.53, 128.93, 128.65, 128.21, 127.05, 126.90, 50.65, 44.38. 分析結果:C21H19NO、計算値:C, 83.69; H,6.35; N, 4.65、測定値:C, 83.40; H, 6.50; N, 4.66. HRMS (ESI-TOF, [N+Na]+): 計算値:
 C21H19NONa, 324.1359、測定値:324.1363.
例D8:N-(2-クロロベンジル)ベンズアミド(4h)の合成
Figure JPOXMLDOC01-appb-C000033
 2-クロロベンジルアミン(1.4838g、10.479mmol)を5mLのDMACに溶解させ、これをアミン溶液とした。ベンゾイルクロライド(1.4000g、9.960mmol)を5mLのDMACに溶解させ、これを酸塩化物溶液とした。予め冷却した酸塩化物溶液にアミン溶液を3分かけて0℃で添加した後、全体を0℃で10分間攪拌した。白色の沈殿物が形成された。氷水浴を水浴に置き換え、全体を23℃で4時間攪拌した。反応の完了を薄層クロマトグラフィー法により確認した。次いで、混合物に水40mLを添加した。白色の沈殿物が形成された。全体を23℃で14時間撹拌した。得られた沈殿物を吸引濾過によって集め、固体を水70mLで洗浄した。次いで、真空中で乾燥させて、表題化合物4h(白色固体)1.9768gを得た(収率:81%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。
4h: 融点: 119-121℃ (無色板状, メタノールから再結晶).
1H-NMR (400 MHz, CDCl3): 7.786 (2H, d, J=7.0 Hz), 7.525-7.739 (5H, m), 7.255-7.237 (2H, m), 6.621 (1H, br, s), 4.732 (2H, d, J=6.0 Hz). 13C-NMR (100 MHz, CDCl3): 167.5, 135.7, 134.4, 133.9, 131.8, 130.6, 129.7, 129.2, 128.8, 127.3, 127.1, 42.2.
分析結果:C14H12ClNO、計算値:C, 68.44; H, 4.92; N, 5.70、測定値:C, 68.23; H, 5.15; N, 5.73.
HRMS (ESI-TOF, [N+Na]+): 計算値:C14H12ClNNaO+: 268.0500、測定値:268.0513.
例D9:N,N-ジベンジル-4-フルオロベンズアミド(4i)の合成
Figure JPOXMLDOC01-appb-C000034
 ジベンジルアミン(2.0790g、10.54mmol)を5mLのDMACに溶解させ、これをアミン溶液とした。4-フルオロベンゾイルクロライド(1.5871g、10.019mmol)を5mLのDMACに溶解させ、これを酸塩化物溶液とした。予め冷却した酸塩化物溶液にアミン溶液を3分かけて添加した後、全体を0℃で3分間攪拌した。白色の沈殿物が形成された。氷水浴を水浴に置き換え、全体を23℃で18時間攪拌した。反応の完了を薄層クロマトグラフィー法により確認した。次いで、混合物に水30mLを添加した。白色の沈殿物が形成された。得られた沈殿物を吸引濾過によって集め、固体を水で洗浄した。次いで、真空中で乾燥させた。p-フルオロベンゼン酸により汚染されていた。このため、固体をジクロロメタン100mLに溶解させ、有機層を飽和重炭酸ナトリウム水溶液50mLおよび塩水40mLで洗浄した。硫酸マグネシウムを用いて乾燥させ、溶媒を蒸発させて、表題化合物4i(白色粉末)2.2358gを得た(収率:70%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。
4i: 融点. 93-95℃ (白色粉末). 1H-NMR (400 MHz, CDCl3):7.497 (2H, d, d, J=8.8, 5.2 Hz), 7.377-7.137 (10H, m), 7.051 (2H, t, J=8.8 Hz), 4.697 (2H, s), 4.406 (2H, s). 13C-NMR (100 MHz, CDCl3):171.29, 163.3 (d, 1JC-F=248Hz), 136.72, 136.24, 132.13, 132.09, 129.02, 128.94, 128.80, 128.39, 127.62, 126.83, 115.6 (2JC-F=22Hz), 51.57, 47.15. 分析結果:C21H18FNO、計算値:C, 78.98; H, 5.68; N, 4.39、測定値:C, 78.73; H, 5.92; N, 4.39.
例D10:N-(2-クロロベンジル)-4-フルオロベンズアミド(4j)の合成
Figure JPOXMLDOC01-appb-C000035
 2-クロロベンジルアミン(1.4865g、10.498mmol)を5mLのDMACに溶解させ、これをアミン溶液とした。4-フルオロベンゾイルクロライド(1.5893g、10.024mmol)を5mLのDMACに室温で溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で0℃に冷却した。酸塩化物溶液にアミン溶液を5分かけて0℃で攪拌しながら添加した後、全体を0℃で10分間攪拌した。氷水浴を水浴に置き換え、全体を23℃で2時間攪拌した。反応の完了を薄層クロマトグラフィー法により確認した。次いで、混合物に水30mLを添加した。白色の沈殿物が形成された。全体を23℃で13時間撹拌した。固体を吸引濾過し、水100mLで洗浄した。次いで、真空中で乾燥させて、表題化合物4j(白色固体)2.0227gを得た(収率:77%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。
4j: 融点: 107-108℃ (白色粉末), 107-109℃ (無色プリズム, メタノールから再結晶).
1H-NMR (400 MHz, CDCl3):  7.791 (2H, d, d, d, d, J=8.9, 5.3, 3.0, 2.2 Hz), 7.446 (1H, d, d, J=5.8, 3.4 Hz), 7.385 (1H, d, d, J=5.6, 3.6 Hz), 7.266-7.223 (2H, m), 7.094 (2H, d, d, J=8.6, 8.6 Hz), 6.660 (1H, s), 4.700 (2H, s). 13C-NMR (100 MHz, CDCl3): 166.1, 165.1 (d, 1JC-F=285 Hz), 135.6, 133.8, 130.5 (d, 4JC-F=3.0 Hz), 130.5, 129.7, 129.5 (d, 3JC-F=9.3 Hz), 129.2, 127.3, 115.7 (d, 2JC-F=22 Hz), 42.2. 分析結果:C14H11ClFNO、計算値:C, 63.77; H, 4.20; N, 5.31、測定値:C, 63.63; H, 4.40; N, 5.31.
HRMS (ESI-TOF, [N+Na]+): 計算値:C14H11ClFNNaO+: 286.0405、測定値:286.0415.
例D11:6-クロロ-N-(4-メトキシベンジル)ニコチンアミド(4k)の合成
Figure JPOXMLDOC01-appb-C000036
 4-メトキシベンジルアミン(0.8560g、6.240mmol)を3mLのDMACに室温で溶解させ、これをアミン溶液とした。6-クロロニコチノイルクロライド(1.0476g、5.952mmol)を3mLのDMACに溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で0℃に冷却した。酸塩化物溶液にアミン溶液を3分かけて0℃で攪拌しながら添加した後、全体を0℃で4分間攪拌した。氷水浴を水浴に置き換え、全体を23℃で0.5時間攪拌した。反応の完了を薄層クロマトグラフィー法により確認した。次いで、混合物に水20mLを添加した。白色の沈殿物が形成された。全体を23℃で19時間撹拌した。固体を吸引濾過し、水100mLで洗浄した。次いで、真空中で乾燥させて、表題化合物4k(白色固体)1.1792gを得た(収率:72%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。
4k: 融点: 139℃ (無色粉末) (メタノールから再結晶).
1H-NMR (400 MHz, CDCl3): 8.731 (1H, d, d, J=2.5, 0.7 Hz), 8.084 (1H, d, d, J=8.3, 2.5 Hz), 7.390 (1H, d, d, J=8.3, 0.7 Hz), 7.257 (2H, d, d, d, J=8.3, 3.2, 1.9 Hz), 6.871 (2H, d, d, d, J=8.8, 2.9, 2.0 Hz), 6.631 (1H, br), 4.557 (2H, d, J=5.4 Hz), 3.796 (3H, s). 13C-NMR (100 MHz, CDCl3): 164.49, 159.42, 154.36, 148.05, 140.16, 138.18, 129.55, 129.12, 124.52, 114.372, 55.45, 43.97.
分析結果:C14H13ClN2O2、計算値:C, 60.77; H, 4.74; N, 10.12、測定値:C, 60.68; H, 4.87; N, 10.10.
HRMS (ESI-TOF, [N+H]+): 計算値:C14H14ClN2O2 +: 277.0738、測定値:277.0731.
例D12:N-(4-メトキシベンジル)ベンズアミド(4l)の合成
Figure JPOXMLDOC01-appb-C000037
 4-メトキシベンジルアミン(1.4443g、10.528mmol)を5mLのDMACに溶解させ、これをアミン溶液とした。ベンゾイルクロライド(1.4187g、10.093mmol)を5mLのDMACに室温で溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で0℃に冷却した。酸塩化物溶液にアミン溶液を4分かけて0℃で攪拌しながら添加した。白色の沈殿物が形成された。全体を0℃で10分間攪拌した。氷水浴を水浴に置き換え、全体を23℃で1.5時間攪拌した。反応の完了を薄層クロマトグラフィー法により確認した。次いで、混合物に水30mLを添加した。白色の沈殿物が溶解して再び形成された。混合物を23℃で17時間撹拌した。固体を吸引濾過し、水100mLで洗浄した。次いで、真空中で乾燥させて、表題化合物4l(白色固体)1.2393gを得た(収率:51%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。
4l: 融点: 96-98℃ (沈殿物, 無色微細針状), 101℃ (無色針状, メタノールから再結晶).
1H-NMR (400 MHz, CDCl3): 8.127 (1H, d, d, J=9.0, 5.4 Hz), 7.790 (2H, d, d, J=8.9, 5.3 Hz), 7.285 (2H, d, d, d, J=8.7, 3.0, 2.1 Hz), 7.177-7.072 (3H, m), 6.891 (2H, d, d, d, J=8.7, 3.0, 2.1 Hz), 4.573 (2H, d, J=5.4 Hz), 3.808 (3H, s). 13C-NMR (100 MHz, CDCl3):167.25, 159.04, 134.38, 131.43, 130.23, 129.24, 128.50, 126.91, 114.08, 55.26, 43.56.
分析結果: C15H15NO2、計算値:C, 74.67; H, 6.27; N, 5.81、測定値:(沈殿物): C, 74.66; H, 6.38; N, 5.70、測定値:(結晶): C, 74.46; H, 6.38; N, 5.83.
HRMS (ESI-TOF, [N+Na]+): 計算値:C15H15NO2+Na+: 264.09950、測定値:264.09937.
例D13:4-フルオロ-N-(4-メトキシベンジル)ベンズアミド(4m)の合成
Figure JPOXMLDOC01-appb-C000038
 4-メトキシベンジルアミン(1.4391g、10.490mmol)を5mLのDMACに溶解させ、これをアミン溶液とした。4-フルオロベンゾイルクロライド(1.5893g、10.024mmol)を5mLのDMACに室温で溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で0℃に冷却した。酸塩化物溶液にアミン溶液を4分かけて0℃で攪拌しながら添加した。白色の沈殿物が形成された。全体を0℃で10分間攪拌した。氷水浴を水浴に置き換え、全体を23℃で1.5時間攪拌した。反応の完了を薄層クロマトグラフィー法により確認した。次いで、混合物に水30mLを添加した。白色の沈殿物が一度溶解して再び形成された。混合物を23℃で18時間撹拌した。固体を吸引濾過し、水100mLで洗浄した。次いで、真空中で乾燥させて、表題化合物4m(白色固体)1.7441gを得た(収率:67%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。
4m: 融点: 117-118℃ (無色板状, メタノールから再結晶).
1H-NMR (400 MHz, CDCl3): 7.778 (2H, d, J=7.0 Hz), 7.497 (1H, t, J=7.3 Hz), 7.420 (2H, d, d, J=7.8, 5.4 Hz), 7.290 (2H, d, J=8.8 Hz), 6.889 (2H, d, J=8.7 Hz), 4.580 (2H, d, J=5.6 Hz), 3.806 (3H, s). 13C-NMR (100 MHz, CDCl3):166.18, 165.92, 163.42, 159.12, 130.58, 130.55, 130.08, 129.28, 129.20, 115.65, 115.43, 114.13, 55.28, 43.66.  
分析結果:C15H14FNO2、計算値:C, 69.49; H, 5.44; N, 5.40、測定値:(結晶): C, 69.37; H, 5.63; N, 5.44.
HRMS (ESI-TOF, [N+Na]+): 計算値:C15H14FNO2+Na+: 282.09008、測定値:282.08946.
例D14:2-クロロ-N-メチル-N-フェニルアセトアミド(4n)の合成
Figure JPOXMLDOC01-appb-C000039
 N-メチルアニリン(1.1122g、10.379mmol)を5mLのDMACに溶解させ、これをアミン溶液とした。クロロアセチルクロライド(1.1219g、9.934mmol)を5mLのDMACに溶解させ、これを酸塩化物溶液とした。予め冷却した酸塩化物溶液にアミン溶液を3分かけて添加した後、全体を0℃で10分間攪拌した。白色の沈殿物が形成された。氷水浴を水浴に置き換え、全体を23℃で5時間攪拌した。次いで、混合物に水30mLを添加した。白色の沈殿物が現れた。混合物を23℃で1時間撹拌した。得られた沈殿物を吸引濾過によって集め、固体を水60mLで洗浄した。次いで、真空中で乾燥させて、表題化合物4n(白色固体)1.1619gを得た(収率:64%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。
4n: 融点: 67-68℃ (無色板状, トルエンから再結晶).
1H-NMR (400 MHz, CDCl3): 7.459 (2H, d, d, J=7.7, 7.0 Hz), 7.270-7.255 (1H, m), 7.260-7.240 (2H, m), 3.851 (2H, s), 3.322 (3H, s). 13C-NMR (100 MHz, CDCl3): 166.4, 142.8, 130.2, 128.7, 127.2, 41.7, 38.1.
分析結果:C9H10ClNO、計算値:C, 58.87; H, 5.49; N, 7.63、測定値:C, 58.78; H, 5.56; N, 7.60 (沈殿物).
HRMS (ESI-TOF, [N+Na]+): 計算値:C9H10ClNNaO+: 206.0343、測定値:206.0345.
例D15:2-クロロ-1-(インドリン-1-イル)エタン-1-オン(4o)の合成
Figure JPOXMLDOC01-appb-C000040
 インドリン(1.2549g、10.53mmol)を5mLのDMACに溶解させ、これをアミン溶液とした。クロロアセチルクロライド(1.1235g、9.95mmol)を5mLのDMACに溶解させ、これを酸塩化物溶液とした。予め冷却した酸塩化物溶液にアミン溶液を5分かけて添加した。大量の白色の沈殿物が直ちに形成された。得られた沈殿物を吸引濾過によって集め、固体を真空中で乾燥させて、表題化合物4o(白色固体)1.7290gを得た(収率:89%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。
4o: 融点. 135-136℃ (無色針状). 
1H-NMR (400 MHz, CDCl3): 8.202 (1H, d, J=8.0 Hz), 7.213 (2H, d, d, J=8.8, 8.0 Hz), 7.060 (1H, d, d, J=7.6, 7.2 Hz), 4.153-4.111 (4H, m), 3.225 (2H, t, J=8.4 Hz). 13C-NMR (100 MHz, CDCl3):163.89, 142.40, 131.13, 127.61, 124.60, 124.43, 117.23, 47.77, 43.09, 28.11.
分析結果:C10H10ClNO、計算値:C, 61.39; H, 5.15; N, 7.16、測定値:C, 61.13; H, 5.26; N, 7.15.
HRMS (ESI-TOF, [N+Na]+): 計算値:C10H10ClNNaO+, 218.03431、測定値:218.03411.
例D16:N-(4-ブロモフェニル)-4-フルオロベンズアミド(4p)の合成
Figure JPOXMLDOC01-appb-C000041
 4-ブロモアニリン(1.7920g、10.417mmol)を5mLのDMACに溶解させ、これをアミン溶液とした。4-フルオロベンゾイルクロライド(1.5672g、9.884mmol)を5mLのDMACに室温で溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で0℃に冷却した。酸塩化物溶液にアミン溶液を4分かけて0℃で攪拌して冷却しながら添加した後、全体を0℃で10分間攪拌した。氷水浴を水浴に置き換え、全体を23℃で3時間攪拌した。反応の完了を薄層クロマトグラフィー法により確認した。次いで、混合物に水30mLを添加した。白色の沈殿物が形成された。混合物を23℃で15時間撹拌した。固体を吸引濾過し、水100mLで洗浄した。次いで、真空中で乾燥させて、表題化合物4p(白色固体)2.7391gを得た(収率:94%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。
4p: 融点: 168-176℃ (無色針状, メタノールから再結晶).
1H-NMR (400 MHz, CDCl3): 7.878 (2H, d, d, J=8.9, 5.2 Hz), 7.741 (1H, br, s), 7.511 (4H, d, d, d, d, J=10.4, 9.1, 2.4, 2.4 Hz), 7.177 (2H, d, d, J=8.8, 8.4 Hz). 13C-NMR (100 MHz, DMSO-d6): 164.52, 164.13 (1JC-F=248 Hz), 138.47, 131.44, 131.12, 131.09, 130.48, 130.39, 122.23, 115.40, 115.4 (2JC-F=22 Hz). 
分析結果:C13H9BrFNO、計算値:C, 53.09; H, 3.08; N, 4.76. ,、測定値:C, 53.08; H, 3.34; N, 4.73. HRMS (ESI-TOF, [N+H]+): 計算値:C13H10BrFNO+, 293.9924、測定値:293.9920.
例D17:(4-フルオロフェニル)(インドリン-1-イル)メタノン(4q)の合成
Figure JPOXMLDOC01-appb-C000042
 インドリン(1.2728g、10.68mmol)を5mLのDMACに溶解させ、これをアミン溶液とした。4-フルオロベンゾイルクロライド(1.6248g、10.25mmol)を5mLのDMACに室温で溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で0℃に冷却した。酸塩化物溶液にアミン溶液を5分かけて0℃で攪拌しながら添加した。白色の沈殿物が直ちに形成された。全体を0℃で10分間攪拌した。氷水浴を水浴に置き換え、全体を23℃で2時間攪拌した。反応の完了を薄層クロマトグラフィー法により確認した。次いで、混合物に水20mLを添加した。予め形成された沈殿物を1回溶解させ、別の白色の沈殿物が形成された。混合物を23℃で一晩撹拌した。固体を吸引濾過し、水100mLで洗浄した。次いで、真空中で乾燥させて、表題化合物4q(白色固体)2.2605gを得た(収率:91%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。
