Nothing Special   »   [go: up one dir, main page]

WO2019026208A1 - Dispersing machine, method for dispersing particles in slurry and emulsion production method - Google Patents

Dispersing machine, method for dispersing particles in slurry and emulsion production method Download PDF

Info

Publication number
WO2019026208A1
WO2019026208A1 PCT/JP2017/028078 JP2017028078W WO2019026208A1 WO 2019026208 A1 WO2019026208 A1 WO 2019026208A1 JP 2017028078 W JP2017028078 W JP 2017028078W WO 2019026208 A1 WO2019026208 A1 WO 2019026208A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
rotor
cylindrical container
particles
cylindrical body
Prior art date
Application number
PCT/JP2017/028078
Other languages
French (fr)
Japanese (ja)
Inventor
隆志 田原
千田 浩司
章次 北川
Original Assignee
株式会社広島メタル&マシナリー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社広島メタル&マシナリー filed Critical 株式会社広島メタル&マシナリー
Priority to KR1020197004491A priority Critical patent/KR102455946B1/en
Priority to CN201780050123.8A priority patent/CN109600995A/en
Priority to PCT/JP2017/028078 priority patent/WO2019026208A1/en
Publication of WO2019026208A1 publication Critical patent/WO2019026208A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/93Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with rotary discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/115Stirrers characterised by the configuration of the stirrers comprising discs or disc-like elements essentially perpendicular to the stirrer shaft axis
    • B01F27/1152Stirrers characterised by the configuration of the stirrers comprising discs or disc-like elements essentially perpendicular to the stirrer shaft axis with separate elements other than discs fixed on the discs, e.g. vanes fixed on the discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/115Stirrers characterised by the configuration of the stirrers comprising discs or disc-like elements essentially perpendicular to the stirrer shaft axis
    • B01F27/1153Stirrers characterised by the configuration of the stirrers comprising discs or disc-like elements essentially perpendicular to the stirrer shaft axis the discs being made by deforming flat discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/21Mixers with rotary stirring devices in fixed receptacles; Kneaders characterised by their rotating shafts
    • B01F27/2122Hollow shafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/50Mixing receptacles
    • B01F35/51Mixing receptacles characterised by their material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/16Mills in which a fixed container houses stirring means tumbling the charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/16Mills in which a fixed container houses stirring means tumbling the charge
    • B02C17/163Stirring means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C7/00Crushing or disintegrating by disc mills
    • B02C7/02Crushing or disintegrating by disc mills with coaxial discs
    • B02C7/08Crushing or disintegrating by disc mills with coaxial discs with vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C7/00Crushing or disintegrating by disc mills
    • B02C7/175Disc mills specially adapted for paste-like material, e.g. paint, chocolate, colloids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F2035/98Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0413Numerical information
    • B01F2215/0418Geometrical information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0413Numerical information
    • B01F2215/0436Operational information

