Nothing Special   »   [go: up one dir, main page]

WO2019153729A1 - 一种抱杆电源 - Google Patents

一种抱杆电源 Download PDF

Info

Publication number
WO2019153729A1
WO2019153729A1 PCT/CN2018/103689 CN2018103689W WO2019153729A1 WO 2019153729 A1 WO2019153729 A1 WO 2019153729A1 CN 2018103689 W CN2018103689 W CN 2018103689W WO 2019153729 A1 WO2019153729 A1 WO 2019153729A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
support rod
pole power
pole
cells
Prior art date
Application number
PCT/CN2018/103689
Other languages
English (en)
French (fr)
Inventor
赵中令
贾英峰
张光辉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18904530.5A priority Critical patent/EP3745489A4/en
Publication of WO2019153729A1 publication Critical patent/WO2019153729A1/zh
Priority to US16/987,553 priority patent/US20200365842A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M13/00Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles
    • F16M13/02Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles for supporting on, or attaching to, an object, e.g. tree, gate, window-frame, cycle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/627Stationary installations, e.g. power plant buffering or backup power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/251Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for stationary devices, e.g. power plant buffering or backup power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of power supply technologies, and in particular, to a pole power supply.
  • the existing pole power supply is usually designed in a square shape and mounted on the side of a support rod (such as a utility pole).
  • the pole power supply includes a square power box and a battery core disposed in the power box. The components are mounted on the side of the support rod after being mounted by the connector.
  • this design and installation method has disadvantages such as unstable center of gravity and large windward area.
  • the power of the pole has a risk of falling and the stability is poor;
  • the arrangement of the battery cores is usually based on the conventional battery core arrangement, that is, the multiple groups of batteries are used in parallel, and the plurality of groups of batteries are arranged in a layered tight arrangement.
  • the heat dissipation between the cells is not uniform, and the temperature difference between the cells is large. It is easy to cause local overheating during charging and discharging of the battery, which reduces the performance and service life of the local cells, and local overheating may even cause Security risks.
  • the embodiment of the invention provides a pole power supply, which can improve the stability of the power supply of the pole, and avoid the inconsistency of the heat dissipation between the batteries in the pole power supply, thereby causing local overheating problems and prolonging the service life of the pole power.
  • an embodiment of the present invention provides a pole power supply
  • the pole power supply includes an annular box to be mounted to a support rod; and a center of the annular box has a cylindrical cavity.
  • the cylindrical cavity is for embracing the support rod; the annular box is uniformly provided with a plurality of batteries; when the pole power is mounted on the support rod, the pole power supply
  • the center of gravity is located in the cross section of the support rod. Specifically, in the annular box, the center of gravity of the plurality of cells is evenly distributed around a center line of the cylindrical cavity.
  • the center of gravity (F) of the pole power is located on the cross section of the support rod.
  • the center of gravity of the pole power supply can even Located at the center of the cross section of the support rod. Wherein the cross section is located inside the support rod, and the cross section is perpendicular to a center line of the cylindrical cavity.
  • the pole power source as an annular box body having a cylindrical cavity in the center
  • the power supply of the pole can be installed to the support rod and surround the support rod
  • a plurality of cells of the pole-carrying power supply are evenly arranged in the annular casing, so that the center of gravity of the pole power source can be located on a cross section (or even a center) of the support bar. Therefore, the embodiment of the present invention can improve the stability of the power supply of the pole.
  • the cells are evenly distributed, the surrounding environment of each battery core is substantially the same, so the heat dissipation of each battery core is basically the same. Avoid inconsistent heat dissipation between cells and cause local overheating, and extend the service life of the pole power supply.
  • the annular box body is divided into two semi-circular columnar structures, and the first boundary of the two semi-annular columnar structures is provided with a living hinge, the two semicircles The ring-shaped columnar structure is movably connected by the living hinge.
  • the second boundary of the two semi-annular columnar structures is provided with an adjustable fastening structure; when the two semi-annular columnar structures are closed by the living hinge into the annular box The adjustable fastening structure is used to lock the annular box.
  • a plurality of batteries are uniformly disposed in the annular box, specifically: in the annular box, a center of gravity of the plurality of cells surrounds a center of the cylindrical cavity The lines are evenly distributed.
  • the plurality of cells have a variety of arrangements in the internal space of the annular casing.
  • a plurality of square cells or soft-pack cells are arranged in the inner space of the annular box, and each cell has a battery core.
  • the cell tabs are arranged upward on the surface of the cell, and the bus bars of the cell cores between the different cells are connected by a soft connection (such as a wire connection) or a hard connection (such as a copper connection).
  • the centers of gravity of the cells are evenly distributed around the centerline of the cylindrical cavity of the annular casing.
  • the cells are radially radially distributed around the centerline of the cylindrical cavity in the interior space. The largest cross section of each cell is coplanar with the centerline of the cylindrical cavity.
  • the angle between the largest cross sections of the adjacent cells is 22.5°, and the sum of these angles is 360°.
  • the n-layer pole power can be designed according to the actual power demand. In this case, it can be understood that the sum of the angles 7 of all the pole power sources is n times 360°, and n is greater than Or an integer equal to 1.
  • a plurality of square cells or soft-pack cells are arranged in the inner space of the annular box, and each cell has a battery core.
  • the battery core tab is arranged upward on the surface of the battery core, and the bus bar of the battery core between the different batteries is connected by a soft connection (such as a wire connection) or a hard connection (such as a copper connection).
  • the electricity is The core is radially rotated (or helically) distributed around the centerline of the cylindrical cavity in the interior space, the largest cross section of the cell being non-coplanar with the centerline of the cylindrical cavity.
  • the angle between the largest cross sections of the adjacent cells is 45°, and the sum of these angles is 360°.
  • the n-layer pole power supply can be designed according to the actual power demand.
  • the sum of the angles 16 of all the pole power sources is n times 360°, and n is greater than or An integer equal to 1.
  • a plurality of cylindrical cells are arranged in the inner space of the annular box, each of the cells having a battery core, the battery core
  • the tabs are arranged upward on the surface of the cell, and the busbars of the cell cores between the different cells are connected by a soft connection (such as a wire connection) or a hard connection (such as a copper connection).
  • the center of gravity of the cells is evenly distributed around the center line of the cylindrical cavity of the annular box. Specifically, the center line of each of the cylindrical cells is parallel to the center line of the cylindrical cavity.
  • the core is radially distributed in the inner space around the center line of the cylindrical cavity, and a set of cells is uniformly disposed on each of the radiation lines.
  • a center line of a set of cells located on the same radiation line and a center line of the cylindrical cavity, and a center line of a set of cells of the adjacent radiation line and a center of the cylindrical cavity
  • the face formed by the line has an angle of 22.5° between the two faces, and the sum of these angles 16 is 360°.
  • the n-layer pole power supply can be designed according to the actual power demand.
  • the sum of the angles of all the pole power sources is n times of 360°, and n is greater than or equal to An integer of 1.
  • the manner in which the pole power source is mounted on the support rod may be various. Before installation, the living hinge is in an active connection state. After installation, the adjustable fastening structure at the other end is fastened.
  • the pole power can be fixed to the support rod based on its own structure, or can be fixed to the support rod through the upper and lower base parts of the peripheral. on.
  • the cylindrical cavity can be used to clamp the support rod.
  • the pole power supply is mounted to the support rod, by fastening the adjustable fastening structure, the cavity wall of the cylindrical cavity can be brought into close contact with the support rod, that is, when the support When the rod power source is mounted on the support rod, the radius of the cylindrical cavity is equal to the radius of the support rod mounting position.
  • the pole power can be fixed to the support bar based on the friction between the cavity wall and the support rod.
  • the pole power can be fixed to the support rod by components of the peripheral device.
  • the cylindrical cavity of the pole-shaped power supply of the pole power supply is respectively provided with angle steel ( That is, the upper and lower edges of the cavity portion of each semi-annular columnar structure are respectively provided with angle steel).
  • one side of the angle steel is fixedly coupled to the annular box, and one side of the angle steel is in close contact with the support rod.
  • the angle steels on the upper edge of the cavity of the two semi-circular columnar structures can be connected by the fixed studs, and the angles of the lower edges of the cavity portions of the two semi-annular columnar structures can also be connected by the fixed studs. . In this way, when the installation is completed, the pole power can be fixed to the support rod through the components of the peripheral.
