WO2019031551A1 - ショベル及びショベルの支援装置 - Google Patents
ショベル及びショベルの支援装置 Download PDFInfo
- Publication number
- WO2019031551A1 WO2019031551A1 PCT/JP2018/029782 JP2018029782W WO2019031551A1 WO 2019031551 A1 WO2019031551 A1 WO 2019031551A1 JP 2018029782 W JP2018029782 W JP 2018029782W WO 2019031551 A1 WO2019031551 A1 WO 2019031551A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dump
- time
- loading
- shovel
- display
- Prior art date
Links
- 239000002689 soil Substances 0.000 claims abstract description 14
- 238000011068 loading method Methods 0.000 claims description 237
- 239000004576 sand Substances 0.000 claims description 8
- 238000004891 communication Methods 0.000 description 30
- 238000001514 detection method Methods 0.000 description 30
- 238000003384 imaging method Methods 0.000 description 25
- 238000009412 basement excavation Methods 0.000 description 14
- 230000001186 cumulative effect Effects 0.000 description 14
- 238000012545 processing Methods 0.000 description 14
- 239000000446 fuel Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 230000008859 change Effects 0.000 description 9
- 239000010720 hydraulic oil Substances 0.000 description 8
- 239000003921 oil Substances 0.000 description 8
- 238000012876 topography Methods 0.000 description 8
- WTHDKMILWLGDKL-UHFFFAOYSA-N urea;hydrate Chemical compound O.NC(N)=O WTHDKMILWLGDKL-UHFFFAOYSA-N 0.000 description 7
- 230000001133 acceleration Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000012530 fluid Substances 0.000 description 6
- 239000000498 cooling water Substances 0.000 description 5
- 230000007704 transition Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 230000002457 bidirectional effect Effects 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 102220197833 rs112445441 Human genes 0.000 description 2
- 102220277039 rs532585602 Human genes 0.000 description 2
- 102220040119 rs587778190 Human genes 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 102200006537 rs121913529 Human genes 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/28—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
- E02F3/30—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
- E02F3/32—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/34—Route searching; Route guidance
- G01C21/3407—Route searching; Route guidance specially adapted for specific applications
- G01C21/343—Calculating itineraries, i.e. routes leading from a starting point to a series of categorical destinations using a global route restraint, round trips, touristic trips
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/2025—Particular purposes of control systems not otherwise provided for
- E02F9/2054—Fleet management
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/26—Indicating devices
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/26—Indicating devices
- E02F9/261—Surveying the work-site to be treated
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/26—Indicating devices
- E02F9/264—Sensors and their calibration for indicating the position of the work tool
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/34—Route searching; Route guidance
- G01C21/3407—Route searching; Route guidance specially adapted for specific applications
- G01C21/3438—Rendez-vous, i.e. searching a destination where several users can meet, and the routes to this destination for these users; Ride sharing, i.e. searching a route such that at least two users can share a vehicle for at least part of the route
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/34—Route searching; Route guidance
- G01C21/36—Input/output arrangements for on-board computers
- G01C21/3667—Display of a road map
- G01C21/367—Details, e.g. road map scale, orientation, zooming, illumination, level of detail, scrolling of road map or positioning of current position marker
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/08—Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/08—Construction
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0287—Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/60—Intended control result
- G05D1/69—Coordinated control of the position or course of two or more vehicles
- G05D1/692—Coordinated control of the position or course of two or more vehicles involving a plurality of disparate vehicles
Definitions
- the present disclosure relates to a shovel and a support device for the shovel.
- Patent Document 1 An operation management system capable of sharing information on vehicles operating in a mine without increasing communication costs even in an environment where transmission and reception of information by wireless communication is difficult.
- the above-mentioned operation management system can only share information on vehicles dedicated to mines belonging to a specific group, and lacks versatility. Therefore, it is not suitable for an environment in which vehicles coming and going change from work site to work site or work date.
- a shovel includes a lower traveling body, an upper revolving body pivotally mounted on the lower traveling body, and an attachment which is attached to the upper revolving body and carries out an operation of loading earth and sand into a transport vehicle. And a display device for displaying the remaining time calculated for each transport vehicle.
- a shovel which can more easily convey information on a vehicle linked with the shovel to the operator.
- FIG. 1 is a side view showing a shovel (excavator) as a construction machine according to an embodiment of the present invention.
- the upper swing body 3 is rotatably mounted on the lower traveling body 1 of the shovel via the swing mechanism 2.
- a boom 4 is attached to the upper swing body 3.
- An arm 5 is attached to the tip of the boom 4, and a bucket 6 is attached to the tip of the arm 5.
- the boom 4 as a working element, the arm 5 and the bucket 6 constitute an excavating attachment which is an example of an attachment, and are hydraulically driven by the boom cylinder 7, the arm cylinder 8 and the bucket cylinder 9, respectively.
- a driver's cab 10 is provided in the upper revolving superstructure 3, and a power source such as the engine 11 is mounted.
- a controller 30 and the like are mounted in the operator's cab 10.
- the controller 30 is a control device that controls the operation of the entire shovel.
- the controller 30 is a microcomputer provided with a CPU, a volatile storage device, a non-volatile storage device, a watch function and the like.
- FIG. 2 is a view showing a configuration example of a basic system mounted on the shovel of FIG.
- the basic system includes a controller 30, a display device 40, and the like.
- the display device 40 displays an image including work information and the like supplied from the controller 30.
- the display device 40 is connected to the controller 30 via, for example, a communication network such as CAN or LIN, a dedicated line, or the like.
- the display device 40 includes a conversion processing unit 40 a that generates an image to be displayed on the image display unit 41.
- the conversion processing unit 40 a generates an image to be displayed on the image display unit 41 based on, for example, image data obtained from the imaging device 80.
- the imaging device 80 includes, for example, a front camera, a left camera, a right camera, and a rear camera.
- the front camera is mounted on the ceiling of the cab 10, that is, inside the cab 10.
- the front camera may be attached to the roof of the cab 10, that is, to the outside of the cab 10, may be attached to the boom 4, or may be attached to the arm 5.
- the left camera is attached to the upper left end of the upper swing body 3, the right camera is attached to the upper right end of the upper swing body 3, and the rear camera is attached to the upper rear end of the upper swing body 3.
- the imaging device 80 may be a fixed point camera attached to a steel tower or a building installed at a work site, or may be an external camera attached to a multi-copter or a flying object such as an airship.
- the controller 30 acquires an image captured by the fixed point camera or the external camera via the communication device.
- the conversion processing unit 40 a may convert data to be displayed on the image display unit 41 among various data input from the controller 30 to the display device 40 into an image signal.
- the data input from the controller 30 to the display device 40 includes, for example, data indicating the temperature of engine cooling water, data indicating the temperature of hydraulic oil, data indicating the remaining amount of urea water, data indicating the remaining amount of fuel, etc. Including. Then, the conversion processing unit 40a outputs the image signal to the image display unit 41 for display.
- the conversion processing unit 40 a may be provided not in the display device 40 but in, for example, the controller 30. In this case, the imaging device 80 is connected to the controller 30.
- the display device 40 includes an input device 42.
- the input device 42 is a device for the operator of the shovel to input various information to the controller 30.
- the input device 42 is a push button switch provided on the switch panel.
- the input device 42 may be a membrane switch or a touch panel.
- the display device 40 operates by receiving power supply from the storage battery 70.
- the storage battery 70 is charged with the power generated by the alternator 11 a (generator) of the engine 11.
- the power of the storage battery 70 is also supplied to the electrical components 72 and the like.
- the starter 11 b of the engine 11 is driven by the power from the storage battery 70 to start the engine 11.
- the engine 11 is controlled by an engine controller (ECU) 74.
- the rotation shaft of the engine 11 is connected to the rotation shafts of the main pump 14 and the pilot pump 15.
- the ECU 74 transmits various data (for example, data indicating the cooling water temperature detected by the water temperature sensor 11 c) indicating the state of the engine 11 to the controller 30.
- the controller 30 stores these data in the storage unit 30a, and transmits the data to the display device 40 as needed.
- the main pump 14 is a hydraulic pump for supplying hydraulic fluid to the control valve 17 via a hydraulic fluid line.
- the main pump 14 is, for example, a swash plate type variable displacement hydraulic pump.
- the pilot pump 15 is a hydraulic pump for supplying hydraulic oil to various hydraulic control devices via a pilot line.
- the pilot pump 15 is, for example, a fixed displacement hydraulic pump.
- the control valve 17 is a hydraulic control device that controls a hydraulic system in the shovel.
- the control valve 17 selectively supplies the hydraulic fluid discharged by the main pump 14 to, for example, one or more hydraulic actuators.
- the hydraulic actuator includes, for example, a boom cylinder 7, an arm cylinder 8, a bucket cylinder 9, a traveling hydraulic motor, a turning hydraulic motor, and the like.
- the operating device 26 is a device used by the operator to operate the hydraulic actuator, and is provided in the cab 10.
- hydraulic fluid is supplied from the pilot pump 15 to the pilot port of the corresponding flow control valve.
- the hydraulic fluid of the pressure according to the operation content of the operating device 26 is supplied to the pilot port.
- the operation content includes, for example, an operation direction and an operation amount.
- the operating pressure sensor 29 detects a pilot pressure generated when the operating device 26 is operated, and outputs data indicating the detected pilot pressure to the controller 30.
- the controller 30 detects the operation content of the operating device 26 from the pilot pressure detected by the operation pressure sensor 29.
- the regulator 14 a of the main pump 14 outputs data indicating the swash plate angle to the controller 30.
- the discharge pressure sensor 14 b outputs data indicating the discharge pressure of the main pump 14 to the controller 30.
- An oil temperature sensor 14 c provided in a pipe line between the hydraulic oil tank and the main pump 14 outputs data representing the temperature of the hydraulic oil flowing through the pipe to the controller 30.
- the controller 30 stores the acquired data in the storage unit 30a.
- An engine speed adjustment dial 75 is provided in the driver's cab 10.
- the engine speed adjustment dial 75 is a dial for adjusting the engine speed, and can switch the engine speed in stages, for example.
- the engine speed adjustment dial 75 is configured such that the operator can switch the engine speed in four steps of SP mode, H mode, A mode, and idling mode.
- the engine speed adjustment dial 75 outputs data indicating the setting state of the engine speed to the controller 30.
- FIG. 2 shows a state in which the H mode is selected by the engine speed adjustment dial 75.
- the SP mode is a rotation speed mode selected when priority is given to the amount of work, and uses the highest engine rotation speed.
- the H mode is a rotational speed mode that is selected when it is desired to balance work amount and fuel consumption, and utilizes the second highest engine rotational speed.
- the A mode is a rotation speed mode selected when it is desired to operate the shovel with low noise while giving priority to fuel consumption, and uses the third highest engine rotation speed.
- the idling mode is a rotation speed mode selected when it is desired to put the engine into an idling state, and utilizes the lowest engine rotation speed.
- the engine 11 is controlled to a constant rotational speed by the engine rotational speed in the rotational speed mode set by the engine rotational speed adjustment dial 75.
- the information acquisition device SD1 detects information on the shovel.
- the information acquisition device SD1 includes a boom angle sensor, an arm angle sensor, a bucket angle sensor, a vehicle body tilt sensor, a turning angular velocity sensor, a boom rod pressure sensor, a boom bottom pressure sensor, an arm rod pressure sensor, and an arm bottom pressure sensor And at least one of a bucket rod pressure sensor, a bucket bottom pressure sensor, a boom cylinder stroke sensor, an arm cylinder stroke sensor, and a bucket cylinder stroke sensor.
- the boom angle sensor, the arm angle sensor, and the bucket angle sensor may be configured by a combination of an acceleration sensor and a gyro sensor.
- the information acquisition device SD1 is, for example, information on a shovel such as a boom angle, an arm angle, a bucket angle, a body inclination angle, a turning angular velocity, a boom rod pressure, a boom bottom pressure, an arm rod pressure, an arm bottom pressure, a bucket rod pressure, a bucket At least one of the bottom pressure, the boom stroke amount, the arm stroke amount, and the bucket stroke amount is acquired.
- a shovel such as a boom angle, an arm angle, a bucket angle, a body inclination angle, a turning angular velocity, a boom rod pressure, a boom bottom pressure, an arm rod pressure, an arm bottom pressure, a bucket rod pressure, a bucket At least one of the bottom pressure, the boom stroke amount, the arm stroke amount, and the bucket stroke amount is acquired.
- the controller 30 obtains an output of at least one of the ejection pressure sensor 14b, the operation pressure sensor 29, the imaging device 80, the information acquisition device SD1, and the like, and executes calculations by various functional elements.
- the various functional elements include a detection unit 300, an estimation unit 301, and the like.
- the various functional elements may be configured by software or hardware. Then, the controller 30 outputs the calculation result to the display device 40 or the like.
- the detection unit 300 is a functional element that detects that a predetermined state has occurred.
- the detection unit 300 detects that a dump truck (hereinafter, referred to as “dump”) as a transport vehicle has arrived at the loading position and that the dump has departed from the loading position.
- the shovel can load soil and the like onto the dump bed.
- the detection unit 300 detects that the dump has arrived at the loading position, for example, by detecting that the loading operation has been started. Also, by detecting that the loading operation is completed, it is detected that the dump has departed from the loading position.
- the loading operation is, for example, an operation of loading soil and the like onto a dump bed using a digging attachment, and includes one or more basic operations.
- the basic operation includes, for example, a series of operations such as an arm closing operation, a bucket closing operation, a boom raising operation, a forward turning operation, an arm opening operation, a bucket opening operation, a reverse turning operation, and a boom lowering operation.
- the boom raising and turning operation may be a combined operation in which the boom raising operation and the turning operation are simultaneously performed, and a series of independently performing the turning operation (individual operation) within a predetermined time after the boom raising operation (individual operation). It may be an operation.
- the earth unloading operation is a combined operation including a bucket opening operation (single operation) or a bucket opening operation.
- the detection unit 300 After detecting that the loading operation has been started, the detection unit 300 detects that the loading operation has been completed if the time during which the combination of the boom raising and turning operation and the earth unloading operation is not performed exceeds a predetermined time. May be In this case, the time when the combination of the boom raising and turning operation and the earth unloading operation is performed may be set as the time when the loading operation is completed. In addition, the completion of the loading operation may be detected only when the basic operation is performed a predetermined number of times or more after the start of the loading operation.
- the detection unit 300 may detect that a predetermined state has occurred from the image output by the imaging device 80. For example, when the image recognition process detects that the dump is approaching, it may be detected that the dump has arrived at the loading position. In addition, when it is detected that the bucket 6 is positioned above the loading platform of the dump by the image recognition processing, it may be detected that the loading operation has been started. In addition, when the image recognition processing detects that the dump is moving away, it may be detected that the dump has departed from the loading position.
- the detection unit 300 may have generated a predetermined state from an output of an environment recognition device such as a rider attached to a shovel. It may be detected.
- the detection unit 300 may detect that a predetermined state has occurred based on at least one output of a boom angle sensor, an arm angle sensor, a bucket angle sensor, a machine body tilt sensor, and the like. For example, when it is detected that the upper swing body 3 is in a predetermined posture, it may be detected that the loading operation has started (the dump has arrived). In addition, after detecting that the loading operation has been started, if the time when the predetermined posture is not detected exceeds the predetermined time, it may be detected that the loading operation has been completed (that the dump has departed). In this case, the point in time when the predetermined posture is detected last may be taken as the point in time when the loading operation is completed.
- the detection unit 300 may detect that a predetermined state has occurred based on the shovel position information and the dump position information.
- the detection unit 300 receives, for example, position information output by the positioning device mounted on the dump and compares it with the position information output by the positioning device mounted on the shovel. Then, it may be detected that the dump has arrived when the dump approaches within a predetermined distance range centered on the shovel. Also, after detecting that the dump has arrived, it may detect that the dump has departed when the dump has moved away from the predetermined distance range.
- the positioning device includes, for example, a GNSS receiver and the like.
- the detection unit 300 may detect that a predetermined state has occurred based on the output of a switch manually operated by the operator of the shovel or a switch manually operated by the driver of the dump truck.
- the detection unit 300 may detect that the dump has arrived, for example, when an arrival signal transmitted by the dump is received. Also, it may be detected that the dump has departed when the departure signal emitted by the dump is received. The same applies to switches manually operated by the operator of the shovel.
- the detection unit 300 may detect that a predetermined state has occurred by combining at least two of the above-described detection methods.
- the estimation unit 301 is a functional element that estimates information on a vehicle that cooperates with the shovel.
- the estimation unit 301 estimates information on a dump as a vehicle linked with a shovel.
- Information on dumping includes, for example, discharge site return time, arrival time, remaining time, and the like.
- a dump truck loaded with soil travels from the loading position to the dumping site, discharges the soil at the dumping site, and loads the dumping site. It is the time required to return to the position.
- the arrival time is, for example, the time when a dump capable of loading earth and sand arrives at the loading position.
- the remaining time is the time until the dump arrives at the loading position.
- the estimating unit 301 starts the next loading operation for the one dump (dumping position at which the dump is loaded).
- the actual measurement time up to the time of arrival at (1) may be estimated as the future round trip time (predicted time) for that one dump.
- the point in time when the loading operation is completed is, for example, the point in time when the detection unit 300 detects that the loading operation is completed.
- the point in time when the loading operation is started is, for example, a point in time when the detection unit 300 detects that the loading operation is started.
- the estimation unit 301 estimates the arrival time, which is the time when each dump returns to the loading position, based on the round-trip time (predicted time) of one or more dumps and the departure time of each dump. Good.
- the departure time is, for example, the time when the dumped dumped earth and sand departs from the loading position toward the discharge site (the time when the detection unit 300 detects that the loading operation is completed).
- the estimation unit 301 may display the estimated information on the image display unit 41 of the display device 40. In the present embodiment, when the remaining time until the arrival time falls below a predetermined time, the estimation unit 301 pops up and displays the remaining time. In this case, the estimation unit 301 may output audio from an audio output device such as a speaker or a buzzer installed in the driver's cab 10. This is to reliably convey the remaining time to the operator of the shovel.
- an audio output device such as a speaker or a buzzer installed in the driver's cab 10. This is to reliably convey the remaining time to the operator of the shovel.
- FIG. 3 is a flowchart showing an example of the time recording process.
- the controller 30 repeatedly executes this time recording process at a predetermined control cycle while the shovel is in operation.
- the controller 30 determines whether a dump has arrived (step ST1). In the present embodiment, the controller 30 determines that the dump has arrived when the detection unit 300 detects that the loading operation has been started. For example, when the detection unit 300 detects that the combination of the boom raising and turning operation and the earth unloading operation has been performed based on the output of the operation pressure sensor 29, that is, the detection unit 300 has started, the dump arrives. It is determined that
- the controller 30 When it is determined that the dump has arrived (YES in step ST1), the controller 30 records the arrival time (step ST2).
- the controller 30 records, as the arrival time, the time at which the detection unit 300 detects that the loading operation has been started (loading start time).
- the arrival time may be a time calculated from the loading start time, such as a time obtained by subtracting a predetermined time from the loading start time.
- the controller 30 may set the loading flag indicating that the loading operation is in progress to “ON”. The loading flag may remain “on” until it is determined that the loading operation is complete. When the loading flag is set to "on”, the controller 30 may omit steps ST1 and ST2.
- step ST1 When it is determined that the dump has not arrived (NO in step ST1), the controller 30 executes step ST3 without recording the arrival time.
- the controller 30 determines whether the dump has departed (step ST3).
- the controller 30 determines that the dump has departed. For example, after the detection unit 300 detects that the dump has arrived (the loading operation has been started), if the time during which the combination of the boom raising and turning operation and the earth unloading operation is not performed exceeds a predetermined time, Detect when the dump has departed (the loading operation has been completed).
- the controller 30 records the departure time (step ST4).
- the controller 30 records, as the departure time, the time when the detection unit 300 detects that the loading operation is completed (loading completion time).
- the departure time may be a time calculated from the loading completion time, such as a time obtained by adding a predetermined time to the loading completion time.
- the controller 30 may record, as the departure time, the time when the combination of the latest boom raising and turning operation and the earth unloading operation was performed. In this case, whenever the combination of the boom raising and turning operation and the earth unloading operation is performed, the controller 30 records the time when the earth unloading operation is performed as the time when the departure time can be reached.
- the controller 30 determines that the dump has departed, that is, when it determines that the loading operation is completed, the loading flag may be set to "off". Then, when the loading flag is set to “off”, the controller 30 may omit step ST3 and step ST4.
- step ST3 When it is determined that the dump has not departed (NO in step ST3), the controller 30 ends the current time recording process without recording the departure time.
- the controller 30 can roughly record the arrival time by recording the loading start time. Also, by recording the loading completion time, the departure time can be roughly recorded.
- FIG. 4 is a flowchart showing an example of dump information calculation processing.
- the controller 30 repeatedly executes this dump information calculation process at a predetermined control cycle while the shovel is in operation.
- the controller 30 may execute this dump information calculation process each time the loading operation is started.
- the controller 30 calculates the round trip time (step ST11).
- the estimation unit 301 of the controller 30 measures the time from when the first loading operation for a specific dump is completed to when the second loading operation for the dump is started. Is calculated as the first round trip time (measured time). Then, based on the first round trip time (measured time), a second round trip time (predicted time) related to the one dump is estimated. That is, a second round trip time (estimated time) which is a time from the time when the second loading operation is completed to the time when the third loading operation is started is estimated.
- the first round trip time (measured time) may be adopted as the second round trip time (estimated time) as it is.
- the second round trip time (prediction time) is not estimated until the first round trip time (measured time) is obtained.
- the second round trip time (prediction time) may be estimated based on a first round trip time (prediction time) calculated based on the distance from the loading position to the discharge site.
- the third round trip time (estimated time) from the time when the third loading work is completed to the time when the fourth loading work is started is, for example, the first round trip time (measured time) and the second round trip time (measured time) It may be an average value of The same applies to the fourth round trip time (predictive time), the fifth round trip time (predictive time), the sixth round trip time (predictive time), and the like. However, instead of the average value, other statistical values such as maximum value, minimum value, median value, and median value may be adopted.