Definitions

  • the present invention relates to a disperser for grinding and dispersing agglomerated particles in a suspension (hereinafter referred to as a slurry) in which solid or liquid particles are dispersed in liquid, and particles in the slurry by the disperser. And a method of producing an emulsion.
  • a disperser for grinding and dispersing agglomerated particles in a suspension (hereinafter referred to as a slurry) in which solid or liquid particles are dispersed in liquid, and particles in the slurry by the disperser. And a method of producing an emulsion.
  • the term “dispersion” as used in the present invention means that secondary particles formed by aggregating several to several tens of primary particles consisting of single crystal particles and amorphous particles are separated and separated in a solution.
  • pulverization refers to the decomposition of a single particle into a plurality of particles.
  • the conventional dispersing machine performs dispersion, pulverization and bead separation simultaneously in the separator structure, which is divided into a part that performs stirring for dispersion and pulverization, a separator part that separates dispersion and pulverization beads, and a separator structure. was there.
  • a disperser of the former apparatus division for example, a wet ball mill shown in Patent Document 1 below is disclosed.
  • the slurry is introduced into the container filled with beads for grinding and dispersion, and the stirring blades and the separator are rotationally driven to disperse and grind particles in the slurry to make the particles finer.
  • Patent Document 2 is a crusher suitable for dispersion / crushing in the prior art, which corresponds to the disperser of the latter device classification.
  • this device there is disclosed a crusher in which both the cylindrical container and the separator have large diameters and the axial length L is smaller than the diameter D and the ratio (L / D) thereof is small.
  • Patent Document 3 is a disperser of the former device section, but is structurally similar to the disperser of the latter device section, and is an invention in which a disc of a partition plate is inserted between upper and lower discs. In the lower chamber, dispersion and pulverization by stirring are performed, and in the uppermost stage, beads are separated and dispersed and pulverized.
  • the dispersing machine also disperses agglomerated particles in the slurry using the shear force generated in the gap between the cylindrical container and the cylindrical member when the cylindrical member in the closed cylindrical container rotates at high speed.
  • a stirrer at the bottom of the apparatus, which disperses secondary particles in which primary particles are aggregated.
  • hard particles having a diameter of about 0.05 to 0.5 mm are mixed in the slurry.
  • the slurry which has been dispersed is separated into beads by the upper separating device.
  • Patent Document 5 discloses a similar dispersing machine, and in this document 5, asperities may be formed entirely or partially on one or both of the inner peripheral surface of the cylindrical container and the outer peripheral surface of the cylindrical member. , Is also described.
  • Oil emulsions are also used in cosmetic emulsions, food products, etc., in which fine droplets of oil are suspended in water, and the diameter of oil droplets is generally 0.5 to 10 ⁇ m. .
  • it is treated with a vacuum stirring vessel etc., but it is a badge type treatment, and it is necessary to carry out a pre-mixing treatment in the previous step, and bubbles are removed from the emulsion after treatment. It was necessary to remove it, and it was necessary to install the storage tank which holds it and the device for liquid transport. As a result, there is a problem that the process becomes complicated and the processing cost and equipment cost increase. Therefore, a device capable of continuous processing with a simple device has been desired.
  • JP 2008-253928 A Japanese Patent Application Publication No. 2003-144950 JP 2002-143707 A Patent No. 3703148 JP 2008-238005 A
  • the disperser described in Patent Document 1 has both a stirring blade and a separator, which makes the apparatus complicated and expensive to manufacture. Furthermore, due to the structure, the position of the blade of the separator is close to the rotation axis and is short, there is a problem that the separation performance is deteriorated. In order to cope with this, the installation density of the separator blades is increased, but as a result, there is a problem that the slurry passage cross-sectional area is reduced, the amount of slurry processing decreases and the slurry feeding power increases.
  • the final product using particles obtained from such a slurry has the following problems.
  • a dielectric manufactured by sintering of an oxide the variation of the crystal particle diameter in the sintered body becomes large, and there is a problem of the local abnormal dielectric constant decrease due to the enlarged particle.
  • coloring materials such as ink, there is a problem that color uniformity can not be ensured.
  • Patent Document 2 it is effective to make the above L / D small and perform uniform processing over the entire area of the separator.
  • this device also has a processing problem. If the diameter of the separator is increased in order to increase the processing amount, the difference between the centrifugal force in the portion near the separator outer periphery and the centrifugal force in the portion near the center becomes too large. In the outer peripheral portion, there is a problem that the partition plate entraps the beads and the bead mixing rate is deteriorated.
  • the main object is to agitate the outer peripheral portion of the separator, and a device in which the length of the blade in the separator diameter direction is short is invented.
  • a device in which the length of the blade in the separator diameter direction is short is invented.
  • the dispersion effect is reduced and bead separation is insufficient.
  • the dispersion was insufficient and the product was contaminated with many beads.
  • the blade length of the separator is too short, the bead separation efficiency is poor, and there is a problem that impurities are mixed in the product slurry.
  • the disperser of particles in the conventional slurry also has the following problems.
  • the efficient disperser described in Patent Document 4 since particles are used for stirring, the particle dispersion is good, but there is a problem that the primary particles are crushed together with the dispersion.
  • the processing in which the crushing and the dispersion are simultaneously performed but in the case of the processing of the raw material for which the crushing of the primary particles is to be minimized, there is a problem that the damage to the primary particles is large.
  • the device described in Patent Document 5 is a dispersion device that does not use beads.
  • the idea was to simply disturb the flow of the slurry between the rotor and the cylindrical vessel in order to apply a shear force to the slurry. Therefore, it was not sufficient as a distributed function.
  • the appropriate design was not made regarding this, so it is said that it is sufficient to simply apply the irregularities. It is an idea, and sufficient shear force could not be formed. Therefore, although the damage to the primary particles in the dispersing process is small, there is a problem that the dispersing function is small.
  • a rotor fixed to a rotating shaft coaxially installed with the cylindrical container is disposed inside the cylindrical container, and a shear force is generated in a gap formed between the cylindrical container and the rotor. And treating the slurry.
  • the ratio L / D which is the ratio of the diameter D of the circle in contact with the outer peripheral end of the shaft to the axial length L of the rotor 8, is 0.3 to 3.2.
  • a rotor 25 having a concavo-convex outer peripheral surface coaxial with the cylindrical container is installed in a cylindrical container consisting of the cylindrical body 22, the upper lid 23 and the lower lid 24.
  • a shear flow generation gap 28 formed between the inner surface and the outer peripheral surface of the rotor 25 forms a slurry passage, and is provided at the raw material slurry inlet 27 provided on one end side of the cylindrical container and the other end side of the cylindrical container.
  • the unevenness is formed on the outer peripheral surface of 25 and the depth of the depressions of the unevenness is made deeper than 1 mm or 0.5 times smaller than the shear flow generation gap 28 and the shear flow generation gap 28 is 0.6 And 4mm.
  • the disperser of the present invention is effective particularly for a high viscosity slurry of 500 mPa ⁇ s or more containing particles of 0.5 micrometer or less. Furthermore, in the present invention, by using the disperser of the preferred embodiment, it is possible to stably realize processing with a high dispersion rate and less primary particle breakage.
  • the dispersing machine of another preferred embodiment it is possible to efficiently disperse the slurry in which the particle diameter of 1 micrometer or less is suspended, and it is 30 which greatly exceeds the limit viscosity of 200 to 500 mPa ⁇ s in the conventional device. Even in the case of a slurry having a viscosity of at least 1,000 mPa ⁇ s, particles can be dispersed. Furthermore, in addition to dispersion processing, it can be used for mixing processing of liquids, etc. In the conventional apparatus, mixing processing of highly viscous fluids which can not be processed, and emulsification processing of oil, water and the like become possible.
  • dispersion processing can be performed without using beads, it can be used for the slurry processing of particles in which the performance of the final product is degraded when the particles are damaged.
  • dispersion treatment can be performed without damaging particles such as organic substances and low-strength oxides.
  • FIG. 3 is a dimension drawing of the main part of the rotor shown in FIG. It is the graph which plotted the average particle diameter (D50) which shows the dispersion performance at the time of processing with the apparatus of this invention with respect to L / D. It is the graph which plotted the specific surface area at the time of making D50 disperse
  • FIG. 7 is a plan view of a cylindrical body constituting the disperser shown in FIG. 6; The longitudinal cross-sectional view of the cylindrical body. The enlarged view of the cylindrical container and the principal part of a rotor. The expansion development of the part which shows another example of unevenness.
  • FIG. 1 shows a cross section of a dispersing machine generally indicated by reference numeral 1
  • FIG. 2 shows a cross section taken along the line AA of FIG.
  • the upper portion of the shaft 6 is circular in cross section and the lower portion is substantially square in cross section, and the rotor 8 is non-rotatably fitted to the lower portion of the shaft 6.
  • the said cylindrical container does not necessarily need to be divided
  • the rotor 8 has a pair of disks consisting of an upper disk 10 fixed to the shaft 6 and a lower disk 11 fixed to the shaft 6 with a constant distance from the upper disk 10, circumferentially, etc. Upper and lower ends are respectively connected to the upper disc 10 and the lower disc 11 so as to be spaced from each other, and are constituted of axial partition plates 9. At the time of classification, the rotor 8 is at the outer peripheral end of the partition plates 9 It rotates at a peripheral speed of 3 to 30 m / sec.
  • the hollow shaft 7 is formed as a hollow shaft 7 having a hollow portion by hollowing the axial center portion above the upper disc 10 of the rotor 8 and the lower end of the hollow shaft 7 is in the partition plate by the through hole 12 in the diametrical direction.
  • the rotor 8 is open inside.
  • the lower slurry supply port 13 which is the first slurry supply port installed in the lower lid 4 on the lower side of the cylindrical container, and the upper lid 3 in the upper side of the cylindrical container
  • Two of the upper slurry inlets 14 which are the second slurry inlets described are described, but one may be installed.
  • the slurry is supplied from either or both of the lower supply port 13 and the upper slurry supply port 14 and flows toward the center of the rotor 8 via the vicinity of the inner peripheral surface of the cylindrical body 2 and then the hollow shaft It is discharged out of the device through the hollow part of 7.
  • the cooling water as a refrigerant enters and leaves to cool the cooling water passage 5 from the peripheral side, but the cooling water is also supplied to the upper lid 3 and the lower lid 4
  • the cylindrical body 2 may be cooled not only from the circumferential side but also from the top and bottom.
  • the relationship between the diameter (D) of the outer peripheral end of the partition plate 9 of the rotor 8 and the length (L) in the rotational axis direction is 0.3 ⁇ . It is assumed that L / D ⁇ 1.6. Under this condition, particles in the slurry are properly dispersed and crushed, and bead contamination in the treated slurry is reduced. In particular, in the case of a highly viscous slurry, the effect of processing with an apparatus equipped with the design requirements of the present invention is large.
  • supplying the slurry from the lower slurry supply port 13 and the upper slurry supply port 14 corresponding to the upper and lower slurry supply ports and corresponding to the first and second slurry supply ports is also effective in practicing the present invention. desirable.
  • the slurry supply ports are present at both the upper and lower sides, since the neutral point of the flow is in the center of the cylindrical vessel in the vertical direction of the slurry, there is an advantage that the height can be about twice that of slurry supply from one direction.
  • An intermediate disc may be installed between the upper disc 10 and the lower disc 11 in order to adjust the slurry flow and to facilitate the production.
  • the middle disc may have an opening.
  • L / D can be up to 3.2, which is the upper limit of claim 2. Also, L / D can be a minimum value of 0.3, since the slurry flow is vertically symmetrical and bead separation is as good or better than a single slurry inlet.
  • the diameter of the circumference where the inner peripheral end of the partition plate 9 is located is preferably 50 to 85%, preferably 50 to 70% of the diameter of the circumference where the outer peripheral end of the partition plate 9 is located.
  • the partition plate 9 constituting the rotor 8 preferably has an angle ⁇ of 5 to 30 degrees with the radius passing through the axis.
  • the reason is to make the flow of the slurry into the rotor 8 by rotation proper by making the angle ⁇ proper, and if the angle is proper, the flow of the slurry into the rotor 8 will be the rotor 8. Uniform in the height direction. As a result, it is possible to prevent the decrease of the slurry flow above the cylindrical body 2 due to the excessive flow of the slurry into the rotor 8 at the lower part and the reverse phenomenon.
  • the spacing of the dividers 9 is an important requirement of the present invention.
  • the partition plate spacing gap at the inner peripheral end of the partition plate and G 1 when the partition plate spacing gap at the outer peripheral edge and G 2, G 1 is 1 ⁇ 7mm, G 2 is good 1.5 ⁇ 10 mm. Also, G 2 is even better if in the range of 100 times 20 times the bead diameter.
  • the distance t between the outer peripheral end of the partition plate and the inner peripheral surface of the container is preferably 3 to 30 mm.
  • the separation performance of the beads is improved as the total number n of the partition plates 9 described above is increased, and it is possible to cope with high viscosity of 500 mPa ⁇ s or more. In this case, G 1 is 1 ⁇ 5mm, G 2 is good 1.5 ⁇ 7 mm.
  • the spacing gap ratio between the dividers 9 is also an important design requirement for bead leakage.
  • the following values are used as an index for expressing the gap gap ratio.
  • the circumferential diameter at which the inner circumferential end is located is D 1
  • the circumferential diameter at which the outer circumferential end is located is D 2
  • the gap at the inner circumferential end of the partition plate on the inner periphery where the diameter is D 1 is G 1
  • the gap of the partition plate outer circumferential edge on the circumference whose diameter forms a D 2 and G 2 when the total number of the partition plate 9 is n, the circumference of the sum and the inner peripheral end of the partition plate spacing gap of the inner peripheral edge
  • the taper ratio of the divider gap is also important. Because of this, it is further preferable to set the ratio of the gap between the outer peripheral end and the inner peripheral end to the appropriate range, 1.2 ⁇ G 2 / G 1 ⁇ 3.
  • the ratio of the gap between the partition plates 9 is excessively narrowed on the inner circumferential side, the beads are present only between the cylindrical body 2 and the partition plates 9, the degree of crushing becomes too large, and the ratio is too small
  • the slurry flow rate in the interval gap becomes constant, and as a result, the beads enter more inside, resulting in a decrease in the bead separation rate.
  • the lower slurry supply port 13 or the upper slurry supply port 14 is provided at the center of the lower lid 4 of the cylindrical container, and the raw material slurry in which particles are mixed in the solvent is pumped by the lower slurry supply port 13 or the upper slurry supply port 14
  • the slurry is preferably supplied into the cylindrical container, but it is preferable to pre-mix the slurry using, for example, a stirrer, a homogenizer or the like prior to supplying the cylindrical container.
  • the raw material slurry may be supplied from both the lower slurry supply port 13 and the upper slurry supply port 14.
  • the raw material slurry supplied into the cylindrical container from the lower slurry supply port 13 or the upper slurry supply port 14 is stirred and mixed in the cylindrical container by the rotation of the beads and the rotor 8 and the agglomerated particles are loosened.
  • the slurry which is dispersed and particles are separated from the outer peripheral end of the partition plate 9 as the separation portion by the action of centrifugal force moves to the inner peripheral side through the slurry path between the partition plates 9 and is hollowed from the opening 12 formed in the hollow shaft 7
  • the solution is discharged upward through the hollow portion 7 of the shaft 7 and recovered as a product slurry or fed again to the supply port 13 and mixed with the beads in the cylindrical container with stirring.
  • the beads are supplied into the cylindrical container from the upper side of the cylindrical container from which the upper lid 3 is removed, or, although not shown, the upper lid 3 is provided with a bead supply port, and through the supply port. It can also be done.
  • the peripheral speed of the outer peripheral end of the partition plate 9 is also an important processing condition.
  • the appropriate operating conditions are that the peripheral speed of the outer peripheral end of the partition plate 9 is 3 to 30 m / sec, and the centrifugal force is 8,000 m / s 2 or less.
  • the centrifugal force is small, the bead separation performance is reduced, but the damage to the primary particles is reduced. Conversely, if the centrifugal force is large, the bead separation performance is improved, but the damage to the primary particles is increased.
  • the peripheral speed of the outer peripheral end of the partition plate 9 is preferably 5 to 25 m / s, and the centrifugal force is preferably 8,000 m / s 2 or less. If the centrifugal force is too weak, bead leakage will occur, so desirably 800 to 8,000 m / s 2 .
  • the shear (shearing force) acting on the slurry in the space formed by the outer periphery of the partition plate 9 and the cylindrical body 2 is also an important processing condition.
  • the shear rate (s) in the space formed by the cylindrical body 2 and the outer peripheral end of the partition plate 9 is represented by the peripheral velocity v (m / sec) of the outer peripheral end of the partition plate 9, the outer peripheral end of the partition plate 9 and the cylindrical body 2
  • S is operated under the condition of 1000 to 8000 (1 / s). If the share ratio S is low, there is a problem that the dispersion decreases, and if it is high, damage to primary particles becomes large.
  • Beads used in this device are generally oxide particles, metal particles, etc. Specifically, zirconia, titania, glass, alumina, zircon, stainless steel, etc. are used, and their specific gravity is the raw material It is sufficient if it is larger than the slurry, and more preferably, it is twice or more the specific gravity of the slurry. As such beads, those having a particle diameter of about 0.01 to 1 mm ⁇ are used, and those having a spherical shape are desirable.
  • the slurry solvent water, an alcohol-based organic substance, toluene, acetone, glycols, a highly viscous paste, or the like is used, and a dispersant may be used to increase the treatment efficiency.
  • the slurry viscosity can be up to 3,000 mPa ⁇ s.
  • the particles of the slurry targeted in the present embodiment are oxides such as titanium oxide powder and barium titanate, metal fine particles such as silver and nickel, and fine carbon fibers.
  • oxides such as titanium oxide powder and barium titanate
  • metal fine particles such as silver and nickel
  • fine carbon fibers
  • the main dimensions of the disperser described in FIG. 1 are: in the apparatus having a slurry supply port of 1, D is 100 mm, L is 15 mm to 226 mm, and L / D is 0.15 to 2.26. In an apparatus with two slurry supply ports, D is 100 mm and L is 35 mm to 320 mm. Ratio configuration of the partition plate 9, the spacing is 2 ⁇ 4mm, 3 ⁇ 6mm in G 2 in G 1, the outer peripheral diameter D2 is the same as D, D1 is listed in Table 1 for D2 And the angle ⁇ was 5 to 30 degrees.
  • D is 100 mm and L is 30 mm to 280 mm, and the other dimensions and the like are equal to those of the above-described apparatus.
  • L having a centrifugal bead separation device and eight stirring pins
  • the raw material slurry was barium titanate, and was treated with a primary particle of 300 nm, a secondary particle diameter of 100 ⁇ m, and a slurry concentration of 10%.
  • the slurry viscosity was 30 mPa ⁇ s.
  • the beads for grinding and dispersion were 50 ⁇ m zirconia.
  • samples were taken from the outlet of the mill every predetermined processing time.
  • a laser diffraction / scattering particle size analyzer LA-950 manufactured by Horiba, Ltd. was used for the particle diameter measurement. Further, the specific surface area was determined by a BET single point method using FlowSorb II 2300 manufactured by micrometrics, in order to determine primary particle breakage.
  • the values employed to evaluate the treatment results are the treatment results after treatment for 1 minute 40 seconds for the Comparative Example and Examples 1 to 4 and 6 to 10, and 3 minutes for Example 5.
  • the evaluation index the average particle size of secondary particles (D50: particle size of secondary particles below 50%) and the specific surface area when secondary particles are dispersed to an average of 0.3 ⁇ m were used.
  • D50 particle size of secondary particles below 50%
  • the specific surface area when secondary particles are dispersed to an average of 0.3 ⁇ m were used.
  • the dispersion performance is evaluated. The smaller this value, the better the dispersion performance.
  • the latter value assesses the degree of destruction of primary particles. When particle breakage occurs, the specific surface area increases even if the average secondary particle diameter is the same, and if it is not desirable to destroy primary particles, the smaller the value, the better.
  • Comparative Example 1 is an example processed by a testing machine of a bead mill composed of a conventional stirring rotor and a bead separator.
  • the cylindrical container of this apparatus used the same thing as this apparatus, but the rotating body had a stirring rod in the lower part, and used what has a separator in the upper part.
  • the dispersion performance is good, primary particle destruction is progressing, and it is unsuitable for the process which wants to reduce particle destruction.
  • Example 6 which is an example in which the centrifugal force is too strong, the specific surface area is slightly large, and the particle breakage is slightly advanced.
  • Example 5 in which the centrifugal force is weak, bead leakage is slight but occurs, and in Example 7, minute bead leakage occurs because the partition plate 9 is short and D1 / D2 is 0.85. There were no processing problems with either.
  • Examples 8 to 10 are the examples of the apparatus in which the slurry was supplied from the upper and lower directions, and the L / D was able to be effectively processed at 0.35, 1.6 and 3.2.
  • FIG. 6 is a cross-sectional view schematically showing a dispersing machine according to another embodiment, in which the rotation axis is in the vertical direction for convenience, but the direction of the rotation axis may be another angle such as horizontal.
  • the dispersing machine 21 shown in the drawing has a structure in which a rotor 25 is contained in a cylindrical container formed by a cylindrical body 22, an upper lid 23, and a lower lid 24, and thereafter, the cylindrical body 22, the upper lid 23, and the lower lid 24 are used.
  • the structure to be formed is referred to as a cylindrical container.
  • the rotor 25 fixed to the rotating shaft 26 rotates at high speed by the rotating shaft 26.
  • the raw material slurry is supplied from the slurry inlet 27 to the internal space of the disperser 21 and given shear force at the shear flow generation gap 28 between the inner peripheral surface of the cylindrical body 22 and the outer peripheral surface of the rotor 25 to disperse it. After being processed, it is discharged from the slurry outlet 29 out of the apparatus as a product slurry.
  • the cylindrical body 22, the upper lid 23, and the lower lid 24 each have a cooling water passage 30 therein, and a cooling water is allowed to flow here to cool the slurry inside the dispersing machine 21.
  • the upper cover 23 or the lower cover 24 may not have the cooling channel 30.
  • the material of the structure between the cooling water passage 30 and the internal space of the cylindrical container adopts a material having a good thermal conductivity and is applied with an appropriate thickness.
  • the rotating shaft 26 is installed in the direction of the slurry outlet 29, but may be installed in the direction of the slurry inlet 27.
  • the rotor 25 when the rotor 25 is rotated, a shear force is exerted on the slurry of the shear flow generation gap 28 to disperse the agglomerated particles (secondary particles) in the slurry, thereby separating single particles (primary particles).
  • the particles are dispersed in the liquid.
  • the shear force can be sufficiently increased if the structure of the cylindrical container and the rotor 25 having the concavities and convexities constructed under appropriate design conditions is used.
  • the slurry density is significantly increased by repeating the penetration of the slurry into the recess on the outer peripheral surface of the cylindrical container after the slurry enters the recess on the inner peripheral surface of the cylindrical container with the rotation of the rotor 25. , The shear force of the slurry increases. As a result, the effect of dispersing the particle group (secondary particles) collected in the slurry is increased.
  • FIG. 7 is a plan view of the rotor 25
  • FIG. 8 is a front view of the rotor 25
  • FIG. 9 is a plan view of the cylindrical body 22
  • FIG. 10 is a longitudinal sectional view of the cylindrical body 22.
  • 7 to 10 show an example in which the grooves 31 and the ridges 32 are alternately formed at equal intervals in the circumferential direction.
  • the projections and depressions provided on the cylindrical body 22 and the rotor 25 can be of any shape other than the above-mentioned concave groove 31 and convex stripe 32 or the dimple 33 shown in FIG.
  • FIG. 11 is a view showing the meshing of the rotor 25 and the cylindrical body 22. As shown in FIG.
  • FIG. 12 as another example of the asperities, those of discontinuous recesses (dimples 33) are shown.
  • the circular dimples 33 are formed in a form in which the concave portions are independent of one another, and the portions other than the dimples 33 become convex portions.
  • the dimples 33 may be grooves formed of ovals, ovals, polygonal or irregular grooves, or a combination thereof.
  • the surface of the rotor 25 may be an uneven groove, and the inner surface of the cylindrical body 22 may be configured with discontinuous recesses, or vice versa.
  • the unevenness may be an unevenness formed of recesses which are discontinuous and formed independently of each other. However, in any case, the unevenness is characterized by the following.
  • the depth of the unevenness has a great influence on the shear force.
  • the shear flow generation gap 28 is small, sufficient effects can not be recognized when the depth h of the concave and convex portion is 1 mm or less.
  • the gap is large, it is necessary to have a depth of 0.5 times or more the gap distance.
  • the depth of the recess is preferably 8 mm or less.
  • the width of the shear flow generation gap 28 is also an important design factor. In order to make the shear flow generation gap 28 not more than 0.6 mm, high precision is required for the production of the cylindrical container and the rotor 25, which makes production difficult There is also a problem that heat generated by shearing tends to be accumulated in a narrow volume. On the other hand, if the width is larger than 4 mm, the shear force is significantly reduced in a liquid of ordinary viscosity (300 cP or less). Therefore, when the shear flow generation gap 28 is 0.6 to 4 mm, the dispersion performance can be improved without causing difficulty in manufacturing the cylindrical container and the rotor 25.
  • the width of the shear flow generation gap 28 refers to the distance between the circumferences where the projections of the concave and convex portions provided on the cylindrical body 22 and the rotor 25 represented by t in FIG.
  • the present inventors have found that the dispersion effect of the particles in the slurry is small regardless of whether the width of the recess is wide or narrow.
  • the optimum width is 0.8 to 6 times the shear flow generation gap 28.
  • the convex portion is constituted by a curved surface
  • the maximum width of a position 1/10 lower than the concave portion depth from the apex of the convex portion is referred to. It is also a design requirement that the width of the recess is 0.8 to 6 times the width t of the shear flow generation gap 28.
  • the width t of the recess is narrow, there is a problem that the slurry gets in and out of the recess and the dispersion becomes worse.
  • the width t of the recess is too large, although the slurry comes in and out, the number of asperities decreases, so the dispersion also decreases.
  • the area of the recess is 30% or more and 80% or less of the entire peripheral surface, the slurry flows into and out of the recess on the inner surface of the cylindrical container and the outer periphery of the rotor 5 becomes active, and particle dispersion becomes good.
  • a strong shear force acts on the slurry in the gap between the cylindrical body 22 and the rotor 25 (the shear flow generation gap 28), and this generates a large amount of heat. Therefore, strong cooling is required to prevent deterioration of particles in the slurry and boiling of the liquid due to heat generation.
  • it is necessary to strongly cool this portion and it is preferable to cool 100% or more of the portion of the cylindrical body 22 facing the rotor 25 with a liquid such as water.
  • cooling in the upper lid 23 part is also important. Since the inside of the apparatus of the present invention is a positive pressure, even if the slurry temperature rises to near the boiling point, it does not boil, but there is a possibility of boiling because it becomes atmospheric pressure or negative pressure at the position where it leaves the apparatus. Out. Therefore, in such a case, cooling between the shear flow generation gap 28 and the product slurry outlet becomes important. Therefore, the upper lid 23 is cooled with a liquid such as water. It is preferable to cool 50% or more of the upper lid 23.
  • Cooling of the shear flow generation gap 28 which is a portion facing the side surface of the cylindrical body 22, particularly the rotor 25, is performed under the following conditions.
  • Metals, ceramics, and hard resins are used as the material of the cooling portion, and it is preferable that the thermal conductivity ( ⁇ ) is high, and the thermal conductivity is preferably 15 W / mK or more.
  • the thermal conductivity is more preferably 25 W / mK or more.
  • the metal copper or copper alloy ( ⁇ : 300 to 430 W / mK), aluminum or aluminum alloy ( ⁇ : about 110 W / mK), iron ( ⁇ : about 50 W / mK) or the like is preferable.
  • high density alumina including additives
  • aluminum nitride ⁇ : 100 W / mK or more
  • silicon nitride ⁇ : 15 to 30 W / mK
  • silicon carbide [Lambda]: about 200 W / mK
  • the thermal conductivity refers to a value at 0 ° C. or 20 ° C.
  • the thickness of the material of this part is also an important technical condition. In order to satisfy the cooling condition of the present invention, it is important that the heat transfer resistance of the material portion is small. Since the heat transfer resistance is proportional to the thickness and inversely proportional to the heat conductivity, T / ⁇ is 0.0005 K when the heat transfer resistance is represented by (thickness: T m) / (heat conductivity: ⁇ W / m K) It is important that it is less than / W. However, when the shear flow generation gap 28 with a larger shear force is 2 mm or less or the circumferential speed of the rotor 25 is large, T / ⁇ is preferably 0.00035 K / W or less.
  • ⁇ Tn / ⁇ n is equal to or less than 0.0005 K / W or 0.00035 K / W.
  • ⁇ n is the thermal conductivity of the n-th material layer from the inside
  • T n is the thickness of the n-th material layer from the inside.
  • the ratio of the axial length L to the diameter D of the rotor 25 is also an important indicator for device design.
  • L / D is large, the longitudinal length of the shear flow generation gap 28 which is a heat generation region becomes long, and the area ratio of the upper surface to the side surface of the cylindrical container decreases. As a result, the cooling effect of the upper lid 23 is reduced.
  • the cooling capacity per area is larger in the shear flow generation gap 28. This is because the turbulent flow density at the intervals of the shear flow generation gap 28 is high, so the heat conduction on the liquid side is good.
  • the cooling capacity per area is about 0.4 at the portion of the upper lid 23 when the portion of the shear flow generation gap 28 is 1.
  • the shear flow generation gap 28 cools the temperature rise by 60 to 70 ° C. It is necessary to have a cooling capacity of 7-8% or more for the portion of the flow generation gap 28.
  • the area between cooling of the upper lid 23 is preferably about 18% or more of the cooling area of the cylindrical body 22. Therefore, L / D needs to be 1.2 or less in order to satisfy this condition in area.
  • the ratio of the area of the upper lid 23 to the area of the shear flow generation gap 28 is 25% or more by setting L / D to 1 or less.
  • L / D is too small, productivity per size of the device is reduced. Therefore, it is desirable that L / D be larger than 0.2, which is the limit L / D at which the device becomes larger in an accelerated manner.
  • the operating method of the device of the present invention is as follows.
  • the raw material slurry supplied into the container contains particles aggregated in the solvent, and examples of the solvent include water, alcohol-based solutions, toluene-based solutions, acetone, glycols, etc. It is not something to be done.
  • the applicable viscosity of the slurry is in a wide range of 10 to 40,000 mPa ⁇ s, and it is particularly suitable for the treatment of a highly viscous slurry of 500 mPa ⁇ s or more which can not be handled by the conventional apparatus.
  • the peripheral speed of the outer periphery of the rotor 25 is 10 to 80 m / sec.
  • the shear fraction in the shear flow generation gap 28 of the particles in the slurry is increased, and the secondary particles in the slurry are decomposed by the shear force to disperse the independent primary particles.
  • a narrower range is appropriate.
  • the proper range in the device of the present invention is 8,000 to 70,000 (1 / s).
  • the apparatus of the present invention can be used for fluid mixing and emulsification as well as dispersion of particles in a slurry.
  • a highly viscous fluid having a viscosity of 40,000 mPa ⁇ s or more can be processed, and therefore, it is possible to mix two or more kinds of highly viscous fluids, for which continuous processing was difficult.
  • the two or more fluids are premixed and supplied to the apparatus of the present invention by a slurry pump. If this is processed at a share ratio S of 8,000 (1 / s) or more, a mixture with extremely high uniformity is formed. For example, it can be used to mix food pastes, high viscosity electrode material pastes, and the like.
  • the device specifications and operating conditions of the dispersing machine used in this example are shown below.
  • the dispersing machine has the structure shown in FIG. 7, and the main specifications are as shown in Table 2 below, the diameter (D) of the rotor 5 is 93 mm, and the length (L) is 90 mm and 25 mm.
  • the width t of the shear flow generation gap 28 is 0.8 to 4 mm, and in the example, it was processed at 1 mm and 2 mm.
  • the circumferential speed of the rotor 25 is a device capable of operating under the condition of 10 to 50 m / sec.
  • the cylindrical body 22, the upper lid 23, and the lower lid 24 are cooled.
  • the structure of the cooling unit is as shown in Table 2.
  • Table 4 The results of dispersing the raw material slurry described in Table 3 using this apparatus are shown in Table 4.
  • the sample was taken from the outlet of the disperser at predetermined time intervals after the disperser was started.
  • a laser diffraction / scattering particle size analyzer LA-950 manufactured by Horiba, Ltd. was used to measure the particle diameter in the slurry after treatment.
  • an average particle diameter (D50: a numerical value indicating that a 50% by mass particle has a particle diameter equal to or less than this value) and a particle ratio of 1 ⁇ m or more are used.
  • the comparative example 4 is an example of processing in a device having neither unevenness in the cylindrical body 22 nor in the rotor 25. Other treatment conditions are within the range of the present invention, but when there is no unevenness like this, the average particle diameter is only reduced to 2.96 ⁇ m, and the particle ratio of 1 ⁇ m or more is as high as 72%. .
  • the comparative example 5 is an example of the process which gave unevenness only to the rotor 25. Thus, the average particle diameter of 2.18 ⁇ m and the particle ratio of not less than 1 ⁇ m were 69%, which is insufficient if only one side was uneven.
  • Example 11 to Example 15 which is a processing example in which both the rotor 25 and the cylindrical body 22 are provided with irregularities
  • the dispersion is strengthened such that the average particle diameter is 0.15 to 0.22 ⁇ m, and 1 ⁇ m.
  • the particle ratio was also good at 21 to 41%.
  • the temperature rise of the slurry was also suppressed within 30 ° C., and the result was also good in terms of slurry cooling.
  • the device 22 with a higher cooling area ratio had a smaller rise in slurry temperature.
  • Water and oil were subjected to emulsification treatment using a machine having the concavo-convex structure of the dispersion treatment example 14 in a real machine 1-3 shown in Table 2.
  • a machine having the concavo-convex structure of the dispersion treatment example 14 in a real machine 1-3 shown in Table 2.
  • coconut oil was used to process a raw material liquid to which a surfactant was added at a water: oil ratio of 6: 2.
  • the average diameter of the oil emulsion is the rotor 25
  • the circumferential speed was 16 ⁇ m at 10 m / s, 8.2 ⁇ m at 15 m / s, 5.3 ⁇ m at 20 m / s, and 3.9 ⁇ m at 30 m / s, and the oil was suspended.
  • oil separation did not occur by treatment at 15 m / sec or more.
  • emulsification was able to be implemented continuously by processing with the circumferential speed of 15 m / sec or more with the apparatus 21.
  • the share ratio at a circumferential velocity of 15 m / s was 15,000 (1 / s).
  • the disperser of the present invention and the method of dispersing particles in a slurry are applied to a slurry containing fine particles.
  • the slurry is carbon powder, ceramic powder, organic powder, etc.
  • for dispersion and pulverization of particles of ceramic pigment, ink, paint, dielectric material, magnetic material, pharmaceutical material, food material, fine metal powder material Is suitable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Crushing And Grinding (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

The present invention relates to a dispersing machine, wherein a rotor 8 that has the form of an impeller is disposed inside a cylindrical vessel and by introducing a slurry, in which particles have been mixed into a solvent, into the cylindrical vessel in which beads have been filled and rotating the rotor 8, the particles in the slurry are dispersed and comminuted. In order to increase the dispersion rate and reduce the destruction of primary particles, the length L of the rotor 8 in the axial direction and the diameter D are set such that the ratio L/D for the rotor is 0.3-1.6.

