Nothing Special   »   [go: up one dir, main page]

WO2019158827A1 - Use of a gas stream originating from a liquefaction process, in a synthesis gas production process - Google Patents

Use of a gas stream originating from a liquefaction process, in a synthesis gas production process Download PDF

Info

Publication number
WO2019158827A1
WO2019158827A1 PCT/FR2018/050380 FR2018050380W WO2019158827A1 WO 2019158827 A1 WO2019158827 A1 WO 2019158827A1 FR 2018050380 W FR2018050380 W FR 2018050380W WO 2019158827 A1 WO2019158827 A1 WO 2019158827A1
Authority
WO
WIPO (PCT)
Prior art keywords
natural gas
stream
gas
liquefaction
synthesis gas
Prior art date
Application number
PCT/FR2018/050380
Other languages
French (fr)
Inventor
Pierre COSTA DE BEAUREGARD
Pascal Marty
Thomas Morel
Original Assignee
L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to PCT/FR2018/050380 priority Critical patent/WO2019158827A1/en
Publication of WO2019158827A1 publication Critical patent/WO2019158827A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/023Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0242Waste heat recovery, e.g. from heat of compression
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0415Purification by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/046Purification by cryogenic separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/542Adsorption of impurities during preparation or upgrading of a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • C10L3/103Sulfur containing contaminants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/66Regenerating the adsorption vessel, e.g. kind of reactivation gas
    • F25J2205/70Heating the adsorption vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general

Definitions

  • the present invention relates to a process for liquefying a hydrocarbon stream such as natural gas in combination with a synthesis gas production process.
  • the invention relates to an integration of a process for liquefying natural gas in a synthesis gas production process by superheated steam reforming, partial oxidation or autothermal reforming.
  • natural gas can be stored and transported over long distances more easily in liquid form than in gaseous form, because it occupies a smaller volume for a given mass and does not need to be stored at high pressure.
  • the processes for generating synthesis gas generally have as finished products hydrogen, carbon monoxide or a mixture of the two (called “oxogas", or even an H2 / CO / CO2 mixture (methanol production) or an N2 mixture Each of these processes co-generates more or less superheated steam.
  • the production of synthesis gas generally includes the following steps:
  • a hot desulfurization step after preheating (350 ° C. to 400 ° C.), all the sulfur derivatives contained in the natural gas are converted into H2S by catalysis in a hydrogenation reactor (CoMox). Then the hhS is removed by catalysis (on a bed of ZnO for example).
  • An optional pre-reforming step (a step mainly present in the steam reforming units): at high temperature (approximately 500 ° C. to 550 ° C.) with excess steam. Then in the presence of a catalyst: conversion of hydrocarbon chains containing at least two carbon atoms into methane with co-production of carbon monoxide, carbon dioxide (CO2) and hydrogen.
  • Reforming step which consists of reacting hydrocarbons with water vapor at high temperature (850 ° C-950 ° C) to produce hydrogen, CO and CO2.
  • the products generally recovered are carbon monoxide (CO), hydrogen (H2) or an H2 / CO mixture.
  • the last step of the synthesis gas production process can also be:
  • Catalytic bed partial oxidation step which consists of reacting oxygen with hydrocarbons at high temperature (800 ° C-1200 ° C) to produce more CO;
  • the purification of the synthesis gas produced can then be made either by:
  • the synthesis gas production units generally require a constant supply of heat provided by a fuel system.
  • This fuel is constituted by all or part of natural gas, but also hydrocarbon-rich streams available such as, for example, those discharged by units placed downstream of the synthesis gas production unit (Off Gas PSA, stream rich in methane or rich in hydrogen out of cold box ...) or the industrial site.
  • a "pretreatment” that eliminates natural gas to liquefy impurities that could freeze (H2O, CO2, sulfur derivatives, mercury, etc.); 2. Extraction of heavy hydrocarbons and aromatic derivatives that can freeze during liquefaction. This step can take place upstream or in parallel with the liquefaction;
  • the inventors of the present invention have developed a solution allowing recovery of currents from the liquefaction unit of natural gas to the fuel system of the generation process. This integration between the two processes has many advantages of synergies.
  • the present invention relates to a process for liquefying natural gas in combination with a process for producing synthesis gas, the liquefaction process comprising the following steps:
  • Step a ' desulfurization at a temperature above 350 ° C of a natural gas feed stream
  • step d) at least a portion of the heat source required for the synthesis gas production process is produced by at least a portion of the steam generated in step d) by expansion of the natural gas from the step c) before storage and / or by the steam generated in the storage means of the liquefied natural gas and / or by the steam generated during the loading of the liquefied natural gas in said transport means.
  • the subject of the invention is also:
  • pretreatment step a) is carried out by means of an adsorption separation system implementing a regeneration stream.
  • step a) consists of an adsorption pretreatment by means of an adsorption system comprising between two and five containers of at least one adsorbent layer and at least one apparatus for heating and / or cooling an adsorption and / or regeneration stream circulating in said adsorption system.
  • step a ' A process as defined above, characterized in that during step a '), all the sulfur derivatives contained in the feed gas are converted into H2S by catalysis in a reactor.
  • step c) the hydrocarbon stream depleted in hydrocarbons having more than two carbon atoms from step b) is liquefied at a temperature below -140 ° C by means of natural gas liquefaction unit comprising at least one main heat exchanger and a system for producing frigories.
  • a process as defined above characterized in that the natural gas supply stream implemented in step a) and the current natural gas feedstock implemented in step a ') come from the same natural gas feed stream.
  • a process as defined above characterized in that from 5% to 35% (preferably from 10% to 20%) of the amount of fuel of the heat source necessary for the synthesis gas production process is produced by at least a part of the steam generated during step d) by a relaxation of the natural gas from step c) before storage and / or by the steam generated in the liquefied natural gas storage means and / or by the steam generated during the loading of the liquefied natural gas into said means of transport.
  • the storage pressure is greater than the pressure of the fuel network, it is possible to do without compressors / rotating machinery, which represents a significant saving on the cost of the liquefaction unit of natural gas.
  • the hydrocarbon stream to be liquefied is usually a stream of natural gas obtained from a domestic gas network distributed via pipelines.
  • natural gas refers to any composition containing hydrocarbons including at least methane. This includes a "raw” composition (prior to any treatment or wash), as well as any composition that has been partially, substantially, or wholly processed for the reduction and / or elimination of one or more compounds, including but not limited to limit, sulfur, carbon dioxide, water, mercury and some heavy and aromatic hydrocarbons.
  • the heat exchanger may be any heat exchanger, unit or other arrangement adapted to allow the passage of a number of flows, and thus allow a direct or indirect heat exchange between one or more lines of refrigerant, and a or multiple feed streams.
  • the flow of natural gas is essentially composed of methane.
  • the feed stream comprises at least 80 mol% of methane.
  • natural gas contains quantities of hydrocarbons heavier than methane, such as, for example, ethane, propane, butane and pentane, as well as certain aromatic hydrocarbons.
  • the stream of natural gas also contains non-hydrocarbon products such as nitrogen (variable content but of the order of 5 mol% for example) or other impurities H 2 O, CO 2 , H 2 S and other sulfur compounds, mercury and others (about 0.5% to 5% mol).
  • the feed stream containing the natural gas is therefore pretreated before being introduced into the heat exchanger.
  • This pretreatment includes the reduction and / or elimination of undesirable components such as generally CO 2 and H 2 O but also H 2 S and other sulfur compounds or mercury.
  • a means for removing CO 2 from the natural gas stream is, for example, an amine wash upstream of a liquefaction cycle.
  • the amine wash separates the CO 2 from the feed gas by washing the stream of natural gas with a solution of amines in an absorption column.
  • the amine solution enriched in CO 2 is recovered in the vat of this absorption column and is regenerated at low pressure in an amine regeneration column (or stripping in English).
  • An alternative to amine wash treatment may be pressure and / or temperature inversion adsorption. The advantages of such a process are described below.
  • This separation process makes use of the fact that under certain pressure and temperature conditions certain constituents of the gas (CO 2 , H 2 O in particular) have particular affinities with respect to a solid material, the adsorbent molecular sieves, for example).
  • Adsorption is a reversible process and it is possible to regenerate the adsorbent by lowering the pressure and / or raising the temperature of the adsorbent to release the adsorbed gas components.
  • an adsorption separation system consists of several (between two and five) “bottles” containing one or more layers adsorbents as well as apparatus dedicated to the heating / cooling of the adsorption and / or regeneration current.
  • pre-treatment has a number of advantages:
  • the production of hydrogen by catalytic reforming requires continuous supply of heat supplied by a network of fuel gas.
  • a steam reforming unit with a nominal hydrogen production capacity of about 130,000 Nm 3 / h is used.
  • the heat requirements for the hydrogen production unit are mainly supplied (about 75%) by the residual gas from the last stage of purification of hydrogen in the hydrogen production unit (purification via sieves molecular weight (Pressure Swing Adsorption / PSA).
  • the makeup (about 25%) is provided by a source external to the hydrogen generating unit (eg from the unit supply stream or an external fuel system).
  • the regeneration gas returned to the fuel network would represent approximately 15% of the fuel balance.
  • Heavy hydrocarbons extracted from the natural gas liquefier and the natural gas vapors generated at the liquefied natural gas storage and / or the loading bay will be of less importance in the fuel balance (less than 1%).
  • the extra heat source is thus reduced from about 25% to about 10%.
  • ⁇ heavy hydrocarbons integration allows for example to avoid an incinerator and / or an expensive heavy oil extraction system for small units.
  • the integration allows for example to avoid a compressor to recycle these vapors in the liquefaction of natural gas stream.
  • This compressor can be expensive in small size liquefiers.
  • the power network The power network.
  • the synthesis gas production unit produces hydrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

