WO2019151343A1 - Mold device for injection molding and method for producing molded article using mold device for injection molding - Google Patents
Mold device for injection molding and method for producing molded article using mold device for injection molding Download PDFInfo
- Publication number
- WO2019151343A1 WO2019151343A1 PCT/JP2019/003225 JP2019003225W WO2019151343A1 WO 2019151343 A1 WO2019151343 A1 WO 2019151343A1 JP 2019003225 W JP2019003225 W JP 2019003225W WO 2019151343 A1 WO2019151343 A1 WO 2019151343A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mold
- hot
- gate
- material resin
- heat transfer
- Prior art date
Links
- 238000001746 injection moulding Methods 0.000 title claims abstract description 29
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000011347 resin Substances 0.000 claims abstract description 198
- 229920005989 resin Polymers 0.000 claims abstract description 198
- 239000002994 raw material Substances 0.000 claims description 137
- 238000002347 injection Methods 0.000 claims description 121
- 239000007924 injection Substances 0.000 claims description 121
- 239000002826 coolant Substances 0.000 claims description 91
- 239000000463 material Substances 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 30
- 239000000843 powder Substances 0.000 claims description 25
- 238000000926 separation method Methods 0.000 claims description 12
- 238000000465 moulding Methods 0.000 claims description 9
- 230000007423 decrease Effects 0.000 claims description 2
- 230000001419 dependent effect Effects 0.000 claims 1
- 238000001816 cooling Methods 0.000 description 27
- 230000008018 melting Effects 0.000 description 23
- 238000002844 melting Methods 0.000 description 23
- 239000012768 molten material Substances 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 11
- 230000004927 fusion Effects 0.000 description 11
- 230000005540 biological transmission Effects 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 239000000110 cooling liquid Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/16—Both compacting and sintering in successive or repeated steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/26—Moulds
- B29C45/27—Sprue channels ; Runner channels or runner nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/72—Heating or cooling
- B29C45/73—Heating or cooling of the mould
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
Definitions
- the present invention relates to an injection mold apparatus and a method for producing a molded product using the injection mold apparatus. More specifically, the present invention relates to an injection mold apparatus having a hot mold material resin flow path connected to a mold cavity via a gate, and an injection molded product using the injection mold apparatus It relates to the manufacturing method.
- the injection molding method is a method of obtaining a molded product from a raw material resin using an injection molding die apparatus.
- a molded product is manufactured through the following steps.
- the final molded product is usually obtained from raw material resin located in the mold cavity. Therefore, the resin part obtained by cooling the raw material resin located in the raw material resin flow path composed of (i) sprue or (ii) sprue and runner does not directly contribute as a component of the final molded product. Therefore, in order to maintain the molten state without cooling the raw material resin located in the raw material resin flow path from the viewpoint of efficient use of the raw material resin, etc., the hot type raw material resin connected to the mold cavity through the gate A flow path may be used (see Patent Document 1).
- Patent Document 1 shows that a temperature control medium path is provided along the axis of the raw material resin flow path. By providing the temperature control medium path, the raw material resin flow path can be maintained at a high temperature, whereby the raw material resin flow path can function as a hot-type raw material resin flow path.
- the inventors of the present application have newly found that the following problems can occur when the temperature control medium path is provided along the axis of the hot type resin flow path.
- the hot-type raw material resin flow path can maintain a molten state without cooling the raw material resin located in the flow path.
- the hot mold material resin flow path is connected to the mold cavity via a gate. Therefore, when the molten state of the raw material resin in the hot mold material resin flow path is maintained, the heat of the molten raw material resin is changed from the hot mold raw material resin flow path side to the injection mold side, particularly near the gate of the injection mold. May be transmitted to the side.
- the raw material resin located in a local part in the mold cavity near the gate due to heat transfer to the vicinity of the gate of the injection mold
- the temperature becomes higher than that of the raw material resin located in the other part in the mold cavity As a result, the raw material resin located in the local part in the mold cavity near the gate is relatively difficult to cool compared with the raw material resin located in the other part in the mold cavity.
- a highly accurate molded product cannot be suitably obtained as a whole.
- an object of the present invention is to use an injection mold apparatus and an injection mold apparatus capable of suitably obtaining a high-precision molded product as a whole even when a hot mold material resin flow path is used. It is to provide a method for manufacturing a molded product.
- An injection mold apparatus A hot mold material resin flow path connected to the mold cavity via the gate, There is provided an injection molding die apparatus having a heat transfer control unit at least in a region near the gate.
- a method for producing an injection-molded article using an injection mold apparatus comprises a hot mold material resin flow path connected to a mold cavity through a gate, and has a heat transfer control unit at least in the immediate region of the gate, A method is provided for providing a molten raw resin through the hot mold raw resin flow path into the mold cavity.
- the inventors of the present application have intensively studied technical measures for enabling a highly accurate molded product to be suitably obtained even when a hot-type raw material resin flow path is used. More specifically, the raw material resin located in the local portion in the mold cavity near the gate caused by the heat transfer of the molten raw material resin from the hot mold material resin flow path side to the vicinity of the gate of the injection mold is Measures for suppressing the state of being relatively difficult to cool than the raw material resin located in other portions have been intensively studied.
- a heat transfer control unit capable of controlling heat transfer in at least the immediate region 100A of the gate G compared to other regions 100B other than the immediate region 100A of the gate G.
- the technical idea of “providing 20” was newly found (see FIG. 1).
- the closest region 100A of the gate G refers to a predetermined injection molding die closest to the gate G located at the boundary between the mold cavity 30 and the hot mold material resin flow path 10. Refers to an area.
- the term “hot-type raw material resin flow path 10” refers to a raw material resin flow path that is heated and held in a broad sense, and in a narrow sense refers to only a heated and held sprue or a heated and held sprue and runner.
- the “heat transfer control unit 20” in the present specification refers to a region where heat transfer can be controlled with an injection mold.
- the injection mold 100 from the hot mold material resin flow channel 10 side connected to the mold cavity 30 through the gate G is provided.
- the heat transfer of the molten raw material resin R in the hot type raw material resin flow channel 10 (particularly, the molten raw material resin R 1 in the hot type raw material resin flow channel 10 located in the vicinity of the gate G) to the region 100A closest to the gate G of It becomes possible to do.
- the heat transfer control of the heat transfer control unit 20, the heat of the gate G immediate vicinity region 100A of the injection mold 100 due to the melting heat of the molten starting resin R 1 in the vicinity of the gate G of the hot feedstock resin passage 10 It is possible to suitably control the remaining.
- it is possible to suppress the heat transfer from the gate G immediate vicinity region 100A of the injection mold 100 into the molten material resin R 3 is located in the mold cavity 30 located in the vicinity the gate G.
- the molten raw material resin R 3 located in the region near the gate G in the mold cavity 30 is located in another region in the mold cavity 30 due to the proximal arrangement of the hot mold raw material resin flow path 10. likely to become hotter than the molten starting resin R 4. Therefore, the heat of the molten raw material resin R 3 at a higher temperature located in the local portion 31 near the gate G in the mold cavity 30 remains in the filling and pressure holding process of the molten raw material resin into the mold cavity. obtain.
- the heat transfer control unit 20 exists in the region 100 ⁇ / b> A closest to the gate, the molten raw material resin R located in the local portion 31 near the gate G in the mold cavity 30 by the heat transfer control by the heat transfer unit control unit 20.
- the heat transfer control unit 20 exists in the region 100 ⁇ / b> A closest to the gate, the molten raw material resin R 3 located in the local portion 31 near the gate G in the mold cavity 30 is controlled by the heat transfer control by the heat transfer unit control unit 20. Residual heat in a high temperature state can be suppressed. Thus, the thermal residual high temperature of the molten material resin R 3 is located in the local part 31 of the gate G near the mold cavity 30 it is possible to suppress to continue.
- the molten raw material resin R 3 located in the local portion 31 near the gate G in the mold cavity 30 has a higher temperature than the molten raw material resin R 4 located in other portions in the mold cavity 30. This can be suppressed.
- the molten material resin R 3 is located in the local part 31 of the gate G near the mold cavity 30, the other portions of the mold cavity 30 position and cooling of the molten starting resin R 4 it is possible to carry out substantially at the same cooling rate. That is, in the cooling step of the molten raw material resin R in the mold cavity 30, the molten raw material resin to a molten raw material resin R 3 located in the vicinity of the gate G of the mold cavity 30 is located in the other part of the mold cavity 30 it is possible to suitably suppress the than R 4 hardly cooled. Therefore, finally, it is possible to suitably obtain a highly accurate molded product as a whole.
- An injection mold apparatus 200 is an injection mold 100 (comprising a core side and a cavity side), and for supplying a molten raw material resin into the injection mold 100.
- This includes a hot mold sprue member 50 provided therein with a hot mold material resin flow path 10 (corresponding to a sprue).
- the hot mold sprue member 50 is configured to contact the injection mold 100 so that the hot mold material resin flow path 10 is directly connected to the gate G.
- the hot-type sprue member 50 usually has a shape in which the diameter of the tip 50A gradually decreases. That is, the contact portion between the tip 50A of the hot mold sprue member 50 and the injection mold 100 can have an inclined surface (see FIG.
- the configuration of the hot mold sprue member 50 is not limited to the configuration in contact with the injection mold 100 so that the hot mold material resin flow path 10 is directly connected to the gate G.
- the hot mold sprue member 50 may be configured to connect to the injection mold 100 through a runner. In this case, it is confirmed that the hot mold material resin flow path 10 is composed of a sprue provided in the hot mold sprue member 50 and a runner provided in the injection mold. .
- the “tip 50A of the hot-type sprue member 50” as used in this specification means that the molten raw material resin (on the mold cavity 30 side) from the opening provided at the bottom (or the bottom or top) of the hot-type sprue member 50. It is not the point that flows out to the runner side).
- the “tip 50A of the hot mold sprue member 50” as used herein refers to the outside of the hot mold sprue member 50 that is closest to the bottom of the hot mold sprue member 50 and can contact the inner surface of the injection mold 100.
- the side surface portion, that is, the “tip side outer surface” is indicated.
- the “local portion 31 near the gate G in the mold cavity 30” in this specification means, in a broad sense, the “inlet portion to which molten raw material resin is supplied” in the mold cavity and the inlet portion. This refers to a portion along the surface of the mold cavity 30 to be formed (see FIG. 1).
- the hot type raw material resin flow path 10 (corresponding to the sprue) in the hot type sprue member 50 is directly connected to the gate G.
- the tip 50A of the hot mold sprue member 50 is in direct contact with the injection mold 100 at the gate G. This means that the mold cavity 30 exists near the tip of the hot mold sprue member 50 with the gate G interposed therebetween. If the mold cavity 30 exists in the vicinity of the tip of the hot mold sprue member 50, the following technical problems may occur in the cooling process of the molten raw material resin filled in the mold cavity 30.
- the heat of the molten raw material resin flowing through the hot type raw material resin flow path 10 passes through the contact portion 60 between the tip 50A of the hot type sprue member 50 and the injection mold 100. Thus, it can be transmitted to the region 100A closest to the gate G of the injection mold 100.
- the heat of the molten raw material resin flowing through the hot type raw material resin flow path 10 is located in the vicinity of the tip of the hot type sprue member 50 through a local portion near the gate G of the injection mold 100. Can be transmitted to the mold cavity 30.
- the heat transfer control unit 20 determines that “the tip 50A of the hot-type sprue member 50 and the injection 50 It can be positioned in the region 100A proximate to the gate G of the injection mold 100 "located between the contact portion 60" with the mold 100 and the "mold cavity 30".
- the heat transfer control unit 20 exists in the immediate area 100A, the heat of the molten raw material resin flowing through the hot type resin flow path 10 (corresponding to the sprue) is transmitted to the immediate area 100A of the gate G through the contact portion 60. Can be suppressed.
- the heat transfer control unit 20 to the gate G immediate vicinity region 100A exist, molten material resin R 3 thermal gate G immediate vicinity region 100A located in a local portion 31 of the gate G near the mold cavity 30 (in FIG. 1 It is possible to suppress the transmission to the dotted line encircled part).
- the contact portion 60 between the tip 50A of the hot mold sprue member and the injection mold 100 has an inclined surface. (See FIG. 1).
- “the nearest region 100A of the gate G” is a region formed between the contact portion 60 having an inclined surface and the formation surface of the mold cavity 30 facing the contact portion 60 (dotted line in FIG. 1). It corresponds to the enclosed part).
- the heat transfer control unit 20 By heat transfer control by the heat transfer control unit 20, the heat of the molten raw material resin R 1 located in the vicinity of the gate G in the hot type raw material resin flow path 10 (corresponding to the sprue) / the vicinity of the gate G in the mold cavity 30. Due to the heat of fusion of the molten raw material resin R 3 located in the local portion 31, it is possible to suitably suppress and control the heat remaining in the region 100 A closest to the gate G between the contact portion 60 and the mold cavity 30. Become. Due to the suppression of the remaining heat, the molten raw material located in the local portion 31 in the mold cavity 30 located in the vicinity of the tip of the hot mold sprue member 50 from the region 100A closest to the gate G between the contact portion 60 and the mold cavity 30.
- the hot mold sprue member 50 is brought into the vicinity of the tip of the hot mold sprue member 50 via the region 100 A closest to the gate G between the contact portion 60 and the mold cavity 30. It is possible to suitably prevent the melting heat from being transmitted to the mold cavity 30 located. Thereby, in the cooling process of the molten raw material resin R in the mold cavity 30, the molten raw material resin R 3 in the local portion 31 in the mold cavity 30 located near the tip of the hot mold sprue member 50 is in the mold cavity 30. it is possible to suitably suppress also difficult to cool than the melting material resin R 4 other portion 32 of the.
- the “heat transfer control unit 20” used in the present invention is realized in the following manner. Specifically, the “heat transfer control unit 20” (i) provides a cooling medium path to the region 100 ⁇ / b> A closest to the gate in the injection mold 100, and (ii) proximate to the gate in the injection mold 100. This may be realized by providing a local low density portion in the region 100A and / or (iii) providing a low heat transfer film on the surface of the injection mold 100 in the region 100A closest to the gate.
- Heat transfer control unit 20 In one aspect of the cooling medium path , the “heat transfer control unit 20” is preferably a cooling medium path 20A provided at least to the region 100A closest to the gate in the injection mold 100. (See FIG. 2).
- the “cooling medium path” in this specification is a hollow flow path for flowing the cooling medium, and the melting heat of the molten raw material resin flowing in the hot type raw material resin flow path 10 is the gate of the injection mold 100.
- the flow path for suppressing the transmission to the region closest to G and reducing the thermal energy of the raw material resin in the mold cavity near the gate G is shown.
- “Cooling medium” refers to a medium that flows through the cooling medium path, such as cooling liquid (water, oil), cooling gas (air, inert gas), cooling solid, cooling gas-cooling liquid mixed phase, or This refers to a cooled solid-cooled liquid mixed phase.
- the cooling medium path 20 ⁇ / b> A as the “heat transfer control unit 20” can be positioned in the immediate vicinity of the gate G. Due to the presence of the cooling medium path 20A, the melting heat energy of the molten raw material resin flowing through the hot type raw material resin flow path 10 is reduced by the cooling heat energy of the cooling medium flowing through the cooling medium path 20A located in the immediate region of the gate G. . Moreover, the presence of such a coolant passage 20A, the immediate vicinity region 100A of the molten material resin R 3 of thermal energy injection mold gate G of the localized portion 31 of the mold cavity 30 located in the vicinity of the gate G It is reduced by the cooling heat energy of the cooling medium flowing in the cooling medium path 20A located.
- the cooling medium path 20 ⁇ / b> A as the “heat transfer control unit 20” may have a double structure in the immediate region of the gate G.
- the cooling heat energy of the cooling medium flowing through the cooling medium path 20A located in the immediate vicinity of the gate G can be relatively increased as compared with the case of adopting a normal single structure. Therefore, due to the adoption of such a double structure, “the melting thermal energy of the molten raw material resin flowing in the hot type raw material resin flow path 10” and “the local area in the mold cavity 30 located in the vicinity of the gate G”. The thermal energy of the part of the molten raw material resin can be reduced more effectively and effectively.
- the contact portion 60 between the tip 50A of the hot mold sprue member and the injection mold 100 has an inclined surface (See FIG. 2).
- the cooling medium path 20 ⁇ / b> A as the “heat transfer control unit 20” is formed between the contact portion 60 having an inclined surface and the forming surface of the mold cavity 30 facing the contact portion 60. It will be formed in the area.
- the melting heat energy of the molten raw material resin flowing in the hot type raw material resin flow path 10 is the contact surface 60 having the inclined surface and the formation surface of the mold cavity 30 facing the contact portion 60 Is reduced by the cooling heat energy of the cooling medium flowing in the cooling medium path 20A located in the region formed between the two.
- the presence of the cooling medium passage 20A, facing the contact portion 60 and the contact portion 60 of the thermal energy of the molten material resin R 3 of localized portion 31 of the mold cavity 30 located in the vicinity of the gate G has an inclined surface It is reduced by the cooling heat energy of the cooling medium flowing in the cooling medium path 20A located in the region 100A closest to the gate G formed between the formation surface of the mold cavity 30.