Description

分散機と、スラリー中粒子の分散方法及びエマルジョン製造方法Dispersing machine, method of dispersing particles in slurry, and method of producing emulsion
 本発明は、液体中に固体又は液体の粒子が分散している懸濁液(以下、スラリーという)中の凝集している粒子を粉砕するとともに分散させる分散機と、該分散機によるスラリー中粒子の分散方法及びエマルジョンの製造方法に関する。
 本発明でいう分散とは、単一の結晶粒子や非晶質粒子よりなる一次粒子が数個から数十個凝集して形成されている二次粒子を溶液中にばらして、分離することを言い、また本発明でいう粉砕とは、単一粒子を複数の粒子に分解することを言う。
The present invention relates to a disperser for grinding and dispersing agglomerated particles in a suspension (hereinafter referred to as a slurry) in which solid or liquid particles are dispersed in liquid, and particles in the slurry by the disperser. And a method of producing an emulsion.
The term “dispersion” as used in the present invention means that secondary particles formed by aggregating several to several tens of primary particles consisting of single crystal particles and amorphous particles are separated and separated in a solution. In other words, in the present invention, pulverization refers to the decomposition of a single particle into a plurality of particles.
 従来の分散機は、分散・粉砕を担当する攪拌を行う部分と、分散・粉砕用のビーズを分離するセパレータ部分とに分かれたものと、セパレータ構造において、分散・粉砕とビーズ分離を同時に行うものがあった。前者の装置区分の分散機として、例えば下記特許文献1に示す湿式のボールミルが開示されている。この装置では、ビーズが充填される円筒容器と、該円筒容器内に容器と同軸をなして配置され、モータを駆動源として回転駆動されるシャフトに固定された攪拌羽とセパレータよりなり、撹拌翼は、分散・粉砕機能を有し、またセパレータはシャフトの上下に固定される円板状のディスクと、上下のディスク間を周方向に一定間隔で連結する撹拌羽よりなってインペラの形態をなしている。粉砕及び分散のためのビーズが充填される当該容器内にスラリーを導入して、攪拌羽とセパレータを回転駆動することにより、スラリー中の粒子を分散・粉砕して、粒子を微細化する。この際に、遠心力の作用によってビーズを分離したスラリーをセパレータの外周端より内周端に移動させ、シャフトの中空な軸心を通して排出させることで、分散・粉砕処理を経た、ビーズ混入の少ないスラリーを製造する。 The conventional dispersing machine performs dispersion, pulverization and bead separation simultaneously in the separator structure, which is divided into a part that performs stirring for dispersion and pulverization, a separator part that separates dispersion and pulverization beads, and a separator structure. was there. As a disperser of the former apparatus division, for example, a wet ball mill shown in Patent Document 1 below is disclosed. In this apparatus, a cylindrical container filled with beads, and a stirring blade and a separator disposed coaxially with the container in the cylindrical container and fixed to a shaft driven by a motor as a driving source, a stirring blade Has a dispersing and crushing function, and the separator is in the form of an impeller consisting of a disc-like disc fixed on the upper and lower sides of the shaft and stirring blades connecting the upper and lower discs at a constant interval in the circumferential direction ing. The slurry is introduced into the container filled with beads for grinding and dispersion, and the stirring blades and the separator are rotationally driven to disperse and grind particles in the slurry to make the particles finer. At this time, the slurry in which the beads are separated by the action of centrifugal force is moved from the outer peripheral end of the separator to the inner peripheral end from the outer peripheral end of the separator and discharged through the hollow shaft of the shaft. Produce a slurry.
 また特許文献2には、後者の装置区分の分散機にあたる従来技術での分散・粉砕に適した粉砕機である。この装置では、円筒容器及びセパレータが共に大径で、直径Dに比べ、軸方向長さLが小さく、その比率(L/D)が小さい粉砕機が開示されている。また、特許文献3は、前者の装置区分の分散機であるが、構造的には、後者の装置区分の分散機に近いもので、上下のディスクの間に仕切板のディスクを入れる発明であり、下方の室において、攪拌による分散・粉砕がなされ、最上段の室でビーズ分離と分散・粉砕を行う装置である。 Further, Patent Document 2 is a crusher suitable for dispersion / crushing in the prior art, which corresponds to the disperser of the latter device classification. In this device, there is disclosed a crusher in which both the cylindrical container and the separator have large diameters and the axial length L is smaller than the diameter D and the ratio (L / D) thereof is small. Further, Patent Document 3 is a disperser of the former device section, but is structurally similar to the disperser of the latter device section, and is an invention in which a disc of a partition plate is inserted between upper and lower discs. In the lower chamber, dispersion and pulverization by stirring are performed, and in the uppermost stage, beads are separated and dispersed and pulverized.
 分散機にはまた、密閉の円筒容器内の円柱状部材が高速回転することで、円筒容器と円柱状部材間のせん断流発生の隙間で発生するせん断力を用いてスラリー中の凝集粒子の分散を行う装置がある。例えば、下記特許文献4に開示されている発明では、装置下部に攪拌子があり、これが、一次粒子が凝集した二次粒子を分散させる。分散を効率的に実施するために、スラリー中に0.05~0.5mm径程度の硬質粒子(ビーズ)を混入させる。分散が完了したスラリーを上部の分離装置でビーズ分離している。 The dispersing machine also disperses agglomerated particles in the slurry using the shear force generated in the gap between the cylindrical container and the cylindrical member when the cylindrical member in the closed cylindrical container rotates at high speed. There are devices that For example, in the invention disclosed in Patent Document 4 below, there is a stirrer at the bottom of the apparatus, which disperses secondary particles in which primary particles are aggregated. In order to carry out the dispersion efficiently, hard particles (beads) having a diameter of about 0.05 to 0.5 mm are mixed in the slurry. The slurry which has been dispersed is separated into beads by the upper separating device.
 下記特許文献5には、同様の分散機が開示され、この文献5には、円筒容器内周面と円柱状部材の外周面の一方又は双方に凹凸を全面又は一部に形成してもよい、とも記載されている。 Patent Document 5 below discloses a similar dispersing machine, and in this document 5, asperities may be formed entirely or partially on one or both of the inner peripheral surface of the cylindrical container and the outer peripheral surface of the cylindrical member. , Is also described.
 また、油エマルジョンは、化粧品の乳液、食品等に用いられており、水中に油の微粒液滴が懸濁しているものであり、油液滴の直径が0.5~10μmが一般的である。数μmのエマルジョンを工業的に製造するには、真空式攪拌容器等で処理するが、バッジ式処理であり、前工程での予備混合処理をする必要があり、また処理後のエマルジョンから気泡を除去する必要があり、またを保有する貯留槽や液輸送用装置を設置する必要があった。この結果、工程が複雑となり、処理費用や設備費用が増加する問題があった。したがって、簡易な装置で連続処理ができる装置が求められていた。 Oil emulsions are also used in cosmetic emulsions, food products, etc., in which fine droplets of oil are suspended in water, and the diameter of oil droplets is generally 0.5 to 10 μm. . In order to industrially produce an emulsion of several μm, it is treated with a vacuum stirring vessel etc., but it is a badge type treatment, and it is necessary to carry out a pre-mixing treatment in the previous step, and bubbles are removed from the emulsion after treatment. It was necessary to remove it, and it was necessary to install the storage tank which holds it and the device for liquid transport. As a result, there is a problem that the process becomes complicated and the processing cost and equipment cost increase. Therefore, a device capable of continuous processing with a simple device has been desired.
特開2008-253928号公報JP 2008-253928 A 特開2003-144950号公報Japanese Patent Application Publication No. 2003-144950 特開2002-143707号公報JP 2002-143707 A 特許第3703148号公報Patent No. 3703148 特開2008-238005号公報JP 2008-238005 A
 特許文献1記載の分散機では、攪拌羽とセパレータの両方を有することから、装置が複雑で製造原価が高価であった。更に構造上セパレータのブレードの位置が回転軸に近く、かつ短いため、分離性能が悪化する問題があった。これに対応するため、セパレータのブレードの設置密度を上げているが、その結果、スラリー通過断面積が小さくなり、スラリー処理量が低下するとともにスラリー送液動力が増加する問題があった。 The disperser described in Patent Document 1 has both a stirring blade and a separator, which makes the apparatus complicated and expensive to manufacture. Furthermore, due to the structure, the position of the blade of the separator is close to the rotation axis and is short, there is a problem that the separation performance is deteriorated. In order to cope with this, the installation density of the separator blades is increased, but as a result, there is a problem that the slurry passage cross-sectional area is reduced, the amount of slurry processing decreases and the slurry feeding power increases.
 また、セパレータ位置で、分散・粉砕とビーズ分離の両方の処理をする型式の後者の装置区分においては、特許文献3の例に見られるように、セパレータの直径Dと軸方向長さLの比、L/Dが大きなものでは、容器のスラリー中のビーズ濃度のばらつきが回転軸の方向において大きくなる。この結果、分散不足の粒子と、粒子が過剰に破壊された粒子が混在した状態となって、粒子径が揃い、かつ均一に分散したスラリーが得られなくなる問題があった。特に、高粘性のスラリーにおいては、この現象が顕著であった。 In addition, in the latter type of apparatus section of the type in which both dispersion / crushing and bead separation processes are performed at the separator position, the ratio of the diameter D of the separator to the axial length L as seen in the example of Patent Document 3. When L / D is large, dispersion of bead concentration in the slurry of the container becomes large in the direction of the rotation axis. As a result, the insufficiently dispersed particles and the particles in which the particles are excessively destroyed are mixed, and there is a problem that it is impossible to obtain a slurry in which the particle diameters are uniform and uniformly dispersed. In particular, in the case of a highly viscous slurry, this phenomenon was remarkable.
 このようなスラリーから得た粒子を使った最終製品では、以下のような問題があった。例えば、酸化物の焼結によって製造される誘電体では、焼結体中の結晶粒子径のばらつきが大きくなり、巨大化した粒子起因の局部的な誘電率異常低下の問題があった。また、インク等の色材においては、色の均一性が確保できない問題があった。 The final product using particles obtained from such a slurry has the following problems. For example, in the case of a dielectric manufactured by sintering of an oxide, the variation of the crystal particle diameter in the sintered body becomes large, and there is a problem of the local abnormal dielectric constant decrease due to the enlarged particle. Further, in the case of coloring materials such as ink, there is a problem that color uniformity can not be ensured.
 従って、特許文献2に記載されるように、前述のL/Dを小さくして、セパレータ全域にわたり均一な処理をすることは有効である。しかし、この装置においても処理上の問題があった。処理量を増加させようとして、セパレータ径を大きくすると、セパレータ外周に近い部分での遠心力と中心に近い部分の遠心力の差が大きくなりすぎて、ビーズが外周部分のみに存在する結果、セパレータ外周部において、仕切板がビーズを巻き込んで、ビーズ混入率が悪化する問題があった。 Therefore, as described in Patent Document 2, it is effective to make the above L / D small and perform uniform processing over the entire area of the separator. However, this device also has a processing problem. If the diameter of the separator is increased in order to increase the processing amount, the difference between the centrifugal force in the portion near the separator outer periphery and the centrifugal force in the portion near the center becomes too large. In the outer peripheral portion, there is a problem that the partition plate entraps the beads and the bead mixing rate is deteriorated.
 このため、特許文献2記載の装置のように、セパレータ外周部を攪拌することに主眼を置き、ブレードのセパレータ直径方向の長さが短い装置を発明している。しかし、この結果、分散効果が小さくなり、かつビーズ分離が不十分である問題があった。また、従って分散が不十分で、しかもビーズによる製品の汚染が多いものであった。また、セパレータのブレード長さが短すぎて、ビーズ分離効率が悪く、製品スラリーに不純物が混入する問題があった。 For this reason, as in the device described in Patent Document 2, the main object is to agitate the outer peripheral portion of the separator, and a device in which the length of the blade in the separator diameter direction is short is invented. However, as a result, there is a problem that the dispersion effect is reduced and bead separation is insufficient. In addition, therefore, the dispersion was insufficient and the product was contaminated with many beads. Moreover, the blade length of the separator is too short, the bead separation efficiency is poor, and there is a problem that impurities are mixed in the product slurry.
 この問題に対応するため、容器及びセパレータを縦長する場合は、特許文献3に記載されているように、上下のディスクの間に仕切板のディスクを入れる発明がなされている。しかし、この装置においては、スラリーが仕切板で区分された室を順次通過して処理されており、滞留時間が長くなる利点はあるが、装置は大型化する問題と過剰粉砕が起きる問題があった。特に、高粘性のスラリーにおいては、スラリーの流れが複雑で、十分な処理ができなかった。 In order to cope with this problem, in the case where the container and the separator are vertically elongated, as disclosed in Patent Document 3, the invention of inserting the disc of the partition plate between the upper and lower discs is made. However, in this apparatus, the slurry is processed by sequentially passing through the chambers divided by the partition plate, and there is an advantage that the residence time is long, but there is a problem that the apparatus becomes large and a problem that excessive pulverization occurs. The In particular, in the case of a highly viscous slurry, the flow of the slurry was complicated and sufficient processing could not be performed.
 従来型のスラリー中の粒子の分散機ではまた、次のような課題があった。特許文献4に記載の効率の良い分散機では、攪拌用にビーズを使用するため、粒子分散が良好であるが、分散とともに、一次粒子が破砕される問題があった。破砕と分散を同時に行う処理においては、問題がないが、一次粒子の破砕を極力抑えたい原料の処理の場合は、一次粒子へのダメージが大きい問題があった。また、粉砕用のビーズの破片が製品スラリーに混入する問題もあった。 The disperser of particles in the conventional slurry also has the following problems. In the efficient disperser described in Patent Document 4, since particles are used for stirring, the particle dispersion is good, but there is a problem that the primary particles are crushed together with the dispersion. There is no problem in the processing in which the crushing and the dispersion are simultaneously performed, but in the case of the processing of the raw material for which the crushing of the primary particles is to be minimized, there is a problem that the damage to the primary particles is large. In addition, there is also a problem that fragments of the beads for grinding mix into the product slurry.
 一方で、特許文献5に記載の装置は、ビーズを使用しない分散装置である。スラリーにせん断力をかけるために、ただ単に回転子と円筒容器の間のスラリーの流れを乱せばよいとの考えであった。したがって、分散機能としては十分ではなかった。この改善のため、円筒容器や回転子の表面にディンプル状の凹凸を付ける方が良いとの考えはあったものの、これに関して適切な設計ができていなかったため、ただ単に凹凸をつければ良いとの考えであり、十分なせん断力が形成できるものではなかった。したがって、分散処理での一次粒子へのダメージは小さいものの、分散機能が小さい問題があった。 On the other hand, the device described in Patent Document 5 is a dispersion device that does not use beads. The idea was to simply disturb the flow of the slurry between the rotor and the cylindrical vessel in order to apply a shear force to the slurry. Therefore, it was not sufficient as a distributed function. Although it was thought that it would be better to add dimple-like irregularities to the surface of the cylindrical container or rotor for this improvement, the appropriate design was not made regarding this, so it is said that it is sufficient to simply apply the irregularities. It is an idea, and sufficient shear force could not be formed. Therefore, although the damage to the primary particles in the dispersing process is small, there is a problem that the dispersing function is small.
 また、この様な装置では、円筒容器と回転子の間でのせん断力に起因する摩擦により、スラリーが加熱される問題もあった。特許文献5の装置では、前述したように、十分なせん断力を発生できる装置設計でなかったため、摩擦熱が少なく、スラリー冷却に対応する技術的手段が不十分であった。この装置では、ただ単に放熱するとの考えしかなかったため、熱発散が不十分であり、回転子の周速を上げて運転することができなかった。 Moreover, in such a device, there is also a problem that the slurry is heated by the friction caused by the shear force between the cylindrical container and the rotor. In the device of Patent Document 5, as described above, since the device was not designed to generate a sufficient shear force, the frictional heat was small, and the technical means to cope with the slurry cooling was insufficient. In this device, since it was thought that heat was merely dissipated, the heat dissipation was insufficient, and the peripheral speed of the rotor could not be increased.
 本発明の第1の目的は、L/Dの最適化を図るとともに、セパレータブレードの設置条件を適正化することにより生産性を低下させることなく、スラリー中の二次粒子の均一な分散を可能にし、製品特性を向上させることができる分散機と、該分散機によるスラリー中微粒子の処理方法を提供しようとするものであり、
 第2の目的は、高粘性の流体でも一次粒子を破壊することなく、二次粒子の均一な分散を可能にした分散機、スラリー中の粒子を分散する方法及びエマルジョン製造方法を提供しようとするものである。
The first object of the present invention is to optimize L / D, and to achieve uniform dispersion of secondary particles in the slurry without lowering the productivity by optimizing the installation conditions of the separator blade. It is an object of the present invention to provide a disperser capable of improving product characteristics and a method of treating fine particles in a slurry by the disperser.
Another object of the present invention is to provide a disperser capable of uniformly dispersing secondary particles without destroying primary particles even with highly viscous fluid, a method of dispersing particles in a slurry, and a method of producing an emulsion. It is a thing.
 本発明は、円筒容器の内部に、該円筒容器と同軸に設置された回転軸に固定された回転子が配置され、前記円筒容器と回転子との間に形成される隙間にせん断力を発生させて、スラリーを処理することよりなるものである。 According to the present invention, a rotor fixed to a rotating shaft coaxially installed with the cylindrical container is disposed inside the cylindrical container, and a shear force is generated in a gap formed between the cylindrical container and the rotor. And treating the slurry.
 好ましい態様では、前記円筒容器内に、該円筒容器と同軸心上に配置されて回転するスラリー排出用中空部を備えた中空シャフト7と、該中空シャフト7と同軸のシャフト6と、該シャフト6に固定される回転子8が配置され、該回転子は放射状、或いは偏心して円周方向に適当間隔で多数配置される仕切板9を含んで円筒容器内にて回転するとともに、当該円筒容器に設けられるスラリー供給口13から供給されたスラリーが仕切り板9間を経由して、中空シャフト7の中空部から装置外に排出されるスラリー経路を形成している分散機であって、仕切板9の外周端が接する円の直径Dと回転子8の軸方向長さLの比であるL/Dが0.3~3.2とされる。 In a preferred embodiment, a hollow shaft 7 having a hollow space for slurry discharge disposed coaxially with the cylindrical container and rotating in the cylindrical container, a shaft 6 coaxial with the hollow shaft 7, and the shaft 6 , And the rotor 8 rotates in a cylindrical vessel including partition plates 9 which are arranged radially or eccentrically at a suitable interval in the circumferential direction, and the It is a dispersing machine which forms a slurry path through which the slurry supplied from the slurry supply port 13 provided is discharged from the hollow portion of the hollow shaft 7 to the outside of the apparatus through the space between the partition plates 9. The ratio L / D, which is the ratio of the diameter D of the circle in contact with the outer peripheral end of the shaft to the axial length L of the rotor 8, is 0.3 to 3.2.
 別の好ましい態様では、円筒体22、上蓋23及び下蓋24からなる円筒容器内に当該円筒容器と同軸をなして外周面を凹凸に形成した回転子25が設置されており、円筒体22の内面と回転子25の外周面との間に形成されるせん断流発生隙間28がスラリー通路を形成し、当該円筒容器の一端側に設けられる原料スラリー入口27及び当該円筒容器の他端側に設けられる製品スラリー出口29と、当該円筒容器と回転子25のいずれか一方を回転駆動する駆動装置からなる分散機において、円筒体22を液体で冷却するとともに、円筒体22の内周面及び回転子25の外周面に凹凸を形成し、当該凹凸の凹部の深さを1mm又はせん断流発生隙間28の0.5倍のいずれか小さいものよりも深くし、かつせん断流発生隙間28を0.6~4mmとする。 In another preferred embodiment, a rotor 25 having a concavo-convex outer peripheral surface coaxial with the cylindrical container is installed in a cylindrical container consisting of the cylindrical body 22, the upper lid 23 and the lower lid 24. A shear flow generation gap 28 formed between the inner surface and the outer peripheral surface of the rotor 25 forms a slurry passage, and is provided at the raw material slurry inlet 27 provided on one end side of the cylindrical container and the other end side of the cylindrical container. Product slurry outlet 29 and a driving device for driving to rotate any one of the cylindrical container and the rotor 25 to cool the cylindrical body 22 with liquid, and the inner peripheral surface of the cylindrical body 22 and the rotor The unevenness is formed on the outer peripheral surface of 25 and the depth of the depressions of the unevenness is made deeper than 1 mm or 0.5 times smaller than the shear flow generation gap 28 and the shear flow generation gap 28 is 0.6 And 4mm.
 本発明において、分散機の構成を適正にすることにより、スラリー中の一次粒子破壊が少ない状態で、二次粒子が分解されて一次粒子が均一に分散した製品スラリーが得られるとともに、粉砕用のビーズが処理後のスラリーに混入する比率を低減できる。また、従来の分散機では処理できなかった高粘性スラリー中の微細粒子の分散も可能となる。特に0.5マイクロメートル以下の粒子を含む500mPa・s以上の高粘度スラリーにおいて、本発明の分散機は有効である。更に本発明において、好ましい態様の分散機を用いることにより、分散率が高く、かつ一次粒子破壊の少ない処理を安定して実現できる。 In the present invention, by making the configuration of the disperser appropriate, it is possible to obtain a product slurry in which the secondary particles are decomposed and the primary particles are uniformly dispersed in a state in which primary particle breakage in the slurry is small. It is possible to reduce the ratio of beads in the slurry after treatment. In addition, it also becomes possible to disperse fine particles in a highly viscous slurry that could not be processed by conventional dispersers. The disperser of the present invention is effective particularly for a high viscosity slurry of 500 mPa · s or more containing particles of 0.5 micrometer or less. Furthermore, in the present invention, by using the disperser of the preferred embodiment, it is possible to stably realize processing with a high dispersion rate and less primary particle breakage.
 別の好ましい態様の分散機を用いることにより、1マイクロメートル以下の粒子径が懸濁するスラリーを効率的に分散できるうえ、従来装置での限界粘度である200~500mPa・sを大幅に上回る30,000mPa・s以上のスラリーでも粒子分散が可能となる。更にまた、分散処理以外に、液体の混合処理などに活用でき、従来装置では、処理できなかった高粘性流体同士の混合処理と、油と水などの乳化処理が可能となる。 By using the dispersing machine of another preferred embodiment, it is possible to efficiently disperse the slurry in which the particle diameter of 1 micrometer or less is suspended, and it is 30 which greatly exceeds the limit viscosity of 200 to 500 mPa · s in the conventional device. Even in the case of a slurry having a viscosity of at least 1,000 mPa · s, particles can be dispersed. Furthermore, in addition to dispersion processing, it can be used for mixing processing of liquids, etc. In the conventional apparatus, mixing processing of highly viscous fluids which can not be processed, and emulsification processing of oil, water and the like become possible.
 このような処理が可能となることから、従来では単一処理で製造できなかった高粘性の粒子分散ペーストの製造が可能となる。また、高粘性流体では、バッジ処理しかできなかったため、前処理装置や混合物の一次備蓄装置が不要となるプラントが可能となったり、バッジ式乳化処理を連続化することによるプラントの簡略化ができる効果が得られる。 Since such treatment becomes possible, it becomes possible to manufacture a highly viscous particle dispersion paste which could not be conventionally manufactured by a single treatment. In addition, with highly viscous fluid, only the badge process can be performed, which makes it possible to have a plant where the pretreatment device and the primary storage device of the mixture are unnecessary, or to simplify the plant by continuing the badge type emulsification process. An effect is obtained.