4q: 融点: 104-105℃ (淡赤色粉末), 101-102℃ (無色棒状, メタノールから再結晶).
1H-NMR (400 MHz, CDCl3): 8.850-7.600 (1H, br), 7.500 (2H, d, d, J=8.4, 5.6 Hz), 7.154 (2H, d, d, J=11.6, 7.6 Hz), 7.057 (2H, d, d, J=8.6, 8.6 Hz), 6.958 (1H, d, J=6.4 Hz), 4.010 (2H, br), 3.050 (2H, t, J=8.4 Hz). 13C-NMR (400 MHz, CDCl3): 168.0, 163.9 (d, 1JC-F=249 Hz), 142.6, 133.1, 132.5, 129.7, 129.6, 127.3, 125.1, 124.1, 115.7 (d, 2JC-F=22 Hz), 50.8, 28.2. 
分析結果:C15H12FNO、計算値:C, 74.68; H, 5.01; N, 5.81、測定値:C, 74.47; H, 5.03; N, 5.88
HRMS (ESI-TOF, [N+Na]+): 計算値:C15H12FNNaO+: 264.0795、測定値:264.0791
例D18:(6-クロロピリジン-3-イル)(インドリン-1-イル)メタノン(4r)の合成
Figure JPOXMLDOC01-appb-C000043
 インドリン(0.7543g、6.330mmol)を3mLのDMACに溶解させ、これをアミン溶液とした。6-クロロニコチノイルクロライド(1.0557g、5.998mmol)を3mLのDMACに室温で溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で0℃に冷却した。酸塩化物溶液にアミン溶液を3分かけて0℃で攪拌しながら添加した後、全体を0℃で4分間攪拌した。氷水浴を水浴に置き換え、全体を23℃で45分間攪拌した。反応の完了を薄層クロマトグラフィー法により確認した。次いで、混合物に水20mLを添加した。白色の沈殿物が形成された。混合物を23℃で17時間撹拌した。固体を吸引濾過し、水100mLで洗浄した。次いで、真空中で乾燥させて、表題化合物4r(白色固体)1.3105gを得た(収率:84%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。
4r: 融点: 132-134℃ (無色プリズム, メタノールから再結晶)
1H-NMR (400 MHz, CDCl3): 8.613 (1H, d, J=2.0 Hz), 8.188 (1H, br, s), 7.873 (1H, d, d, J=8.2, 2.4 Hz), 7.442 (1H, d, d, J=8.2, 0.7 Hz), 7.245 (2H, d, J=7.8 Hz), 7.079 (1H, br, s), 4.087 (2H, br, s), 3.167 (2H, t, J=8.2 Hz). 13C-NMR (100 MHz, CDCl3): 165.2, 153.3, 148.5, 142.3, 137.9, 131.8, 127.6, 125.2, 124.8, 124.5, 50.8, 28.3.
分析結果:C14H11ClN2O、計算値:C, 65.00; H, 4.29; N, 10.83、測定値:C, 64.62; H, 4.50; N, 10.85.
HRMS (ESI-TOF, [N+H]+): 計算値:C14H12ClN2O+: 259.0633、測定値:259.0647.
 例D1~D18において合成した化合物の化学構造と、撹拌温度および時間並びに収率(a:沈殿法による収率、b:カラムクロマトグラフィーによる収率(油性物質)、c:抽出後、固化)は、表4の通りである。
Figure JPOXMLDOC01-appb-T000044
例E:カルボン酸アミド化合物の合成(5)
 例Eでは、各種弱塩基性アミンおよび中性アミンと酸塩化物とをアミド系溶媒中で反応させてカルボン酸アミド化合物を合成した。
例E1:4-ベンズアミド安息香酸イソブチル(5a-1)の合成
Figure JPOXMLDOC01-appb-C000045
 4-アミノ安息香酸イソブチル(1.9390g、10.03mmol)を5mLのDMACに溶解させ、これをアミン溶液とした。ベンゾイルクロライド(1.4072g、10.01mmol)を5mLのDMACに溶解させ、これを酸塩化物溶液とした。予め冷却した酸塩化物溶液にアミン溶液を3分かけて添加した後、全体を0℃で20分間攪拌した。白色の沈殿物が形成された。氷水浴を水浴に置き換え、全体を23℃で2.5時間攪拌した。反応の完了を薄層クロマトグラフィー法により確認した。次いで、混合物に水40mLを添加した。得られた沈殿物を吸引濾過によって集め、固体を水で洗浄した。次いで、真空中で乾燥させて、表題化合物5a-1(白色固体)2.8470gを得た(収率:96%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。
5a-1: 融点. 128.5-129.0℃ (無色針状). 
1H-NMR (400 MHz, CDCl3): 8.064 (3H, d, J=6.8 Hz), 7.882 (2H, d, J=6.8 Hz), 7.750 (2H, d, J=8.8 Hz), 7.573 (1H, d, d, J=7.6, 7.2 Hz), 7.495 (2H, d, d, J=8.4, 8.0 Hz), 4.097 (2H, d, J=6.4 Hz), 2.088 (1H, sep, J=6.8 Hz), 1.023 (6H, d, J=6.8 Hz). 13C-NMR (100 MHz, CDCl3): 166.12, 165.80, 142.04, 134.53, 132.20, 130.83, 128.88, 127.07, 126.20, 119.18, 70.96, 27.89, 19.20
分析結果:C18H19NO3、計算値:C, 72.71; H, 6.44; N, 4.71、測定値:C, 72.42; H, 6.57; N, 4.77.
HRMS (ESI-TOF, [N+Na]+): 計算値:C18H19NO3+Na+, 320.12571、測定値:320.12618.
例E2:4-ベンズアミド安息香酸イソプロピル(5a-2)の合成
Figure JPOXMLDOC01-appb-C000046
 4-アミノ安息香酸イソプロピル(1.8565g、10.359mmol)を5mLのDMACに溶解させ、これをアミン溶液とした。ベンゾイルクロライド(1.3828g、9.873mmol)を5mLのDMACに室温で溶解させ、これを酸塩化物溶液とした。予め冷却した酸塩化物溶液にアミン溶液を3分かけて0℃で撹拌しながら添加した後、全体を0℃で10分間攪拌した。氷水浴を水浴に置き換え、全体を23℃で3時間攪拌した。混合物に水30mLを添加した。混合物をジクロロメタン20mLで4回抽出し、合わせた有機画分を水50mLで3回洗浄し、有機画分を硫酸マグネシウムを用いて乾燥させた。有機溶媒を蒸発させ白色固体を得て、真空中で乾燥させて、表題化合物5a-2(白色固体)2.6013gを得た(収率:93%)。生成物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。
5a-2: 1H NMR (400 MHz, CDCl3): 8.210 (1H, s), 8.028 (2H, d, J=8.6 Hz), 7.872 (2H, d, J=7.4 Hz), 7.745 (2H, d, J=8.6 Hz), 7.552 (1H, d, d, J=7.2, 7.1 Hz), 7.467 (2H, d, d, J=7.8, 7.7 Hz), 5.232 (1H, sep, J=6.2 Hz), 1.365 (6H, d, J=6.2 Hz) 13C NMR (100 MHz, CDCl3): 166.05, 165.79, 142.16, 134.68, 132.29, 130.90, 128.97, 127.24, 126.70, 119.31, 68.46, 22.10.
分析結果:C17H17NO3、計算値:C, 72.07; H, 6.05; N, 4.94、測定値:C, 71.89; H, 6.16; N, 4.98.
HRMS (ESI-TOF, [N+Na]+): 計算値:C17H17NNaO3 +: 306.1101、測定値:306.1115.
例E3:2-ベンズアミド安息香酸メチル(5b)の合成
Figure JPOXMLDOC01-appb-C000047
 アントラニル酸メチル(1.5264g、10.10mmol)を5mLのDMACに溶解させ、これをアミン溶液とした。ベンゾイルクロライド(1.4040g、9.99mmol)を5mLのDMACに溶解させ、これを酸塩化物溶液とした。予め冷却した酸塩化物溶液にアミン溶液を2分かけて添加した後、全体を0℃で10分間攪拌した。白色沈殿物が形成された。氷水浴を水浴に置き換え、全体を23℃で1.5時間攪拌した。反応の完了を薄層クロマトグラフィー法により確認した。混合物に水50mLを添加した。得られた沈殿物を吸引濾過によって集め、固体を水で洗浄した。次いで、真空中で乾燥させて、表題化合物5b(白色固体)2.2723gを得た(収率:89%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。
5b: 融点. 99-100℃ (白色粉末). 
1H-NMR (400 MHz, CDCl3): 12.044 (1H, s), 8.931 (1H, s), 8.068 (3H, d, d, J=10.0, 8.8 Hz), 7.068 (1H, d, d, d, J=8.8, 7.2, 1.6 Hz), 7.563-7.511 (3H, m), 7.123 (1H, d, d, J=8.0, 7.6 Hz), 3.962 (3H, s). 13C-NMR (100 MHz, CDCl3): 169.04, 165.69, 141.85, 134.81, 131.92, 130.92, 128.78, 127.35, 122.58, 120.43, 115.12, 52.45. 
分析結果:C15H13NO3、計算値:C, 70.58; H, 5.13; N, 5.49、測定値:C, 70.41; H, 5.24; N, 5.51.
HRMS (ESI-TOF, [N+Na]+): 計算値:C15H13NO3+Na+, 278.07876、測定値:278.07938.
例E4:N-(2-ニトロフェニル)ベンズアミド(5c)の合成
Figure JPOXMLDOC01-appb-C000048
 2-ニトロアニリン(1.4482g、10.485mmol)を5mLのDMACに溶解させ、これをアミン溶液とした。ベンゾイルクロライド(1.4035g、9.985mmol)を5mLのDMACに室温で溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で0℃に冷却した。酸塩化物溶液にアミン溶液を3分かけて0℃で攪拌して冷却しながら添加した後、全体を0℃で10分間攪拌した。氷水浴を水浴に置き換え、全体を23℃で4時間攪拌した。反応の完了を薄層クロマトグラフィー法により確認した。混合物に水30mLを添加した。黄色の沈殿物が形成された。全体を23℃で21時間撹拌した。固体を吸引濾過し、水100mLで洗浄した。次いで、真空中で乾燥させて、表題化合物5c(白色固体)2.1020gを得た(収率:87%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。
5c: 融点: 94℃ (黄色針状).
1H-NMR (400 MHz, CDCl3): 9.015 (1H, d, d, J=8.5, 1.3 Hz), 8.288 (1H, d, d, J=8.5, 1.5 Hz), 8.005 (2H, d, J=6.9 Hz), 7.725 (1H, t, d, J=7.9, 1.5 Hz), 7.617 (1H, d, d, J=7.4, 7.2 Hz), 7.548 (2H, d, d, J=7.6, 7.0 Hz), 7.231 (1H, d, d, d, J=7.9, 7.8, 1.3 Hz). 13C-NMR (100 MHz, CDCl3): 165.92, 136.61, 136.37, 135.51, 134.19, 132.81, 129.21, 127.52, 126.08, 123.47, 122.29.
分析結果:C13H10N2O3、計算値:C, 64.46; H, 4.16; N, 11.56、測定値:C, 64.22; H, 4.38; N, 11.51.
HRMS (ESI-TOF, [N+Na]+): 計算値:C13H10N2NaO3 +: 265.0584、測定値:265.0587.
例E5:N-(3-ニトロフェニル)ベンズアミド(5d)の合成
Figure JPOXMLDOC01-appb-C000049
 3-ニトロアニリン(1.3863g、10.04mmol)を5mLのDMACに溶解させ、これをアミン溶液とした。ベンゾイルクロライド(1.4071g、10.01mmol)を5mLのDMACに溶解させ、これを酸塩化物溶液とした。予め冷却した酸塩化物溶液にアミン溶液を1分かけて添加した後、全体を0℃で20分間攪拌した。氷水浴を水浴に置き換え、全体を23℃で1.5時間攪拌した。混合物に水20mLを添加した。白色の沈殿物が形成された。得られた沈殿物を吸引濾過によって集め、固体を水で洗浄した。次いで、真空中で乾燥させて、表題化合物5d(白色固体)2.3405gを得た(収率:97%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。
5d: 融点: 158-159℃ (無色微細針状).
1H-NMR (400 MHz,DMSO-d6): 10.717 (1H, s), 8.835 (1H, d, d, J=2.0, 2.0 Hz), 8.220 (1H, d, d, d, J=8.0, 2.4, 0.8 Hz), 8.020 (2H, d, J=8.0 Hz), 8.969 (1H, d, d, d, J=8.0, 2.4, 0.8 Hz), 7.645 (2H, d, d, J=7.2, 6.8 Hz), 7.578 (2H, d, d, J=7.2, 6.8 Hz). 13C-NMR (100 MHz, DMSO-d6): 166.04, 147.89, 140.39, 134.24, 132.03, 130.02, 128.50, 127.78, 126.13, 118.09, 114.32.
分析結果: C13H10N2O3、計算値:C, 64.46; H, 4.16; N, 11.56、測定値:C, 64.66; H, 4.38; N, 11.65.
HRMS (ESI-TOF, [N+Na]+): 計算値:C13H10N2O3+Na+: 265.05836、測定値:265.05828.
例E6:N-(4-ニトロフェニル)ベンズアミド(5e)の合成
Figure JPOXMLDOC01-appb-C000050
 4-ニトロアニリン(1.4101g、10.20mmol)を5mLのDMACに溶解させ、これをアミン溶液とした。ベンゾイルクロライド(1.4028g、9.98mmol)を5mLのDMACに溶解させ、これを酸塩化物溶液とした。予め冷却した酸塩化物溶液にアミン溶液を3分かけて添加した後、全体を0℃で2時間攪拌した。混合物に水50mLを添加した。白色の沈殿物が形成された。得られた沈殿物を吸引濾過によって集め、固体を水で洗浄した。次いで、真空中で乾燥させて、表題化合物5e(白色固体)2.3573gを得た(収率:98%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。
5e: 融点: 201-202℃ (薄緑色粉末).
1H-NMR (400 MHz, DMSO-d6): 10.820 (1H, br s), 8.279 (2H, d, J=9.2 Hz), 8.079 (2H, d, J=9.2 Hz), 8.079 (2H, d, J=9.6 Hz), 7.990 (2H, d, J=7.6 Hz), 7.654 (2H, d, d, J=7.2, 7.2 Hz), 7.572 (2H, d, d, J=8.0, 8.0 Hz). 13C-NMR (100 MHz, DMSO-d6): 166.29, 145.51, 142.46, 134.23, 132.18, 128.52, 127.92, 124.80, 119.83.
分析結果:C13H10N2O3、計算値:C, 64.46; H, 4.16; N, 11.56、測定値:C, 64.26; H, 4.29; N, 11.60.
HRMS (ESI-TOF, [N+Na]+): 計算値:C13H10N2O3+Na+: 265.05836、測定値:265.05815.
例E7:N-(4-シアノフェニル)ベンズアミド(5f)の合成
Figure JPOXMLDOC01-appb-C000051
 4-アミノベンゾニトリル(1.2370g、10.471mmol)を5mLのDMACに溶解させ、これをアミン溶液とした。ベンゾイルクロライド(1.4051g、9.996mmol)を5mLのDMACに室温で溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で0℃に冷却した。酸塩化物溶液にアミン溶液を4分かけて0℃で攪拌して冷却しながら添加した後、全体を0℃で10分間攪拌した。氷水浴を水浴に置き換え、全体を23℃で2時間攪拌した。反応の完了を薄層クロマトグラフィー法により確認した。混合物に水30mLを添加した。白色の沈殿物が形成された。混合物を23℃で15時間撹拌した。固体を吸引濾過し、水100mLで洗浄した。次いで、真空中で乾燥させて、表題化合物5f(白色固体)2.1417gを得た(収率:96%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。
5f: 融点: 165-167℃ (無色粉末, メタノールから再結晶).
1H-NMR (400 MHz, CDCl3): 8.027 (1H, be, s), 7.876 (2H, d, J=7.0 Hz), 7.801 (2H, d, J=8.9 Hz), 7.662 (2H, d, J=8.8 Hz), 7.601 (1H, d, d, J=7.6, 7.3 Hz), 7.518 (2H, d, d, J=7.7, 7.2 Hz). 13C-NMR (100 MHz, CDCl3): 166.2, 143.5, 134.4, 133.1, 132.1, 128.5, 127.9, 120.2, 119.1, 105.3.
分析結果: C14H10N2O、計算値:C, 75.66; H, 4.54; N, 12.60、測定値:C, 75.63; H, 4.69; N, 12.62. HRMS (ESI-TOF, [N+Na]+): 計算値:C14H10N2NaO+ : 245.0685、測定値:245.0688.
例E8:N-(ベンジルカルバモイル)ベンズアミド(5g)の合成
Figure JPOXMLDOC01-appb-C000052
 1-ベンジルウレア(1.5162g、10.10mmol)を5mLのDMACに懸濁させ、これをウレア懸濁液とした。ベンゾイルクロライド(1.4118g、10.04mmol)を5mLのDMACに溶解させ、これを酸塩化物溶液とした。ウレア懸濁液に酸塩化物溶液を3分かけて23℃で添加した後、全体を23℃で7.5時間攪拌した。透明な溶液が得られた。反応の完了を薄層クロマトグラフィー法により確認した。混合物に水40mLを添加した。得られた沈殿物を吸引濾過によって集め、固体を水で洗浄した。次いで、真空中で乾燥させて、表題化合物5g(白色固体)1.2965gを得た(収率:51%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。
5g: 融点. 168-169℃ (無色立方体, メタノールから再結晶.). 
1H-NMR (400 MHz, DMSO-d6): 10.790 (1H, s), 9.093 (1H, s), 7.977 (2H, d, J=7.2 Hz), 7.621 (1H, d, d, J=7.6, 7.2 Hz), 7.507 (2H, d, d, J=8.0, 7.6 Hz), 7.357-7.244 (5H, m), 4.462 (2H, d, J=6.0 Hz). 13C-NMR (100 MHz, DMSO-d6):168.28, 153.66, 139.24, 132.76, 132.56, 128.49, 128.43, 128.16, 127.26, 126.96, 42.74.