The invention relates to a natural gas liquefaction process combined with a synthesis gas production process, said liquefaction process comprising the steps below, characterised in that at least one part of the heat source required in said synthesis gas production process is provided by at least one portion of the steam that is generated within the means for storing the liquefied natural gas, and/or by the steam that is generated as the liquefied natural gas is loaded into a means of transportation.

Description

Utilisation d’un courant gazeux issu d’un procédé de liquéfaction dans un procédé de production de gaz de synthèse  Use of a gaseous stream from a liquefaction process in a synthesis gas production process
La présente invention concerne un procédé de liquéfaction d’un courant d’hydrocarbures tel que le gaz naturel en combinaison d’un procédé de production de gaz de synthèse. The present invention relates to a process for liquefying a hydrocarbon stream such as natural gas in combination with a synthesis gas production process.
L’invention concerne une intégration d’un procédé de liquéfaction de gaz naturel dans un procédé de production de gaz de synthèse par réformage à la vapeur d’eau surchauffée, oxydation partielle ou réformage autothermique.  The invention relates to an integration of a process for liquefying natural gas in a synthesis gas production process by superheated steam reforming, partial oxidation or autothermal reforming.
Ces technologies de production de gaz de synthèse nécessitent parfois l’utilisation de grandes quantités de gaz naturel utilisées comme courant d’alimentation mais aussi comme source de chauffe du procédé.  These technologies of synthesis gas production sometimes require the use of large quantities of natural gas used as a feed stream but also as a source of heating of the process.
Il est aussi souhaitable de liquéfier le gaz naturel pour un certain nombre de raisons. A titre d'exemple, le gaz naturel peut être stocké et transporté sur de longues distances plus facilement à l'état liquide que sous forme gazeuse, car il occupe un volume plus petit pour une masse donnée et n'a pas besoin d'être stocké à une pression élevée.  It is also desirable to liquefy natural gas for a number of reasons. For example, natural gas can be stored and transported over long distances more easily in liquid form than in gaseous form, because it occupies a smaller volume for a given mass and does not need to be stored at high pressure.
Les procédés de génération de gaz de synthèse ont en général comme produits finis l’hydrogène, le monoxyde de carbone ou un mélange des deux (appelé « oxogas », voire un mélange H2/CO/CO2 (production de méthanol) ou un mélange N2/H2 (production d’ammoniaque). Chacun de ces procédés co-génère en outre de la vapeur plus ou moins surchauffée.  The processes for generating synthesis gas generally have as finished products hydrogen, carbon monoxide or a mixture of the two (called "oxogas", or even an H2 / CO / CO2 mixture (methanol production) or an N2 mixture Each of these processes co-generates more or less superheated steam.
Après une unité de comptage et éventuellement de compression ou décompression, la production de gaz de synthèse inclut généralement les étapes suivantes:  After a counting unit and possibly compression or decompression, the production of synthesis gas generally includes the following steps:
1. Une étape de désulfurisation à chaud : après une pré-chauffe (350°C- 400°C), tous les dérivés soufrés contenus dans le gaz naturel sont transformés en H2S par catalyse dans un réacteur d’hydrogénation (CoMox). Puis l’hhS est retiré par catalyse (sur lit de ZnO par exemple).  1. A hot desulfurization step: after preheating (350 ° C. to 400 ° C.), all the sulfur derivatives contained in the natural gas are converted into H2S by catalysis in a hydrogenation reactor (CoMox). Then the hhS is removed by catalysis (on a bed of ZnO for example).
2. Une étape de pré-reformage éventuelle (étape principalement présente dans les unités de réformage à la vapeur): à haute température (500°C-550°C environ) avec excès de vapeur. Puis en présence de catalyseur : conversion des chaînes hydrocarbonées contenant au moins deux atomes de carbone en méthane avec co-production de monoxyde de carbone, de dioxyde de carbone (CO2) et d’hydrogène. 2. An optional pre-reforming step (a step mainly present in the steam reforming units): at high temperature (approximately 500 ° C. to 550 ° C.) with excess steam. Then in the presence of a catalyst: conversion of hydrocarbon chains containing at least two carbon atoms into methane with co-production of carbon monoxide, carbon dioxide (CO2) and hydrogen.
3. Etape de reformage qui consiste à faire réagir à haute température (850°C-950°C) les hydrocarbures avec de la vapeur d’eau pour produire de l’hydrogène, du CO et du CO2.  3. Reforming step which consists of reacting hydrocarbons with water vapor at high temperature (850 ° C-950 ° C) to produce hydrogen, CO and CO2.
En aval des unités de production de gaz de synthèse, les produits généralement valorisés sont le monoxyde de carbone (CO), l’hydrogène (H2) ou un mélange H2/CO.  Downstream of the synthesis gas production units, the products generally recovered are carbon monoxide (CO), hydrogen (H2) or an H2 / CO mixture.
Le cas échéant, la dernière étape du procédé de production de gaz de synthèse peut également être une :  If necessary, the last step of the synthesis gas production process can also be:
Etape d’oxydation partielle sur lit catalytique (réformeur autothermique) qui consiste à faire réagir l’oxygène avec les hydrocarbures à haute température (800°C-1200°C) pour produire davantage de CO ;  Catalytic bed partial oxidation step (autothermal reformer) which consists of reacting oxygen with hydrocarbons at high temperature (800 ° C-1200 ° C) to produce more CO;
Une étape de conversion du CO en H2 dans un réacteur catalytique dans le cas d’une production poussée d’hydrogène ;  A step of converting CO to H2 in a catalytic reactor in the case of a high production of hydrogen;
La purification du gaz de synthèse produit peut alors être faite soit par :  The purification of the synthesis gas produced can then be made either by:
Une mise en œuvre d’un PSA pour purifier le flux riche en hydrogène produit ; ou  An implementation of a PSA to purify the hydrogen-rich stream produced; or
Un lavage aux amines pour extraire le CO2 du gaz de synthèse dans les cas de production de CO ou d’oxogas ; et  An amine wash to extract CO2 from synthesis gas in the case of CO or oxogas production; and