 また、別の好ましい態様の分散機では、ビーズを用いないで分散処理ができることから、粒子ダメージを受けると最終製品の性能が低下する粒子のスラリー処理に活用が可能である。特に、有機物や低強度の酸化物等の粒子にダメージを与えることなく、分散処理ができる。また、製品スラリーへのビーズ破片の混入がなく、ビーズ成分による製品汚染を防止できる。 Moreover, in the disperser of another preferable aspect, since dispersion processing can be performed without using beads, it can be used for the slurry processing of particles in which the performance of the final product is degraded when the particles are damaged. In particular, dispersion treatment can be performed without damaging particles such as organic substances and low-strength oxides. Moreover, there is no mixing of bead fragments into the product slurry, and product contamination by bead components can be prevented.
本発明の分散機の断面図である。It is sectional drawing of the disperser of this invention. 図1のA-A線断面図である。It is the sectional view on the AA line of FIG. 図2に示す回転子の要部の寸法図である。FIG. 3 is a dimension drawing of the main part of the rotor shown in FIG. 本発明の装置で処理した際の分散性能を示す平均粒子径(D50)をL/Dに対してプロットしたグラフである。It is the graph which plotted the average particle diameter (D50) which shows the dispersion performance at the time of processing with the apparatus of this invention with respect to L / D. 本発明の装置で処理した際の粒子破砕の程度を示すD50を0.3マクロメートルに分散させた際の比表面積をL/Dに対してプロットしたグラフである。It is the graph which plotted the specific surface area at the time of making D50 disperse | distribute to 0.3 micrometer which shows the extent of particle | grain crushing at the time of processing with the apparatus of this invention with respect to L / D. 別の態様の分散機の要部の概略断面図。The schematic sectional drawing of the principal part of the disperser of another aspect. 図1に示す分散機を構成する回転子の平面図。The top view of the rotor which comprises the dispersing machine shown in FIG. 同回転子の正面図。The front view of the rotor. 図6に示す分散機を構成する円筒体の平面図。FIG. 7 is a plan view of a cylindrical body constituting the disperser shown in FIG. 6; 同円筒体の縦断面図。The longitudinal cross-sectional view of the cylindrical body. 円筒容器と回転子の要部の拡大図。The enlarged view of the cylindrical container and the principal part of a rotor. 凹凸の別の例を示す一部分の拡大展開図。The expansion development of the part which shows another example of unevenness.
 以下、本発明の一実施形態に係る分散機について図面により説明する。本図では、装置の回転軸を垂直方向に記載しているが、水平などの他の方向に設置しても良い。
 図1は全体を符号1で示す分散機の断面、図2は図1のA-A線断面を示すもので、分散機1は円筒体2の上下を上蓋3と、下蓋4で固定した密閉形状の円筒容器と、当該円筒容器内に当該円筒容器と同軸をなして配置され、図示してないが、モータを駆動源として回転駆動されるシャフト6に固定された回転子8よりなり、シャフト6は上側部が横断面円形、下側部が横断面略正方形で、回転子8がシャフト6下側部に回転不可に嵌合している。なお、当該円筒容器は必ずしも、円筒体2、上蓋3,及び下蓋4に分割して構成される必要はなく、例えば、円筒体2と下蓋4が一体化しても良い。
Hereinafter, a dispersing machine according to an embodiment of the present invention will be described with reference to the drawings. Although the rotation axis of the device is shown in the vertical direction in this figure, it may be installed in other directions such as horizontal.
FIG. 1 shows a cross section of a dispersing machine generally indicated by reference numeral 1, and FIG. 2 shows a cross section taken along the line AA of FIG. A cylindrical container having a closed shape, and a rotor 8 disposed coaxially with the cylindrical container in the cylindrical container and fixed to a shaft 6 rotationally driven by a motor as a driving source, although not shown. The upper portion of the shaft 6 is circular in cross section and the lower portion is substantially square in cross section, and the rotor 8 is non-rotatably fitted to the lower portion of the shaft 6. In addition, the said cylindrical container does not necessarily need to be divided | segmented and comprised by the cylindrical body 2, the upper cover 3, and the lower cover 4, for example, the cylindrical body 2 and the lower cover 4 may be integrated.
 回転子8は、シャフト6に固着の上部円板10と、上部円板10と一定の間隔を存してシャフト6に固着される下部円板11よりなる一対の円板、及び周方向に等間隔に配置されて、上下端が上部円板10と下部円板11にそれぞれを連結され、軸方向の仕切板9とから構成され、分級時、回転子8は仕切板9の外周端において、周速3~30m/秒程度で回転する。 The rotor 8 has a pair of disks consisting of an upper disk 10 fixed to the shaft 6 and a lower disk 11 fixed to the shaft 6 with a constant distance from the upper disk 10, circumferentially, etc. Upper and lower ends are respectively connected to the upper disc 10 and the lower disc 11 so as to be spaced from each other, and are constituted of axial partition plates 9. At the time of classification, the rotor 8 is at the outer peripheral end of the partition plates 9 It rotates at a peripheral speed of 3 to 30 m / sec.
 中空シャフト7は回転子8の上部円板10より上方の軸心部を中空にして、中空部を有する中空シャフト7として形成され、中空シャフト7の下端が直径方向の貫通孔12により仕切板内の回転子8内部に開口している。図1中には、スラリーの供給口として、円筒容器下側の下蓋4に設置されている第1のスラリー供給口である下部スラリー供給口13と、円筒容器上側の上蓋3に設置されている第2のスラリー供給口である上部スラリー供給口14の2つが記載されているが、いずれか一方が設置されている場合もある。処理中、スラリーは下部供給口13又は上部スラリー供給口14のいずれか、又は両方から供給され、円筒体2の内周面近くを経由して、回転子8の中心方向に流れ、ついで中空シャフト7の中空部を通じて装置外に排出される。 The hollow shaft 7 is formed as a hollow shaft 7 having a hollow portion by hollowing the axial center portion above the upper disc 10 of the rotor 8 and the lower end of the hollow shaft 7 is in the partition plate by the through hole 12 in the diametrical direction. The rotor 8 is open inside. In FIG. 1, as slurry supply ports, the lower slurry supply port 13 which is the first slurry supply port installed in the lower lid 4 on the lower side of the cylindrical container, and the upper lid 3 in the upper side of the cylindrical container Two of the upper slurry inlets 14 which are the second slurry inlets described are described, but one may be installed. During processing, the slurry is supplied from either or both of the lower supply port 13 and the upper slurry supply port 14 and flows toward the center of the rotor 8 via the vicinity of the inner peripheral surface of the cylindrical body 2 and then the hollow shaft It is discharged out of the device through the hollow part of 7.
 円筒容器には、図1の矢印で示すように冷媒である冷却水が出入し、冷却水路5を周側面から冷却するようにしているが、上蓋3及び下蓋4にも冷却水を供給し、円筒体2を周側面からだけでなく上下から冷却するようにしてもよい。 In the cylindrical container, as shown by the arrow in FIG. 1, the cooling water as a refrigerant enters and leaves to cool the cooling water passage 5 from the peripheral side, but the cooling water is also supplied to the upper lid 3 and the lower lid 4 The cylindrical body 2 may be cooled not only from the circumferential side but also from the top and bottom.
 ここで、本発明において、スラリー供給が1方向からのみの場合は、回転子8の仕切板9の外周端の直径(D)と回転軸方向の長さ(L)の関係を0.3≦L/D≦1.6とする。この条件では、スラリー中粒子の適正な分散と粉砕が行われ、かつ処理後のスラリー中のビーズ汚染が少なくなる。特に、高粘性スラリーにおいては、本発明の設計要件を備えた装置で処理することの効果が大きい。 Here, in the present invention, when the slurry supply is from only one direction, the relationship between the diameter (D) of the outer peripheral end of the partition plate 9 of the rotor 8 and the length (L) in the rotational axis direction is 0.3 ≦≦. It is assumed that L / D ≦ 1.6. Under this condition, particles in the slurry are properly dispersed and crushed, and bead contamination in the treated slurry is reduced. In particular, in the case of a highly viscous slurry, the effect of processing with an apparatus equipped with the design requirements of the present invention is large.
 L/Dが0.3以下の場合、ビーズ混入率が増加して、スラリーを製品原料にする際に問題となるレベルとなる。これは、回転子が扁平すぎて、遠心力により円筒体2の周辺に積層しているビーズが撹乱され、ビーズがスラリーと共に、回転子8内部に流れ込んでしまうためである。 When L / D is 0.3 or less, the bead mixing ratio increases, and the level becomes a problem when making the slurry into a product raw material. This is because the rotor is too flat, and the beads stacked on the periphery of the cylindrical body 2 are disturbed by the centrifugal force, and the beads flow into the rotor 8 with the slurry.
 一方、L/D≧1.6の場合、当該円筒容器、回転子8ともに縦長であるため、当該円形容器中のスラリー中のビーズ濃度にばらつきがあり、特に回転軸方向(図中の縦方向)において大きくなる。この結果、ビーズが密な部分では、局所的なせん断力上昇を生じ、ビーズのずり応力が大きくなり、また、ビーズが疎な部分では、せん断力が不足する。更に、スラリーの滞留時間のばらつきも大きくなり、滞留時間の短い粒子は分散不足となる一方、滞留時間の長い粒子では、いわゆる一次粒子破壊が増加する。この結果、分散不足の粒子と、粒子が過剰に破壊された粒子が混在した状態となって、粒子径が揃い、かつ均一に分散した粒子のスラリーが得られなくなる問題を生ずる。 On the other hand, in the case of L / D ≧ 1.6, since both the cylindrical container and the rotor 8 are vertically long, the bead concentration in the slurry in the circular container varies, especially in the rotational axis direction (longitudinal direction in FIG. In). As a result, in the part where the beads are dense, local shear force rise occurs, the shear stress of the beads becomes large, and in the part where the beads are sparse, the shearing force is insufficient. Furthermore, the dispersion time of the slurry is increased, and particles with short residence time become insufficiently dispersed, while particles with long residence time increase so-called primary particle breakage. As a result, the insufficiently dispersed particles and the particles in which the particles are excessively broken are mixed, which causes a problem that the particle diameter is uniform and the slurry of the uniformly dispersed particles can not be obtained.
 一方、スラリーを上下のスラリー供給口であり、第1及び第2のスラリー供給口に相当する下部スラリー供給口13及び上部スラリー供給口14から供給することも本発明を効果的に実施するうえで望ましい。スラリーを上下から供給することで、装置の高さを大きくし、装置を大型化できる利点がある。スラリー供給口が上下双方に存在する場合は、スラリーの上下方向に流れの中立点が円筒容器中央になるため、一方向からのスラリー供給に比べ、約2倍の高さにできる利点がある。なお、スラリー流れを整えるためや製作を容易にするために、上部円板10と下部円板11の間に、中間円板を設置することもある。また、当該中間円板が開口部を有する場合もある。 On the other hand, supplying the slurry from the lower slurry supply port 13 and the upper slurry supply port 14 corresponding to the upper and lower slurry supply ports and corresponding to the first and second slurry supply ports is also effective in practicing the present invention. desirable. By supplying the slurry from above and below, there is an advantage that the height of the apparatus can be increased and the apparatus can be enlarged. When the slurry supply ports are present at both the upper and lower sides, since the neutral point of the flow is in the center of the cylindrical vessel in the vertical direction of the slurry, there is an advantage that the height can be about twice that of slurry supply from one direction. An intermediate disc may be installed between the upper disc 10 and the lower disc 11 in order to adjust the slurry flow and to facilitate the production. In addition, the middle disc may have an opening.
 上下双方からスラリーを供給する装置においては、L/Dを請求項2記載の上限である最大3.2にすることが可能である。またスラリー流れが上下対称であり、ビーズ分離はスラリー供給口が1つの場合と同じか良好になるため、L/Dは最小値の0.3にすることが可能である。 In the apparatus for supplying the slurry from both the upper and lower sides, L / D can be up to 3.2, which is the upper limit of claim 2. Also, L / D can be a minimum value of 0.3, since the slurry flow is vertically symmetrical and bead separation is as good or better than a single slurry inlet.
 仕切板9が直径方向に短すぎると、ビーズ分離性能が悪化する。これは、仕切り板9によって、円筒容器の内側に、ビーズを送る機能が低下するからである。また仕切り板9が長すぎると、中空シャフト7での流れが屈曲してしまい、流量を増加させようとすると、圧力が過大となる問題がある。したがって、仕切板9の内周端が位置する円周の径が、仕切板9の外周端が位置する円周の径の50~85%であると良く、望ましくは50~70%が良い。 When the partition plate 9 is too short in the diameter direction, the bead separation performance is degraded. This is because the partition plate 9 reduces the function of sending the beads to the inside of the cylindrical container. If the partition plate 9 is too long, the flow in the hollow shaft 7 is bent, and if it is attempted to increase the flow rate, there is a problem that the pressure becomes excessive. Therefore, the diameter of the circumference where the inner peripheral end of the partition plate 9 is located is preferably 50 to 85%, preferably 50 to 70% of the diameter of the circumference where the outer peripheral end of the partition plate 9 is located.
 回転子8を構成する仕切板9は図3に示すように、軸心を通る半径となす角αが5~30度であることがよい。角αを適正にすることで、回転によるスラリーの回転子8の内側への流れを適正にするためであり、適正な角度であれば、スラリーの回転子8の内部への流れが回転子8の高さ方向で均一化される。この結果、下部での回転子8内部へのスラリー流れが多すぎることによる円筒体2上方でのスラリー流れの減少の防止や、その逆の現象を防止できる。 As shown in FIG. 3, the partition plate 9 constituting the rotor 8 preferably has an angle α of 5 to 30 degrees with the radius passing through the axis. The reason is to make the flow of the slurry into the rotor 8 by rotation proper by making the angle α proper, and if the angle is proper, the flow of the slurry into the rotor 8 will be the rotor 8. Uniform in the height direction. As a result, it is possible to prevent the decrease of the slurry flow above the cylindrical body 2 due to the excessive flow of the slurry into the rotor 8 at the lower part and the reverse phenomenon.
 仕切板9の間隔は本発明の重要な要件である。仕切板の内周端での仕切板間隔ギャップをGとし、外周端での仕切り板間隔ギャップをGとすれば、Gは1~7mm、Gは1.5~10mmが良い。また、Gはビーズ径の20倍から100倍の範囲であると更に良い。また仕切板外周端と容器内周面との間隔tは3~30mmが良い。前述する仕切板9の総数nは多いほどビーズの分離性能が向上し、500mPa・s以上の高粘度対応が可能となる。この場合、Gは1~5mm、Gは1.5~7mmが良い。 The spacing of the dividers 9 is an important requirement of the present invention. The partition plate spacing gap at the inner peripheral end of the partition plate and G 1, when the partition plate spacing gap at the outer peripheral edge and G 2, G 1 is 1 ~ 7mm, G 2 is good 1.5 ~ 10 mm. Also, G 2 is even better if in the range of 100 times 20 times the bead diameter. The distance t between the outer peripheral end of the partition plate and the inner peripheral surface of the container is preferably 3 to 30 mm. The separation performance of the beads is improved as the total number n of the partition plates 9 described above is increased, and it is possible to cope with high viscosity of 500 mPa · s or more. In this case, G 1 is 1 ~ 5mm, G 2 is good 1.5 ~ 7 mm.
 仕切板9の間の間隔ギャップ比率もビーズ漏れに重要な設計要件である。間隔ギャップ比率をあらわす指標として、次の値を使い説明する。内周端が位置する円周上の径をD、外周端が位置する円周上の径をD、径がDをなす内周上での仕切板内周端のギャップをG、径がDをなす円周上での仕切板外周端のギャップをGとし、仕切板9の総数をnとすると、内周端の仕切板間隔ギャップの総和と内周端の円周長との比率は、nG/πDとなり、仕切板外周端での比率は、nG/πDとなる。 The spacing gap ratio between the dividers 9 is also an important design requirement for bead leakage. The following values are used as an index for expressing the gap gap ratio. The circumferential diameter at which the inner circumferential end is located is D 1 , the circumferential diameter at which the outer circumferential end is located is D 2 , and the gap at the inner circumferential end of the partition plate on the inner periphery where the diameter is D 1 is G 1 , the gap of the partition plate outer circumferential edge on the circumference whose diameter forms a D 2 and G 2, when the total number of the partition plate 9 is n, the circumference of the sum and the inner peripheral end of the partition plate spacing gap of the inner peripheral edge The ratio to the length is nG 1 / πD 1 and the ratio at the outer peripheral edge of the partition plate is nG 2 / πD 2 .
 本発明を効率的に実施するためには、前出の内周端と外周端での仕切板間隔ギャップの円周長に対する比率が適正である条件の場合、仕切板ギャップ間隔のテーパー率も重要であることから、外周端と内周端の仕切板ギャップ間隔の比率も適正な範囲、1.2≦G/G≦3とすると更に良い。仕切板9の間隔ギャップが内周側に過剰に狭くなっている場合、円筒体2と仕切板9の間にのみビーズが存在し、破砕の度合いが大きくなりすぎ、またの比率が過剰に小さいと、間隔ギャップ内のスラリー流速が一定となり、より内部までビーズが入り込む結果、ビーズ分離率が低下する。0.15≦nG/πD≦0.6とし、かつ0.2≦nG/πD≦0.8とする。つまり、内周端での仕切板間隔ギャップの比率を15~60%、かつ外周端での仕切板間隔ギャップの比率を20~80%とすることで、円筒体2と回転子8の仕切板9との間でのビーズによる粒子の分散・粉砕と回転子8内部へのスラリーの流入量の両者を適正なバランスとすることができる。この結果、ビーズ漏れがなく、適正な分散・粉砕処理ができる。 In order to carry out the present invention efficiently, when the ratio of the divider gap to the circumferential length at the inner and outer peripheral ends is appropriate, the taper ratio of the divider gap is also important. Because of this, it is further preferable to set the ratio of the gap between the outer peripheral end and the inner peripheral end to the appropriate range, 1.2 ≦ G 2 / G 1 ≦ 3. When the gap between the partition plates 9 is excessively narrowed on the inner circumferential side, the beads are present only between the cylindrical body 2 and the partition plates 9, the degree of crushing becomes too large, and the ratio is too small As a result, the slurry flow rate in the interval gap becomes constant, and as a result, the beads enter more inside, resulting in a decrease in the bead separation rate. It is assumed that 0.15 ≦ nG 1 / πD 1 ≦ 0.6, and 0.2 ≦ nG 2 / πD 2 ≦ 0.8. That is, by setting the ratio of the partition plate gap at the inner peripheral end to 15 to 60% and the ratio of the partition plate gap at the outer peripheral end to 20 to 80%, the partition plates of the cylindrical body 2 and the rotor 8 Both of the dispersion and crushing of the particles by the beads between 9 and 9, and the inflow of the slurry into the rotor 8 can be properly balanced. As a result, there is no bead leakage, and appropriate dispersion and crushing can be performed.
 当該円筒容器の下蓋4中央には、下部スラリー供給口13又は上部スラリー供給口14が設けられ、溶媒中に粒子を混入した原料スラリーはポンプ圧により下部スラリー供給口13又は上部スラリー供給口14より当該円筒容器内に供給されるが、当該円筒容器に供給するのに先立って例えば撹拌機、ホモジナイザー等を用いてスラリーを予備混合しておくのが望ましい。また、下部スラリー供給口13又は上部スラリー供給口14の両方から、原料スラリーを供給する場合もある。 The lower slurry supply port 13 or the upper slurry supply port 14 is provided at the center of the lower lid 4 of the cylindrical container, and the raw material slurry in which particles are mixed in the solvent is pumped by the lower slurry supply port 13 or the upper slurry supply port 14 The slurry is preferably supplied into the cylindrical container, but it is preferable to pre-mix the slurry using, for example, a stirrer, a homogenizer or the like prior to supplying the cylindrical container. In addition, the raw material slurry may be supplied from both the lower slurry supply port 13 and the upper slurry supply port 14.
 下部スラリー供給口13又は上部スラリー供給口14より当該円筒容器内に供給された原料スラリーは、当該円筒容器内に充填のビーズと回転子8の回転により撹拌混合され、凝集した粒子がほぐされて分散し、遠心力の作用により分離部としての仕切板9外周端より粒子を分離したスラリーが仕切板9間のスラリー経路を経て内周側に移動し、中空シャフト7に形成の開口12より中空シャフト7の中空部7を通り上方に抜けて排出され、製品スラリーとして回収されるか、或いは再度、供給口13に送られ、当該円筒容器内のビーズと撹拌混合される。 The raw material slurry supplied into the cylindrical container from the lower slurry supply port 13 or the upper slurry supply port 14 is stirred and mixed in the cylindrical container by the rotation of the beads and the rotor 8 and the agglomerated particles are loosened. The slurry which is dispersed and particles are separated from the outer peripheral end of the partition plate 9 as the separation portion by the action of centrifugal force moves to the inner peripheral side through the slurry path between the partition plates 9 and is hollowed from the opening 12 formed in the hollow shaft 7 The solution is discharged upward through the hollow portion 7 of the shaft 7 and recovered as a product slurry or fed again to the supply port 13 and mixed with the beads in the cylindrical container with stirring.
 なお、当該円筒容器内へのビーズの供給は、上蓋3を取り外した状態の当該円筒容器に上方より供給するか、或いは図示していないが、上蓋3にビーズ供給口を設け、当該供給口を通して行うこともできる。 The beads are supplied into the cylindrical container from the upper side of the cylindrical container from which the upper lid 3 is removed, or, although not shown, the upper lid 3 is provided with a bead supply port, and through the supply port. It can also be done.
 本装置の運転は以下のような条件で行うのが望ましい。仕切板9外周端の周速も重要な処理条件である。適正な運転条件は、仕切板9の外周端の周速が3~30m/秒であり、遠心力が8,000m/s2以下である。遠心力は小さいと、ビーズ分離性能が低下するが、1次粒子へのダメージが小さくなる。逆に遠心力が大きいと、ビーズ分離性能は向上するが、1次粒子へのダメージが大きくなる。特に500mPa・s以上の高粘性スラリーの場合は、仕切板9外周端の周速は5~25m/秒が良く、遠心力は8,000m/s2以下が良い。遠心力が弱すぎると、ビーズ洩れが起きるため、望ましくは、800~8,000 m/s2が良い。なお、ここで遠心力は仕切板9の外周端周速v、仕切板9の外周端の直径Dから、G=2v2/D(m/s2)で計算される値である。 It is desirable to operate the device under the following conditions. The peripheral speed of the outer peripheral end of the partition plate 9 is also an important processing condition. The appropriate operating conditions are that the peripheral speed of the outer peripheral end of the partition plate 9 is 3 to 30 m / sec, and the centrifugal force is 8,000 m / s 2 or less. When the centrifugal force is small, the bead separation performance is reduced, but the damage to the primary particles is reduced. Conversely, if the centrifugal force is large, the bead separation performance is improved, but the damage to the primary particles is increased. In particular, in the case of a highly viscous slurry of 500 mPa · s or more, the peripheral speed of the outer peripheral end of the partition plate 9 is preferably 5 to 25 m / s, and the centrifugal force is preferably 8,000 m / s 2 or less. If the centrifugal force is too weak, bead leakage will occur, so desirably 800 to 8,000 m / s 2 . Here, the centrifugal force is a value calculated by G = 2v 2 / D (m / s 2 ) from the peripheral velocity v of the outer peripheral end of the partition plate 9 and the diameter D of the outer peripheral end of the partition plate 9.
 仕切板9外周と円筒体2が形成する空間でのスラリーに作用するシェア(せん断力)も重要な処理条件である。本発明では円筒体2と仕切板9外周端が形成する空隙中のシェア率(s)を、仕切板9外周端の周速v(m/秒)、仕切板9外周端と円筒体2との間隔t(m)から計算し、これを用いてS=v/tと計算した場合、Sが1000~8000(1/s)の条件で運転する。シェア率Sが低いと分散が低下する問題があり、高いと一次粒子へのダメージが大きくなる。 The shear (shearing force) acting on the slurry in the space formed by the outer periphery of the partition plate 9 and the cylindrical body 2 is also an important processing condition. In the present invention, the shear rate (s) in the space formed by the cylindrical body 2 and the outer peripheral end of the partition plate 9 is represented by the peripheral velocity v (m / sec) of the outer peripheral end of the partition plate 9, the outer peripheral end of the partition plate 9 and the cylindrical body 2 When calculated from the interval t (m) of S and using this to calculate S = v / t, S is operated under the condition of 1000 to 8000 (1 / s). If the share ratio S is low, there is a problem that the dispersion decreases, and if it is high, damage to primary particles becomes large.