- the melting thermal energy of the molten raw resin in the hot mold raw resin flow path 10 / the melting thermal energy of the molten raw resin located in the region near the gate G in the mold cavity 30 is transferred to the region 100A closest to the gate G. It is reduced by the cooling heat energy of the cooling medium flowing in the cooling medium path 20A located. Therefore, it is possible to suitably suppress the heat remaining in the region near the gate G of the injection mold 100. Such thermal residual suppression, is possible to prevent the heat transfer from the vicinity of the gate G of the injection mold 100 into the molten material resin R 3 is located in the local part 31 of the mold cavity 30 located in the vicinity the gate G It becomes possible.
- the molten raw material resin R 3 located in the local portion 31 in the mold cavity 30 near the gate G becomes higher in temperature than the molten raw material resin R 4 located in the other portion 32 in the mold cavity 30. Can be suppressed.
- the molten raw material resin located in a local part in the mold cavity 30 near the gate G is melted in other parts in the mold cavity 30. It becomes possible to suppress suitably that it becomes difficult to cool rather than raw material resin.
- the hot feedstock resin flow path 10 (corresponding to the sprue) is connected directly to the gate G, a portion of the cross-sectional shape of the cooling medium passage 20A 1 and the tip 50A of the hot mold sprue member 50 injection It is preferable to follow at least one of the cross-sectional shape of the contact portion 60 with the molding die 100 and the cross-sectional shape of the forming surface of the mold cavity 30 (FIG. 3).
- the contact as compared with the case not along separation distance between the portion 60 and part of the coolant passage 20A 1 becomes possible made relatively small.
- the melting heat energy of the molten raw material resin flowing through the hot mold raw material resin flow path 10 that can be provided to the portion between the contact portion 60 and the mold cavity 30 via the contact portion 60 is converted into the contact portion 60.
- the cross-sectional shape of the cooling medium passage 20A 1 is substantially the same as the cross-sectional shape of the contact portion 60.
- the separation distance at any point between the part of the contact portion 60 and the cooling medium passage 20A 1 may be substantially uniform. Therefore, the cooling heat energy of the cooling medium in the cooling medium path 20 ⁇ / b> A 1 can be uniformly supplied to any part of the contact part 60 due to the substantially uniform separation distance. Thereby, it is possible to more effectively reduce the melting thermal energy of the molten raw material resin in the hot type raw material resin flow path 10 provided from the contact portion 60.
- a part of the cross-sectional shape of the cooling medium passage 20A 1 is along the cross-sectional shape of the forming surface of the mold cavity 30 located in the vicinity of the tip 50A of the hot mold sprue member 50, as compared with the case not along the separation between the portion of the forming surface and the cooling medium passage 20A 1 of the mold cavity 30 can be relatively small.
- the heat of fusion energy of the molten material resin may be subjected to a portion between the localized portion 31 of the mold cavity 30 with the contact portion 60 and the mold cavity 30, the cooling medium flowing through the cooling medium passage 20A 1 It can be effectively reduced by the cooling heat energy.
- the cross-sectional shape of the cooling medium passage 20A 1 is substantially the same as the cross-sectional shape of the forming surface of the mold cavity 30.
- the separation distance at any point between the part of the formation surface and the cooling medium passage 20A 1 of the mold cavity 30 may be substantially uniform. Therefore, due to the substantially uniform distance the cooling heat energy of the cooling medium of the cooling medium passage 20A 1, the forming surface of the mold cavity 30 located in the vicinity of the tip 50A of the hot mold sprue member 50 either It becomes possible to provide uniformly with respect to a location. Thereby, it is possible to further effectively reduce the melting heat energy of the molten raw material resin that can be provided from the local portion 31 in the mold cavity 30 to the portion between the contact portion 60 and the mold cavity 30. Become.
- the cooling medium passage 20A 1 may have a flattened cross-sectional shape (or an elliptical cross-sectional shape).
- it is subjected to effective cooling medium passage 20A 1 extensively in small local region (i.e., the gate immediate vicinity region) between the said contact portion 60 and the mold cavity 30 as compared to a true circle cross-sectional shape Is possible. Therefore, it is possible to effectively provide the cooling heat energy of the cooling medium in the cooling medium path 20 ⁇ / b> A 1 to the formation surface of the (1) contact portion 60 and (2) the mold cavity 30.
- the cooling medium path 20A as the heat transfer control unit 20 preferably includes a support member 70 therein (see FIG. 4).
- the cooling medium path 20A is a hollow flow path for flowing the cooling medium. Therefore, when the cross-sectional dimension and the longitudinal dimension of the hollow channel are relatively large, there is a possibility that the hollow channel cannot have sufficient strength against external pressure during molding. Therefore, from the viewpoint of sufficiently securing the strength against the external pressure, it is preferable to provide a support member 70 for supporting the inside of the cooling medium passage 20A.
- the support member 70 can serve as a “beam member” because it is provided from the viewpoint of sufficiently ensuring strength against external pressure.
- the support member 70 may be made of the same material as the constituent material (for example, Fe) of the injection mold 100 (see the lower view of FIG. 4).
- FIG. 4 shows an aspect in which a plurality of support members 70 are provided in the cross section of the cooling medium path 20A.
- the present invention is not limited to this, and the plurality of support members 70 are preferably provided at predetermined intervals along the longitudinal direction of the cooling medium path 20A.
- the plurality of support members 70 are provided at predetermined intervals in both the longitudinal direction and the short direction of the cooling medium path 20A. Therefore, the cooling medium path 20A as a whole can further improve the strength against the external pressure.
- the cooling medium path 20A as the heat transfer control unit 20 is also provided to other areas 100B other than the immediate area 100A of the gate G along the axial direction of the hot-type sprue member 50, and the cooling medium path 20A is entirely It preferably has a helical structure (see FIGS. 2 to 4).
- the hot-type raw material resin flow path 10 can be provided with a plurality of heating sources 80 along the axial direction (sectional view) of the hot-type raw material resin flow path 10 from the viewpoint of continuously maintaining the molten state as a whole.
- the hot-type raw material resin flow channel 10 located in the vicinity of the gate G that is, the downstream side of the hot-type raw material resin flow channel 10
- the hot-type raw material resin flow channel 10 from the upstream side to the downstream side can be transmitted to the injection mold 100 located around the mold material resin flow channel 10.
- the heat of fusion of the molten resin material in the hot mold material resin flow path 10 may be transmitted from the region 100B other than the region 100A closest to the gate of the injection mold 100 to the region 100A closest to the gate. . Therefore, from the viewpoint of reducing the energy of the heat of fusion, it is preferable that the cooling medium path 20A is provided not only to the region 100A closest to the gate of the injection mold 100 but also to the other region 100B.
- the cooling medium path 20A preferably has a spiral structure as a whole. By adopting such a structure, the cooling medium path 20 ⁇ / b> A takes a form surrounding the hot-type raw material resin flow path 10 along the axial direction of the hot-type raw material resin flow path 10.
- the portion extending from the upstream side to the downstream side of the hot mold material resin flow channel 10 is supplied to the injection mold 100 located around the hot mold material resin flow channel 10.
- the energy of the heat of fusion that can be achieved can be effectively reduced as a whole.
- a plurality of heating sources 80 provided along the axial direction (sectional view) of the hot mold material resin flow path 10 to the injection mold 100 are provided. It is possible to effectively reduce the heat energy of the heating source 80 transmitted as a whole.
- the separation distance between the cooling medium path 20A provided to the immediate area 100A of the gate G and the hot type sprue member 50 is such that the cooling medium path 20A provided to the other area 100B and the hot type sprue member 50 are separated. It is preferable that the distance between the two is smaller than the distance (see FIGS. 2 to 4).
- the heat transfer control unit 20 (for example, the cooling medium path) capable of performing heat transfer control at least in the immediate region 100A of the gate G as compared with other regions 100B other than the immediate region 100A of the gate G. 20A) ".
- the gate G side from the viewpoint of reducing the transmission of the melting heat of the raw material resin in the hot type raw material resin flow path 10 as much as possible to the mold cavity 30 side located in the vicinity of the gate G.
- the heat transfer control unit 20 (for example, the cooling medium path 20A) is as close as possible.
- the region 100B other than the immediate region 100A of the gate G is relatively far from the mold cavity 30 as compared to the immediate region 100A of the gate G. Therefore, it is considered that the other region 100B has less transferability of the melting heat of the raw material resin in the hot type raw material resin flow path 10 to the mold cavity 30 side than the immediate vicinity region 100A of the gate G.
- distance S 1 between the cooling medium passage 20A 1 and the hot-type sprue member 50 to be subjected to the immediate vicinity region 100A of the gate G, the cooling medium passage 20A 2 to be subjected to other regions 100B Is preferably smaller than the separation distance S 2 between the hot-type sprue member 50 and the hot-type sprue member 50.
- the separation distance S 1 may be 1 mm to 10 mm, for example, 3 mm.
- the separation distance S 2 is 10 mm (10 mm excluding) ⁇ 50 mm, may be, for example, 25 mm.
- the cooling medium passage 20A 1 since the immediate vicinity region 100A of the gate G located proximal to the mold cavity 30 is relatively high heat transfer rate to the mold cavity 30, the cooling medium passage 20A 1 from the viewpoint of providing effective over a wide range, the cooling medium passage 20A 1 may have a flattened cross-sectional shape (or an elliptical cross-sectional shape).
- the cooling medium path 20A since the heat transfer rate to the mold cavity 30 is relatively low in the other region 100B other than the immediate region of the gate G positioned on the distal side with respect to the mold cavity 30, the cooling medium path 20A The meaning of providing 2 in a wide range is not high. Therefore, the cooling medium passage 20A 2 may have a true circular cross-section or a substantially perfect circle cross-sectional shape.
- Heat transfer control unit 20 In one aspect of the local low density portion in the injection mold 100 , the “heat transfer control unit 20” is an injection mold provided at least in the immediate area 100A of the gate G. 100 local low density portions 20B are preferable (see FIG. 5).
- the specific mode of the heat transfer control unit 20 is not limited to the cooling medium path 20A.
- the local low density part 20 ⁇ / b> B of the injection mold 100 can be used as the heat transfer control part 20.
- the “local low density portion 20 ⁇ / b> B” in the present specification refers to a component of the injection mold 100 having a relatively lower density than other portions in a broad sense.
- the “local low density portion 20B” is, in a narrow sense, a component of the injection molding die 100 when the injection molding die 100 is manufactured by the powder bed melt bonding method.
- the solidification density is relatively lower than that of the portion (for example, the solidification density is 40 to 95% (not including 95%)).
- the local low density portion 20B may be provided at least in the vicinity of the contact portion 60 located in the immediate region 100A of the gate G. .
- the local low density portion 20B may also be provided near the formation surface of the mold cavity 30 located in the immediate area 100A of the gate G.
- the local low density portion 20B may be provided in the vicinity of the interface region between the region 100B other than the immediate region 100A of the gate G and the hot-type raw material resin flow channel 10. From the viewpoint of simplifying the structure, it is preferable that the local low density portion 20B is provided along the region of the inner surface 100C of the injection mold 100 as shown in FIG.
- the local low density portion 20B may have microscopic microscopic voids due to the relatively low density. Due to the presence of such fine voids in the local low density portion 20B, the hot-type raw material resin flow path from the hot-type raw material resin flow path 10 side to the region near the gate G of the injection mold 100 is compared with the case where no void exists. The local heat insulation of the heat of fusion of the raw material resin in 10 becomes possible. Further, due to the presence of such fine voids in the local low density portion 20B, the inside of the mold cavity 30 to the region 100A closest to the gate G of the injection mold 100 when filling / holding the molten raw material resin in the mold cavity is performed. It becomes possible to locally insulate the melting heat of the molten raw material resin located in the local portion 31 in the vicinity of the gate G.
- the heat of the molten raw material resin R in the hot mold raw material resin channel 10 / the local portion 31 near the gate G in the mold cavity 30 It is possible to locally insulate the heat of the molten raw material resin R 3 positioned to the region 100A immediately adjacent to the gate G of the injection mold 100.
- Such localized thermal insulation suppress heat transfer to the molten material resin R 3 is located in the local part 31 of the mold cavity 30 located from the gate G immediate vicinity region 100A adjacent the gate G of the injection mold 100 It becomes possible to do. Therefore, the molten raw material resin R 3 located in the local portion 31 in the mold cavity 30 near the gate G becomes higher in temperature than the molten raw material resin R 4 located in the other portion 32 in the mold cavity 30. Can be suppressed.
- Heat transfer control unit 20 In one aspect of the low heat transfer film provided on the surface of the injection mold 100 , the “heat transfer control unit 20” includes the low heat provided on the surface of the injection mold 100. It is preferable that the low heat transfer film 20C is provided at least in the immediate area 100A of the gate G (see FIG. 6).
- the specific mode of the heat transfer control unit 20 is not limited to the cooling medium path 20A and the local low density unit 20B.
- the low heat transfer film 20 ⁇ / b> C provided on the surface of the injection mold 100 can be used as the heat transfer control unit 20.
- the “low heat transfer film 20C” refers to a film having a relatively low heat transfer property.
- the low heat transfer film 20C is not particularly limited, and examples thereof include a plating film and a ceramic film having a relatively low heat transfer property.
- the film thickness may be 10 ⁇ m to 300 ⁇ m, for example, 150 ⁇ m.
- the low heat transfer film 20C may be provided at least in the vicinity of the contact portion 60 located in the immediate area 100A of the gate G.
- the low heat transfer film 20C may also be provided near the formation surface of the mold cavity 30 located in the immediate area 100A of the gate G.
- the low heat transfer film 20 ⁇ / b> C may also be provided in the vicinity of the interface region between the region 100 ⁇ / b> B other than the immediate region 100 ⁇ / b> A of the gate G and the hot-type raw material resin channel 10.
- a low heat transfer film 20C is provided along the region of the inner surface 100C of the injection mold 100 as shown in FIG.
- the low heat transfer film is applied not only to the inner surface 100C but also to the outer surface 50C of the hot-type sprue member 50 from the viewpoint of suppressing heat conduction from the inside of the hot-type sprue member 50 to the outside. May be further provided.
- the low heat transfer film 20C is a film having a relatively low heat transfer property
- the low heat transfer film 20C is used for injection molding from the hot-type raw material resin flow path 10 side as compared with the case where the low heat transfer film 20C is not provided. It becomes possible to reduce the transferability of the melting heat of the raw material resin in the hot-type raw material resin flow path 10 toward the region near the gate G of the mold 100.
- the low heat transfer film 20C is a film having a relatively low heat transfer property, and therefore, when the molten material resin is filled / held in the mold cavity, the gate G of the injection mold 100 is in the immediate vicinity. it is possible to reduce the transmission of heat of fusion of the molten material resin R 3 is located in the local part 31 of the gate G near the mold cavity 30 to the area.
- the melting heat of the molten raw material resin in the hot type raw material resin flow path 10 / the melting of the molten raw material resin R 3 located in the local portion 31 near the gate G in the mold cavity 30 It is possible to reduce the heat transfer property of the heat injection mold 100 to the region 100A closest to the gate G.
- the reduction of such heat transfer, heat transfer to the molten material resin R 3 is located in the local part 31 of the mold cavity 30 located from the gate G immediate vicinity region 100A adjacent the gate G of the injection mold 100 Can be suppressed. Therefore, the molten raw material resin R 3 located in the local portion 31 in the mold cavity 30 near the gate G becomes higher in temperature than the molten raw material resin R 4 located in the other portion 32 in the mold cavity 30. Can be suppressed.
- the plating film, ceramic film, etc. that can be used as the low heat transfer film 20C are made of a material having high strength. Therefore, the plating film, ceramic film, etc. not only have the property of reducing the transferability of the melting heat of the raw material resin, but also have a pressure resistance characteristic and an abrasion resistance against external pressure generated during molding. It is advantageous.
- the inner surface 100C of the injection mold 100 facing the outer surface 50C of the hot mold sprue member 50 is preferably located outside the outer surface 50C of the hot mold sprue member 50 (FIG. 2 to 6).
- the heat transfer control unit 20 is provided at least in the immediate area 100A of the gate G. Thereby, it becomes possible to suppress that the heat of the molten resin material in the hot mold material resin flow path 10 can be transmitted to the injection mold 100 side.
- the hot mold sprue located on the upstream side of the hot mold sprue member 50 is used. It is preferable that no gap be provided between the outer surface 50C of the member 50 and the inner surface 100C of the injection mold 100 opposed thereto.
- the injection mold 100 whose outer surface 50C is opposed to the front end side (the most downstream side) of the hot mold sprue member 50 and the upstream side relatively. Will contact the inner surface 100C. Thereby, it is possible to further improve the placement stability of the hot mold sprue member 50 with respect to the injection mold 100.
- An injection mold apparatus 200 is an injection mold 100 (comprising a core side and a cavity side), and for supplying a molten raw material resin into the injection mold 100. And a hot mold sprue member 50 having a hot mold material resin flow path 10 (corresponding to a sprue) inside.
- the injection mold 100 can be manufactured using the following “powder bed melt bonding method”. On the other hand, a commercially available product can be used for the hot-type sprue member 50.
- the “powder bed fusion bonding method” used for manufacturing the injection mold 100 is a method capable of manufacturing a three-dimensional shaped object by irradiating a powder material with a light beam.
- a powder layer formation and a solidified layer formation are alternately and repeatedly performed based on the following steps (i) and (ii) to produce a three-dimensional shaped object.
- the obtained three-dimensional shaped object can be used as the injection mold 100.
- the “metal powder” here may be, for example, an iron-based metal powder having an average particle diameter of about 5 ⁇ m to 100 ⁇ m.
- An example is a powder bed fusion bonding method in which a metal powder is used as a powder material, and a three-dimensional shaped article manufactured thereby is used as an injection mold 100.
- the squeezing blade 23 is moved to form a powder layer 22 having a predetermined thickness on the modeling plate 21 (see FIG. 7A).
- a light beam L is applied to a predetermined portion of the powder layer 22 to form a solidified layer 24 from the powder layer 22 (see FIG. 7B).
- a new powder layer is formed on the obtained solidified layer and irradiated with a light beam again to form a new solidified layer.
- the solidified layer 24 is laminated (see FIG. 7C), and finally, a three-dimensional structure composed of the laminated solidified layer 24 is formed.
- a shaped object can be obtained.
- the “powder bed fusion bonding method” it is possible to provide a heat transfer control unit capable of performing heat transfer control at least in the immediate region of the portion serving as the gate compared to other regions other than the immediate region of the portion serving as the gate. It becomes possible.
- the “powder bed fusion bonding method” it is possible to provide the cooling medium path 20A and the local low density part 20B as the heat transfer control part 20 by locally reducing the irradiation energy density of the light beam.
- the low heat transfer film 20C is provided as the heat transfer control unit 20
- a plating film used as the low heat transfer film 20C can be separately provided by vapor deposition sputtering.
- a ceramic film used as the low heat transfer film 20C can be separately provided by thermal spraying.
- the injection mold from the hot mold material resin flow path 10 side through the gate G due to the presence of the heat transfer control unit 20 in the closest region 100A of the gate It becomes possible to suppress the heat transfer of the raw material resin in the hot type raw material resin flow path 10 toward the region 100A closest to the gate G of 100. Further, it is possible to prevent the heat of the molten raw material resin R located in the local portion 31 near the gate G in the mold cavity 30 from being transmitted to the region near the gate G of the injection mold 100.
- the molten raw material resin R 3 located in the local portion 31 in the mold cavity 30 near the gate G becomes the other portion 32 in the mold cavity 30. It becomes possible to suppress suitably that it becomes difficult to cool rather than molten raw material resin R4 located in ( 4) . Therefore, finally, it is possible to suitably obtain a highly accurate molded product as a whole.
- the mold apparatus for injection molding according to one embodiment of the present invention can be used to obtain an injection molded product.
- Injection mold apparatus 100 Injection mold 100A Near area
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
An embodiment of the present invention provides a mold device for injection molding, the device including a hot raw-resin flow path that is connected to a mold cavity through a gate. A heat transfer control unit is provided at least in a region that is proximate to the gate.
Description
本発明は、射出成形用金型装置および当該射出成形用金型装置を用いた成形品の製造方法に関する。より具体的には、本発明は、ゲートを介して金型キャビティに接続されたホット型原料樹脂流路を備える射出成形用金型装置、および当該射出成形用金型装置を用いた射出成形品の製造方法に関する。
The present invention relates to an injection mold apparatus and a method for producing a molded product using the injection mold apparatus. More specifically, the present invention relates to an injection mold apparatus having a hot mold material resin flow path connected to a mold cavity via a gate, and an injection molded product using the injection mold apparatus It relates to the manufacturing method.
日本の「ものづくり」産業を支えてきた技術の一つに、金型を用いた成形技術がある。かかる成形技術としては、加圧成形法、射出成形法および押出成形法などが挙げられる。これら成形法のうち、射出成形法は、射出成形用金型装置を用いて原料樹脂から成形品を得る方法である。
One of the technologies that has supported the Japanese manufacturing industry is molding technology using molds. Examples of such a molding technique include a pressure molding method, an injection molding method, and an extrusion molding method. Among these molding methods, the injection molding method is a method of obtaining a molded product from a raw material resin using an injection molding die apparatus.
具体的には、当該射出成形法では、大きく分けて以下の工程を経て成形品を製造する。(1)(i)スプル又は(ii)スプルおよびランナーから構成され、ゲートを介して金型キャビティに接続された原料樹脂流路に原料樹脂を供給する工程。
(2)原料樹脂の供給を連続して行い金型キャビティ内に当該原料樹脂を充填/保圧する工程。
(3)金型キャビティ内の原料樹脂の冷却工程。 Specifically, in the injection molding method, a molded product is manufactured through the following steps. (1) A step of supplying a raw material resin to a raw material resin flow path constituted by (i) sprue or (ii) a sprue and a runner and connected to a mold cavity via a gate.
(2) A step of continuously supplying the raw material resin and filling / holding the raw material resin in the mold cavity.
(3) Cooling process of the raw material resin in the mold cavity.
(2)原料樹脂の供給を連続して行い金型キャビティ内に当該原料樹脂を充填/保圧する工程。
(3)金型キャビティ内の原料樹脂の冷却工程。 Specifically, in the injection molding method, a molded product is manufactured through the following steps. (1) A step of supplying a raw material resin to a raw material resin flow path constituted by (i) sprue or (ii) a sprue and a runner and connected to a mold cavity via a gate.
(2) A step of continuously supplying the raw material resin and filling / holding the raw material resin in the mold cavity.
(3) Cooling process of the raw material resin in the mold cavity.
ここで、最終成形品は金型キャビティ内に位置する原料樹脂から得られることが通常である。そのため、(i)スプル又は(ii)スプルおよびランナーから構成される原料樹脂流路内に位置する原料樹脂が冷却して得られる樹脂部は最終成形品の構成要素として直接寄与するものではない。そのため、原料樹脂の効率的使用の観点等から原料樹脂流路内に位置する原料樹脂を冷却させることなく溶融状態を保持するために、ゲートを介して金型キャビティに接続されたホット型原料樹脂流路が用いられる場合がある(特許文献1参照)。特許文献1では、原料樹脂流路の軸周りに沿って温調媒体路が供される旨が示されている。当該温調媒体路の提供により、原料樹脂流路を高温に保持することができ、それによって原料樹脂流路がホット型原料樹脂流路として機能し得る。
Here, the final molded product is usually obtained from raw material resin located in the mold cavity. Therefore, the resin part obtained by cooling the raw material resin located in the raw material resin flow path composed of (i) sprue or (ii) sprue and runner does not directly contribute as a component of the final molded product. Therefore, in order to maintain the molten state without cooling the raw material resin located in the raw material resin flow path from the viewpoint of efficient use of the raw material resin, etc., the hot type raw material resin connected to the mold cavity through the gate A flow path may be used (see Patent Document 1). Patent Document 1 shows that a temperature control medium path is provided along the axis of the raw material resin flow path. By providing the temperature control medium path, the raw material resin flow path can be maintained at a high temperature, whereby the raw material resin flow path can function as a hot-type raw material resin flow path.
ここで、本願発明者らは、ホット型原料樹脂流路の軸周りに沿って温調媒体路が供される場合、以下の問題が生じ得ることを新たに見出した。
Here, the inventors of the present application have newly found that the following problems can occur when the temperature control medium path is provided along the axis of the hot type resin flow path.
具体的には、上述のようにホット型原料樹脂流路は、当該流路内に位置する原料樹脂を冷却させることなく溶融状態を保持し得る。又、ホット型原料樹脂流路は、ゲートを介して金型キャビティに接続されている。そのため、ホット型原料樹脂流路内の原料樹脂の溶融状態が保持されると、溶融原料樹脂の熱が、ホット型原料樹脂流路側から射出成形用金型側、特に射出成形金型のゲート付近側へ伝わる虞がある。そのため、金型キャビティ内の原料樹脂の冷却工程を実施する場合、射出成形用金型のゲート付近側への伝熱に起因して、ゲート近傍の金型キャビティ内の局所部分に位置する原料樹脂が、金型キャビティ内の他の部分に位置する原料樹脂よりもより高温になる虞がある。その結果、ゲート近傍の金型キャビティ内の局所部分に位置する原料樹脂は金型キャビティ内の他の部分に位置する原料樹脂と比べて相対的に冷却しにくくなり、それに起因して最終的に全体として高精度な成形品を好適に得ることができない虞がある。
Specifically, as described above, the hot-type raw material resin flow path can maintain a molten state without cooling the raw material resin located in the flow path. The hot mold material resin flow path is connected to the mold cavity via a gate. Therefore, when the molten state of the raw material resin in the hot mold material resin flow path is maintained, the heat of the molten raw material resin is changed from the hot mold raw material resin flow path side to the injection mold side, particularly near the gate of the injection mold. May be transmitted to the side. Therefore, when carrying out the cooling process of the raw material resin in the mold cavity, the raw material resin located in a local part in the mold cavity near the gate due to heat transfer to the vicinity of the gate of the injection mold However, there is a possibility that the temperature becomes higher than that of the raw material resin located in the other part in the mold cavity. As a result, the raw material resin located in the local part in the mold cavity near the gate is relatively difficult to cool compared with the raw material resin located in the other part in the mold cavity. There is a possibility that a highly accurate molded product cannot be suitably obtained as a whole.
本発明は、かかる事情に鑑みて為されたものである。すなわち、本発明の目的は、ホット型原料樹脂流路を用いる場合においても、全体として高精度な成形品を好適に得ることが可能な射出成形用金型装置および射出成形用金型装置を用いた成形品の製造方法を提供することである。
The present invention has been made in view of such circumstances. That is, an object of the present invention is to use an injection mold apparatus and an injection mold apparatus capable of suitably obtaining a high-precision molded product as a whole even when a hot mold material resin flow path is used. It is to provide a method for manufacturing a molded product.
上記目的を達成するために、本発明の一実施形態では、
射出成形用金型装置であって、
ゲートを介して金型キャビティに接続されたホット型原料樹脂流路を備え、
少なくとも前記ゲートの直近領域に熱伝達制御部を有して成る、射出成形用金型装置が提供される。 In order to achieve the above object, in one embodiment of the present invention,
An injection mold apparatus,
A hot mold material resin flow path connected to the mold cavity via the gate,
There is provided an injection molding die apparatus having a heat transfer control unit at least in a region near the gate.
射出成形用金型装置であって、
ゲートを介して金型キャビティに接続されたホット型原料樹脂流路を備え、
少なくとも前記ゲートの直近領域に熱伝達制御部を有して成る、射出成形用金型装置が提供される。 In order to achieve the above object, in one embodiment of the present invention,
An injection mold apparatus,
A hot mold material resin flow path connected to the mold cavity via the gate,
There is provided an injection molding die apparatus having a heat transfer control unit at least in a region near the gate.
上記目的を達成するために、本発明の一実施形態では、
射出成形用金型装置を用いて射出成形品を製造するための方法であって、
前記射出成形用金型装置が、ゲートを介して金型キャビティに接続されたホット型原料樹脂流路を備え、少なくとも該ゲートの直近領域に熱伝達制御部を有して成り、
前記ホット型原料樹脂流路を通じて前記金型キャビティ内へと溶融原料樹脂を供する、方法が提供される。 In order to achieve the above object, in one embodiment of the present invention,
A method for producing an injection-molded article using an injection mold apparatus,
The injection mold apparatus comprises a hot mold material resin flow path connected to a mold cavity through a gate, and has a heat transfer control unit at least in the immediate region of the gate,
A method is provided for providing a molten raw resin through the hot mold raw resin flow path into the mold cavity.
射出成形用金型装置を用いて射出成形品を製造するための方法であって、
前記射出成形用金型装置が、ゲートを介して金型キャビティに接続されたホット型原料樹脂流路を備え、少なくとも該ゲートの直近領域に熱伝達制御部を有して成り、
前記ホット型原料樹脂流路を通じて前記金型キャビティ内へと溶融原料樹脂を供する、方法が提供される。 In order to achieve the above object, in one embodiment of the present invention,
A method for producing an injection-molded article using an injection mold apparatus,
The injection mold apparatus comprises a hot mold material resin flow path connected to a mold cavity through a gate, and has a heat transfer control unit at least in the immediate region of the gate,
A method is provided for providing a molten raw resin through the hot mold raw resin flow path into the mold cavity.
本発明の一実施形態に従えば、ホット型原料樹脂流路を用いる場合においても、全体として高精度な成形品を好適に得ることが可能である。
According to one embodiment of the present invention, even when a hot-type raw material resin flow path is used, it is possible to suitably obtain a highly accurate molded product as a whole.
以下では、図面を参照して本発明の一実施形態に係る射出成形用金型装置について説明する。図面における各種要素の形態および寸法は、あくまでも例示にすぎず、実際の形態および寸法を反映するものではない。
Hereinafter, an injection mold apparatus according to an embodiment of the present invention will be described with reference to the drawings. The forms and dimensions of the various elements in the drawings are merely examples, and do not reflect actual forms and dimensions.
(本発明の技術的思想)
まず、本発明の一実施形態に係る射出成形用金型装置の説明に先立って、本発明の技術的思想について説明する。 (Technical idea of the present invention)
First, prior to the description of an injection molding die apparatus according to an embodiment of the present invention, the technical idea of the present invention will be described.
まず、本発明の一実施形態に係る射出成形用金型装置の説明に先立って、本発明の技術的思想について説明する。 (Technical idea of the present invention)
First, prior to the description of an injection molding die apparatus according to an embodiment of the present invention, the technical idea of the present invention will be described.
本願発明者らは、ホット型原料樹脂流路を用いる場合においても高精度な成形品を好適に得ることを可能とするための技術的措置について鋭意検討した。より具体的には、ホット型原料樹脂流路側から射出成形用金型のゲート付近側への溶融原料樹脂の伝熱に起因した、ゲート近傍の金型キャビティ内の局所部分に位置する原料樹脂が他の部分に位置する原料樹脂よりも相対的に冷却しにくい状態を抑止するための措置が鋭意検討された。
The inventors of the present application have intensively studied technical measures for enabling a highly accurate molded product to be suitably obtained even when a hot-type raw material resin flow path is used. More specifically, the raw material resin located in the local portion in the mold cavity near the gate caused by the heat transfer of the molten raw material resin from the hot mold material resin flow path side to the vicinity of the gate of the injection mold is Measures for suppressing the state of being relatively difficult to cool than the raw material resin located in other portions have been intensively studied.
そこで、かかる抑止措置実現のために、本願発明者らは、『少なくともゲートGの直近領域100Aに当該ゲートGの直近領域100A以外の他の領域100Bと比べて熱伝達制御可能な熱伝達制御部20を供する』という技術的思想を新たに見出した(図1参照)。
Therefore, in order to realize such a deterrent measure, the inventors of the present application “a heat transfer control unit capable of controlling heat transfer in at least the immediate region 100A of the gate G compared to other regions 100B other than the immediate region 100A of the gate G”. The technical idea of “providing 20” was newly found (see FIG. 1).
なお、本明細書でいう「ゲートGの直近領域100A」とは、金型キャビティ30とホット型原料樹脂流路10との境界部分に位置するゲートGに最隣接する射出成形用金型の所定領域を指す。本明細書でいう「ホット型原料樹脂流路10」とは、広義には加熱保持された原料樹脂流路を指し、狭義には加熱保持されたスプルのみ又は加熱保持されたスプルおよびランナーを指す。本明細書でいう「熱伝達制御部20」とは、射出成形用金型にて伝熱制御可能な領域を指す。
As used herein, “the closest region 100A of the gate G” refers to a predetermined injection molding die closest to the gate G located at the boundary between the mold cavity 30 and the hot mold material resin flow path 10. Refers to an area. As used herein, the term “hot-type raw material resin flow path 10” refers to a raw material resin flow path that is heated and held in a broad sense, and in a narrow sense refers to only a heated and held sprue or a heated and held sprue and runner. . The “heat transfer control unit 20” in the present specification refers to a region where heat transfer can be controlled with an injection mold.
かかる技術的思想に従えば、ゲート直近領域100Aにおける熱伝達制御部20の存在により、ゲートGを介して金型キャビティ30に接続されたホット型原料樹脂流路10側から射出成形用金型100のゲートG直近領域100A側へのホット型原料樹脂流路10内の溶融原料樹脂R(特にゲートG近傍に位置するホット型原料樹脂流路10内の溶融原料樹脂R1)の伝熱を制御することが可能となる。熱伝達制御部20による伝熱制御により、ホット型原料樹脂流路10のゲートG近傍内の溶融原料樹脂R1の溶融熱に起因する射出成形用金型100のゲートG直近領域100Aへの熱残存を好適に抑止制御することが可能となる。これにより、射出成形用金型100のゲートG直近領域100Aから当該ゲートG近傍に位置する金型キャビティ30内に位置する溶融原料樹脂R3への伝熱を抑止することが可能となる。
According to such a technical idea, due to the presence of the heat transfer control unit 20 in the region 100A closest to the gate, the injection mold 100 from the hot mold material resin flow channel 10 side connected to the mold cavity 30 through the gate G is provided. The heat transfer of the molten raw material resin R in the hot type raw material resin flow channel 10 (particularly, the molten raw material resin R 1 in the hot type raw material resin flow channel 10 located in the vicinity of the gate G) to the region 100A closest to the gate G of It becomes possible to do. The heat transfer control of the heat transfer control unit 20, the heat of the gate G immediate vicinity region 100A of the injection mold 100 due to the melting heat of the molten starting resin R 1 in the vicinity of the gate G of the hot feedstock resin passage 10 It is possible to suitably control the remaining. Thus, it is possible to suppress the heat transfer from the gate G immediate vicinity region 100A of the injection mold 100 into the molten material resin R 3 is located in the mold cavity 30 located in the vicinity the gate G.
又、金型キャビティ30内のゲートG近傍の領域に位置する溶融原料樹脂R3は、ホット型原料樹脂流路10の近位配置に起因して金型キャビティ30内の他の領域に位置する溶融原料樹脂R4よりもより高温となり易い。そのため、金型キャビティ内への溶融原料樹脂の充填保圧工程等にて、金型キャビティ30内のゲートG近傍の局所部分31に位置するより高温状態の溶融原料樹脂R3の熱が残存し得る。この点につき、ゲート直近領域100Aに熱伝達制御部20が存在すると、熱伝達部制御部20による熱伝達制御により、金型キャビティ30内のゲートG近傍の局所部分31に位置する溶融原料樹脂R3の高温状態の熱エネルギーがゲートG直近領域100A側に伝わることを好適に抑止制御することが可能となる。又、ゲート直近領域100Aに熱伝達制御部20が存在すると、熱伝達部制御部20による熱伝達制御により、金型キャビティ30内のゲートG近傍の局所部分31に位置する溶融原料樹脂R3の高温状態の熱残存が抑止され得る。以上により、金型キャビティ30内のゲートG近傍の局所部分31に位置する溶融原料樹脂R3の高温状態の熱残存が継続することを抑止することが可能となる。
Further, the molten raw material resin R 3 located in the region near the gate G in the mold cavity 30 is located in another region in the mold cavity 30 due to the proximal arrangement of the hot mold raw material resin flow path 10. likely to become hotter than the molten starting resin R 4. Therefore, the heat of the molten raw material resin R 3 at a higher temperature located in the local portion 31 near the gate G in the mold cavity 30 remains in the filling and pressure holding process of the molten raw material resin into the mold cavity. obtain. In this regard, when the heat transfer control unit 20 exists in the region 100 </ b> A closest to the gate, the molten raw material resin R located in the local portion 31 near the gate G in the mold cavity 30 by the heat transfer control by the heat transfer unit control unit 20. Therefore, it is possible to suitably suppress and control that the heat energy in the high temperature state 3 is transmitted to the region 100A closest to the gate G. Further, when the heat transfer control unit 20 exists in the region 100 </ b> A closest to the gate, the molten raw material resin R 3 located in the local portion 31 near the gate G in the mold cavity 30 is controlled by the heat transfer control by the heat transfer unit control unit 20. Residual heat in a high temperature state can be suppressed. Thus, the thermal residual high temperature of the molten material resin R 3 is located in the local part 31 of the gate G near the mold cavity 30 it is possible to suppress to continue.
以上の事から、金型キャビティ30内のゲートG近傍の局所部分31に位置する溶融原料樹脂R3が金型キャビティ30内の他の部分に位置する溶融原料樹脂R4よりもより高温になることを抑止することが可能となる。
From the above, the molten raw material resin R 3 located in the local portion 31 near the gate G in the mold cavity 30 has a higher temperature than the molten raw material resin R 4 located in other portions in the mold cavity 30. This can be suppressed.
これにより、金型キャビティ30内の溶融原料樹脂の冷却工程において、金型キャビティ30内のゲートG近傍の局所部分31に位置する溶融原料樹脂R3と、金型キャビティ30内の他の部分に位置する溶融原料樹脂R4の冷却とを略同一の冷却速度で実施することが可能となる。つまり、金型キャビティ30内の溶融原料樹脂Rの冷却工程において、金型キャビティ30内のゲートG近傍に位置する溶融原料樹脂R3が金型キャビティ30内の他の部分に位置する溶融原料樹脂R4よりも冷却しにくくなることを好適に抑止することが可能となる。それ故、最終的に全体として高精度な成形品を好適に得ることが可能となる。
Thus, in the cooling step of the molten material resin mold cavity 30, the molten material resin R 3 is located in the local part 31 of the gate G near the mold cavity 30, the other portions of the mold cavity 30 position and cooling of the molten starting resin R 4 it is possible to carry out substantially at the same cooling rate. That is, in the cooling step of the molten raw material resin R in the mold cavity 30, the molten raw material resin to a molten raw material resin R 3 located in the vicinity of the gate G of the mold cavity 30 is located in the other part of the mold cavity 30 it is possible to suitably suppress the than R 4 hardly cooled. Therefore, finally, it is possible to suitably obtain a highly accurate molded product as a whole.
(射出成形用金型装置の構成)
以下、本発明の一実施形態に係る射出成形用金型装置200の構成について説明する(図1参照)。 (Configuration of injection molding die device)
Hereinafter, a configuration of aninjection mold apparatus 200 according to an embodiment of the present invention will be described (see FIG. 1).
以下、本発明の一実施形態に係る射出成形用金型装置200の構成について説明する(図1参照)。 (Configuration of injection molding die device)
Hereinafter, a configuration of an
本発明の一実施形態に係る射出成形用金型装置200は、射出成形用金型100(コア側およびキャビティ側から成るもの)と、射出成形用金型100内に溶融原料樹脂を供するためのホット型原料樹脂流路10(スプルに対応)を内部に備えたホット型スプル部材50とを含むものを指す。一実施形態では、ホット型スプル部材50は、ホット型原料樹脂流路10がゲートGに直接接続されるように射出成形用金型100と接する構成を採っている。当該ホット型スプル部材50は、通常その先端50Aの径が漸次小さくなる形状を有している。つまり、ホット型スプル部材50の先端50Aと射出成形用金型100との接触部分は傾斜面(図1参照)、より具体的には段差面を有し得る。なお、ホット型スプル部材50の構成は、ホット型原料樹脂流路10がゲートGに直接接続されるように射出成形用金型100と接する構成に限定されない。例えば、一実施形態では、ホット型スプル部材50は、ランナーを通じて射出成形用金型100と接続する構成を採り得る。この場合、ホット型原料樹脂流路10は、ホット型スプル部材50の内部に供されたスプルと射出成形用金型の内部に供されたランナーとから構成されることを確認的に述べておく。なお、本明細書でいう「ホット型スプル部材50の先端50A」とは、ホット型スプル部材50の底部(又は下部又は頂部)に供された開口部分より溶融原料樹脂が(金型キャビティ30側又はランナー側)へと流れ出る箇所を指すのではない。本明細書でいう「ホット型スプル部材50の先端50A」とは、ホット型スプル部材50の底部に最近接し、かつ射出成形用金型100の内表面と接触し得るホット型スプル部材50の外側面部分、すなわち“先端側外側面”を指す。又、本明細書でいう「金型キャビティ30内のゲートG近傍の局所部分31」とは、広義には金型キャビティのうち「溶融原料樹脂が供給される入口部分」と当該入口部分に連続する金型キャビティ30の形成面とに沿った部分を指す(図1参照)。
An injection mold apparatus 200 according to an embodiment of the present invention is an injection mold 100 (comprising a core side and a cavity side), and for supplying a molten raw material resin into the injection mold 100. This includes a hot mold sprue member 50 provided therein with a hot mold material resin flow path 10 (corresponding to a sprue). In one embodiment, the hot mold sprue member 50 is configured to contact the injection mold 100 so that the hot mold material resin flow path 10 is directly connected to the gate G. The hot-type sprue member 50 usually has a shape in which the diameter of the tip 50A gradually decreases. That is, the contact portion between the tip 50A of the hot mold sprue member 50 and the injection mold 100 can have an inclined surface (see FIG. 1), more specifically, a step surface. The configuration of the hot mold sprue member 50 is not limited to the configuration in contact with the injection mold 100 so that the hot mold material resin flow path 10 is directly connected to the gate G. For example, in one embodiment, the hot mold sprue member 50 may be configured to connect to the injection mold 100 through a runner. In this case, it is confirmed that the hot mold material resin flow path 10 is composed of a sprue provided in the hot mold sprue member 50 and a runner provided in the injection mold. . The “tip 50A of the hot-type sprue member 50” as used in this specification means that the molten raw material resin (on the mold cavity 30 side) from the opening provided at the bottom (or the bottom or top) of the hot-type sprue member 50. It is not the point that flows out to the runner side). The “tip 50A of the hot mold sprue member 50” as used herein refers to the outside of the hot mold sprue member 50 that is closest to the bottom of the hot mold sprue member 50 and can contact the inner surface of the injection mold 100. The side surface portion, that is, the “tip side outer surface” is indicated. In addition, the “local portion 31 near the gate G in the mold cavity 30” in this specification means, in a broad sense, the “inlet portion to which molten raw material resin is supplied” in the mold cavity and the inlet portion. This refers to a portion along the surface of the mold cavity 30 to be formed (see FIG. 1).
以下では、ホット型スプル部材50内のホット型原料樹脂流路10(スプルに対応)がゲートGに直接接続される場合に基づき説明する。この場合、ホット型スプル部材50の先端50AはゲートGにて射出成形用金型100と直接接することとなる。この事は、ゲートGを挟んでホット型スプル部材50の先端近傍に金型キャビティ30が存在することを意味する。ホット型スプル部材50の先端近傍に金型キャビティ30が存在すると、金型キャビティ30内に充填された溶融原料樹脂の冷却工程において、以下の技術的問題が生じ得る。具体的には、まず、ホット型原料樹脂流路10(スプルに対応)を流れる溶融原料樹脂の熱が、ホット型スプル部材50の先端50Aと射出成形用金型100との接触部分60を介して射出成形用金型100のゲートG直近領域100Aに伝わり得る。次いで、ホット型原料樹脂流路10(スプルに対応)を流れる溶融原料樹脂の熱が、射出成形用金型100のゲートG付近の局所部分を介してホット型スプル部材50の先端近傍に位置する金型キャビティ30へと伝わり得る。
Hereinafter, a description will be given based on the case where the hot type raw material resin flow path 10 (corresponding to the sprue) in the hot type sprue member 50 is directly connected to the gate G. In this case, the tip 50A of the hot mold sprue member 50 is in direct contact with the injection mold 100 at the gate G. This means that the mold cavity 30 exists near the tip of the hot mold sprue member 50 with the gate G interposed therebetween. If the mold cavity 30 exists in the vicinity of the tip of the hot mold sprue member 50, the following technical problems may occur in the cooling process of the molten raw material resin filled in the mold cavity 30. Specifically, first, the heat of the molten raw material resin flowing through the hot type raw material resin flow path 10 (corresponding to the sprue) passes through the contact portion 60 between the tip 50A of the hot type sprue member 50 and the injection mold 100. Thus, it can be transmitted to the region 100A closest to the gate G of the injection mold 100. Next, the heat of the molten raw material resin flowing through the hot type raw material resin flow path 10 (corresponding to the sprue) is located in the vicinity of the tip of the hot type sprue member 50 through a local portion near the gate G of the injection mold 100. Can be transmitted to the mold cavity 30.
そこで、ホット型スプル部材50内のホット型原料樹脂流路10(スプルに対応)がゲートGに直接接続される場合において、熱伝達制御部20は、「ホット型スプル部材50の先端50Aと射出成形用金型100との接触部分60」と「金型キャビティ30」との間に位置付けられる」射出成形用金型100のゲートG直近領域100Aに位置付けられ得る。当該直近領域100Aに熱伝達制御部20が存在すると、ホット型原料樹脂流路10(スプルに対応)を流れる溶融原料樹脂の熱が当該接触部分60を介してゲートGの直近領域100Aに伝わることを抑止制御することが可能となる。より具体的には、ゲートG近傍に位置するホット型原料樹脂流路10内の溶融原料樹脂R1の熱がゲートG直近領域100Aに伝わることを抑止することが可能となる。又、ゲートG直近領域100Aに熱伝達制御部20が存在すると、金型キャビティ30内のゲートG近傍の局所部分31に位置する溶融原料樹脂R3の熱がゲートG直近領域100A(図1内の点線囲み部分)に伝わることを抑止制御することが可能となる。なお、上述のように、例えばホット型スプル部材50の先端50Aの径が漸次小さくなる形状を有する場合、ホット型スプル部材の先端50Aと射出成形用金型100との接触部分60は傾斜面を有することとなる(図1参照)。この場合において、「ゲートGの直近領域100A」とは、傾斜面を有する接触部分60と当該接触部分60に向かい合う金型キャビティ30の形成面との間に形成される領域(図1内の点線囲み部分に相当)を指す。
Therefore, in the case where the hot-type raw material resin flow path 10 (corresponding to the sprue) in the hot-type sprue member 50 is directly connected to the gate G, the heat transfer control unit 20 determines that “the tip 50A of the hot-type sprue member 50 and the injection 50 It can be positioned in the region 100A proximate to the gate G of the injection mold 100 "located between the contact portion 60" with the mold 100 and the "mold cavity 30". When the heat transfer control unit 20 exists in the immediate area 100A, the heat of the molten raw material resin flowing through the hot type resin flow path 10 (corresponding to the sprue) is transmitted to the immediate area 100A of the gate G through the contact portion 60. Can be suppressed. More specifically, it is possible to heat the molten raw material resin R 1 hot feedstock resin flow passage 10 positioned near the gate G is suppressed from being transmitted to the gate G immediate vicinity region 100A. Further, when the heat transfer control unit 20 to the gate G immediate vicinity region 100A exist, molten material resin R 3 thermal gate G immediate vicinity region 100A located in a local portion 31 of the gate G near the mold cavity 30 (in FIG. 1 It is possible to suppress the transmission to the dotted line encircled part). As described above, for example, when the diameter of the tip 50A of the hot mold sprue member 50 is gradually reduced, the contact portion 60 between the tip 50A of the hot mold sprue member and the injection mold 100 has an inclined surface. (See FIG. 1). In this case, “the nearest region 100A of the gate G” is a region formed between the contact portion 60 having an inclined surface and the formation surface of the mold cavity 30 facing the contact portion 60 (dotted line in FIG. 1). It corresponds to the enclosed part).
熱伝達制御部20による伝熱制御により、ホット型原料樹脂流路10(スプルに対応)内のゲートG近傍に位置する溶融原料樹脂R1の溶融熱/金型キャビティ30内のゲートG近傍の局所部分31に位置する溶融原料樹脂R3の溶融熱に起因して当該接触部分60と金型キャビティ30との間のゲートG直近領域100Aへの熱残存を好適に抑止制御することが可能となる。かかる熱残存抑止により、当該接触部分60と金型キャビティ30との間のゲートG直近領域100Aからホット型スプル部材50の先端近傍に位置する金型キャビティ30内の局所部分31に位置する溶融原料樹脂R3への伝熱を抑止することが可能となる。これにより、金型キャビティ30内に充填された溶融原料樹脂の冷却工程において、当該接触部分60と金型キャビティ30との間のゲートG直近領域100Aを介してホット型スプル部材50の先端近傍に位置する金型キャビティ30へ上記溶融熱が伝わることを好適に抑止することが可能となる。これにより、金型キャビティ30内の溶融原料樹脂Rの冷却工程において、ホット型スプル部材50の先端近傍に位置する金型キャビティ30内の局所部分31の溶融原料樹脂R3が金型キャビティ30内の他の部分32の溶融原料樹脂R4よりも冷却しにくくなることを好適に抑止することが可能となる。
By heat transfer control by the heat transfer control unit 20, the heat of the molten raw material resin R 1 located in the vicinity of the gate G in the hot type raw material resin flow path 10 (corresponding to the sprue) / the vicinity of the gate G in the mold cavity 30. Due to the heat of fusion of the molten raw material resin R 3 located in the local portion 31, it is possible to suitably suppress and control the heat remaining in the region 100 A closest to the gate G between the contact portion 60 and the mold cavity 30. Become. Due to the suppression of the remaining heat, the molten raw material located in the local portion 31 in the mold cavity 30 located in the vicinity of the tip of the hot mold sprue member 50 from the region 100A closest to the gate G between the contact portion 60 and the mold cavity 30. it is possible to suppress heat transfer to the resin R 3. Thereby, in the cooling process of the molten raw material resin filled in the mold cavity 30, the hot mold sprue member 50 is brought into the vicinity of the tip of the hot mold sprue member 50 via the region 100 A closest to the gate G between the contact portion 60 and the mold cavity 30. It is possible to suitably prevent the melting heat from being transmitted to the mold cavity 30 located. Thereby, in the cooling process of the molten raw material resin R in the mold cavity 30, the molten raw material resin R 3 in the local portion 31 in the mold cavity 30 located near the tip of the hot mold sprue member 50 is in the mold cavity 30. it is possible to suitably suppress also difficult to cool than the melting material resin R 4 other portion 32 of the.
なお、本発明で用いられる「熱伝達制御部20」は、下記態様により実現されることが好ましい。具体的には、「熱伝達制御部20」は、(i)射出成形用金型100内のゲート直近領域100Aへの冷却媒体路の提供、(ii)射出成形用金型100内のゲート直近領域100Aへの局所低密度部の提供、および/または(iii)ゲート直近領域100Aにおける射出成形用金型100の表面への低熱伝達膜の提供により実現され得る。
In addition, it is preferable that the “heat transfer control unit 20” used in the present invention is realized in the following manner. Specifically, the “heat transfer control unit 20” (i) provides a cooling medium path to the region 100 </ b> A closest to the gate in the injection mold 100, and (ii) proximate to the gate in the injection mold 100. This may be realized by providing a local low density portion in the region 100A and / or (iii) providing a low heat transfer film on the surface of the injection mold 100 in the region 100A closest to the gate.
(i)熱伝達制御部20:冷却媒体路
一態様では、「熱伝達制御部20」は射出成形用金型100内のゲート直近領域100Aに少なくとも供される冷却媒体路20Aであることが好ましい(図2参照)。 (I) Heat transfer control unit 20: In one aspect of the cooling medium path , the “heattransfer control unit 20” is preferably a cooling medium path 20A provided at least to the region 100A closest to the gate in the injection mold 100. (See FIG. 2).
一態様では、「熱伝達制御部20」は射出成形用金型100内のゲート直近領域100Aに少なくとも供される冷却媒体路20Aであることが好ましい(図2参照)。 (I) Heat transfer control unit 20: In one aspect of the cooling medium path , the “heat
本明細書でいう「冷却媒体路」とは、冷却媒体を流すための中空流路であって、ホット型原料樹脂流路10を流れる溶融原料樹脂の溶融熱が射出成形用金型100のゲートG直近領域に伝わることを抑止し、かつゲートG付近の金型キャビティ内の原料樹脂の熱エネルギーを減じるための流路を示す。「冷却媒体」とは、冷却媒体路に流す媒体を指しており、例えば冷却液体(水、油)、冷却ガス(エアー、不活性ガス)、冷却固体物、冷却ガス-冷却液体混相体、又は冷却固体物-冷却液体混相体等を指す。
The “cooling medium path” in this specification is a hollow flow path for flowing the cooling medium, and the melting heat of the molten raw material resin flowing in the hot type raw material resin flow path 10 is the gate of the injection mold 100. The flow path for suppressing the transmission to the region closest to G and reducing the thermal energy of the raw material resin in the mold cavity near the gate G is shown. “Cooling medium” refers to a medium that flows through the cooling medium path, such as cooling liquid (water, oil), cooling gas (air, inert gas), cooling solid, cooling gas-cooling liquid mixed phase, or This refers to a cooled solid-cooled liquid mixed phase.
この場合、「熱伝達制御部20」としての冷却媒体路20Aが、ゲートGの直近領域に位置付けられ得る。かかる冷却媒体路20Aの存在により、ホット型原料樹脂流路10を流れる溶融原料樹脂の溶融熱エネルギーが、ゲートGの直近領域に位置する冷却媒体路20Aに流す冷却媒体の冷却熱エネルギーにより減じられる。又、かかる冷却媒体路20Aの存在により、ゲートGの近傍に位置する金型キャビティ30内の局所部分31の溶融原料樹脂R3の熱エネルギーが射出成形用金型のゲートGの直近領域100Aに位置する冷却媒体路20Aに流す冷却媒体の冷却熱エネルギーにより減じられる。なお、「熱伝達制御部20」としての冷却媒体路20AはゲートGの直近領域にて二重構造を採ってもよい。この場合、通常の一重構造を採る場合と比べて、ゲートGの直近領域に位置する冷却媒体路20Aに流す冷却媒体の冷却熱エネルギーを相対的により大きくすることが可能となる。そのため、かかる二重構造を採っていることに起因して、「ホット型原料樹脂流路10を流れる溶融原料樹脂の溶融熱エネルギー」と「ゲートGの近傍に位置する金型キャビティ30内の局所部分の溶融原料樹脂の熱エネルギー」とがより好適かつ効果的に減じられ得る。又、例えばホット型スプル部材50の先端50Aの径が漸次小さくなる形状を有する場合、ホット型スプル部材の先端50Aと射出成形用金型100との接触部分60は傾斜面を有することとなる(図2参照)。この場合において、「熱伝達制御部20」としての冷却媒体路20Aの少なくとも一部が、傾斜面を有する接触部分60と当該接触部分60に向かい合う金型キャビティ30の形成面との間に形成される領域に形成されることとなる。この場合、冷却媒体路20Aの存在により、ホット型原料樹脂流路10を流れる溶融原料樹脂の溶融熱エネルギーが、傾斜面を有する接触部分60と当該接触部分60に向かい合う金型キャビティ30の形成面との間に形成される領域に位置する冷却媒体路20Aに流す冷却媒体の冷却熱エネルギーにより減じられることとなる。又、冷却媒体路20Aの存在により、ゲートGの近傍に位置する金型キャビティ30内の局所部分31の溶融原料樹脂R3の熱エネルギーが傾斜面を有する接触部分60と当該接触部分60に向かい合う金型キャビティ30の形成面との間に形成されるゲートG直近領域100Aに位置する冷却媒体路20Aに流す冷却媒体の冷却熱エネルギーにより減じられることとなる。
In this case, the cooling medium path 20 </ b> A as the “heat transfer control unit 20” can be positioned in the immediate vicinity of the gate G. Due to the presence of the cooling medium path 20A, the melting heat energy of the molten raw material resin flowing through the hot type raw material resin flow path 10 is reduced by the cooling heat energy of the cooling medium flowing through the cooling medium path 20A located in the immediate region of the gate G. . Moreover, the presence of such a coolant passage 20A, the immediate vicinity region 100A of the molten material resin R 3 of thermal energy injection mold gate G of the localized portion 31 of the mold cavity 30 located in the vicinity of the gate G It is reduced by the cooling heat energy of the cooling medium flowing in the cooling medium path 20A located. Note that the cooling medium path 20 </ b> A as the “heat transfer control unit 20” may have a double structure in the immediate region of the gate G. In this case, the cooling heat energy of the cooling medium flowing through the cooling medium path 20A located in the immediate vicinity of the gate G can be relatively increased as compared with the case of adopting a normal single structure. Therefore, due to the adoption of such a double structure, “the melting thermal energy of the molten raw material resin flowing in the hot type raw material resin flow path 10” and “the local area in the mold cavity 30 located in the vicinity of the gate G”. The thermal energy of the part of the molten raw material resin can be reduced more effectively and effectively. Further, for example, when the diameter of the tip 50A of the hot mold sprue member 50 is gradually reduced, the contact portion 60 between the tip 50A of the hot mold sprue member and the injection mold 100 has an inclined surface ( (See FIG. 2). In this case, at least a part of the cooling medium path 20 </ b> A as the “heat transfer control unit 20” is formed between the contact portion 60 having an inclined surface and the forming surface of the mold cavity 30 facing the contact portion 60. It will be formed in the area. In this case, due to the presence of the cooling medium path 20A, the melting heat energy of the molten raw material resin flowing in the hot type raw material resin flow path 10 is the contact surface 60 having the inclined surface and the formation surface of the mold cavity 30 facing the contact portion 60 Is reduced by the cooling heat energy of the cooling medium flowing in the cooling medium path 20A located in the region formed between the two. Moreover, the presence of the cooling medium passage 20A, facing the contact portion 60 and the contact portion 60 of the thermal energy of the molten material resin R 3 of localized portion 31 of the mold cavity 30 located in the vicinity of the gate G has an inclined surface It is reduced by the cooling heat energy of the cooling medium flowing in the cooling medium path 20A located in the region 100A closest to the gate G formed between the formation surface of the mold cavity 30.
以上により、ホット型原料樹脂流路10内の溶融原料樹脂の溶融熱エネルギー/金型キャビティ30内のゲートG近傍の領域に位置する溶融原料樹脂の溶融熱エネルギーが、ゲートGの直近領域100Aに位置する冷却媒体路20Aに流す冷却媒体の冷却熱エネルギーにより減じられる。そのため、射出成形用金型100のゲートG直近領域への熱残存を好適に抑止することが可能となる。かかる熱残存抑止により、射出成形用金型100のゲートG付近から当該ゲートG近傍に位置する金型キャビティ30内の局所部分31に位置する溶融原料樹脂R3への伝熱を抑止することが可能となる。そのため、ゲートG近傍の金型キャビティ30内の局所部分31に位置する溶融原料樹脂R3が、金型キャビティ30内の他の部分32に位置する溶融原料樹脂R4よりもより高温になることを抑止することが可能となる。その結果、金型キャビティ30内の溶融原料樹脂Rの冷却工程において、ゲートG近傍の金型キャビティ30内の局所部分に位置する溶融原料樹脂が金型キャビティ30内の他の部分に位置する溶融原料樹脂よりも冷却しにくくなることを好適に抑止することが可能となる。
As described above, the melting thermal energy of the molten raw resin in the hot mold raw resin flow path 10 / the melting thermal energy of the molten raw resin located in the region near the gate G in the mold cavity 30 is transferred to the region 100A closest to the gate G. It is reduced by the cooling heat energy of the cooling medium flowing in the cooling medium path 20A located. Therefore, it is possible to suitably suppress the heat remaining in the region near the gate G of the injection mold 100. Such thermal residual suppression, is possible to prevent the heat transfer from the vicinity of the gate G of the injection mold 100 into the molten material resin R 3 is located in the local part 31 of the mold cavity 30 located in the vicinity the gate G It becomes possible. Therefore, the molten raw material resin R 3 located in the local portion 31 in the mold cavity 30 near the gate G becomes higher in temperature than the molten raw material resin R 4 located in the other portion 32 in the mold cavity 30. Can be suppressed. As a result, in the cooling process of the molten raw material resin R in the mold cavity 30, the molten raw material resin located in a local part in the mold cavity 30 near the gate G is melted in other parts in the mold cavity 30. It becomes possible to suppress suitably that it becomes difficult to cool rather than raw material resin.
なお、一態様では、ホット型原料樹脂流路10(スプルに対応)がゲートGに直接接続される場合、冷却媒体路20A1の断面形状の一部はホット型スプル部材50の先端50Aと射出成形用金型100との接触部分60の断面形状および金型キャビティ30の形成面の断面形状の少なくとも一方に沿っていることが好ましい(図3)。
In one embodiment, if the hot feedstock resin flow path 10 (corresponding to the sprue) is connected directly to the gate G, a portion of the cross-sectional shape of the cooling medium passage 20A 1 and the tip 50A of the hot mold sprue member 50 injection It is preferable to follow at least one of the cross-sectional shape of the contact portion 60 with the molding die 100 and the cross-sectional shape of the forming surface of the mold cavity 30 (FIG. 3).
冷却媒体路20A1の断面形状の一部がホット型スプル部材50の先端50Aと射出成形用金型100との接触部分60の断面形状に沿っていると、沿っていない場合と比べて当該接触部分60と冷却媒体路20A1の一部との間の離隔距離を相対的に小さくすることが可能となる。これにより、接触部分60を介して当該接触部分60と金型キャビティ30との間の部分へと供され得るホット型原料樹脂流路10を流れる溶融原料樹脂の溶融熱エネルギーを、当該接触部分60と金型キャビティ30との間の部分に位置する冷却媒体路20Aに流す冷却媒体の冷却熱エネルギーによって効果的に減じることが可能となる。
When a part of the cross-sectional shape of the cooling medium passage 20A 1 is along the cross-sectional shape of the contact portion 60 of the tip 50A and the injection mold 100 of the hot mold sprue member 50, the contact as compared with the case not along separation distance between the portion 60 and part of the coolant passage 20A 1 becomes possible made relatively small. Thereby, the melting heat energy of the molten raw material resin flowing through the hot mold raw material resin flow path 10 that can be provided to the portion between the contact portion 60 and the mold cavity 30 via the contact portion 60 is converted into the contact portion 60. Can be effectively reduced by the cooling heat energy of the cooling medium flowing in the cooling medium passage 20A located in the portion between the mold cavity 30 and the mold cavity 30.
なお、冷却媒体路20A1の断面形状の一部は上記接触部分60の断面形状と略同一であることがより好ましい。かかる態様を採る場合、当該接触部分60と冷却媒体路20A1の一部との間のいずれの箇所においても離隔距離が略均一となり得る。そのため、略均一な離隔距離に起因して上記冷却媒体路20A1内の冷却媒体の冷却熱エネルギーを、当該接触部分60のいずれの箇所に対して均一に供することが可能となる。これにより、当該接触部分60から供されるホット型原料樹脂流路10内の溶融原料樹脂の溶融熱エネルギーをより効果的に減じることが可能となる。
Incidentally, it is more preferred portion of the cross-sectional shape of the cooling medium passage 20A 1 is substantially the same as the cross-sectional shape of the contact portion 60. When taking such embodiments, the separation distance at any point between the part of the contact portion 60 and the cooling medium passage 20A 1 may be substantially uniform. Therefore, the cooling heat energy of the cooling medium in the cooling medium path 20 </ b> A 1 can be uniformly supplied to any part of the contact part 60 due to the substantially uniform separation distance. Thereby, it is possible to more effectively reduce the melting thermal energy of the molten raw material resin in the hot type raw material resin flow path 10 provided from the contact portion 60.
又、冷却媒体路20A1の断面形状の一部がホット型スプル部材50の先端50Aの近傍に位置する金型キャビティ30の形成面の断面形状に沿っていると、沿っていない場合と比べて当該金型キャビティ30の形成面と冷却媒体路20A1の一部との間の離隔距離を相対的に小さくすることが可能となる。これにより、金型キャビティ30内の局所部分31から当該接触部分60と金型キャビティ30との間の部分へと供され得る溶融原料樹脂の溶融熱エネルギーを、冷却媒体路20A1に流す冷却媒体の冷却熱エネルギーによって効果的に減じることが可能となる。
Further, a part of the cross-sectional shape of the cooling medium passage 20A 1 is along the cross-sectional shape of the forming surface of the mold cavity 30 located in the vicinity of the tip 50A of the hot mold sprue member 50, as compared with the case not along the separation between the portion of the forming surface and the cooling medium passage 20A 1 of the mold cavity 30 can be relatively small. Thus, the heat of fusion energy of the molten material resin may be subjected to a portion between the localized portion 31 of the mold cavity 30 with the contact portion 60 and the mold cavity 30, the cooling medium flowing through the cooling medium passage 20A 1 It can be effectively reduced by the cooling heat energy.
なお、冷却媒体路20A1の断面形状の一部は上記金型キャビティ30の形成面の断面形状と略同一であることがより好ましい。かかる態様を採る場合、当該金型キャビティ30の形成面と冷却媒体路20A1の一部との間のいずれの箇所においても離隔距離が略均一となり得る。そのため、略均一な離隔距離に起因して上記冷却媒体路20A1内の冷却媒体の冷却熱エネルギーを、ホット型スプル部材50の先端50Aの近傍に位置する金型キャビティ30の形成面のいずれの箇所に対して均一に供することが可能となる。これにより、金型キャビティ30内の局所部分31から当該接触部分60と金型キャビティ30との間の部分へと供され得る溶融原料樹脂の溶融熱エネルギーを更により効果的に減じることが可能となる。
Incidentally, it is more preferred portion of the cross-sectional shape of the cooling medium passage 20A 1 is substantially the same as the cross-sectional shape of the forming surface of the mold cavity 30. When taking such embodiments, the separation distance at any point between the part of the formation surface and the cooling medium passage 20A 1 of the mold cavity 30 may be substantially uniform. Therefore, due to the substantially uniform distance the cooling heat energy of the cooling medium of the cooling medium passage 20A 1, the forming surface of the mold cavity 30 located in the vicinity of the tip 50A of the hot mold sprue member 50 either It becomes possible to provide uniformly with respect to a location. Thereby, it is possible to further effectively reduce the melting heat energy of the molten raw material resin that can be provided from the local portion 31 in the mold cavity 30 to the portion between the contact portion 60 and the mold cavity 30. Become.
特に、当該接触部分60と金型キャビティ30との間の局所領域(すなわち、ゲート直近領域)に供される冷却媒体路20A1の断面形状の一部が上記接触部分60の断面形状および金型キャビティ30の形成面の断面形状の両方に沿う場合、冷却媒体路20A1は扁平断面形状(又は楕円断面形状)を有し得る。かかる形状を有すると、真円断面形状と比べて当該接触部分60と金型キャビティ30との間の狭い局所領域(すなわち、ゲート直近領域)に冷却媒体路20A1を広範囲にわたり効果的に供することが可能となる。そのため、冷却媒体路20A1内の冷却媒体の冷却熱エネルギーを(1)接触部分60および(2)金型キャビティ30の形成面に対して効果的に供することが可能となる。
In particular, the local area (i.e., the gate immediate vicinity region) cross-sectional shape and mold a portion of the cross-sectional shape of the cooling medium passage 20A 1 to be subjected to the above contact portion 60 between the said contact portion 60 and the mold cavity 30 If along both the cross-sectional shape of the forming surface of the cavity 30, the cooling medium passage 20A 1 may have a flattened cross-sectional shape (or an elliptical cross-sectional shape). When having such a shape, it is subjected to effective cooling medium passage 20A 1 extensively in small local region (i.e., the gate immediate vicinity region) between the said contact portion 60 and the mold cavity 30 as compared to a true circle cross-sectional shape Is possible. Therefore, it is possible to effectively provide the cooling heat energy of the cooling medium in the cooling medium path 20 </ b> A 1 to the formation surface of the (1) contact portion 60 and (2) the mold cavity 30.
一態様では、熱伝達制御部20としての冷却媒体路20Aは内部に支持部材70を有して成ることが好ましい(図4参照)。
In one aspect, the cooling medium path 20A as the heat transfer control unit 20 preferably includes a support member 70 therein (see FIG. 4).
上述のように、冷却媒体路20Aは冷却媒体を流すための中空流路である。そのため、当該中空流路の断面寸法および長手寸法が相対的に大きい場合に、成形時における外部圧力に対して十分な強度を有することができない虞がある。そこで、当該外部圧力に対する強度を十分に確保する観点から、冷却媒体路20Aの内部を支持するための支持部材70を供することが好ましい。当該支持部材70は、外部圧力に対する強度を十分に確保する観点から供されるため“梁部材”として機能し得る。なお、特に限定されるものではないが、当該支持部材70は射出成形用金型100の構成材料(例えばFe等)と同じ材料から成ってよい(図4の下方図参照)。図4では冷却媒体路20Aの断面に複数の支持部材70が供されている態様が示されている。しかしながら、これに限定されることなく、複数の支持部材70が冷却媒体路20Aの長手方向に沿って所定間隔毎に供されることが好ましい。これにより、冷却媒体路20Aの長手方向および短手方向のいずれの方向にも複数の支持部材70が所定間隔毎に供されることとなる。それ故、冷却媒体路20Aは全体として外部圧力に対する強度をより向上させることが可能となる。
As described above, the cooling medium path 20A is a hollow flow path for flowing the cooling medium. Therefore, when the cross-sectional dimension and the longitudinal dimension of the hollow channel are relatively large, there is a possibility that the hollow channel cannot have sufficient strength against external pressure during molding. Therefore, from the viewpoint of sufficiently securing the strength against the external pressure, it is preferable to provide a support member 70 for supporting the inside of the cooling medium passage 20A. The support member 70 can serve as a “beam member” because it is provided from the viewpoint of sufficiently ensuring strength against external pressure. Although not particularly limited, the support member 70 may be made of the same material as the constituent material (for example, Fe) of the injection mold 100 (see the lower view of FIG. 4). FIG. 4 shows an aspect in which a plurality of support members 70 are provided in the cross section of the cooling medium path 20A. However, the present invention is not limited to this, and the plurality of support members 70 are preferably provided at predetermined intervals along the longitudinal direction of the cooling medium path 20A. As a result, the plurality of support members 70 are provided at predetermined intervals in both the longitudinal direction and the short direction of the cooling medium path 20A. Therefore, the cooling medium path 20A as a whole can further improve the strength against the external pressure.
一態様では、熱伝達制御部20としての冷却媒体路20Aがホット型スプル部材50の軸方向に沿ってゲートGの直近領域100A以外の他の領域100Bにも供され、冷却媒体路20Aが全体として螺旋構造を成していることが好ましい(図2~4参照)。
In one aspect, the cooling medium path 20A as the heat transfer control unit 20 is also provided to other areas 100B other than the immediate area 100A of the gate G along the axial direction of the hot-type sprue member 50, and the cooling medium path 20A is entirely It preferably has a helical structure (see FIGS. 2 to 4).
ホット型原料樹脂流路10は、溶融状態を全体的に連続保持する観点から当該ホット型原料樹脂流路10の軸方向(断面視)に沿って加熱源80が複数供され得る。この場合、ゲートG付近に位置するホット型原料樹脂流路10(すなわちホット型原料樹脂流路10の下流側)のみならず、ホット型原料樹脂流路10の上流側から下流側にわたる部分からホット型原料樹脂流路10の周囲に位置する射出成形用金型100へとホット型原料樹脂流路10内の溶融樹脂原料の溶融熱が伝わり得る。具体的には、射出成形用金型100のゲート直近領域100A以外の他の領域100Bからゲート直近領域100Aへと、ホット型原料樹脂流路10内の溶融樹脂原料の溶融熱が伝わる虞がある。そのため、当該溶融熱のエネルギーを減じる観点から射出成形用金型100のゲート直近領域100Aのみならず他の領域100Bにも冷却媒体路20Aが供されることが好ましい。特に、冷却媒体路20Aは全体として螺旋構造を成していることが好ましい。かかる構造を採ることで、冷却媒体路20Aは、ホット型原料樹脂流路10の軸方向に沿ってホット型原料樹脂流路10を取り囲む形態を採る。かかる冷却媒体路20Aの取り囲み形態に起因して、ホット型原料樹脂流路10の上流側から下流側にわたる部分からホット型原料樹脂流路10の周囲に位置する射出成形用金型100へと供され得る溶融熱のエネルギーを全体として効果的に減じることが可能となる。これに加えて、かかる冷却媒体路20Aの取り囲み形態に起因して、ホット型原料樹脂流路10の軸方向(断面視)に沿って複数供される加熱源80から射出成形用金型100へと伝わる加熱源80の熱エネルギーを全体として効果的に減じることが可能となる。
The hot-type raw material resin flow path 10 can be provided with a plurality of heating sources 80 along the axial direction (sectional view) of the hot-type raw material resin flow path 10 from the viewpoint of continuously maintaining the molten state as a whole. In this case, not only the hot-type raw material resin flow channel 10 located in the vicinity of the gate G (that is, the downstream side of the hot-type raw material resin flow channel 10) but also the hot-type raw material resin flow channel 10 from the upstream side to the downstream side. The melting heat of the molten resin material in the hot mold material resin flow channel 10 can be transmitted to the injection mold 100 located around the mold material resin flow channel 10. Specifically, the heat of fusion of the molten resin material in the hot mold material resin flow path 10 may be transmitted from the region 100B other than the region 100A closest to the gate of the injection mold 100 to the region 100A closest to the gate. . Therefore, from the viewpoint of reducing the energy of the heat of fusion, it is preferable that the cooling medium path 20A is provided not only to the region 100A closest to the gate of the injection mold 100 but also to the other region 100B. In particular, the cooling medium path 20A preferably has a spiral structure as a whole. By adopting such a structure, the cooling medium path 20 </ b> A takes a form surrounding the hot-type raw material resin flow path 10 along the axial direction of the hot-type raw material resin flow path 10. Due to the surrounding form of the cooling medium path 20A, the portion extending from the upstream side to the downstream side of the hot mold material resin flow channel 10 is supplied to the injection mold 100 located around the hot mold material resin flow channel 10. The energy of the heat of fusion that can be achieved can be effectively reduced as a whole. In addition to this, due to the surrounding form of the cooling medium path 20A, a plurality of heating sources 80 provided along the axial direction (sectional view) of the hot mold material resin flow path 10 to the injection mold 100 are provided. It is possible to effectively reduce the heat energy of the heating source 80 transmitted as a whole.
一態様では、ゲートGの直近領域100Aに供される冷却媒体路20Aとホット型スプル部材50との間の離隔距離が、他の領域100Bに供される冷却媒体路20Aとホット型スプル部材50との間の離隔距離よりも小さいことが好ましい(図2~図4参照)。
In one embodiment, the separation distance between the cooling medium path 20A provided to the immediate area 100A of the gate G and the hot type sprue member 50 is such that the cooling medium path 20A provided to the other area 100B and the hot type sprue member 50 are separated. It is preferable that the distance between the two is smaller than the distance (see FIGS. 2 to 4).
上述のように、本発明は、「少なくともゲートGの直近領域100Aに当該ゲートGの直近領域100A以外の他の領域100Bと比べて熱伝達制御が可能な熱伝達制御部20(例えば冷却媒体路20A)を供する」という技術的思想を有する。かかる技術的思想に従えば、ゲートG近傍に位置する金型キャビティ30側へホット型原料樹脂流路10内の原料樹脂の溶融熱の伝達を可能な限り減じる観点から、ゲートG側へ可能な限り熱伝達制御部20(例えば冷却媒体路20A)を近付けることが好ましい。その一方で、ゲートGの直近領域100A以外の他の領域100BはゲートGの直近領域100Aと比べて金型キャビティ30から相対的に離れている。そのため、他の領域100BはゲートGの直近領域100Aと比べて金型キャビティ30側へのホット型原料樹脂流路10内の原料樹脂の溶融熱の伝達性は小さいと考えられる。かかる点を考慮し、ゲートGの直近領域100Aに供される冷却媒体路20A1とホット型スプル部材50との間の離隔距離S1が、他の領域100Bに供される冷却媒体路20A2とホット型スプル部材50との間の離隔距離S2よりも小さいことが好ましい。特に限定されるものではないが、離隔距離S1は1mm~10mm、例えば3mmであってよい。一方、離隔距離S2は10mm(10mm除く)~50mm、例えば25mmであってよい。
As described above, according to the present invention, the heat transfer control unit 20 (for example, the cooling medium path) capable of performing heat transfer control at least in the immediate region 100A of the gate G as compared with other regions 100B other than the immediate region 100A of the gate G. 20A) ". According to such a technical idea, it is possible to the gate G side from the viewpoint of reducing the transmission of the melting heat of the raw material resin in the hot type raw material resin flow path 10 as much as possible to the mold cavity 30 side located in the vicinity of the gate G. It is preferable that the heat transfer control unit 20 (for example, the cooling medium path 20A) is as close as possible. On the other hand, the region 100B other than the immediate region 100A of the gate G is relatively far from the mold cavity 30 as compared to the immediate region 100A of the gate G. Therefore, it is considered that the other region 100B has less transferability of the melting heat of the raw material resin in the hot type raw material resin flow path 10 to the mold cavity 30 side than the immediate vicinity region 100A of the gate G. Considering these points, distance S 1 between the cooling medium passage 20A 1 and the hot-type sprue member 50 to be subjected to the immediate vicinity region 100A of the gate G, the cooling medium passage 20A 2 to be subjected to other regions 100B Is preferably smaller than the separation distance S 2 between the hot-type sprue member 50 and the hot-type sprue member 50. Although not particularly limited, the separation distance S 1 may be 1 mm to 10 mm, for example, 3 mm. On the other hand, the separation distance S 2 is 10 mm (10 mm excluding) ~ 50 mm, may be, for example, 25 mm.
なお、上述のように、金型キャビティ30に対して近位側に位置するゲートGの直近領域100Aには金型キャビティ30への熱伝達率が相対的に高いため、冷却媒体路20A1を広範囲にわたり効果的に供する観点から、冷却媒体路20A1は扁平断面形状(又は楕円断面形状)を有し得る。その一方で、金型キャビティ30に対して遠位側に位置するゲートGの直近領域以外の他の領域100Bには金型キャビティ30への熱伝達率が相対的に低いため、冷却媒体路20A2を広範囲に供する意味合いは高くない。そのため、冷却媒体路20A2は真円断面形状又は略真円断面形状を有していてよい。
As described above, since the immediate vicinity region 100A of the gate G located proximal to the mold cavity 30 is relatively high heat transfer rate to the mold cavity 30, the cooling medium passage 20A 1 from the viewpoint of providing effective over a wide range, the cooling medium passage 20A 1 may have a flattened cross-sectional shape (or an elliptical cross-sectional shape). On the other hand, since the heat transfer rate to the mold cavity 30 is relatively low in the other region 100B other than the immediate region of the gate G positioned on the distal side with respect to the mold cavity 30, the cooling medium path 20A The meaning of providing 2 in a wide range is not high. Therefore, the cooling medium passage 20A 2 may have a true circular cross-section or a substantially perfect circle cross-sectional shape.
(ii)熱伝達制御部20:射出成形用金型100内の局所低密度部
一態様では、「熱伝達制御部20」は、ゲートGの直近領域100Aに少なくとも供された射出成形用金型100の局所低密度部20Bであることが好ましい(図5参照)。 (Ii) Heat transfer control unit 20: In one aspect of the local low density portion in theinjection mold 100 , the “heat transfer control unit 20” is an injection mold provided at least in the immediate area 100A of the gate G. 100 local low density portions 20B are preferable (see FIG. 5).
一態様では、「熱伝達制御部20」は、ゲートGの直近領域100Aに少なくとも供された射出成形用金型100の局所低密度部20Bであることが好ましい(図5参照)。 (Ii) Heat transfer control unit 20: In one aspect of the local low density portion in the
熱伝達制御部20の具体的態様としては、上記の冷却媒体路20Aに限定されない。例えば、熱伝達制御部20として、射出成形用金型100の局所低密度部20Bが用いられ得る。本明細書でいう「局所低密度部20B」とは、広義には射出成形用金型100の構成要素であって他の部分よりも密度が相対的に低いものを指す。本明細書でいう「局所低密度部20B」とは、狭義には粉末床溶融結合法で射出成形用金型100を製造する場合において、射出成形用金型100の構成要素であって他の部分よりも固化密度が相対的に低いもの(例えば固化密度が40~95%(95%を含まず)であるもの)を指す。
The specific mode of the heat transfer control unit 20 is not limited to the cooling medium path 20A. For example, the local low density part 20 </ b> B of the injection mold 100 can be used as the heat transfer control part 20. The “local low density portion 20 </ b> B” in the present specification refers to a component of the injection mold 100 having a relatively lower density than other portions in a broad sense. In the present specification, the “local low density portion 20B” is, in a narrow sense, a component of the injection molding die 100 when the injection molding die 100 is manufactured by the powder bed melt bonding method. The solidification density is relatively lower than that of the portion (for example, the solidification density is 40 to 95% (not including 95%)).
例えば、ホット型原料樹脂流路10(スプルに対応)がゲートGに直接接続される場合、当該局所低密度部20BはゲートGの直近領域100Aに位置する接触部分60近傍に少なくとも供されてよい。又、図示していないが、当該局所低密度部20BはゲートGの直近領域100Aに位置する金型キャビティ30の形成面近傍にも供されてよい。これに限定されることなく、当該局所低密度部20BはゲートGの直近領域100A以外の他の領域100Bとホット型原料樹脂流路10との界面領域近傍にも供されてよい。なお、構造単純化の観点から、図5に示すように射出成形用金型100の内表面100Cの領域に沿って局所低密度部20Bが供されることが好ましい。
For example, when the hot-type raw material resin flow channel 10 (corresponding to the sprue) is directly connected to the gate G, the local low density portion 20B may be provided at least in the vicinity of the contact portion 60 located in the immediate region 100A of the gate G. . Although not shown, the local low density portion 20B may also be provided near the formation surface of the mold cavity 30 located in the immediate area 100A of the gate G. Without being limited to this, the local low density portion 20B may be provided in the vicinity of the interface region between the region 100B other than the immediate region 100A of the gate G and the hot-type raw material resin flow channel 10. From the viewpoint of simplifying the structure, it is preferable that the local low density portion 20B is provided along the region of the inner surface 100C of the injection mold 100 as shown in FIG.
この場合、当該局所低密度部20Bは密度が相対的に低いことに起因して微視的には微細な空隙を有し得る。かかる局所低密度部20Bの微細な空隙の存在により、空隙が存在しない場合比べてホット型原料樹脂流路10側から射出成形用金型100のゲートG直近領域側へのホット型原料樹脂流路10内の原料樹脂の溶融熱の局所的な断熱が可能となる。又、かかる局所低密度部20Bの微細な空隙の存在により、金型キャビティ内への溶融原料樹脂の充填/保圧時に射出成形用金型100のゲートG直近領域100Aへの金型キャビティ30内のゲートG近傍の局所部分31に位置する溶融原料樹脂の溶融熱の局所的な断熱が可能となる。
In this case, the local low density portion 20B may have microscopic microscopic voids due to the relatively low density. Due to the presence of such fine voids in the local low density portion 20B, the hot-type raw material resin flow path from the hot-type raw material resin flow path 10 side to the region near the gate G of the injection mold 100 is compared with the case where no void exists. The local heat insulation of the heat of fusion of the raw material resin in 10 becomes possible. Further, due to the presence of such fine voids in the local low density portion 20B, the inside of the mold cavity 30 to the region 100A closest to the gate G of the injection mold 100 when filling / holding the molten raw material resin in the mold cavity is performed. It becomes possible to locally insulate the melting heat of the molten raw material resin located in the local portion 31 in the vicinity of the gate G.
以上により、射出成形用金型100の局所低密度部20Bの存在により、ホット型原料樹脂流路10内の溶融原料樹脂Rの溶融熱/金型キャビティ30内のゲートG近傍の局所部分31に位置する溶融原料樹脂R3の溶融熱の射出成形用金型100のゲートG直近領域100Aへの局所的な断熱が可能となる。かかる局所的な断熱により、射出成形用金型100のゲートG直近領域100Aから当該ゲートG近傍に位置する金型キャビティ30内の局所部分31に位置する溶融原料樹脂R3への伝熱を抑止することが可能となる。そのため、ゲートG近傍の金型キャビティ30内の局所部分31に位置する溶融原料樹脂R3が、金型キャビティ30内の他の部分32に位置する溶融原料樹脂R4よりもより高温になることを抑止することが可能となる。
As described above, due to the presence of the local low density portion 20B of the injection mold 100, the heat of the molten raw material resin R in the hot mold raw material resin channel 10 / the local portion 31 near the gate G in the mold cavity 30 It is possible to locally insulate the heat of the molten raw material resin R 3 positioned to the region 100A immediately adjacent to the gate G of the injection mold 100. Such localized thermal insulation, suppress heat transfer to the molten material resin R 3 is located in the local part 31 of the mold cavity 30 located from the gate G immediate vicinity region 100A adjacent the gate G of the injection mold 100 It becomes possible to do. Therefore, the molten raw material resin R 3 located in the local portion 31 in the mold cavity 30 near the gate G becomes higher in temperature than the molten raw material resin R 4 located in the other portion 32 in the mold cavity 30. Can be suppressed.
(iii)熱伝達制御部20:射出成形用金型100の表面に供された低熱伝達膜
一態様では、「熱伝達制御部20」は、射出成形用金型100の表面に供された低熱伝達膜20Cを有して成り、当該低熱伝達膜20CがゲートGの直近領域100Aに少なくとも供されることが好ましい(図6参照)。 (Iii) Heat transfer control unit 20: In one aspect of the low heat transfer film provided on the surface of theinjection mold 100 , the “heat transfer control unit 20” includes the low heat provided on the surface of the injection mold 100. It is preferable that the low heat transfer film 20C is provided at least in the immediate area 100A of the gate G (see FIG. 6).
一態様では、「熱伝達制御部20」は、射出成形用金型100の表面に供された低熱伝達膜20Cを有して成り、当該低熱伝達膜20CがゲートGの直近領域100Aに少なくとも供されることが好ましい(図6参照)。 (Iii) Heat transfer control unit 20: In one aspect of the low heat transfer film provided on the surface of the
熱伝達制御部20の具体的態様としては、上記の冷却媒体路20Aおよび局所低密度部20Bに限定されない。例えば、熱伝達制御部20として、射出成形用金型100の表面に供された低熱伝達膜20Cが用いられ得る。本明細書でいう「低熱伝達膜20C」とは、熱伝達性が相対的に低い膜を指す。低熱伝達膜20Cとしては、特に限定されるものではないが、例えば熱伝達性が相対的に低いめっき膜、セラミック膜等が挙げられる。特に限定されるものではないが、当該膜厚は10μm~300μm、例えば150μmであってよい。
The specific mode of the heat transfer control unit 20 is not limited to the cooling medium path 20A and the local low density unit 20B. For example, the low heat transfer film 20 </ b> C provided on the surface of the injection mold 100 can be used as the heat transfer control unit 20. As used herein, the “low heat transfer film 20C” refers to a film having a relatively low heat transfer property. The low heat transfer film 20C is not particularly limited, and examples thereof include a plating film and a ceramic film having a relatively low heat transfer property. Although not particularly limited, the film thickness may be 10 μm to 300 μm, for example, 150 μm.
例えば、ホット型原料樹脂流路10(スプルに対応)がゲートGに直接接続される場合、当該低熱伝達膜20CはゲートGの直近領域100Aに位置する接触部分60近傍に少なくとも供されてよい。又、図示していないが、低熱伝達膜20CはゲートGの直近領域100Aに位置する金型キャビティ30の形成面近傍にも供されてよい。これに限定されることなく、当該低熱伝達膜20CはゲートGの直近領域100A以外の他の領域100Bとホット型原料樹脂流路10との界面領域近傍にも供されてよい。なお、構造単純化の観点から、図6に示すように射出成形用金型100の内表面100Cの領域に沿って低熱伝達膜20Cが供されることが好ましい。又、これに加え又はこれに代えて、ホット型スプル部材50の内部から外部への熱伝導を抑止する観点から、内表面100Cのみならずホット型スプル部材50の外表面50Cにも低熱伝達膜が更に供されてもよい。
For example, when the hot-type raw material resin flow path 10 (corresponding to the sprue) is directly connected to the gate G, the low heat transfer film 20C may be provided at least in the vicinity of the contact portion 60 located in the immediate area 100A of the gate G. Although not shown, the low heat transfer film 20C may also be provided near the formation surface of the mold cavity 30 located in the immediate area 100A of the gate G. Without being limited thereto, the low heat transfer film 20 </ b> C may also be provided in the vicinity of the interface region between the region 100 </ b> B other than the immediate region 100 </ b> A of the gate G and the hot-type raw material resin channel 10. From the viewpoint of simplifying the structure, it is preferable that a low heat transfer film 20C is provided along the region of the inner surface 100C of the injection mold 100 as shown in FIG. In addition to or instead of this, the low heat transfer film is applied not only to the inner surface 100C but also to the outer surface 50C of the hot-type sprue member 50 from the viewpoint of suppressing heat conduction from the inside of the hot-type sprue member 50 to the outside. May be further provided.
この場合、当該低熱伝達膜20Cは熱伝達性が相対的に低い膜であることに起因して、当該低熱伝達膜20Cを供しない場合と比べてホット型原料樹脂流路10側から射出成形用金型100のゲートG直近領域側へのホット型原料樹脂流路10内の原料樹脂の溶融熱の伝達性を小さくすることが可能となる。又、当該低熱伝達膜20Cは熱伝達性が相対的に低い膜であることに起因して、金型キャビティ内への溶融原料樹脂の充填/保圧時に射出成形用金型100のゲートG直近領域への金型キャビティ30内のゲートG近傍の局所部分31に位置する溶融原料樹脂R3の溶融熱の伝達性を小さくすることが可能となる。
In this case, since the low heat transfer film 20C is a film having a relatively low heat transfer property, the low heat transfer film 20C is used for injection molding from the hot-type raw material resin flow path 10 side as compared with the case where the low heat transfer film 20C is not provided. It becomes possible to reduce the transferability of the melting heat of the raw material resin in the hot-type raw material resin flow path 10 toward the region near the gate G of the mold 100. Further, the low heat transfer film 20C is a film having a relatively low heat transfer property, and therefore, when the molten material resin is filled / held in the mold cavity, the gate G of the injection mold 100 is in the immediate vicinity. it is possible to reduce the transmission of heat of fusion of the molten material resin R 3 is located in the local part 31 of the gate G near the mold cavity 30 to the area.
以上により、低熱伝達膜20Cの存在により、ホット型原料樹脂流路10内の溶融原料樹脂の溶融熱/金型キャビティ30内のゲートG近傍の局所部分31に位置する溶融原料樹脂R3の溶融熱の射出成形用金型100のゲートG直近領域100Aへの熱伝達性を小さくすることが可能となる。かかる熱伝達性の低減化により、射出成形用金型100のゲートG直近領域100Aから当該ゲートG近傍に位置する金型キャビティ30内の局所部分31に位置する溶融原料樹脂R3への伝熱を抑止することが可能となる。そのため、ゲートG近傍の金型キャビティ30内の局所部分31に位置する溶融原料樹脂R3が、金型キャビティ30内の他の部分32に位置する溶融原料樹脂R4よりもより高温になることを抑止することが可能となる。
As described above, due to the existence of the low heat transfer film 20C, the melting heat of the molten raw material resin in the hot type raw material resin flow path 10 / the melting of the molten raw material resin R 3 located in the local portion 31 near the gate G in the mold cavity 30 It is possible to reduce the heat transfer property of the heat injection mold 100 to the region 100A closest to the gate G. The reduction of such heat transfer, heat transfer to the molten material resin R 3 is located in the local part 31 of the mold cavity 30 located from the gate G immediate vicinity region 100A adjacent the gate G of the injection mold 100 Can be suppressed. Therefore, the molten raw material resin R 3 located in the local portion 31 in the mold cavity 30 near the gate G becomes higher in temperature than the molten raw material resin R 4 located in the other portion 32 in the mold cavity 30. Can be suppressed.
更に、低熱伝達膜20Cとして用いられ得る上記めっき膜、セラミック膜等は強度が高い材質から成る。そのため、めっき膜、セラミック膜等は、溶融原料樹脂の溶融熱の伝達性を小さくする性質を有するのみでなく、成形時に生じる外部圧力に対しても耐圧特性を有すると共に耐摩耗性も有する点で有利である。
Furthermore, the plating film, ceramic film, etc. that can be used as the low heat transfer film 20C are made of a material having high strength. Therefore, the plating film, ceramic film, etc. not only have the property of reducing the transferability of the melting heat of the raw material resin, but also have a pressure resistance characteristic and an abrasion resistance against external pressure generated during molding. It is advantageous.
一態様では、ホット型スプル部材50の外表面50Cと相互に対向する射出成形用金型100の内表面100Cが、ホット型スプル部材50の外表面50Cよりも外側に位置することが好ましい(図2~図6参照)。
In one aspect, the inner surface 100C of the injection mold 100 facing the outer surface 50C of the hot mold sprue member 50 is preferably located outside the outer surface 50C of the hot mold sprue member 50 (FIG. 2 to 6).
上述のように、本発明では、少なくともゲートGの直近領域100Aに熱伝達制御部20が供される。これにより、ホット型原料樹脂流路10内の溶融樹脂原料の熱が射出成形用金型100側に伝わり得ることを抑止することが可能となる。当該溶融樹脂原料の熱伝達抑止のためには、熱伝達制御部20の提供のみならず射出成形用金型100の表面形状に特性を供することも好ましい。具体的には、射出成形用金型100の内表面100Cがホット型スプル部材50の外表面50Cよりも外側に位置することが好ましい。かかる構成を採ることで、射出成形用金型100の内表面100Cとホット型スプル部材50の外表面50Cとの間に隙間を供することが可能となる。かかる隙間の存在により、ホット型原料樹脂流路10内の溶融樹脂原料の熱が射出成形用金型100側に伝わり得ることを抑止することが可能となる。なお、ホット型スプル部材50は射出成形用金型100への設置のため少なくともその先端50Aが射出成形用金型100と接触する必要があるため、当該接触部分(図2~図6の符号60に相当)には隙間が供されないことについて確認的に付言しておく。更に、ホット型スプル部材50の先端50Aと射出成形用金型100との接触部分に隙間が供されないことを前提として、本態様では、ホット型スプル部材50のより上流側に位置するホット型スプル部材50の外表面50Cと、これに対向する射出成形用金型100の内表面100Cとの間にも隙間が供されないことが好ましい。これにより、ホット型スプル部材50を全体視した場合に、ホット型スプル部材50の先端側(最下流側)と相対的に上流側とでは、その外表面50Cが対向する射出成形用金型100の内表面100Cに接触することとなる。これにより、ホット型スプル部材50の射出成形用金型100に対する配置安定性をより向上させることが可能となる。
As described above, in the present invention, the heat transfer control unit 20 is provided at least in the immediate area 100A of the gate G. Thereby, it becomes possible to suppress that the heat of the molten resin material in the hot mold material resin flow path 10 can be transmitted to the injection mold 100 side. In order to suppress heat transfer of the molten resin raw material, it is preferable not only to provide the heat transfer control unit 20 but also to provide characteristics to the surface shape of the injection mold 100. Specifically, it is preferable that the inner surface 100 </ b> C of the injection mold 100 is positioned outside the outer surface 50 </ b> C of the hot mold sprue member 50. By adopting such a configuration, it is possible to provide a gap between the inner surface 100C of the injection mold 100 and the outer surface 50C of the hot mold sprue member 50. Due to the existence of such a gap, it is possible to prevent the heat of the molten resin material in the hot mold material resin flow path 10 from being transmitted to the injection mold 100 side. Note that at least the tip 50A of the hot mold sprue member 50 needs to be in contact with the injection mold 100 for installation in the injection mold 100, and therefore the contact portion (reference numeral 60 in FIGS. 2 to 6). Is equivalent to confirming that no gap is provided. Further, on the assumption that no gap is provided at the contact portion between the tip 50A of the hot mold sprue member 50 and the injection mold 100, in this embodiment, the hot mold sprue located on the upstream side of the hot mold sprue member 50 is used. It is preferable that no gap be provided between the outer surface 50C of the member 50 and the inner surface 100C of the injection mold 100 opposed thereto. Thus, when the hot mold sprue member 50 is viewed as a whole, the injection mold 100 whose outer surface 50C is opposed to the front end side (the most downstream side) of the hot mold sprue member 50 and the upstream side relatively. Will contact the inner surface 100C. Thereby, it is possible to further improve the placement stability of the hot mold sprue member 50 with respect to the injection mold 100.
(射出成形用金型装置の製造方法)
以下、本発明の一実施形態に係る射出成形用金型装置200(図1)の製造方法について説明する。本発明の一実施形態に係る射出成形用金型装置200は、射出成形用金型100(コア側およびキャビティ側から成るもの)と、射出成形用金型100内に溶融原料樹脂を供するためのホット型原料樹脂流路10(スプルに対応)を内部に備えたホット型スプル部材50とを含む。射出成形用金型100については、以下の“粉末床溶融結合法”を用いて製造することが可能である。一方、ホット型スプル部材50については市販品を用いることが可能である。 (Manufacturing method of injection mold apparatus)
Hereinafter, the manufacturing method of the injection mold apparatus 200 (FIG. 1) according to an embodiment of the present invention will be described. Aninjection mold apparatus 200 according to an embodiment of the present invention is an injection mold 100 (comprising a core side and a cavity side), and for supplying a molten raw material resin into the injection mold 100. And a hot mold sprue member 50 having a hot mold material resin flow path 10 (corresponding to a sprue) inside. The injection mold 100 can be manufactured using the following “powder bed melt bonding method”. On the other hand, a commercially available product can be used for the hot-type sprue member 50.
以下、本発明の一実施形態に係る射出成形用金型装置200(図1)の製造方法について説明する。本発明の一実施形態に係る射出成形用金型装置200は、射出成形用金型100(コア側およびキャビティ側から成るもの)と、射出成形用金型100内に溶融原料樹脂を供するためのホット型原料樹脂流路10(スプルに対応)を内部に備えたホット型スプル部材50とを含む。射出成形用金型100については、以下の“粉末床溶融結合法”を用いて製造することが可能である。一方、ホット型スプル部材50については市販品を用いることが可能である。 (Manufacturing method of injection mold apparatus)
Hereinafter, the manufacturing method of the injection mold apparatus 200 (FIG. 1) according to an embodiment of the present invention will be described. An
射出成形用金型100の製造のために用いられる“粉末床溶融結合法”は、光ビームを粉末材料に照射することを通じて三次元形状造形物を製造できる方法である。当該方法では、以下の工程(i)および(ii)に基づいて粉末層形成と固化層形成とを交互に繰り返し実施して三次元形状造形物を製造する。
(i)粉末層の所定箇所に光ビームを照射し、かかる所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程。
(ii)得られた固化層の上に新たな粉末層を形成し、同様に光ビームを照射して更なる固化層を形成する工程。 The “powder bed fusion bonding method” used for manufacturing theinjection mold 100 is a method capable of manufacturing a three-dimensional shaped object by irradiating a powder material with a light beam. In the method, a powder layer formation and a solidified layer formation are alternately and repeatedly performed based on the following steps (i) and (ii) to produce a three-dimensional shaped object.
(I) A step of irradiating a predetermined portion of the powder layer with a light beam and sintering or melting and solidifying the powder at the predetermined portion to form a solidified layer.
(Ii) A step of forming a new powder layer on the obtained solidified layer and similarly irradiating a light beam to form a further solidified layer.
(i)粉末層の所定箇所に光ビームを照射し、かかる所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程。
(ii)得られた固化層の上に新たな粉末層を形成し、同様に光ビームを照射して更なる固化層を形成する工程。 The “powder bed fusion bonding method” used for manufacturing the
(I) A step of irradiating a predetermined portion of the powder layer with a light beam and sintering or melting and solidifying the powder at the predetermined portion to form a solidified layer.
(Ii) A step of forming a new powder layer on the obtained solidified layer and similarly irradiating a light beam to form a further solidified layer.
このような製造技術に従えば、複雑な三次元形状造形物を短時間で製造することが可能となる。粉末材料として無機質の金属粉末を用いる場合、得られる三次元形状造形物を射出成形用金型100として用いることができる。ここでいう「金属粉末」は、例えば平均粒径5μm~100μm程度の鉄系金属粉末であってよい。
According to such a manufacturing technique, it becomes possible to manufacture a complicated three-dimensional shaped object in a short time. When an inorganic metal powder is used as the powder material, the obtained three-dimensional shaped object can be used as the injection mold 100. The “metal powder” here may be, for example, an iron-based metal powder having an average particle diameter of about 5 μm to 100 μm.
粉末材料として金属粉末を用い、それによって製造される三次元形状造形物を射出成形用金型100として用いる場合の粉末床溶融結合法を例にとる。図7に示すように、まず、スキージング・ブレード23を動かして造形プレート21上に所定厚みの粉末層22を形成する(図7(a)参照)。次いで、粉末層22の所定箇所に光ビームLを照射して粉末層22から固化層24を形成する(図7(b)参照)。引き続いて、得られた固化層の上に新たな粉末層を形成して再度光ビームを照射して新たな固化層を形成する。このようにして粉末層形成と固化層形成とを交互に繰り返し実施すると固化層24が積層することになり(図7(c)参照)、最終的には積層化した固化層24から成る三次元形状造形物を得ることができる。
An example is a powder bed fusion bonding method in which a metal powder is used as a powder material, and a three-dimensional shaped article manufactured thereby is used as an injection mold 100. As shown in FIG. 7, first, the squeezing blade 23 is moved to form a powder layer 22 having a predetermined thickness on the modeling plate 21 (see FIG. 7A). Next, a light beam L is applied to a predetermined portion of the powder layer 22 to form a solidified layer 24 from the powder layer 22 (see FIG. 7B). Subsequently, a new powder layer is formed on the obtained solidified layer and irradiated with a light beam again to form a new solidified layer. When the powder layer formation and the solidified layer formation are alternately performed in this manner, the solidified layer 24 is laminated (see FIG. 7C), and finally, a three-dimensional structure composed of the laminated solidified layer 24 is formed. A shaped object can be obtained.
当該“粉末床溶融結合法”を用いれば、少なくともゲートとなる部分の直近領域に、ゲートとなる部分の直近領域以外の他の領域と比べて熱伝達制御可能な熱伝達制御部を供することが可能となる。“粉末床溶融結合法”を用いる場合、光ビームの照射エネルギー密度を局所的に小さくすることで熱伝達制御部20として上記の冷却媒体路20Aおよび局所低密度部20Bを供することが可能である。なお、熱伝達制御部20として低熱伝達膜20Cを供する場合、低熱伝達膜20Cとして用いるめっき膜を蒸着スパッタにより別途供することが可能である。低熱伝達膜20Cとして用いるセラミック膜を溶射により別途供することが可能である。
By using the “powder bed fusion bonding method”, it is possible to provide a heat transfer control unit capable of performing heat transfer control at least in the immediate region of the portion serving as the gate compared to other regions other than the immediate region of the portion serving as the gate. It becomes possible. When the “powder bed fusion bonding method” is used, it is possible to provide the cooling medium path 20A and the local low density part 20B as the heat transfer control part 20 by locally reducing the irradiation energy density of the light beam. . When the low heat transfer film 20C is provided as the heat transfer control unit 20, a plating film used as the low heat transfer film 20C can be separately provided by vapor deposition sputtering. A ceramic film used as the low heat transfer film 20C can be separately provided by thermal spraying.
上記方法により得られた射出成形用金型装置200を用いると、ゲート直近領域100Aにおける熱伝達制御部20の存在により、ゲートGを介してホット型原料樹脂流路10側から射出成形用金型100のゲートG直近領域100A側へのホット型原料樹脂流路10内の原料樹脂の伝熱を抑止することが可能となる。又、射出成形用金型100のゲートG直近領域へ金型キャビティ30内のゲートG近傍の局所部分31に位置する溶融原料樹脂Rの熱が伝わることを抑止することが可能となる。以上により、熱伝達制御部20の存在により、ホット型原料樹脂流路10内の溶融原料樹脂の溶融熱/金型キャビティ30内のゲートG近傍の局所部分31に位置する溶融原料樹脂の溶融熱に起因して射出成形用金型100のゲートG直近領域100Aへの熱残存を好適に抑止することが可能となる。かかる熱残存抑止により、射出成形用金型100のゲートG直近領域から当該ゲートG近傍に位置する金型キャビティ30内の局所部分31に位置する溶融原料樹脂R3への伝熱を抑止することが可能となる。これにより、金型キャビティ30内の溶融原料樹脂Rの冷却工程において、ゲートG近傍の金型キャビティ30内の局所部分31に位置する溶融原料樹脂R3が金型キャビティ30内の他の部分32に位置する溶融原料樹脂R4よりも冷却しにくくなることを好適に抑止することが可能となる。それ故、最終的に全体として高精度な成形品を好適に得ることが可能となる。
When the injection mold apparatus 200 obtained by the above method is used, the injection mold from the hot mold material resin flow path 10 side through the gate G due to the presence of the heat transfer control unit 20 in the closest region 100A of the gate. It becomes possible to suppress the heat transfer of the raw material resin in the hot type raw material resin flow path 10 toward the region 100A closest to the gate G of 100. Further, it is possible to prevent the heat of the molten raw material resin R located in the local portion 31 near the gate G in the mold cavity 30 from being transmitted to the region near the gate G of the injection mold 100. As described above, due to the presence of the heat transfer control unit 20, the melting heat of the molten raw material resin in the hot type raw material resin flow path 10 / the melting heat of the molten raw material resin located in the local portion 31 near the gate G in the mold cavity 30. Due to this, it is possible to suitably suppress heat remaining in the region 100A immediately adjacent to the gate G of the injection mold 100. Such thermal residual deterrent, arresting the heat transfer from the gate G immediate vicinity region of the injection mold 100 into the molten material resin R 3 is located in the local part 31 of the mold cavity 30 located in the vicinity the gate G Is possible. Thereby, in the cooling process of the molten raw material resin R in the mold cavity 30, the molten raw material resin R 3 located in the local portion 31 in the mold cavity 30 near the gate G becomes the other portion 32 in the mold cavity 30. It becomes possible to suppress suitably that it becomes difficult to cool rather than molten raw material resin R4 located in ( 4) . Therefore, finally, it is possible to suitably obtain a highly accurate molded product as a whole.
以上、本発明の一実施形態に係る射出成形用金型装置および射出成形用金型装置を用いて成形品を製造するための方法について説明してきたが、本発明はこれに限定されることなく、特許請求の範囲に規定される発明の範囲から逸脱することなく種々の変更が当業者によってなされると理解されよう。
As mentioned above, although the method for manufacturing a molded article using the injection mold apparatus and the injection mold apparatus according to an embodiment of the present invention has been described, the present invention is not limited to this. It will be understood that various modifications may be made by those skilled in the art without departing from the scope of the invention as defined in the claims.
本発明の一実施形態に係る射出成形用金型装置は射出成形品を得るために用いることができる。
The mold apparatus for injection molding according to one embodiment of the present invention can be used to obtain an injection molded product.
本出願は、日本国特許出願第2018-014898号(出願日:2018年1月31日、発明の名称:「射出成形用金型装置および射出成形用金型装置を用いて成形品を製造するための方法」)に基づくパリ条約上の優先権を主張する。当該出願に開示された内容は全て、この引用により、本明細書に含まれるものとする。
The present application is Japanese Patent Application No. 2018-014898 (Filing Date: January 31, 2018, Title of Invention: “Injection Molding Device and Injection Molding Device Using the Molding Device) Claiming priority under the Paris Convention under "Method for"). All the contents disclosed in the application are incorporated herein by this reference.
200 射出成形用金型装置
100 射出成形用金型
100A ゲートの直近領域
100B ゲートの直近領域以外の他の領域
100C 射出成形用金型の内表面
70 支持部材
60 ホット型スプル部材の先端と射出成形用金型との接触部分
50 ホット型スプル部材
50A ホット型スプル部材の先端
50C ホット型スプル部材の外表面
30 金型キャビティ
20 熱伝達制御部
20A 冷却媒体路
20A1 冷却媒体路
20A2 冷却媒体路
20B 局所低密度部
20C 低熱伝達膜
10 ホット型原料樹脂流路
G ゲート
R 溶融原料樹脂
S1 ゲートの直近領域に供される冷却媒体路とホット型スプル部材との間の離隔距離
S2 ゲートの直近領域以外の他の領域に供される冷却媒体路とホット型スプル部材との間の離隔距離 DESCRIPTION OFSYMBOLS 200 Injection mold apparatus 100 Injection mold 100A Near area | region of a gate 100B Other area | regions other than the immediate area | region of a gate 100C Inner surface of the injection mold 70 Support member 60 The front end and injection molding of a hot mold sprue member 50 Hot mold sprue member 50A Tip of hot mold sprue member 50C Outer surface of hot mold sprue member 30 Mold cavity 20 Heat transfer controller 20A Cooling medium path 20A 1 Cooling medium path 20A 2 Cooling medium path separation distance S 2 gates between 20B local low-density portion 20C low heat transfer film 10 hot feedstock resin passage G gates R molten starting resin S 1 cooling medium path which is subjected to immediate area of the gate and the hot type sprue member The cooling medium path provided to other areas other than the immediate area and the hot type sprue member Distance of
100 射出成形用金型
100A ゲートの直近領域
100B ゲートの直近領域以外の他の領域
100C 射出成形用金型の内表面
70 支持部材
60 ホット型スプル部材の先端と射出成形用金型との接触部分
50 ホット型スプル部材
50A ホット型スプル部材の先端
50C ホット型スプル部材の外表面
30 金型キャビティ
20 熱伝達制御部
20A 冷却媒体路
20A1 冷却媒体路
20A2 冷却媒体路
20B 局所低密度部
20C 低熱伝達膜
10 ホット型原料樹脂流路
G ゲート
R 溶融原料樹脂
S1 ゲートの直近領域に供される冷却媒体路とホット型スプル部材との間の離隔距離
S2 ゲートの直近領域以外の他の領域に供される冷却媒体路とホット型スプル部材との間の離隔距離 DESCRIPTION OF
Claims (14)
- 射出成形用金型装置であって、
ゲートを介して金型キャビティに接続されたホット型原料樹脂流路を備え、
少なくとも前記ゲートの直近領域に熱伝達制御部を有して成る、射出成形用金型装置。 An injection mold apparatus,
A hot mold material resin flow path connected to the mold cavity via the gate,
A mold apparatus for injection molding comprising a heat transfer control unit at least in a region near the gate. - 前記ホット型原料樹脂流路を内部に有して成るホット型スプル部材を備え、該ホット型スプル部材は該ホット型原料樹脂流路が前記ゲートに直接接続されるように射出成形用金型と接しており、
前記熱伝達制御部が、前記ホット型スプル部材の先端と前記射出成形用金型との接触部分と、前記金型キャビティとの間に位置付けられる、請求項1に記載の射出成形用金型装置。 A hot-type sprue member having the hot-type raw material resin flow path therein; and the hot-type sprue member includes an injection mold so that the hot-type raw material resin flow path is directly connected to the gate. Touching,
2. The injection mold apparatus according to claim 1, wherein the heat transfer control unit is positioned between a contact portion between a tip of the hot mold sprue member and the injection mold and the mold cavity. . - 前記熱伝達制御部が、前記ゲートの前記直近領域に少なくとも供された冷却媒体路である、請求項1又は2に記載の射出成形用金型装置。 The mold apparatus for injection molding according to claim 1 or 2, wherein the heat transfer control unit is a cooling medium path provided at least in the immediate area of the gate.
- 前記ホット型スプル部材の前記先端は、該先端の径が漸次小さくなる形状を有し、
前記熱伝達制御部としての前記冷却媒体路は、該冷却媒体路の断面形状の一部が前記ホット型スプル部材の前記先端と前記射出成形用金型との前記接触部分の断面形状および前記金型キャビティの形成面の断面形状の少なくとも一方に沿うように、該接触部分と金型キャビティとの間に位置付けられる、請求項2に従属する請求項3に記載の射出成形用金型装置。 The tip of the hot-type sprue member has a shape in which the diameter of the tip gradually decreases,
The cooling medium path as the heat transfer control unit is such that a part of the cross-sectional shape of the cooling medium path is a cross-sectional shape of the contact portion between the tip of the hot mold sprue member and the injection mold, and the mold The mold apparatus for injection molding according to claim 3, which is positioned between the contact portion and the mold cavity so as to be along at least one of the cross-sectional shape of the forming surface of the mold cavity. - 前記熱伝達制御部としての前記冷却媒体路の前記断面形状の前記一部が、前記接触部分の断面形状および前記金型キャビティの形成面の断面形状の少なくとも一方と略同一である、請求項4に記載の射出成形用金型装置。 The part of the cross-sectional shape of the cooling medium path as the heat transfer control unit is substantially the same as at least one of the cross-sectional shape of the contact portion and the cross-sectional shape of the mold cavity forming surface. The mold apparatus for injection molding as described in 2.
- 前記熱伝達制御部としての前記冷却媒体路が扁平断面形状を有する、請求項3~5のいずれかに記載の射出成形用金型装置。 6. The mold apparatus for injection molding according to claim 3, wherein the cooling medium path as the heat transfer control unit has a flat cross-sectional shape.
- 前記熱伝達制御部としての前記冷却媒体路が内部に支持部材を有して成る、請求項3~6のいずれかに記載の射出成形用金型装置。 The injection mold apparatus according to any one of claims 3 to 6, wherein the cooling medium path as the heat transfer control unit includes a support member therein.
- 前記熱伝達制御部としての前記冷却媒体路が、前記ホット型スプル部材の軸方向に沿って前記ゲートの前記直近領域以外の他の領域にも供され、
前記冷却媒体路が全体として螺旋構造を成している、請求項3~7のいずれかに記載の射出成形用金型装置。 The cooling medium path as the heat transfer control unit is also provided to other regions other than the immediate region of the gate along the axial direction of the hot-type sprue member,
The injection mold apparatus according to any one of claims 3 to 7, wherein the cooling medium passage has a spiral structure as a whole. - 前記ゲートの前記直近領域に供される前記冷却媒体路と前記ホット型スプル部材との間の離隔距離が、前記他の領域に供される前記冷却媒体路と前記ホット型スプル部材との間の離隔距離よりも小さい、請求項8に記載の射出成形用金型装置。 A separation distance between the cooling medium path provided to the immediate area of the gate and the hot-type sprue member is between the cooling medium path provided to the other area and the hot-type sprue member. The injection mold apparatus according to claim 8, wherein the mold apparatus is smaller than a separation distance.
- 前記熱伝達制御部が、前記ゲートの前記直近領域に少なくとも供された前記射出成形用金型の局所低密度部である、請求項1~9のいずれかに記載の射出成形用金型装置。 The injection mold apparatus according to any one of claims 1 to 9, wherein the heat transfer control unit is a local low-density part of the injection mold provided at least in the immediate region of the gate.
- 前記ホット型スプル部材の外表面と相互に対向する前記射出成形用金型の内表面が、該ホット型スプル部材の外表面よりも外側に位置する、請求項2に従属する請求項3~10のいずれかに記載の射出成形用金型装置。 Claims 3 to 10 dependent on claim 2, wherein an inner surface of the injection mold facing the outer surface of the hot mold sprue member is located outside the outer surface of the hot mold sprue member. The mold apparatus for injection molding as described in any of the above.
- 前記熱伝達制御部が前記射出成形用金型の表面に供された低熱伝達膜を有して成り、該低熱伝達膜が前記ゲートの前記直近領域に少なくとも供される、請求項1~11のいずれかに記載の射出成形用金型装置。 The heat transfer control unit includes a low heat transfer film provided on a surface of the injection mold, and the low heat transfer film is provided at least in the immediate region of the gate. The mold apparatus for injection molding in any one.
- 前記射出成形用金型および前記ホット型スプル部材を備え、該射出成形用金型が粉末床溶融結合法で供される、請求項2に従属する請求項3~12のいずれかに記載の射出成形用金型装置。 The injection according to any one of claims 3 to 12, subordinate to claim 2, comprising the injection mold and the hot mold sprue member, wherein the injection mold is provided by a powder bed melt bonding method. Mold equipment for molding.
- 射出成形用金型装置を用いて射出成形品を製造するための方法であって、
前記射出成形用金型装置が、ゲートを介して金型キャビティに接続されたホット型原料樹脂流路を備え、少なくとも該ゲートの直近領域に熱伝達制御部を有して成り、
前記ホット型原料樹脂流路を通じて前記金型キャビティ内へと溶融原料樹脂を供する、方法。 A method for producing an injection-molded article using an injection mold apparatus,
The injection mold apparatus comprises a hot mold material resin flow path connected to a mold cavity through a gate, and has a heat transfer control unit at least in the immediate region of the gate,
Providing a molten raw material resin into the mold cavity through the hot-type raw material resin flow path;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019569188A JP6928819B2 (en) | 2018-01-31 | 2019-01-30 | A method for manufacturing a molded product using an injection molding die device and an injection molding die device. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-014898 | 2018-01-31 | ||
JP2018014898 | 2018-01-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019151343A1 true WO2019151343A1 (en) | 2019-08-08 |
Family
ID=67478364
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/003225 WO2019151343A1 (en) | 2018-01-31 | 2019-01-30 | Mold device for injection molding and method for producing molded article using mold device for injection molding |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6928819B2 (en) |
WO (1) | WO2019151343A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06328537A (en) * | 1993-05-20 | 1994-11-29 | Sony Corp | Hot runner mold for injection molding |
JP2006526521A (en) * | 2003-06-05 | 2006-11-24 | ハスキー インジェクション モールディング システムズ リミテッド | Gate cooling structure in the mold stack |
JP2017159555A (en) * | 2016-03-09 | 2017-09-14 | パナソニックIpマネジメント株式会社 | Sprue bushing |
-
2019
- 2019-01-30 JP JP2019569188A patent/JP6928819B2/en active Active
- 2019-01-30 WO PCT/JP2019/003225 patent/WO2019151343A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06328537A (en) * | 1993-05-20 | 1994-11-29 | Sony Corp | Hot runner mold for injection molding |
JP2006526521A (en) * | 2003-06-05 | 2006-11-24 | ハスキー インジェクション モールディング システムズ リミテッド | Gate cooling structure in the mold stack |
JP2017159555A (en) * | 2016-03-09 | 2017-09-14 | パナソニックIpマネジメント株式会社 | Sprue bushing |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019151343A1 (en) | 2020-12-03 |
JP6928819B2 (en) | 2021-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20130306686A1 (en) | Hot Runner Nozzle | |
JP2010121187A (en) | Three-dimensional shaped article and method for producing the same | |
JP2017527478A (en) | Injection molding nozzle for producing injection molded parts from plastic | |
CN109365819A (en) | A kind of melting condensation integrated 3D printing device and method of metal material | |
WO2017154342A1 (en) | Sprue bushing | |
JP5148277B2 (en) | High speed extrusion molding | |
WO2019151343A1 (en) | Mold device for injection molding and method for producing molded article using mold device for injection molding | |
EP3315227A1 (en) | Method of manufacturing metal articles | |
KR20040093661A (en) | Nozzle for use in hot runner mold | |
JP6245488B1 (en) | Sprue bush | |
JP6964266B2 (en) | Spur bush | |
WO2018003882A1 (en) | Sprue bush | |
JP6249261B1 (en) | Sprue bush and manufacturing method thereof | |
Villalon | Electron beam fabrication of injection mold tooling with conformal cooling channels | |
CN115156556A (en) | 3D printing device based on medium-frequency or high-frequency induction heating technology and using method thereof | |
JP6706803B2 (en) | Sprue bush | |
JP7016785B2 (en) | Mold element and manufacturing method of mold element | |
WO2022009369A1 (en) | Moulding tool with heat sink | |
JP2000141419A (en) | Mold and method for molding | |
CN109641379A (en) | Cooling block and without runnerless injection forming device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19746579 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019569188 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19746579 Country of ref document: EP Kind code of ref document: A1 |