Une purification dans une boîte froide du flux riche en CO produit ; ou A purification in a cold box of the flow rich in CO product; or
Le passage du gaz produit à travers une membrane pour ajuster le ratio H2/CO requis pour la qualité de l’oxogas à produire. The passage of gas produced through a membrane to adjust the ratio H2 / CO required for the quality of the oxogas to produce.
Les unités de production de gaz de synthèse nécessitent en général un apport constant de chaleur assurée par un système de fuel. Ce fuel est constitué par tout ou partie de gaz naturel, mais aussi de courants riches en hydrocarbures disponibles tels que, par exemple, ceux rejetés par des unités placées en aval de l’unité de production de gaz de synthèse (Off Gas PSA, flux riche en méthane ou riche en hydrogène en sortie de boite froide...) ou du site industriel.  The synthesis gas production units generally require a constant supply of heat provided by a fuel system. This fuel is constituted by all or part of natural gas, but also hydrocarbon-rich streams available such as, for example, those discharged by units placed downstream of the synthesis gas production unit (Off Gas PSA, stream rich in methane or rich in hydrogen out of cold box ...) or the industrial site.
Par ailleurs, de manière générale, les unités de liquéfaction de gaz naturel permettent de mettre en œuvre un procédé de liquéfaction comprenant généralement les trois étapes suivantes :  In addition, in general, natural gas liquefaction units make it possible to implement a liquefaction process generally comprising the following three steps:
1. Un « prétraitement » qui élimine du gaz naturel à liquéfier les impuretés susceptibles de geler (H2O, CO2, dérivés soufrés, mercure etc...) ; 2. Extraction des hydrocarbures lourds et des dérivés aromatiques pouvant geler lors de la liquéfaction. Cette étape peut avoir lieu en amont ou en parallèle de la liquéfaction ; 1. A "pretreatment" that eliminates natural gas to liquefy impurities that could freeze (H2O, CO2, sulfur derivatives, mercury, etc.); 2. Extraction of heavy hydrocarbons and aromatic derivatives that can freeze during liquefaction. This step can take place upstream or in parallel with the liquefaction;
3. Liquéfaction par refroidissement du gaz naturel à une température cryogénique (typiquement -160°C) grâce à un cycle réfrigérant et éventuellement accompagnée également d’un retrait des hydrocarbures lourds / dérivés aromatiques susceptibles de geler.  3. Liquefaction by cooling the natural gas at a cryogenic temperature (typically -160 ° C) through a refrigerant cycle and possibly also accompanied by a removal of heavy hydrocarbons / aromatic derivatives may freeze.
Les inventeurs de la présente invention ont mis au point une solution permettant une valorisation de courants issus de l’unité de liquéfaction de gaz naturel vers le système de fuel du procédé de génération. Cette intégration entre les deux procédés présente de nombreux avantages de synergies.  The inventors of the present invention have developed a solution allowing recovery of currents from the liquefaction unit of natural gas to the fuel system of the generation process. This integration between the two processes has many advantages of synergies.
La présente invention a pour objet un procédé de liquéfaction de gaz naturel en combinaison d’un procédé de production de gaz de synthèse, le procédé de liquéfaction comprenant les étapes suivantes :  The present invention relates to a process for liquefying natural gas in combination with a process for producing synthesis gas, the liquefaction process comprising the following steps:
Etape a) : prétraitement d’un gaz naturel d’alimentation afin d’éliminer les impuretés susceptibles de geler au cours du procédé de liquéfaction;  Step a): pretreatment of a feed natural gas to remove impurities that may freeze during the liquefaction process;
Etape b) : extraction, à partir du courant gazeux issu de l’étape a), d’un courant enrichi en hydrocarbures ayant plus de deux atomes de carbone et d’un courant appauvri en hydrocarbures ayant plus de deux atomes de carbone;  Step b): extraction, from the gas stream from step a), of a stream enriched in hydrocarbons having more than two carbon atoms and a depleted stream of hydrocarbons having more than two carbon atoms;
Etape c) : liquéfaction du courant gazeux appauvri en hydrocarbures ayant plus de deux atomes de carbone issu de l’étape b);  Step c): liquefaction of the gaseous stream depleted in hydrocarbons having more than two carbon atoms from step b);
Etape d) : stockage, éventuellement après une détente, du courant issu de l’étape c) dans un moyen de stockage suivi d’un éventuel chargement dans un moyen de transport ;  Step d): storage, optionally after expansion, of the stream from step c) in a storage means followed by a possible loading in a transport means;
le procédé de production de gaz de synthèse comprenant les étapes suivantes :  the process for producing synthesis gas comprising the following steps:
Etape a’) : désulfurisation à une température supérieure à 350°C d’un courant d’alimentation de gaz naturel ;  Step a '): desulfurization at a temperature above 350 ° C of a natural gas feed stream;
Etape b’) : pré-réformage facultatif, à une température supérieure à 500°C afin de convertir les chaînes hydrocarbures contenant au moins deux atomes de carbone du courant gazeux issu de l’étape a’) en méthane ;  Step b '): Optional pre-reforming, at a temperature above 500 ° C to convert the hydrocarbon chains containing at least two carbon atoms of the gas stream from step a') to methane;
Etape c’) : réformage consistant à faire réagir à une température supérieure à 800°C le courant gazeux issu de l’étape a’) ou b’) avec de la vapeur d’eau pour produire de l’hydrogène, du dioxyde de carbone et du monoxyde de carbone ; Step c '): reforming consisting in reacting the gaseous stream from step a') or b ') with steam at a temperature above 800 ° C water to produce hydrogen, carbon dioxide and carbon monoxide;
caractérisé en ce qu’au moins une partie de la source de chaleur nécessaire au procédé de production de gaz de synthèse est produite par au moins une partie de la vapeur générée lors de l’étape d) par une détente du gaz naturel issu de l’étape c) avant le stockage et/ou par la vapeur générée dans le moyen de stockage du gaz naturel liquéfié et/ou par la vapeur générée lors du chargement du gaz naturel liquéfié dans ledit moyen de transport.  characterized in that at least a portion of the heat source required for the synthesis gas production process is produced by at least a portion of the steam generated in step d) by expansion of the natural gas from the step c) before storage and / or by the steam generated in the storage means of the liquefied natural gas and / or by the steam generated during the loading of the liquefied natural gas in said transport means.