 本装置で使用されるビーズは、一般的には、酸化物粒子、金属粒子などであり、具体的には、ジルコニア、チタニア、ガラス、アルミナ、ジルコン、ステンレススチールなどが用いられ、その比重は原料スラリーより大であれば良く、スラリー比重の2倍以上のものであると更に良い。こうしたビーズは、0.01~1mmφ程度の粒子径のものが用いられ、その形状は球状のものが望ましい。スラリー溶媒としては、水、アルコール系有機物、トルエン、アセトン、グリコール類、高粘性のペーストなどが用いられ、処理効率を上げるために分散剤を用いることがある。スラリー粘度は最大3,000mPa・sまで対応できる。本実施形態で対象となるスラリーの粒子は、酸化チタン粉やチタン酸バリウムなどの酸化物、銀やニッケルなどの金属微粒子、微細炭素繊維等である。以下に本実施形態における第1の実施例を例示する。 Beads used in this device are generally oxide particles, metal particles, etc. Specifically, zirconia, titania, glass, alumina, zircon, stainless steel, etc. are used, and their specific gravity is the raw material It is sufficient if it is larger than the slurry, and more preferably, it is twice or more the specific gravity of the slurry. As such beads, those having a particle diameter of about 0.01 to 1 mmφ are used, and those having a spherical shape are desirable. As the slurry solvent, water, an alcohol-based organic substance, toluene, acetone, glycols, a highly viscous paste, or the like is used, and a dispersant may be used to increase the treatment efficiency. The slurry viscosity can be up to 3,000 mPa · s. The particles of the slurry targeted in the present embodiment are oxides such as titanium oxide powder and barium titanate, metal fine particles such as silver and nickel, and fine carbon fibers. Hereinafter, a first example in the present embodiment will be illustrated.
第1の実施例First embodiment
 図1に記載される分散機の主なディメンジョンは、スラリー供給口が1である装置においては、Dが100mm、Lが15mmから226mm、L/Dは0.15~2.26である。2つのスラリー供給口がある装置では、Dが100mm、Lが35mmから320mmである。仕切板9の構成は、間隔については、Gで2~4mm、Gで3~6mmであり、外周径D2はDと同じで、D1はD2に対して表1に記載されている比率のものであり、また角度αは5から30度であった。また、スラリー供給口が2である装置では、Dが100mm、Lが30mmから280mmであり、他の寸法等は、前記の装置と同等であった。比較例として、遠心式ビーズ分離装置と8本の攪拌ピンを持つLが100mmであり、Dが40mmである従来型のビーズミルでの実験結果を示す。原料スラリーは、チタン酸バリウムであり、一次粒子300nm、二次粒子径100μmのもので、スラリー濃度10%として処理を行った。スラリー粘度は30mPa・sであった。粉砕・分散用のビーズは、50μmのジルコニアであった。 The main dimensions of the disperser described in FIG. 1 are: in the apparatus having a slurry supply port of 1, D is 100 mm, L is 15 mm to 226 mm, and L / D is 0.15 to 2.26. In an apparatus with two slurry supply ports, D is 100 mm and L is 35 mm to 320 mm. Ratio configuration of the partition plate 9, the spacing is 2 ~ 4mm, 3 ~ 6mm in G 2 in G 1, the outer peripheral diameter D2 is the same as D, D1 is listed in Table 1 for D2 And the angle α was 5 to 30 degrees. Further, in the apparatus in which the slurry supply port is 2, D is 100 mm and L is 30 mm to 280 mm, and the other dimensions and the like are equal to those of the above-described apparatus. As a comparative example, experimental results are shown for a conventional bead mill in which L having a centrifugal bead separation device and eight stirring pins is 100 mm and D is 40 mm. The raw material slurry was barium titanate, and was treated with a primary particle of 300 nm, a secondary particle diameter of 100 μm, and a slurry concentration of 10%. The slurry viscosity was 30 mPa · s. The beads for grinding and dispersion were 50 μm zirconia.
 本装置を起動した後、所定の処理時間ごとにミルの排出口からサンプルを採取した。粒子径測定には、株式会社堀場製作所製のレーザー回折・散乱式粒度測定器LA-950を使用した。又一次粒子破壊判定を行うための比表面積測定をmicrometrics社製のFlowSorbII2300を用いてBET一点法にて計測した。 After activating the apparatus, samples were taken from the outlet of the mill every predetermined processing time. For the particle diameter measurement, a laser diffraction / scattering particle size analyzer LA-950 manufactured by Horiba, Ltd. was used. Further, the specific surface area was determined by a BET single point method using FlowSorb II 2300 manufactured by micrometrics, in order to determine primary particle breakage.
 処理結果を評価するために採用した値は、比較例と実施例1から4及び6から10では滞留時間が1分40秒、また実施例5では3分での処理後の処理成績である。評価指標は、二次粒子の平均粒子径(D50:50%の二次粒子がこのサイズ以下である粒子径)と二次粒子を平均0.3μmまで分散させた際の比表面積を用いた。前者の値では、分散性能を評価する。この値は小さいほど分散性能は良い。後者の値では、一次粒子の破壊度合いを評価する。粒子破壊が起きると、同じ平均二次粒子径であっても、比表面積が大きくなり、一次粒子を破壊したくない場合は、この値が小さいほど良い。 The values employed to evaluate the treatment results are the treatment results after treatment for 1 minute 40 seconds for the Comparative Example and Examples 1 to 4 and 6 to 10, and 3 minutes for Example 5. As the evaluation index, the average particle size of secondary particles (D50: particle size of secondary particles below 50%) and the specific surface area when secondary particles are dispersed to an average of 0.3 μm were used. In the former value, the dispersion performance is evaluated. The smaller this value, the better the dispersion performance. The latter value assesses the degree of destruction of primary particles. When particle breakage occurs, the specific surface area increases even if the average secondary particle diameter is the same, and if it is not desirable to destroy primary particles, the smaller the value, the better.
 実施例と比較例を以下の表1に示す。まず、比較例1は従来型の攪拌ローターとビーズセパレーターから構成されるビーズミルのテスト機で処理した例である。この装置の円筒容器は本装置と同一なものを使用したが、回転体は下部に攪拌ロッドがあり、上部にセパレータがあるものを用いた。この結果で、分散性能は良好であるものの、一次粒子破壊が進んでおり、粒子破壊を低減したい処理には不適切であった。 Examples and comparative examples are shown in Table 1 below. First, Comparative Example 1 is an example processed by a testing machine of a bead mill composed of a conventional stirring rotor and a bead separator. The cylindrical container of this apparatus used the same thing as this apparatus, but the rotating body had a stirring rod in the lower part, and used what has a separator in the upper part. As a result, although the dispersion performance is good, primary particle destruction is progressing, and it is unsuitable for the process which wants to reduce particle destruction.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の実施例は、いずれも本発明の装置要件を満たしたものであり、L/Dは請求項2に係る発明の範囲内で、D1/D、G1/Gも請求項2及び3に係る発明の範囲である。実施例1から7は、スラリー供給口が1つである装置での例であり、実施例9から11はスラリー供給口が2つである装置の例である。実施例を解析すると、分散性能については、二次粒子径(D50)が0.4マイクロメートル以下と、良好な分散能力が得られた。一方、比較例2では、L/Dが0.15と小さいため、0.46マイクロメートルと分散性能が悪かった。回転子の仕切板外周の周速12m/sのものの処理結果をL/Dで整理して、図4にプロットした。このグラフで分るように、L/Dが0.3以下では、急速に分散性能が悪化していた。 All the embodiments of Table 1 satisfy the device requirements of the present invention, and L / D is within the scope of the invention according to claim 2, and D 1 / D 2 and G 1 / G 2 are also claimed. It is the scope of the invention concerning 2 and 3. Examples 1 to 7 are examples in the apparatus having one slurry supply port, and Examples 9 to 11 are examples of the apparatus having two slurry supply ports. When the examples were analyzed, in terms of dispersion performance, good dispersion performance was obtained, with a secondary particle diameter (D50) of 0.4 micrometers or less. On the other hand, in Comparative Example 2, since L / D was as small as 0.15, the dispersion performance was poor at 0.46 micrometers. The processing results of the peripheral speed of 12 m / s on the outer periphery of the partition plate of the rotor are organized by L / D and plotted in FIG. As can be seen from this graph, when L / D was 0.3 or less, the dispersion performance was rapidly deteriorating.
 粒子破壊低減の評価結果については、実施例1~5及び7では、比表面積が7m2/g以下であり、粒子破壊は少ない結果となった。比較例3では、L/Dが2.26と大きいため、比表面積が8.8m2/gとなり、粒子破壊が進んでいることが判明した。なお、比較例2では所定時間内に平均二次粒子径が3マイクロメートル以下にならなかったので、比表面積の評価はできなかった。L/Dが2.26である比較例3においては、比表面積が回転子の仕切板外周の周速12m/sのものの処理結果をL/Dに整理して、図5にプロットした。L/Dは1.6を超えると粒子の比表面積が増加しており、粒子破壊が進みやすいことが判明した。したがって、分散性能と一次粒子破壊低減の両方が良好な条件は、L/Dが0.3~1.6の範囲であった。また、D1/D、G1/Gも適正な範囲であると更に処理成績がよかった。 Regarding the evaluation results of particle breakage reduction, in Examples 1 to 5 and 7, the specific surface area was 7 m 2 / g or less, and particle breakage was a result that was small. In Comparative Example 3, since L / D was as large as 2.26, the specific surface area was 8.8 m 2 / g, and it was found that particle destruction was advanced. In Comparative Example 2, the specific surface area could not be evaluated because the average secondary particle diameter did not fall to 3 micrometers or less within a predetermined time. In Comparative Example 3 in which L / D is 2.26, the processing results of the specific surface area of the peripheral speed of 12 m / s on the outer periphery of the partition plate of the rotor are organized into L / D and plotted in FIG. It was found that when L / D exceeds 1.6, the specific surface area of the particles is increased, and particle destruction is likely to proceed. Therefore, the conditions under which both the dispersion performance and primary particle breakage reduction were good were in the L / D range of 0.3 to 1.6. In addition, when D 1 / D 2 and G 1 / G 2 were also in appropriate ranges, the processing results were better.
 同じ実施例の中でも、処理条件の影響もあることが判明した。表1に記載のように、遠心力が所定の範囲であるものと、シェア率が所定の範囲であるものでは、特に処理成績が良かった。一方、遠心力が強すぎる実施例である実施例6では比表面積が若干大きく、粒子破壊がやや進んでいた。遠心力の弱い実施例5では、ビーズ漏れが微少であるが、発生しており、また実施例7では、仕切り板9が短く、D1/D2が0.85でるため、微少なビーズ漏れが発生していたが、いずれも処理上の問題はなかった。 It has been found that processing conditions also affect the same example. As shown in Table 1, when the centrifugal force was in the predetermined range and the shear ratio was in the predetermined range, the treatment results were particularly good. On the other hand, in Example 6 which is an example in which the centrifugal force is too strong, the specific surface area is slightly large, and the particle breakage is slightly advanced. In Example 5 in which the centrifugal force is weak, bead leakage is slight but occurs, and in Example 7, minute bead leakage occurs because the partition plate 9 is short and D1 / D2 is 0.85. There were no processing problems with either.
 実施例8から10は、スラリーを上下二方向から供給した装置の実施例であり、L/Dが0.35、1.6、及び3.2で効果的な処理ができていた。 Examples 8 to 10 are the examples of the apparatus in which the slurry was supplied from the upper and lower directions, and the L / D was able to be effectively processed at 0.35, 1.6 and 3.2.
 図6は別の実施形態の分散機の概要を示す断面で、便宜的に回転軸を縦方向にしているが、回転軸の方向は水平など他の角度でも良い。図面に示す分散機21は、円筒体22、上蓋23、下蓋24によって形成される円筒容器内に、回転子25が入っている構造で、以後、円筒体22、上蓋23、下蓋24によって形成される構造物を円筒容器と称す。回転軸26に固定される回転子25は回転軸26により高速回転する。原料スラリーは、スラリー入口27から分散機21の内部空間に供給され、円筒体22内周面と回転子25外周面との間のせん断流発生隙間28にて、せん断力を与えられて、分散処理を施され、その後、製品スラリーとして、スラリー出口29から装置外に排出される。 FIG. 6 is a cross-sectional view schematically showing a dispersing machine according to another embodiment, in which the rotation axis is in the vertical direction for convenience, but the direction of the rotation axis may be another angle such as horizontal. The dispersing machine 21 shown in the drawing has a structure in which a rotor 25 is contained in a cylindrical container formed by a cylindrical body 22, an upper lid 23, and a lower lid 24, and thereafter, the cylindrical body 22, the upper lid 23, and the lower lid 24 are used. The structure to be formed is referred to as a cylindrical container. The rotor 25 fixed to the rotating shaft 26 rotates at high speed by the rotating shaft 26. The raw material slurry is supplied from the slurry inlet 27 to the internal space of the disperser 21 and given shear force at the shear flow generation gap 28 between the inner peripheral surface of the cylindrical body 22 and the outer peripheral surface of the rotor 25 to disperse it. After being processed, it is discharged from the slurry outlet 29 out of the apparatus as a product slurry.
 円筒体22、上蓋23、下蓋24は、その内部にそれぞれ冷却水路30を有しており、ここに冷却水を流して、分散機21の内部のスラリーを冷却する。なお、上蓋23又は下蓋24には、冷却水路30がなくともよい。冷却水路30と円筒容器の内部空間との間の構造体の材料は、熱伝導率が良いものを採用して、適正な厚みで施工される。図6では、回転軸26はスラリー出口29の方向に設置してあるが、スラリー入口27の方向に設置することも可能である。 The cylindrical body 22, the upper lid 23, and the lower lid 24 each have a cooling water passage 30 therein, and a cooling water is allowed to flow here to cool the slurry inside the dispersing machine 21. The upper cover 23 or the lower cover 24 may not have the cooling channel 30. The material of the structure between the cooling water passage 30 and the internal space of the cylindrical container adopts a material having a good thermal conductivity and is applied with an appropriate thickness. In FIG. 6, the rotating shaft 26 is installed in the direction of the slurry outlet 29, but may be installed in the direction of the slurry inlet 27.
 本発明の装置では、回転子25が回転することにより、前記せん断流発生隙間28のスラリーにせん断力を働かせ、これによりスラリー中の凝集粒子(二次粒子)を分散させて、単独粒子(一次粒子)を液中に分散させる。ただし、従来技術におけるように、平滑な面で構成され、又は単純な凹凸を施したのみの円筒内周面と回転子外周面から構成される装置においては、回転子25の回転によって生じるせん断力は小さく、周速10m/s以上で隙間1~3mmであっても、スラリー中の一次粒子径が1マイクロメーター以下の粒子から構成される二次粒子を適正に分散することはできなかった。 In the apparatus of the present invention, when the rotor 25 is rotated, a shear force is exerted on the slurry of the shear flow generation gap 28 to disperse the agglomerated particles (secondary particles) in the slurry, thereby separating single particles (primary particles). The particles are dispersed in the liquid. However, as in the prior art, in a device constituted by a cylindrical inner circumferential surface and a rotor outer circumferential surface which are constituted by a smooth surface or provided with only a simple asperity, the shear force generated by the rotation of the rotor 25 Even if the circumferential velocity is 10 m / s or more and the gap is 1 to 3 mm, it is impossible to properly disperse secondary particles composed of particles having a primary particle diameter of 1 micrometer or less in the slurry.
 一方、本発明の装置では、適正な設計条件で施工された凹凸のある円筒容器と回転子25の構造であれば、せん断力を十分に大きくすることができる。本発明の装置では、回転子25の回転に伴いスラリーが円筒容器内周面の凹部に入り込んだ後に、回転子外周の凹部に入り込むことを繰り返すことで、スラリーの乱流密度が大幅に上昇し、スラリーのせん断力が増加する。この結果、スラリー中で集合している粒子群(二次粒子)を分散する効果が増加する。 On the other hand, in the device of the present invention, the shear force can be sufficiently increased if the structure of the cylindrical container and the rotor 25 having the concavities and convexities constructed under appropriate design conditions is used. In the apparatus according to the present invention, the slurry density is significantly increased by repeating the penetration of the slurry into the recess on the outer peripheral surface of the cylindrical container after the slurry enters the recess on the inner peripheral surface of the cylindrical container with the rotation of the rotor 25. , The shear force of the slurry increases. As a result, the effect of dispersing the particle group (secondary particles) collected in the slurry is increased.
 ここで、本発明の装置における凹凸の形状と寸法について説明する。図7は回転子25の平面図、図8は回転子25の正面図であり、図9は円筒体22の平面図、図10は円筒体22の縦断面図である。図7から図10は、凹溝31と凸条32を交互に周方向に等間隔で形成してなる例である。円筒体22と回転子25に設けられる凹凸は、前述の凹溝31や凸条32或いは図12に示すディンプル33以外の任意の形状のものとすることができる。例えば図11に示す凹溝31や凸条32は軸方向に同一幅で、かつ同一ピッチに形成されているが、幅を異にすることも可能で、またピッチを変えてランダムに形成し、或いは軸方向に形成しないで円筒体22及び回転子25の軸心に対する傾斜角が10度以下に傾斜して形成してもよい。凹溝31や凸条32はまた、例えば屈折したり、ジグザグに或いは湾曲に形成されてもよい。この際は、角度10度にこだわる必要はない。図11には、回転子25と円筒体22の噛み合わせを示す図である。 Here, the shape and size of the unevenness in the device of the present invention will be described. 7 is a plan view of the rotor 25, FIG. 8 is a front view of the rotor 25, FIG. 9 is a plan view of the cylindrical body 22, and FIG. 10 is a longitudinal sectional view of the cylindrical body 22. 7 to 10 show an example in which the grooves 31 and the ridges 32 are alternately formed at equal intervals in the circumferential direction. The projections and depressions provided on the cylindrical body 22 and the rotor 25 can be of any shape other than the above-mentioned concave groove 31 and convex stripe 32 or the dimple 33 shown in FIG. For example, although the grooves 31 and the ridges 32 shown in FIG. 11 have the same width and the same pitch in the axial direction, the widths may be different, and the pitch may be changed to be random. Alternatively, without forming in the axial direction, the inclination angle with respect to the axial center of the cylindrical body 22 and the rotor 25 may be inclined at 10 degrees or less. The grooves 31 and the ridges 32 may also be formed, for example, in a bent, zigzag or curved manner. In this case, it is not necessary to stick to an angle of 10 degrees. FIG. 11 is a view showing the meshing of the rotor 25 and the cylindrical body 22. As shown in FIG.
 また、図12には、凹凸の更に別の例として、不連続の凹部(ディンプル33)のものを示した。凹部が互いに独立した形態の円形のディンプル33が形成され、ディンプル33以外が凸部となる。ディンプル33は、長円、楕円、多角形ないし不定形の溝或いはこれらの組合せよりなる溝とすることでも良い。また、回転子25の表面を凹凸溝とし、円筒体22の内面を不連続の凹部で構成することも可能で、またその逆も可能である。 Further, in FIG. 12, as another example of the asperities, those of discontinuous recesses (dimples 33) are shown. The circular dimples 33 are formed in a form in which the concave portions are independent of one another, and the portions other than the dimples 33 become convex portions. The dimples 33 may be grooves formed of ovals, ovals, polygonal or irregular grooves, or a combination thereof. Also, the surface of the rotor 25 may be an uneven groove, and the inner surface of the cylindrical body 22 may be configured with discontinuous recesses, or vice versa.
 本発明者らの研究により、更に以下のことが判明した。当該円筒容器及び回転子25の表面に形成される凹凸の形状は、該円筒容器、回転子25の回転軸の方向回転方向に凹凸を設置することが最もせん断力向上に寄与することが分かった。円筒容器及び回転子25に凹溝31及び凸条32を形成する。凹溝31の回転子の軸心に対する傾斜角が大きい場合は、図1の上方向へのスラリーの流れを阻害することから、その角度は10度以内であることが重要である。また、凹凸は非連続で互いに独立して形成される凹部から構成される凹凸でも良い。ただし、いずれの場合も、凹凸は以下のことを特徴とする。 According to the studies of the present inventors, the following has been found. It was found that installing the asperities in the rotational direction of the rotation axis of the cylindrical container and the rotor 25 most contributes to the improvement of the shear force. . The grooves 31 and the ridges 32 are formed in the cylindrical container and the rotor 25. If the inclination angle of the recessed groove 31 with respect to the axis of the rotor is large, it is important that the angle is within 10 degrees because it impedes the flow of the slurry upward in FIG. Moreover, the unevenness may be an unevenness formed of recesses which are discontinuous and formed independently of each other. However, in any case, the unevenness is characterized by the following.
 本発明の効果については、凹凸の深さがせん断力に与える影響が大きいことを見出した。せん断流発生隙間28が小さい場合は、凹凸の凹部の深さhは1mm以下では、十分な効果が認められなかった。また、この隙間が大きい場合は、隙間間隔の0.5倍以上の深さがあることが必要であった。一方、凹部の深さが過度に大きくとも特段の効果の増加がなく、かえって、凹部の奥にせん断力を受けないスラリーが存在する結果、分散効率が低下する問題がある。したがって、凹部の深さは、好ましくは8mm以下が良い。 About the effect of the present invention, it has been found that the depth of the unevenness has a great influence on the shear force. When the shear flow generation gap 28 is small, sufficient effects can not be recognized when the depth h of the concave and convex portion is 1 mm or less. When the gap is large, it is necessary to have a depth of 0.5 times or more the gap distance. On the other hand, even if the depth of the recess is excessively large, there is no particular increase in the effect, and on the contrary, as a result of the presence of a slurry not receiving shear force at the back of the recess, there is a problem that the dispersion efficiency decreases. Therefore, the depth of the recess is preferably 8 mm or less.
 せん断流発生隙間28の幅も重要な設計要素である、せん断流発生隙間28を0.6mm以下にするには、円筒容器及び回転子25の製作に高精度が要求され、製作困難となるとともに、せん断により発生した熱が狭い容積中に蓄積しやすい課題もある。一方、4mmより広いと、通常の粘度(300cP以下)の液体においては、せん断力が大幅に低下する。したがって、せん断流発生隙間28を0.6~4mmとすると、円筒容器及び回転子25の製作に困難さをもたらすことなく、分散性能を向上させることができる。ここで、せん断流発生隙間28の幅は、図11中のtで表される円筒体22及び回転子25に設けられている凹凸の凸部が接する円周の間隔を云う。 The width of the shear flow generation gap 28 is also an important design factor. In order to make the shear flow generation gap 28 not more than 0.6 mm, high precision is required for the production of the cylindrical container and the rotor 25, which makes production difficult There is also a problem that heat generated by shearing tends to be accumulated in a narrow volume. On the other hand, if the width is larger than 4 mm, the shear force is significantly reduced in a liquid of ordinary viscosity (300 cP or less). Therefore, when the shear flow generation gap 28 is 0.6 to 4 mm, the dispersion performance can be improved without causing difficulty in manufacturing the cylindrical container and the rotor 25. Here, the width of the shear flow generation gap 28 refers to the distance between the circumferences where the projections of the concave and convex portions provided on the cylindrical body 22 and the rotor 25 represented by t in FIG.