分析結果:C15H14N2O2、計算値:C, 70.85; H, 5.55; N, 11.02、測定値:C, 70.72; H, 5.60; N, 11.01.
HRMS (ESI-TOF, [N+Na]+): 計算値:C15H14N2O2+Na+, 277.09475、測定値:277.09563.
例E9:N-カルバモイルベンズアミド(5h)の合成
Figure JPOXMLDOC01-appb-C000053
 尿素(603.4mg、10.05mmol)を8mLのDMACに懸濁させ、これを尿素懸濁液とした。ベンゾイルクロライド(1.4109g、10.04mmol)を2mLのDMACに溶解させ、これを酸塩化物溶液とした。予め加熱した70℃の尿素懸濁液に酸塩化物溶液を2分かけて添加した後、全体を攪拌しながら70℃で2時間加熱した。透明な溶液が得られた。反応の完了を薄層クロマトグラフィー法により確認した。混合物を室温に冷却した後、反応容器に水100mLを添加した。得られた沈殿物を吸引濾過によって集め、固体を水で洗浄した。次いで、真空中で乾燥させて、表題化合物5h(白色固体)991.9mgを得た(収率:60%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。
5h: 融点. 169-172℃ (無色微細針状). 
1H-NMR (400 MHz, DMSO-d6): 10.547 (1H, s), 8.059 (1H, br, s), 7.961 (2H, d, J=7.2 Hz), 7.613 (1H, d, d, J=7.6, 7.2 Hz), 7.499 (2H, d, d, J=8.0, 7.6 Hz), 7.047 (1H, br, s) 13C-NMR (100 MHz, DMSO-d6):168.13, 154.19, 132.72, 132.69, 128.48, 128.13
分析結果:C8H8N2O2、計算値:C, 58.53; H, 4.91; N, 17.06、測定値:C, 58.25; H, 5.07; N, 17.15.
HRMS (ESI-TOF, [N+Na]+): 計算値:C8H8N2O2+Na+, 187.04780、測定値:187.04842.
 例E1~E9において合成した化合物の化学構造と、撹拌温度および時間並びに収率(a:沈殿法による収率)は、表5の通りである。
Figure JPOXMLDOC01-appb-T000054
例F:カルボン酸アミド化合物の合成(6)
 例Fでは、各種双性イオン分子と酸塩化物とをアミド系溶媒中で反応させてカルボン酸アミド化合物を合成した。
例F1:2-ベンズアミド安息香酸(6a)の合成
Figure JPOXMLDOC01-appb-C000055
 アントラニル酸(1.3716g、10.00mmol)を5mLのDMACに溶解させ、これをアントラニル酸溶液とした。ベンゾイルクロライド(1.4057g、10.00mmol)を5mLのDMACに溶解させ、これを酸塩化物溶液とした。予め冷却した酸塩化物溶液にアントラニル酸溶液を0℃(氷水浴上)で5分かけて添加した。白色沈殿物が形成された。全体を0℃で5分間攪拌した。氷水浴を水浴に置き換え、全体を23℃で1.5時間攪拌した。混合物に水40mLを添加した。白色の沈殿物が形成された。得られた沈殿物を吸引濾過によって集め、固体を水で洗浄した。次いで、真空中で乾燥させて、表題化合物6a(白色固体)2.2910gを得た(収率:95%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。
6a: 融点. 182.2-183℃ (無色微細針状). 
1H-NMR (400 MHz, DMSO-d6): 13.817 (1H, brs), 12.204 (1H, s), 8.742 (1H, d,d、J=8.6, 1.2 Hz), 8.082 (1H, d, d, J=7.8, 2.0Hz), 7.981 (2H, d, d, J=7.8, 1.2Hz), 7.683 (1H, t, d, J=8.0, 1.6 Hz), 7.647 (1H, t, d, J=7.2, 1.6Hz), 7.608 (2H, t, d, J=6.8, 1.6 Hz), 7.227 (1H, t, d, J=7.4, 1.2Hz).
13C-NMR (100 MHz, DMSO-d6):170.04, 164.70, 141.14, 134.54, 134.35, 132.20, 131.30, 129.00, 127.03, 122.95, 119.89, 116.51.
分析結果:C14H11NO3、計算値:C, 69.70; H, 4.60; N, 5.81、測定値:C, 69.93; H, 4.82; N, 5.90.
HRMS (ESI-TOF, [N-H]-): 計算値:C14H10NO3-H-, 240.06662、測定値:240.06760.
例F2:2-ベンズアミド安息香酸(6a)の合成
Figure JPOXMLDOC01-appb-C000056
 アントラニル酸(1.3740g、10.00mmol)を5mLのDMPUに溶解させ、これをアントラニル酸溶液とした。ベンゾイルクロライド(1.4063g、10.00mmol)を5mLのDMPUに溶解させ、これを酸塩化物溶液とした。予め冷却した酸塩化物溶液にアントラニル酸溶液を0℃(氷水浴上)で4分かけて添加した後、全体を0℃で3分間攪拌した。沈殿物は形成されなかった。氷水浴を水浴に置き換え、全体を23℃で1.5時間攪拌した。沈殿物は形成されなかった。混合物に水40mLを添加した。白色の沈殿物が形成された。得られた沈殿物を吸引濾過によって集め、固体を水で洗浄した。次いで、真空中で乾燥させて、表題化合物6a(白色固体)2.3272gを得た(収率:96%)。生成物はH-NMR(CDCl)および燃焼分析の点で本物の化合物と同一であった。
測定値:分析結果:C14H11NO3、計算値:C, 69.70; H, 4.60; N, 5.81、測定値:C, 69.32; H, 4.84; N, 5.72.
1H-NMR (400 MHz, DMSO-d6): 13.810 (1H, brs), 12.190 (1H, s), 8.727 (1H, d,d、J=8.4, 0.8 Hz), 8.070 (1H, d, d, J=7.8, 1.4 Hz), 7.969 (2H, d, J=7.6 Hz), 7.697-7.579 (4H, m), 7.219 (1H, t, d, J=7.4, 1.2Hz).
13C-NMR (100 MHz, DMSO-d6):170.03, 164.71, 141.13, 134.54, 134.35, 132.21, 131.30, 129.01, 127.03, 122.97, 119.89, 116.53.
例F3:ベンゾイルグリシン(6b)の合成
Figure JPOXMLDOC01-appb-C000057
 ベンゾイルクロライド(1.4039g、9.99mmol)を5mLのDMACに溶解させ、これを酸塩化物溶液とした。予め冷却した酸塩化物溶液に純粋なグリシン(748.0mg、9.96mmol)を0℃(氷水浴上)で1分かけて添加した後、全体を0℃で20分間攪拌した。氷水浴を水浴に置き換え、全体を23℃で4時間攪拌した。反応の完了を薄層クロマトグラフィー法により確認した。混合物に水11mLを添加した。得られた沈殿物を吸引濾過によって集め、真空中で乾燥させて、表題化合物6b(白色固体)1.2561gを得た(収率:70%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。
6b: 融点. 190.5-190.7℃ (無色微細針状). 
1H-NMR (400 MHz, DMSO-d6): 12.611 (1H, br, s), 8.847 (1H, t, J=5.8 Hz), 7.881 (2H, d, J=7.2 Hz), 7.551 (1H, d, d, J=7.6, 7.2 Hz), 7.483 (2H, d, d, J=7.6, 6.8 Hz), 3.938 (2H, d, J=6.0 Hz). 13C-NMR (100 MHz, DMSO-d6):171.39, 166.51, 133.86, 131.46, 128.39, 127.27, 41.25.
分析結果:C9H9NO3+0.1H2O、計算値:C, 59.73; H, 5.12; N, 7.74、測定値:C, 59.85; H, 5.02; N, 7.87. HRMS (ESI-TOF, [N-H]-): 計算値:C9H8NO3 -, 178.05097、測定値:178.05185.
例F4:ベンゾイル-L-フェニルアラニン(6c)の合成
Figure JPOXMLDOC01-appb-C000058
 ベンゾイルクロライド(1.4031g、9.982mmol)を10mLのDMACに室温で溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で0℃に冷却した。酸塩化物溶液に純粋なL-フェニルアラニン(1.7290g、10.467mmol)を0℃(氷水浴上)で9分かけて0℃で攪拌して冷却しながら添加した後、全体を0℃で10分間攪拌した。氷水浴を水浴に置き換え、全体を23℃で21時間攪拌した。混合物に水30mLを添加した。白色の沈殿物が形成された。混合物を23℃で7時間撹拌した。固体を吸引濾過し、水150mLで洗浄した。次いで、真空中で乾燥させて、表題化合物6c(白色固体)2.0819gを得た(収率:77%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。
6c: 融点: 137-138℃ (白色粉末).
1H-NMR (400 MHz, CDCl3): 7.687 (2H, d, J=7.0 Hz), 7.519 (1H, t, J=7.4 Hz), 7.421 (2H, d, d, J=7.8, 7.2 Hz), 7.341-7.274 (3H, m), 7.213 (2H, d, J=6.3 Hz), 6.546 (1H, d, J=7.2 Hz), 5.082 (1H, d, d, d, J=7.3, 7.3, 7.3 Hz), 3.376 (1H, d, d, J=38.6, 5.6 Hz), 3.280 (1H, d, d, J=38.6, 5.6 Hz). 13C-NMR (100 MHz, CDCl3):174.9, 167.9, 135.8, 133.6, 132.2, 129.6, 128.9, 128.8, 127.5, 127.2, 57.8, 37.4.
HRMS (ESI-TOF, [N+Na]+): 計算値: C16H15NNaO3 +: 292.0944. 、測定値:: 292.0959.
分析結果:C16H15NO3、計算値:C, 71.36; H, 5.61; N, 5.20、測定値:C, 71.04; H, 5.80; N, 5.28.
例F5:ベンゾイル化されたフェニルアラニンの光学純度
(1)ベンゾイル-L-フェニルアラニンの合成および生成物のカルボン酸のメチル化
Figure JPOXMLDOC01-appb-C000059
 ベンゾイルクロライド(1.4143g、10.061mmol)を10mLのDMACに室温で溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で0℃に冷却した。酸塩化物溶液にL-フェニルアラニン(1.7408g、10.538mmol)を1分かけて添加した後、全体を0℃で10分間撹拌した。氷浴を水浴に置き換え、混合物を23℃で22時間撹拌した。混合物に水30mLを添加した。白色の沈殿物が形成された。混合物を23℃で2時間撹拌した。固体を吸引濾過し、水60mLで洗浄した。次いで、真空中で乾燥させて、ベンゾイル-L-フェニルアラニン6c(白色固体)1.5603gを得た(収率:58%)。
 得られたベンゾイル-L-フェニルアラニン6c(0.1234g)を30mlの丸底フラスコに移し、メタノール1.5mLを加え、全体を室温で2時間置いた。トリメチルシリルジアゾメタン1.5mLを添加した。全体を蒸発させて白色固体を得、これをカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=1/2)で精製し、メチル ベンゾイル-L-フェニルアラニナート(白色固体)0.0373gを得た。
(2)ベンゾイル-D-フェニルアラニンの合成および生成物のカルボン酸のメチル化
Figure JPOXMLDOC01-appb-C000060
 ベンゾイルクロライド(1.4104g、10.034mol)を10mLのDMACに室温で溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で0℃に冷却した。酸塩化物溶液にD-フェニルアラニン(1.7035g、10.312mmol)を1分かけて添加した後、全体を0℃で10分間撹拌した。氷浴を水浴に置き換え、混合物を23℃で19時間撹拌した。混合物に水40mLを添加した。白色の沈殿物が形成された。混合物を23℃で2時間撹拌した。固体を吸引濾過し、水60mLで洗浄した。次いで、真空中で乾燥させて、ベンゾイル-D-フェニルアラニン6c’(白色固体)1.6957gを得た(収率:63%)。
 得られたベンゾイル-D-フェニルアラニン6c’(0.1109g)を30mlの丸底フラスコに移し、メタノール1.5mlを加え、全体を室温で2時間置いた。トリメチルシリルジアゾメタン1.5mlを添加した。全体を蒸発させて白色固体を得、これをカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=1/2)で精製し、メチル ベンゾイル-D-フェニルアラニナート(白色固体)0.0479gを得た。
(3)光学純度の分析
 上記(1)および(2)で得られたメチル ベンゾイル-L-フェニルアラニナート6cおよびメチル ベンゾイル-D-フェニルアラニナート6c’を2-プロパノールで希釈し(1g/L)、L体標品およびD体標品を調製した。また、等量のL体標品とD体標品を混合し、LD混合標品を調製した。各標品中の光学異性体の存在比を高速液体クロマトグラフィ(HPLC)を用いて測定した。HPLC構成装置およびHPLC条件は下記の通りとした。
<HPLC構成装置>
ポンプ:(Elite LaChorm L-2130、日立ハイテクノロジー社製)
UV検出器:(Elite LaChorm L-2400、日立ハイテクノロジー社製)
ソフトウェア:(Chromato-Integrator D-2500、日立ハイテクノロジー社製)
<HPLC条件>
サンプル量:10μL
カラム:キラルカラム(CHIRALCEL OD-H 0.46cmφ×25cm、ダイセル社製)
溶媒:2-プロパノール:ヘキサン=1:30
流速:1.0mL/分
 HPLCのクロマトグラムは図1~3に示される通りであった。LD混合標品のクロマトグラム(図1)の2つのピーク(30.67分、45.55分)はそれぞれD体またはL体由来であることが示された。L体標品のクロマトグラム(図2)において、L体標品由来のピークの積分値の1%以上のピークが、D体標品のピークに相当する時間に存在しないことから、L体標品の反応産物は99%以上の光学純度を持つL体であることが示された。また、D体標品のクロマトグラム(図3)においても同様に、D体標品の反応産物は99%以上の光学純度を持つD体であることが示された。これらの結果より、本発明の製造方法によれば、フェニルアラニンはラセミ化せずベンゾイル化できることが示された。
例F6:ベンゾイル-L-バリン(6d)の合成
Figure JPOXMLDOC01-appb-C000061
 ベンゾイルクロライド(1.3990g、9.953mmol)を10mLのDMACに溶解させ、これを酸塩化物溶液とした。予め冷却した酸塩化物溶液に純粋なL-バリン(1.2298g、10.498mmol)を1分かけて添加した後、全体を0℃で10分間攪拌した。氷水浴を水浴に置き換え、全体を23℃で26時間攪拌した。混合物にメタノール5mLを添加した。混合物を23℃で5時間撹拌した。2M塩酸溶液5mLを添加した。混合物をエチルジエチルエーテル30mLで3回抽出した。有機画分を硫酸マグネシウムを用いて乾燥して有機溶媒を蒸発させ無色液体1.8638gを得た。生成物はオープンカラムクロマトグラフィー(クロロホルム:メタノール:酢酸=90:10:1)により精製され、表題化合物6d 1.6565gを得た(収率:75%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。
6d: 融点: 133-136℃ (無色棒状).
1H-NMR (400 MHz, CDCl3): 9.393 (1H, br, s), 7.812 (2H, d, J=6.9 Hz), 7.535 (1H, d, d, J=7.5, 7.2 Hz), 7.458 (2H, d, d, J=7.6, 7.5 Hz), 6.644 (1H, d, J=8.4 Hz), 4.810 (1H, d, d, J=8.5, 4.8 Hz), 2.414-2.334 (1H, m), 1.056 (6H, d, d, J=10.3, 6.9 Hz). 13C NMR (100 MHz, CDCl3): 175.80, 168.28, 133.88, 132.11, 128.80, 127.28, 57.70, 31.45, 19.16, 17.94
分析結果:C12H15NO3、計算値:C, 65.14; H, 6.83; N, 6.33、測定値:C, 64.97; H, 6.93; N, 6.43. HRMS (ESI-TOF, [N+Na]+): 計算値:C12H15NNaO3 +: 244.0944、測定値:244.0947. 
 例F1、F3、F4およびF6において合成した化合物の化学構造と、撹拌温度および時間並びに収率(a:沈殿法による収率、b:抽出法による収率)は、表6の通りである。
Figure JPOXMLDOC01-appb-T000062
例G:アミド化合物の合成(7)
 例Gでは、塩基性度が異なる2種のアミンと酸塩化物とをアミド系溶媒中で反応させて選択的なカルボン酸アミド化合物の合成を実施した。
例G1:N-フェニルベンズアミド(4s)の合成
Figure JPOXMLDOC01-appb-C000063
 アニリン(0.9779g、10.500mmol)を5mLのDMACに室温で溶解させ、これをアミン溶液とした。ベンゾイルクロライド(1.4129g、10.052mmol)を5mLのDMACに溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で0℃に冷却した。酸塩化物溶液にアミン溶液を3分かけて0℃で攪拌しながら添加した後、全体を0℃で10分間攪拌した。氷水浴を水浴に置き換え、全体を23℃で2時間攪拌した。反応の完了を薄層クロマトグラフィー法により確認した。次いで、混合物に水30mLを添加した。白色の沈殿物が形成された。混合物を23℃で2時間撹拌した。固体を吸引濾過し、水100mLで洗浄した。次いで、真空中で乾燥させて、表題化合物4s(白色固体)1.8857gを得た(収率:95%)。沈殿物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。
4s: 融点: 164-166℃ (無色板状, メタノールから再結晶).
1H NMR (400 MHz, CDCl3): 7.877 (2H, d, J=6.9 Hz), 7.807 (1H, br, s), 7.647 (2H, d, J=8.4 Hz), 7.562 (1H, t, J=7.3 Hz), 7.497 (2H, d, d, J=7.6, 7.0 Hz), 7.384 (2H, d, d, J=8.5, 7.5 Hz), 7.162 (1H, t, J=7.4 Hz). 13C NMR (100 MHz, CDCl3): 165.84, 138.05, 135.17, 132.02, 129.28, 128.97, 127.15, 124.74, 120.31.
分析結果:C13H11NO、計算値:C, 79.17; H, 5.62; N, 7.10、測定値:C, 78.92; H, 5.85; N, 7.13.
HRMS (ESI-TOF, [N+Na]+): 計算値:C13H11NNaO+: 220.0733、測定値:220.0703.
例G2:N-(4-メトキシベンジル)ベンズアミド(4l)およびN-フェニルベンズアミド(4s)の合成
Figure JPOXMLDOC01-appb-C000064