Selon d’autres modes de réalisation, l’invention a aussi pour objet :  According to other embodiments, the subject of the invention is also:
Procédé tel que défini précédemment, caractérisé en ce que l’étape a) de prétraitement est mise en œuvre au moyen d’un système de séparation par adsorption mettant en œuvre un courant de régénération.  Process as defined above, characterized in that the pretreatment step a) is carried out by means of an adsorption separation system implementing a regeneration stream.
Un procédé tel que défini précédemment, caractérisé en ce que l’étape a) consiste en un prétraitement par adsorption au moyen d’un système d’adsorption comprenant entre deux et cinq contenants d’au moins une couche d’adsorbant et au moins un dispositif de chauffage et/ou de refroidissement d’un courant d’adsorption et/ou de régénération circulant dans ledit système d’adsorption.  A process as defined above, characterized in that step a) consists of an adsorption pretreatment by means of an adsorption system comprising between two and five containers of at least one adsorbent layer and at least one apparatus for heating and / or cooling an adsorption and / or regeneration stream circulating in said adsorption system.
Un procédé tel que défini précédemment, caractérisé en ce qu’au cours de l’étape a’), tous les dérivés soufrés contenus dans le gaz d’alimentation sont transformés en H2S par catalyse dans un réacteur.  A process as defined above, characterized in that during step a '), all the sulfur derivatives contained in the feed gas are converted into H2S by catalysis in a reactor.
Un procédé tel que défini précédemment, caractérisé en ce que le produit H2S est extrait par catalyse.  A process as defined above, characterized in that the product H2S is extracted by catalysis.
Un procédé tel que défini précédemment, caractérisé en ce que les impuretés susceptibles de geler au cours du procédé de liquéfaction éliminées au cours de l’étape a) comprennent l’eau, le dioxyde de carbone et les dérivés soufrés contenus dans le gaz d’alimentation  A process as defined above, characterized in that the impurities liable to freeze during the liquefaction process removed during step a) include water, carbon dioxide and sulfur derivatives contained in the gas of food
Un procédé tel que défini précédemment, caractérisé en ce qu’au cours de l’étape c), le courant de gaz naturel appauvri en hydrocarbures ayant plus de deux atomes de carbone issu de l’étape b) est liquéfié à une température inférieure à -140°C au moyen d’unité de liquéfaction de gaz naturel comprenant au moins un échangeur de chaleur principal et un système de production de frigories.  A process as defined above, characterized in that during step c), the hydrocarbon stream depleted in hydrocarbons having more than two carbon atoms from step b) is liquefied at a temperature below -140 ° C by means of natural gas liquefaction unit comprising at least one main heat exchanger and a system for producing frigories.
Un procédé tel que défini précédemment, caractérisé en ce que le courant d’alimentation de gaz naturel mis en œuvre à l’étape a) et le courant d’alimentation de gaz naturel mis en œuvre à l’étape a’) proviennent d’un même courant d’alimentation de gaz naturel. A process as defined above, characterized in that the natural gas supply stream implemented in step a) and the current natural gas feedstock implemented in step a ') come from the same natural gas feed stream.
Un procédé tel que défini précédemment, caractérisé en ce que l’unité de production de gaz de synthèse est une unité de production d’hydrogène par reformage à la vapeur ayant une capacité de production d’hydrogène d’au moins 20,000 Nm3/h. A process as defined above, characterized in that the synthesis gas production unit is a steam reforming hydrogen generating unit having a hydrogen production capacity of at least 20,000 Nm 3 / hr .
Un procédé tel que défini précédemment, caractérisé en ce que de 5% à 35% (de préférence de 10% à 20%) de la quantité de fuel de la source de chaleur nécessaire au procédé de production de gaz de synthèse est produite par au moins une partie de la vapeur générée lors de l’étape d) par une détente du gaz naturel issu de l’étape c) avant le stockage et/ou par la vapeur générée dans le moyen de stockage du gaz naturel liquéfié et/ou par la vapeur générée lors du chargement du gaz naturel liquéfié dans ledit moyen de transport.  A process as defined above, characterized in that from 5% to 35% (preferably from 10% to 20%) of the amount of fuel of the heat source necessary for the synthesis gas production process is produced by at least a part of the steam generated during step d) by a relaxation of the natural gas from step c) before storage and / or by the steam generated in the liquefied natural gas storage means and / or by the steam generated during the loading of the liquefied natural gas into said means of transport.
Par ailleurs, si la pression du stockage est supérieure à la pression du réseau fuel, il est possible de se passer de compresseurs/machines tournantes, ce qui représente une économie importante sur le coût de l’unité de liquéfaction de gaz naturel.  Furthermore, if the storage pressure is greater than the pressure of the fuel network, it is possible to do without compressors / rotating machinery, which represents a significant saving on the cost of the liquefaction unit of natural gas.
Le courant d'hydrocarbures à liquéfier est généralement un flux de gaz naturel obtenu à partir d’un réseau de gaz domestique distribué via des pipelines.  The hydrocarbon stream to be liquefied is usually a stream of natural gas obtained from a domestic gas network distributed via pipelines.
L'expression "gaz naturel" telle qu'utilisée dans la présente demande se rapporte à toute composition contenant des hydrocarbures dont au moins du méthane. Cela comprend une composition « brute » (préalablement à tout traitement ou lavage), ainsi que toute composition ayant été partiellement, substantiellement ou entièrement traitée pour la réduction et/ou élimination d'un ou plusieurs composés, y compris, mais sans s'y limiter, le soufre, le dioxyde de carbone, l'eau, le mercure et certains hydrocarbures lourds et aromatiques.  The term "natural gas" as used in the present application refers to any composition containing hydrocarbons including at least methane. This includes a "raw" composition (prior to any treatment or wash), as well as any composition that has been partially, substantially, or wholly processed for the reduction and / or elimination of one or more compounds, including but not limited to limit, sulfur, carbon dioxide, water, mercury and some heavy and aromatic hydrocarbons.