 更に、本発明者らは、当該凹部の幅が広くても狭くても、スラリー中粒子の分散効果が小さいことを見出した。最適な幅は、せん断流発生隙間28の0.8~6倍である。ここで、もし凸部が曲面で構成されている場合は、当該凹凸の場合は凸部の頂点から凹部深さの1/10下がった位置の最大幅を云う。当該凹部の幅がせん断流発生隙間28の幅tの0.8~6倍であることも設計要件である。凹部の幅tが狭い場合は、スラリーが凹部への出入りが不活発となり、分散が悪化する問題がある。一方、凹部の幅tが大きすぎる場合は、スラリーの出入りがあるものの、凹凸の数が減少することから、やはり分散が低下する。更に、凹部の面積が全周面の30%以上及び80%以下であると、円筒容器内面と回転子5の外周の凹部へのスラリーの出入りが活発となり、粒子分散が良好となる。また、溝状の凹凸の場合は、凸部分の幅が長いと、平滑形状と同様の性能になり、スラリーを乱流状態にする効果が低下するため、分散性能が低下する。したがって、凸部分の幅をせん断流発生隙間28の幅tの5倍以下にすると、こうした問題を解消することができる。 Furthermore, the present inventors have found that the dispersion effect of the particles in the slurry is small regardless of whether the width of the recess is wide or narrow. The optimum width is 0.8 to 6 times the shear flow generation gap 28. Here, in the case where the convex portion is constituted by a curved surface, in the case of the concave and convex portions, the maximum width of a position 1/10 lower than the concave portion depth from the apex of the convex portion is referred to. It is also a design requirement that the width of the recess is 0.8 to 6 times the width t of the shear flow generation gap 28. In the case where the width t of the recess is narrow, there is a problem that the slurry gets in and out of the recess and the dispersion becomes worse. On the other hand, when the width t of the recess is too large, although the slurry comes in and out, the number of asperities decreases, so the dispersion also decreases. Furthermore, when the area of the recess is 30% or more and 80% or less of the entire peripheral surface, the slurry flows into and out of the recess on the inner surface of the cylindrical container and the outer periphery of the rotor 5 becomes active, and particle dispersion becomes good. Further, in the case of the groove-like unevenness, when the width of the convex portion is long, the same performance as that of the smooth shape is obtained, and the effect of making the slurry into a turbulent state is lowered, so the dispersion performance is lowered. Therefore, such a problem can be solved by setting the width of the convex portion to five times or less of the width t of the shear flow generation gap 28.
 本発明の装置では、円筒体22と回転子25の隙間(せん断流発生隙間28)において、スラリーに強力なせん断力が働き、この影響で発熱が大きい。従って、発熱によるスラリー中粒子の劣化や液の沸騰を防止するために強力な冷却が必要である。本発明の装置では、この部分を強力に冷却することが必要で、円筒体22の回転子25が対面する部分の100%以上を水などの液体で冷却することが良い。 In the device of the present invention, a strong shear force acts on the slurry in the gap between the cylindrical body 22 and the rotor 25 (the shear flow generation gap 28), and this generates a large amount of heat. Therefore, strong cooling is required to prevent deterioration of particles in the slurry and boiling of the liquid due to heat generation. In the device of the present invention, it is necessary to strongly cool this portion, and it is preferable to cool 100% or more of the portion of the cylindrical body 22 facing the rotor 25 with a liquid such as water.
 特にせん断流発生隙間28の内部で、スラリー温度が沸点に近づいている処理の場合は、上蓋23部分での冷却も重要になる。本発明の装置の内部はプラス圧であることから、沸点近くまでスラリー温度が上昇しても、沸騰しないが、装置から出た位置で、大気圧又はマイナス圧となるため、沸騰する可能性がでる。したがって、このような場合は、せん断流発生隙間28から製品スラリー出口の間での冷却が重要になる。そこで、上蓋23を水などの液体で冷却する。上蓋23の50%以上を冷却することが良い。 In particular, in the case of processing in which the slurry temperature approaches the boiling point inside the shear flow generation gap 28, cooling in the upper lid 23 part is also important. Since the inside of the apparatus of the present invention is a positive pressure, even if the slurry temperature rises to near the boiling point, it does not boil, but there is a possibility of boiling because it becomes atmospheric pressure or negative pressure at the position where it leaves the apparatus. Out. Therefore, in such a case, cooling between the shear flow generation gap 28 and the product slurry outlet becomes important. Therefore, the upper lid 23 is cooled with a liquid such as water. It is preferable to cool 50% or more of the upper lid 23.
 円筒体22の側面、特に回転子25に対面する部分であるせん断流発生隙間28の冷却は以下の条件で行う。冷却部分の材質は、金属、セラミックス、硬質樹脂が用いられるが、熱伝導率(λ)が高いものが良く、熱伝導率は15W/mK以上のものが良い。熱伝導率は25W/mK以上であれば、更に良い。金属であれば、銅又は銅合金(λ:300~430W/mK)、アルミニウム又はアルミニウム合金(λ:約110W/mK)、鉄(λ:約50W/mK)などが良い。セラミックスであれば、高密度アルミナ(添加剤入りを含む)(λ:15~30W/mK)、窒化アルミニウム(λ:100W/mK以上)、窒化珪素(λ:15~30W/mK)、炭化珪素(λ:約200W/mK)が良い。ここで、熱伝導率とは、0℃又は20℃での値を云う。 Cooling of the shear flow generation gap 28 which is a portion facing the side surface of the cylindrical body 22, particularly the rotor 25, is performed under the following conditions. Metals, ceramics, and hard resins are used as the material of the cooling portion, and it is preferable that the thermal conductivity (λ) is high, and the thermal conductivity is preferably 15 W / mK or more. The thermal conductivity is more preferably 25 W / mK or more. As the metal, copper or copper alloy (λ: 300 to 430 W / mK), aluminum or aluminum alloy (λ: about 110 W / mK), iron (λ: about 50 W / mK) or the like is preferable. For ceramics, high density alumina (including additives) (λ: 15 to 30 W / mK), aluminum nitride (λ: 100 W / mK or more), silicon nitride (λ: 15 to 30 W / mK), silicon carbide ([Lambda]: about 200 W / mK) is good. Here, the thermal conductivity refers to a value at 0 ° C. or 20 ° C.
 この部分の材料の厚みも重要な技術条件である。本発明の冷却条件を満たすためには、材料部の伝熱抵抗が小さいことが重要である。伝熱抵抗は厚みに比例し、熱伝導率に反比例することから、伝熱抵抗を(厚み:T m)/(熱伝導率:λ W/mK)で示す場合、T/λは0.0005K/W 以下であることが重要である。ただし、よりせん断力の大きいせん断流発生隙間28が2mm以下や回転子25の周速が大きいなどの場合は、T/λは0.00035K/W 以下が良い。例えば、λ=17のアルミナを使用した場合、前者の条件ではT<8.5mm、後者の場合、T<5.95mmであることが設計条件である。装置の上蓋23の冷却も同様の条件が望ましい。当該構造体が複数の層によって構成される場合は、ΣTn/λnを0.0005K/W又は0.00035K/W以下とする。ここで、λnとは、内側からn番目の材料層の熱伝導率であり、Tnとは、内側からn番目の材料層の厚みである。 The thickness of the material of this part is also an important technical condition. In order to satisfy the cooling condition of the present invention, it is important that the heat transfer resistance of the material portion is small. Since the heat transfer resistance is proportional to the thickness and inversely proportional to the heat conductivity, T / λ is 0.0005 K when the heat transfer resistance is represented by (thickness: T m) / (heat conductivity: λ W / m K) It is important that it is less than / W. However, when the shear flow generation gap 28 with a larger shear force is 2 mm or less or the circumferential speed of the rotor 25 is large, T / λ is preferably 0.00035 K / W or less. For example, when alumina of λ = 17 is used, it is a design condition that T <8.5 mm in the former condition and T <5.95 mm in the latter condition. Similar conditions are desirable for cooling the top cover 23 of the apparatus. When the structure includes a plurality of layers, ΣTn / λn is equal to or less than 0.0005 K / W or 0.00035 K / W. Here, λ n is the thermal conductivity of the n-th material layer from the inside, and T n is the thickness of the n-th material layer from the inside.
 回転子25の軸方向長さLと直径Dの比も装置設計に重要な指標である。L/Dが大きい場合は、熱発生領域であるせん断流発生隙間28の縦方向の長さが長くなり、円筒容器の側面に対して上面の面積比率が低下する。この結果、上蓋23の冷却効果が小さくなる。 The ratio of the axial length L to the diameter D of the rotor 25 is also an important indicator for device design. When L / D is large, the longitudinal length of the shear flow generation gap 28 which is a heat generation region becomes long, and the area ratio of the upper surface to the side surface of the cylindrical container decreases. As a result, the cooling effect of the upper lid 23 is reduced.
 面積当りの冷却能力は、せん断流発生隙間28の方が大きい。これは、せん断流発生隙間28の間隔での乱流密度が高いため、液側の熱伝導が良好であるためである。一方、上蓋23の部分では、スラリー流速が遅いため、液側の熱伝導が低い。本発明の装置においては、面積当りの冷却能力は、せん断流発生隙間28の部分を1とすると、上蓋23の部分では0.4程度である。せん断流発生隙間28において沸点に近い温度まで加熱されたスラリーが装置外に出た際に沸騰しないためには、上蓋23で5℃以上、可能であれば10℃の冷却をする必要がある。なお沸点よりも温度を下げる理由は、装置外では配管内の流れの関係で、局部的に負圧が発生し、沸騰しやすいためである。 The cooling capacity per area is larger in the shear flow generation gap 28. This is because the turbulent flow density at the intervals of the shear flow generation gap 28 is high, so the heat conduction on the liquid side is good. On the other hand, in the portion of the upper lid 23, since the slurry flow velocity is low, the heat conduction on the liquid side is low. In the device of the present invention, the cooling capacity per area is about 0.4 at the portion of the upper lid 23 when the portion of the shear flow generation gap 28 is 1. In order to prevent the slurry heated to a temperature close to the boiling point in the shear flow generation gap 28 from boiling when it comes out of the apparatus, it is necessary to cool the upper lid 23 by 5 ° C. or higher, preferably 10 ° C. The reason why the temperature is lower than the boiling point is that a negative pressure is generated locally due to the flow inside the piping outside the apparatus, and boiling easily occurs.
 本発明の装置では、沸点に近づく運転条件では、せん断流発生隙間28で60~70℃の温度上昇分の冷却していることから、5℃の温度低下のためには、上蓋23でも、せん断流発生隙間28の部分に対して7~8%以上の冷却能力を有する必要がある。上蓋23での面積当りの冷却能力の比率の0.4を考慮すると、上蓋23の冷却間面積は円筒体22の冷却面積の約18%以上であることが良い。したがって、この条件を面積的に満たすためには、L/Dが1.2以下であることが必要である。また望ましくは、L/Dを1以下とすることで、上蓋23の面積のせん断流発生隙間28の面積に対する比率を25%以上とすることが更に望ましい。ただし、L/Dが小さすぎると、装置の大きさ当たりの生産性が低下するため、加速度的に装置が大きくなる限界のL/Dである0.2よりも大きいことが望ましい。 In the apparatus according to the present invention, under the operating conditions close to the boiling point, the shear flow generation gap 28 cools the temperature rise by 60 to 70 ° C. It is necessary to have a cooling capacity of 7-8% or more for the portion of the flow generation gap 28. Considering the ratio of the cooling capacity per area at the upper lid 23 of 0.4, the area between cooling of the upper lid 23 is preferably about 18% or more of the cooling area of the cylindrical body 22. Therefore, L / D needs to be 1.2 or less in order to satisfy this condition in area. Preferably, the ratio of the area of the upper lid 23 to the area of the shear flow generation gap 28 is 25% or more by setting L / D to 1 or less. However, if L / D is too small, productivity per size of the device is reduced. Therefore, it is desirable that L / D be larger than 0.2, which is the limit L / D at which the device becomes larger in an accelerated manner.
 本発明の装置の運転方法としては、以下のとおりである。容器内に供給される原料スラリーは、溶媒中に凝集した粒子を含むもので、溶媒としては水、アルコール系溶液、トルエン系溶液、アセトン、グリコール類などを例示することができるが、これらに限定されるものではない。原料スラリーは分散機1に供給するのに先立って、例えば粉体、分散剤などを添加し、撹拌機、ホモジナイザー等を用いて予備混合しておくのが望ましい。適応できるスラリーの粘度は10~40,000mPa・sの広範囲のものであり、特に、従来装置では対応できない500mPa・s以上の高粘性スラリーの処理に最適である。 The operating method of the device of the present invention is as follows. The raw material slurry supplied into the container contains particles aggregated in the solvent, and examples of the solvent include water, alcohol-based solutions, toluene-based solutions, acetone, glycols, etc. It is not something to be done. Prior to supplying the raw material slurry to the dispersing machine 1, it is desirable to add, for example, a powder, a dispersing agent and the like, and to pre-mix the raw material slurry using a stirrer, a homogenizer and the like. The applicable viscosity of the slurry is in a wide range of 10 to 40,000 mPa · s, and it is particularly suitable for the treatment of a highly viscous slurry of 500 mPa · s or more which can not be handled by the conventional apparatus.
 本実施形態の分散機は、以下のような条件で運転を行うのが望ましい。
 回転子25の外周の周速を10~80m/秒とする。スラリー中の粒子のせん断流発生隙間28内でのシェア率を上げて、せん断力により、スラリー中の二次粒子を分解して、独立した一次粒子が分散した状態にする。シェア率を回転子25の外周の周速をv、せん断流発生隙間28の径方向の幅をtとしたとき、S=v/tで表記する。本発明の装置においては、更に狭い範囲が適正である。本発明の装置で適正な範囲は8,000~70,000(1/s)である。シェア率Sが8,000以下では、平均粒径1マイクロメートル以下の分散ができない。一方、高シェア率であると、スラリー温度が上昇する問題がある。本発明の装置での冷却能力においては、シェア率Sが70,000(1/s)以上では、熱発生が過大となり、冷却能力不足となるため、最大値をこの値とすることが良い。
It is desirable that the dispersing machine of this embodiment operate under the following conditions.
The peripheral speed of the outer periphery of the rotor 25 is 10 to 80 m / sec. The shear fraction in the shear flow generation gap 28 of the particles in the slurry is increased, and the secondary particles in the slurry are decomposed by the shear force to disperse the independent primary particles. The shear ratio is represented by S = v / t, where v is the circumferential speed of the outer periphery of the rotor 25 and t is the radial width of the shear flow generation gap 28. In the device of the invention, a narrower range is appropriate. The proper range in the device of the present invention is 8,000 to 70,000 (1 / s). When the share ratio S is 8,000 or less, dispersion with an average particle size of 1 micrometer or less can not be performed. On the other hand, when it is high shear rate, there is a problem that slurry temperature rises. In the cooling capacity of the apparatus of the present invention, when the shear ratio S is 70,000 (1 / s) or more, the heat generation becomes excessive and the cooling capacity is insufficient. Therefore, it is preferable to set the maximum value to this value.
 本発明の装置は、スラリー中の粒子の分散以外に、流体混合と乳化処理にも活用できる。従来装置では、40,000mPa・s以上の高粘性流体であっても処理できることから、連続処理が困難であった高粘性の流体2種類以上の混合が行える。2種類以上の流体を予備混合して、スラリーポンプで、本発明の装置に供給する。これをシェア率Sが8,000(1/s)以上で処理すると、極めて均一性の高い混合物ができる。例えば、食品のペーストの混合、高粘性電極材ペーストなどの混合に用いることができる。また、水と油類(植物性、動物性、鉱物性)を界面活性剤と混合して、シェア率Sが15,000(1/s)以上で処理すると、10マイクロメーター程度以下の油エマルジョンからなる乳化物を製造することが可能である。また、本装置では、最大値として、シェア率が70,000(1/s)であれば、1μm程度の粒子ができるため、一般的な処理には、このシェア率以下で処理することで、動力ロスを最低限にでき経済的である。以下には本実施形態の第2の実施例を例示する。 The apparatus of the present invention can be used for fluid mixing and emulsification as well as dispersion of particles in a slurry. In the conventional apparatus, even a highly viscous fluid having a viscosity of 40,000 mPa · s or more can be processed, and therefore, it is possible to mix two or more kinds of highly viscous fluids, for which continuous processing was difficult. The two or more fluids are premixed and supplied to the apparatus of the present invention by a slurry pump. If this is processed at a share ratio S of 8,000 (1 / s) or more, a mixture with extremely high uniformity is formed. For example, it can be used to mix food pastes, high viscosity electrode material pastes, and the like. In addition, when water and oils (vegetal, animal, mineral) are mixed with a surfactant and treated with a shear ratio S of 15,000 (1 / s) or more, an oil emulsion of about 10 micrometers or less It is possible to produce an emulsion consisting of In addition, in the present apparatus, as the maximum value, if the share ratio is 70,000 (1 / s), particles of about 1 μm can be formed, and for general processing, processing is performed with this share ratio or less. It is economical because it can minimize power loss. The second example of the present embodiment will be illustrated below.
第2の実施例Second embodiment
 本実施例で用いた分散機の装置仕様と運転状況を以下に示す。分散機は図7に示す構造のもので、主な仕様は以下の表2に示すように、回転子5の直径(D)が93mmで、長さ(L)が90mmと25mmである。せん断流発生隙間28の幅tは0.8~4mmであり、実施例では1mmと2mmで処理した。回転子25の周速は10~50m/秒の条件で運転できる装置である。装置の円筒容器のうち、円筒体22、上蓋23、下蓋24を冷却している。冷却部の構造は表2に示すとおりである。本装置を用いて、表3に記載する原料スラリーを分散処理した結果を表4に示す。なお、分散機を起動した後、所定の時間ごとに分散機の排出口からサンプルを採取した。処理後のスラリー中の粒子径の測定には、株式会社堀場製作所製のレーザー回折・散乱式粒度測定器LA-950を使用した。 The device specifications and operating conditions of the dispersing machine used in this example are shown below. The dispersing machine has the structure shown in FIG. 7, and the main specifications are as shown in Table 2 below, the diameter (D) of the rotor 5 is 93 mm, and the length (L) is 90 mm and 25 mm. The width t of the shear flow generation gap 28 is 0.8 to 4 mm, and in the example, it was processed at 1 mm and 2 mm. The circumferential speed of the rotor 25 is a device capable of operating under the condition of 10 to 50 m / sec. Among the cylindrical containers of the apparatus, the cylindrical body 22, the upper lid 23, and the lower lid 24 are cooled. The structure of the cooling unit is as shown in Table 2. The results of dispersing the raw material slurry described in Table 3 using this apparatus are shown in Table 4. The sample was taken from the outlet of the disperser at predetermined time intervals after the disperser was started. A laser diffraction / scattering particle size analyzer LA-950 manufactured by Horiba, Ltd. was used to measure the particle diameter in the slurry after treatment.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 分散を評価するための指標として、平均粒子径(D50:50%質量の粒子がこの値以下の粒子径を示す数値)と1μm以上粒子比率を用いる。比較例4では、円筒体22にも、回転子25にも、凹凸がない装置での処理例である。他の処理条件は本発明の範囲内であるが、このように凹凸がない場合は、平均粒子径が2.96μmまでしか低下しておらず、1μm以上粒子比率も72%と高位であった。比較例5は、回転子25にのみ凹凸を付けた処理の例である。このように、片方のみに凹凸を付けただけでは、平均粒子径が2.18μmかつ1μm以上粒子比率も69%と不十分な結果であった。 As an index for evaluating dispersion, an average particle diameter (D50: a numerical value indicating that a 50% by mass particle has a particle diameter equal to or less than this value) and a particle ratio of 1 μm or more are used. The comparative example 4 is an example of processing in a device having neither unevenness in the cylindrical body 22 nor in the rotor 25. Other treatment conditions are within the range of the present invention, but when there is no unevenness like this, the average particle diameter is only reduced to 2.96 μm, and the particle ratio of 1 μm or more is as high as 72%. . The comparative example 5 is an example of the process which gave unevenness only to the rotor 25. Thus, the average particle diameter of 2.18 μm and the particle ratio of not less than 1 μm were 69%, which is insufficient if only one side was uneven.
 一方、回転子25と円筒体22の両方に凹凸を付けた処理例である、実施例11から実施例15では、平均粒子径が0.15~0.22μmと分散が強化されており、1μm以上粒子比率も21~41%と良好であった。また、スラリー温度上昇も30℃以内の抑えられており、スラリー冷却の面でも良好な成績であった。また、冷却面積比率の高い装置22の方がスラリー温度上昇は小さかった。 On the other hand, in Example 11 to Example 15, which is a processing example in which both the rotor 25 and the cylindrical body 22 are provided with irregularities, the dispersion is strengthened such that the average particle diameter is 0.15 to 0.22 μm, and 1 μm. The particle ratio was also good at 21 to 41%. In addition, the temperature rise of the slurry was also suppressed within 30 ° C., and the result was also good in terms of slurry cooling. In addition, the device 22 with a higher cooling area ratio had a smaller rise in slurry temperature.
 また、高粘性スラリーでの処理の可能性を確認する実験を行った。以下の表5の実機1-3を使用して、カルボキシメチルセルロースを処理した。回転子25の周速を20m/秒として処理したところ、表5に示すように、スラリー粘度が上昇するに従いモータ動力が増加したが、37,000mPa・sのスラリーまで混合処理できた。このように、本発明の装置を用いれば、高粘性の流体であっても、分散や混合処理が可能である。 In addition, experiments were conducted to confirm the possibility of processing with a high viscosity slurry. Carboxymethylcellulose was treated using real equipment 1-3 in Table 5 below. When the peripheral speed of the rotor 25 was processed at 20 m / sec, as shown in Table 5, the motor power increased as the slurry viscosity increased, but the mixing process could be performed up to 37,000 mPa · s slurry. As described above, even with a highly viscous fluid, dispersion and mixing processing can be performed by using the device of the present invention.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2に示す実機1-3で、分散処理の実施例14の凹凸構造のものを用いて、水と油の乳化処理を行った。油として、ヤシ油を用いて、水:油比率を6:2として界面活性剤を添加した原料液体を処理した。装置21のせん断流発生間隔28の幅を1mmとし、回転子25の周速を10~30m/秒として処理を行った結果、表6に示すように、油エマルジョンの平均径は、回転子25の周速が10m/秒で16μm、15m/秒で8.2μm、20m/秒で5.3μm、30m/秒で3.9μmであり、いずれも油は懸濁していた。これらのエマルジョンを2日間放置した結果、15m/秒以上での処理では、油分離が起きなかった。このように、装置21にて15m/秒以上の周速で処理することで、乳化を連続して実施できた。なお、15m/秒の周速でのシェア率は15,000(1/ s)であった。 Water and oil were subjected to emulsification treatment using a machine having the concavo-convex structure of the dispersion treatment example 14 in a real machine 1-3 shown in Table 2. As a oil, coconut oil was used to process a raw material liquid to which a surfactant was added at a water: oil ratio of 6: 2. As a result of processing by setting the width of the shear flow generation interval 28 of the device 21 to 1 mm and setting the peripheral speed of the rotor 25 to 10 to 30 m / sec, as shown in Table 6, the average diameter of the oil emulsion is the rotor 25 The circumferential speed was 16 μm at 10 m / s, 8.2 μm at 15 m / s, 5.3 μm at 20 m / s, and 3.9 μm at 30 m / s, and the oil was suspended. As a result of leaving these emulsions to stand for 2 days, oil separation did not occur by treatment at 15 m / sec or more. Thus, emulsification was able to be implemented continuously by processing with the circumferential speed of 15 m / sec or more with the apparatus 21. The share ratio at a circumferential velocity of 15 m / s was 15,000 (1 / s).
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 本発明の分散機およびスラリー中粒子の分散方法は、微細な粒子を含むスラリーに適用される。スラリーは、炭素粉、セラミック粉、有機物粉などであり、例えばセラミック顔料、インキ、塗料、誘電体原料、磁性体原料、医薬品向け材料、食品向け材料、微細金属粉原料の粒子の分散と粉砕に適している。 The disperser of the present invention and the method of dispersing particles in a slurry are applied to a slurry containing fine particles. The slurry is carbon powder, ceramic powder, organic powder, etc. For example, for dispersion and pulverization of particles of ceramic pigment, ink, paint, dielectric material, magnetic material, pharmaceutical material, food material, fine metal powder material Is suitable.
1、21・・分散機
2、22・・円筒体
3、23・・上蓋
4、24・・下蓋
5・・冷却水路
6・・シャフト
7・・中空シャフト
8、25・・回転子
9・・仕切板
10・・上部円板
11・・下部円板
12・・貫通孔
13、14・・スラリー供給口
26・・回転軸
26a・・回転軸止め具
27・・スラリー入口
28・・せん断流発生隙間
29・・スラリー出口
30・・冷却水路
31・・凹溝
32・・凸条
33・・ディンプル
1, 21 · · Dispersing machine 2 · 22 · · Cylindrical body 3, 23 · · Upper cover 4 · · · Lower cover 5 · · Cooling channel 6 · · Shaft 7 · · Hollow shaft 8 · 25 · · Rotor 9 · · · · Partition plate 10 · · Upper disk 11 · · · Lower disk 12 · · Through hole 13 · · · Slurry supply port 26 · · Rotating shaft 26a · · Rotating shaft stop 27 · · Slurry inlet 28 · · Shear flow Occurrence gap 29 · · · Slurry outlet 30 · · · cooling channel 31 · · concave groove 32 · · convex streak 33 · · · dimple