 撹拌棒を備えた30mL丸底フラスコに、アニリン(0.4918g、5.281mmol)および4-メトキシベンジルアミン(0.7054g、5.142mmol)を入れた。フラスコを氷水浴(0℃)に浸した。DMAC5mLおよび酢酸(1.2331g、20.535mmol)を撹拌しながら添加した。次いで、DMAC5mLにベンゾイルクロライド(0.7039g、5.008mmol)を室温で溶解させた酸塩化物溶液を7分かけて0℃で添加した後、全体を0℃で25分間撹拌した。氷水浴を水浴に置き換え、全体を23℃で3時間撹拌した。水30mLを添加した。白色の沈殿物が形成された。混合物を23℃で1時間攪拌した。固体を吸引濾過し、水60mLで洗浄した。真空中で乾燥させた。アミド生成物の混合物をカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:4)で分離した。表題化合物4s(白色固体)0.7727g(収率:78%)および表題化合物4l(白色固体)0.0944g(収率:7.8%)を得た。なお、4sと4lの比率は、アミド4s(例G1参照)と4l(例D12参照)との比較におけるH-NMRシグナルの積分によって決定した(以下、同様)。
1H-NMR (400 MHz, CDCl3): 7.877 (2H (4s), d, J=6.9 Hz), 7.850-7.766 (1H (4s), 2H (4k), m), 7.647 (2H (4s), d, d, J=8.4, 1.1 Hz), 7.562 (1H (4s), t, J=7.3 Hz), 7.520-7.261 (4H (4s), 5H (4k), m), 7.292 (2H (4k), d, J=8.8 Hz), 7.162 (1H (4s), t, J=7.4 Hz), 6.889 (2H (4k), d, J=8.7 Hz), 4.584 (2H (4k), d, J=5.6 Hz), 3.807 (3H (4k), s)
例G3:N-(4-メトキシベンジル)ベンズアミド(4l)およびN-フェニルベンズアミド(4s)の合成
Figure JPOXMLDOC01-appb-C000065
 撹拌棒を備えた30mL丸底フラスコに、アニリン(0.4865g、5.224mmol)および4-メトキシベンジルアミン(0.7059g、5.146mmol)を入れた。フラスコを氷水浴(0℃)に浸した。DMAC5mLおよび酢酸(3.0567g、50.903mmol)を撹拌しながら添加した。次いで、DMAC5mLにベンゾイルクロライド(0.7048g、5.014mmol)を室温で溶解させた酸塩化物溶液を3分かけて添加した後、全体を0℃で10分間撹拌した。氷水浴を水浴に置き換え、全体を23℃で3時間攪拌した。水40mLを添加した。白色の沈殿物が形成された。混合物を23℃で3時間攪拌した。固体を吸引濾過し、水80mLで洗浄した。真空中で乾燥させた。表題化合物4s(白色固体)0.9090g(収率:92%)を得た。N-(4-メトキシベンジル)ベンズアミド(4l)は検出できなかった。生成物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。生成物はH-NMR(CDCl)および燃焼分析の点で本物の化合物と同一であった。
4s: 1H NMR (400 MHz, CDCl3): 7.873 (2H, d, J=7.0 Hz), 7.832 (1H, br, s), 7.644 (2H, d, J=8.5 Hz), 7.557 (1H, t, J=7.3 Hz), 7.491 (2H, d, d, J=7.6, 7.0 Hz), 7.379 (2H, d, d, J=8.5, 7.5 Hz), 7.159 (1H, t, J=7.4 Hz). 分析結果:C13H11NO、計算値:C, 79.17; H, 5.62; N, 7.10、測定値:C, 78.96; H, 5.81; N, 7.09.
例G4:N-(4-メトキシベンジル)ベンズアミド(4l)およびN-フェニルベンズアミド(4s)の合成
Figure JPOXMLDOC01-appb-C000066
 撹拌棒を備えた30mL丸底フラスコに、アニリン(0.5023g、5.394mmol)および4-メトキシベンジルアミン(0.7061g、5.147mmol)を入れた。フラスコを氷水浴(0℃)に浸した。DMAC5mLおよびトリエチルアミン(2.0340g、18.628mmol)を撹拌しながら添加した。次いで、DMAC5mLにベンゾイルクロライド3b(0.7098g、5.050mmol)を室温で溶解させた酸塩化物溶液を5分かけて添加した後、全体を0℃で10分間撹拌した。氷水浴を水浴に置き換え、全体を23℃で3時間撹拌した。水30mLを添加した。白色の沈殿物が形成された。混合物を23℃で15時間攪拌した。固体を吸引濾過し、水100mLで洗浄した。真空中で乾燥させた。アミド生成物の混合物をカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:4)で分離した。表題化合物4s(白色固体)0.2794g(収率:28%)および表題化合物4l(白色固体)0.7317g(収率:60%)を得た。
1H-NMR (400 MHz, CDCl3): 7.880 (2H (4s), d, J=6.9 Hz), 7.870-7.766 (1H (4s), 2H (4k), m), 7.650 (2H (4s), d, d, J=8.6, 1.0 Hz), 7.564 (1H (4s), t, J=7.3 Hz), 7.520-7.364 (4H (4s), 3H (4k), m), 7.292 (2H (4k), d, J=8.8 Hz), 7.162 (1H (4s), t, J=7.4 Hz), 6.891 (2H (4k), d, J=8.7 Hz), 4.587 (2H (4k), d, J=5.6 Hz), 3.808 (3H (4k), s)
例G5:N-(4-メトキシベンジル)ベンズアミド(4l)およびN-フェニルベンズアミド(4s)の合成
Figure JPOXMLDOC01-appb-C000067
 攪拌棒を備えた30mL丸底フラスコに、4-メトキシベンジルアミン(0.4849g、5.207mmol)およびアニリン(0.6940g、5.059mmol)を入れた。フラスコを氷水浴(0℃)に浸した。DMAC5mLを撹拌しながら添加した。次いで、DMAC5mLにベンゾイルクロライド(0.7000g、4.980mmol)を室温で溶解させた酸塩化物溶液を5分かけて0℃で添加した後、全体を0℃で10分間撹拌した。氷水浴を水浴に置き換え、全体を23℃で3時間撹拌した。水40mLを添加した。白色の沈殿物が形成された。混合物を23℃で2時間攪拌した。固体を吸引濾過し、水100mLで洗浄した。真空中で乾燥させた。沈殿物は、アミド生成物の混合物のみを含有していた。表題化合物4s(白色固体)0.6482g(収率:66%)および表題化合物4l(白色固体)0.3298g(収率:27%)を得た。
1H-NMR (400 MHz, CDCl3): 7.878 (2H (4s), d, J=6.9 Hz), 7.870-7.765(1H (4s), 2H (4k), m), 7.648 (2H (4s), d, d, J=8.6, 1.1 Hz), 7.563 (1H (4s), t, J=7.3 Hz), 7.519-7.358 (4H (4s), 3H (4k), m), 7.290 (2H (4k), d, J=8.7 Hz), 7.162 (1H (4s), t, J=7.4 Hz), 6.890 (2H (4k), d, J=8.7 Hz), 4.586 (2H (4k), d, J=5.5 Hz), 3.808 (3H (4k), s)
 例G2~G5の手順および収率をまとめると表7の通りである。
Figure JPOXMLDOC01-appb-T000068
例G6:N-(4-ニトロフェニル)ベンズアミド(P1)およびN-(4-メトキシベンジル)ベンズアミド(P2)の合成
Figure JPOXMLDOC01-appb-C000069
 攪拌棒を備えた30mL丸底フラスコに、4-メトキシベンジルアミン(0.7928g、5.779mmol)および4-ニトロアニリン(0.7934g、5.744mmol)を入れた。フラスコを氷水浴(0℃)に浸した。DMAC5mLおよびトリフルオロ酢酸(2mL、26.118mmol)を撹拌しながら添加した。次いで、DMAC3mLにベンゾイルクロライド(0.7729g、5.498mmol)を室温で溶解させた酸塩化物溶液を5分かけて0℃で添加した後、全体を0℃で10分間撹拌した。氷水浴を水浴に置き換え、全体を23℃で24時間撹拌した。水40mLを添加した。白色の沈殿物が形成された。混合物を23℃で2時間攪拌した。固体を吸引濾過し、水100mLで洗浄した。真空中で乾燥させた。沈殿物は、表題化合物P1のみを含有していた。表題化合物P1(白色固体)1.1658g(収率:88%)を得た。
1H-NMR (400 MHz, DMSO-d6): 8.280 (2H, d, J=9.3 Hz), 8.057 (2H, d, J=9.4 Hz), 7.987 (2H, d, J=7.0 Hz), 7.648 (1H, t, J=7.3 Hz), 7.572 (2H, dd, J=7.7, 7.0 Hz)
分析結果:C13H10N2O3、計算値:C, 64.46; H, 4.16; N, 11.56、測定値:C, 64.31; H, 4.31; N, 11.50
例G7:N-(4-ブロモフェニル)ベンズアミド(P3)およびN-(2-クロロベンジル)ベンズアミド(P4)の合成
Figure JPOXMLDOC01-appb-C000070
 攪拌棒を備えた30mL丸底フラスコに、2-クロロベンジルアミン(0.6995g、4.940mmol)および4-ブロモアニリン(0.8589g、4.995mmol)を入れた。フラスコを氷水浴(0℃)に浸した。DMAC5mL、およびトリフルオロ酢酸(2mL、26.118mmol)を撹拌しながら添加した。次いで、DMAC3mLにベンゾイルクロライド(0.6731g、4.788mmol)を室温で溶解させた酸塩化物溶液を5分かけて0℃で添加した後、全体を0℃で10分間撹拌した。氷水浴を水浴に置き換え、全体を23℃で4時間撹拌した。水40mLを添加した。白色の沈殿物が形成された。混合物を23℃で2時間攪拌した。固体を吸引濾過し、水100mLで洗浄した。真空中で乾燥させた。沈殿物は、表題化合物P3のみを含有していた。表題化合物P3(白色固体)1.2685g(収率:96%)を得た。
1H-NMR (400 MHz, DMSO-d6): 10.373 (1H, s), 7.948 (2H, d, J=7.0 Hz), 7.775 (2H, d, J=9.0 Hz), 7.606 (1H, t, J=7.3 Hz), 7.523-7.518 (4H, m)
分析結果:C13H10BrNO、計算値:C, 56.55; H, 3.65; N, 5.07、測定値:C, 56.39; H, 3.79; N, 4.84
例H:カルバメート化合物の合成
 例Hでは、各種アミンとカルボン酸エステルの塩化物とをアミド系溶媒中で反応させてカルバメート化合物を合成した。
例H1:ジベンジルカルバミン酸メチルの合成
Figure JPOXMLDOC01-appb-C000071
 クロロギ酸メチル(0.9470g、10.012mmol)を5mLのDMACに溶解させ、これを酸塩化物溶液とした。ジベンジルアミン(2.0735g、10.510mmol)を5mLのDMACに室温で溶解させ、これをアミン溶液とした。アミン溶液を30mL丸底フラスコに移し、全体を氷水浴中で1℃に冷却した。アミン溶液に酸塩化物溶液を5分かけて1℃で攪拌して冷却しながら添加した。白色の沈殿物が形成された。全体を1℃で10分間攪拌した。氷浴を除去し、混合物を室温で1296分間撹拌した。反応の完了を薄層クロマトグラフィー法により確認した。次いで、混合物に水30mLを添加した。全体を23℃で22時間撹拌した。混合物を酢酸エチル20mLで3回抽出し、合わせた有機画分を塩水20mLで1回洗浄し、水40mLで1回洗浄した。有機画分を硫酸マグネシウムを用いて乾燥させ、19~35℃で19分間蒸発させた。白い味噌汁のような液体が現れた。油状物を真空下で5時間乾燥させた。生成物に酢酸エチル10mLを加え、水17mLで3回洗浄した。有機画分を硫酸マグネシウムを用いて乾燥させ、44℃で20分間蒸発させた。無色の油が現れた。油状物を真空下で17時間乾燥させて、表題化合物(無色液体)0.7338gを得た(収率:29%)。
1H NMR (400 MHz, CDCl3):7.341-7.206 (10H, m), 4.418 (4H, s), 3.795 (3H, s) 13C NMR (100 MHz, CDCl3):170.74, 137.41, 130.19, 129.04, 128.65, 127.45, 53.03, 38.11, 35.24, 21.64
分析結果:C16H17NO2、計算値:C, 75.27; H, 6.71; N, 5.49、測定値:C, 75.27; H, 6.82; N, 5.50
HRMS (ESI-TOF, [N+Na]+): 計算値:C16H17NNaO2 +: 278.1152、測定値:278.1169
例H2:インドリン-1-カルボン酸メチルの合成
Figure JPOXMLDOC01-appb-C000072
 クロロギ酸メチル(0.9461g、10.012mmol)を5mLのDMACに室温で溶解させ、これを酸塩化物溶液とした。インドリン(1.2503g、10.492mmol)を5mLのDMACに溶解させ、これをアミン溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で1℃に冷却した。酸塩化物溶液にアミン溶液を5分かけて1℃で攪拌しながら添加した。淡黄色の沈殿物が形成された。全体を1℃で10分間攪拌した。氷浴を除去し、混合物を室温で234分間撹拌した。反応の完了を薄層クロマトグラフィー法により確認した。次いで、混合物に水30mLを添加した。淡黄色沈殿物は消え、白色沈殿物が現れた。全体を23℃で16時間撹拌した。固体を濾過し、水100mLで洗浄し、真空中で乾燥させた。白色固体1.4343g(収率:81%)を得た。固体が消失するまで水浴(65℃)でメタノールを加え、室温で一晩冷却し、氷浴で5分間冷却した。結晶が現れた。結晶を濾過し、水40mLで洗浄し、真空下で乾燥させた。表題化合物(白色固体)1.1404gを得た(収率:64%)。
融点: 71-72℃ (白色粉末)
融点(結晶): 72-74℃ (無色, 板状)
1H NMR (400 MHz, CDCl3):8.287 (1H, br, s), 7.201 (1H, d, J= 7.4 Hz), 7.149 (1H, d, d, J=8.2, 8.2 Hz), 6.937 (1H, d, d, d, J=7.4, 7.4, 0.9 Hz), 3.954 (2H, t, J=8.7 Hz), 3.7459 (3H, s), 3.094 (2H, t, J=8.8 Hz)
13C NMR (100 MHz, CDCl3):127.57, 124.77, 122.64, 114.81, 52.63, 47.44, 27.61
分析結果: C10H11NO2、計算値:C, 67.78; H, 6.26; N, 7.90
測定値: C, 67.73; H, 6.16; N, 8.14
HRMS (ESI-TOF, [N+Na]+): 計算値: C10H11NNaO2 +: 200.0682
測定値: 200.0684
例H3:ジベンジルカルバミン酸メチルの合成
Figure JPOXMLDOC01-appb-C000073
 クロロギ酸メチル(0.9441g、9.991mmol)を5mLのDMACに溶解させ、これを酸塩化物溶液とした。ジベンジルアミン(2.0728g、10.507mmol)を5mLのDMACに室温で溶解させ、これをアミン溶液とした。アミン溶液を30mL丸底フラスコに移し、全体を氷水浴中で1℃に冷却した。アミン溶液に酸塩化物溶液を5分かけて1℃で攪拌して冷却しながら添加した。白色の沈殿物が形成された。混合物を1℃で10分間撹拌した。氷浴を除去し、混合物を室温で1432分間撹拌した。水30mLを添加した。沈殿物は消えた。混合物を23℃で5分間撹拌した。混合物をジクロロメタン20mLで3回抽出し、全ての有機画分を水50mLで3回洗浄した。有機画分を硫酸マグネシウムを用いて乾燥し、30℃で20分間蒸発させた。無色の液体が現れた。液体を真空下で13時間乾燥させた(1.6405g、収率:64%)。生成物に酢酸エチル20mLを加え、水100mLで1回、水50mLで2回洗浄した。有機画分を硫酸マグネシウムを用いて乾燥させ、濾過し、31℃で17分間蒸発させた。無色の液体が現れた。液体を真空下で4時間乾燥させて、表題化合物(無色液体)0.9025gを得た(収率:35%)。
1H NMR (400 MHz, CDCl3):7.354-7.189 (10H, m), 4.450 (2H, s,), 4.436 (2H, s), 3.801 (3H, s) 13C NMR (100 MHz, CDCl3):157.55, 137.51, 128.73, 128.29, 127.54, 53.11, 49.56, 49.03
分析結果: C16H17NO2、計算値:C, 75.27; H, 6.71; N, 5.49
測定値: C, 75.18; H, 6.59; N, 5.52
HRMS (ESI-TOF, [N+Na]+): 計算値: C16H17NNaO2 +: 278.1152
測定値: 278.1156
例H4:3,4-ジヒドロイソキノリン-2(1H)-カルボン酸メチルの合成
Figure JPOXMLDOC01-appb-C000074
 クロロギ酸メチル(0.9542g、10.098mmol)を5mLのDMACに室温で溶解させ、これを酸塩化物溶液とした。1,2,3,4-テトラヒドロイソキノリン(1.2406g、10.411mmol)を5mLのDMACに溶解させ、これをアミン溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で1℃に冷却した。酸塩化物溶液にアミン溶液を5分かけて1℃で攪拌し冷却しながら添加した。全体を1℃で10分間攪拌した。氷水浴を除去し、混合物を室温で1200分間撹拌した。水30mLを添加した。混合物を23℃で20時間撹拌した。混合物をジクロロメタン20mLで3回抽出し、有機画分を水50mLで3回洗浄した。有機画分を硫酸マグネシウムを用いて乾燥し、32℃で7分間蒸発させた。黄色の油が出現した。油状物を真空下で乾燥させた(1.3405g、収率:69%)。この油状物を、酢酸エチル150mLおよびn-ヘキサン750mLを用いてフラッシュクロマトグラフィーにより精製して、表題化合物(黄色油)1.0162gを得た(収率:53%)。
1H NMR (400 MHz, CDCl3):7.656 (1H, d, J=8.0 Hz), 7.159 (1H, d, d, J=8.1, 7.8 Hz), 7.009 (1H, d, d, d, J=7.4, 7.4, 1.2 Hz), 3.792 (3H, s), 3.762 (2H, d, d, J=6.2, 6.1 Hz), 2.773 (2H, d, d, J=6.6, 6.6 Hz), 1.944 (2H, d, d, J=6.2, 6.2 Hz) 13C NMR (100 MHz, CDCl3):155.54, 138.30, 130.19, 128.75, 126.10, 124.04, 123.84, 53.01, 44.94, 27.46, 23.60
分析結果: C11H13NO2、計算値:C, 69.09; H, 6.85; N, 7.32
測定値: C, 68.54; H, 6.63; N, 7.32
測定値: (フラッシュクロマトグラフィー後): C, 69.06; H, 6.94; N, 7.41
HRMS (ESI-TOF, [N+Na]+): 計算値: C11H13NNaO2 +: 214.0839
測定値: 214.0841
例I:ウレア化合物の合成
Figure JPOXMLDOC01-appb-C000075
 インドリン(1.2406g、10.411mmol)を5mLのDMACに溶解させ、これをアミン溶液とした。ジメチルカルバミド酸クロライド(1.0663g、9.916mmol)を5mLのDMACに室温で溶解させ、これを酸塩化物溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で1℃に冷却した。酸塩化物溶液にアミン溶液を4分かけて1℃で攪拌して冷却しながら添加した後、全体を1℃で53分間攪拌した。氷水浴を除去し、混合物を室温で1200分間撹拌した。次いで、混合物に水30mLを添加した。混合物を48時間撹拌した。水(30mL)を添加した。混合物を23℃で48時間撹拌した。混合物をジクロロメタン27mLで3回抽出し、合わせた有機画分を水50mLで3回洗浄し、有機画分を硫酸マグネシウムを用いて乾燥させ、濾過した。画分を32℃で7分間蒸発させた。茶色の液体が現れた。液体を真空下で12時間乾燥させた。生成物に酢酸エチル20mLを加えた。混合物を水100mLで1回洗浄し、水50mLで2回洗浄し、硫酸マグネシウムを用いて乾燥させ、濾過した。これを34℃で7分間蒸発させた。液体を真空中で4時間乾燥させて、N,N-ジメチルインドリン-1-カルボキサミド(黄色油)0.4287gを得た(収率:23%)。
1H NMR (400 MHz, CDCl3):7.164 (1H, d, J=7.8 Hz), 7.121 (1H, d, J=8.1 Hz), 6.935 (1H, d, J=8.0 Hz), 6.875 (1H, d, d, d, J=7.4, 7.4, 1.0 Hz), 3.901 (2H, t, J=8.2 Hz), 3.025 (2H, t, J=8.3 Hz), 2.935 (6H, s) 13C NMR (100 MHz, CDCl3):160.42, 144.47, 131.55, 127.14, 124.96, 121.45, 113.43, 50.49, 38.31, 38.17, 35.32, 28.25, 21.72
分析結果:C11H14N2O、計算値:C, 69.45; H, 7.42; N, 14.73、測定値:C, 69.83; H, 7.37; N, 14.34
HRMS (ESI-TOF, [N+H]+): 計算値:C11H15N2O+: 191.1179、測定値:191.1192
例J:スルホンアミド化合物の合成
 例Jでは、各種アミンとスルホン酸塩化物とをアミド系溶媒中で反応させてスルホンアミド化合物を合成した。
例J1:1-トシルインドリンの合成
Figure JPOXMLDOC01-appb-C000076
 塩化トシル(1.9225g、10.084mmol)を5mLのDMACに溶解させ、これを酸塩化物溶液とした。インドリン(1.2731g、10.683mmol)を5mLのDMACに室温で溶解させ、これをアミン溶液とした。アミン溶液を30mL丸底フラスコに移し、全体を氷水浴中で1℃に冷却した。アミン溶液に酸塩化物溶液を5分かけて1℃で攪拌して冷却しながら添加した。白色の沈殿物が形成された。全体を1℃で10分間攪拌した。氷浴を除去し、混合物を室温で1405分間撹拌した。氷浴を除去して1340分後に沈殿物が消失した。反応の完了を薄層クロマトグラフィー法により確認した。次いで、混合物に水30mLを添加した。白色の沈殿物が形成された。混合物を49分間撹拌した。固体を濾過し、水100mLで洗浄した。次いで、真空中で乾燥させて、表題化合物(白色固体)2.3810gを得た(収率:86%)。
融点: 97℃ (白色, 粉末)
1H NMR (400 MHz, CDCl3): 7.669 (2H, d, d, d, J=8.4, 2.0, 2.0 Hz), 7.637 (1H, d, J=8.4 Hz), 7.216 (2H, d, J=8.4 Hz), 7.174 (1H, d, J=8.0 Hz), 7.069 (1H, d, J=6.0 Hz), 6.963 (1H, d, d, d, J=7.6, 7.2, 0.8 Hz), 3.905 (2H, t, J=8.4 Hz), 2.877 (2H, t, J=8.4 Hz) 13C NMR (100 MHz, CDCl3): 144.14, 142.12, 134.14, 131.88, 129.76, 127.82, 127.43, 125.21, 123.82, 115.13, 50.05, 27.99, 21.64
分析結果:C15H15NO2S、計算値:C, 65.91; H, 5.53; N, 5.12
分析結果:C15H15NO2S 0.106H2O、計算値:C, 65.45; H, 5.57; N, 5.09
測定値:C, 65.45; H, 5.56; N, 5.10
HRMS (ESI-TOF, [N+Na]+): 計算値:C15H15NNaO2S+: 296.07156
測定値:296.0693
例J2:1-トシルインドリンの合成
Figure JPOXMLDOC01-appb-C000077
 塩化トシル(1.9063g、9.999mmol)を5mLのDMACに溶解させ、これを酸塩化物溶液とした。インドリン(1.2568g、10.569mmol)を5mLのDMACに室温で溶解させ、これをアミン溶液とした。アミン溶液を30mL丸底フラスコに移し、全体を油浴中で47℃に加熱した。アミン溶液に酸塩化物溶液を5分かけて47℃で攪拌して加熱しながら添加した。白色の沈殿物が形成された。全体を47℃で144分間攪拌した。反応の完了を薄層クロマトグラフィー法により確認した。油浴を除去し、混合物を室温で6分間撹拌した。混合物を1℃の氷水浴上で5分間冷却した。水30mLを添加した。白色の沈殿物が現れた。混合物を1144分間撹拌した。固体を濾過し、水100mLで洗浄し、真空下で乾燥させて、表題化合物(白色固体)2.2927gを得た(収率:84%)。
融点:97℃ (白色, 粉末)
1H NMR (400 MHz, CDCl3):7.671 (2H, d, d, d, J=8.4, 2.0, 1.8 Hz), 7.640 (1H, d, J=8.0 Hz), 7.219 (2H, d, J=8.4 Hz), 7.177 (1H, d, J=8.0 Hz), 7.072 (1H, d, J=6.8 Hz), 6.963 (1H, t, d, J=8.4, 1,2 Hz), 3.907 (2H, t, J=8.4 Hz), 2.881 (2H, t, J=8.4 Hz) 13C NMR (100 MHz, CDCl3):144.16, 142.12, 134.13, 131.88, 129.77, 127.83, 127.45, 125.22, 123.83, 115.14, 50.06, 28.00, 21.66
分析結果: C15H15NO2S、計算値:C, 65.91; H, 5.53; N, 5.12
測定値: C, 65.76; H, 5.61; N, 5.16
HRMS (ESI-TOF, [N+Na]+): 計算値: C15H15NNaO2S+: 296.0712
測定値: 296.0704
例J3:1-トシルインドリンの合成
Figure JPOXMLDOC01-appb-C000078
 塩化トシル(1.9130g、10.035mmol)を5mLのDMACに溶解させ、これを酸塩化物溶液とした。インドリン(1.2473g、10.467mmol)を5mLのDMACに室温で溶解させ、これをアミン溶液とした。アミン溶液を30mL丸底フラスコに移し、全体を氷水浴中で1℃に冷却した。アミン溶液に酸塩化物溶液を5分かけて1℃で攪拌して冷却しながら添加した。褐色の沈殿物が形成された。全体を1℃で161分間攪拌した。反応の完了を薄層クロマトグラフィー法により確認した。氷浴を除去し、混合物に水30mLを添加した。白色の沈殿物が形成された。混合物を23℃で1136分間撹拌した。固体を濾過し、水100mLで洗浄した。次いで、真空中で乾燥させて、表題化合物(白色固体)2.0540を得た(収率:75%)。65℃の水浴上で、固体が消失するまでメタノールを加え、室温で一晩冷却し、氷浴上で5分間冷却した。結晶が現れた。結晶を濾過し、水40mLで洗浄し、真空下で乾燥させて、表題化合物(白色固体)1.4759gを得た(収率:54%)。
融点:98℃ (白色, 粉末)
融点(結晶):98-99℃ (無色, プリズム)
1H NMR (400 MHz, CDCl3):7.673 (2H, d, d, d, J=8.4, 2.0, 2.0 Hz), 7.640 (1H, d, J=8.0 Hz), 7.221 (2H, d, J=8.2 Hz), 7.179 (1H, d, J=8.0 Hz), 7.073 (1H, d, J=6.8 Hz), 6.967 (1H, t, d, J=7.6, 0.9 Hz), 3.908 (2H, t, J=8.0 Hz), 2.874 (2H, t, J=8.4 Hz) 13C NMR (100 MHz, CDCl3):144.15, 121.13, 134.15, 131.88, 129.77, 127.85, 127.46, 125.22, 123.83, 115.16, 50.07, 28.01, 21.67
分析結果: C15H15NO2S、計算値:C, 65.91; H, 5.53; N, 5.12
測定値: C, 65.80; H, 5.60; N, 5.09
HRMS (ESI-TOF, [N+Na]+): 計算値: C15H15NNaO2S+: 296.0716
測定値: 296.0722
例J4:N-(4-メトキシフェニル)-4-メチルベンゼンスルホンアミドの合成
Figure JPOXMLDOC01-appb-C000079
 塩化トシル(1.9050g、9.993mmol)を5mLのDMACに溶解させ、これを酸塩化物溶液とした。4-メトキシベンジルアミン(1.4479g、10.555mmol)を5mLのDMACに室温で溶解させ、これをアミン溶液とした。アミン溶液を30mL丸底フラスコに移し、全体を油浴中で65℃に加熱した。アミン溶液に酸塩化物溶液を5分かけて65℃で攪拌して加熱しながら添加した。黄色の沈殿物が形成された。全体を65℃で78分間攪拌した。反応の完了を薄層クロマトグラフィー法により確認した。油浴を除去し、混合物を室温で12分間冷却した。水30mLを添加した。白色の沈殿物が現れた。混合物を1051分間攪拌した。固体を濾過し、水100mLで洗浄し、真空下で乾燥させて、表題化合物(白色固体)1.5001gを得た(収率:52%)。70℃の水浴上で、固体が消失するまでメタノールを加え、室温で一晩冷却し、氷浴上で5分間冷却した。結晶が現れた。結晶を濾過し、水30mLで洗浄し、真空下で乾燥させて、表題化合物(白色固体)1.1845gを得た(収率:41%)。
融点:121-122℃ (白色, 粉末)
融点(結晶):123-124℃ (無色, 針状)
1H NMR (400 MHz, CDCl3):7.758 (2H, d, d, d, J=8.4, 2.2, 2.0 Hz), 7.314 (2H, d, d, J=8.4, 0.4 Hz), 7.106 (2H, d, d, d, J=8.8, 2.8, 2.0 Hz), 6.801 (2H, d, d, d, J
=8.8, 3.0, 1.8 Hz), 4.052 (2H, s), 3.776 (3H, s), 2.442 (3H, s), 13C NMR (100 MHz,):159.48, 143.46, 137.03, 129.88, 129.42, 128.37, 127.34, 114.22, 55.43, 46.96, 21.69
分析結果: C15H17NO3S、計算値:C, 61.83; H, 5.88; N, 4.81
測定値: C, 61.30; H, 5.89; N, 4.78
測定値: (結晶): C, 61.57; H, 6.07; N, 4.71
HRMS (ESI-TOF, [N+Na]+): 計算値: C15H17NNaO3S+: 314.08214
測定値: 314.08247
例J5:N-(4-メトキシフェニル)-4-メチルベンゼンスルホンアミドの合成
Figure JPOXMLDOC01-appb-C000080
 塩化トシル(1.9090g、10.014mmol)を5mLの1,3-ジメチル-2-イミダゾリジノンに溶解させ、これを酸塩化物溶液とした。4-メトキシベンジルアミン(1.4367g、10.473mmol)を5mLの1,3-ジメチル-2-イミダゾリジノンに室温で溶解させ、これをアミン溶液とした。アミン溶液を30mL丸底フラスコに移し、全体を油浴中で65℃に加熱した。アミン溶液に酸塩化物溶液を5分かけて65℃で攪拌しながら添加した。黄色の沈殿物が形成された。全体を65℃で78分間攪拌した。油浴を除去し、混合物を室温で12分間冷却した。水30mLを添加した。白色の沈殿物が現れた。混合物を23℃で15時間撹拌した。固体を濾過し、水100mLで洗浄し、真空下で乾燥させて、表題化合物(白色固体)1.6481gを得た(収率:62%)。
融点:122-123℃ (白色, 粉末)
1H NMR (400 MHz, CDCl3):7.746 (2H, d, d, d, J=8.3, 2.0, 1.8 Hz), 7.299 (2H, d, J=8.4 Hz), 7.099 (2H, d, d, d, J=8.8, 2.9, 2.1 Hz), 6.778 (2H, d, d, d, J=8.7, 3.0, 2.1 Hz), 4.041 (2H, d, J=4.2 Hz), 3.766 (3H, s), 2.434 (3H, s), 13C NMR (100 MHz, CDCl3):159.41, 143.58, 137.02, 130.35, 129.84, 129.39, 128.41, 127.31, 127.17, 114.17, 55.40, 46.90, 21.95, 21.65
分析結果: C15H17NO3S、計算値:C, 61.83; H, 5.88; N, 4.81
測定値: C, 59.75; H, 5.69; N, 4.28
HRMS (ESI-TOF, [N+Na]+): 計算値: C15H17NNaO3S+: 314.08214
測定値: 314.08239
例J6:N-(4-メトキシフェニル)オクタン-1-スルホンアミドの合成
Figure JPOXMLDOC01-appb-C000081
 塩化オクタン-1-スルホニル(2.1403g、10.061mmol)を5mLのDMACに室温で溶解させ、これを酸塩化物溶液とした。4-メトキシベンジルアミン(1.4340g、10.453mmol)を5mLのDMACに室温で溶解させ、これをアミン溶液とした。酸塩化物溶液を30mL丸底フラスコに移し、全体を氷水浴中で1℃に冷却した。酸塩化物溶液にアミン溶液を5分かけて1℃で攪拌して冷却しながら添加した。全体を1℃で10分間攪拌した。氷水浴を除去し、混合物を22℃の水浴中で78分間撹拌した。反応の完了を薄層クロマトグラフィー法により確認した。次いで、混合物に水30mLを添加した。白色の沈殿物が形成された。混合物を23℃で15時間撹拌した。固体を濾過し、水120mLで洗浄した。次いで、真空中で乾燥させて、表題化合物(白色固体)2.0356gを得た。粗製物をn-ヘキサンで洗浄し、真空下で乾燥させた(1.3423g、収率:43%)。65℃の水浴上で、固体が消失するまでメタノールを加え、室温で一晩冷却し、氷浴上で5分間冷却した。結晶が現れた。結晶を濾過し、水50mLで洗浄し、真空下で乾燥させて、表題化合物(白色固体)1.2165gを得た(収率:39%)。
融点:88-90℃ (白色, 粉末)
融点(結晶):90-91℃ (無色, 板状)
1H NMR (400 MHz, CDCl3):7.600 (2H, d, d, d, J=8.5, 2.9, 1.6 Hz), 6.884 (2H, d, d, d, J=8.5, 3.0, 2.0), 4.227 (2H, s), 3.806 (3H, s), 2.913-2.873 (2H, m), 1.768-1.691 (2H, m), 1.362-1.253 (10H, m), 0.883 (3H, t, J=6.8 Hz) 13C NMR (100 MHz, CDCl3):159.56, 129.47, 129.08, 114.34, 55.45, 53.44, 46.87, 31.84, 29.15, 29.09, 28.36, 23.74, 22.73, 14.21
分析結果: C16H27NO3S、計算値:C, 61.31; H, 8.68; N, 4.47
測定値: C, 61.00; H, 8.54; N, 4.47
HRMS (ESI-TOF, [N+Na]+): 計算値: C16H27NNaO3S+: 336.1604
測定値: 336.1615
例K:エステル化合物の合成
Figure JPOXMLDOC01-appb-C000082
 ベンジルアルコール(1.1240g、10.394mmol)を5mLのDMACに溶解させ、これをベンジルアルコール溶液とした。ベンゾイルクロライド(1.3974g、9.941mmol)を5mLのDMACに溶解させ、これを酸塩化物溶液とした。予め冷却した酸塩化物溶液にベンジルアルコール溶液を3分かけて0℃で添加した後、全体を0℃で10分間攪拌した。氷水浴を水浴に置き換え、全体を23℃で26時間攪拌した。反応の完了を薄層クロマトグラフィー法により確認した。混合物に水30mLを添加した。混合物を酢酸エチル30mLで3回抽出し、合わせた有機画分を水50mLで2回洗浄し、0.1M水酸化ナトリウム水溶液50mLで1回洗浄した。有機画分を硫酸マグネシウムを用いて乾燥させ、溶媒を蒸発させ、安息香酸ベンジル(無色液体)1.6374gを得た(収率:78%)。生成物は、さらなる精製をすることなく、満足できる燃焼分析を与えるのに十分に純粋であった。
1H-NMR (400 MHz,CDCl3): 8.082 (2H, d, J=8.5 Hz), 7.554 (1H, t, 7.4 Hz), 7.463-7.310 (7H, m), 5.367 (2H, s)
分析結果:C14H12O2、計算値:C, 79.23; H, 5.70、測定値:C, 79.00; H, 5.67
例L:アミド化合物の合成(8)
 例Lでは、塩基性度が異なる2種のアミノ基を同一分子内に有するアミンを酸塩化物とアミド系溶媒中で反応させて、選択的にアミド結合を形成させた。
例L1:脂肪族アミン共存下の芳香族アミド(N-(4-アミノメチルフェニル)-ベンズアミド)の選択的合成
Figure JPOXMLDOC01-appb-C000083
 攪拌棒を備えた30mL丸底フラスコに、4-アミノベンジルアミン(0.6536g、5.350mmol)を入れた。フラスコを氷水浴(0℃)に浸した。DMAC5mL、およびトリフルオロ酢酸(2mL、26.118mmol)を撹拌しながら添加した。次いで、DMAC5mLにベンゾイルクロライド(0.6536g、4.650mmol)を室温で溶解させた酸塩化物溶液を5分かけて0℃で添加した後、全体を0℃で10分間撹拌した。氷水浴を水浴に置き換え、全体を23℃で4時間撹拌した。トルエン(40mL)を添加した。黄色の沈殿物が形成された。混合物を23℃で1時間攪拌した。固体を吸引濾過し、ヘキサン100mLで洗浄した。真空中で乾燥させた。表題化合物(黄色固体)1.1452g(収率:94%)を得た。
融点:300℃以上(黄色微細針状)
1H-NMR (400 MHz, DMSO-d6): 10.380 (1H, s), 8.326 (3H, s, br), 7.972 (2H, d, J=7.0 Hz), 7.819 (2H, d, J=8.6 Hz), 7.604 (1H, t, J=7.3 Hz), 7.536 (2H, d, d, J=7.6, 7.1 Hz), 7.759 (2H, d, d, J=8.6 Hz), 3.981 (2H, q, J=5.6 Hz). 13C-NMR (100 MHz, DMSO-d6): 165.62, 139.36, 134.73, 131.69, 129.42, 129.10, 128.41, 127.74, 120.30, 41.82.
分析結果:C14H15N2OCl、計算値:C, 64.00; H, 5.75; N, 10.66、測定値:C, 63.88; H, 5.85; N, 10.59. HRMS (ESI-TOF, [N+Na]+): 計算値:C14H14N2NaO+, 249.0998、測定値:249.1006.
例L2:脂肪族アミン共存下の芳香族アミド(N-(3-アミノメチルフェニル)-ベンズアミド)の選択的合成
Figure JPOXMLDOC01-appb-C000084
 攪拌棒を備えた30mL丸底フラスコに、3-アミノベンジルアミン(0.6536g、5.350mmol)を入れた。フラスコを氷水浴(0℃)に浸した。DMAC5mL、およびトリフルオロ酢酸(2mL、26.118mmol)を撹拌しながら添加した。次いで、DMAC5mLにベンゾイルクロライド(0.6536g、4.650mmol)を室温で溶解させた酸塩化物溶液を5分かけて0℃で添加した後、全体を0℃で10分間撹拌した。氷水浴を水浴に置き換え、全体を23℃で4時間撹拌した。トルエン40mLを添加した。黄色の沈殿物が形成された。混合物を23℃で1時間攪拌した。固体を吸引濾過し、ヘキサン100mLで洗浄した。真空中で乾燥させた。表題化合物(黄色固体)1.1452g(収率:91%)を得た。
融点:300℃以上(黄色微細針状)
1H-NMR (400 MHz, DMSO-d6): 10.642 (1H, s), 8.336 (3H, br, s), 7.644 (2H, d, J=8.6 Hz), 7.441 (2H, d, J=8.6 Hz), 4.304 (2H, s), 3.962 (2H, q, J=6.0Hz). 13C-NMR (100 MHz, DMSO-d6): 165.62, 139.36, 134.73, 131.69, 129.42, 129.10, 128.41, 127.74, 120.30, 41.82.
分析結果:C14H15N2OCl、計算値:C, 64.00; H, 5.75; N, 10.66、測定値:C, 63.88; H, 5.85; N, 10.59. HRMS (ESI-TOF, [N+H]+): 計算値:C14H14N2NaO+, 249.0998、測定値:249.1006.
例L3:脂肪族アミン共存下の芳香族アミド(N-(4-アミノメチル-フェニル)-2-クロロアセタミド)の選択的合成
Figure JPOXMLDOC01-appb-C000085
 攪拌棒を備えた30mL丸底フラスコに、4-アミノベンジルアミン(0.6451g、5.117mmol)を入れた。フラスコを氷水浴(0℃)に浸した。DMAC5mL、およびトリフルオロ酢酸(2mL、26.118mmol)を撹拌しながら添加した。次いで、DMAC5mLにクロロアセチルクロライド(0.5572g、4.934mmol)を室温で溶解させた酸塩化物溶液を5分かけて0℃で添加した後、全体を0℃で10分間撹拌した。氷水浴を水浴に置き換え、全体を23℃で4時間撹拌した。トルエンとヘキサンの1:1混合溶液(40mL)を添加した。黄色の沈殿物が形成された。混合物を23℃で1時間攪拌した。固体を吸引濾過し、トルエン50mLで洗浄した。真空中で乾燥させた。表題化合物(黄色固体)1.0625g(収率:92%)を得た。
融点:300℃以上(黄色微細針状)
1H-NMR (400 MHz, DMSO-d6): 10.642 (1H, s), 8.336 (3H, br, s), 7.644 (2H, d, J=8.6 Hz), 7.441 (2H, d, J=8.6 Hz), 4.304 (2H, s), 3.962 (2H, q, J=6.0Hz). 13C-NMR (100 MHz, DMSO-d6): 164.81, 138.71, 129.64, 129.23, 119.28, 43.52, 41.79.
分析結果:C9H12Cl2N2O、計算値:C, 45.98; H, 5.14; N, 11.92、測定値:C, 46.11; H, 5.35; N, 12.08. HRMS (ESI-TOF, [N+H]+): 計算値:C9H13Cl2N2O+, 199.0633、測定値:199.0620.
例M:アミド化合物の合成(9)
 例Mでは、2種のアミノ酸をアミド系溶媒中で反応させてジペプチドを合成した。
例M1:ジペプチド(Phe-Val)の合成
Figure JPOXMLDOC01-appb-C000086
 攪拌棒を備えた30mL丸底フラスコに、Fmoc-Phe-OH(0.7620g、1.967mmol)を入れた。フラスコを氷水浴(0℃)に浸した。DMAC2mL、および塩化チオニル(0.16mL、2.203mmol)を撹拌しながら添加した。全体を23℃で1時間撹拌した。L-バリンメチルエステル塩酸塩(0.3610g、2.153mmol)を添加した。全体を23℃で4時間撹拌した。水40mLを添加した。白色の沈殿物が形成された。混合物を23℃で1時間攪拌した。固体を吸引濾過し、水60mLで洗浄した。真空中で乾燥させた。表題化合物(白色固体)0.8895g(収率:90%)を得た。
融点:135-136℃(無色粉末状)
1H-NMR (400 MHz, CDCl3): 7.756 (2H, d, J=7.6 Hz), 7.537 (2H, d, d, J=6.9, 6.8 Hz), 7.396 (2H, d, d, J=7.7, 7.4 Hz), 7.317-7.155 (7H, m), 6.322 (1H, d, J=7.3 Hz), 5.440 (1H, d, J=7.2 Hz), 4.490-4.392 (3H, m), 4.324 (1H, d, d, J=9.9, 6.6 Hz), 4.188 (1H, t, J=7.0 Hz), 3.672 (3H, s), 3.104-3.021 (2H, m), 2.080 (1H, sept, J=6.7 Hz), 0.849 (3H, d, J=6.8 Hz), 0.806 (3H, d, J=6.7 Hz). 13C-NMR (100 MHz, CDCl3): 171.81, 170.88, 156.06, 143.89, 143.80, 141.40, 136.40, 129.47, 128.83, 127.86, 127.20, 125.17, 120.11, 67.28, 57.45, 56.29, 52.23, 47.19, 38.61, 31.33, 18.93, 17.91.
分析結果:C30H32N2O5、計算値:C, 71.98; H, 6.44; N, 5.60、測定値:C, 72.20; H, 6.56; N, 5.45. HRMS (ESI-TOF, [N+Na]+): 計算値:C32H32N2NaO5 +, 523.2203、測定値:523.2198.
例M2:ジペプチド(Phe-Phe)の合成
Figure JPOXMLDOC01-appb-C000087
 攪拌棒を備えた30mL丸底フラスコに、Fmoc-Phe-OH(0.7796g、2.012mmol)を入れた。フラスコを氷水浴(0℃)に浸した。DMAC2mL、および塩化チオニル(0.16mL、2.203mmol)を撹拌しながら添加した。全体を23℃で2時間撹拌した。L-フェニルアラニンメチルエステル塩酸塩(0.4431g、2.054mmol)を添加した。全体を23℃で4時間撹拌した。0.5M炭酸水素ナトリウム水溶液40mLを添加した。白色の沈殿物が形成された。混合物を23℃で1時間攪拌した。固体を吸引濾過し、水60mLで洗浄した。真空中で乾燥させた。表題化合物(白色固体)0.9469g(収率:86%)を得た。
融点:175-176℃(無色粉末状)
1H-NMR (400 MHz, CDCl3): 7.765 (2H, d, J=7.5 Hz), 7.523 (2H, d, d, J=6.6, 6.1 Hz), 7.402 (2H, t, J=7.5 Hz), 7.322-7.170 (10H, m), 6.951 (1H, d, J=5.4 Hz), 4.773 (1H, t, d, J=7.6, 6.0 Hz), 4.440-4.267 (3H, m), 4.178 (1H, d, d, J=7.0, 6.9 Hz), 3.667 (3H, s), 3.097-2.966 (4H, m). 13C-NMR (100 MHz, CDCl3): 171.42, 170.42, 143.86, 143.83, 141.41, 135.63, 129.51, 129.29, 129.16, 128.83, 128.67, 127.87, 127.27, 127.21, 125.14, 120.13, 120.12, 67.26, 53.44, 52.45, 47.20, 38.48, 38.00.
分析結果:C34H32N2O5: C, 74.43; H, 5.88; N, 5.11、測定値:C, 74.41; H, 6.08; N, 5.02. HRMS (ESI-TOF, [N+Na]+): 計算値:C34H32N2NaO5 +: 571.2203、測定値:571.2213.
例M3:ジペプチド(Ala-Val)の合成
Figure JPOXMLDOC01-appb-C000088
 攪拌棒を備えた30mL丸底フラスコに、Fmoc-Ala-OH(0.6284g、2.018mmol)を入れた。フラスコを氷水浴(0℃)に浸した。DMAC2mL、および塩化チオニル(0.16mL、2.203mmol)を撹拌しながら添加した。全体を23℃で1時間撹拌した。L-バリンメチルエステル塩酸塩(0.3603g、2.149mmol)を添加した。全体を23℃で4時間撹拌した。水40mLを添加した。白色の沈殿物が形成された。混合物を23℃で1時間攪拌した。固体を吸引濾過し、水60mLで洗浄した。真空中で乾燥させた。表題化合物(白色固体)0.7024g(収率:82%)を得た。
融点:157-158℃(無色針状)
1H-NMR (400 MHz, CDCl3): 7.753 (2H, d, J=7.5 Hz), 7.560 (2H, d, J=7.4 Hz), 7.390 (2H, d, J=7.6, 7.5 Hz), 7.297 (2H, d, J=7.5, 7.4 Hz), 6.642 (1H, d, J=8.1 Hz), 5.530 (1H, d, J=7.7 Hz), 4.558-4.190 (5H, m), 3.721 (3H, s), 2.154 (1H, sep, J=6.9 Hz), 1.402 (3H, d, J=6.9 Hz), 0.911 (3H, d, J=6.9 Hz), 0.877 (3H, d, J=6.9 Hz). 13C-NMR (100 MHz, CDCl3): 172.40, 172.30, 143.91, 143.86, 141.39, 127.84, 127.19, 125.19, 120.10, 67.28, 57.30, 50.56, 47.19, 31.33, 19.04, 18.67, 17.82.
分析結果:C24H28N2O5: C, 67.19; H, 6.65; N, 6.60、測定値:C, 67.73; H, 6.70; N, 6.48. HRMS (ESI-TOF, [N+Na]+): 計算値:C24H28N2NaO5 +: 447.1890、測定値:447.1868.
例M4:ジペプチド(Ala-Phe)の合成
Figure JPOXMLDOC01-appb-C000089
 攪拌棒を備えた30mL丸底フラスコに、Fmoc-Ala-OH(0.3150g、1.012mmol)を入れた。フラスコを氷水浴(0℃)に浸した。DMAC1mL、および塩化チオニル(0.08mL、1.101mmol)を撹拌しながら添加した。全体を23℃で1時間撹拌した。L-フェニルアラニンメチルエステル塩酸塩(0.2254g、1.045mmol)を添加した。全体を23℃で4時間撹拌した。水40mLを添加した。白色の沈殿物が形成された。混合物を23℃で1時間攪拌した。固体を吸引濾過し、水60mLで洗浄した。真空中で乾燥させた。表題化合物(白色固体)0.4371g(収率:91%)を得た。
融点:125-126℃(無色針状)
1H-NMR (400 MHz, CDCl3): 7.772 (2H, d, J=7.5 Hz), 7.589 (2H, d, J=.7.2 Hz), 7.408 (2H, d, d, J=7.4, 7.3 Hz), 7.317 (2H, d, d, J=7.4, 7.4 Hz), 7.235-7.187 (3H, m), 7.072 (2H, d, J=6.6 Hz), 6.395 (1H, d, J=7.0 Hz), 5.290 (1H, d, J=5.7 Hz), 4.856 (1H, m), 4.428-4.190 (4H, m), 3.723 (3H, s), 3.186-3.053 (2H, m), 1.356 (3H, d, J=6.8 Hz). 13C-NMR (100 MHz, CDCl3): 171.99, 171.29, 155.91, 143.88, 141.33, 135.78, 129.35, 128.54, 127.78, 127.14, 125.20, 125.15, 120.01, 67.17, 61.60, 53.34, 50.40, 47.13, 37.94, 18.86, 14.13.
分析結果:C28H28N2O5: C, 71.17; H, 5.97; N, 5.93、測定値:C, 71.30; H, 6.33; N, 5.64. HRMS (ESI-TOF, [N+H]+): 計算値:C28H28N2NaO5: 495.1890、測定値:495.1882.
例M5:ジペプチド(Leu-Val)の合成
Figure JPOXMLDOC01-appb-C000090
 攪拌棒を備えた30mL丸底フラスコに、Fmoc-Leu-OH(0.7058g、1.997mmol)を入れた。フラスコを氷水浴(0℃)に浸した。DMAC2mL、および塩化チオニル(0.16mL、2.203mmol)を撹拌しながら添加した。全体を23℃で1時間撹拌した。L-バリンメチルエステル塩酸塩(0.3552g、2.119mmol)を添加した。全体を23℃で4時間撹拌した。0.5M炭酸水素ナトリウム水溶液40mLを添加した。白色の沈殿物が形成された。混合物を23℃で1時間攪拌した。固体を吸引濾過し、0.5M炭酸水素ナトリウム水溶液50mLで洗浄した。真空中で乾燥させた。表題化合物(白色固体)0.8370g(収率:90%)を得た。
融点:135-137℃(無色針状)
1H-NMR (400 MHz, CDCl3): 7.766 (2H, d, d, J=7.4, 0.7 Hz), 7.578 (2H, d, J=7.4 Hz), 7.397 (2H, d, d, J=7.8, 7.2 Hz), 7.305 (2H, t, J=7.4 Hz), 6.456 (1H, d, J=7.9 Hz), 5.237 (1H, d, J=8.3 Hz), 4.534 (1H, d, d, J=8.8, 5.0 Hz), 4.420-4.402 (2H, m), 4.216 (2H, t, J=7.0 Hz), 2.164 (1H, sept, J=6.4 Hz), 1.675-1.526 (3H, m), 0.961-0.856 (12H, m). 13C-NMR (100 MHz, CDCl3): 172.27, 172.19, 143.84, 141.44, 127.87, 127.23, 125.17, 120.14, 120.12, 57.24, 52.32, 47.27, 41.41, 31.39, 24.78, 2.04, 22.20, 19.05, 17.85.
分析結果:C27H34N2O5: C, 69.51; H, 7.35; N, 6.00、測定値:Found: C, 69.70; H, 7.34; N, 6.00. HRMS (ESI-TOF, [N+Na]+): 計算値:C27H34N2NaO5 +: 489.2360、測定値:489.2362.
例M6:ジペプチド(Leu-Phe)の合成
Figure JPOXMLDOC01-appb-C000091
 攪拌棒を備えた30mL丸底フラスコに、Fmoc-Leu-OH(0.7026g、1.988mmol)を入れた。フラスコを氷水浴(0℃)に浸した。DMAC2mL、および塩化チオニル(0.16mL、2.203mmol)を撹拌しながら添加した。全体を23℃で1時間撹拌した。L-フェニルアラニンメチルエステル塩酸塩(0.5430g、2.341mmol)を添加した。全体を23℃で4時間撹拌した。0.5M炭酸水素ナトリウム水溶液40mLを添加した。白色の沈殿物が形成された。混合物を23℃で1時間攪拌した。固体を吸引濾過し、0.5M炭酸水素ナトリウム水溶液50mLで洗浄した。真空中で乾燥させた。表題化合物(白色固体)0.8264g(収率:81%)を得た。
融点:139-140℃(無色針状)
1H-NMR (400 MHz, CDCl3): 7.765 (2H, d, J=7.4 Hz), 7.587 (2H, d, J=7.1 Hz), 7.405 (2H, d, d, J=7.5, 7.4 Hz), 7.315 (2H, d, d, J=7.4, 7.4 Hz), 7.242-7.174 (3H, m), 7.073 (2H, d, J=7.0 Hz), 6.406 (1H, d, J=7.6 Hz), 5.132 (1H, d, J=8.4 Hz), 4.846 (1H, d, d, J=14.4, 6.5 Hz), 4.465-4.159 (4H, m), 3.716 (3H, s), 3.152 (1H, d, d, J=13.9, 5.7 Hz), 4.068 (1H, d, d, J=13.9, 5.9 Hz), 1.655-1.459 (3H, m), 0.916 (6H, d, J=9.3 Hz). 13C-NMR (100 MHz, CDCl3): 171.88, 171.79, 145.89, 141.45, 135.73, 129.38, 128.70, 127.88, 127.29, 127.23, 125.24, 125.16, 120.16, 120.13, 67.21, 53.31, 52.51, 47.27, 41.47, 37.97, 24.75, 23.00.
分析結果:C31H34N2O5: C, 72.35; H, 6.66; N, 5.44、測定値:Found: C, 72.52; H, 6.81; N, 5.35. HRMS (ESI-TOF, [N+Na]+): 計算値:C31H34N2NaO5 +: 523.2360、測定値:523.2373.
例M7:ジペプチド(Leu-Val)の合成
Figure JPOXMLDOC01-appb-C000092
 攪拌棒を備えた30mL丸底フラスコに、Fmoc-Leu-OH(0.3556g、1.006mmol)を入れた。フラスコを氷水浴(0℃)に浸した。DMAC1mL、および塩化チオニル(0.08mL、1.102mmol)を撹拌しながら添加した。全体を23℃で1時間撹拌した。L-バリン(0.1349g、1.152mmol)を添加した。全体を23℃で4時間撹拌した。水30mLを添加した。白色の沈殿物が形成された。固体を吸引濾過し、水60mLで洗浄した。真空中で乾燥させた。粗生成物をメタノール10mLに溶解させ、水40mLを加えた。白色の沈殿物が形成された。固体を吸引濾過し、水60mLで洗浄した。真空中で乾燥させた。粗生成物はカラムクロマトグラフィー(メタノール:クロロホルム=1:6)によって精製された。表題化合物(白色固体)0.3628g(収率:80%)を得た。
融点:170-172℃(無色粉状)
1H-NMR (400 MHz, CDCl3): 7.739 (2H, d, J=7.5 Hz), 7.555 (2H, d, J=7.4 Hz), 7.375 (2H, d, d, J=7.4, 7.3 Hz), 7.276 (2H, d, d, J=7.4, 7.4 Hz), 6.879 (1H, d, J=8.6 Hz), 5.740 (2H, d, J=8.6 Hz), 4.452 (2H, d, d, J=8.7, 4.8 Hz), 4.376-4.324 (3H, m), 4.186 (1H, t, J=7.1 Hz), 2.246-2.166 (1H, m), 1.667-1.521 (3H, m), 0.929-0.890 (12H, m). 13C-NMR (100 MHz, CDCl3): 172.96, 156.66, 143.76, 141.41, 127.89, 127.21, 125.18, 120.14, 120.11, 67.43, 57.29, 53.62, 47.17, 41.17, 31.21, 24.73, 22.94, 22.22, 19.07, 17.74.
HRMS (ESI-TOF, [N+Na]+): 計算値:C26H32N2NaO5 +: 475.2203、測定値:475.2223.
例M8:ジペプチド(Leu-Phe)の合成
Figure JPOXMLDOC01-appb-C000093
 攪拌棒を備えた30mL丸底フラスコに、Fmoc-Leu-OH(0.3522g、0.997mmol)を入れた。フラスコを氷水浴(0℃)に浸した。DMAC1mL、および塩化チオニル(0.08mL、1.102mmol)を撹拌しながら添加した。全体を23℃で1時間撹拌した。L-フェニルアラニン(0.1910g、1.156mmol)を添加した。全体を23℃で4時間撹拌した。水30mLを添加した。白色の沈殿物が形成された。固体を吸引濾過し、水60mLで洗浄した。真空中で乾燥させた。粗生成物をメタノール20mLに溶解させ、0.4M塩酸30mLを加えた。白色の沈殿物が形成された。固体を吸引濾過し、水60mLで洗浄した。真空中で乾燥させた。粗生成物はカラムクロマトグラフィー(メタノール:クロロホルム=1:6)によって精製された。表題化合物(白色固体)0.3873g(収率:78%)を得た。
融点:177-178℃(無色粉状)
1H-NMR (400 MHz, CDCl3): 7.763 (2H, d, J=7.4 Hz), 7.571 (2H, d, d, J=6.5, 6.4 Hz), 7.396 (2H, d, d, J=7.2, 7.0 Hz), 7.297 (2H, d, d, J=7.4, 7.2 Hz), 7.185-7.089 (5H, m), 6.727 (1H, d, J=6.5 Hz), 5.374 (1H, d, J=7.6 Hz), 4.816 (1H, t, d, J=6.4, 6.5 Hz), 4.457-4.173 (4H, m), 3.184 (1H, d, d, J=13.9, 5.2 Hz), 2.992 (1H, d, d, J=13.8, 6.5 Hz), 1.593-1.434 (3H, m), 0.880 (3H, d, J=6.3 Hz), 0.864 (3H, d, J=6.6 Hz). 13C-NMR (100 MHz, CDCl3): 156.35, 143.66, 141.31, 135.63, 134.76, 129.36, 128.52, 127.82, 127.12, 125.11, 125.00, 120.06, 120.04, 67.28, 53.24, 47.07, 41.05, 37.38, 29.71, 24.59, 22.79, 22.00.
分析結果:C30H32N2O5 +0.5H2O: C, 70.71; H, 6.53; N, 5.50、測定値:Found: C, 70.77; H, 6.56; N, 5.13. HRMS (ESI-TOF, [N+Na]+): 計算値:C30H32N2NaO5 +: 523.2203、測定値:523.2198.

Claims (26)

  1.  酸ハロゲン化物と、アミン、アミド化合物および/またはアルコールとをアミド系溶媒およびウレア系溶媒からなる群から選択される1種または2種以上の溶媒の存在下で反応させる工程を含んでなる、カルボン酸アミド化合物、スルホン酸アミド化合物またはエステル化合物の製造方法。
  2.  前記アミンが、脂肪族アミン、芳香族アミン並びに双性イオン分子およびその誘導体からなる群から選択される1種または2種以上である、請求項1に記載の製造方法。
  3.  前記双性イオン分子が、アミノ酸、アントラニル酸、3-カルボキシアニリンまたは4-カルボキシアニリンである、請求項2に記載の製造方法。
  4.  前記アミンが、pKBH+値が2以下のアミンである、請求項1~3のいずれか一項に記載の製造方法。
  5.  前記アミド化合物が、ウレア化合物、カルバミン酸、カルバメート、チオウレア化合物、チオカルバミン酸および/またはチオカルバメートである、請求項1に記載の製造方法。
  6.  前記アルコールが、脂肪族アルコールまたは芳香族アルコールである、請求項1に記載の製造方法。
  7.  前記酸ハロゲン化物が、カルボン酸ハロゲン化物またはスルホン酸ハロゲン化物である、請求項1~6のいずれか一項に記載の製造方法。
  8.  前記酸ハロゲン化物が、アミノ酸のハロゲン化物またはペプチドのハロゲン化物である、請求項1~6のいずれか一項に記載の製造方法。
  9.  前記酸ハロゲン化物が、酸塩化物である、請求項1~8のいずれか一項に記載の製造方法。
  10.  前記溶媒が、アミド系溶媒である、請求項1~9のいずれか一項に記載の製造方法。
  11.  前記アミド系溶媒が、N,N-ジメチルアセトアミド(DMAC)、N,N-ジエチルアセトアミド(DEA)、N,N-ジメチルホルムアミド(DMF)、N,N-ジエチルホルムアミド(DEF)、N-メチル-2-ピロリドン(NMP)およびN-エチル-2-ピロリドン(NEP)からなる群から選択される1種または2種以上の溶媒である、請求項1~10のいずれか一項に記載の製造方法。
  12.  前記溶媒が、ウレア系溶媒である、請求項1~9のいずれか一項に記載の製造方法。
  13.  前記ウレア系溶媒が、N,N’-ジメチルプロピレン尿素(DMPU)、テトラメチル尿素(TMU)および1,3-ジメチル-2-イミダゾリジノン(DMI)からなる群から選択される1種または2種以上の溶媒である、請求項1~9および12のいずれか一項に記載の製造方法。
  14.  前記溶媒を反応溶媒として使用する、請求項1~13のいずれか一項に記載の製造方法。
  15.  酸ハロゲン化物とアミン、アミド化合物および/またはアルコールとを-15℃~35℃で混合する工程をさらに含んでなる、請求項1~14のいずれか一項に記載の製造方法。
  16.  前記混合工程の後に、混合物を-15℃~35℃で撹拌する工程をさらに含んでなる、請求項15に記載の製造方法。
  17.  前記工程を、反応により生成するハロゲン化水素を捕捉する塩基触媒を実質的に含まない反応系で実施する、請求項1~16のいずれか一項に記載の製造方法。
  18.  酸ハロゲン化物としてカルボン酸ハロゲン化物をアミンと反応させてカルボン酸アミド化合物を製造する、請求項1~17のいずれか一項に記載の製造方法。
  19.  酸ハロゲン化物としてカルボン酸ハロゲン化物をアミド化合物と反応させてカルボン酸アミド化合物を製造する、請求項1~17のいずれか一項に記載の製造方法。
  20.  酸ハロゲン化物としてスルホン酸ハロゲン化物をアミンと反応させてスルホン酸アミド化合物を製造する、請求項1~17のいずれか一項に記載の製造方法。
  21.  酸ハロゲン化物としてカルボン酸ハロゲン化物をアルコールと反応させてエステル化合物を製造する、請求項1~17のいずれか一項に記載の製造方法。
  22.  酸ハロゲン化物としてスルホン酸ハロゲン化物をアルコールと反応させてエステル化合物を製造する、請求項1~17のいずれか一項に記載の製造方法。
  23.  前記酸ハロゲン化物が、アミノ酸ハロゲン化物またはペプチドハロゲン化物であり、前記アミンが、アミノ酸またはペプチドであり、製造されたカルボン酸アミド化合物が、ペプチドである、請求項1~17のいずれか一項に記載の製造方法。
  24.  前記酸ハロゲン化物が、カルボン酸ハロゲン化物であり、前記アミンが、光学活性を有するアミノ酸であり、製造されたカルボン酸アミド化合物が、光学活性を有するカルボン酸アミド化合物である、請求項1~18のいずれか一項に記載の製造方法。
  25.  酸ハロゲン化物と、塩基性が異なる2種以上のアミンおよび/またはアミド化合物とを反応させて、2種以上のカルボン酸アミド化合物またはスルホン酸アミド化合物のうちいずれか一つを選択的に製造することを特徴とする、請求項1~19のいずれか一項に記載の製造方法。
  26.  酸ハロゲン化物と、塩基性が異なる2種以上のアミノ基を有するアミンまたはアミド化合物とを反応させて、前記アミノ基のうちいずれか一つについてアミド結合を選択的に形成させることを特徴とする、請求項1~20のいずれか一項に記載の製造方法。
PCT/JP2019/005345 2018-02-14 2019-02-14 酸ハロゲン化物による化合物の製造方法 WO2019160037A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020500554A JP7364841B2 (ja) 2018-02-14 2019-02-14 酸ハロゲン化物による化合物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-023935 2018-02-14
JP2018023935 2018-02-14

Publications (1)

Publication Number Publication Date
WO2019160037A1 true WO2019160037A1 (ja) 2019-08-22

Family

ID=67619450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005345 WO2019160037A1 (ja) 2018-02-14 2019-02-14 酸ハロゲン化物による化合物の製造方法

Country Status (2)

Country Link
JP (1) JP7364841B2 (ja)
WO (1) WO2019160037A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60112771A (ja) * 1983-11-22 1985-06-19 Toyo Gosei Kogyo Kk イソニコチン酸アニリド誘導体の製造法
JPS6438082A (en) * 1987-06-26 1989-02-08 Hoffmann La Roche Manufacture of ascorbic acid derivative
JPH03110553A (ja) * 1989-09-25 1991-05-10 Fuji Photo Film Co Ltd アミドフェノール類の製造方法
JPH03184989A (ja) * 1989-12-12 1991-08-12 Lion Corp モノエステル含有量の高いグルコース脂肪酸エステルの製造方法
JPH107636A (ja) * 1996-03-29 1998-01-13 Zambon Group Spa ヨウ素化造影剤の合成に有用な中間体の製造方法
JP2002128752A (ja) * 2000-10-24 2002-05-09 Central Glass Co Ltd ビナフトールのビストリフレート体の製造方法
JP2006104153A (ja) * 2004-10-07 2006-04-20 Tosoh Corp 芳香族アミド化合物の製造方法
JP2008545701A (ja) * 2005-05-27 2008-12-18 ワイス チゲサイクリンおよび製法
JP2014043434A (ja) * 2012-08-03 2014-03-13 Toray Fine Chemicals Co Ltd ジニトロ化合物の製造方法
JP2014181185A (ja) * 2013-03-18 2014-09-29 Toray Fine Chemicals Co Ltd ジアミン化合物の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3590933B1 (en) 2010-11-10 2021-01-06 Genentech, Inc. Pyrazole aminopyrimidine derivatives as lrrk2 modulators
EP2844652B1 (en) 2012-05-03 2019-03-13 Genentech, Inc. Pyrazole aminopyrimidine derivatives as lrrk2 modulators

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60112771A (ja) * 1983-11-22 1985-06-19 Toyo Gosei Kogyo Kk イソニコチン酸アニリド誘導体の製造法
JPS6438082A (en) * 1987-06-26 1989-02-08 Hoffmann La Roche Manufacture of ascorbic acid derivative
JPH03110553A (ja) * 1989-09-25 1991-05-10 Fuji Photo Film Co Ltd アミドフェノール類の製造方法
JPH03184989A (ja) * 1989-12-12 1991-08-12 Lion Corp モノエステル含有量の高いグルコース脂肪酸エステルの製造方法
JPH107636A (ja) * 1996-03-29 1998-01-13 Zambon Group Spa ヨウ素化造影剤の合成に有用な中間体の製造方法
JP2002128752A (ja) * 2000-10-24 2002-05-09 Central Glass Co Ltd ビナフトールのビストリフレート体の製造方法
JP2006104153A (ja) * 2004-10-07 2006-04-20 Tosoh Corp 芳香族アミド化合物の製造方法
JP2008545701A (ja) * 2005-05-27 2008-12-18 ワイス チゲサイクリンおよび製法
JP2014043434A (ja) * 2012-08-03 2014-03-13 Toray Fine Chemicals Co Ltd ジニトロ化合物の製造方法
JP2014181185A (ja) * 2013-03-18 2014-09-29 Toray Fine Chemicals Co Ltd ジアミン化合物の製造方法

Also Published As

Publication number Publication date
JP7364841B2 (ja) 2023-10-19
JPWO2019160037A1 (ja) 2021-02-25

Similar Documents

Publication Publication Date Title
CA2684086C (en) Process for hcv protease inhibitor intermediate
CA2960733C (en) Processes and intermediates in the preparation of c5ar antagonists
ES2542237T3 (es) Procedimiento de producción de un derivado de diamina ópticamente activo
AU2008299703A1 (en) Process for the preparation of a RAF kinase inhibitor and intermediates for use in the process
JP2007529446A (ja) プラミペキソールの製造のための中間体
JP2019210273A (ja) エドキサバンの製造方法
CN107810189B (zh) 用于制备氮芥衍生物的方法
US9533971B2 (en) Process for the synthesis of dabigatran and its intermediates
CA2783684C (en) Inhibitors of diacylglycerol acyltransferase
WO2019160037A1 (ja) 酸ハロゲン化物による化合物の製造方法
CN114591299A (zh) 一种帕罗韦德中间体及其制备和应用
FI79297B (fi) Foerfarande foer framstaellning av farmakologiskt aktiva benzamidderivat.
Murru et al. Synthesis of Novel Oxazolyl Amino Acids and Their Use in the Parallel Synthesis of Disubstituted Oxazole Libraries
JP2018090551A (ja) L−カルノシン誘導体またはその塩、及びl−カルノシンまたはその塩の製造方法
US10752585B2 (en) Process for the preparation of Zafirlukast and analogs thereof
CN112272665A (zh) 制备立他司特的方法
Csomos et al. A novel preparation of 2-aminocyclopentanecarboxamides
CN112851536B (zh) 一种利用嘧啶类缩合剂点击构建酰胺键的方法及其在酰胺和多肽合成中的应用
Katritzky et al. Preparation and synthetic applications of N-(α, β-unsaturated acyl)-α-amino acid derivatives
HU222843B1 (hu) Nalfa-2-(4-nitro-fenil-szulfonil)-etoxi-karbonil-aminosavak és eljárások ilyen aminosavak előállítására
US6410750B1 (en) Processes and intermediates for preparing 3(S)-[(5-chloro-1H-indole-2-carbonyl)-amino]-2(R)-hydroxy-4-phenyl-butyric acid
US10077251B2 (en) Process for the synthesis of Dabigatran Etexilate and its intermediates
JPWO2016140189A1 (ja) 光学活性α−フルオロアミノ酸化合物又はその塩の製造方法
CN115636866A (zh) 一种桥环化合物的合成方法及其中间体
CN116410128A (zh) 一锅法制备甲苯磺酸艾多沙班中间体的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754559

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500554

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19754559

Country of ref document: EP

Kind code of ref document: A1