- the controller 30 calculates or estimates the round trip time for each dump.
- the controller 30 may prompt the operator to input the number of dumps linked with the shovel. For example, an input screen may be displayed to prompt the operator to input the number of dumps when the shovel is started.
- the controller 30 may distinguish each of the plurality of dumps by performing image recognition on the characters of the license plate appearing in the image output by the imaging device 80.
- the controller 30 When the number of dumps (for example, “4 cars”) is input, the controller 30 performs dumping relating to loading work for the fifth, ninth, thirteenth, etc., (4n + 1) th (n is an integer of 1 or more) It may be determined that it is a dump (first dump) related to the second loading operation. In this case, the controller 30 calculates the time from the time when the first loading operation is completed to the time when the fifth loading operation is started as the first round trip time (measured time) for the first dump. Then, based on the first round trip time (measured time) for the first dump, the ninth loading work is started from the second round trip time (predicted time) for the first dump, that is, when the fifth loading work is completed. Estimate the time until the The first round trip time (measured time) may be used as the second round trip time (estimated time) as it is.
- the controller 30 calculates the time from the time when the first loading operation is completed to the time when the fifth loading operation is started as the first round trip time (
- the controller 30 may determine that the dumps related to the (4n + 2) th loading operation such as the sixth, tenth, and fourteenth times are the dumps (second dump) related to the second loading operation. In this case, the controller 30 calculates the time from the time when the second loading operation is completed to the time when the sixth loading operation is started as the first round trip time (measured time) for the second dump. Then, based on the first round trip time (measured time) for the second dump, the tenth loading work is started from the second round trip time (predicted time) for the second dump, that is, the point when the sixth loading work is completed. Estimate the time until the
- the controller 30 may estimate the number of dumps when the loading interval, which is the difference between the loading completion time and the next loading start time, exceeds a predetermined time. This is based on the premise that each dump is gathered at the work site when the first loading operation is performed. For example, when four dumps are gathered at the work site, four loading operations are continuously performed until the fourth loading operation is completed. This is because four dumps that can load earth and sand are already waiting. Then, when the fourth loading operation is completed, a situation occurs in which there is no dump that can load the earth and sand. This is because the first dump has not yet returned to the loading position.
- the controller 30 determines that the loading interval which is the difference between the fourth loading completion time and the fifth loading start time is significantly larger than the previous loading interval. And the number of dumps may be estimated to be four. After estimating the number of dumps, the controller 30 calculates or estimates the round-trip time of each dump as in the case where the number of dumps is input.
- the controller 30 calculates the next arrival time (step ST12).
- the controller 30 calculates the next arrival time by adding the round trip time (predicted time) to the previous departure time of the dump scheduled to arrive at the loading position next time.
- the previous departure time is, for example, the previous loading completion time.
- the controller 30 calculates the remaining time until the next arrival time (step ST13). In the present embodiment, the controller 30 calculates the difference between the next arrival time and the current time as the remaining time.
- the controller 30 can determine whether the dump has arrived at the loading position by determining whether the loading operation has started. Also, by determining whether the loading operation is completed, it can be determined whether the dump has departed from the loading position. Then, based on the time from the completion of the loading operation to the start of the next loading operation, it is possible to estimate the round trip time until the dump truck leaving from the loading position returns to the loading position. Further, the arrival time and the remaining time can be calculated from the round trip time.
- FIG. 5A shows an example of the main screen 41V displayed on the image display unit 41 of the display device 40.
- FIG. 5B shows an example of the main screen 41V when the remaining time is popped up.
- a monitor is, for example, a monitor attached to a portable information terminal such as a smartphone carried by the operator of the shovel, or a stationary monitor installed in the operation room 10 separately from the display device 40 It is also good.
- the main screen 41V includes a date and time display area 41a, a travel mode display area 41b, an attachment display area 41c, an average fuel consumption display area 41d, an engine control state display area 41e, an engine operating time display area 41f, a cooling water temperature display area 41g, and a remaining amount of fuel.
- a display area 41h, a rotation speed mode display area 41i, a urea water remaining amount display area 41j, a hydraulic fluid temperature display area 41k, and a camera image display area 41m are included.
- Each of the travel mode display area 41b, the attachment display area 41c, the engine control state display area 41e, and the rotation speed mode display area 41i is an example of a setting state display unit that displays the setting state of the shovel.
- the average fuel consumption display area 41d, the engine operation time display area 41f, the cooling water temperature display area 41g, the fuel remaining amount display area 41h, the urea water remaining amount display area 41j, and the hydraulic oil temperature display area 41k It is an example of the driving
- the date and time display area 41a is an area for displaying the current date and time.
- the traveling mode display area 41 b is an area for displaying an icon indicating the current traveling mode.
- the attachment display area 41c is an area for displaying an icon representing the currently attached attachment.
- the average fuel consumption display area 41 d is an area for displaying the current average fuel consumption.
- the engine control state display area 41 e is an area for displaying an icon indicating the control state of the engine 11.
- the coolant temperature display area 41g is an area for displaying the current temperature state of the engine coolant.
- the remaining fuel amount display area 41 h is an area for displaying the remaining amount state of the fuel stored in the fuel tank.
- the rotation speed mode display area 41i is an area for displaying the present rotation speed mode.
- the urea water remaining amount display area 41 j is an area for displaying the state of the remaining amount of urea water stored in the urea water tank.
- the hydraulic oil temperature display area 41k is an area for displaying the temperature state of the hydraulic oil in the hydraulic oil tank.
- the camera image display area 41 m is an area for displaying a camera image. In the example of FIG. 5A, the camera image display area 41m displays an image output by the rear camera.
- the controller 30 displays the pop-up window 41P when the predetermined display condition is satisfied.
- the pop-up window 41P is an image for transmitting information on the dump in cooperation with the shovel to the operator of the shovel.
- the remaining time calculated for each transport vehicle is displayed on the display device 40.
- the pop-up window 41P includes a text message "The next dump is scheduled to arrive after ⁇ minutes", which informs the remaining time until the next arrival time.
- the controller 30 may make a pop-up display of the pop-up window 41P or, instead of pop-up display of the pop-up window 41P, voice-output information regarding the remaining time from a speaker installed in the cab 10.
- the predetermined display condition includes, for example, that the remaining time is less than the predetermined time, that the elapsed time from the latest loading completion time exceeds the predetermined time, that the operator of the shovel operates the predetermined switch, etc. .
- the controller 30 notifies the operator of that by the pop-up display of the pop-up window 41P and the voice output.
- This display allows the controller 30 to convey to the operator of the shovel the remaining time until the next dump arrives at the loading position.
- the operator of the shovel can perform setup work etc. in a timely manner by knowing the remaining time.
- the setup work is, for example, a preparation work to ensure that the loading work is smoothly performed, and includes a work of collecting the soil near the loading position, a work of leveling the ground where the dump passes or stops, and the like.
- the screen shown in FIG. 6 includes a travel mode display area 41b, an attachment display area 41c, an engine control state display area 41e, a cooling water temperature display area 41g, a remaining fuel amount display area 41h, a rotational speed mode display area 41i, and a remaining amount of urea water.
- the display area 41j differs from the screen of FIG. 5A in that the display area 41j is superimposed on the camera image display area 41m, the contents displayed in each area are the same as the screen of FIG. 5A.
- the screen of FIG. 6 is different from the screen of FIG. 5A in that the dump information display area 41 n is included below the camera image display area 41 m.
- the dump information display area 41n is a statistics display area G1, a current set display area G2, a previous set display area G3, a first dump display area G4, a second dump display area G5, and a third dump display area G6.
- the statistical display area G1 is an area for displaying statistical values for each dump.
- the count (total loading number) for each of the four dumps and the average value of the loading time, loading interval, and round trip time are displayed.
- the average values of the loading time, loading interval and round trip time are “1′24 ′ ′”, “5′24 ′ ′” and “5′24 ′ ′”. It shows that it is "25'24”.
- the current set display area G2 is an area for displaying information on the current set.
- "Set” means a collection of information on loading operations for the number of times equivalent to the number of dumps. In the example of FIG. 6, since four dumps are used, it means a collection of information on four loading operations.
- the current set is the twelfth set, which corresponds to a collection of information on the 45th to 48th loading operations.
- the current set display area G2 indicates that the state before the forty-seventh loading operation for the third dump is started.
- the previous set display area G3 is an area for displaying information on the previous set.
- the pre-set display area G3 has, for example, the loading time, loading interval and reciprocation time at the 41st loading operation for the first dump, “1′23 ′ ′”, “5′21 ′ ′” and “25′23 ′ ′”, respectively. It shows that it was.
- the dump information display area 41n displays information on two sets of the current set display area G2 and the previous set display area G3, but information on three or more sets may be displayed. .
- the dump information display area 41 n may include information on the current set, information on the previous set, and information on the last set.
- At least one of the current set display area G2 and the previous set display area G3 may be highlighted so that the operator can distinguish between the current set display area G2 and the previous set display area G3.
- the dump information display area 41 n may include a next set display area (not shown).
- the next set display area is an area for displaying information on the next set, and corresponds to a collection of information on the 49th to 52nd loading operations in the example of FIG.
- the information on the next set includes a predicted value calculated from the information on the past set.
- At least one of the current set display area G2, the previous set display area G3, and the next set display area is highlighted so that the operator can distinguish between the current set display area G2, the previous set display area G3, and the next set display area. It may be done.
- the front set display area G3 may be omitted.
- the first dump display area G4 is an area for displaying information on the first dump.
- the second dump display area G5 is an area for displaying information on the second dump
- the third dump display area G6 is an area for displaying information on the third dump
- the fourth dump display area G7 is an area for displaying information on the third dump.
- the remaining time display area G8 is an area for displaying information on the remaining time.
- the remaining time display area G8 is arranged in the current set display area G2 where the information on the third dump is to be displayed. This is to correspond to the current state waiting for the arrival of the third dump.
- the remaining time display area G8 indicates "1'12" until the arrival of the third dump, and the fluctuation range "1'08" to 1'15 "'with an expected probability of 90%. "Indicates that the third dump arrives while the time in" has elapsed.
- the predicted probability is a numerical value representing the certainty of the remaining time, and is calculated based on a predetermined formula.
- the remaining time is updated as time passes.
- the display of the remaining time is, for example, counted down in one-second increments.
- the remaining time display area G8 may display the remaining time as a negative value, for example, "-2'30". “-2′30 ′ ′” indicates that, for example, 2 minutes and 30 seconds have already passed since the third dump arrived at the loading position. Alternatively, “ ⁇ 2′30 ′ ′” may indicate that the third dump has not yet arrived after 2 minutes and 30 seconds have elapsed from the estimated arrival time.
- the dump information display area 41 n may display the remaining time of each of the first dump to the fourth dump.
- the dump information display area 41n may include four remaining time display areas G8 corresponding to each of the first dump to the fourth dump.
- the dump image display area G9 is an area where dump images (computer graphics images) for the number of dumps being used are displayed. In the example of FIG. 6, four dump images are displayed.
- the horizontal scroll bar G10 indicates the horizontal scroll state of the dump information display area 41n
- the vertical scroll bar G11 indicates the vertical scroll state of the dump information display area 41n.
- the operator can operate the horizontal scroll bar G10 and the vertical scroll bar G11 via the touch panel as the input device 42.
- the shovel according to the embodiment of the present invention can more easily convey to the operator information on the dump that is a vehicle linked with the shovel. Therefore, the operator of the shovel can easily grasp, for example, the time until the next dump arrives at the loading position. As a result, the operator can perform setup work in a timely manner. Also, the operator can easily grasp, for example, the number of loading operations completed so far. As a result, it is possible to easily grasp the amount of work performed by the shovel, the amount of work performed by the dump, and the like. Further, the information displayed in the dump information display area 41 n may be displayed on a display device outside the shovel through wireless communication.
- the display device outside the shovel includes a monitor of a management device installed in a management center or the like, a monitor of a support device such as a portable information terminal carried by a worker working around the shovel, or the like.
- a management center installed in a management center or the like
- a monitor of a support device such as a portable information terminal carried by a worker working around the shovel, or the like.
- the manager in the management center, the worker working around the shovel, etc. can easily grasp the information on the dump linked with the shovel, and can use the grasped information for dump management.
- the shovel according to the embodiment of the present invention is mounted on the lower traveling body 1, the upper revolving superstructure 3 rotatably mounted on the lower traveling body 1, and the upper revolving superstructure 3, and carries the soil It has an attachment which carries out the work of loading in and a display device 40 which displays the remaining time calculated for each transport vehicle.
- the shovel according to the embodiment of the present invention is based on the point in time when the loading operation of the soil onto the transport vehicle (dump) by the attachment is completed and the next loading operation on the dump is started.
- the controller 30 may be provided as a control device that estimates the required time (round trip time) until the earth is discharged and returned. For example, the controller 30 records the time when the loading operation is completed (loading complete time) as the time when the dump leaves the loading position (departing time) and dumps the time when loading operation is started (loading start time) Record as the point of arrival at the loading position (arrival time). Then, the time from the loading completion time to the next loading start time is calculated as the round trip time of the dump.
- the controller 30 may calculate the time from the loading start time to the loading completion time as the loading time from the start of loading to the completion of the loading. In addition, the controller 30 may calculate the remaining time until loading to the next dump is possible based on the round trip time. The controller 30 may calculate the remaining time for each dump. The round trip time, the loading time and the like may be recorded for each dump and an average value and the like may be calculated.
- the shovel according to the embodiment of the present invention can calculate information on the dump and transmit it to the operator even if the positioning device such as the GNSS receiver is not mounted on the dump.
- the shovel can calculate information on the dump and transmit it to the operator.
- FIG. 7 shows the main screen 41SV displayed on the display device 41S of the assisting device installed near the driver's seat of the fourth dump. Moreover, FIG. 7 shows the condition in the case where information (processing result) is shared by two shovels (controllers 30) and four dumps.
- the main screen 41V may display the situation in the case where information (processing result) is shared by three or more shovels (controllers 30).
- the support device is a device that supports the work related to loading of soil onto a transport vehicle by a shovel, and includes, for example, a multifunctional mobile information terminal such as a mobile phone, a smartphone, and a tablet PC.
- the main screen 41SV of FIG. 7 displays information on first to fourth dumps in cooperation with the shovel A working at the first work site (first loading site). Further, it is displayed that there is a shovel B which has actually started work at the second work site (the second loading site).
- the main screen 41SV includes a map information display area 41q and a dump information display area 41n.
- the map information display area 41 q is an area for displaying map information.
- a map including the first loading site and the second loading site is displayed.
- the shovel image G12 superimposed and displayed on the map information display area 41q indicates the position of the shovel working at the loading site.
- the shovel image G12A indicates the position of the shovel A working at the first loading site
- the shovel image G12B indicates the position of the shovel B that has actually started working at the second loading site.
- the dump image G13 displayed superimposed on the map information display area 41q indicates the position of the dump that cooperates with the shovel.
- the dump image G13 includes a dump image G13A and a dump image G13B.
- the dump image G13A indicates the position of the second dump estimated to be loaded with soil by the shovel A, and the dump image G13B is estimated to be waiting for loading of the soil by the shovel A to be started Indicates the location of the third dump.
- the busy image G14 superimposed and displayed in the map information display area 41q indicates a busy condition of each loading site.
- the busy image G14 includes a busy image G14A and a busy image G14B.
- the busy image G14A indicates that the first loading site is in a busy state
- the busy image G14B indicates that the second loading site is in a disappointing state.
- the busy state indicates, for example, a state where there is a dump waiting for loading by a shovel.
- the loose state indicates, for example, a state in which there is no dump waiting for loading by a shovel.
- the traffic congestion image G16 superimposed and displayed on the map information display area 41q indicates a traffic congestion state of the road on which the dump travels.
- the traffic jam image G16 includes a traffic jam image G16A and a traffic jam image G16B.
- the traffic jam image G16A is an image indicating a section in which the average traveling speed is equal to or less than the first threshold, and is highlighted in the first color (for example, yellow).
- the traffic jam image G16B is an image showing a section whose average traveling speed is equal to or less than a second threshold smaller than the first threshold, and is highlighted in a second color (for example, red).
- the controller 30 is configured to display a traffic jam image G16 based on traffic information such as traffic jam information, for example.
- the controller 30 obtains traffic information such as traffic congestion information by, for example, accessing an API (Application Programming Interface) related to traffic associated with a map published on the outside web via a communication device. It is also good.
- API Application Programming Interface
- the display content of the dump information display area 41n is substantially the same as the display content of the dump information display area 41n shown in FIG.
- the display content of the dump information display area 41n shown in FIG. 7 is mainly the dumped image shown in FIG. 6 in that it includes the emphasis image G15 and the remaining time in the remaining time display area G8 is a negative value. It differs from the display content of the information display area 41n.
- the emphasized image G15 is an image that enables information on the vehicle (fourth dump) to be distinguished from information on other vehicles (first dump to third dump).
- the emphasized image G15 is a solid black frame surrounding the fourth dump display area G7 (see FIG. 6).
- the emphasis image G15 may be expressed in another display mode such as a dotted line frame, a red frame, a green frame, and the like. The driver of the fourth dump can easily identify the information related to the dump that he / she drives by looking at the highlight image G15.
- the remaining time "-2'30" displayed in the remaining time display area G8 indicates that 2 minutes and 30 seconds have already passed since the third dump arrived at the first loading site. In this case, the display of the prediction probability and the fluctuation range is omitted. In the remaining time display area G8, "already arrived” is displayed instead of "until arrival".
- the remaining time "-2'30" displayed in the remaining time display area G8 may indicate that the arrival of the third dump is delayed by 2 minutes and 30 seconds from the estimated arrival time. Also in this case, the display of the prediction probability and the fluctuation range is omitted. Further, in the remaining time display area G8, text information such as "delay" is displayed instead of "already arrived”.
- the controller 30 may display the remaining time added with the delay in the remaining time display area G8. Specifically, after re-estimating the arrival time of the third dump, the controller 30 calculates the remaining time for the newly estimated arrival time, and causes the remaining time to be displayed in the remaining time display area G8. It is also good.
- the shovel support device that supports the work related to the loading of earth and sand onto the transport vehicle by the shovel includes the display device 41S that displays the remaining time calculated for each transport vehicle. For example, map information and position information of the shovel are displayed on the display device 41S.
- the display device 41S may display map information and a busy state for each loading site.
- the dump driver can determine which shovel of the plurality of shovels should be taken to the loading position. For example, the driver of the fourth dump waits for “two minutes and thirty seconds” even though the second dump is being loaded and the third dump has already arrived at the first loading site. Can be recognized. On the other hand, the driver of the fourth dump can recognize that there is no waiting time at the second loading site. Therefore, the driver of the fourth dump can judge that it is more efficient to go to the second loading site.
- the main screen 41V of FIG. 8 differs from the main screen 41V of FIG. 6 in the content displayed in the dump information display area 41n.
- the broken line and the dashed-dotted line in the dump information display area 41 n are for the purpose of explanation and are not actually displayed.
- the dump information display area 41n of FIG. 8 is a first dump display area G4, a second dump display area G5, a third dump display area G6, a fourth dump display area G7, a remaining time display area G8, and a dump It includes an image display area G9, a horizontal scroll bar G10, a vertical scroll bar G11, a maximum loading amount display area G20, and an arrival interval display area G21.
- the first dump display area G4 is an area for displaying information on the first dump.
- the second dump display area G5 is an area for displaying information on the second dump
- the third dump display area G6 is an area for displaying information on the third dump
- the fourth dump display area G7 is an area for displaying information on the third dump.
- the remaining time display area G8 is an area for displaying information on the remaining time.
- the dump image display area G9 is an area where dump images for the number of dumps being used are displayed. In the example of FIG. 8, four dump images are displayed.
- the horizontal scroll bar G10 indicates the horizontal scroll state of the dump information display area 41n
- the vertical scroll bar G11 indicates the vertical scroll state of the dump information display area 41n.
- the operator can operate the horizontal scroll bar G10 and the vertical scroll bar G11 via the touch panel as the input device 42.
- the maximum loading amount display area G20 is an area for displaying the maximum loading amount.
- the maximum loading amount display area G20 includes areas G20a to G20d.
- the area G20a displays the maximum loading capacity of the first dump
- the area G20b displays the maximum loading capacity of the second dump
- the area G20c displays the maximum loading capacity of the third dump
- the area G20d displays the maximum loading capacity of the third dump.
- the maximum loading capacity of 4 dumps is displayed.
- the controller 30 recognizes the maximum loading amount of the dump, for example, by image recognition of the size or classification number of the license plate of the dump shown in the image output by the imaging device 80. Alternatively, the controller 30 recognizes the maximum load amount of the dump based on the information transmitted from the device such as a beacon based on the communication standard for Wi-Fi (registered trademark) or Bluetooth (registered trademark) mounted on the dump. You may At this time, the controller 30 may determine that the dump has arrived at the loading position. Alternatively, the controller 30 may receive the maximum load of dump based on information from the portable information terminal possessed by the driver of the dump, which is received through communication based on the communication standard for Wi-Fi (registered trademark) or Bluetooth (registered trademark), etc. Alternatively, it may be recognized that the dump has arrived at the loading position. Thus, the controller 30 may identify the dump by communication.
- the controller 30 may display the maximum loading capacity of the dump in weight (unit "t (ton)", may display it in volume (unit "m 3 (cubic meter)"), or weight and volume You may display both. In the example of FIG. 8, the maximum loading capacity of each dump is indicated by both weight and volume.
- the controller 30 may be configured to recognize the affiliation destination of the dump as well as the maximum loading amount of the dump.
- the affiliation destination is, for example, a corporation that owns a dump or an individual business owner.
- the controller 30 changes the color or shape of the dump image displayed in the dump image display area G9 so that the operator of the shovel can distinguish the affiliation destination of the dump. May be
- the arrival interval display area G21 is an area for displaying the arrival interval of dumps.
- the arrival interval of dumps is displayed using the arrival time point display image G22 and the current time display image G23.
- the arrival time display image G22 is a graphic showing when each dump arrives at the work site or when it arrives.
- the arrival time point display image G22 is a bar-like figure that represents each of the past arrival time point and the future arrival time point of each dump.