Claims (17)

  1.  円筒容器の内部に、該円筒容器と同軸に設置された回転軸に固定された回転子が配置され、前記円筒容器と回転子との間に形成される隙間にせん断力を発生させて、スラリーを処理することを特徴とする分散機。 A rotor fixed to a rotary shaft coaxially installed with the cylindrical container is disposed inside the cylindrical container, and a shear force is generated in a gap formed between the cylindrical container and the rotor to produce a slurry. Dispersing machine characterized by processing.
  2.  前記円筒容器内に、該円筒容器と同軸心上に配置されて回転するスラリー排出用中空部を備えた中空シャフト7と、該中空シャフト7と同軸のシャフト6と、該シャフト6に固定される回転子8が配置され、該回転子は放射状、或いは偏心して円周方向に適当間隔で多数配置される仕切板9を含んで円筒容器内にて回転するとともに、当該円筒容器に設けられるスラリー供給口13から供給されたスラリーが仕切り板9間を経由して、中空シャフト7の中空部から装置外に排出されるスラリー経路を形成している分散機であって、仕切板9の外周端が接する円の直径Dと回転子8の軸方向長さLの比であるL/Dが0.3~3.2であることを特徴とする請求項1記載の分散機。 The hollow shaft 7 is provided with a hollow space for discharging the slurry, which is disposed coaxially with the cylindrical container and rotates in the cylindrical container, the shaft 6 coaxial with the hollow shaft 7, and fixed to the shaft 6 A rotor 8 is disposed, and the rotor includes a plurality of partitions 9 radially or eccentrically arranged at appropriate intervals in a circumferential direction, and rotates in a cylindrical container, and a slurry supply provided to the cylindrical container It is a dispersing machine which forms a slurry path through which the slurry supplied from the port 13 is discharged from the hollow portion of the hollow shaft 7 to the outside of the apparatus through the space between the partition plates 9, and the outer peripheral end of the partition plate 9 is The disperser according to claim 1, wherein L / D which is a ratio of the diameter D of the contacting circle to the axial length L of the rotor 8 is 0.3 to 3.2.
  3.  前記スラリー供給口は、前記円筒容器の一側に設けられる第1のスラリー供給口13及び前記円筒容器の他側に設けられる第2のスラリー供給口14の両スラリー供給口からなることを特徴とする請求項2記載の分散機。 The slurry supply port includes a first slurry supply port 13 provided on one side of the cylindrical container and both slurry supply ports of a second slurry supply port 14 provided on the other side of the cylindrical container. The disperser according to claim 2.
  4.  仕切板9の内周端が位置する円周の径が、仕切板9の外周端が位置する円周の径の50~85%であることを特徴とする請求項2又は3に記載の分散機。 The dispersion according to claim 2 or 3, wherein the diameter of the circumference where the inner peripheral end of the partition plate 9 is located is 50 to 85% of the diameter of the circumference where the outer peripheral end of the partition plate 9 is located. Machine.
  5.  内周端と外周端での仕切板9のギャップ間隔の比率(G/G)が1.2<G/G<3であることを特徴とする請求項2から4のいずれかに記載の分散機。 Either the ratio of the gap spacing of the partition plate 9 at the inner peripheral end and outer peripheral end (G 2 / G 1) is 1.2 <a G 2 / G 1 <claims 2 to 4, characterized in that the 3 Disperser as described in.
  6.  仕切板9が円筒容器の中心から当該円筒容器の側面に向けた直径方向の線に対する角度が回転方向に向いて5~30度であることを特徴とする請求項2から5のいずれかに記載の分散機。 The angle between the partition plate 9 and the diametrical line from the center of the cylindrical container to the side surface of the cylindrical container is 5 to 30 degrees in the rotational direction, as described in any one of claims 2 to 5. Disperser.
  7.  微細な粒子を含むスラリーを請求項2から5のいずれかに記載の分散機にて、回転子8を構成する仕切板9の外周端での遠心力が8,000 m/s2以下で処理することを特徴とするスラリー中微粒子の処理方法。 The slurry containing fine particles is treated by the dispersion machine according to any one of claims 2 to 5 in which the centrifugal force at the outer peripheral end of the partition plate 9 constituting the rotor 8 is 8,000 m / s 2 or less A method of treating fine particles in a slurry, comprising:
  8.  微細な粒子を含むスラリーを請求項2から5のいずれかに記載の分散機を用い、回転子8を構成する仕切板9の外周端と円筒体2の間隔において、仕切板9の外周端での周速と当該間隔により計算されるシェア率が1000~8000 1/sで処理することを特徴とするスラリー中微粒子の処理方法。 The slurry containing fine particles is used at the outer peripheral end of the partition plate 9 at the interval between the outer peripheral end of the partition plate 9 constituting the rotor 8 and the cylindrical body 2 using the disperser according to any one of claims 2 to 5 A method of treating fine particles in a slurry, wherein the processing is carried out at a shear rate of 1000 to 8000 1 / s, which is calculated based on the circumferential speed of the roller and the interval.
  9.  円筒体22、上蓋23及び下蓋24からなる円筒容器内に当該円筒容器と同軸をなして外周面を凹凸に形成した回転子25が設置されており、円筒体22の内面と回転子25の外周面との間に形成されるせん断流発生隙間28がスラリー通路を形成し、当該円筒容器の一端側に設けられる原料スラリー入口27及び当該円筒容器の他端側に設けられる製品スラリー出口29と、当該円筒容器と回転子25のいずれか一方を回転駆動する駆動装置からなる分散機において、円筒体22を液体で冷却するとともに、円筒体22の内周面及び回転子25の外周面に凹凸を形成し、当該凹凸の凹部の深さを1mm又はせん断流発生隙間8の0.5倍のいずれか小さいものよりも深くし、かつせん断流発生隙間28を0.6~4mmとすることを特徴とする請求項1記載の分散機。 A rotor 25 coaxial with the cylindrical container and having an outer peripheral surface formed in a concavo-convex shape is installed in a cylindrical container consisting of the cylindrical body 22, the upper lid 23 and the lower lid 24. A shear flow generation gap 28 formed with the outer peripheral surface forms a slurry passage, and a raw material slurry inlet 27 provided on one end side of the cylindrical container and a product slurry outlet 29 provided on the other end side of the cylindrical container In a dispersing machine including a driving device that rotationally drives one of the cylindrical container and the rotor 25, the cylindrical body 22 is cooled with a liquid, and the inner circumferential surface of the cylindrical body 22 and the outer circumferential surface of the rotor 25 are uneven. To make the depth of the concave portion of the unevenness 1 mm or 0.5 times smaller than the shear flow generation gap 8, which is smaller, and to set the shear flow generation gap 28 to 0.6 to 4 mm. Feature Disperser according to claim 1.
  10.  円筒体22及び回転子25には凹凸溝から構成されており、当該凹凸溝が回転子25の軸心に対する傾斜角が10度以内の直線の凹凸溝、または屈折した凹凸溝であり、更に当該凹部の幅がせん断流発生隙間28の0.8~6倍であることを特徴とする請求項9記載の分散機。 The cylindrical body 22 and the rotor 25 are composed of concavo-convex grooves, and the concavo-convex grooves are straight concavo-convex grooves having an inclination angle of 10 degrees or less with respect to the axial center of the rotor 25 or refracted concavo-convex grooves. 10. The disperser according to claim 9, wherein the width of the recess is 0.8 to 6 times the shear flow generation gap.
  11.  円筒容器及び回転子25に形成される凹凸は非連続で互いに独立して形成される凹部から構成されており、かつ当該凹部の幅がせん断流発生隙間28の0.8~6倍であることを特徴とする請求項9記載の分散機。 The unevenness formed on the cylindrical container and the rotor 25 is discontinuous and formed of recesses formed independently of each other, and the width of the recesses is 0.8 to 6 times the shear flow generation gap 28 The disperser according to claim 9, characterized in that
  12.  円筒体22及び回転子25の一方には凹凸溝から構成されており、当該凹凸溝が回転子25の軸心に対する傾斜角が10度以内の直線の凹凸溝、または屈折した凹凸溝であり、かつ円筒容器及び回転子25の他方に形成される凹凸は非連続で互いに独立して形成される凹部から構成されており、更に当該凹部の幅がせん断流発生隙間28の0.8~6倍であることを特徴とする請求項9記載の分散機。 One of the cylindrical body 22 and the rotor 25 is composed of a concavo-convex groove, and the concavo-convex groove is a linear concavo-convex groove having an inclination angle of 10 degrees or less with respect to the axial center of the rotor 25 or a concavo-convex groove refracted. And the concavities and convexities formed on the other of the cylindrical container and the rotor 25 are discontinuous and are constituted of concave parts formed independently of each other, and the width of the concave parts is 0.8 to 6 times the shear flow generation gap 28 The disperser according to claim 9, characterized in that:
  13.  円筒体22に設置されている冷却水路30と円筒体22内面間の構造物において、熱伝導率(λ)と厚み(T)の関係がT/λ<0.0005 K/Wであることを特徴とする請求項9から12のいずれかに記載の分散機。 In the structure between the cooling water passage 30 installed in the cylindrical body 22 and the inner surface of the cylindrical body 22, the relationship between the thermal conductivity (λ) and the thickness (T) is T / λ <0.0005 K / W The disperser according to any one of claims 9 to 12, characterized in that:
  14.  円筒体22の全内面面積のうち、液体により冷却されている面積が、円筒体22の内面が回転子25に面する部分の面積の100%以上であり、かつ上蓋23が液体により冷却されることを特徴とする請求項13の分散機。 Of the total inner surface area of the cylindrical body 22, the area cooled by the liquid is 100% or more of the area of the portion where the inner surface of the cylindrical body 22 faces the rotor 25, and the upper lid 23 is cooled by the liquid The disperser according to claim 13, characterized in that.
  15.  回転子25の直径Dと回転子25の高さLの関係がL/D<1.2であることを特徴とする請求項14の分散機。 The disperser according to claim 14, wherein the relationship between the diameter D of the rotor 25 and the height L of the rotor 25 is L / D <1.2.
  16.  平均粒子径が1マイクロメーター以下の粒子を分散して形成されるスラリーを請求項7から12のいずれかに記載される分散機を用いて、回転子25の外周周速(v)、円筒体22と回転子25の間隔であるせん断流発生隙間の径方向の幅(t)から、式s=v/tにて表されるシェア率sが8,000~70,000(1/s)の範囲で処理することを特徴とするスラリー中粒子の分散処理方法である請求項9から15のいずれかに記載の分散機。 An outer peripheral circumferential velocity (v) of a rotor 25 and a cylindrical body using a disperser according to any one of claims 7 to 12, wherein a slurry formed by dispersing particles having an average particle diameter of 1 micrometer or less is used. The shear ratio s represented by the equation s = v / t is 8,000 to 70,000 (1 / s) from the radial width (t) of the shear flow generation gap which is the distance between the rotor 22 and the rotor 25. The disperser according to any one of claims 9 to 15, which is a method of dispersing and treating particles in a slurry, which is treated in the range of
  17.  互いに溶解しない2種類以上の液体を請求項9から16のいずれかに記載の分散機を用い、シェア率を15,000(1/s)以上で処理することを特徴とするエマルジョン製造方法。 The emulsion manufacturing method characterized by processing a shear ratio with 15,000 (1 / s) or more using 2 or more types of liquids which do not melt | dissolve mutually using the dispersing machine in any one of Claims 9-16.
PCT/JP2017/028078 2017-08-02 2017-08-02 Dispersing machine, method for dispersing particles in slurry and emulsion production method WO2019026208A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197004491A KR102455946B1 (en) 2017-08-02 2017-08-02 Dispersing Machine, Dispersing Method of Particles in Slurry, and Emulsion Manufacturing Method
CN201780050123.8A CN109600995A (en) 2017-08-02 2017-08-02 The dispersing method and emulsion making process of particle in dispersion machine and slurry
PCT/JP2017/028078 WO2019026208A1 (en) 2017-08-02 2017-08-02 Dispersing machine, method for dispersing particles in slurry and emulsion production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/028078 WO2019026208A1 (en) 2017-08-02 2017-08-02 Dispersing machine, method for dispersing particles in slurry and emulsion production method