L'échangeur de chaleur peut être tout échangeur thermique, toute unité ou autre agencement adapté pour permettre le passage d'un certain nombre de flux, et ainsi permettre un échange de chaleur direct ou indirect entre une ou plusieurs lignes de fluide réfrigérant, et un ou plusieurs flux d'alimentation.  The heat exchanger may be any heat exchanger, unit or other arrangement adapted to allow the passage of a number of flows, and thus allow a direct or indirect heat exchange between one or more lines of refrigerant, and a or multiple feed streams.
Habituellement, le flux de gaz naturel est composé essentiellement de méthane. De préférence, le courant d'alimentation comprend au moins 80% mol de méthane. En fonction de la source, le gaz naturel contient des quantités d'hydrocarbures plus lourds que le méthane, tels que par exemple l'éthane, le propane, le butane et le pentane ainsi que certains hydrocarbures aromatiques. Le flux de gaz naturel contient également des produits non-hydrocarbures tels que l’azote (teneur variable mais de l’ordre de 5% mol par exemple) ou d’autres impuretés H2O, CO2, H2S et d'autres composés soufrés, le mercure et autres (0,5% à 5% mol environ). Usually, the flow of natural gas is essentially composed of methane. Preferably, the feed stream comprises at least 80 mol% of methane. Depending on the source, natural gas contains quantities of hydrocarbons heavier than methane, such as, for example, ethane, propane, butane and pentane, as well as certain aromatic hydrocarbons. The stream of natural gas also contains non-hydrocarbon products such as nitrogen (variable content but of the order of 5 mol% for example) or other impurities H 2 O, CO 2 , H 2 S and other sulfur compounds, mercury and others (about 0.5% to 5% mol).
Le flux d'alimentation contenant le gaz naturel est donc prétraité avant d’être introduit dans l’échangeur de chaleur. Ce prétraitement comprend la réduction et/ou l’élimination des composants indésirables tels que généralement le CO2 et le H2O mais aussi H2S et d'autres composés soufrés ou le mercure. The feed stream containing the natural gas is therefore pretreated before being introduced into the heat exchanger. This pretreatment includes the reduction and / or elimination of undesirable components such as generally CO 2 and H 2 O but also H 2 S and other sulfur compounds or mercury.
Afin d’éviter le gel de ces derniers au cours de la liquéfaction du gaz naturel et/ou le risque d’endommagement des équipements situés en aval (par des phénomènes de corrosion par exemple), il convient de les retirer.  In order to avoid the freezing of these during the liquefaction of natural gas and / or the risk of damage to equipment downstream (for example by corrosion phenomena), they should be removed.
Un moyen permettant de retirer le CO2 du courant de gaz naturel est par exemple un lavage aux amines situé en amont d’un cycle de liquéfaction. A means for removing CO 2 from the natural gas stream is, for example, an amine wash upstream of a liquefaction cycle.
Le lavage aux amines sépare le CO2 du gaz d’alimentation par un lavage du courant de gaz naturel par une solution d’amines dans une colonne d’absorption. La solution d’amines enrichie en CO2 est récupérée en cuve de cette colonne d’absorption et est régénérée à basse pression dans une colonne de régénération de l’amine (ou stripping en anglais). The amine wash separates the CO 2 from the feed gas by washing the stream of natural gas with a solution of amines in an absorption column. The amine solution enriched in CO 2 is recovered in the vat of this absorption column and is regenerated at low pressure in an amine regeneration column (or stripping in English).
Une alternative au traitement par lavage aux amines peut être l’adsorption par inversion de pression et/ou de température. Les avantages d’un tel procédé sont décrits ci-après.  An alternative to amine wash treatment may be pressure and / or temperature inversion adsorption. The advantages of such a process are described below.
Ce procédé de séparation exploite le fait que sous certaines conditions de pression et de température certains constituants du gaz (CO2, H2O en particulier) ont des affinités particulières vis-à-vis d’un matériau solide, l’adsorbant (des tamis moléculaires par exemple). This separation process makes use of the fact that under certain pressure and temperature conditions certain constituents of the gas (CO 2 , H 2 O in particular) have particular affinities with respect to a solid material, the adsorbent molecular sieves, for example).
L’adsorption est un processus réversible et il est possible de régénérer l’adsorbant en abaissant la pression et/ou élevant la température de l’adsorbant pour libérer les constituants du gaz adsorbés.  Adsorption is a reversible process and it is possible to regenerate the adsorbent by lowering the pressure and / or raising the temperature of the adsorbent to release the adsorbed gas components.
Ainsi, en pratique, un système de séparation par adsorption est constitué de plusieurs (entre deux et cinq) « bouteilles » contenant une ou plusieurs couches d’adsorbants ainsi que des appareils dédiés au chauffage/refroid issement du courant d’adsorption et/ou de régénération. Thus, in practice, an adsorption separation system consists of several (between two and five) "bottles" containing one or more layers adsorbents as well as apparatus dedicated to the heating / cooling of the adsorption and / or regeneration current.
Par rapport à un lavage aux amines classique, le pré-traitement présente un certain nombre d’avantages :  Compared to a conventional amine wash, pre-treatment has a number of advantages:
son coût ;  its cost;
sa simplicité d’opération ;  its simplicity of operation;
la possibilité d’éviter un certain nombre d’utilités (l’appoint en amine ou en eau déminéralisée).  the possibility of avoiding a number of utilities (the amine or demineralized water supplement).
Ces avantages sont particulièrement importants pour des unités de liquéfaction de gaz naturel de petites tailles (produisant par exemple moins de 50 000 tonnes de gaz naturel liquéfié par an).  These benefits are particularly important for small-scale natural gas liquefaction units (producing, for example, less than 50,000 tonnes of liquefied natural gas per year).