  • the support rod is not standardized, and the diameter of the support rod is different.
  • at least one second support rod having a standard diameter can be transferred.
  • the holding lever power supply can also be mounted on the second support rod.
  • the effect is equivalent, and another application case is that the support rod has an uneven diameter above and below, generally, from bottom to top, diameter. Gradually getting smaller, at this time, the ring in the middle of the pole power supply can also be gradual, so that it can be naturally fixed on the pole by gravity (Fig. 4), and there is a possibility that the middle of the pole power supply is annular and It is not open, and the upper side is closed. At this time, the pole power can be fixed on the top of the support rod.
  • the annular box body in the embodiment of the present invention in addition to the battery core, other conventional power supply auxiliary components, such as a battery management system (BMS), a bus bar,
  • BMS battery management system
  • the heating film, as well as the necessary reinforcing members and the like are either disposed between the cells, or in the upper portion of the cell, or in the lower portion of the cell, or on the surface of the cell, and are not specifically limited herein.
  • the pole power source as an annular box body having a cylindrical cavity in the center
  • the power supply of the pole can be installed to the support rod and surround the support rod
  • the plurality of cells of the pole power supply can be evenly arranged in the annular box by various deployment manners, so that the center of gravity of the pole power can be located on the cross section (or even the center) of the support rod. . Therefore, the embodiment of the present invention can improve the stability of the power supply of the pole and avoid the influence of bad weather.
  • the surrounding environment of each battery core is basically the same, and the temperature during operation is also consistent.
  • the temperature between the cells is consistent, that is, the heat dissipation of each cell is basically the same, avoiding the inconsistent heat dissipation between the cells and causing local overheating, and prolonging the service life of the pole power.
  • the power supply of the pole provided by the embodiment of the present invention has strong scalability, and can be widely applied to application scenarios with more and more power requirements, such as 5G. The scene is more applicable.
  • FIG. 1 is a schematic diagram of an application scenario of a pole-carrying power supply in the prior art
  • FIG. 2 is a schematic structural diagram of a pole power supply according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an application scenario of a pole power supply according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a mounting method of a pole power supply according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of still another installation method of a pole power supply according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of still another power supply for a pole according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an opening and closing scenario of a pole power supply according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of still another power supply for a pole according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of still another power supply for a pole according to an embodiment of the present invention.
  • an embodiment of the present invention provides a toroidal column-shaped pole power supply.
  • the circular column-shaped pole power supply includes an annular shape to be mounted to a support rod (for example, a column such as a street lamp).
  • a support rod for example, a column such as a street lamp.
  • a casing 1 a plurality of batteries (not shown in FIG. 2) disposed in the inner space 2 of the annular casing 1, and a living hinge 5 and a fastening structure 6 disposed on the annular casing 1. .
  • the center of the annular box body 1 has a cylindrical cavity 20, which can be used to surround the support rod; the plurality of batteries are inside the annular box 1
  • the space 2 is uniformly symmetrically arranged (described in detail below) such that when the pole power is mounted on the support bar, the center of gravity of the pole power can be located inside the support bar. That is, the support rod is vertically disposed on the ground, and when the pole power is mounted on the support rod, the center of gravity of the pole power is located on a cross section of the support rod, and the cross section is located The inside of the support rod, and the cross section is perpendicular to a center line of the cylindrical cavity 20.
  • the center of gravity of the plurality of cells is evenly distributed around the center line of the cylindrical cavity 20.
  • the center of gravity (F) of the pole power source is located at the support.
  • the center of gravity of the pole power supply can even be located at the center of the cross section 11 of the support rod 10.
  • the annular box 1 of the pole power supply is provided with a living hinge 5 and a fastening structure 6, and the annular box can be divided into two semi-circular column structures (201 and 202).
  • the living hinges 5 are disposed at the junction (coincidence) of one ends of the two semi-annular columnar structures, and the two semi-annular columnar structures are movably connected by the living hinges 5.
  • the junction (coincidence) of the other ends of the two semi-annular columnar structures is provided with the adjustable fastening structure 6 when the two semi-annular columnar structures are closed by the living hinge 5
  • the adjustable fastening structure 6 is used to lock the annular casing 1. Since the pole power supply (the annular box 1) can be opened into two semi-circular cylindrical structures based on the living hinge 5, the electric core can be conveniently arranged in the corresponding internal space 2, and the convenient holding The rod power supply is mounted to the support rod.
  • the pole power supply provided by the embodiments of the present invention can be designed in a multi-layer combination according to needs.
  • the pole power supply can be designed as a double layer, each layer including a ring-shaped pole-shaped power supply as shown in FIG. 2, respectively Pole power supply 1a and pole power supply 1b.
  • the center of gravity of the pole power supply 1a is located on the cross section 12 of the support rod 10
  • the center of gravity of the pole power supply 1b is located on the cross section 13 of the support rod 10, so that the overall power supply of the pole is The center of gravity is still located at the cross section or even the center of the support rod 10.
  • the annular box 1 in the embodiment of the present invention in addition to the battery core, other conventional power supply auxiliary components, such as a battery management system (BMS) and a confluence, are disposed.
  • the power supply auxiliary components are either located between the cells, or located in the upper portion of the cell, or in the lower portion of the cell, or on the surface of the cell, and are not specifically limited herein. Regardless of the arrangement, since the total weight of the battery cells is a major part of the weight of the pole power supply, the center of gravity of the toroidal pole-shaped pole power supply in the embodiment of the present invention can be maintained in the cross section of the support rod 10.
  • the manner in which the pole power supply is mounted on the support rod 10 can be various. Before installation, the living hinge 5 is in an active connection state. After installation, the adjustable fastening structure 6 at the other end is fastened, and the pole power can be fixed to the support rod 10 based on its own structure, or can be fixed by the upper and lower base parts of the peripheral device. To the support rod 10.
  • the cylindrical cavity 20 can be used to clamp the support rod 10.
  • the pole power supply (the annular casing 1) is mounted on the support rod 10, by fastening the adjustable fastening structure 6, the cavity wall of the cylindrical cavity 20 can be brought into close contact with The support rod 10, that is, the radius of the cylindrical cavity 20 is equal to the radius of the mounting position of the support rod 10 when the pole power is mounted on the support rod 10.
  • the pole power can be fixed to the support rod 10 based on the friction between the chamber wall and the support rod 10.
  • the form of the clamping support rod is not only suitable for the pole power supply fixing on the cylindrical support rod 10, but also for the pole power supply fixing on the non-cylindrical (variable section) support rod 10.
  • the pole power supply can be fixed to the support rod 10 by components of the peripheral, as shown in FIG. 5, the bell box of the pole power supply.
  • the two ends of the cylindrical cavity 20 of the body 1 are respectively provided with angle steels 8 (that is, the upper and lower edges of the cavity portions of each of the semi-annular columnar structures are respectively provided with angle steels 8).
  • angle steels 8 that is, the upper and lower edges of the cavity portions of each of the semi-annular columnar structures are respectively provided with angle steels 8.
  • the angle steels 8 respectively disposed on the upper edges of the cavity portions of the two semi-circular columnar structures may be connected by the fixing studs 9, and the angle steels 8 respectively disposed at the lower edges of the cavity portions of the two semi-annular columnar structures may also pass through the fixing snails.
  • the column 9 is connected.
  • a plurality of fixing studs 9 disposed between the angles 8 of the upper edge of the cavity portion may be disposed.
  • the radius of the cylindrical cavity 20 (ie, the inner diameter of the annular box 1) is not less than the radius of the cross-section of the embracing support rod, the annular box 1
  • the height is not less than the height of the cells deployed inside it.
  • the pole power source as an annular box body having a cylindrical cavity in the center
  • the power supply of the pole can be installed to the support rod and surround the support rod
  • a plurality of cells of the pole-carrying power supply are evenly arranged in the annular casing, so that the center of gravity of the pole power source can be located on a cross section (or even a center) of the support bar. Therefore, the embodiment of the present invention can improve the stability of the power supply of the pole.