- the current display image G23 is a graphic representing the current time.
- the current display image G23 is configured by a combination of a triangle and a straight line extending from one of its vertices.
- the current display image G23 is configured to move rightward in the main screen 41V as time passes.
- the current display image G23 may be fixed at a predetermined position in the main screen 41V.
- each of the arrival time point display images G22 may be configured to move leftward in the main screen 41V as time passes.
- the arrival time point display image G22 on the left side of the current time display image G23 represents the past arrival time point of each dump
- the arrival time point display image G22 on the right side of the current time display image G23 is the future of each dump
- the arrival time display image G22 includes images G22a to G22n.
- the image G22a represents the arrival time of the second dump before
- the image G22b represents the arrival time of the second before dumping
- the image G22c represents the time of arrival of the third dump
- the image G22d represents the arrival time of the third dump.
- the image G22e represents the previous arrival time of the first dump
- the image G22f represents the previous arrival time of the second dump.
- the image G22g represents the next arrival time of the third dump
- the image G22h represents the next arrival time of the fourth dump
- the image G22i represents the next arrival time of the first dump
- the image G22j is the 2 Indicates the next arrival time of the dump.
- the image G22k represents the point of time of arrival of the third dump
- the image G22l represents the point of arrival of the fourth dump
- the picture G22m represents the point of arrival of the first dump
- the arrival time point display image G22 is displayed as being aligned along a straight line set for each dump, like a waveform on a time chart.
- the time axis which is a straight line set for each dump, has a common width, and the same horizontal position on each time axis indicates the same time.
- the images G22a, G22e, G22i, and G22m are images relating to the first dump, they are displayed so as to be aligned in the lateral direction along the first straight line in the first dump display area G4.
- the images G22b, G22f, G22j, and G22n are images relating to the second dump, they are displayed in the second dump display area G5 so as to be aligned horizontally along the second straight line, and the images G22c, G22g, and G22n are displayed.
- G22k is an image related to the third dump, it is displayed so as to be aligned horizontally along the third straight line in the third dump display area G6, and the images G22d, G22h and G22l are images related to the fourth dump Therefore, they are displayed side by side along the fourth straight line in the fourth dump display area G7.
- the arrival time display image G22 may not only be displayed along a straight line as shown in FIG. 8, but may also be displayed along a curve such as an outline of a circular analog clock image. .
- the current display image G23 is located to the right of the image G22f and to the left of the image 22g in the example of FIG. This means that the present time is after the second dump arrives at the work site and before the third dump arrives at the work site. Therefore, "3 to 10" until arrival, which is displayed in the remaining time display area G8, indicates that the remaining time until the third dump arrives is 3 minutes and 10 seconds.
- the arrival time display image G22 may be configured to be able to change the display position.
- the operator of the shovel can move the desired arrival time display image G22 by performing a drag operation at the desired arrival time display image G22.
- the operator moves the image G22g to the right by a distance corresponding to 10 minutes, for example, when the driver of the third dump receives notification by telephone or the like that arrival to the work site is delayed by about 10 minutes. It is also good.
- the remaining time displayed in the remaining time display area G8 is updated according to the movement of the image G22g to the right, and becomes “13′10 ′ ′” to which 10 minutes are added. If it is estimated that the fourth dump will arrive earlier than the third dump, the remaining time displayed in the remaining time display area G8 may be switched to the remaining time until the fourth dump arrives.
- the arrival point display image G22 may be configured to be erasable.
- the operator of the shovel can erase the desired arrival time display image G22 by performing a flick operation at the desired arrival time display image G22.
- the operator may delete the desired arrival time display image G22 by performing a double tap operation at the desired arrival time display image G22, popping up a command selection window, and selecting a delete command.
- the operator may delete the image G22g, for example, when the driver of the third dump receives a notification that he can not go to the work site by telephone or the like. In this case, the remaining time displayed in the remaining time display area G8 is switched to the remaining time until the fourth dump arrives.
- a bidirectional arrow is displayed between the image G22h relating to the fourth dump and the current display image G23, and in the remaining time display area G8 as a balloon image extending from the bidirectional arrow, The remaining time until the fourth dump arrives is displayed.
- the arrival time display image G22 may be configured to be able to change the display mode such as color or line type.
- the display mode of the desired arrival time display image G22 may be changed.
- the operator may change the line type of the image G22c related to the third dump from the solid line to the dotted line, for example, when the loading operation by the shovel with respect to the third dump arriving at the work site is not performed. This is to allow a person who has looked at the dump information display area 41 n to recognize that the loading operation for the third dump by the shovel has not been performed.
- the operator of the shovel recognizes that the dump does not come to the work site
- the operator may change the display mode of the arrival time display image G22 related to the dump.
- the operator may change the color of the images G22 j and G22 n by the same operation as described above, for example, when the operator is notified by telephone or the like that the second dump does not come to the work site.
- This is to allow a person who has looked at the dump information display area 41 n to recognize that the second dump does not come to the work site after the current time. With this configuration, a person who looks at the dump information display area 41 n can grasp at what cycle the dump comes or does not come to the work site.
- the operator of the shovel can easily grasp the remaining time until the next dump arrives. Also, the operator can easily grasp which of the first dump to the fourth dump the next dump is. Furthermore, the operator can simultaneously grasp the past arrival time of each dump and the future arrival time of each dump. Specifically, it is possible to roughly grasp not only the arrival time of the third dump, which is scheduled to arrive next, but also the arrival time of each of the fourth dump, the first dump, and the second dump.
- the operator of the shovel can manipulate the arrival time display image G22. Therefore, even when the arrival time display image G22 is deleted or its position is changed, the operator of the shovel can easily grasp the remaining time until the next dump arrives. This is because the remaining time is updated according to the deletion or movement of the arrival time display image G22.
- the arrival time display image G22 may be automatically changed in response to the input or update.
- the arrival time point display image G22 related to the dump displayed on the display device 40 is automatically erased according to the deletion. It is also good.
- the shovel arrives at several dumpers with one or several other shovels via a communication apparatus.
- the scheduled time may be shared.
- the controller 30 may change the display color of the arrival time display image G22 for each shovel in order to indicate by which shovel the loading work is actually performed.
- the main screen 41V of FIG. 9 differs from the main screen 41V of FIG. 8 in the content displayed in the dump information display area 41n.
- the broken line and the dashed-dotted line in the dump information display area 41 n are for the purpose of explanation and are not actually displayed.
- the dump information display area 41n of FIG. 9 includes a first dump display area G4, a second dump display area G5, a third dump display area G6, a fourth dump display area G7, a remaining time display area G8, and a dump It includes an image display area G9, a horizontal scroll bar G10, a vertical scroll bar G11, a maximum loading amount display area G20, and an arrival interval display area G31.
- the remaining time display area G8 is an area for displaying information on the remaining time.
- the remaining time display area G8 includes a remaining time display area G8a, a remaining time display area G8b, and a remaining time display area G8c.
- the remaining time display area G8a displays information on the remaining time until the next dump arrives
- the remaining time display area G8b displays information on the remaining time until the next dump arrives.
- the remaining time display area G8c displays the remaining time (arrival interval) from the arrival of the next dump to the arrival of the next dump.
- the arrival interval display area G31 is an area for displaying the arrival interval of dumps, similarly to the arrival interval display area G21 of FIG. In FIG. 9, in the arrival interval display area G31, the arrival interval of dumps is displayed using the arrival time point display image G32 and the current time display image G33.
- the arrival time display image G32 is a graphic showing when each dump arrives at the work site or when it arrives.
- the arrival time display image G32 is a bar-like figure that represents each of the past arrival time and the future arrival time of each dump, and has different colors for each dump.
- the current display image G33 is a graphic representing the current time.
- the current display image G33 is configured by a combination of a triangle and a straight line extending from one of its vertices, as in the current display image G23 of FIG.
- the current display image G33 is configured to move rightward in the main screen 41V as time passes.
- the current display image G23 may be fixed at a predetermined position in the main screen 41V.
- each of the arrival time point display images G32 may be configured to move leftward in the main screen 41V as time passes.
- the arrival time display image G32 on the left side of the current display image G33 represents the past arrival time of each dump
- the arrival time display image G32 on the right of the current display image G33 is the future of each dump
- the arrival time display image G32 includes images G32a to G32n.
- the image G32a represents the arrival time of the second dump before
- the image G32b represents the arrival time of the second before the second dump
- the image G32c represents the arrival time of the third of the third dump
- the image G32d represents the arrival time of the third dump.
- the image G32e represents the previous arrival time of the first dump
- the image G32f represents the previous arrival time of the second dump.
- the image G32g represents the next arrival time of the third dump
- the image G32h represents the next arrival time of the fourth dump
- the image G32i represents the next arrival time of the first dump
- the image G32j is the 2 Indicates the next arrival time of the dump.
- the image G32k represents the point of time of arrival of the third dump
- the image G32l represents the point of arrival of the fourth dump
- the picture G32m represents the point of arrival of the first dump
- the arrival point display images G32 regarding a plurality of dumps are displayed so as to be aligned along the same one straight line.
- the arrival interval display area G31 shown in FIG. 9 indicates arrival times of a plurality of dumps on a common time axis, similarly to the arrival interval display area G21 of FIG. Specifically, in the arrival interval display area G31 of FIG. 9, all the images 32a to 32n are displayed so as to be aligned in the horizontal direction along one straight line. In this point, it differs from the arrival interval display area G21 of FIG. 8 displayed along a different straight line for each dump. However, similarly to the case of FIG. 8, the arrival time display image G32 is not only displayed along a straight line, but also displayed along a curve such as the outline of a circular analog clock image. It is also good.
- the current display image G33 is located on the right side of the image G32f and on the left side of the image 32g in the example of FIG. This means that the present time is after the second dump arrives at the work site and before the third dump arrives at the work site. Therefore, "3 to 10" until arrival, which is displayed in the remaining time display area G8a, indicates that the remaining time until the third dump, which is the next dump, arrives is 3 minutes and 10 seconds. "8'53" until arrival, which is displayed in the remaining time display area G8b, indicates that the remaining time until the fourth dump, which is the next next dump, has arrived is 8 minutes 53 seconds.
- the “arrival interval 4′14 ′ ′” displayed in the remaining time display area G8c has a remaining time (arrival interval) of 4 minutes and 14 seconds from the arrival of the third dump to the arrival of the fourth dump. It represents that there is.
- the operator of the shovel can easily grasp the remaining time until the next dump arrives. Also, the operator can easily grasp which of the first dump to the fourth dump the next dump is. Furthermore, the operator can simultaneously grasp the past arrival time of each dump and the future arrival time of each dump. Specifically, it is possible to roughly grasp not only the arrival time of the third dump, which is scheduled to arrive next, but also the arrival time of each of the fourth dump, the first dump, and the second dump.
- FIG. 10 is a side view of a shovel showing another configuration example of the shovel according to the embodiment of the present invention.
- a boom angle sensor S1 is attached to the boom 4
- an arm angle sensor S2 is attached to the arm 5
- a bucket angle sensor S3 is attached to the bucket 6.
- the boom angle sensor S1 detects a pivot angle of the boom 4.
- the boom angle sensor S1 is an acceleration sensor, and can detect the rotation angle of the boom 4 with respect to the upper swing body 3 (hereinafter referred to as "boom angle").
- the boom angle is, for example, the minimum angle when the boom 4 is lowered most and increases as the boom 4 is raised.
- the arm angle sensor S2 detects the rotation angle of the arm 5.
- the arm angle sensor S2 is an acceleration sensor, and can detect a rotation angle of the arm 5 with respect to the boom 4 (hereinafter, referred to as "arm angle").
- the arm angle is, for example, the smallest angle when the arm 5 is most closed and becomes larger as the arm 5 is opened.
- the bucket angle sensor S3 detects the rotation angle of the bucket 6.
- the bucket angle sensor S3 is an acceleration sensor, and can detect the rotation angle of the bucket 6 with respect to the arm 5 (hereinafter referred to as "bucket angle").
- the bucket angle is, for example, the smallest angle when the bucket 6 is most closed and becomes larger as the bucket 6 is opened.
- the boom angle sensor S1, the arm angle sensor S2 and the bucket angle sensor S3 are respectively a potentiometer using a variable resistor, a stroke sensor for detecting a stroke amount of a corresponding hydraulic cylinder, and a rotary encoder for detecting a rotation angle around a connecting pin , A gyro sensor, or a combination of an acceleration sensor and a gyro sensor.
- a boom rod pressure sensor S7R and a boom bottom pressure sensor S7B are attached to the boom cylinder 7, an arm rod pressure sensor S8R and an arm bottom pressure sensor S8B are attached to the arm cylinder 8, and a bucket rod pressure sensor S9R is attached to the bucket cylinder 9. And a bucket bottom pressure sensor S9B.
- the boom rod pressure sensor S7R, the boom bottom pressure sensor S7B, the arm rod pressure sensor S8R, the arm bottom pressure sensor S8B, the bucket rod pressure sensor S9R, and the bucket bottom pressure sensor S9B are collectively referred to as "cylinder pressure sensors”.
- the boom rod pressure sensor S7R detects the pressure in the rod side oil chamber of the boom cylinder 7 (hereinafter referred to as "boom rod pressure”), and the boom bottom pressure sensor S7B detects the pressure in the bottom oil chamber of the boom cylinder 7 (hereinafter referred to as , “Boom bottom pressure”.
- the arm rod pressure sensor S8R detects the pressure of the rod side oil chamber of the arm cylinder 8 (hereinafter referred to as “arm rod pressure”), and the arm bottom pressure sensor S8B indicates the pressure of the bottom oil chamber of the arm cylinder 8 (hereinafter referred to , “Arm bottom pressure” is detected.
- the bucket rod pressure sensor S9R detects the pressure on the rod side oil chamber of the bucket cylinder 9 (hereinafter referred to as “bucket rod pressure"), and the bucket bottom pressure sensor S9B indicates the pressure on the bottom side oil chamber of the bucket cylinder 9 (hereinafter referred to , “Bucket bottom pressure” is detected.
- a driver's cab 10 is provided in the upper revolving superstructure 3 and a power source such as an engine 11 is mounted. Further, in the upper swing body 3, a controller 30, a display device 40, an input device 42, an audio output device 43, a storage device 47, a positioning device P1, a body inclination sensor S4, a turning angular velocity sensor S5, an imaging device 80 and a communication device T1. Is attached.
- a storage unit for supplying electric power, a motor generator that generates electric power using the rotational driving force of the engine 11, or the like may be mounted on the upper swing structure 3.
- the storage unit is, for example, a capacitor, a lithium ion battery, or the like.
- the motor generator may function as a generator to supply power to the electric load, or may function as a motor to assist the rotation of the engine 11.
- the controller 30 functions as a main control unit that performs drive control of the shovel.
- the controller 30 is configured by a computer including a CPU, a RAM, a ROM, and the like.
- the various functions of the controller 30 are realized, for example, by the CPU executing a program stored in the ROM.
- the various functions may include, for example, a machine guidance function that guides (guides) a manual operation of the shovel by the operator, and a machine control function that automatically assists the manual operation of the shovel by the operator.
- the display device 40 displays various information.
- the display device 40 may be connected to the controller 30 via a communication network such as CAN, or may be connected to the controller 30 via a dedicated line.
- the input device 42 is configured to allow an operator to input various information to the controller 30.
- the input device 42 may include, for example, at least one of a touch panel installed in the cab 10, a microphone, a knob switch, and a membrane switch.
- the voice output device 43 is configured to output voice.
- the voice output device 43 may be, for example, a speaker connected to the controller 30, or an alarm device such as a buzzer.
- the audio output device 43 is configured to output various information in response to an audio output command from the controller 30.
- the storage device 47 is configured to store various information.
- the storage device 47 may be, for example, a non-volatile storage medium such as a semiconductor memory.
- the storage device 47 may store information output by various devices during operation of the shovel, or may store information acquired via the various devices before the operation of the shovel is started.
- the storage device 47 may store, for example, data acquired via the communication device T1 or the like.
- the positioning device P1 is configured to measure the position of the upper swing body 3. It may be configured to additionally measure the orientation of the upper swing body 3.
- the positioning device P1 is, for example, a GNSS compass, detects the position and orientation of the upper swing body 3, and outputs a detected value to the controller 30. Therefore, the positioning device P1 can function as a direction detection device that detects the direction of the upper swing body 3.
- the orientation detection device may be an orientation sensor such as a geomagnetic sensor attached to the upper swing body 3.
- the body inclination sensor S4 is configured to detect, for example, the inclination of the upper swing body 3 with respect to the horizontal plane.
- the vehicle body inclination sensor S4 is an acceleration sensor that detects the longitudinal inclination angle around the longitudinal axis of the upper structure 3 and the lateral inclination angle around the lateral axis.
- the longitudinal axis and the lateral axis of the upper swing body 3 are, for example, orthogonal to each other at a shovel center point which is a point on the swing axis of the shovel.
- the turning angular velocity sensor S ⁇ b> 5 is configured to detect the turning angular velocity of the upper swing body 3. You may be comprised so that the turning angle of the upper turning body 3 may be detected. In this embodiment, it is a gyro sensor. It may be a resolver, a rotary encoder or the like.
- the imaging device 80 is configured to acquire an image around the shovel.
- the imaging device 80 includes a front camera 80F that captures a space in front of the shovel, a left camera 80L that captures a space in the left of the shovel, a right camera 80R that captures a space in the right of the shovel, It includes a rear camera 80B that images the space behind the shovel.
- the imaging device 80 is, for example, a stereo camera having an imaging element such as a CCD or a CMOS, and outputs the captured image to the controller 30.
- the imaging device 80 may be a monocular camera or a distance image camera.
- the imaging device 80 may be configured to calculate the distance to an object recognized from the imaging device 80 or the shovel.
- the imaging device 80 may be replaced by an environment recognition device such as a rider.
- the front camera 80F is attached to, for example, the ceiling of the operator cab 10, that is, inside the operator cab 10. However, the roof of the driver's cab 10, the side surface of the boom 4, etc. may be attached to the exterior of the driver's cab 10.
- the left camera 80L is attached to the upper left end of the upper swing body 3
- the right camera 80R is attached to the upper right end of the upper swing body 3
- the rear camera 80B is attached to the upper rear end of the upper swing body 3. .
- the communication device T1 is configured to control communication with an external device outside the shovel.
- the communication device T1 controls communication with an external device via at least one of a satellite communication network, a mobile telephone communication network, and the Internet network.
- FIG. 11 is a view showing a configuration example of the controller 30.
- the controller 30 of FIG. 11 obtains at least one output of the discharge pressure sensor 14b, the operation pressure sensor 29, the information acquisition device, and the like, and executes calculations by various functional elements.
- the various functional elements include a detection unit 300, an estimation unit 301, an information acquisition unit 302, and the like.
- the information acquisition apparatus includes a boom angle sensor S1, an arm angle sensor S2, a bucket angle sensor S3, a body inclination sensor S4, a turning angular velocity sensor S5, an imaging device 80, a boom bottom pressure sensor S7B, a boom rod pressure sensor S7R, and an arm bottom pressure sensor S8B includes at least one of an arm rod pressure sensor S8R, a bucket bottom pressure sensor S9B, a bucket rod pressure sensor S9R, a communication device T1, a positioning device P1, and the like.
- the information acquisition unit 302 is configured to acquire information on the excavated weight which is the weight of the object to be excavated in the excavating operation of the excavating attachment.
- the information acquisition unit 302 is configured to acquire information related to the excavated weight based on the output of at least one of the discharge pressure sensor 14b, the operation pressure sensor 29, the information acquisition device, and the like.
- the information acquisition unit 302 calculates the weight of an object to be excavated such as earth and sand excavated by the excavating attachment, as the excavated weight, based on, for example, a distance image regarding a space in front of the shovel captured by a stereo camera as the imaging device 80.
- the imaging device 80 may be replaced with a three-dimensional laser scanner or a lidar.
- the information acquisition unit 302 is excavated in one excavation operation based on the distance image imaged when the excavation operation starts and the distance image imaged when the excavation operation is completed.
- the excavation volume which is the volume of the object to be excavated is calculated.
- the excavation weight is calculated by multiplying the excavation volume by the density of the object to be excavated.
- the density of the object to be excavated may be a preset value, or may be a value dynamically set using the input device 42 or the like.
- the information acquisition unit 302 can compare the topography before excavation and the topography after excavation, and calculate the excavation weight by one excavation operation based on the change.
- One digging operation is an operation of taking an object to be excavated into the bucket 6, for example, a bucket which is determined to have started when the bucket 6 not taking in the object comes into contact with the ground and takes in the object to be excavated It is judged that 6 is completed when it gets off the ground.
- the conditions for determining that the digging operation has started and the conditions for determining that the digging operation has been completed may be arbitrarily set.
- the information acquisition unit 302 may determine, for example, based on at least one output of the operation pressure sensor 29 and the cylinder pressure sensor, whether the digging operation has started and whether the digging operation has been completed.
- the information acquisition unit 302 may determine whether the digging operation has started and whether the digging operation has been completed based on the output of the attitude sensor that detects the attitude of the digging attachment.
- the attitude sensor includes, for example, a boom angle sensor S1, an arm angle sensor S2, and a bucket angle sensor S3.
- the attitude sensor may be a combination of a boom cylinder stroke sensor, an arm cylinder stroke sensor and a bucket cylinder stroke sensor.
- the controller 30 can calculate the integrated value of the weight of the object to be excavated for each of the one or more digging operations performed within the predetermined time as the accumulated digging weight at the predetermined time.
- the information acquisition unit 302 may calculate the digging weight by one digging operation based on the output of the posture sensor and the cylinder pressure sensor.
- the information acquisition unit 302 may be configured to use the excavated object excavated in a single excavating operation based on the posture of the excavating attachment and the boom bottom pressure when the bucket 6 taking in the excavated object is lifted in the air.
- the weight may be calculated as the digging weight.
- the information acquisition unit 302 may calculate the digging weight based on the temporal transition of the position of the predetermined portion of the bucket 6.
- the predetermined part of the bucket 6 is, for example, a toe of the bucket 6.
- the information acquisition unit 302 calculates, for example, the position of the tip of the bucket 6 based on the rotation angles of the boom 4, the arm 5, and the bucket 6.
- the information acquisition unit 302 derives, for example, the topography before the digging operation starts, based on the distance image about the space in front of the shovel generated by the three-dimensional distance image sensor mounted on the aircraft.
- the three-dimensional distance image sensor mounted on the aircraft may be any of a three-dimensional laser scanner, a stereo camera and a lidar.
- the flying object is, for example, a multi-copter or an airship, and is equipped with a positioning device so that the actual ground position and orientation corresponding to the distance image can be identified.
- the communication apparatus which enables communication with a shovel is mounted.
- the information acquisition unit 302 receives, for example, a distance image generated by a stereo camera attached to a flying object via the communication device T1, and derives the topography before the digging operation starts based on the distance image.
- the information acquisition unit 302 is configured to receive an image captured by a stereo camera via the communication device T1, generate a distance image from the image, and derive the topography before the start of the digging operation based on the distance image. It may be
- the information acquisition unit 302 may calculate the excavated volume based on, for example, the calculated trajectory of the position of the tip of the bucket 6 and the topography before the excavating operation starts.
- the information acquisition unit 302 may calculate, for example, an excavated volume from an image regarding the bucket 6 captured by the front camera 80F as a single-eye camera. Specifically, the information acquisition unit 302 performs various image processing on the image related to the bucket 6 captured by the front camera 80F when the bucket 6 that has captured the object to be excavated is lifted in the air. Recognize the image of the object to be excavated. Then, the excavation volume is derived based on the size of the image of the object to be excavated. The information acquisition unit 302 may additionally use the output of another information acquisition device such as a posture sensor to derive a digging volume.
- another information acquisition device such as a posture sensor to derive a digging volume.
- the information acquisition unit 302 may be configured to acquire information on the density of the object to be excavated in the excavating operation of the excavating attachment. Typically, the information acquisition unit 302 may calculate the density of the object based on the drilling volume and the drilling weight.
- the excavation volume may be calculated based on, for example, the topography before the excavation operation starts and the topography after the excavation operation is completed.
- the excavated weight may be calculated based on, for example, the output of the cylinder pressure sensor, or may be calculated based on the output of the attitude sensor and the output of the cylinder pressure sensor.
- the main screen 41V of FIG. 12 differs from the main screen 41V of FIG. 6 in the content displayed in the dump information display area 41n.
- the main screen 41V of FIG. 12 includes a maximum loading amount display area G20, a total cumulative loading amount display area G40, an individual cumulative loading amount display area G41, and each loading amount display area G42.
- the main screen 41V it is the same as the main screen 41V of FIG. 6 in other points. Therefore, the description of the common parts is omitted, and the different parts will be described in detail.
- the broken line and the dashed-dotted line in the dump information display area 41 n are for the purpose of explanation and are not actually displayed.
- the maximum loading amount display area G20 is an area for displaying the maximum loading amount as described in FIG.
- the maximum loading amount display area G20 includes areas G20a to G20d.
- the area G20a displays the maximum loading capacity of the first dump
- the area G20b displays the maximum loading capacity of the second dump
- the area G20c displays the maximum loading capacity of the third dump
- the area G20d displays the maximum loading capacity of the third dump.
- the maximum loading capacity of 4 dumps is displayed.
- the controller 30 recognizes the maximum loading amount of the dump, for example, by image recognition of the size or classification number of the license plate of the dump shown in the image output by the imaging device 80.
- the controller 30 recognizes the maximum load amount of the dump based on the information transmitted from the device such as a beacon based on the communication standard for Wi-Fi (registered trademark) or Bluetooth (registered trademark) mounted on the dump. It is also good.
- the controller 30 may display the maximum loading capacity of the dump in weight (unit "t (ton)", may display it in volume (unit "m 3 (cubic meter)"), or weight and volume You may display both. In the example of FIG. 12, the maximum loading capacity of each dump is indicated by both weight and volume.
- the total accumulated load display area G40 is an area for displaying the total amount of the objects to be excavated loaded on the dump during the predetermined period of time by the shovel shown in FIG.
- the predetermined period is, for example, a period from the work start time of one day to the work end time.
- the total accumulated load display area G40 displays, as a total accumulated load, an accumulated digging weight which is an integrated value of the weight of the object to be excavated (excavated weight) in relation to the digging operation by the shovel.
- the individual accumulated load display area G41 is an area for displaying the amount of the object to be excavated that has been loaded into the dump during the predetermined period by the shovel shown in FIG. 10 for each dump.
- the individual cumulative loading amount display area G41 includes areas G41a to G41d.
- the area G41a displays the accumulated loading of the first dump
- the area G41b displays the accumulated loading of the second dump
- the area G41c displays the accumulated loading of the third dump
- the area G41d displays the accumulated loading of the third dump.
- the cumulative load of 4 dumps is displayed.
- the total of the cumulative loadings of the first to fourth dumps corresponds to the total cumulative loading.
- Each load amount display area G ⁇ b> 42 is an area for displaying the amount of objects to be excavated in the dump during the loading operation of the shovel shown in FIG. 10.
- each-time-loading-amount display area G42 includes areas G42a to G42f.
- the area G42a displays the amount of the excavated object loaded in the second dump during the previous loading operation
- the area G42b displays the amount of the excavated object loaded in the first dump during the last two loading operations.
- the amount is displayed, and the area G 42 c displays the amount of the excavated object loaded in the fourth dump during the previous three loading operations.
- area G 42 d displays the amount of the excavated object loaded in the third dump during the fourth loading operation
- area G 42 e displays the load loaded in the second dump during the fifth loading operation
- Region G 42 f displays the amount of the excavated material loaded in the first dump during the previous six loading operations.
- the controller 30 calculates and displays the accumulated load amount based on the excavated weight calculated by the information acquisition unit 302, for example.
- the controller 30 may display the cumulative loading by weight (unit “t (ton)", may display by volume (unit “m 3 (cubic meter)"), or both weight and volume It may be displayed by.
- the cumulative loading amount in each of the total cumulative loading amount display area G40, the individual cumulative loading amount display area G41, and the each-time loading amount display area G42 is displayed as both weight and volume.
- the controller 30 may calculate the volume of the object to be excavated based on the digging weight calculated by the information acquisition unit 302 and the density of the object to be excavated.
- the density of the object to be excavated may be registered in advance.
- the controller 30 acquires the volume of the excavated object based on the image captured by the imaging device 80, and acquires the excavated weight based on the output of the cylinder pressure sensor or the like to obtain the density of the excavated object. It may be calculated.
- the controller 30 may cause the display device 40 to display the type of the object to be excavated.
- the type of the object to be excavated is represented, for example, using “RipRap3” or “Coarse Sand” as a material symbol (material type).
- the operator may input in advance the type of the object to be excavated.
- the controller 30 may obtain information on the type of the object from the management device via the communication device.
- the controller 30 may estimate the type of the object to be excavated based on the calculated density of the object to be excavated and the image captured by the imaging device 80.
- FIG. 13 shows a display example of an image displayed in the dump information display area 41n of the main screen 41V.
- the dump information display area 41n of FIG. 13 includes a graph display area G50.
- the graph display area G50 may be included in another window popped up on the dump information display area 41n.
- the graph display area G ⁇ b> 50 is an area for displaying a total cumulative load amount graph representing temporal transition of the total cumulative load amount.
- the horizontal axis indicates time, and the vertical axis indicates the total cumulative load amount.
- “tc” represents the present time
- “Wc” represents the current value of the total accumulated load
- “Wt” represents the target value of the total accumulated load
- “te” represents the target for the total accumulated load. It represents the estimated time to reach the value.
- the solid line L1 on the left side of the current "tc” represents the transition of the total accumulated load in the past, and the dotted line L2 on the right of the current "tc” represents the transition of the future total accumulated load.
- the operator of the shovel can intuitively recognize that almost two thirds of the target is completed for the loading operation by looking at the total accumulated load capacity graph of FIG. In addition, the operator can grasp how many hours the loading operation is completed.
- the total accumulated loading capacity graph of FIG. 13 may display the total value of the total accumulated loading capacities of the plurality of shovels. In this case, management of the entire work volume of the work site becomes easy.
- the main screen 41V is configured to include the dump information display area 41n, but the dump information display area 41n is included in a dump information screen different from the main screen 41V. It may be configured. In this case, the operator may display the information displayed in the dump information display area 41n by, for example, operating the predetermined screen switch to switch the main screen 41V to the dump information screen.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Business, Economics & Management (AREA)
- Structural Engineering (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Economics (AREA)
- Human Resources & Organizations (AREA)
- Strategic Management (AREA)
- Automation & Control Theory (AREA)
- Entrepreneurship & Innovation (AREA)
- Marketing (AREA)
- Theoretical Computer Science (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Operations Research (AREA)
- Mechanical Engineering (AREA)
- Quality & Reliability (AREA)
- Development Economics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Game Theory and Decision Science (AREA)
- Educational Administration (AREA)
- Component Parts Of Construction Machinery (AREA)
Abstract
本発明の実施形態に係るショベルは、下部走行体(1)と、下部走行体(1)に旋回可能に搭載される上部旋回体(3)と、上部旋回体(3)に取り付けられ、土砂を運搬車両へ積み込む作業を行うアタッチメントと、運搬車両毎に算出された残り時間を表示する表示装置(40)と、を有する。
Description
本開示は、ショベル及びショベルの支援装置に関する。
無線通信による情報の送受信が困難な環境下であっても、通信コストを増大させることなく、鉱山にて稼働している車両に関する情報を共有化できる運行管理システムが知られている(特許文献1参照。)。
しかしながら、上述の運行管理システムは、特定のグループに属する鉱山専用の車両に関する情報を共有化できるのみであり、汎用性に欠ける。そのため、出入りする車両が作業現場毎に或いは作業日毎に変わるような環境には適さない。
上述に鑑み、ショベルと連携する車両に関する情報をより簡単に操作者に伝えることができるショベルを提供することが望まれる。
本発明の実施形態に係るショベルは、下部走行体と、前記下部走行体に旋回可能に搭載される上部旋回体と、前記上部旋回体に取り付けられ、土砂を運搬車両へ積み込む作業を行うアタッチメントと、運搬車両毎に算出された残り時間を表示する表示装置と、を有する。
上述の手段により、ショベルと連携する車両に関する情報をより簡単に操作者に伝えることができるショベルが提供される。
図1は、本発明の実施形態に係る建設機械としてのショベル(掘削機)を示す側面図である。ショベルの下部走行体1には、旋回機構2を介して上部旋回体3が旋回可能に搭載されている。上部旋回体3にはブーム4が取り付けられている。ブーム4の先端にはアーム5が取り付けられ、アーム5の先端にはバケット6が取り付けられている。作業要素としてのブーム4、アーム5及びバケット6は、アタッチメントの一例である掘削アタッチメントを構成し、ブームシリンダ7、アームシリンダ8及びバケットシリンダ9によりそれぞれ油圧駆動される。上部旋回体3には、運転室10が設けられ、且つ、エンジン11等の動力源が搭載されている。運転室10内にはコントローラ30等が搭載されている。コントローラ30は、ショベル全体の動作を制御する制御装置である。本実施形態では、コントローラ30は、CPU、揮発性記憶装置、不揮発性記憶装置、時計機能等を備えたマイクロコンピュータである。
図2は、図1のショベルに搭載される基本システムの構成例を示す図である。基本システムは、コントローラ30、表示装置40等を含む。
表示装置40は、コントローラ30から供給される作業情報等を含む画像を表示する。表示装置40は、例えば、CAN、LIN等の通信ネットワーク、専用線等を介してコントローラ30に接続されている。
本実施形態では、表示装置40は、画像表示部41に表示する画像を生成する変換処理部40aを有する。変換処理部40aは、例えば、撮像装置80から得られる画像データに基づいて画像表示部41上に表示する画像を生成する。撮像装置80は、例えば、前カメラ、左カメラ、右カメラ及び後カメラを含む。本実施形態では、前カメラは、運転室10の天井、すなわち運転室10の内部に取り付けられている。但し、前カメラは、運転室10の屋根、すなわち運転室10の外部に取り付けられていてもよく、ブーム4に取り付けられていてもよく、或いは、アーム5に取り付けられていてもよい。左カメラは、上部旋回体3の上面左端に取り付けられ、右カメラは、上部旋回体3の上面右端に取り付けられ、後カメラは、上部旋回体3の上面後端に取り付けられている。
撮像装置80は、作業現場に設置された鉄塔又は建屋等に取り付けられた定点カメラであってもよく、マルチコプタ又は飛行船等の飛行体に取り付けられた外部カメラであってもよい。この場合、コントローラ30は、例えば、通信装置を介して定点カメラ又は外部カメラが撮像した画像を取得する。
変換処理部40aは、コントローラ30から表示装置40に入力される各種データのうち画像表示部41に表示させるデータを画像信号に変換してもよい。コントローラ30から表示装置40に入力されるデータは、例えば、エンジン冷却水の温度を示すデータ、作動油の温度を示すデータ、尿素水の残量を示すデータ、燃料の残量を示すデータ等を含む。そして、変換処理部40aは、画像信号を画像表示部41に出力して表示させる。変換処理部40aは、表示装置40ではなく、例えば、コントローラ30に設けられてもよい。この場合、撮像装置80は、コントローラ30に接続される。
表示装置40は、入力装置42を備える。入力装置42は、ショベルの操作者がコントローラ30に各種情報を入力するための装置である。本実施形態では、入力装置42は、スイッチパネルに設けられた押しボタンスイッチである。但し、入力装置42は、メンブレンスイッチ又はタッチパネル等であってもよい。
表示装置40は、蓄電池70から電力の供給を受けて動作する。蓄電池70は、エンジン11のオルタネータ11a(発電機)で発電した電力で充電される。蓄電池70の電力は電装品72等にも供給される。エンジン11のスタータ11bは、蓄電池70からの電力で駆動されてエンジン11を始動させる。
エンジン11は、エンジンコントローラ(ECU)74により制御される。エンジン11の回転軸は、メインポンプ14及びパイロットポンプ15のそれぞれの回転軸に連結されている。ECU74は、エンジン11の状態を示す各種データ(例えば、水温センサ11cで検出される冷却水温を示すデータ等)をコントローラ30に向けて送信する。コントローラ30は、これらデータを記憶部30aに記憶し、必要に応じて表示装置40に送信する。
メインポンプ14は、作動油ラインを介して作動油をコントロールバルブ17に供給するための油圧ポンプである。メインポンプ14は、例えば、斜板式可変容量型油圧ポンプである。
パイロットポンプ15は、パイロットラインを介して各種油圧制御機器に作動油を供給するための油圧ポンプである。パイロットポンプ15は、例えば、固定容量型油圧ポンプである。
コントロールバルブ17は、ショベルにおける油圧システムを制御する油圧制御装置である。コントロールバルブ17は、例えば、1又は複数の油圧アクチュエータに、メインポンプ14が吐出する作動油を選択的に供給する。油圧アクチュエータは、例えば、ブームシリンダ7、アームシリンダ8、バケットシリンダ9、走行用油圧モータ、旋回用油圧モータ等を含む。
操作装置26は、操作者が油圧アクチュエータを操作するために用いる装置であり、運転室10内に設けられている。操作装置26が操作されると、対応する流量制御弁のパイロットポートにパイロットポンプ15から作動油が供給される。パイロットポートには、操作装置26の操作内容に応じた圧力の作動油が供給される。操作内容は、例えば、操作方向及び操作量を含む。操作圧センサ29は、操作装置26が操作された際に生成されるパイロット圧を検出し、検出したパイロット圧を示すデータをコントローラ30に対して出力する。コントローラ30は、操作圧センサ29によって検出されるパイロット圧から、操作装置26の操作内容を検出する。
メインポンプ14のレギュレータ14aは、斜板角度を示すデータをコントローラ30に対して出力する。吐出圧センサ14bは、メインポンプ14の吐出圧を示すデータをコントローラ30に対して出力する。作動油タンクとメインポンプ14との間の管路に設けられている油温センサ14cは、管路を流れる作動油の温度を表すデータをコントローラ30に対して出力する。コントローラ30は、取得したデータを記憶部30aに記憶する。
運転室10内にはエンジン回転数調整ダイヤル75が設けられている。エンジン回転数調整ダイヤル75は、エンジンの回転数を調整するためのダイヤルであり、例えば、エンジン回転数を段階的に切り換えることができる。本実施形態では、エンジン回転数調整ダイヤル75は、SPモード、Hモード、Aモード、及びアイドリングモードの4段階で操作者がエンジン回転数を切り換えることができるように構成されている。エンジン回転数調整ダイヤル75は、エンジン回転数の設定状態を示すデータをコントローラ30に対して出力する。図2は、エンジン回転数調整ダイヤル75によりHモードが選択された状態を示している。
SPモードは、作業量を優先したい場合に選択される回転数モードであり、最も高いエンジン回転数を利用する。Hモードは、作業量と燃費を両立させたい場合に選択される回転数モードであり、二番目に高いエンジン回転数を利用する。Aモードは、燃費を優先させながら低騒音でショベルを稼働させたい場合に選択される回転数モードであり、三番目に高いエンジン回転数を利用する。アイドリングモードは、エンジンをアイドリング状態にしたい場合に選択される回転数モードであり、最も低いエンジン回転数を利用する。エンジン11は、エンジン回転数調整ダイヤル75で設定された回転数モードのエンジン回転数で一定回転数に制御される。
情報取得装置SD1はショベルに関する情報を検出する。本実施形態では、情報取得装置SD1は、ブーム角度センサ、アーム角度センサ、バケット角度センサ、機体傾斜センサ、旋回角速度センサ、ブームロッド圧センサ、ブームボトム圧センサ、アームロッド圧センサ、アームボトム圧センサ、バケットロッド圧センサ、バケットボトム圧センサ、ブームシリンダストロークセンサ、アームシリンダストロークセンサ、及び、バケットシリンダストロークセンサのうち少なくとも1つを含む。ブーム角度センサ、アーム角度センサ、及び、バケット角度センサは、加速度センサとジャイロセンサの組み合わせで構成されていてもよい。情報取得装置SD1は、例えば、ショベルに関する情報として、ブーム角度、アーム角度、バケット角度、機体傾斜角度、旋回角速度、ブームロッド圧、ブームボトム圧、アームロッド圧、アームボトム圧、バケットロッド圧、バケットボトム圧、ブームストローク量、アームストローク量、及び、バケットストローク量のうちの少なくとも1つを取得する。
コントローラ30は、吐出圧センサ14b、操作圧センサ29、撮像装置80及び情報取得装置SD1等の少なくとも1つの出力を得て、各種機能要素による演算を実行する。各種機能要素は、検出部300、推定部301等を含む。各種機能要素は、ソフトウェアで構成されてもよくハードウェアで構成されてもよい。そして、コントローラ30は、その演算結果を表示装置40等に対して出力する。
検出部300は、所定の状態が発生したことを検出する機能要素である。本実施形態では、検出部300は、運搬車両としてのダンプトラック(以下、「ダンプ」とする。)が積み込み位置に到着したこと、及び、ダンプが積み込み位置から出発したことを検出する。ダンプが積み込み位置にある場合、ショベルは土砂等をダンプの荷台に積み込むことができる。
検出部300は、例えば、積み込み作業が開始されたことを検出することで、ダンプが積み込み位置に到着したことを検出する。また、積み込み作業が完了したことを検出することで、ダンプが積み込み位置から出発したことを検出する。積み込み作業は、例えば、掘削アタッチメントを用いて土砂等をダンプの荷台に積み込む作業であり、1又は複数回の基本操作を含む。基本操作は、例えば、アーム閉じ操作、バケット閉じ操作、ブーム上げ操作、順旋回操作、アーム開き操作、バケット開き操作、逆旋回操作、ブーム下げ操作等の一連の操作で構成される。
検出部300は、例えば、操作圧センサ29の出力に基づいて、ブーム上げ旋回操作及び排土操作の組み合わせが行われたことを検出した場合に、積み込み作業が開始されたことを検出してもよい。ブーム上げ旋回操作は、ブーム上げ操作及び旋回操作を同時に行う複合操作であってもよく、ブーム上げ操作(単独操作)の後の所定時間内に旋回操作(単独操作)を独立して行う一連の操作であってもよい。排土操作は、バケット開き操作(単独操作)、又は、バケット開き操作を含む複合操作である。
検出部300は、積み込み作業が開始されたことを検出した後で、ブーム上げ旋回操作及び排土操作の組み合わせが行われない時間が所定時間を上回った場合、積み込み作業が完了したことを検出してもよい。この場合、直近のブーム上げ旋回操作及び排土操作の組み合わせが行われた時点を積み込み作業が完了した時点としてもよい。また、積み込み作業の開始後に基本操作が所定回数以上行われた場合に限り、積み込み作業が完了したことを検出してもよい。
検出部300は、撮像装置80が出力する画像から所定の状態が発生したことを検出してもよい。例えば、画像認識処理によってダンプが近づいてくることを検出した場合に、ダンプが積み込み位置に到着したことを検出してもよい。また、画像認識処理によってダンプの荷台の上方にバケット6が位置することを検出した場合に、積み込み作業が開始されたことを検出してもよい。また、画像認識処理によってダンプが遠ざかっていくことを検出した場合に、ダンプが積み込み位置から出発したことを検出してもよい。
検出部300は、撮像装置80が出力する画像から所定の状態が発生したことを検出する場合と同様に、ショベルに取り付けられたライダ等の環境認識装置の出力から所定の状態が発生したことを検出してもよい。
検出部300は、ブーム角度センサ、アーム角度センサ、バケット角度センサ及び機体傾斜センサ等の少なくとも1つの出力に基づいて所定の状態が発生したことを検出してもよい。例えば、上部旋回体3が所定の姿勢であることを検出した場合に、積み込み作業が開始されたこと(ダンプが到着したこと)を検出してもよい。また、積み込み作業が開始されたことを検出した後で、所定の姿勢が検出されない時間が所定時間を上回った場合、積み込み作業が完了したこと(ダンプが出発したこと)を検出してもよい。この場合、最後に所定の姿勢が検出された時点を積み込み作業が完了した時点としてもよい。
検出部300は、ショベルの位置情報とダンプの位置情報とに基づいて所定の状態が発生したことを検出してもよい。検出部300は、例えば、ダンプに搭載されている測位装置が出力する位置情報を受信し、ショベルに搭載されている測位装置が出力する位置情報と比較する。そして、ダンプがショベルを中心とする所定の距離範囲内に接近したときにダンプが到着したことを検出してもよい。また、ダンプが到着したことを検出した後で、ダンプが所定の距離範囲外に遠ざかったときにダンプが出発したことを検出してもよい。測位装置は、例えば、GNSS受信機等を含む。
検出部300は、ショベルの操作者が手動で操作するスイッチ、又は、ダンプの運転者が手動で操作するスイッチの出力に基づいて所定の状態が発生したことを検出してもよい。検出部300は、例えば、ダンプが発信する到着信号を受信したときにダンプが到着したことを検出してもよい。また、ダンプが発信する出発信号を受信したときにダンプが出発したことを検出してもよい。ショベルの操作者が手動で操作するスイッチについても同様である。
検出部300は、上述の検出方法の少なくとも2つを組み合わせて所定の状態が発生したことを検出してもよい。
推定部301は、ショベルと連携する車両に関する情報を推定する機能要素である。本実施形態では、推定部301は、ショベルと連携する車両としてのダンプに関する情報を推定する。ダンプに関する情報は、例えば、排土場往復時間、到着時刻、残り時間等を含む。排土場往復時間(以下、「往復時間」とする。)は、例えば、土砂が積み込まれたダンプが、積み込み位置から排土場まで走行し、排土場で土砂を排土し、そして積み込み位置まで戻ってくるまでに要する時間である。到着時刻は、例えば、土砂を積み込むことができるダンプが積み込み位置に到着する時刻である。残り時間は、ダンプが積み込み位置に到着するまでの時間である。
推定部301は、例えば、1台のダンプに関する積み込み作業が完了した時点(ダンプが積み込み位置から出発した時点)から、その1台のダンプに関する次の積み込み作業が開始された時点(ダンプが積み込み位置に到着した時点)までの実測時間を、その1台のダンプに関する今後の往復時間(予測時間)として推定してもよい。積み込み作業が完了した時点(ダンプが積み込み位置から出発した時点)は、例えば、積み込み作業が完了したことを検出部300が検出した時点である。また、積み込み作業が開始された時点(ダンプが積み込み位置に到着した時点)は、例えば、積み込み作業が開始されたことを検出部300が検出した時点である。
推定部301は、1又は複数台のダンプのそれぞれの往復時間(予測時間)と、各ダンプの出発時刻とに基づいて各ダンプが積み込み位置に戻ってくる時刻である到着時刻を推定してもよい。出発時刻は、例えば、土砂を積み込んだダンプが積み込み位置から排土場に向けて出発した時刻(積み込み作業が完了したことを検出部300が検出した時刻)である。
推定部301は、推定した情報を表示装置40の画像表示部41に表示してもよい。本実施形態では、推定部301は、到着時刻までの残り時間が所定時間を下回った場合に、その残り時間をポップアップ表示する。この場合、推定部301は、運転室10内に設置されたスピーカ、ブザー等の音声出力装置から音声を出力させてもよい。残り時間をショベルの操作者に確実に伝えるためである。
次に、図3を参照し、コントローラ30が各種時刻を記録する処理(以下、「時刻記録処理」とする。)について説明する。図3は、時刻記録処理の一例を示すフローチャートである。本実施形態では、コントローラ30は、ショベルの稼働中、所定の制御周期で繰り返しこの時刻記録処理を実行する。
最初に、コントローラ30は、ダンプが到着したか否かを判定する(ステップST1)。本実施形態では、コントローラ30は、積み込み作業が開始されたことを検出部300が検出した場合に、ダンプが到着したと判定する。例えば、操作圧センサ29の出力に基づいて、ブーム上げ旋回操作及び排土操作の組み合わせが行われたこと、すなわち、積み込み作業が開始されたことを検出部300が検出した場合に、ダンプが到着したと判定する。
ダンプが到着したと判定した場合(ステップST1のYES)、コントローラ30は、到着時刻を記録する(ステップST2)。本実施形態では、コントローラ30は、積み込み作業が開始されたことを検出部300が検出した時刻(積み込み開始時刻)を到着時刻として記録する。到着時刻は、積み込み開始時刻から所定時間を差し引いた時刻等、積み込み開始時刻から算出される時刻であってもよい。
また、コントローラ30は、ダンプが到着したと判定した場合(積み込み作業が開始されたと判定した場合)、積み込み作業中であることを表す積み込みフラグを「オン」に設定してもよい。積み込みフラグは、積み込み作業が完了したと判定されるまで「オン」のままで維持されてもよい。そして、積み込みフラグが「オン」に設定されている場合、コントローラ30は、ステップST1及びステップST2を省略してもよい。
ダンプが到着していないと判定した場合(ステップST1のNO)、コントローラ30は、到着時刻を記録することなく、ステップST3を実行する。
その後、コントローラ30は、ダンプが出発したか否かを判定する(ステップST3)。本実施形態では、コントローラ30は、積み込み作業が完了したことを検出部300が検出した場合に、ダンプが出発したと判定する。検出部300は、例えば、ダンプが到着したこと(積み込み作業が開始されたこと)を検出した後で、ブーム上げ旋回操作及び排土操作の組み合わせが行われない時間が所定時間を上回った場合、ダンプが出発したこと(積み込み作業が完了したこと)を検出する。
ダンプが出発したと判定した場合(ステップST3のYES)、コントローラ30は、出発時刻を記録する(ステップST4)。本実施形態では、コントローラ30は、積み込み作業が完了したことを検出部300が検出した時刻(積み込み完了時刻)を出発時刻として記録する。出発時刻は、積み込み完了時刻に所定時間を加えた時刻等、積み込み完了時刻から算出される時刻であってもよい。コントローラ30は、直近のブーム上げ旋回操作及び排土操作の組み合わせが行われた時刻を出発時刻として記録してもよい。この場合、コントローラ30は、ブーム上げ旋回操作及び排土操作の組み合わせが行われる度に、排土操作が行われた時刻を、出発時刻となり得る時刻として記録している。
また、コントローラ30は、ダンプが出発したと判定した場合、すなわち、積み込み作業が完了したと判定した場合、積み込みフラグを「オフ」に設定してもよい。そして、積み込みフラグが「オフ」に設定されている場合、コントローラ30は、ステップST3及びステップST4を省略してもよい。
ダンプが出発していないと判定した場合(ステップST3のNO)、コントローラ30は、出発時刻を記録することなく、今回の時刻記録処理を終了させる。
このように、コントローラ30は、積み込み開始時刻を記録することで、到着時刻を大まかに記録できる。また、積み込み完了時刻を記録することで、出発時刻を大まかに記録できる。
次に、図4を参照し、ショベルと連携するダンプに関する情報をコントローラ30が算出する処理(以下、「ダンプ情報算出処理」とする。)について説明する。図4は、ダンプ情報算出処理の一例を示すフローチャートである。本実施形態では、コントローラ30は、ショベルの稼働中、所定の制御周期で繰り返しこのダンプ情報算出処理を実行する。コントローラ30は、積み込み作業が開始される度にこのダンプ情報算出処理を実行してもよい。
最初に、コントローラ30は、往復時間を算出する(ステップST11)。本実施形態では、コントローラ30の推定部301は、特定の1台のダンプに関する1回目の積み込み作業が完了した時点から、その1台のダンプに関する2回目の積み込み作業が開始された時点までの時間を第1往復時間(実測時間)として算出する。そして、第1往復時間(実測時間)に基づき、その1台のダンプに関する第2往復時間(予測時間)を推定する。すなわち、2回目の積み込み作業が完了した時点から3回目の積み込み作業が開始される時点までの時間である第2往復時間(予測時間)を推定する。第1往復時間(実測時間)がそのまま第2往復時間(予測時間)として採用されてもよい。本実施形態では、第1往復時間(実測時間)が得られるまでは、第2往復時間(予測時間)は推定されない。但し、第2往復時間(予測時間)は、積み込み位置から排土場までの距離等に基づいて算出される第1往復時間(予測時間)に基づいて推定されてもよい。
3回目の積み込み作業が完了した時点から4回目の積み込み作業が開始される時点までの第3往復時間(予測時間)は、例えば、第1往復時間(実測時間)と第2往復時間(実測時間)の平均値であってもよい。第4往復時間(予測時間)、第5往復時間(予測時間)、第6往復時間(予測時間)等についても同様である。但し、平均値の代わりに、最大値、最小値、中間値、中央値等の他の統計値が採用されてもよい。
複数台のダンプがショベルと連携している場合、コントローラ30は、ダンプ毎に往復時間を算出し或いは推定する。この場合、コントローラ30は、ショベルと連携するダンプの台数の入力を操作者に促すようにしてもよい。例えば、ショベルの起動時に、ダンプの台数の入力を操作者に促す入力画面を表示させてもよい。コントローラ30は、撮像装置80が出力する画像に映っているナンバープレートの文字を画像認識することで複数台のダンプのそれぞれを区別してもよい。
ダンプの台数(例えば「4台」)が入力された場合、コントローラ30は、5回目、9回目、13回目等、(4n+1)回目(nは1以上の整数)の積み込み作業に関するダンプが、1回目の積み込み作業に関するダンプ(第1ダンプ)であると判定してもよい。この場合、コントローラ30は、1回目の積み込み作業が完了した時点から5回目の積み込み作業が開始された時点までの時間を第1ダンプに関する第1往復時間(実測時間)として算出する。そして、第1ダンプに関する第1往復時間(実測時間)に基づき、第1ダンプに関する第2往復時間(予測時間)、すなわち、5回目の積み込み作業が完了した時点から9回目の積み込み作業が開始される時点までの時間を推定する。第1往復時間(実測時間)をそのまま第2往復時間(予測時間)としてもよい。
同様に、コントローラ30は、6回目、10回目、14回目等、(4n+2)回目の積み込み作業に関するダンプが、2回目の積み込み作業に関するダンプ(第2ダンプ)であると判定してもよい。この場合、コントローラ30は、2回目の積み込み作業が完了した時点から6回目の積み込み作業が開始された時点までの時間を第2ダンプに関する第1往復時間(実測時間)として算出する。そして、第2ダンプに関する第1往復時間(実測時間)に基づき、第2ダンプに関する第2往復時間(予測時間)、すなわち、6回目の積み込み作業が完了した時点から10回目の積み込み作業が開始される時点までの時間を推定する。
ダンプの台数が入力されていない場合、コントローラ30は、積み込み完了時刻とその次の積み込み開始時刻との差である積み込み間隔が所定時間を上回った場合にダンプの台数を推定してもよい。これは、1回目の積み込み作業が行われるときに各ダンプが作業現場に集合しているという前提に基づく。例えば4台のダンプが作業現場に集合している場合、4回目の積み込み作業が完了するまでは4回の積み込み作業が連続的に行われる。土砂を積み込むことができる4台のダンプが既に待機しているためである。そして、4回目の積み込み作業が完了したときに、初めて、土砂を積み込むことができるダンプが存在しない状況が発生する。1台目のダンプが未だ積み込み位置に戻ってきていないためである。この場合、コントローラ30は、5回目の積み込み作業が開始されたときに、4回目の積み込み完了時刻と5回目の積み込み開始時刻と差である積み込み間隔がこれまでの積み込み間隔より顕著に大きいと判断し、ダンプの台数が4台であると推定してもよい。ダンプの台数を推定した後、コントローラ30は、ダンプの台数が入力されている場合と同様に、各ダンプの往復時間を算出し或いは推定する。
その後、コントローラ30は、次の到着時刻を算出する(ステップST12)。本実施形態では、コントローラ30は、次に積み込み位置に到着する予定のダンプに関する前回の出発時刻に往復時間(予測時間)を加えて次の到着時刻を算出する。前回の出発時刻は、例えば、前回の積み込み完了時刻である。
その後、コントローラ30は、次の到着時刻までの残り時間を算出する(ステップST13)。本実施形態では、コントローラ30は、次の到着時刻と現在時刻との差を残り時間として算出する。
このように、コントローラ30は、積み込み作業が開始されたか否かを判定することで、ダンプが積み込み位置に到着したか否かを判定できる。また、積み込み作業が完了したか否かを判定することで、ダンプが積み込み位置から出発したか否かを判定できる。そして、積み込み作業が完了してから次の積み込み作業が開始されるまでの時間に基づき、積み込み位置から出発したダンプが積み込み位置に戻ってくるまでの往復時間を推定できる。また、その往復時間から到着時刻及び残り時間を算出できる。
次に、図5A及び図5Bを参照し、表示装置40に表示される画面の構成例について説明する。図5Aは、表示装置40の画像表示部41に表示されるメイン画面41Vの一例を示す。図5Bは、残り時間がポップアップ表示されたときのメイン画面41Vの一例を示す。但し、メイン画面41Vの少なくとも一部は、表示装置40とは別のモニタに表示されてもよい。別のモニタは、例えば、ショベルの操作者が携帯するスマートフォン等の携帯情報端末に付属しているモニタ、又は、表示装置40とは別に運転室10内に設置された据え置き型のモニタであってもよい。
メイン画面41Vは、日時表示領域41a、走行モード表示領域41b、アタッチメント表示領域41c、平均燃費表示領域41d、エンジン制御状態表示領域41e、エンジン作動時間表示領域41f、冷却水温表示領域41g、燃料残量表示領域41h、回転数モード表示領域41i、尿素水残量表示領域41j、作動油温表示領域41k及びカメラ画像表示領域41mを含む。走行モード表示領域41b、アタッチメント表示領域41c、エンジン制御状態表示領域41e、及び、回転数モード表示領域41iのそれぞれは、ショベルの設定状態を表示する設定状態表示部の例である。平均燃費表示領域41d、エンジン作動時間表示領域41f、冷却水温表示領域41g、燃料残量表示領域41h、尿素水残量表示領域41j、及び、作動油温表示領域41kのそれぞれは、ショベルの運転状態を表示する運転状態表示部の例である。
日時表示領域41aは、現在の日時を表示する領域である。走行モード表示領域41bは、現在の走行モードを表すアイコンを表示する領域である。アタッチメント表示領域41cは、現在装着されているアタッチメントを表すアイコンを表示する領域である。平均燃費表示領域41dは、現在の平均燃費を表示する領域である。エンジン制御状態表示領域41eは、エンジン11の制御状態を表すアイコンを表示する領域である。冷却水温表示領域41gは、現在のエンジン冷却水の温度状態を表示する領域である。燃料残量表示領域41hは、燃料タンクに貯蔵されている燃料の残量状態を表示する領域である。回転数モード表示領域41iは、現在の回転数モードを表示する領域である。尿素水残量表示領域41jは、尿素水タンクに貯蔵されている尿素水の残量状態を表示する領域である。作動油温表示領域41kは、作動油タンク内の作動油の温度状態を表示する領域である。カメラ画像表示領域41mは、カメラ画像を表示する領域である。図5Aの例では、カメラ画像表示領域41mは、後カメラが出力する画像を表示している。
図5Bに示すように、コントローラ30は、所定の表示条件が満たされた場合に、ポップアップウィンドウ41Pを表示する。ポップアップウィンドウ41Pは、ショベルと連携するダンプに関する情報をショベルの操作者に伝えるための画像である。このように、表示装置40には運搬車両毎に算出された残り時間が表示される。図5Bの例では、ポップアップウィンドウ41Pは、次の到着時刻までの残り時間を伝えるテキストメッセージ「次のダンプは●●分後に到着する予定です。」を含む。コントローラ30は、ポップアップウィンドウ41Pをポップアップ表示させると共に、或いは、ポップアップウィンドウ41Pをポップアップ表示させる代わりに、運転室10内に設置されたスピーカから残り時間に関する情報を音声出力してもよい。
所定の表示条件は、例えば、残り時間が所定時間を下回ったこと、直近の積み込み完了時刻からの経過時間が所定時間を上回ったこと、ショベルの操作者が所定のスイッチを操作したこと等を含む。コントローラ30は、例えば、ダンプが積み込み位置に到着するまでの時間である残り時間が予め定めた時間になると、ポップアップウィンドウ41Pのポップアップ表示及び音声出力等によりその旨を操作者に知らせるようにする。
この表示により、コントローラ30は、次のダンプが積み込み位置に到着するまでの残り時間をショベルの操作者に伝えることができる。ショベルの操作者は、残り時間を知ることで、段取り作業等を適時に実行できる。段取り作業は、例えば、積み込み作業が円滑に行われるようにするための準備作業であり、積み込み位置の近くに土砂を集める作業、ダンプが通過し或いは停車する地面を均す作業等を含む。
次に、図6を参照し、表示装置40に表示される画面の別の構成例について説明する。図6の画面は、走行モード表示領域41b、アタッチメント表示領域41c、エンジン制御状態表示領域41e、冷却水温表示領域41g、燃料残量表示領域41h、回転数モード表示領域41i、及び、尿素水残量表示領域41jがカメラ画像表示領域41mに重畳表示されている点で図5Aの画面と異なるが、各領域に表示される内容については図5Aの画面と同じである。また、図6の画面は、カメラ画像表示領域41mの下にダンプ情報表示領域41nを含む点で図5Aの画面と異なる。そのため、共通部分の説明を省略し、相違部分を詳説する。なお、ダンプ情報表示領域41nにおける破線、一点鎖線及び二点鎖線は、説明のためのものであり、実際には表示されない。
図6の例では、ダンプ情報表示領域41nは、統計表示領域G1、現セット表示領域G2、前セット表示領域G3、第1ダンプ表示領域G4、第2ダンプ表示領域G5、第3ダンプ表示領域G6、第4ダンプ表示領域G7、残り時間表示領域G8、ダンプ画像表示領域G9、横スクロールバーG10及び縦スクロールバーG11を含む。
統計表示領域G1は、ダンプ毎の統計値を表示する領域である。図6の例では、4台のダンプのそれぞれに関する回数(合計積み込み回数)と、積み込み時間、積み込み間隔及び往復時間のそれぞれの平均値を表示している。具体的には、第1ダンプに関し、12回の積み込み作業が完了していることと、積み込み時間、積み込み間隔及び往復時間の平均値がそれぞれ「1′24″」、「5′24″」及び「25′24″」であることを示している。第2ダンプ、第3ダンプ及び第4ダンプについても同様である。なお、「′」は「分」を表し、「″」は「秒」を表す。
現セット表示領域G2は、現在のセットに関する情報を表示する領域である。「セット」は、ダンプの台数に相当する回数分の積み込み作業に関する情報の集まりを意味する。図6の例では、4台のダンプが使用されているため、4回分の積み込み作業に関する情報の集まりを意味する。そして、現在のセットは、12番目のセットであり、45回目から48回目の積み込み作業に関する情報の集まりに相当する。現セット表示領域G2は、第3ダンプに関する47回目の積み込み作業が開始される前の状態であることを示している。
前セット表示領域G3は、前回のセットに関する情報を表示する領域である。前セット表示領域G3は、例えば、第1ダンプに関する41回目の積み込み作業における積み込み時間、積み込み間隔及び往復時間がそれぞれ「1′23″」、「5′21″」及び「25′23″」であったことを示している。図6の例では、ダンプ情報表示領域41nは、現セット表示領域G2及び前セット表示領域G3の2つのセットに関する情報を表示しているが、3つ以上のセットに関する情報が表示されてもよい。例えば、ダンプ情報表示領域41nは、現在のセットに関する情報、前回のセットに関する情報、及び、前々回のセットに関する情報を含んでいてもよい。
現セット表示領域G2及び前セット表示領域G3の少なくとも1つは、操作者が現セット表示領域G2と前セット表示領域G3とを区別できるように、強調表示されてもよい。
ダンプ情報表示領域41nは、次セット表示領域(図示せず。)を含んでいてもよい。次セット表示領域は、次回のセットに関する情報を表示する領域であり、図6の例では、49回目から52回目の積み込み作業に関する情報の集まりに相当する。次回のセットに関する情報は、過去のセットに関する情報から算出される予測値を含む。現セット表示領域G2、前セット表示領域G3及び次セット表示領域の少なくとも1つは、操作者が現セット表示領域G2と前セット表示領域G3と次セット表示領域とを区別できるように、強調表示されてもよい。また、前セット表示領域G3は省略されてもよい。
第1ダンプ表示領域G4は、第1ダンプに関する情報を表示する領域である。同様に、第2ダンプ表示領域G5は、第2ダンプに関する情報を表示する領域であり、第3ダンプ表示領域G6は、第3ダンプに関する情報を表示する領域であり、第4ダンプ表示領域G7は、第4ダンプに関する情報を表示する領域である。
残り時間表示領域G8は、残り時間に関する情報を表示する領域である。図6の例では、残り時間表示領域G8は、現セット表示領域G2において第3ダンプに関する情報が表示されるべきところに配置されている。第3ダンプの到着を待っている現在の状態に対応させるためである。図6の例では、残り時間表示領域G8は、第3ダンプの到着まで「1′12″」であることを示し、且つ、予想確率90%で変動範囲「1′08″~1′15″」内の時間が経過する間に第3ダンプが到着することを示している。予想確率は、残り時間の確かさを表す数値であり、所定の計算式に基づいて算出される。残り時間は、時間の経過と共に更新される。残り時間の表示は、例えば、1秒刻みでカウントダウン表示される。
残り時間表示領域G8は、例えば「-2′30″」のように残り時間を負値で表示してもよい。「-2′30″」は、例えば、第3ダンプが積み込み位置に到着してから既に2分30秒が経過していることを表す。或いは、「-2′30″」は、推定した到着時刻から2分30秒が経過しても第3ダンプが未だ到着していないことを表してもよい。
ダンプ情報表示領域41nは、第1ダンプから第4ダンプのそれぞれに関する残り時間を表示してもよい。この場合、ダンプ情報表示領域41nは、第1ダンプから第4ダンプのそれぞれに対応する4つの残り時間表示領域G8を含んでいてもよい。
ダンプ画像表示領域G9は、使用されているダンプの台数分のダンプ画像(コンピュータグラフィックス画像)が表示される領域である。図6の例では、4台分のダンプ画像が表示されている。
横スクロールバーG10は、ダンプ情報表示領域41nの横方向のスクロール状態を示し、縦スクロールバーG11は、ダンプ情報表示領域41nの縦方向のスクロール状態を示している。操作者は、例えば、入力装置42としてのタッチパネルを介して横スクロールバーG10及び縦スクロールバーG11を操作できる。
この画面構成により、本発明の実施形態に係るショベルは、ショベルと連携する車両であるダンプに関する情報をより簡単に操作者に伝えることができる。そのため、ショベルの操作者は、例えば、次のダンプが積み込み位置に到着するまでの時間を簡単に把握することができる。その結果、操作者は、適時に段取り作業を行うことができる。また、操作者は、例えば、これまでに完了した積み込み作業の回数を簡単に把握することができる。その結果、ショベルが行った仕事量、ダンプが行った仕事量等を容易に把握できる。また、ダンプ情報表示領域41nに表示される情報は、無線通信を通じ、ショベルの外部にある表示装置に表示されてもよい。ショベルの外部にある表示装置は、管理センタ等に設置される管理装置のモニタ、ショベルの周囲で作業する作業者等が携帯する携帯情報端末等の支援装置のモニタ等を含む。この場合、管理センタにいる管理者、ショベルの周囲で作業する作業者等は、ショベルと連携するダンプに関する情報を容易に把握でき、把握した情報をダンプの管理に利用することができる。
上述のように、本発明の実施形態に係るショベルは、下部走行体1と、下部走行体1に旋回可能に搭載される上部旋回体3と、上部旋回体3に取り付けられ、土砂を運搬車両へ積み込む作業を行うアタッチメントと、運搬車両毎に算出された残り時間を表示する表示装置40と、を有する。
本発明の実施形態に係るショベルは、アタッチメントによる土砂の運搬車両(ダンプ)への積み込み作業が完了した時点と、そのダンプへの次の積み込み作業が開始された時点とに基づき、そのダンプが土砂を排土して戻ってくるまでの所要時間(往復時間)を推定する制御装置としてのコントローラ30を有していてもよい。コントローラ30は、例えば、積み込み作業が完了した時点(積み込み完了時刻)をダンプが積み込み位置を出発した時点(出発時刻)として記録し、且つ、積み込み作業が開始された時点(積み込み開始時刻)をダンプが積み込み位置に到着した時点(到着時刻)として記録する。そして、積み込み完了時刻から次の積み込み開始時刻までの時間をダンプの往復時間として算出する。
コントローラ30は、積み込み開始時刻から積み込み完了時刻までの時間を積み込みが開始されてからその積み込みが完了するまでの積み込み時間として算出してもよい。また、コントローラ30は、往復時間に基づき、次のダンプへの積み込みが可能になるまでの残り時間を算出してもよい。コントローラ30は、ダンプ毎に残り時間を算出してもよい。往復時間、積み込み時間等はダンプ毎に記録され且つ平均値等が算出されてもよい。
この構成により、本発明の実施形態に係るショベルは、GNSS受信機等の測位装置がダンプに搭載されていない場合であっても、ダンプに関する情報を算出して操作者に伝えることができる。また、ショベルは、測位装置及び通信装置がダンプに搭載されていない場合であっても、ダンプに関する情報を算出して操作者に伝えることができる。
次に、図7を参照し、ダンプ内にある支援装置が有する表示装置に表示される画面の構成例について説明する。図7は、第4ダンプの運転席の近傍に設置された支援装置が有する表示装置41Sに表示されたメイン画面41SVを示す。また、図7は、2台のショベル(コントローラ30)と4台のダンプで情報(処理結果)が共有されている場合の状況を示す。メイン画面41Vは、3台以上のショベル(コントローラ30)で情報(処理結果)が共有されている場合の状況を表示してもよい。支援装置は、ショベルによる運搬車両への土砂の積み込みに関する作業を支援する装置であり、例えば、携帯電話、スマートフォン、タブレットPC等の多機能型携帯情報端末を含む。
図7のメイン画面41SVは、第1作業現場(第1積み込み現場)で作業しているショベルAと協働する第1ダンプ~第4ダンプに関する情報を表示している。また、第2作業現場(第2積み込み現場)で現に作業を開始したショベルBが存在していることを表示している。
具体的には、メイン画面41SVは、地図情報表示領域41q及びダンプ情報表示領域41nを含む。
地図情報表示領域41qは、地図情報を表示する領域である。図7の例では、第1積み込み現場及び第2積み込み現場を含む地図が表示されている。地図情報表示領域41qに重畳表示されるショベル画像G12は、積み込み現場で作業するショベルの位置を示す。例えば、ショベル画像G12Aは第1積み込み現場で作業しているショベルAの位置を示し、ショベル画像G12Bは第2積み込み現場で現に作業を開始したショベルBの位置を示す。地図情報表示領域41qに重畳表示されるダンプ画像G13は、ショベルと協働するダンプの位置を示す。図7では、ダンプ画像G13は、ダンプ画像G13A及びダンプ画像G13Bを含む。例えば、ダンプ画像G13AはショベルAにより土砂が積み込まれていると推定される第2ダンプの位置を示し、ダンプ画像G13BはショベルAによる土砂の積み込みが開始されるのを待機していると推定される第3ダンプの位置を示す。地図情報表示領域41qに重畳表示される繁閑画像G14は、各積み込み現場の繁閑状態を示す。図7では、繁閑画像G14は、繁閑画像G14A及び繁閑画像G14Bを含む。例えば、繁閑画像G14Aは第1積み込み現場が繁忙状態にあることを示し、繁閑画像G14Bは第2積み込み現場が閑散状態にあることを示す。繁忙状態は、例えば、ショベルによる積み込みが行われるのを待機しているダンプが存在する状態を示す。閑散状態は、例えば、ショベルによる積み込みが行われるのを待機しているダンプが存在しない状態を示す。地図情報表示領域41qに重畳表示される渋滞画像G16は、ダンプが走行する道路の渋滞状態を示す。図7では、渋滞画像G16は、渋滞画像G16A及び渋滞画像G16Bを含む。例えば、渋滞画像G16Aは、平均走行速度が第1閾値以下の区間を示す画像であり、第1の色(例えば黄色)で強調表示されている。渋滞画像G16Bは、平均走行速度が第1閾値よりも小さい第2閾値以下の区間を示す画像であり、第2の色(例えば赤色)で強調表示されている。コントローラ30は、例えば、渋滞情報等の交通情報に基づいて渋滞画像G16を表示するように構成されている。コントローラ30は、例えば、通信装置を介して、外部のウェブ上で公開された地図と対応づけられた交通に関するAPI(Application Programming Interface)にアクセスすることにより、渋滞情報等の交通情報を入手してもよい。
ダンプ情報表示領域41nの表示内容は、図6に示すダンプ情報表示領域41nの表示内容とほぼ同じである。但し、図7に示すダンプ情報表示領域41nの表示内容は、主に、強調画像G15を含む点、及び、残り時間表示領域G8における残り時間が負値となっている点で図6に示すダンプ情報表示領域41nの表示内容と異なる。
強調画像G15は、自車(第4ダンプ)に関する情報を、他車(第1ダンプ~第3ダンプ)に関する情報から区別できるようにする画像である。図7の例では、強調画像G15は、第4ダンプ表示領域G7(図6参照。)を囲む実線の黒枠である。但し、強調画像G15は、点線枠、赤色枠、緑色枠等の他の表示態様で表現されてもよい。第4ダンプの運転者は、強調画像G15を見ることで、自身が運転するダンプに関する情報を容易に特定できる。
残り時間表示領域G8に表示されている残り時間「-2′30″」は、第3ダンプが第1積み込み現場に到着してから既に2分30秒が経過していることを表している。この場合、予想確率及び変動範囲の表示は省略されている。また、残り時間表示領域G8には「到着まで」の代わりに「到着済み」が表示されている。
残り時間表示領域G8に表示されている残り時間「-2′30″」は、第3ダンプの到着が、推定された到着時刻から2分30秒だけ遅れていることを表していてもよい。この場合も、予想確率及び変動範囲の表示は省略される。また、残り時間表示領域G8には「到着済み」の代わりに「遅れ」等のテキスト情報が表示される。
通信装置を介した情報に基づいてどの程度の遅れが生じているかを把握している場合、コントローラ30は、遅れを加味した残り時間を残り時間表示領域G8に表示させてもよい。具体的には、コントローラ30は、第3ダンプの到着時刻の推定をやり直した上で、新たに推定された到着時刻に対する残り時間を算出し、その残り時間を残り時間表示領域G8に表示させてもよい。
上述のように、ショベルによる運搬車両への土砂の積み込みに関する作業を支援するショベルの支援装置は、運搬車両毎に算出された残り時間を表示する表示装置41Sを有する。表示装置41Sには、例えば、地図情報とショベルの位置情報とが表示される。表示装置41Sには、地図情報と積み込み現場毎の繁閑状態とが表示されてもよい。
上述のようなメイン画面41SVを見ることで、ダンプの運転者は、複数台のショベルのうちの何れのショベルに関する積み込み位置に向かえばよいかを判断できる。例えば、第4ダンプの運転者は、第2ダンプが積み込み中であること、及び、第3ダンプが第1積み込み現場に既に到着しているにもかかわらず「2分30秒」も待機していることを認識できる。一方で、第4ダンプの運転者は、第2積み込み現場では待ち時間無しの状態であることを認識できる。そのため、第4ダンプの運転者は、第2積み込み現場へ向かった方が効率的であると判断できる。
次に、図8を参照し、表示装置40に表示されるメイン画面41Vの更に別の構成例について説明する。図8のメイン画面41Vは、ダンプ情報表示領域41nに表示される内容が図6のメイン画面41Vと異なる。なお、ダンプ情報表示領域41nにおける破線及び一点鎖線は、説明のためのものであり、実際には表示されない。
具体的には、図8のダンプ情報表示領域41nは、第1ダンプ表示領域G4、第2ダンプ表示領域G5、第3ダンプ表示領域G6、第4ダンプ表示領域G7、残り時間表示領域G8、ダンプ画像表示領域G9、横スクロールバーG10、縦スクロールバーG11、最大積載量表示領域G20及び到着間隔表示領域G21を含む。
第1ダンプ表示領域G4は、第1ダンプに関する情報を表示する領域である。同様に、第2ダンプ表示領域G5は、第2ダンプに関する情報を表示する領域であり、第3ダンプ表示領域G6は、第3ダンプに関する情報を表示する領域であり、第4ダンプ表示領域G7は、第4ダンプに関する情報を表示する領域である。
残り時間表示領域G8は、残り時間に関する情報を表示する領域である。ダンプ画像表示領域G9は、使用されているダンプの台数分のダンプ画像が表示される領域である。図8の例では、4台分のダンプ画像が表示されている。
横スクロールバーG10は、ダンプ情報表示領域41nの横方向のスクロール状態を示し、縦スクロールバーG11は、ダンプ情報表示領域41nの縦方向のスクロール状態を示している。操作者は、例えば、入力装置42としてのタッチパネルを介して横スクロールバーG10及び縦スクロールバーG11を操作できる。
最大積載量表示領域G20は、最大積載量を表示する領域である。図8の例では、最大積載量表示領域G20は、領域G20a~G20dを含む。領域G20aは、第1ダンプの最大積載量を表示し、領域G20bは、第2ダンプの最大積載量を表示し、領域G20cは、第3ダンプの最大積載量を表示し、領域G20dは、第4ダンプの最大積載量を表示している。
コントローラ30は、例えば、撮像装置80が出力する画像に映っているダンプのナンバープレートの大きさ又は分類番号を画像認識することでそのダンプの最大積載量を認識する。或いは、コントローラ30は、ダンプに搭載された、Wi-Fi(登録商標)又はBluetooth(登録商標)等に関する通信規格に基づくビーコン等の装置が発信する情報に基づいてそのダンプの最大積載量を認識してもよい。この際、コントローラ30は、ダンプが積み込み位置に到着したと判定してもよい。或いは、コントローラ30は、Wi-Fi(登録商標)又はBluetooth(登録商標)等に関する通信規格に基づく通信を通じて受信する、ダンプの運転者が有する携帯情報端末からの情報に基づき、ダンプの最大積載量又はダンプが積み込み位置に到着したことを認識してもよい。このように、コントローラ30は、通信によりダンプを特定してもよい。
コントローラ30は、ダンプの最大積載量を重量(単位「t(トン)」)で表示してもよく、体積(単位「m3(立方メートル)」)で表示してもよく、或いは、重量及び体積の両方で表示してもよい。図8の例では、各ダンプの最大積載量は、重量及び体積の両方で表示されている。
コントローラ30は、ダンプの最大積載量と同様に、ダンプの所属先を認識するように構成されていてもよい。所属先は、例えば、ダンプを所有する法人又は個人事業主等である。ダンプの所属先を認識できた場合、コントローラ30は、ダンプ画像表示領域G9に表示されるダンプ画像の色又は形状等を変化させることで、ショベルの操作者がダンプの所属先を区別できるようにしてもよい。
到着間隔表示領域G21は、ダンプの到着間隔を表示する領域である。図8の例では、到着間隔表示領域G21において、ダンプの到着間隔は、到着時点表示画像G22及び現時点表示画像G23を用いて表示されている。
到着時点表示画像G22は、各ダンプが作業現場に到着した時点又は到着する時点を表す図形である。図8では、到着時点表示画像G22は、各ダンプの過去の到着時点及び未来の到着時点のそれぞれを表す棒状図形である。
現時点表示画像G23は、現時点を表す図形である。図8では、現時点表示画像G23は、三角形とその頂点の1つから延びる直線との組み合わせで構成されている。現時点表示画像G23は、時間の経過と共にメイン画面41V内を右方向に移動するように構成されている。但し、現時点表示画像G23は、メイン画面41V内の所定位置に固定されていてもよい。この場合、到着時点表示画像G22のそれぞれが時間の経過と共にメイン画面41V内を左方向に移動するように構成されていてもよい。
図8の例では、現時点表示画像G23の左側にある到着時点表示画像G22は、各ダンプの過去の到着時点を表し、現時点表示画像G23の右側にある到着時点表示画像G22は、各ダンプの未来の到着時点を表す。具体的には、到着時点表示画像G22は画像G22a~G22nを含む。そして、画像G22aは、第1ダンプの前々回の到着時点を表し、画像G22bは、第2ダンプの前々回の到着時点を表し、画像G22cは、第3ダンプの前回の到着時点を表し、画像G22dは、第4ダンプの前回の到着時点を表す。画像G22eは、第1ダンプの前回の到着時点を表し、画像G22fは、第2ダンプの前回の到着時点を表す。画像G22gは、第3ダンプの次回の到着時点を表し、画像G22hは、第4ダンプの次回の到着時点を表し、画像G22iは、第1ダンプの次回の到着時点を表し、画像G22jは、第2ダンプの次回の到着時点を表す。画像G22kは、第3ダンプの次々回の到着時点を表し、画像G22lは、第4ダンプの次々回の到着時点を表し、画像G22mは、第1ダンプの次々回の到着時点を表し、画像G22nは、第2ダンプの次々回の到着時点を表す。
また、図8の例では、到着時点表示画像G22は、タイムチャート上の波形のように、ダンプ毎に設定される直線に沿って並ぶように表示されている。ダンプ毎に設定される直線である時間軸は共通の幅を有し、それぞれの時間軸における横方向の同じ位置は同じ時刻を示している。具体的には、画像G22a、G22e、G22i及びG22mは、第1ダンプに関する画像であるため、第1ダンプ表示領域G4内で第1直線に沿って横方向に並ぶように表示されている。同様に、画像G22b、G22f、G22j及びG22nは、第2ダンプに関する画像であるため、第2ダンプ表示領域G5内で第2直線に沿って横方向に並ぶように表示され、画像G22c、G22g及びG22kは、第3ダンプに関する画像であるため、第3ダンプ表示領域G6内で第3直線に沿って横方向に並ぶように表示され、画像G22d、G22h及びG22lは、第4ダンプに関する画像であるため、第4ダンプ表示領域G7内で第4直線に沿って横方向に並ぶように表示されている。なお、到着時点表示画像G22は、図8に示すような直線に沿って並ぶように表示されるばかりでなく、円形のアナログ時計画像の輪郭等の曲線に沿って並ぶように表示されてもよい。
現時点表示画像G23は、図8の例では、画像G22fの右側で且つ画像22gの左側に位置する。これは、現時点は、第2ダンプが作業現場に到着した後で、且つ、第3ダンプが作業現場に到着する前であることを表している。そのため、残り時間表示領域G8に表示されている「到着まで3′10″」は、第3ダンプが到着するまでの残り時間が3分10秒であることを表している。
到着時点表示画像G22は、表示位置を変更できるように構成されていてもよい。ショベルの操作者は、例えば、表示装置40がタッチパネルを備える場合、所望の到着時点表示画像G22のところでドラッグ操作を行うことで、その所望の到着時点表示画像G22を移動させることができる。操作者は、例えば、第3ダンプの運転者から、作業現場への到着が10分程度遅れるとの連絡を電話等で受けた場合、10分に相当する距離だけ画像G22gを右側へ移動させてもよい。この場合、残り時間表示領域G8に表示される残り時間は、画像G22gの右側への移動に応じて更新され、10分が追加された「13′10″」となる。第3ダンプよりも早く第4ダンプが到着すると推定される場合、残り時間表示領域G8に表示される残り時間は、第4ダンプが到着するまでの残り時間に切り換えられてもよい。
到着時点表示画像G22は、消去可能に構成されていてもよい。ショベルの操作者は、例えば、表示装置40がタッチパネルを備える場合、所望の到着時点表示画像G22のところでフリック操作を行うことで、その所望の到着時点表示画像G22を消去できる。操作者は、所望の到着時点表示画像G22のところでダブルタップ操作を行い、コマンド選択ウィンドウをポップアップ表示させて消去コマンドを選択することで、その所望の到着時点表示画像G22を消去してもよい。操作者は、例えば、第3ダンプの運転者から、作業現場へ向かうことができなくなったとの連絡を電話等で受けた場合、画像G22gを消去してもよい。この場合、残り時間表示領域G8に表示される残り時間は、第4ダンプが到着するまでの残り時間に切り換えられる。そして、到着間隔表示領域G21では、第4ダンプに関する画像G22hと現時点表示画像G23との間に双方向矢印が表示され、且つ、その双方向矢印から延びる吹き出し画像としての残り時間表示領域G8に、第4ダンプが到着するまでの残り時間が表示される。
到着時点表示画像G22は、色又は線種等の表示態様を変更できるように構成されていてもよい。ショベルの操作者は、例えば、表示装置40がタッチパネルを備える場合、所望の到着時点表示画像G22のところでダブルタップ操作を行い、コマンド選択ウィンドウをポップアップ表示させて表示態様変更コマンドを選択することで、その所望の到着時点表示画像G22の表示態様を変更してもよい。操作者は、例えば、作業現場に到着した第3ダンプに対するこのショベルによる積み込み作業が行われなかった場合、第3ダンプに関する画像G22cの線種を実線から点線に変更してもよい。このショベルによる第3ダンプに対する積み込み作業が行われなかったことを、ダンプ情報表示領域41nを見た者が認識できるようにするためである。ダンプが作業現場に到着したにもかかわらずそのショベルがこのショベルによる積み込み作業の対象とはならないという状況は、例えば、作業現場に到着したダンプが、このショベルとは別のショベルによる積み込み作業の対象となった場合に発生する。ショベルの操作者は、ダンプが作業現場に来ないことを認識した場合に、そのダンプに関する到着時点表示画像G22の表示態様を変更してもよい。操作者は、例えば、第2ダンプが作業現場に来ないとの連絡を電話等で受けた場合、上述と同様の操作により、画像G22j及びG22nの色を変更してもよい。現時点以降は第2ダンプが作業現場に来ないことを、ダンプ情報表示領域41nを見た者が認識できるようにするためである。この構成により、ダンプ情報表示領域41nを見た者は、どのような周期でダンプが作業現場に来たり或いは来なかったりするのかを把握できるようになる。
上述のような図8のダンプ情報表示領域41nを見ることで、ショベルの操作者は、次のダンプが到着するまでの残り時間を容易に把握することができる。また、操作者は、次のダンプが第1ダンプ~第4ダンプの何れであるかを容易に把握することができる。更に、操作者は、各ダンプの過去の到着時刻と、各ダンプの未来の到着時刻とを同時に把握することができる。具体的には、次に到着する予定である第3ダンプの到着時点ばかりでなく、第4ダンプ、第1ダンプ及び第2ダンプのそれぞれの到着時点をも大まかに把握することができる。
また、ショベルの操作者は、到着時点表示画像G22を操作可能である。このため、到着時点表示画像G22を消去したり或いはその位置を変更したりした場合にも、ショベルの操作者は、次のダンプが到着するまでの残り時間を容易に把握することができる。到着時点表示画像G22の消去又は移動に応じて残り時間が更新されるためである。
ショベルとダンプとが無線で接続されている構成において、ダンプの運転者が入力装置等を介して作業現場への自車の到着予定時刻を入力し或いは更新した場合、表示装置40に表示されている到着時点表示画像G22の位置は、その入力又は更新に応じて自動的に変更されてもよい。また、ダンプの運転者が入力装置等を介して到着予定時刻を削除した場合、表示装置40に表示されているそのダンプに関する到着時点表示画像G22は、その削除に応じて自動的に消去されてもよい。
図8では1台のショベルに対する複数台のダンプの到着予定時刻を示す表示例を示したが、ショベルは、通信装置を介し、1台又は複数台の他のショベルと共に、複数台のダンプの到着予定時刻を共有してもよい。複数のショベルが1つの作業現場で一緒に作業を行っている場合には、特定のダンプに対する積み込み作業が自ショベルによって行われるか他ショベルによって行われるかは、その積み込み作業が実際に開始される直前まで確定されないためである。この場合、コントローラ30は、何れのショベルによって積み込み作業が実際に行われたかを示すため、到着時点表示画像G22の表示色をショベル毎に異ならせてもよい。
次に、図9を参照し、表示装置40に表示されるメイン画面41Vの更に別の構成例について説明する。図9のメイン画面41Vは、ダンプ情報表示領域41nに表示される内容が図8のメイン画面41Vと異なる。なお、ダンプ情報表示領域41nにおける破線及び一点鎖線は、説明のためのものであり、実際には表示されない。
具体的には、図9のダンプ情報表示領域41nは、第1ダンプ表示領域G4、第2ダンプ表示領域G5、第3ダンプ表示領域G6、第4ダンプ表示領域G7、残り時間表示領域G8、ダンプ画像表示領域G9、横スクロールバーG10、縦スクロールバーG11、最大積載量表示領域G20及び到着間隔表示領域G31を含む。
残り時間表示領域G8は、残り時間に関する情報を表示する領域である。図9の例では、残り時間表示領域G8は、残り時間表示領域G8a、残り時間表示領域G8b及び残り時間表示領域G8cを含む。残り時間表示領域G8aは、次のダンプが到着するまでの残り時間に関する情報を表示し、残り時間表示領域G8bは、次の次のダンプが到着するまでの残り時間に関する情報を表示している。残り時間表示領域G8cは、次のダンプが到着してから次の次のダンプが到着するまでの残り時間(到着間隔)を表示している。
到着間隔表示領域G31は、図8の到着間隔表示領域G21と同様に、ダンプの到着間隔を表示する領域である。図9では、到着間隔表示領域G31において、ダンプの到着間隔は、到着時点表示画像G32及び現時点表示画像G33を用いて表示されている。
到着時点表示画像G32は、各ダンプが作業現場に到着した時点又は到着する時点を表す図形である。図9では、到着時点表示画像G32は、各ダンプの過去の到着時点及び未来の到着時点のそれぞれを表す棒状図形であり、ダンプ毎に異なる色を有する。
現時点表示画像G33は、現時点を表す図形である。図9では、現時点表示画像G33は、図8の現時点表示画像G23と同様に、三角形とその頂点の1つから延びる直線との組み合わせで構成されている。現時点表示画像G33は、時間の経過と共にメイン画面41V内を右方向に移動するように構成されている。但し、現時点表示画像G23は、メイン画面41V内の所定位置に固定されていてもよい。この場合、到着時点表示画像G32のそれぞれが時間の経過と共にメイン画面41V内を左方向に移動するように構成されていてもよい。
図9の例では、現時点表示画像G33の左側にある到着時点表示画像G32は、各ダンプの過去の到着時点を表し、現時点表示画像G33の右側にある到着時点表示画像G32は、各ダンプの未来の到着時点を表す。具体的には、到着時点表示画像G32は画像G32a~G32nを含む。そして、画像G32aは、第1ダンプの前々回の到着時点を表し、画像G32bは、第2ダンプの前々回の到着時点を表し、画像G32cは、第3ダンプの前回の到着時点を表し、画像G32dは、第4ダンプの前回の到着時点を表す。画像G32eは、第1ダンプの前回の到着時点を表し、画像G32fは、第2ダンプの前回の到着時点を表す。画像G32gは、第3ダンプの次回の到着時点を表し、画像G32hは、第4ダンプの次回の到着時点を表し、画像G32iは、第1ダンプの次回の到着時点を表し、画像G32jは、第2ダンプの次回の到着時点を表す。画像G32kは、第3ダンプの次々回の到着時点を表し、画像G32lは、第4ダンプの次々回の到着時点を表し、画像G32mは、第1ダンプの次々回の到着時点を表し、画像G32nは、第2ダンプの次々回の到着時点を表す。
また、図9の例では、タイムチャート上の波形のように、複数台のダンプに関する到着時点表示画像G32が同じ1つの直線に沿って並ぶように表示されている。図9に示す到着間隔表示領域G31は、図8の到着間隔表示領域G21と同様に、複数のダンプの到着時刻を、共通の時間軸で示している。具体的には、図9の到着間隔表示領域G31では、画像32a~32nの全てが1つの直線に沿って横方向に並ぶように表示されている。この点において、ダンプ毎に異なる直線に沿って表示される図8の到着間隔表示領域G21とは異なる。但し、到着時点表示画像G32は、図8の場合と同様に、直線に沿って並ぶように表示されるばかりでなく、円形のアナログ時計画像の輪郭等の曲線に沿って並ぶように表示されてもよい。
現時点表示画像G33は、図9の例では、画像G32fの右側で且つ画像32gの左側に位置する。これは、現時点は、第2ダンプが作業現場に到着した後で、且つ、第3ダンプが作業現場に到着する前であることを表している。そのため、残り時間表示領域G8aに表示されている「到着まで3′10″」は、次のダンプである第3ダンプが到着するまでの残り時間が3分10秒であることを表している。残り時間表示領域G8bに表示されている「到着まで8′53″」は、次の次のダンプである第4ダンプが到着するまでの残り時間が8分53秒であることを表している。そして、残り時間表示領域G8cに表示されている「到着間隔4′14″」は、第3ダンプが到着してから第4ダンプが到着するまでの残り時間(到着間隔)が4分14秒であることを表している。
図9のダンプ情報表示領域41nを見ることで、ショベルの操作者は、次のダンプが到着するまでの残り時間を容易に把握することができる。また、操作者は、次のダンプが第1ダンプ~第4ダンプの何れであるかを容易に把握することができる。更に、操作者は、各ダンプの過去の到着時刻と、各ダンプの未来の到着時刻とを同時に把握することができる。具体的には、次に到着する予定である第3ダンプの到着時点ばかりでなく、第4ダンプ、第1ダンプ及び第2ダンプのそれぞれの到着時点をも大まかに把握することができる。
次に、図10を参照し、本発明の実施形態に係るショベル(掘削機)の別の構成例について説明する。図10は、本発明の実施形態に係るショベルの別の構成例を示すショベルの側面図である。
図10のショベルでは、ブーム4にはブーム角度センサS1が取り付けられ、アーム5にはアーム角度センサS2が取り付けられ、バケット6にはバケット角度センサS3が取り付けられている。
ブーム角度センサS1はブーム4の回動角度を検出する。本実施形態では、ブーム角度センサS1は加速度センサであり、上部旋回体3に対するブーム4の回動角度(以下、「ブーム角度」とする。)を検出できる。ブーム角度は、例えば、ブーム4を最も下げたときに最小角度となり、ブーム4を上げるにつれて大きくなる。
アーム角度センサS2はアーム5の回動角度を検出する。本実施形態では、アーム角度センサS2は加速度センサであり、ブーム4に対するアーム5の回動角度(以下、「アーム角度」とする。)を検出できる。アーム角度は、例えば、アーム5を最も閉じたときに最小角度となり、アーム5を開くにつれて大きくなる。
バケット角度センサS3はバケット6の回動角度を検出する。本実施形態では、バケット角度センサS3は加速度センサであり、アーム5に対するバケット6の回動角度(以下、「バケット角度」とする。)を検出できる。バケット角度は、例えば、バケット6を最も閉じたときに最小角度となり、バケット6を開くにつれて大きくなる。
ブーム角度センサS1、アーム角度センサS2及びバケット角度センサS3はそれぞれ、可変抵抗器を利用したポテンショメータ、対応する油圧シリンダのストローク量を検出するストロークセンサ、連結ピン回りの回動角度を検出するロータリエンコーダ、ジャイロセンサ、又は、加速度センサとジャイロセンサの組み合わせ等であってもよい。
ブームシリンダ7にはブームロッド圧センサS7R及びブームボトム圧センサS7Bが取り付けられ、アームシリンダ8にはアームロッド圧センサS8R及びアームボトム圧センサS8Bが取り付けられ、バケットシリンダ9にはバケットロッド圧センサS9R及びバケットボトム圧センサS9Bが取り付けられている。ブームロッド圧センサS7R、ブームボトム圧センサS7B、アームロッド圧センサS8R、アームボトム圧センサS8B、バケットロッド圧センサS9R及びバケットボトム圧センサS9Bは、集合的に「シリンダ圧センサ」とも称される。
ブームロッド圧センサS7Rはブームシリンダ7のロッド側油室の圧力(以下、「ブームロッド圧」とする。)を検出し、ブームボトム圧センサS7Bはブームシリンダ7のボトム側油室の圧力(以下、「ブームボトム圧」とする。)を検出する。アームロッド圧センサS8Rはアームシリンダ8のロッド側油室の圧力(以下、「アームロッド圧」とする。)を検出し、アームボトム圧センサS8Bはアームシリンダ8のボトム側油室の圧力(以下、「アームボトム圧」とする。)を検出する。バケットロッド圧センサS9Rはバケットシリンダ9のロッド側油室の圧力(以下、「バケットロッド圧」とする。)を検出し、バケットボトム圧センサS9Bはバケットシリンダ9のボトム側油室の圧力(以下、「バケットボトム圧」とする。)を検出する。
上部旋回体3には運転室10が設けられ且つエンジン11等の動力源が搭載されている。また、上部旋回体3には、コントローラ30、表示装置40、入力装置42、音声出力装置43、記憶装置47、測位装置P1、機体傾斜センサS4、旋回角速度センサS5、撮像装置80及び通信装置T1が取り付けられている。上部旋回体3には、電力を供給する蓄電部、エンジン11の回転駆動力を用いて発電する電動発電機等が搭載されていてもよい。蓄電部は、例えば、キャパシタ、リチウムイオン電池等である。電動発電機は、発電機として機能して電気負荷に電力を供給してもよく、電動機として機能してエンジン11の回転をアシストしてもよい。
コントローラ30は、ショベルの駆動制御を行う主制御部として機能する。本実施形態では、コントローラ30は、CPU、RAM及びROM等を含むコンピュータで構成されている。コントローラ30の各種機能は、例えば、ROMに格納されたプログラムをCPUが実行することで実現される。各種機能は、例えば、操作者によるショベルの手動操作をガイド(案内)するマシンガイダンス機能、及び、操作者によるショベルの手動操作を自動的に支援するマシンコントロール機能を含んでいてもよい。
表示装置40は、各種情報を表示する。表示装置40は、CAN等の通信ネットワークを介してコントローラ30に接続されていてもよく、専用線を介してコントローラ30に接続されていてもよい。
入力装置42は、操作者が各種情報をコントローラ30に入力できるように構成されている。入力装置42は、例えば、運転室10内に設置されたタッチパネル、マイクロフォン、ノブスイッチ及びメンブレンスイッチの少なくとも1つを含んでいてもよい。
音声出力装置43は、音声を出力するように構成されている。音声出力装置43は、例えば、コントローラ30に接続されるスピーカであってもよく、ブザー等の警報器であってもよい。本実施形態では、音声出力装置43は、コントローラ30からの音声出力指令に応じて各種情報を音声出力するように構成されている。
記憶装置47は、各種情報を記憶するように構成されている。記憶装置47は、例えば、半導体メモリ等の不揮発性記憶媒体であってもよい。記憶装置47は、ショベルの動作中に各種機器が出力する情報を記憶してもよく、ショベルの動作が開始される前に各種機器を介して取得する情報を記憶してもよい。記憶装置47は、例えば、通信装置T1等を介して取得されるデータを記憶していてもよい。
測位装置P1は、上部旋回体3の位置を測定するように構成されている。上部旋回体3の向きを追加的に測定するように構成されていてもよい。測位装置P1は、例えばGNSSコンパスであり、上部旋回体3の位置及び向きを検出し、検出値をコントローラ30に対して出力する。そのため、測位装置P1は、上部旋回体3の向きを検出する向き検出装置として機能し得る。向き検出装置は、上部旋回体3に取り付けられた地磁気センサ等の方位センサであってもよい。
機体傾斜センサS4は、例えば、水平面に対する上部旋回体3の傾斜を検出するように構成されている。本実施形態では、機体傾斜センサS4は、上部旋回体3の前後軸回りの前後傾斜角及び左右軸回りの左右傾斜角を検出する加速度センサである。上部旋回体3の前後軸及び左右軸は、例えば、ショベルの旋回軸上の一点であるショベル中心点で互いに直交する。
旋回角速度センサS5は、上部旋回体3の旋回角速度を検出するように構成されている。上部旋回体3の旋回角度を検出するように構成されていてもよい。本実施形態では、ジャイロセンサである。レゾルバ、ロータリエンコーダ等であってもよい。
撮像装置80はショベルの周辺の画像を取得するように構成されている。本実施形態では、撮像装置80は、ショベルの前方の空間を撮像する前カメラ80F、ショベルの左方の空間を撮像する左カメラ80L、ショベルの右方の空間を撮像する右カメラ80R、及び、ショベルの後方の空間を撮像する後カメラ80Bを含む。
撮像装置80は、例えば、CCD又はCMOS等の撮像素子を有するステレオカメラであり、撮像した画像をコントローラ30に出力する。撮像装置80は、単眼カメラ又は距離画像カメラ等であってもよい。また、撮像装置80は、撮像装置80又はショベルから認識された物体までの距離を算出するように構成されていてもよい。この場合、撮像装置80は、ライダ等の環境認識装置で置き換えられてもよい。
前カメラ80Fは、例えば、運転室10の天井、すなわち運転室10の内部に取り付けられている。但し、運転室10の屋根、ブーム4の側面等、運転室10の外部に取り付けられていてもよい。左カメラ80Lは、上部旋回体3の上面左端に取り付けられ、右カメラ80Rは、上部旋回体3の上面右端に取り付けられ、後カメラ80Bは、上部旋回体3の上面後端に取り付けられている。
通信装置T1は、ショベルの外部にある外部機器との通信を制御するように構成されている。本実施形態では、通信装置T1は、衛星通信網、携帯電話通信網及びインターネット網等の少なくとも1つを介した外部機器との通信を制御する。
次に、図11を参照し、図10のショベルに搭載されているコントローラ30の構成例について説明する。図11は、コントローラ30の構成例を示す図である。図11のコントローラ30は、吐出圧センサ14b、操作圧センサ29及び情報取得装置等の少なくとも1つの出力を得て、各種機能要素による演算を実行する。各種機能要素は、検出部300、推定部301及び情報取得部302等を含む。情報取得装置は、ブーム角度センサS1、アーム角度センサS2、バケット角度センサS3、機体傾斜センサS4、旋回角速度センサS5、撮像装置80、ブームボトム圧センサS7B、ブームロッド圧センサS7R、アームボトム圧センサS8B、アームロッド圧センサS8R、バケットボトム圧センサS9B、バケットロッド圧センサS9R、通信装置T1及び測位装置P1等の少なくとも1つを含む。
情報取得部302は、掘削アタッチメントの掘削動作で掘削される被掘削物の重量である掘削重量に関する情報を取得するように構成されている。本実施形態では、情報取得部302は、吐出圧センサ14b、操作圧センサ29及び情報取得装置等の少なくとも1つの出力に基づいて掘削重量に関する情報を取得するように構成されている。
情報取得部302は、例えば、撮像装置80としてのステレオカメラが撮像したショベルの前方の空間に関する距離画像に基づき、掘削アタッチメントによって掘削された土砂等の被掘削物の重量を掘削重量として算出する。撮像装置80は、3次元レーザスキャナ又はライダ等で置き換えられてもよい。具体的には、情報取得部302は、掘削動作が始まったときに撮像された距離画像と、掘削動作が完了したときに撮像された距離画像とに基づき、その1回の掘削動作で掘削された被掘削物の体積である掘削体積を算出する。そして、掘削体積に被掘削物の密度を乗じて掘削重量を算出する。被掘削物の密度は予め設定されている値であってもよく、入力装置42等を用いて動的に設定される値であってもよい。
このようにして、情報取得部302は、掘削前の地形と掘削後の地形を比較し、その変化に基づいて1回の掘削動作による掘削重量を算出できる。1回の掘削動作は、バケット6内に被掘削物を取り込む動作であり、例えば、被掘削物を取り込んでいないバケット6が地面に接触したときに始まったと判断され、被掘削物を取り込んだバケット6が地面から離れたときに完了したと判断される。但し、掘削動作が始まったと判断するための条件、及び、掘削動作が完了したと判断するための条件は、任意に設定され得る。情報取得部302は、例えば、操作圧センサ29及びシリンダ圧センサ等の少なくとも1つの出力に基づき、掘削動作が始まったか否か、及び、掘削動作が完了したか否かを判断してもよい。
情報取得部302は、掘削アタッチメントの姿勢を検出する姿勢センサの出力に基づき、掘削動作が始まったか否か、及び、掘削動作が完了したか否かを判断してもよい。姿勢センサは、例えば、ブーム角度センサS1、アーム角度センサS2及びバケット角度センサS3を含む。姿勢センサは、ブームシリンダストロークセンサ、アームシリンダストロークセンサ及びバケットシリンダストロークセンサの組み合わせであってもよい。
この構成により、コントローラ30は、所定時間内に行われた1回又は複数回の掘削動作のそれぞれに関する被掘削物の重量の積算値を所定時間における累積掘削重量として算出できる。
情報取得部302は、姿勢センサ及びシリンダ圧センサの出力に基づいて1回の掘削動作による掘削重量を算出してもよい。例えば、情報取得部302は、被掘削物を取り込んだバケット6が空中に持ち上げられているときの掘削アタッチメントの姿勢とブームボトム圧とに基づき、1回の掘削動作で掘削された被掘削物の重量を掘削重量として算出してもよい。
情報取得部302は、バケット6の所定部位の位置の時間的推移に基づいて掘削重量を算出してもよい。バケット6の所定部位は、例えば、バケット6の爪先である。情報取得部302は、例えば、ブーム4、アーム5及びバケット6のそれぞれの回動角度に基づいてバケット6の爪先の位置を算出する。
この場合、情報取得部302は、例えば、飛行体が搭載している3次元距離画像センサが生成したショベルの前方の空間に関する距離画像に基づき、掘削動作が始まる前の地形を導き出す。飛行体が搭載している3次元距離画像センサは、3次元レーザスキャナ、ステレオカメラ及びライダの何れであってもよい。飛行体は、例えば、マルチコプタ又は飛行船等であり、距離画像に対応する実際の地面の位置及び向きを特定できるように測位装置を搭載している。また、ショベルとの通信を可能にする通信装置を搭載している。
情報取得部302は、例えば、通信装置T1を介して飛行体に取り付けられているステレオカメラが生成した距離画像を受信し、その距離画像に基づいて掘削動作が始まる前の地形を導き出す。情報取得部302は、通信装置T1を介してステレオカメラが撮像した画像を受信し、その画像から距離画像を生成し、その距離画像に基づいて掘削動作が始まる前の地形を導き出すように構成されていてもよい。
その後、情報取得部302は、例えば、算出したバケット6の爪先の位置の軌道と、掘削動作が始まる前の地形とに基づいて掘削体積を算出してもよい。
情報取得部302は、例えば、単眼カメラとしての前カメラ80Fが撮像したバケット6に関する画像から掘削体積を算出してもよい。具体的には、情報取得部302は、被掘削物を取り込んだバケット6が空中に持ち上げられているときに前カメラ80Fが撮像したバケット6に関する画像に各種画像処理を施すことでバケット6内の被掘削物の画像を認識する。そして、被掘削物の画像の大きさ等に基づいて掘削体積を導き出す。情報取得部302は、掘削体積を導き出すために、姿勢センサ等の他の情報取得装置の出力を追加的に利用してもよい。
情報取得部302は、掘削アタッチメントの掘削動作で掘削される被掘削物の密度に関する情報を取得するように構成されていてもよい。典型的には、情報取得部302は、掘削体積と掘削重量とに基づいて被掘削物の密度を算出してもよい。掘削体積は、例えば、掘削動作が始まる前の地形と掘削動作が完了した後の地形とに基づいて算出されてもよい。掘削重量は、例えば、シリンダ圧センサの出力に基づいて算出されてもよく、姿勢センサの出力とシリンダ圧センサの出力とに基づいて算出されてもよい。
次に、図12を参照し、図10のショベルに搭載されている表示装置40に表示されるメイン画面41Vの更に別の構成例について説明する。図12のメイン画面41Vは、ダンプ情報表示領域41nに表示される内容が図6のメイン画面41Vと異なる。具体的には、図12のメイン画面41Vは、最大積載量表示領域G20、総累積積載量表示領域G40、個別累積積載量表示領域G41及び各回積載量表示領域G42を含む点で、図6のメイン画面41Vと異なるが、その他の点で図6のメイン画面41Vと同じである。そのため、共通部分の説明を省略し、相違部分を詳説する。なお、ダンプ情報表示領域41nにおける破線及び一点鎖線は、説明のためのものであり、実際には表示されない。
最大積載量表示領域G20は、図8で説明したように、最大積載量を表示する領域である。図12の例では、最大積載量表示領域G20は、領域G20a~G20dを含む。領域G20aは、第1ダンプの最大積載量を表示し、領域G20bは、第2ダンプの最大積載量を表示し、領域G20cは、第3ダンプの最大積載量を表示し、領域G20dは、第4ダンプの最大積載量を表示している。
コントローラ30は、例えば、撮像装置80が出力する画像に映っているダンプのナンバープレートの大きさ又は分類番号を画像認識することでそのダンプの最大積載量を認識する。コントローラ30は、ダンプに搭載された、Wi-Fi(登録商標)又はBluetooth(登録商標)等に関する通信規格に基づくビーコン等の装置が発信する情報に基づいてそのダンプの最大積載量を認識してもよい。
コントローラ30は、ダンプの最大積載量を重量(単位「t(トン)」)で表示してもよく、体積(単位「m3(立方メートル)」)で表示してもよく、或いは、重量及び体積の両方で表示してもよい。図12の例では、各ダンプの最大積載量は、重量及び体積の両方で表示されている。
総累積積載量表示領域G40は、図10のショベルが所定期間中にダンプに積み込んだ被掘削物の総量を表示する領域である。所定期間は、例えば、1日の作業開始時刻から作業終了時刻までの期間である。図12の例では、総累積積載量表示領域G40は、ショベルによる掘削動作のそれぞれに関する被掘削物の重量(掘削重量)の積算値である累積掘削重量を総累積積載量として表示している。
個別累積積載量表示領域G41は、図10のショベルが所定期間中にダンプに積み込んだ被掘削物の量をダンプ毎に表示する領域である。図12の例では、個別累積積載量表示領域G41は、領域G41a~G41dを含む。領域G41aは、第1ダンプの累積積載量を表示し、領域G41bは、第2ダンプの累積積載量を表示し、領域G41cは、第3ダンプの累積積載量を表示し、領域G41dは、第4ダンプの累積積載量を表示している。第1ダンプ~第4ダンプのそれぞれの累積積載量の合計は総累積積載量に相当する。
各回積載量表示領域G42は、図10のショベルが1回の積み込み作業中にダンプに積み込んだ被掘削物の量を表示する領域である。図12の例では、各回積載量表示領域G42は、領域G42a~G42fを含む。領域G42aは、前回の積み込み作業中に第2ダンプに積み込んだ被掘削物の量を表示し、領域G42bは、前々回(2回前)の積み込み作業中に第1ダンプに積み込んだ被掘削物の量を表示し、領域G42cは、3回前の積み込み作業中に第4ダンプに積み込んだ被掘削物の量を表示している。以下同様に、領域G42dは、4回前の積み込み作業中に第3ダンプに積み込んだ被掘削物の量を表示し、領域G42eは、5回前の積み込み作業中に第2ダンプに積み込んだ被掘削物の量を表示し、領域G42fは、6回前の積み込み作業中に第1ダンプに積み込んだ被掘削物の量を表示している。
コントローラ30は、例えば、情報取得部302が算出した掘削重量に基づいて累積積載量を算出し且つ表示する。コントローラ30は、累積積載量を重量(単位「t(トン)」)で表示してもよく、体積(単位「m3(立方メートル)」)で表示してもよく、或いは、重量及び体積の両方で表示してもよい。図12の例では、総累積積載量表示領域G40、個別累積積載量表示領域G41及び各回積載量表示領域G42のそれぞれにおける累積積載量は、重量及び体積の両方で表示されている。体積を表示する場合、コントローラ30は、情報取得部302が算出した掘削重量と被掘削物の密度とに基づいて被掘削物の体積を算出してもよい。
ここで、被掘削物の密度は事前に登録されていてもよい。また、コントローラ30は、撮像装置80が撮像した画像に基づいて被掘削物の体積を取得し、且つ、シリンダ圧センサ等の出力に基づいて掘削重量を取得することにより、被掘削物の密度を算出してもよい。更に、コントローラ30は、被掘削物の種類を表示装置40に表示させてもよい。被掘削物の種類は、例えば、物質記号(マテリアルタイプ)としての「RipRap3」又は「Coarse Sand」等を用いて表される。
操作者は、被掘削物の種類を事前に入力してもよい。或いは、コントローラ30は、通信装置を介して管理装置から被掘削物の種類に関する情報を取得してもよい。また、コントローラ30は、算出した被掘削物の密度と撮像装置80が撮像した画像とに基づき、被掘削物の種類を推定してもよい。
次に、図13を参照し、図10のショベルに搭載されている表示装置40に表示されるメイン画面41Vの更に別の構成例について説明する。図13は、メイン画面41Vのダンプ情報表示領域41nに表示される画像の表示例を示す。
図13のダンプ情報表示領域41nは、グラフ表示領域G50を含む。グラフ表示領域G50は、ダンプ情報表示領域41nの上にポップアップ表示される別ウィンドウに含まれていてもよい。
グラフ表示領域G50は、総累積積載量の時間的推移を表す総累積積載量グラフを表示する領域である。図13の総累積積載量グラフでは、横軸が時間を示し、縦軸が総累積積載量を示している。図中の「tc」は現時点を表し、「Wc」は総累積積載量の現在値を表し、「Wt」は総累積積載量の目標値を表し、「te」は、総累積積載量が目標値に達すると推定される時点を表している。
現時点「tc」よりも左側にある実線L1は過去の総累積積載量の推移を表し、現時点「tc」よりも右側にある点線L2は未来の総累積積載量の推移を表している。
ショベルの操作者は、図13の総累積積載量グラフを見ることで、積み込み作業に関し、目標のほぼ3分の2が完了していることを直感的に認識できる。また、操作者は、あと何時間程度で積み込み作業が完了するかを把握できる。
1つの作業現場に複数台のショベルが存在している場合には、図13の総累積積載量グラフは、複数台のショベルの総累積積載量の合計値を表示していてもよい。この場合、作業現場の全体作業量の管理が容易となる。
以上、本発明の好ましい実施形態について詳説した。しかしながら、本発明は、上述した実施形態に制限されることはない。上述した実施形態は、本発明の範囲を逸脱することなしに、種々の変形及び置換が適用され得る。また、上述の実施形態を参照して説明された特徴のそれぞれは、技術的に矛盾しない限り、適宜に組み合わされてもよい。
例えば、図6の例では、メイン画面41Vは、ダンプ情報表示領域41nを含むように構成されているが、ダンプ情報表示領域41nは、メイン画面41Vとは別のダンプ情報画面に含まれるように構成されてもよい。この場合、操作者は、例えば、所定の画面切り換えスイッチを操作してメイン画面41Vをダンプ情報画面に切り換えることでダンプ情報表示領域41nに表示される情報を表示させてもよい。
本願は、2017年8月8日に出願した日本国特許出願2017-153671号に基づく優先権を主張するものであり、この日本国特許出願の全内容を本願に参照により援用する。
1・・・下部走行体 2・・・旋回機構 3・・・上部旋回体 4・・・ブーム 5・・・アーム 6・・・バケット 7・・・ブームシリンダ 8・・・アームシリンダ 9・・・バケットシリンダ 10・・・運転室 11・・・エンジン 11a・・・オルタネータ 11b・・・スタータ 11c・・・水温センサ 14・・・メインポンプ 14a・・・レギュレータ 14b・・・吐出圧センサ 14c・・・油温センサ 15・・・パイロットポンプ 17・・・コントロールバルブ 26・・・操作装置 29・・・操作圧センサ 30・・・コントローラ 30a・・・記憶部 40・・・表示装置 40a・・・変換処理部 41・・・画像表示部 42・・・入力装置 43・・・音声出力装置 47・・・記憶装置 70・・・蓄電池 72・・・電装品 74・・・エンジンコントローラ 75・・・エンジン回転数調整ダイヤル 80・・・撮像装置 80B・・・後カメラ 80F・・・前カメラ 80L・・・左カメラ 80R・・・右カメラ 300・・・検出部 301・・・推定部 302・・・情報取得部 P1・・・測位装置 S1・・・ブーム角度センサ S2・・・アーム角度センサ S3・・・バケット角度センサ S4・・・機体傾斜センサ S5・・・旋回角速度センサ S7・・・ブームボトム圧センサ S7R・・・ブームロッド圧センサ S8B・・・アームボトム圧センサ S8R・・・アームロッド圧センサ S9B・・・バケットボトム圧センサ S9R・・・バケットロッド圧センサ SD1・・・情報取得装置 T1・・・通信装置T1
Claims (15)
- 下部走行体と、
前記下部走行体に旋回可能に搭載される上部旋回体と、
前記上部旋回体に取り付けられ、土砂を運搬車両へ積み込む作業を行うアタッチメントと、
運搬車両毎に算出された残り時間を表示する表示装置と、を有する、
ショベル。 - 前記アタッチメントによる土砂の運搬車両への積み込み作業が完了した時点と、該運搬車両への次の積み込み作業が開始された時点とに基づき、該運搬車両が土砂を排土して戻ってくるまでの所要時間を推定する制御装置を有する、
請求項1に記載のショベル。 - 前記制御装置は、前記所要時間に基づき、次の運搬車両への積み込みが可能になるまでの残り時間を算出する、
請求項2に記載のショベル。 - 前記残り時間は、時間の経過と共に更新される、
請求項3に記載のショベル。 - 前記次の運搬車両は、複数の運搬車両のうちの1つである、
請求項3に記載のショベル。 - 前記所要時間と、積み込みが開始されてから該積み込みが完了するまでの積み込み時間とが運搬車両毎に記録される、
請求項2に記載のショベル。 - ショベルによる運搬車両への土砂の積み込みに関する作業を支援するショベルの支援装置であって、
運搬車両毎に算出された残り時間を表示する表示装置を有する、
ショベルの支援装置。 - 前記表示装置には、地図情報とショベルの位置情報とが表示される、
請求項7に記載のショベルの支援装置。 - 前記表示装置には、地図情報と積み込み現場毎の繁閑状態とが表示される、
請求項7に記載のショベルの支援装置。 - 前記表示装置は、残り時間の確かさを表す数値である予想確率を表示するように構成されている、
請求項1に記載のショベル。 - 前記表示装置は、運搬車両の到着時刻を推定し、該到着時刻を過ぎても運搬車両が到着していない場合、残り時間を負値で表示するように構成されている、
請求項1に記載のショベル。 - 前記表示装置は、複数の運搬車両を1セットとし、現在のセットに関する情報と前回又は次回のセットに関する情報とを区別可能に表示するように構成されている、
請求項1に記載のショベル。 - 前記表示装置は、共通の時間軸を用いて複数の運搬車両の到着間隔を表示するように構成されている、
請求項1に記載のショベル。 - 前記表示装置は、被掘削物の種類を表示するように構成されている、
請求項1に記載のショベル。 - 前記表示装置は、共通の時間軸を用いて複数の運搬車両の到着時刻を表示するように構成されている、
請求項7に記載のショベルの支援装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019535702A JP7258758B2 (ja) | 2017-08-08 | 2018-08-08 | ショベル及びショベルの支援装置 |
EP18844609.0A EP3666982B1 (en) | 2017-08-08 | 2018-08-08 | Excavator and excavator assist device |
KR1020197027931A KR102575200B1 (ko) | 2017-08-08 | 2018-08-08 | 쇼벨 및 쇼벨의 지원장치 |
CN201880020625.0A CN110446817B (zh) | 2017-08-08 | 2018-08-08 | 挖土机及挖土机的支援装置 |
US16/782,421 US11994397B2 (en) | 2017-08-08 | 2020-02-05 | Shovel and assist device for shovel |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017153671 | 2017-08-08 | ||
JP2017-153671 | 2017-08-08 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/782,421 Continuation US11994397B2 (en) | 2017-08-08 | 2020-02-05 | Shovel and assist device for shovel |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019031551A1 true WO2019031551A1 (ja) | 2019-02-14 |
Family
ID=65272010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/029782 WO2019031551A1 (ja) | 2017-08-08 | 2018-08-08 | ショベル及びショベルの支援装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11994397B2 (ja) |
EP (1) | EP3666982B1 (ja) |
JP (1) | JP7258758B2 (ja) |
KR (1) | KR102575200B1 (ja) |
CN (1) | CN110446817B (ja) |
WO (1) | WO2019031551A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020026521A1 (ja) * | 2018-07-31 | 2020-02-06 | 株式会社小松製作所 | 作業機械 |
CN113544730A (zh) * | 2019-09-30 | 2021-10-22 | 日立建机株式会社 | 施工管理系统 |
WO2021241526A1 (ja) | 2020-05-25 | 2021-12-02 | 住友建機株式会社 | ショベル及びショベル用のシステム |
JP2021188260A (ja) * | 2020-05-25 | 2021-12-13 | 住友建機株式会社 | ショベル |
EP3908807A4 (en) * | 2020-03-17 | 2022-01-19 | Freeport-McMoRan Inc. | PROCESSES AND SYSTEMS FOR DEPLOYING NECESSARY EQUIPMENT TO ACHIEVE DEFINED PRODUCTION GOALS |
WO2022044499A1 (ja) * | 2020-08-24 | 2022-03-03 | 日本国土開発株式会社 | 操作制御方法 |
EP3951091A4 (en) * | 2019-03-29 | 2022-06-01 | Sumitomo Construction Machinery Co., Ltd. | EXCAVATOR AND EXCAVATOR CONTROL DEVICE |
WO2022210143A1 (ja) * | 2021-03-29 | 2022-10-06 | 住友建機株式会社 | ショベルの表示装置、ショベル、ショベルの支援装置 |
DE112022001927T5 (de) | 2021-03-31 | 2024-02-08 | Sumitomo Heavy Industries, Ltd. | Arbeitsmaschine und arbeitsmaschinen-unterstützungssystem |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7345236B2 (ja) * | 2017-11-10 | 2023-09-15 | 株式会社小松製作所 | 作業車両の動作を推定するための方法、システム、学習済みの分類モデルの製造方法、学習データ、及び学習データの製造方法 |
JP7215959B2 (ja) * | 2019-04-26 | 2023-01-31 | 株式会社小松製作所 | 再生装置、分析支援システム及び再生方法 |
CN111364549B (zh) * | 2020-02-28 | 2021-11-09 | 江苏徐工工程机械研究院有限公司 | 一种基于激光雷达的同步建图和自动作业方法及系统 |
JP7349956B2 (ja) * | 2020-04-14 | 2023-09-25 | 株式会社小松製作所 | 施工方法及び施工システム |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002105989A (ja) * | 2000-09-28 | 2002-04-10 | Komatsu Ltd | 施工現場管理システム |
JP2006022563A (ja) * | 2004-07-08 | 2006-01-26 | Hitachi Constr Mach Co Ltd | 作業機械とアタッチメント判別方法 |
JP2013221309A (ja) | 2012-04-16 | 2013-10-28 | Hitachi Constr Mach Co Ltd | 運行管理システム |
JP2014049082A (ja) * | 2012-09-04 | 2014-03-17 | Hiroko Honsha Co Ltd | バスロケーションシステム |
WO2015025537A1 (ja) * | 2014-02-18 | 2015-02-26 | 株式会社小松製作所 | 作業車両及び作業車両用表示装置 |
JP2015209690A (ja) * | 2014-04-25 | 2015-11-24 | 住友建機株式会社 | 建設機械 |
JP2015535992A (ja) * | 2012-09-24 | 2015-12-17 | キャタピラー インコーポレイテッドCaterpillar Incorporated | 採掘作業の制御及び点検 |
JP2016084633A (ja) * | 2014-10-27 | 2016-05-19 | 日立建機株式会社 | 建設機械の電力供給システム |
JP2017153671A (ja) | 2016-03-01 | 2017-09-07 | 株式会社島津製作所 | X線透視撮影装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5230851B2 (ja) * | 1974-10-11 | 1977-08-11 | ||
JPS5938576U (ja) * | 1982-09-03 | 1984-03-12 | 新キャタピラー三菱株式会社 | 荷役積載重量監視装置 |
JP4593055B2 (ja) * | 2000-03-31 | 2010-12-08 | 日立建機株式会社 | 建設機械の管理方法及びシステム並びに演算処理装置 |
US20080059005A1 (en) | 2006-08-31 | 2008-03-06 | Jonny Ray Greiner | System and method for selective on-board processing of machine data |
US8386134B2 (en) * | 2007-09-28 | 2013-02-26 | Caterpillar Inc. | Machine to-machine communication system for payload control |
KR101845116B1 (ko) * | 2011-02-21 | 2018-04-03 | 가부시키가이샤 히다치 겡키 티에라 | 전동식 건설 기계 |
US9221659B2 (en) * | 2011-11-04 | 2015-12-29 | Komatsu Ltd. | Loading system and transporter |
AU2013350345B2 (en) * | 2013-08-20 | 2015-07-02 | Komatsu Ltd. | Management system and management method |
JP6732361B2 (ja) | 2015-10-09 | 2020-07-29 | 住友重機械工業株式会社 | ショベル操作装置、ショベル操作方法、ショベル、及びショベル操作用プログラム |
US20170200306A1 (en) * | 2016-01-08 | 2017-07-13 | Caterpillar Paving Products Inc. | Control system for coordinating earth-working machines |
US10613524B2 (en) | 2016-01-15 | 2020-04-07 | Caterpillar Paving Products Inc. | Truck process management tool for transport operations |
WO2019017172A1 (ja) * | 2017-07-18 | 2019-01-24 | 株式会社小松製作所 | 施工現場管理装置、出力装置、および施工現場の管理方法 |
-
2018
- 2018-08-08 JP JP2019535702A patent/JP7258758B2/ja active Active
- 2018-08-08 KR KR1020197027931A patent/KR102575200B1/ko active IP Right Grant
- 2018-08-08 CN CN201880020625.0A patent/CN110446817B/zh active Active
- 2018-08-08 EP EP18844609.0A patent/EP3666982B1/en active Active
- 2018-08-08 WO PCT/JP2018/029782 patent/WO2019031551A1/ja unknown
-
2020
- 2020-02-05 US US16/782,421 patent/US11994397B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002105989A (ja) * | 2000-09-28 | 2002-04-10 | Komatsu Ltd | 施工現場管理システム |
JP2006022563A (ja) * | 2004-07-08 | 2006-01-26 | Hitachi Constr Mach Co Ltd | 作業機械とアタッチメント判別方法 |
JP2013221309A (ja) | 2012-04-16 | 2013-10-28 | Hitachi Constr Mach Co Ltd | 運行管理システム |
JP2014049082A (ja) * | 2012-09-04 | 2014-03-17 | Hiroko Honsha Co Ltd | バスロケーションシステム |
JP2015535992A (ja) * | 2012-09-24 | 2015-12-17 | キャタピラー インコーポレイテッドCaterpillar Incorporated | 採掘作業の制御及び点検 |
WO2015025537A1 (ja) * | 2014-02-18 | 2015-02-26 | 株式会社小松製作所 | 作業車両及び作業車両用表示装置 |
JP2015209690A (ja) * | 2014-04-25 | 2015-11-24 | 住友建機株式会社 | 建設機械 |
JP2016084633A (ja) * | 2014-10-27 | 2016-05-19 | 日立建機株式会社 | 建設機械の電力供給システム |
JP2017153671A (ja) | 2016-03-01 | 2017-09-07 | 株式会社島津製作所 | X線透視撮影装置 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7236826B2 (ja) | 2018-07-31 | 2023-03-10 | 株式会社小松製作所 | 作業機械 |
JP2020020154A (ja) * | 2018-07-31 | 2020-02-06 | 株式会社小松製作所 | 作業機械 |
WO2020026521A1 (ja) * | 2018-07-31 | 2020-02-06 | 株式会社小松製作所 | 作業機械 |
US11933017B2 (en) | 2018-07-31 | 2024-03-19 | Komatsu Ltd. | Work machine |
EP3951091A4 (en) * | 2019-03-29 | 2022-06-01 | Sumitomo Construction Machinery Co., Ltd. | EXCAVATOR AND EXCAVATOR CONTROL DEVICE |
CN113544730A (zh) * | 2019-09-30 | 2021-10-22 | 日立建机株式会社 | 施工管理系统 |
CN113544730B (zh) * | 2019-09-30 | 2024-07-16 | 日立建机株式会社 | 施工管理系统 |
EP3908807A4 (en) * | 2020-03-17 | 2022-01-19 | Freeport-McMoRan Inc. | PROCESSES AND SYSTEMS FOR DEPLOYING NECESSARY EQUIPMENT TO ACHIEVE DEFINED PRODUCTION GOALS |
EP4266228A3 (en) * | 2020-03-17 | 2024-01-17 | Freeport-McMoRan Inc. | Methods and systems for deploying equipment required to meet defined production targets |
JP2021188260A (ja) * | 2020-05-25 | 2021-12-13 | 住友建機株式会社 | ショベル |
KR20230015315A (ko) | 2020-05-25 | 2023-01-31 | 스미토모 겐키 가부시키가이샤 | 쇼벨 및 쇼벨용의 시스템 |
WO2021241526A1 (ja) | 2020-05-25 | 2021-12-02 | 住友建機株式会社 | ショベル及びショベル用のシステム |
JP7406641B2 (ja) | 2020-08-24 | 2023-12-27 | 日本国土開発株式会社 | 操作制御方法 |
JPWO2022044499A1 (ja) * | 2020-08-24 | 2022-03-03 | ||
WO2022044499A1 (ja) * | 2020-08-24 | 2022-03-03 | 日本国土開発株式会社 | 操作制御方法 |
WO2022210143A1 (ja) * | 2021-03-29 | 2022-10-06 | 住友建機株式会社 | ショベルの表示装置、ショベル、ショベルの支援装置 |
DE112022001927T5 (de) | 2021-03-31 | 2024-02-08 | Sumitomo Heavy Industries, Ltd. | Arbeitsmaschine und arbeitsmaschinen-unterstützungssystem |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019031551A1 (ja) | 2020-08-27 |
KR102575200B1 (ko) | 2023-09-05 |
EP3666982A4 (en) | 2020-08-19 |
CN110446817B (zh) | 2023-06-13 |
CN110446817A (zh) | 2019-11-12 |
EP3666982A1 (en) | 2020-06-17 |
US20200173791A1 (en) | 2020-06-04 |
KR20200038884A (ko) | 2020-04-14 |
EP3666982B1 (en) | 2023-07-19 |
JP7258758B2 (ja) | 2023-04-17 |
US11994397B2 (en) | 2024-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102575200B1 (ko) | 쇼벨 및 쇼벨의 지원장치 | |
JP7247306B2 (ja) | 管理装置及び支援装置 | |
JP7330107B2 (ja) | ショベル及びショベルの管理システム | |
WO2019189260A1 (ja) | ショベル | |
WO2017061518A1 (ja) | 施工管理システム、施工管理方法、及び管理装置 | |
KR102493019B1 (ko) | 쇼벨, 쇼벨의 표시장치 및 쇼벨의 표시방법 | |
JP6782270B2 (ja) | 施工管理システムおよび作業機械 | |
WO2018062363A1 (ja) | ショベル | |
US20160251824A1 (en) | Control system of excavating machine and excavating machine | |
US20230078047A1 (en) | Excavator and system for excavator | |
US11619028B2 (en) | Shovel | |
WO2021193839A1 (ja) | 建設機械の情報通信システム、建設機械の表示装置、機械学習装置 | |
US20240018750A1 (en) | Display device for shovel, shovel, and assist device for shovel | |
CN114026296A (zh) | 施工机械、施工机械的显示装置及施工机械的管理装置 | |
JP2022156425A (ja) | 作業機械及び搬送物重量計測システム | |
JP2023034771A (ja) | 建設機械の支援システム、建設機械の支援プログラム | |
JP2024004763A (ja) | ショベルの管理システム | |
JP2024068678A (ja) | 作業機械及び情報処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18844609 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019535702 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018844609 Country of ref document: EP Effective date: 20200309 |