Un exemple de mise en œuvre est illustré par l’exemple suivant.  An exemplary implementation is illustrated by the following example.
La production d’hydrogène par reformage catalytique nécessite en apport continu de chaleur fournie par un réseau de fuel gas.  The production of hydrogen by catalytic reforming requires continuous supply of heat supplied by a network of fuel gas.
Une unité de reformage à la vapeur d’une capacité nominale de production d’hydrogène de 130 000 Nm3/h environ est mise en oeuvre. A steam reforming unit with a nominal hydrogen production capacity of about 130,000 Nm 3 / h is used.
Les besoins en chaleur nécessaire pour l’unité de production d’hydrogène sont majoritairement fournies (75% environ) par le gaz résiduel issu de la dernière étape de purification de l’hydrogène dans l’unité de production d’hydrogène (purification via tamis moléculaire (Pressure Swing Adsorption / PSA)). L’appoint (25% environ) est fourni par une source externe à l’unité de production d’hydrogène (provenant par exemple du courant d’alimentation de l’unité ou d’un système fuel externe).  The heat requirements for the hydrogen production unit are mainly supplied (about 75%) by the residual gas from the last stage of purification of hydrogen in the hydrogen production unit (purification via sieves molecular weight (Pressure Swing Adsorption / PSA). The makeup (about 25%) is provided by a source external to the hydrogen generating unit (eg from the unit supply stream or an external fuel system).
En plaçant une petite unité de production de gaz naturel d’une capacité de 40,000 tonnes de gaz naturel liquéfié produit par année à proximité de l’unité de production d’hydrogène, il est possible de renvoyer certains débits vers le réseau du fuel de l’unité de production d’hydrogène. L’appoint fourni par une source externe sera diminué d’autant.  By placing a small natural gas production unit with a capacity of 40,000 tonnes of liquefied natural gas produced per year near the hydrogen production unit, it is possible to return certain flows to the fuel oil network. hydrogen production unit. The extra charge provided by an external source will be reduced accordingly.
Dans le cas où le prétraitement du gaz naturel est assuré par un procédé d’adsorption, le gaz de régénération renvoyé dans le réseau fuel représenterait environ 15% du bilan fuel. In the case where the pretreatment of natural gas is carried out by an adsorption process, the regeneration gas returned to the fuel network would represent approximately 15% of the fuel balance.
Les hydrocarbures lourds extraits du liquéfacteur de gaz naturel et les vapeurs de gaz naturel générées au niveau du stockage de gaz naturel liquéfié et/ou de la baie de chargement auront une importance moindre dans le bilan fuel (inférieur à 1 %). Heavy hydrocarbons extracted from the natural gas liquefier and the natural gas vapors generated at the liquefied natural gas storage and / or the loading bay will be of less importance in the fuel balance (less than 1%).
L’appoint en source de chaleur externe est ainsi réduit de 25% à 10% environ.  The extra heat source is thus reduced from about 25% to about 10%.
Cette intégration permet de réduire drastiquement le nombre d’équipements dédiés sur des courants secondaires de l’unité de liquéfaction de gaz naturel : This integration drastically reduces the number of dedicated equipment on secondary streams of the natural gas liquefaction unit:
hydrocarbures lourds : l’intégration permet par exemple d’éviter un incinérateur et/ou un système d’extraction des hydrocarbures lourds coûteux pour des unités de petite taille. heavy hydrocarbons: integration allows for example to avoid an incinerator and / or an expensive heavy oil extraction system for small units.
vapeurs de gaz naturel générées au niveau du stockage de gaz naturel liquéfié et/ou de la baie de chargement : l’intégration permet par exemple d’éviter un compresseur pour recycler ces vapeurs dans le courant de liquéfaction de gaz naturel. Ce compresseur peut être coûteux dans des liquéfacteurs de petites tailles. natural gas vapors generated at the liquefied natural gas storage and / or the loading bay: the integration allows for example to avoid a compressor to recycle these vapors in the liquefaction of natural gas stream. This compressor can be expensive in small size liquefiers.
Si la capacité de l’unité de production de gaz naturel liquéfié déséquilibre le bilan fuel, il est possible de renvoyer tout ou partie de ces courants dans le courant de gaz de synthèse qui alimente l’unité de production d’hydrogène (au prix d’un compresseur).  If the capacity of the liquefied natural gas production unit imbalances the fuel balance, it is possible to return all or part of these streams to the stream of synthesis gas supplying the hydrogen production unit (at the price of 'a compressor).
Il est alors possible que les unités de production de gaz de synthèse et de liquéfaction de gaz naturel aient en commun l’ensemble des commodités du site en particulier :  It is then possible for the natural gas synthesis and liquefaction production units to have all the conveniences of the site in common:
La connexion au réseau de gaz naturel ;  Connection to the natural gas network;
La station de comptage et éventuellement détente/compression ; The counting station and possibly relaxation / compression;
Un réseau de torche chaude et éventuellement de liquides froids ;A network of hot torch and possibly cold liquids;
L’ensemble des utilités du site (électricité, circuit de refroidissement, air instrumentation, azote...) ; All utilities of the site (electricity, cooling circuit, air instrumentation, nitrogen ...);
Le réseau d’alimentation.  The power network.
De plus, dans le cas où l’unité de production de gaz de synthèse produit de l’hydrogène, il est parfois demandé de liquéfier tout ou partie de l’hydrogène pour faciliter son transport ou son stockage par exemple. Dans ce cas, il est possible de « pré-refroidir » l’hydrogène produit dans le liquéfacteur de gaz naturel jusqu’à une température de -160°C par exemple, puis d’achever de le liquéfier dans une unité dédiée.  In addition, in the case where the synthesis gas production unit produces hydrogen, it is sometimes required to liquefy all or part of the hydrogen to facilitate its transport or storage for example. In this case, it is possible to "pre-cool" the hydrogen produced in the natural gas liquefier to a temperature of -160 ° C for example, and then to complete the liquefier in a dedicated unit.

Claims

REVENDICATIONS
1. Procédé de liquéfaction de gaz naturel en combinaison d’un procédé de production de gaz de synthèse, le procédé de liquéfaction comprenant les étapes suivantes : A method of liquefying natural gas in combination with a process for producing synthesis gas, the liquefaction process comprising the following steps:
Etape a) : prétraitement d’un gaz naturel d’alimentation afin d’éliminer les impuretés susceptibles de geler au cours du procédé de liquéfaction;  Step a): pretreatment of a feed natural gas to remove impurities that may freeze during the liquefaction process;
Etape b) : extraction, à partir du courant gazeux issu de l’étape a), d’un courant enrichi en hydrocarbures ayant plus de deux atomes de carbone et d’un courant appauvri en hydrocarbures ayant plus de deux atomes de carbone;  Step b): extraction, from the gas stream from step a), of a stream enriched in hydrocarbons having more than two carbon atoms and a depleted stream of hydrocarbons having more than two carbon atoms;
Etape c) : liquéfaction du courant gazeux appauvri en hydrocarbures ayant plus de deux atomes de carbone issu de l’étape b);  Step c): liquefaction of the gaseous stream depleted in hydrocarbons having more than two carbon atoms from step b);
Etape d) : stockage, éventuellement après une détente, du courant issu de l’étape c) dans un moyen de stockage suivi d’un éventuel chargement dans un moyen de transport ;  Step d): storage, optionally after expansion, of the stream from step c) in a storage means followed by a possible loading in a transport means;
le procédé de production de gaz de synthèse comprenant les étapes suivantes : the process for producing synthesis gas comprising the following steps:
Etape a’) : désulfurisation à une température supérieure à 350°C d’un courant d’alimentation de gaz naturel ;  Step a '): desulfurization at a temperature above 350 ° C of a natural gas feed stream;
Etape b’) : pré-réformage facultatif, à une température supérieure à 500°C afin de convertir les chaînes hydrocarbures contenant au moins deux atomes de carbone du courant gazeux issu de l’étape a’) en méthane ;  Step b '): Optional pre-reforming, at a temperature above 500 ° C to convert the hydrocarbon chains containing at least two carbon atoms of the gas stream from step a') to methane;
Etape c’) : réformage consistant à faire réagir à une température supérieure à 800°C le courant gazeux issu de l’étape a’) ou b’) avec de la vapeur d’eau pour produire de l’hydrogène, du dioxyde de carbone et du monoxyde de carbone ;  Step c '): reforming consisting in reacting the gaseous stream from step a') or b ') with water vapor to produce hydrogen, carbon dioxide, at a temperature above 800 ° C carbon and carbon monoxide;
caractérisé en ce qu’au moins une partie de la source de chaleur nécessaire au procédé de production de gaz de synthèse est produite par au moins une partie de la vapeur générée lors de l’étape d) par une détente du gaz naturel issu de l’étape c) avant le stockage et/ou par la vapeur générée dans le moyen de stockage du gaz naturel liquéfié et/ou par la vapeur générée lors du chargement du gaz naturel liquéfié dans ledit moyen de transport. characterized in that at least a portion of the heat source required for the synthesis gas production process is produced by at least a portion of the steam generated in step d) by expansion of the natural gas from the step c) before storage and / or by the steam generated in the storage means of the liquefied natural gas and / or by the steam generated during the loading of the liquefied natural gas in said transport means.
2. Procédé selon la revendication précédente caractérisé en ce que l’étape a) de prétraitement est mise en œuvre au moyen d’un système de séparation par adsorption mettant en œuvre un courant de régénération. 2. Method according to the preceding claim characterized in that the pretreatment step a) is implemented by means of an adsorption separation system implementing a regeneration stream.
3. Procédé selon la revendication précédente caractérisé en ce que l’étape a) consiste en un prétraitement par adsorption au moyen d’un système d’adsorption comprenant entre deux et cinq contenants d’au moins une couche d’adsorbant et au moins un dispositif de chauffage et/ou de refroidissement d’un courant d’adsorption et/ou de régénération circulant dans ledit système d’adsorption. 3. Method according to the preceding claim characterized in that step a) consists of an adsorption pretreatment by means of an adsorption system comprising between two and five containers of at least one adsorbent layer and at least one apparatus for heating and / or cooling an adsorption and / or regeneration stream circulating in said adsorption system.
4. Procédé selon la revendication précédente, caractérisé en ce que la vapeur d’eau issue du procédé de production de gaz de synthèse est mise en œuvre pour réchauffer ledit courant de régénération. 4. Method according to the preceding claim, characterized in that the water vapor from the synthesis gas production process is implemented to heat said regeneration stream.
5. Procédé selon l’une des revendications précédentes, caractérisé en ce qu’au cours de l’étape a’), tous les dérivés soufrés contenus dans le gaz d’alimentation sont transformés en H2S par catalyse dans un réacteur. 5. Method according to one of the preceding claims, characterized in that during step a '), all the sulfur derivatives contained in the feed gas are converted into H2S by catalysis in a reactor.
6. Procédé selon la revendication 5, caractérisé en ce que le produit H2S est extrait par catalyse. 6. Process according to claim 5, characterized in that the product H2S is extracted by catalysis.
7. Procédé selon l’une des revendications précédentes, caractérisé en ce que les impuretés susceptibles de geler au cours du procédé de liquéfaction éliminées au cours de l’étape a) comprennent l’eau, le dioxyde de carbone et les dérivés soufrés contenus dans le gaz d’alimentation 7. Method according to one of the preceding claims, characterized in that the impurities liable to freeze during the liquefaction process removed in step a) include water, carbon dioxide and sulfur derivatives contained in the feed gas
8. Procédé selon l’une des revendications précédentes, caractérisé en ce qu’au cours de l’étape c), le courant de gaz naturel appauvri en hydrocarbures ayant plus de deux atomes de carbone issu de l’étape b) est liquéfié à une température inférieure à -140°C au moyen d’unité de liquéfaction de gaz naturel comprenant au moins un échangeur de chaleur principal et un système de production de frigories. 8. Method according to one of the preceding claims, characterized in that during step c), the natural gas stream depleted in hydrocarbons having more than two carbon atoms from step b) is liquefied to a temperature below -140 ° C by means of natural gas liquefaction unit comprising at least one main heat exchanger and a system for producing frigories.
9. Procédé selon l’une des revendications précédentes, caractérisé en ce que le courant d’alimentation de gaz naturel mis en œuvre à l’étape a) et le courant d’alimentation de gaz naturel mis en œuvre à l’étape a’) proviennent d’un même courant d’alimentation de gaz naturel. 9. Method according to one of the preceding claims, characterized in that the natural gas feed stream implemented in step a) and the natural gas feed stream implemented in step a ' ) come from the same natural gas supply stream.
10. Procédé selon l’une des revendications précédentes, caractérisé en ce que l’unité de production de gaz de synthèse est une unité de production d’hydrogène par reformage à la vapeur ayant une capacité de production d’hydrogène d’au moins 20,000 Nm3/h. 10. Method according to one of the preceding claims, characterized in that the synthesis gas production unit is a steam-reforming hydrogen production unit having a hydrogen production capacity of at least 20,000. Nm 3 / h.
11. Procédé selon l’une des revendications précédentes, caractérisé en ce que de 5% à 35% (de préférence de 10% à 20%) de la quantité de fuel de la source de chaleur nécessaire au procédé de production de gaz de synthèse est produite par au moins une partie de la vapeur générée lors de l’étape d) par une détente du gaz naturel issu de l’étape c) avant le stockage et/ou par la vapeur générée dans le moyen de stockage du gaz naturel liquéfié et/ou par la vapeur générée lors du chargement du gaz naturel liquéfié dans ledit moyen de transport 11. Method according to one of the preceding claims, characterized in that from 5% to 35% (preferably from 10% to 20%) of the amount of fuel from the heat source necessary for the synthesis gas production process. is produced by at least a portion of the steam generated in step d) by a relaxation of the natural gas from step c) before storage and / or by the steam generated in the liquefied natural gas storage means and / or by the steam generated during the loading of the liquefied natural gas into said transport means
PCT/FR2018/050380 2018-02-16 2018-02-16 Use of a gas stream originating from a liquefaction process, in a synthesis gas production process WO2019158827A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/FR2018/050380 WO2019158827A1 (en) 2018-02-16 2018-02-16 Use of a gas stream originating from a liquefaction process, in a synthesis gas production process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2018/050380 WO2019158827A1 (en) 2018-02-16 2018-02-16 Use of a gas stream originating from a liquefaction process, in a synthesis gas production process

Publications (1)

Publication Number Publication Date
WO2019158827A1 true WO2019158827A1 (en) 2019-08-22

Family

ID=61599503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/050380 WO2019158827A1 (en) 2018-02-16 2018-02-16 Use of a gas stream originating from a liquefaction process, in a synthesis gas production process

Country Status (1)

Country Link
WO (1) WO2019158827A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1608924A2 (en) * 2003-03-27 2005-12-28 BP Corporation North America Inc. Integrated processing of natural gas into liquid products
US20110174016A1 (en) * 2008-07-11 2011-07-21 Johnson Matthey Public Limited Company Apparatus & process for treating offshore natural gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1608924A2 (en) * 2003-03-27 2005-12-28 BP Corporation North America Inc. Integrated processing of natural gas into liquid products
US20110174016A1 (en) * 2008-07-11 2011-07-21 Johnson Matthey Public Limited Company Apparatus & process for treating offshore natural gas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAWCHUK J ET AL: "ENHANCED PROCESS INTEGRATION BETWEEN LNG AND GTP PLANTS", vol. 14TH, 1 March 2006 (2006-03-01), pages PO - 41/1, XP009108045, Retrieved from the Internet <URL:http://www.kgu.or.kr/admin/data/P-000/8-PO-41-Sawchuk.pdf> *

Similar Documents

Publication Publication Date Title
EP0032096B1 (en) Process for producing ammonia and corresponding synthesis gas
CA2567893C (en) Process for the adjustment of the superior heating power of gas in the lng chain
FR2895747A1 (en) PROCESS FOR PRODUCING HYDROCARBONS FROM NATURAL GAS
FR3075659B1 (en) PROCESS FOR PRODUCING NATURAL GAS CURRENT FROM BIOGAS CURRENT.
CA3024382C (en) Process for cryogenic separation of a feed stream containing methane and air gases, facility for producing biomethane by purification of biogases derived from non-hazardous waste storage facilities (nhwsf) implementing the process
EA006062B1 (en) Integrated processing of natural gas into liquid products
WO2018211036A1 (en) Method for recovering a stream of c2+ hydrocarbons in a residual refinery gas and associated facility
WO2010015764A2 (en) Process for generating and separating a hydrogen-carbon monoxide mixture by cryogenic distillation
EP3538483B1 (en) Synthesis gas production process for the implementation of a natural gas liquefaction
FR2943683A1 (en) PROCESS FOR TREATING A NATURAL LOAD GAS TO OBTAIN TREATED NATURAL GAS AND C5 + HYDROCARBON CUTTING, AND ASSOCIATED PLANT
EP3719426B1 (en) Biogas purification and liquefaction by combining a crystallisation system with a liquefaction heat exchanger
WO2019158826A1 (en) Process of producing synthesis gas originating from a natural gas liquefaction process
US10890376B2 (en) Method and apparatus for separating a synthesis gas
EP3752454B1 (en) Synergies of a natural gas liquefaction process in a synthesis gas production process
WO2018087499A1 (en) Use of steam from a method for producing synthesis gas for heating natural gas vapours
WO2018087497A1 (en) Method for the liquefaction of natural gas, combined with production of synthesis gas
WO2018087500A1 (en) Integration of a method for liquefying natural gas in a method for producing syngas
WO2019158827A1 (en) Use of a gas stream originating from a liquefaction process, in a synthesis gas production process
EP3252406B1 (en) Method for liquefying carbon dioxide from a natural gas stream
CN106938170B (en) Treatment device and treatment method for Fischer-Tropsch synthesis purge gas of cobalt-based fixed bed
FR3052239A1 (en) PROCESS FOR THE LIQUEFACTION OF NATURAL GAS AND CARBON DIOXIDE
FR3052241A1 (en) PROCESS FOR PURIFYING NATURAL GAS AND LIQUEFACTING CARBON DIOXIDE
EP4101918B1 (en) Method for separation and liquefaction of methane and carbon dioxide with solidification of carbon dioxide outside the distillation column
EP4101911B1 (en) Cryogenic purification for biogas with external pre-separation and solidification of carbon dioxide
EP4101912B1 (en) Method for separation and liquefaction of methane and carbon dioxide with pre-separation upstream of the distillation column

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18709669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18709669

Country of ref document: EP

Kind code of ref document: A1