  • the cells are evenly distributed, the surrounding environment of each battery core is substantially the same, so the heat dissipation of each battery core is basically the same. Avoid inconsistent heat dissipation between cells and cause local overheating, and extend the service life of the pole power supply.
  • FIG. 6 is a top view of a power supply for a pole provided by an embodiment of the present invention.
  • the inner space 2 of the annular box 1 is arranged.
  • the bus bar of the battery core is connected by a soft connection (such as a wire connection) or a hard connection (such as a copper connection), wherein, in order to facilitate the opening and closing of the annular case 1, the adjacent electric power located near the living hinge 5
  • the core tabs 41 and 42 of the core are softly connected.
  • the cell tabs located near the adjustable fastening structure 6 are also softly connected.
  • the centers of gravity of the cells are evenly distributed around the centerline of the cylindrical cavity 20 of the annular casing 1.
  • the cells are square cells or soft cells, and the cells surround the interior space 2.
  • the centerline of the cylindrical cavity 20 is radially radially distributed.
  • the largest cross section of each cell (as shown at 71 or 72) is coplanar with the centerline of the cylindrical cavity 20.
  • the angle between the largest cross-sections of adjacent cells (such as between 71 and 72) is the angle 7 in the figure. Since the cells are evenly distributed around the centerline of the support rod, the angle 7 between the cells is 22.5. °, the sum of these angles 7 is 360°.
  • the n-layer pole power supply can be arranged in the form of (b) in FIG. 3 according to the actual power demand.
  • the sum of the angles 7 of all the pole power sources is n times 360°, n is an integer greater than or equal to 1.
  • the annular case of the pole power supply is composed of two semi-circular columnar structures 201 and 202, and one end of the semi-annular columnar structure 201 is provided with a living hinge 5
  • the constituent structure 51, one end of the semi-annular columnar structure 202 is provided with a structure 52 of the living hinge 5, and the composition structure 51 and the composition structure 52 can be combined into a hinge structure 5 by a movable connection, so that the two halves
  • the annular columnar structures 201 and 202 are movably connected by the living hinge 5.
  • the other end of the semi-annular columnar structure 201 is provided with a composition structure 61 of the adjustable fastening structure 6, and the other end of the semi-annular columnar structure body 202 is provided with a composition structure 62 of the adjustable fastening structure 6.
  • the component structure 61 and the component structure 62 can be overlapped and can be fixedly fixed together by related components to form an adjustable fastening structure 6.
  • the component structure 61 and the component structure 62 are overlapped to form a bolt, and the bolt can be adjusted by using a nut. Fixed to form an adjustable fastening structure 6 for locking the annular casing 1 .
  • the pole power supply (the annular casing 1) can be opened into two semi-circular columnar structures 201 and 202 based on the living hinge 5, thereby being convenient.
  • the cells are arranged in the corresponding internal space of 201 and the corresponding internal space of 202.
  • the two semi-annular columnar structures 201 and 202 can be respectively arranged with half of the number of cells 3 (eight sets of cells are respectively shown in the figure) At the same time, it is convenient for the pole power to be installed to the support rod from the open space.
  • the two semi-circular columnar structures 201 and 202 are closed, and the cylindrical cavity 20 surrounds the support rod, and then the adjustable fastening structure 6 is locked, and the pole is clamped.
  • the power source can be secured to the support rod in the manner shown in the embodiment of Figure 4 or Figure 5.
  • FIG. 8 is a top view of another power supply for the pole provided by the embodiment of the present invention.
  • the internal space of the annular box 1 is shown in FIG. 8 .
  • a plurality of cells 14 are arranged, each of the cells 14 has a battery core 15 which is arranged upward on the surface of the cell, different cells
  • the bus bar between the battery cores is connected by a soft connection (such as a wire connection) or a hard connection (such as a copper connection), wherein the living hinge 5 is located in order to facilitate the opening and closing of the annular case 1.
  • the cell tabs of adjacent cells in the vicinity of the accommodating structure 6 can be softly connected.
  • the centers of gravity of the cells are evenly distributed around the centerline of the cylindrical cavity 20 of the annular casing 1.
  • the cells are square cells or soft cells, and the cells surround the interior space 2.
  • the centerline of the cylindrical cavity 20 is radially rotated (or helically), and the largest cross section of the cell is not coplanar with the centerline of the cylindrical cavity 20.
  • the angle between the largest cross-sections of adjacent cells is the angle 16 in the figure. Since the cells are evenly distributed around the center line of the support rod, the angle 16 between the cells is 45°, and the sum of these angles 16 It is 360°.
  • the n-layer pole power can be arranged in the form of (b) in FIG. 3 according to the actual power demand.
  • the sum of the angles 16 of all the pole power sources is n times 360°, n is an integer greater than or equal to 1.
  • the circular column-shaped pole power supply can also be divided into two semi-circular columnar structures (not shown), which can be opened and closed based on the living hinge 5, when When it is closed, the adjustable fastening structure 6 is used to lock the power supply of the pole.
  • semi-circular columnar structures not shown
  • FIG. 9 is a top view of another power supply for the pole provided by the embodiment of the present invention.
  • the internal space of the annular box 1 is shown in FIG.
  • a plurality of cells 17 64 cells 17 in the figure
  • each of the cells 17 has a battery core 18, which is arranged upward on the surface of the cell, different cells
  • the bus bar between the battery cores is connected by a soft connection (such as a wire connection) or a hard connection (such as a copper connection), wherein the living hinge 5 is located in order to facilitate the opening and closing of the annular case 1.
  • the cell tabs of adjacent cells in the vicinity of the accommodating structure 6 can be softly connected.
  • the centers of gravity of the cells are evenly distributed around the centerline of the cylindrical cavity 20 of the annular casing 1.
  • the cells are cylindrical cells; the center line of each of the cylindrical cells
  • the center lines of the cylindrical cavities 20 are parallel, and the cells are radially distributed in the inner space 2 around the center line of the cylindrical cavity 20, and a set of cells are uniformly disposed on each of the radiation lines (a group in the figure)
  • the battery core consists of 4 batteries).
  • the center line of a group of cells located on the same radiation line and the center line of the cylindrical cavity are 191
  • the center line of the shaped cavity is composed of 192, and the angle between 191 and 192 is the angle 19. Since each group of cells is evenly distributed around the center line of the support rod, the angle 19 is 22.5°, and these angles 16 The sum is 360°.
  • the n-layer pole power can be arranged in the form of (b) in FIG. 3 according to the actual power demand.
  • the sum of the angles 16 of all the pole power sources is n times 360°, n is an integer greater than or equal to 1.
  • the circular column-shaped pole power supply can also be divided into two semi-circular columnar structures (not shown), which can be opened and closed based on the living hinge 5, when When it is closed, the adjustable fastening structure 6 is used to lock the power supply of the pole.
  • semi-circular columnar structures not shown
  • the cells 14 can be arranged in a uniform spiral along the centerline of the cylindrical cavity 20, such that all of the poles are powered.
  • the sum of the included angles 16 may be m times 360°, and m is an integer greater than one.
  • the pole power supply may include a multi-layer annular box body, and each layer of the annular box body may be combined and designed by using any one of the schemes of FIG. 6, FIG. 8, FIG. 9 and other modified embodiments. Such a combination is also within the scope of protection of the present invention.
  • the centers of gravity of the plurality of cells described in the embodiments of the present invention are uniformly distributed around the center line of the cylindrical cavity, in a possible embodiment, the poles In addition to the evenly distributed cells in the annular box of the power source, it is also possible to provide a small number of non-uniformly distributed cells as needed. In this case, the center of gravity of the pole power can still be located inside the support rod. .
  • the pole power source as an annular box body having a cylindrical cavity in the center
  • the power supply of the pole can be installed to the support rod and surround the support rod
  • the plurality of cells of the pole power supply can be evenly arranged in the annular box by various deployment manners, so that the center of gravity of the pole power can be located on the cross section (or even the center) of the support rod. . Therefore, the embodiment of the present invention can improve the stability of the power supply of the pole and avoid the influence of bad weather.
  • the surrounding environment of each battery core is basically the same, and the temperature during operation is also consistent.
  • the temperature between the cells is consistent, that is, the heat dissipation of each cell is basically the same, avoiding the inconsistent heat dissipation between the cells and causing local overheating, and prolonging the service life of the pole power.
  • the power supply of the pole provided by the embodiment of the present invention has strong scalability, and can be widely applied to application scenarios with more and more power requirements, such as 5G. The scene is more applicable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请公开了一种抱杆电源,该抱杆电源包括待安装到支撑杆的圆环状箱体;所述圆环状箱体的中心具有一个圆柱形空腔,所述圆柱形空腔用于环抱所述支撑杆;所述圆环状箱体中均匀设置有多个电芯;当所述抱杆电源安装在所述支撑杆时,所述抱杆电源的重心位于所述支撑杆的横截面。实施本发明实施例能够提高抱杆电源的稳固性,同时避免抱杆电源中电芯间散热不一致而导致局部过热问题,延长抱杆电源的使用。

Description

一种抱杆电源 技术领域
本发明涉及电源技术领域,尤其涉及一种抱杆电源。
背景技术
现如今,随着4G/5G的逐渐普及和商用,以及物联网、自动驾驶等网络技术的发展,用以给射频发射器、摄像头、信号灯等供电的抱杆式二次电源(简称抱杆电源)需求十分旺盛。在室外环境中,现有抱杆电源通常设计成方形,并安装在支撑杆(如电线杆)侧面,如图1所示,抱杆电源包括方形的电源箱以及布置在电源箱中的电芯等部件,通过连接件安装后悬挂在支撑杆侧面。然而,由于抱杆电源一般较重,所以这种设计和安装方式存在重心不稳、迎风面积大等缺点,特别是在恶劣天气下,抱杆电源存在跌落风险,稳固性较差;另外,在这种方形抱杆电源的电源箱中,电芯的布置通常都借鉴传统电芯布置方式,也就是多组电芯并行使用,多组电芯通过层叠紧密排布的形式布置在一起。然而,这种布置方式中电芯间散热不均匀,电芯间温度差异大,在电池充放电过程中容易造成局部过热,降低了局部电芯的性能和使用寿命下降,局部过热甚至还容易导致安全隐患问题。
发明内容
本发明实施例提供一种抱杆电源,能够提高抱杆电源的稳固性,同时避免抱杆电源中电芯间散热不一致而导致局部过热问题,延长抱杆电源的使用寿命。
第一方面,本发明实施例提供了一种抱杆电源,所述抱杆电源包括待安装到支撑杆的圆环状箱体;所述圆环状箱体的中心具有一个圆柱形空腔,所述圆柱形空腔用于环抱所述支撑杆;所述圆环状箱体中均匀设置有多个电芯;当所述抱杆电源安装在所述支撑杆时,所述抱杆电源的重心位于所述支撑杆的横截面。具体的,在所述圆环状箱体中,所述多个电芯的重心围绕所述圆柱形空腔的中心线均匀分布。这样,当抱杆电源安装在支撑杆上时,所述抱杆电源的重心(F)就位于所述支撑杆的横截面上,在可能的实施例中,所述抱杆电源的重心甚至能位于所述支撑杆的横截面的中心。其中,所述横截面位于所述支撑杆的内部,且所述横截面与所述圆柱形空腔的中心线垂直。
可以看出,本发明实施例中,通过将抱杆电源设计成中心具有一个圆柱形空腔的圆环状箱体,可使得抱杆电源安装到支撑杆后环抱所述支撑杆,又由于所述抱杆电源的多个电芯在所述圆环状箱体中均匀布置,所以可使得所述抱杆电源的重心位于所述支撑杆的横截面(甚至中心)上。因此,实施本发明实施例能够提高抱杆电源的稳固性,另外,由于电芯之间均匀分布,所以每个电芯的周围环境基本一致,所以每个电芯的散热情况也会基本一致,避免电芯间散热不一致而导致局部过热问题,延长抱杆电源的使用寿命。
本发明实施方式中,所述圆环状箱体分为两个半圆环柱状结构体,所述两个半圆环柱状结构体的第一交界处设置有活动铰链,所述两个半圆环柱状结构体通过所述活动铰链进行可活动连接。所述两个半圆环柱状结构体的第二交界处设置有可调式紧固结构;当所述两个半圆环柱状结构体通过所述活动铰链闭合成所述圆环状箱体时,所述可调式紧固结构 用于锁紧所述圆环状箱体。
本发明实施例,所述圆环状箱体中均匀设置有多个电芯,具体为:所述圆环状箱体中,所述多个电芯的重心围绕所述圆柱形空腔的中心线均匀分布。具体的,在圆环状箱体的内部空间中多个电芯具有多种多样的布置方式。
在一种可能的布置方式中,圆环状箱体的内部空间中布置有多个方形电芯或软包电芯(例如16个方形电芯),每个电芯均具有电芯极耳,所述电芯极耳在电芯表面向上布置,不同电芯之间的电芯极耳的汇流排采用软连接(如电线连接)或者硬连接(如铜片连接)。这些电芯的重心围绕圆环状箱体的圆柱形空腔的中心线均匀分布,具体的,这些电芯在内部空间中环绕所述圆柱形空腔的中心线呈径向放射状分布。每个电芯的最大横截面均与所述圆柱形空腔的中心线共面。相邻电芯各自的最大横截面之间的夹角为为22.5°,这些夹角之和为360°。在可能的实施例中,可根据实际用电的需求,设计n层的抱杆电源,这时,可以理解的,所有抱杆电源的夹角7之和为360°的n倍,n为大于或等于1的整数。
在又一种可能的布置方式中,圆环状箱体的内部空间中布置有多个方形电芯或软包电芯(如8个方形电芯),每个电芯均具有电芯极耳,所述电芯极耳在电芯表面向上布置,不同电芯之间的电芯极耳的汇流排采用软连接(如电线连接)或者硬连接(如铜片连接),具体的,这些电芯在内部空间中环绕所述圆柱形空腔的中心线呈径向旋转状(或螺旋状)分布,电芯的最大横截面均与所述圆柱形空腔的中心线不共面。相邻电芯各自的最大横截面之间的夹角为45°,这些夹角之和为360°。在可能的实施例中,可根据实际用电的需求,设计n层抱杆电源,这时,可以理解的,所有抱杆电源的夹角16之和为360°的n倍,n为大于或等于1的整数。
在又一种可能的布置方式中,圆环状箱体的内部空间中布置有多个圆柱形电芯(例如64个电芯),每个电芯均具有电芯极耳,所述电芯极耳在电芯表面向上布置,不同电芯之间的电芯极耳的汇流排采用软连接(如电线连接)或者硬连接(如铜片连接)。这些电芯的重心围绕圆环状箱体的圆柱形空腔的中心线均匀分布,具体的,每个所述圆柱形电芯的中心线与所述圆柱形空腔的中心线平行,这些电芯在内部空间中环绕所述圆柱形空腔的中心线呈放射状分布,每条放射线路线上均匀设置有一组电芯。位于相同放射线路线的一组电芯的中心线与所述圆柱形空腔的中心线组成的面,以及,相邻的放射线路线的一组电芯的中心线与所述圆柱形空腔的中心线组成的面,这两个面之间的夹角为22.5°,这些夹角16之和为360°。
在可能的实施例中,可根据实际用电的需求,设计n层抱杆电源,这时,可以理解的,所有抱杆电源的夹角之和为360°的n倍,n为大于或等于1的整数。
另外,本发明实施例中,所述抱杆电源安装到支撑杆上的方式可以是多种多样的。安装前,活动铰链为活动连接状态,安装后,紧固另一端的可调式紧固结构,抱杆电源可基于自身结构固定到支撑杆上,或者可通过外设的上下底座部件固定到支撑杆上。
在一种可能的安装方式中,所述圆柱形空腔可用于夹紧支撑杆。当所述抱杆电源安装到支撑杆上时,通过紧固所述可调式紧固结构,可以使得所述圆柱形空腔的腔壁紧贴所述支撑杆,也就是说,当所述抱杆电源安装在所述支撑杆时,所述圆柱形空腔的半径等于所述支撑杆安装位置的半径。这样,抱杆电源可基于腔壁与支撑杆之间的摩擦力固定在所述 支撑杆上。
在又一种可能的安装方式中,抱杆电源可通过外设的部件固定到支撑杆上,例如,所述抱杆电源的圆环状箱体的圆柱形空腔两端分别设置有角钢(即每个半圆环柱状结构体空腔部位的上下沿分别设置角钢)。当抱杆电源需安装到到支撑杆上时,所述角钢的一边与所述圆环状箱体固定连接,所述角钢的一边紧贴所述支撑杆。分别设置两个半圆环柱状结构体空腔部位上沿的角钢可通过固定螺柱进行连接,分别设置两个半圆环柱状结构体空腔部位下沿的角钢也可通过固定螺柱进行连接。这样,安装完毕时,抱杆电源可通过外设的部件固定到支撑杆上。
另一种应用情况是,所述支撑杆并不是标准化的,支撑杆直径不一,事实情况是,无论支撑杆如何变化,至少可以转接一个具有标准直径的第二支撑杆,此时,所述抱杆电源还可以安装于该第二支撑杆上,此时,作用效果是等价的,还有一种应用情况是,支撑杆上下具有不均匀的直径,一般的,从下到上,直径逐渐变小,此时,抱杆电源中间的圆环也可以是渐变的,从而能够依靠重力,自然地固定在杆上(图4),还有一种可能,抱杆电源中间的圆环状并不是打通的,上侧是封闭的,此时,所述抱杆电源可以固定于支撑杆顶部。
具体实现中,在本发明实施例中的圆环状箱体中除了布置有电芯之外,还布置有其他常规的电源辅助部件,例如电源管理系统(Battery Management System,BMS)、汇流排、加热膜,以及必要的加强件等等,这些电源辅助部件或者位于电芯之间、或者位于电芯上部,或者位于电芯下部,或者位于电芯表面,这里不做具体限定。
可以看出,本发明实施例中,通过将抱杆电源设计成中心具有一个圆柱形空腔的圆环状箱体,可使得抱杆电源安装到支撑杆后环抱所述支撑杆,又由于所述抱杆电源的多个电芯可通过多种部署方式在所述圆环状箱体中均匀布置,所以可使得所述抱杆电源的重心位于所述支撑杆的横截面(甚至中心)上。因此,实施本发明实施例能够提高抱杆电源的稳固性,避免受恶劣天气的影响,而且,由于电芯之间均匀分布,所以每个电芯的周围环境基本一致,工作时温度也一致,从而确保电芯间温度一致,即每个电芯的散热情况基本一致,避免电芯间散热不一致而导致局部过热问题,延长抱杆电源的使用寿命。另外,从上面所描述的多种电芯部署方式可以看出,本发明实施例提供的抱杆电源可扩展性较强,能够广泛适用于对电量要求越来越多的应用场景,如5G等场景,应用性较强。
附图说明
为了更清楚地说明本发明实施例或背景技术中的技术方案,下面将对本发明实施例或背景技术中所需要使用的附图进行说明。
图1是现有技术中的一种抱杆电源的应用场景示意图;
图2是本发明实施例提供的一种抱杆电源的结构示意图;
图3是本发明实施例提供的一种抱杆电源的应用场景示意图;
图4是本发明实施例提供的一种抱杆电源安装方式的示意图;
图5是本发明实施例提供的又一种抱杆电源安装方式的示意图;
图6是本发明实施例提供的又一种抱杆电源的结构示意图;
图7是本发明实施例提供的一种抱杆电源的开闭场景示意图;
图8是本发明实施例提供的又一种抱杆电源的结构示意图;
图9是本发明实施例提供的又一种抱杆电源的结构示意图。
具体实施方式
下面结合本发明实施例中的附图对本发明实施例进行描述。本发明的实施方式部分使用的术语仅用于对本发明的具体实施例进行解释,而非旨在限定本发明。
参见图2,本发明实施例提供了一种圆环柱状的抱杆电源,如图2所示,该圆环柱状的抱杆电源包括待安装到支撑杆(例如路灯等柱子)的圆环状箱体1、设置在该圆环状箱体1的内部空间2中的多个电芯(图2未示出)、以及设置在圆环状箱体1上的活动铰链5和紧固结构6。其中,圆环状箱体1的中心具有一个圆柱形空腔20,所述圆柱形空腔20可用于环抱所述支撑杆;所述多个电芯在所述圆环状箱体1的内部空间2中均匀对称地进行布置(在下文中详细描述),这样,抱杆电源安装在支撑杆时,所述抱杆电源的重心就能够位于所述支撑杆的内部。也就是说,所述支撑杆竖直设置于地面,当所述抱杆电源安装在所述支撑杆时,所述抱杆电源的重心位于所述支撑杆的横截面上,所述横截面位于所述支撑杆的内部,且所述横截面与所述圆柱形空腔20的中心线垂直。
具体的,在所述圆环状箱体1中,所述多个电芯的重心围绕所述圆柱形空腔20的中心线均匀分布。这样,如图3中(a)所示,当抱杆电源(由圆环状箱体1所指示)安装在支撑杆10上时,所述抱杆电源的重心(F)就位于所述支撑杆10的横截面11上,在可能的实施例中,所述抱杆电源的重心甚至能位于所述支撑杆10的横截面11的中心。
本发明实施例中,在抱杆电源的圆环状箱体1设置有活动铰链5和紧固结构6,所述圆环状箱体可分为两个半圆环柱状结构体(201和202),所述两个半圆环柱状结构体的一端的交界处(重合处)设置该活动铰链5,所述两个半圆环柱状结构体通过该活动铰链5进行可活动连接。所述两个半圆环柱状结构体的另一端的交界处(重合处)设置该可调式紧固结构6,当所述两个半圆环柱状结构体通过所述活动铰链5闭合成所述圆环状箱体1时,所述可调式紧固结构6用于锁紧所述圆环状箱体1。由于,所述抱杆电源(圆环状箱体1)可基于所述活动铰链5打开成两个半圆环柱状结构体,从而可以方便电芯在对应的内部空间2中布置,以及方便抱杆电源安装到支撑杆上。
在可能的应用场景中,本发明实施例所提供的抱杆电源可以根据需要而设计成多层组合形式。例如,参见图3中(b),在一种组合形式中,所述抱杆电源可设计成上下双层,每一层均包括一个图2所示的圆环柱状的抱杆电源,分别为抱杆电源1a和抱杆电源1b。可以理解的,抱杆电源1a的重心位于所述支撑杆10的横截面12上,所述抱杆电源1b的重心位于所述支撑杆10的横截面13上,所以整体上的抱杆电源的重心依然位于所述支撑杆10的横截面甚至中心。
需要说明的是,在本发明实施例中的圆环状箱体1中除了布置有电芯之外,还布置有其他常规的电源辅助部件,例如电源管理系统(Battery Management System,BMS)、汇流排、加热膜,以及必要的加强件等等,这些电源辅助部件或者位于电芯之间、或者位于电芯上部,或者位于电芯下部,或者位于电芯表面,这里不做具体限定。无论是哪种布置方式, 由于电芯的总重量是抱杆电源重量的主要部分,所以本发明实施例中圆环柱状抱杆电源的重心可保持在支撑杆10的横截面。
本发明实施例中,所述抱杆电源安装到支撑杆10上的方式可以是多种多样的。安装前,活动铰链5为活动连接状态,安装后,紧固另一端的可调式紧固结构6,抱杆电源可基于自身结构固定到支撑杆10上,或者可通过外设的上下底座部件固定到支撑杆10上。
参见图4,在一种可能的实施例中,所述圆柱形空腔20可用于夹紧支撑杆10。当所述抱杆电源(圆环状箱体1)安装到支撑杆10上时,通过紧固所述可调式紧固结构6,可以使得所述圆柱形空腔20的腔壁紧贴所述支撑杆10,也就是说,当所述抱杆电源安装在所述支撑杆10时,所述圆柱形空腔20的半径等于所述支撑杆10安装位置的半径。这样,抱杆电源可基于腔壁与支撑杆10之间的摩擦力固定在所述支撑杆10上。可以理解的,这样夹紧支撑杆的形式,不仅适用于圆柱体形的支撑杆10上的抱杆电源固定,也适用于非圆柱体形(变截面)的支撑杆10上的抱杆电源固定。
参见图5中(a-c),在又一种可能的实施例中,抱杆电源可通过外设的部件固定到支撑杆10上,如图5所示,所述抱杆电源的圆环状箱体1的圆柱形空腔20两端分别设置有角钢8(即每个半圆环柱状结构体的空腔部位的上下沿分别设置角钢8)。当抱杆电源需安装到到支撑杆10上时,所述角钢8的一边与所述圆环状箱体1固定连接(角钢8紧固形成上下固定底座),所述角钢8的一边紧贴所述支撑杆10。分别设置两个半圆环柱状结构体空腔部位上沿的角钢8可通过固定螺柱9进行连接,分别设置两个半圆环柱状结构体空腔部位下沿的角钢8也可通过固定螺柱9进行连接。这样,安装完毕时,抱杆电源可通过外设的部件固定到支撑杆10上。
需要说明的是,为了使抱杆电源在支撑杆10上更加紧固,在具体应用场景中,设置在空腔部位的上沿的角钢8之间的固定螺柱9可以有多个,设置在空腔部位的下沿的角钢8之间的固定螺柱9可以有多个。如图5中c所示,设置在空腔部位的上(下)沿的角钢8之间的固定螺柱9可以有4个,这4个固定螺柱9分别连接在角钢8之间,达到了紧固抱杆电源到支撑杆10的目的。
可以理解的是,在具体实现中,所述圆柱形空腔20的半径(即圆环状箱体1的内径)不小于所环抱的支撑杆横截面的半径,所述圆环状箱体1的高度不小于部署在其内部的电芯的高度。
可以看出,本发明实施例中,通过将抱杆电源设计成中心具有一个圆柱形空腔的圆环状箱体,可使得抱杆电源安装到支撑杆后环抱所述支撑杆,又由于所述抱杆电源的多个电芯在所述圆环状箱体中均匀布置,所以可使得所述抱杆电源的重心位于所述支撑杆的横截面(甚至中心)上。因此,实施本发明实施例能够提高抱杆电源的稳固性,另外,由于电芯之间均匀分布,所以每个电芯的周围环境基本一致,所以每个电芯的散热情况也会基本一致,避免电芯间散热不一致而导致局部过热问题,延长抱杆电源的使用寿命。
下面详细描述在圆环状箱体1的内部空间2中多个电芯的布置方式。
在一种可能的电芯布置方式中,参见图6,图6是本发明实施例提供的一种抱杆电源的俯视图,如图6所示,圆环状箱体1的内部空间2中布置有多个电芯3(图示中为16个 电芯3),每个电芯3均具有电芯极耳4,所述电芯极耳在电芯表面向上布置,不同电芯之间的电芯极耳的汇流排采用软连接(如电线连接)或者硬连接(如铜片连接),其中,为了方便圆环状箱体1的开合,位于所述活动铰链5附近的相邻电芯的电芯极耳41和42采用软连接,同理,位于可调式紧固结构6附近的电芯极耳也采用软连接。这些电芯的重心围绕圆环状箱体1的圆柱形空腔20的中心线均匀分布,具体的,这些电芯为方形电芯或软包电芯,这些电芯在内部空间2中环绕所述圆柱形空腔20的中心线呈径向放射状分布。每个电芯的最大横截面(如71或72所示)均与所述圆柱形空腔20的中心线共面。相邻电芯各自的最大横截面之间(如71和72之间)的夹角为图示中夹角7,由于电芯围绕支撑杆中心线均匀分布,所以电芯间夹角7为22.5°,这些夹角7之和为360°。
在可能的实施例中,可根据实际用电的需求,以参考图3中(b)的形式布置n层抱杆电源,这时,可以理解的,所有抱杆电源的夹角7之和为360°的n倍,n为大于或等于1的整数。
下面进一步描述这种圆环柱状的抱杆电源打开和闭合的状态。参见图7中(a-c),其中,图7中(a)示出了这种抱杆电源分成两个半圆环柱状结构体的俯视图,图7中(b)示出了这种抱杆电源打开状态的的俯视图,图7中(c)示出了这种抱杆电源闭合状态的的俯视图。
如图7中(a)所示,抱杆电源的圆环状箱体由两个半圆环柱状结构体201和202组合而成,半圆环柱状结构体201的一端的设置有活动铰链5的组成结构51,半圆环柱状结构体202的一端的设置有活动铰链5的组成结构52,组成结构51和组成结构52可通过可活动连接组合成铰链结构5,从而使得所述两个半圆环柱状结构体201和202通过所述活动铰链5进行可活动连接。另外,半圆环柱状结构体201的另一端的设置有可调式紧固结构6的组成结构61,半圆环柱状结构体202的另一端的设置有可调式紧固结构6的组成结构62,组成结构61和组成结构62可重合,并通过相关部件可调式固定在一起,组成可调式紧固结构6,例如,组成结构61和组成结构62重合后组成螺栓,该螺栓可使用螺母进行可调式固定,从而组成可调式紧固结构6,所述可调式紧固结构6用于锁紧所述圆环状箱体1。
如图7中(b)(c)所示,所述抱杆电源(圆环状箱体1)可基于所述活动铰链5打开成两个半圆环柱状结构体201和202,从而可以方便电芯在201对应的内部空间和202对应的内部空间中进行布置,两个半圆环柱状结构体201和202可分别布置有一半数量的电芯3(图示中分别具有8组电芯),同时也方便抱杆电源自打开的空隙中安装到支撑杆。当抱杆电源安装到支撑杆时,闭合两个半圆环柱状结构体201和202,则圆柱形空腔20环抱所述支撑杆,然后锁紧所述可调式紧固结构6,则抱杆电源可通过图4或者图5实施例所示方式固定在支撑杆上。
可以理解的是,在本发明实施例中的圆环状箱体1中除了布置有这些电芯3之外,还布置有其他常规的电源辅助部件,例如BMS、汇流排、加热膜,以及必要的加强件等等,这些电源辅助部件或者位于电芯之间、或者位于电芯上部,或者位于电芯下部,或者位于电芯表面,此外,还可以理解的是,圆环状箱体1外还可能设置有角钢8和固定螺柱9等等,这里不做具体限定。
在又一种可能的电芯布置方式中,参见图8,图8是本发明实施例提供的又一种抱杆电源的俯视图,如图8所示,圆环状箱体1的内部空间2中布置有多个电芯14(图示中为8个电芯3),每个电芯14均具有电芯极耳15,所述电芯极耳15在电芯表面向上布置,不同电芯之间的电芯极耳的汇流排采用软连接(如电线连接)或者硬连接(如铜片连接),其中,为了方便圆环状箱体1的开合,位于所述活动铰链5和可调式紧固结构6附近的相邻电芯的电芯极耳可采用软连接。这些电芯的重心围绕圆环状箱体1的圆柱形空腔20的中心线均匀分布,具体的,这些电芯为方形电芯或软包电芯,这些电芯在内部空间2中环绕所述圆柱形空腔20的中心线呈径向旋转状(或螺旋状)分布,电芯的最大横截面均与所述圆柱形空腔20的中心线不共面。相邻电芯各自的最大横截面之间的夹角为图示中夹角16,由于电芯围绕支撑杆中心线均匀分布,所以电芯间夹角16为45°,这些夹角16之和为360°。
在可能的实施例中,可根据实际用电的需求,以参考图3中(b)的形式布置n层抱杆电源,这时,可以理解的,所有抱杆电源的夹角16之和为360°的n倍,n为大于或等于1的整数。
同样,这种圆环柱状的抱杆电源也可分为两个半圆环柱状结构体(图未示出),这两个半圆环柱状结构体可以基于活动铰链5进行打开和闭合,当其闭合时,可调式紧固结构6用于锁紧所述抱杆电源,具体实现方式可参考图7中实施例的相关描述,这里不再赘述。
可以理解的是,在本发明实施例中的圆环状箱体1中除了布置有这些电芯3之外,还布置有其他常规的电源辅助部件,例如BMS、汇流排、加热膜,以及必要的加强件等等,这些电源辅助部件或者位于电芯之间、或者位于电芯上部,或者位于电芯下部,或者位于电芯表面,此外,还可以理解的是,圆环状箱体1外还可能设置有角钢8和固定螺柱9等等,这里不做具体限定。
在又一种可能的电芯布置方式中,参见图9,图9是本发明实施例提供的又一种抱杆电源的俯视图,如图9所示,圆环状箱体1的内部空间2中布置有多个电芯17(图示中为64个电芯17),每个电芯17均具有电芯极耳18,所述电芯极耳18在电芯表面向上布置,不同电芯之间的电芯极耳的汇流排采用软连接(如电线连接)或者硬连接(如铜片连接),其中,为了方便圆环状箱体1的开合,位于所述活动铰链5和可调式紧固结构6附近的相邻电芯的电芯极耳可采用软连接。这些电芯的重心围绕圆环状箱体1的圆柱形空腔20的中心线均匀分布,具体的,这些电芯均为圆柱形电芯;每个所述圆柱形电芯的中心线与所述圆柱形空腔20的中心线平行,这些电芯在内部空间2中环绕所述圆柱形空腔20的中心线呈放射状分布,每条放射线路线上均匀设置有一组电芯(图中一组电芯包括4个电芯)。如图所示,位于相同放射线路线的一组电芯的中心线与所述圆柱形空腔的中心线组成的面为191,相邻的放射线路线的一组电芯的中心线与所述圆柱形空腔的中心线组成的面为192,191与192之间的夹角为夹角19,由于每组电芯围绕支撑杆中心线均匀分布,所以夹角19为22.5°,这些夹角16之和为360°。
在可能的实施例中,可根据实际用电的需求,以参考图3中(b)的形式布置n层抱杆 电源,这时,可以理解的,所有抱杆电源的夹角16之和为360°的n倍,n为大于或等于1的整数。
同样,这种圆环柱状的抱杆电源也可分为两个半圆环柱状结构体(图未示出),这两个半圆环柱状结构体可以基于活动铰链5进行打开和闭合,当其闭合时,可调式紧固结构6用于锁紧所述抱杆电源,具体实现方式可参考图7中实施例的相关描述,这里不再赘述。
可以理解的是,在本发明实施例中的圆环状箱体1中除了布置有这些电芯3之外,还布置有其他常规的电源辅助部件,例如BMS、汇流排、加热膜,以及必要的加强件等等,这些电源辅助部件或者位于电芯之间、或者位于电芯上部,或者位于电芯下部,或者位于电芯表面,此外,还可以理解的是,圆环状箱体1外还可能设置有角钢8和固定螺柱9等等,这里不做具体限定。
需要说明的是,上述实施例仅用于解释本发明实施例可能的实现方案,而非限定。在实际应用中,可根据本发明技术方案的思想对电源结构、电芯布置方式等进行相应的变形和组合。
比如,在一种可能的变形中,图8所示的实施例中,电芯14可沿着圆柱体空腔20的中心线方向采用均匀螺旋上升的方式进行布置,这样,所有抱杆电源的夹角16之和可为360°的m倍,m为大于1的整数。
又比如,抱杆电源可包括多层圆环状箱体,每层圆环状箱体可分别采用图6、图8、图9实施例以及其他变形实施例中任意一种方案进行组合设计,这样的组合方式同样属于本发明的保护范围。
另外,还需要说明的是,虽然本发明实施例中所描述的多个电芯的重心皆围绕所述圆柱形空腔的中心线均匀分布,但是,在可能的实施例中,所述抱杆电源的圆环状箱体中除了均匀分布的电芯外,也有可能根据需要设置少数非均匀分布的电芯,这种情况下,所述抱杆电源的重心依然能够位于所述支撑杆的内部。
可以看出,本发明实施例中,通过将抱杆电源设计成中心具有一个圆柱形空腔的圆环状箱体,可使得抱杆电源安装到支撑杆后环抱所述支撑杆,又由于所述抱杆电源的多个电芯可通过多种部署方式在所述圆环状箱体中均匀布置,所以可使得所述抱杆电源的重心位于所述支撑杆的横截面(甚至中心)上。因此,实施本发明实施例能够提高抱杆电源的稳固性,避免受恶劣天气的影响,而且,由于电芯之间均匀分布,所以每个电芯的周围环境基本一致,工作时温度也一致,从而确保电芯间温度一致,即每个电芯的散热情况基本一致,避免电芯间散热不一致而导致局部过热问题,延长抱杆电源的使用寿命。另外,从上面所描述的多种电芯部署方式可以看出,本发明实施例提供的抱杆电源可扩展性较强,能够广泛适用于对电量要求越来越多的应用场景,如5G等场景,应用性较强。
在上述实施例中,对各个实施例的描述各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (15)

  1. 一种抱杆电源,其特征在于,包括用于安装到支撑杆的圆环状箱体;所述圆环状箱体的中心具有一个圆柱形空腔,所述圆柱形空腔用于环抱所述支撑杆;所述圆环状箱体中包括均匀分布的多个电芯;当所述抱杆电源安装在所述支撑杆时,所述抱杆电源的重心位于所述支撑杆的内部。
  2. 根据权利要求1所述的抱杆电源,其特征在于,当所述抱杆电源安装在所述支撑杆时,所述抱杆电源的重心位于所述支撑杆的内部,具体为:
    所述支撑杆竖直设置于地面,当所述抱杆电源安装在所述支撑杆时,所述抱杆电源的重心位于所述支撑杆的横截面上;其中,所述横截面位于所述支撑杆的内部,且所述横截面与所述圆柱形空腔的中心线垂直。
  3. 根据权利要求1或2所述的抱杆电源,其特征在于,所述圆环状箱体中均匀设置有多个电芯,具体为:
    所述圆环状箱体中,所述多个电芯的重心皆围绕所述圆柱形空腔的中心线均匀分布。
  4. 根据权利要求3所述的抱杆电源,其特征在于,所述多个电芯的重心围绕所述圆柱形空腔的中心线均匀分布,具体为:
    所述多个电芯环绕所述圆柱形空腔的中心线呈径向放射状分布。
  5. 根据权利要求4所述的抱杆电源,其特征在于,所述电芯为方形电芯或软包电芯;所述电芯的最大横截面与所述圆柱形空腔的中心线共面,相邻电芯各自的最大横截面之间的夹角之和为360度的整数倍。
  6. 根据权利要求3所述的抱杆电源,其特征在于,所述多个电芯的重心围绕所述圆柱形空腔的中心线均匀分布,具体为:
    所述多个电芯环绕所述圆柱形空腔的中心线呈旋转式或螺旋式分布。
  7. 根据权利要求6所述的抱杆电源,其特征在于,所述电芯为方形电芯或软包电芯;所述电芯的最大横截面与所述圆柱形空腔的中心线不共面,相邻电芯各自的最大横截面之间的夹角之和为360度的整数倍。
  8. 根据权利要求3所述的抱杆电源,其特征在于,所述电芯为圆柱形电芯;所述圆柱形电芯的中心线与所述圆柱形空腔的中心线平行,相邻电芯的中心线分别与所述圆柱形空腔的中心线组成的面之间的夹角之和为360度的整数倍。
  9. 根据权利要求1至8任一项所述的抱杆电源,其特征在于,所述圆柱形空腔用于环 抱所述支撑杆,包括:
    当所述抱杆电源安装在所述支撑杆时,所述圆柱形空腔的半径等于所述支撑杆安装位置的半径,以环抱夹紧所述支撑杆。
  10. 根据权利要求1至9任一项所述的抱杆电源,其特征在于,当所述抱杆电源安装在所述支撑杆时,所述抱杆电源的重心位于所述支撑杆的横截面上,具体为:
    当所述抱杆电源安装在所述支撑杆时,所述抱杆电源的重心位于所述支撑杆的横截面中心。
  11. 根据权利要求1至10任一项所述的抱杆电源,其特征在于,所述圆环状箱体分为两个半圆环柱状结构体,所述两个半圆环柱状结构体的第一交界处设置有活动铰链,所述两个半圆环柱状结构体通过所述活动铰链进行可活动连接。
  12. 根据权利要求11所述的抱杆电源,其特征在于,所述两个半圆环柱状结构体的第二交界处设置有可调式紧固结构;当所述两个半圆环柱状结构体通过所述活动铰链闭合成所述圆环状箱体时,所述可调式紧固结构用于锁紧所述圆环状箱体。
  13. 根据权利要求11或12所述的抱杆电源,其特征在于,每个半圆环柱状结构体的上下沿分别设置有至少一个角钢;所述角钢的一端与其所在的半圆环柱状结构体固定连接,另一端用于紧贴所述支撑杆;分别设置于两个半圆环柱状结构体上的角钢之间通过固定螺柱进行连接,以使所述抱杆电源安装到所述支撑杆上。
  14. 根据权利要求1至13任一项所述的抱杆电源,其特征在于,所述电芯还包括电芯极耳;其中,位于所述活动铰链附近的相邻电芯的电芯极耳之间进行软连接。
  15. 根据权利要求1至14任一项所述的抱杆电源,其特征在于,所述抱杆电源还包括电源管理系统BMS、汇流排和加热膜,所述BMS、所述汇流排和所述加热膜设置在所述圆环状箱体内部。
PCT/CN2018/103689 2018-02-09 2018-08-31 一种抱杆电源 WO2019153729A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18904530.5A EP3745489A4 (en) 2018-02-09 2018-08-31 MAST POWER SUPPLY
US16/987,553 US20200365842A1 (en) 2018-02-09 2020-08-07 Pole-mounted power supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810140896.1A CN108417746A (zh) 2018-02-09 2018-02-09 一种抱杆电源
CN201810140896.1 2018-02-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/987,553 Continuation US20200365842A1 (en) 2018-02-09 2020-08-07 Pole-mounted power supply

Publications (1)

Publication Number Publication Date
WO2019153729A1 true WO2019153729A1 (zh) 2019-08-15

Family

ID=63128468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103689 WO2019153729A1 (zh) 2018-02-09 2018-08-31 一种抱杆电源

Country Status (4)

Country Link
US (1) US20200365842A1 (zh)
EP (1) EP3745489A4 (zh)
CN (1) CN108417746A (zh)
WO (1) WO2019153729A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117239329A (zh) * 2023-09-13 2023-12-15 南京莱迪新能源科技有限公司 一种壁挂式家储锂电池电源组件及安装方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108417746A (zh) * 2018-02-09 2018-08-17 华为技术有限公司 一种抱杆电源
CN109166999B (zh) * 2018-08-29 2021-06-22 义乌市君胜科技有限公司 锂电池防爆模组
CN109787307B (zh) * 2018-12-13 2020-09-01 浙江英丽科技有限公司 环抱式抗台风应急电源
CN113451684A (zh) * 2021-07-30 2021-09-28 湖北亿纬动力有限公司 储能箱
CN117937028B (zh) * 2024-03-22 2024-06-14 蜂巢能源科技股份有限公司 环形电池模组及电池包

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203644845U (zh) * 2013-11-22 2014-06-11 北京豪利通达管理咨询有限责任公司 一种备用电源装置及移动信号天线设备
CN205372474U (zh) * 2016-01-19 2016-07-06 长泰县达明灯具经营部 一种抱杆式大容量太阳能路灯电池
CN205503637U (zh) * 2016-01-06 2016-08-24 河北鸿宇通信器材有限公司 一种抱箍
CN108417746A (zh) * 2018-02-09 2018-08-17 华为技术有限公司 一种抱杆电源

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2354633A (en) * 1998-12-11 2001-03-28 Schlumberger Holdings A method of sealing electrical cells which are used in a wellbore
CN101457860B (zh) * 2008-12-31 2012-07-04 苏州捷英特管道技术有限公司 一种减震密封管接头
EP3066891B1 (en) * 2013-11-08 2019-04-10 Signify Holding B.V. Battery powered lighting system
CN205282580U (zh) * 2015-06-30 2016-06-01 孙煌敏 一种锂离子电池组
CN106229436A (zh) * 2016-08-30 2016-12-14 天津天元海科技开发有限公司 一种环形电池组仓

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203644845U (zh) * 2013-11-22 2014-06-11 北京豪利通达管理咨询有限责任公司 一种备用电源装置及移动信号天线设备
CN205503637U (zh) * 2016-01-06 2016-08-24 河北鸿宇通信器材有限公司 一种抱箍
CN205372474U (zh) * 2016-01-19 2016-07-06 长泰县达明灯具经营部 一种抱杆式大容量太阳能路灯电池
CN108417746A (zh) * 2018-02-09 2018-08-17 华为技术有限公司 一种抱杆电源

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3745489A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117239329A (zh) * 2023-09-13 2023-12-15 南京莱迪新能源科技有限公司 一种壁挂式家储锂电池电源组件及安装方法
CN117239329B (zh) * 2023-09-13 2024-06-04 南京莱迪新能源科技有限公司 一种壁挂式家储锂电池电源组件及安装方法

Also Published As

Publication number Publication date
US20200365842A1 (en) 2020-11-19
CN108417746A (zh) 2018-08-17
EP3745489A1 (en) 2020-12-02
EP3745489A4 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
WO2019153729A1 (zh) 一种抱杆电源
CN102035040B (zh) 制造组合电池的方法及组合电池
US8546010B2 (en) Assembled battery and toroidal cell used in the same
JP5269248B2 (ja) 超伝導電力貯蔵装置用コイルボビン
CN107895762A (zh) 一种锂离子电池
CN105874628A (zh) 电池模块、电池组和包括电池模块的系统
TW201839334A (zh) 環形太陽能板支架及環形太陽能板發電裝置
KR20070022724A (ko) 일체된 중앙 터미널을 가지는 슈퍼캐퍼시터 커버
WO2024139428A1 (zh) 一种大功率风力发电机用导电环及引出线紧固装置
JPH0220807Y2 (zh)
US20200243809A1 (en) A battery module casing, a battery module and a battery
ES2661997T3 (es) Unidad de casquete sin efecto corona
CN104040755B (zh) 电源装置
CN113097619A (zh) 大直径中空结构电芯及电池组
US20110206956A1 (en) Round cell battery
CN110637348B (zh) 直接安装支架
CN202276070U (zh) 分拆式开关柜壳体
CN112562991B (zh) 一种干式变压器线圈用散热装置
CN202134616U (zh) 动力电池模块排列连接组装结构
US20160197458A1 (en) Insulating support for power switchgear
CN214153733U (zh) 一种可拆卸式集装箱式变电站
CN220526763U (zh) 一种方便拆卸的锂电池电容器
CN212380470U (zh) 电芯支架
CN211240409U (zh) 一种高适应性bms产品外壳
KR101385283B1 (ko) 전자력 지지블록이 구비된 초전도 전력저장 장치용 코일 보빈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018904530

Country of ref document: EP

Effective date: 20200824