Publications (1)

Publication Number Publication Date
WO2019026208A1 true WO2019026208A1 (en) 2019-02-07

Family

ID=65232446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028078 WO2019026208A1 (en) 2017-08-02 2017-08-02 Dispersing machine, method for dispersing particles in slurry and emulsion production method

Country Status (3)

Country Link
KR (1) KR102455946B1 (en)
CN (1) CN109600995A (en)
WO (1) WO2019026208A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114405310A (en) * 2022-01-28 2022-04-29 罗斯(无锡)设备有限公司 Small dispersion impeller arrangement structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111249941B (en) * 2020-02-10 2021-09-14 深圳市尚水智能设备有限公司 Impeller assembly for dispersing solid in liquid and solid-liquid mixing equipment using same
CN115607501B (en) * 2022-09-22 2023-06-16 广东科盈科技有限公司 Lactic acid bacteria repairing essence emulsion, emulsifying device and preparation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3203625U (en) * 2016-01-28 2016-04-07 寿工業株式会社 Stirring mill
JP3203579U (en) * 2016-01-26 2016-04-07 寿工業株式会社 Disperser
JP3209743U (en) * 2017-01-24 2017-04-06 株式会社広島メタル&マシナリー Stirring mill
JP2017131807A (en) * 2016-01-26 2017-08-03 株式会社広島メタル&マシナリー Disperser, dispersion treatment method, and emulsion manufacturing method
JP2017136586A (en) * 2016-01-28 2017-08-10 株式会社広島メタル&マシナリー Agitation mill and dispersion method for slurry medium particle

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA897514B (en) * 1988-10-07 1990-06-27 Merrell Dow Pharma Novel peptidase inhibitors
JP3203625B2 (en) * 1992-08-06 2001-08-27 オンキヨー株式会社 Auto preset device
US5882246A (en) 1995-06-06 1999-03-16 Kotobuki Eng. & Mfg. Co., Ltd. Wet agitating ball mill and method
US6325532B1 (en) * 1995-12-05 2001-12-04 Site-B Company Method for mixing viscous fluids
JP4048020B2 (en) 2000-11-13 2008-02-13 寿工業株式会社 Wet stirring ball mill
JP2003144950A (en) 2001-11-09 2003-05-20 Mitsui Mining Co Ltd Pulverizer
JP4918226B2 (en) * 2005-03-03 2012-04-18 日本コークス工業株式会社 Media agitation type wet crusher
KR20090018607A (en) * 2006-06-05 2009-02-20 가부시키가이샤 무라타 세이사쿠쇼 Media disperser
JP2008238005A (en) 2007-03-26 2008-10-09 Nagoya Institute Of Technology Dispersing apparatus for liquid raw material
JP4991372B2 (en) 2007-04-06 2012-08-01 アシザワ・ファインテック株式会社 Media stirring mill
JP5652779B2 (en) * 2010-06-07 2015-01-14 日本ニューマチック工業株式会社 Fine particle production equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3203579U (en) * 2016-01-26 2016-04-07 寿工業株式会社 Disperser
JP2017131807A (en) * 2016-01-26 2017-08-03 株式会社広島メタル&マシナリー Disperser, dispersion treatment method, and emulsion manufacturing method
JP3203625U (en) * 2016-01-28 2016-04-07 寿工業株式会社 Stirring mill
JP2017136586A (en) * 2016-01-28 2017-08-10 株式会社広島メタル&マシナリー Agitation mill and dispersion method for slurry medium particle
JP3209743U (en) * 2017-01-24 2017-04-06 株式会社広島メタル&マシナリー Stirring mill

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114405310A (en) * 2022-01-28 2022-04-29 罗斯(无锡)设备有限公司 Small dispersion impeller arrangement structure

Also Published As

Publication number Publication date
CN109600995A (en) 2019-04-09
KR20200034654A (en) 2020-03-31
KR102455946B1 (en) 2022-10-20

Similar Documents

Publication Publication Date Title
JP6423988B2 (en) Stirring mill and dispersion method of particles in slurry
JP2017131807A (en) Disperser, dispersion treatment method, and emulsion manufacturing method
WO2019026208A1 (en) Dispersing machine, method for dispersing particles in slurry and emulsion production method
EP2307145B1 (en) Bead mill with separator
KR102501892B1 (en) Agitator ball mill
KR101310130B1 (en) Grinding and dispersing apparatus for processing of minute particle of materials
JP4918226B2 (en) Media agitation type wet crusher
EP2873453A1 (en) Stirrer
TWI519341B (en) Dispersed grinder
KR101743381B1 (en) Medium stirring type pulverizer
JP4886993B2 (en) Media stirring type wet disperser
JP5046557B2 (en) Media stirring type wet disperser and fine particle dispersion method
JP2013039508A (en) Medium stirring type crusher
JP2006255519A (en) Medium circulation type crusher
JP3203625U (en) Stirring mill
TWI755413B (en) Dispersing machine and method for dispersing particles in slurry and method for producing emulsification
JP2008055288A (en) Media agitation type wet dispersion machine and dispersion process of fine particle
KR20060096276A (en) Media-agitating wet pulverizer
JP4489256B2 (en) Crusher
JP3209743U (en) Stirring mill
JP3830194B2 (en) Stirring disk and media stirring mill
US5004165A (en) Dispersion apparatus
JP7429039B2 (en) wet bead mill
JP4373179B2 (en) Crusher
JPWO2020066046A1 (en) Classification rotor and classification device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP