Nothing Special   »   [go: up one dir, main page]

WO2019004620A1 - Bonding head and bonding device including same - Google Patents

Bonding head and bonding device including same Download PDF

Info

Publication number
WO2019004620A1
WO2019004620A1 PCT/KR2018/006275 KR2018006275W WO2019004620A1 WO 2019004620 A1 WO2019004620 A1 WO 2019004620A1 KR 2018006275 W KR2018006275 W KR 2018006275W WO 2019004620 A1 WO2019004620 A1 WO 2019004620A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
plate
heating
vacuum
chip
Prior art date
Application number
PCT/KR2018/006275
Other languages
French (fr)
Korean (ko)
Inventor
남성용
김민기
정인영
Original Assignee
주식회사 미코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 미코 filed Critical 주식회사 미코
Publication of WO2019004620A1 publication Critical patent/WO2019004620A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68721Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge clamping, e.g. clamping ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/742Apparatus for manufacturing bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors

Definitions

  • the present invention relates to a bonding head and a bonding apparatus having the bonding head, and more particularly, to a bonding head for bonding a chip onto a wafer and a bonding apparatus having the bonding head.
  • the stacked chip package is a semiconductor package in which chips are stacked on a package substrate, and can achieve high integration.
  • the stacked chip package is manufactured at a chip level or a wafer level.
  • bonding and bonding are performed by applying heat and pressure to chips, chips, wafers, wafers or chips and wafers.
  • the bonding apparatus is referred to as a bonding apparatus.
  • the bonding apparatus stacks chips on a wafer and thermally compresses the wafer and the chips with a bonding head.
  • the bonding head merely performs bonding work of bonding the stacked wafers and chips, a separate chip transfer means for stacking the chips on the wafer is required. Therefore, the structure of the bonding apparatus can be complicated.
  • the present invention provides a bonding head capable of bonding a chip and a wafer after the chip is transferred and stacked on a wafer.
  • the present invention provides a bonding apparatus having the bonding head.
  • a bonding head comprises a base block and a heating element provided on the base block for generating heat by a power source applied from the outside to heat the bumps of the chip,
  • a heating block having a first vacuum line and a second vacuum line extending to the first vacuum line and extending from the first vacuum line to the second vacuum line, And a cooling line extending to an upper surface of the base block inside the base block and providing a cooling fluid to the heating block to cool the bumps of the chip to form a solder,
  • the heating block is also provided with a cooling fluid of the cooling line as the adsorption plate to further cool the bumper of the chip And may have openings that partially expose the cooling lines.
  • the opening may expose 30% to 70% of the area of the cooling line.
  • the opening may be a groove extending from the inside to the side of the heating block.
  • the opening may be a through hole passing through the upper and lower portions of the heating block.
  • the bonding head is formed to be connected to the through hole at least one of the upper surface of the heating block and the lower surface of the attracting plate, and the cooling fluid supplied through the cooling line And a connection groove for discharging the heat to the outside through the space between the heating block and the adsorption plate.
  • the adsorption plate may be replaceable in accordance with damage of the adsorption plate or change of the chip size.
  • the base block includes a first block made of a metal material and a second block disposed on the first block, And a second block made of a ceramic material having lower thermal conductivity than the heating block.
  • the base block is provided between the first block and the second block, and is formed of a ceramic material to reduce the transfer of heat of the second block to the first block. And a third block that is formed by the second block.
  • the bonding head may further include a temperature sensor provided inside the heating block and sensing a temperature of the heating block.
  • a bonding apparatus includes: a chuck structure and a base block for supporting a wafer; a heating element provided on the base block for generating heat by an external power source to heat the bumps of the chip; A heating block having a first vacuum line and a second vacuum line extending to the top surface to provide a force to the heating block, and a second vacuum line fixed to the heating block by the vacuum force of the first vacuum line, A suction plate having a vacuum hole connected to the second vacuum line, and an upper surface extending to the upper surface of the base block in the base block, wherein the cooling block is provided with the heating block to cool the bumps of the chip to form a solder
  • the adsorption plate is arranged to be movable above the chuck structure so as to face downward, Wherein the heating block has an opening that partially exposes the cooling line so that the cooling fluid of the cooling line is also provided to the adsorption plate to further cool the bumper of the chip .
  • the chuck structure includes a heating element that generates heat by a power source applied from the outside, a third vacuum line extending to the upper surface to provide a vacuum force, A heating plate having a line and a heating plate disposed on the heating plate for supporting a wafer on an upper surface thereof and transferring heat generated in the heating plate to the wafer to heat the wafer, A fifth vacuum line connected to the third vacuum line, and a vacuum groove connected to the fourth vacuum line on the lower surface so as to be vacuum-absorbed on the heating plate, the vacuum groove defined by the upper surface of the heating plate, And a chuck plate having a base plate.
  • the upper surface of the heating plate and the lower surface of the chuck plate are provided with alignment pins, and the other surface is provided with the alignment pins, And a receiving groove for aligning the plate and the chuck plate may be provided.
  • the chuck structure includes a guide ring which is hooked on a groove formed along a top edge of the heating plate and guides the periphery of the heating plate, and a guide ring which covers the top edge of the chuck plate, And a clamp fixed to the guide ring for fixing the chuck plate to the heating plate.
  • the clamp may be placed in a groove formed along the top edge of the chuck plate such that the top surface of the clamp and the top surface of the chuck plate are at the same height.
  • the guide ring and the clamp may be made of a material having a lower thermal conductivity than the heating plate and the chuck plate .
  • the bonding head according to the present invention fixes the attracting plate using a vacuum force, so that the attracting plate can be easily replaced by providing or releasing the vacuum force. Therefore, when the adsorption plate is damaged or the size of a chip fixed to the adsorption plate is changed, the adsorption plate can be replaced by replacing only the adsorption plate without replacing the entire bonding head.
  • the bonding head heats the chip with the chip closely attached to the wafer to melt the bump, and then re-bonds the chip to the wafer.
  • the bonding head may be provided with a cooling fluid of the cooling line directly through the opening to the adsorption plate, by forming an opening in the heating block which partially exposes the cooling line extending to the upper surface of the base block. Therefore, the bumper of the chip can be cooled more quickly. Since the bonding head rapidly heats and cools the chip, it is possible to form solder of good quality and good shape between the wafer and the chip. Therefore, the wafer and the chip can be stably bonded.
  • the bonding head can quickly perform the heating and cooling of the chip, the efficiency of the process of bonding the chip to the wafer can be improved.
  • the chuck structure of the bonding apparatus according to the present invention can be firmly fixed on the heating plate by the vacuum force. Therefore, warping and bending of the chuck plate can be minimized, and a separate fastening member for fastening the heating plate and the chuck plate is unnecessary.
  • the chuck structure can release the vacuum force to separate and replace the heating plate and the chuck plate. Therefore, maintenance of the chuck structure can be performed quickly.
  • FIG. 1 is a cross-sectional view illustrating a bonding head according to an embodiment of the present invention.
  • Fig. 2 is a plan view for explaining the opening of the heating block in the bonding head shown in Fig. 1.
  • Fig. 2 is a plan view for explaining the opening of the heating block in the bonding head shown in Fig. 1.
  • FIG 3 is a cross-sectional view illustrating an opening of a heating block according to another embodiment of the present invention.
  • FIG. 4 is a plan view for explaining the opening of the heating block shown in Fig.
  • FIG. 5 is a cross-sectional view illustrating an opening of a heating block according to another embodiment of the present invention.
  • FIG. 6 is a schematic diagram illustrating a bonding apparatus according to an embodiment of the present invention.
  • FIG. 7 is a plan view for explaining the chuck structure shown in FIG.
  • FIG. 8 is a bottom view for explaining the chuck plate shown in Fig.
  • Fig. 9 is an enlarged cross-sectional view of the portion A shown in Fig. 6 enlarged.
  • a bonding head comprises a base block and a heating element provided on the base block for generating heat by a power source applied from the outside to heat the bumps of the chip,
  • a heating block having a first vacuum line and a second vacuum line extending to the first vacuum line and extending from the first vacuum line to the second vacuum line, And a cooling line extending to an upper surface of the base block inside the base block and providing a cooling fluid to the heating block to cool the bumps of the chip to form a solder,
  • the heating block is also provided with a cooling fluid of the cooling line as the adsorption plate to further cool the bumper of the chip And may have openings that partially expose the cooling lines.
  • first, second, etc. may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • first component may be referred to as a second component, and similarly, the second component may also be referred to as a first component.
  • FIG. 1 is a cross-sectional view illustrating a bonding head according to an embodiment of the present invention
  • FIG. 2 is a plan view illustrating an opening of a heating block in the bonding head shown in FIG.
  • the bonding head 100 is for transferring the chip 10 to a wafer (not shown) and bonding the chip 10 to the wafer.
  • the bonding head 100 may be provided so as to be able to horizontally move, vertically move, rotate, reverse, etc. in order to transport the chip 10.
  • the base block 110 includes a first block 112 and a second block 114.
  • the first block 112 is made of a metal material.
  • An example of the metal material may be a stainless steel material.
  • the second block 114 is provided on the first block 112.
  • the second block 114 may be made of a ceramic material having lower thermal conductivity than the heating block 120.
  • An example of the ceramic material is aluminum oxide (Al2O3).
  • the thermal conductivity of the second block 114 is lower than the thermal conductivity of the heating block 120 so that the second block 114 reduces the transfer of heat generated in the heating block 120 to the first block 112 .
  • the base block 110 further includes a third block 116.
  • a third block 116 is provided between the first block 112 and the second block 114.
  • the third block 116 acts as a buffer block to reduce the transfer of the column of the second block 114 to the first block 112.
  • the third block 116 may be made of a ceramic material, and examples of the ceramic material include aluminum oxide.
  • the heating block 120 is provided on the base block 110, specifically on the second block 114.
  • the heating block 120 incorporates a heating element 122.
  • the heating element 122 may be made of a metal material.
  • the heating element 122 generates heat by a power source applied from the outside, and uses the heat to heat the chip 10 adsorbed on the adsorption plate 130.
  • the bumps of the chip 10 can be melted using the heat. For example, to dissolve the bumps in the chip 10, the heating element 122 may instantaneously heat the chip 10 to about 450 ° C.
  • the heating block 120 may be made of a ceramic material having excellent insulation and thermal conductivity.
  • the heating block 120 may be an aluminum nitride (AlN) material.
  • AlN aluminum nitride
  • the thermal conductivity may be about 170 W / m ⁇ k or more.
  • the chip 10 can be rapidly heated using the heat generated by the heat generating body 122.
  • the heating block 120 has a first vacuum line 124 and a second vacuum line 126 extending to the top surface to provide vacuum force.
  • the first vacuum line 124 and the second vacuum line 126 are not connected to each other, and the vacuum force is provided, respectively.
  • the first vacuum line 124 passes above and below the edge of the heating block 120
  • the second vacuum line 126 passes above and below the center of the heating block 120.
  • the first vacuum line 124 may be connected to the groove 125 formed on the upper surface of the heating block 120 to have a predetermined length.
  • the vacuum force provided through the first vacuum line 124 can act in a wider range.
  • the first vacuum line 124 and the second vacuum line 126 may extend to the base block 110.
  • the first vacuum line 124 and the second vacuum line 126 may be provided only in the heating block 120 without extending to the base block 110.
  • the attracting plate 130 is provided on the heating block 120.
  • the suction plate 130 is fixed to the upper surface of the heating block 120 by the vacuum force of the first vacuum line 124.
  • the suction plate 130 can be replaced by providing a vacuum force to the first vacuum line 124 or by releasing the vacuum force. Therefore, when the suction plate 130 is damaged or the size of the chip 10 is changed, only the suction plate 130 is selectively replaced, so that the suction plate 130 can be easily damaged or the size of the chip 10 can be easily changed.
  • the attracting plate 130 has a vacuum hole 132.
  • the vacuum hole 132 is connected to the second vacuum line 126 of the heating block 120. Therefore, the chip 10 to be placed on the attracting plate 130 can be fixed by the vacuum force provided through the second vacuum line 126.
  • the bonding head 100 moves while the chip 10 is fixed by the attracting plate 130 so that the chip 10 can be stacked on the wafer. In addition, the chip 10 can be pressed toward the wafer by the attracting plate 130.
  • the bonding head 100 further includes a cooling line 140.
  • the cooling line 140 cools the heating block 120 to cool the chip 10. As the chip 10 is cooled, the bumps of the chip 10 are cooled to form solder. At this time, the chip 10 can be cooled to about 100 ⁇ by the cooling line 140.
  • the cooling line 140 includes a first cooling line 142 and a second cooling line 144.
  • the first cooling line 142 extends from the base block 110 to the upper surface of the second block 114. And provides the cooling fluid to the heating block 120 through the first cooling line 142.
  • the cooling fluid include air, gas and the like. The cooling fluid directly contacts the heating block 120 to cool the heating block 120.
  • the second cooling line 144 is provided inside the first block 112 in the base block 110 and cools the first block 112. As the first block 112 is cooled, the third block 116, the second block 114, and the heating block 120 can be cooled through heat conduction. Thus, the second cooling line 144 can cooperatively cools the heating block 120.
  • the first cooling line 142 is used to primarily cool the heating block 120 and the second cooling line 144 to assist cooling. Accordingly, the cooling block 140 can be used to quickly cool the heating block 120. [ As the heating block 120 is cooled, the bumps of the chip 10 fixed to the attracting plate 130 can be quickly cooled to form the solder
  • the heating block 120 has an opening 127 for partially exposing the cooling line 140, specifically, the first cooling line 142.
  • the opening 127 may be a groove extending through the upper and lower portions of the heating block 120 and extending to the side.
  • the openings 127 may selectively expose a portion of the plurality of first cooling lines 142 extending to the top surface of the base block 110 or may partially expose each of the first cooling lines 142 .
  • the heating block 120 and the adsorption plate (not shown) 130 are uneven in temperature distribution. Therefore, the quality of the solder formed on the chip 10 may be deteriorated.
  • the openings 127 may be arranged to be symmetrical with respect to the center of the heating block 120 when the openings 127 selectively expose some of the plurality of first cooling lines 142. [ In this case, the quality of the solder formed on the chip 10 can be improved by making the temperature distribution of the heating block 120 and the attracting plate 130 relatively uniform.
  • a portion of the cooling fluid provided through the first cooling line 142 is provided to the heating block 120 to cool the heating block 120 and the remainder of the cooling fluid is supplied to the adsorption plate 130 through the opening 127 Thereby directly cooling the adsorption 130. That is, the cooling fluid provided through the first cooling line 142 can directly cool the adsorption plate 130 while cooling the adsorption plate 130 by cooling the heating block 120.
  • the cooling fluid provided through the first cooling line 142 may be discharged to the outside through the opening 127 after cooling the heating block 120 and the adsorption plate 130.
  • the bumps of the chip 10 fixed to the suction plate 130 can be cooled more quickly. Therefore, the bumps of the chip 10 melted by the heating block 120 can be rapidly cooled to form a solder of a good shape.
  • the opening 127 has a groove shape extending through the upper and lower sides of the heating block 120 and extending to the side, it is easy to form the opening 127 by processing the heating block 120.
  • the opening 127 has a groove shape extending through the heating block 120 and extending to the side surface, the suction plate 130 can be relatively exposed by the opening 127. Accordingly, the cooling fluid provided through the first cooling line 142 is discharged to the outside through the opening 127, so that the contact area with the adsorption plate 130 can be increased. Therefore, the effect of directly cooling the adsorption plate 130 by the cooling fluid provided through the first cooling line 142 can be further enhanced.
  • the opening 127 exposes less than about 30% of the area of the first cooling line 142, the effect of direct cooling of the adsorption plate 130 by the cooling fluid provided through the first cooling line 142 is relatively reduced . Therefore, it is difficult for the cooling fluid provided through the first cooling line 142 to rapidly cool the bumps of the chip 10.
  • the effect of cooling fluid provided through the first cooling line 142 to cool the heating block 120 may be relatively lowered. Even if the cooling fluid provided through the first cooling line 142 directly cools the adsorption plate 130, the heat of the heating block 120 can be transferred to the adsorption plate 130, so that the bumps of the chip 10 are rapidly cooled it's difficult. Further, since the area of the heating block 120 decreases as the area of the opening 127 increases, the amount of heat generated by the heating block 120 can be reduced. Therefore, it is difficult to rapidly dissolve the bumps of the chip 10.
  • the openings 127 can expose about 30% to 70% of the area of the first cooling line 142.
  • FIG. 3 is a cross-sectional view for explaining an opening of a heating block according to another embodiment of the present invention
  • FIG. 4 is a plan view for explaining an opening of the heating block shown in FIG.
  • the heating block 120 has an opening 128 that partially exposes the first cooling line 142.
  • the opening 128 may be a through hole passing through the top and bottom.
  • the cooling fluid supplied through the first cooling line 142 may be circulated along the first cooling line 142 or may be circulated between the heating block 120 and the adsorption plate 130 or between the heating block 120 and the base block 110, The first and second blocks 114 and 114 of the first embodiment.
  • the opening 128 may expose about 30% to 70% of the area of the first cooling line 142.
  • FIG. 5 is a cross-sectional view illustrating an opening of a heating block according to another embodiment of the present invention.
  • the heating block 120 has an opening 128 that partially exposes the first cooling line 142.
  • the opening 128 may be a through hole passing through the top and bottom.
  • connection groove 129 connected to the opening 128 may be further formed.
  • the connection groove 129 may be provided on at least one of the upper surface of the heating block 120 and the lower surface of the attracting plate 130.
  • connection groove 129 may be formed on the upper surface of the heating block 120 as shown in FIG.
  • connection groove 129 may be formed on the lower surface of the attracting plate 130.
  • connection groove 129 may be formed on the upper surface of the heating block 120 and the lower surface of the attraction plate 130, respectively.
  • the cooling fluid provided through the first cooling line 142 may be discharged to the outside through the connection groove 129.
  • connection groove 129 may be formed to be connected to the opening 128 on at least one of the lower surface of the heating block 120 and the upper surface of the base block 110.
  • the bonding head 100 may further include a temperature sensor.
  • the temperature sensor is provided inside the heating block 120 and senses the temperature of the heating block 120.
  • the ON / OFF of the power provided to the heating element 122 and the injection of the cooling fluid in the cooling line 140, the temperature and the circulation of the coolant can be controlled according to the detection result of the temperature sensor.
  • the temperature sensor may be provided on the attracting plate 130.
  • the bonding head 100 melts the bumps of the chip 10 by heating the chips 10 with the heating block 120 in a state in which the chips 10 are transferred and adhered to the wafer.
  • the bonding head 100 then uses the cooling line 140 to cool the chip 10 to bond the chip 10 to the wafer. Since the bonding head 100 rapidly heats and rapidly cools the chip 10, it is possible to form a solder of good quality and good shape between the wafer and the chip 10. [
  • the bonding head 100 can quickly perform the heating and cooling of the chip 10, so that the efficiency of the process of bonding the chip 10 to the wafer can be improved.
  • the ratio of exposing the area of the first cooling line 114 of the base block 110 in a state where the opening 127 of the heating block 120 is maintained at a constant size in the bonding head 100 The time required for cooling the adsorption plate 130 to a predetermined temperature was measured.
  • the time required for the cooling of the adsorption plate 13 is the longest at 5.4 seconds and the opening 127 changes the area of the first cooling line 114 to 33.33 %, That is, 1/3 exposure, the time required for cooling the adsorption plate 13 was 3.5 seconds, which is the shortest.
  • the opening 127 exposes the area of the first cooling line 114 compared to when the opening 127 does not expose the area of the first cooling line 114, Short is known.
  • the cooling fluid provided through the first cooling line 142 cools the heating block 120 to indirectly cool the adsorption plate 130 It can be seen that the adsorption plate 130 is rapidly cooled by directly cooling the adsorption plate 130.
  • FIG. 6 is a schematic plan view for explaining a bonding apparatus according to an embodiment of the present invention
  • FIG. 7 is a plan view for explaining a chuck structure shown in FIG. 6
  • FIG. 8 is a cross- Fig. 9 is an enlarged cross-sectional view of the portion A shown in Fig. 6 enlarged.
  • the bonding apparatus 300 includes a bonding head 100 and a chuck structure 200.
  • the bonding head 100 includes a base block 110, a heating block 120, and a sucking plate 130 for transferring the chip 10 onto the chuck structure 200 and bonding the wafer 20 to the wafer 20.
  • the bonding head 100 may be provided so as to be able to horizontally move, vertically move, rotate, reverse, etc. in order to transport the chip 10.
  • bonding head 100 The detailed description of the bonding head 100 is substantially the same as that of the bonding head 100 shown in FIGS.
  • the bonding head 100 may be disposed such that the attraction plate 130 faces downward for bonding the chip 10 and the wafer 20.
  • the chuck structure 200 supports the wafer 20. At this time, a circuit pattern may be formed on the wafer 20.
  • the chuck structure 200 includes a heating plate 210, a chuck plate 220, a guide ring 230, a clamp 240, a power cable 250, and a temperature sensor 260.
  • the heating plate 210 has a substantially disc shape and incorporates a heating element 212 that generates heat by a power source applied from the outside.
  • the heating element 212 may be formed to have a predetermined pattern on the inner surface of the heating plate 210.
  • Examples of the heating element 212 include an electrode layer, a heating coil, and the like.
  • the heating plate 210 has a third vacuum line 214 and a fourth vacuum line 215 extending to the upper surface.
  • the third vacuum line 214 and the fourth vacuum line 215 may extend from the lower surface or side of the heating plate 210 to the upper surface, respectively.
  • the third vacuum line 214 and the fourth vacuum line 215 are not connected to each other.
  • the third vacuum line 214 is connected to a vacuum pump (not shown) and provides a vacuum force for adsorbing the wafer 20.
  • the fourth vacuum line 215 is connected to a vacuum pump (not shown) and provides a vacuum force for adsorbing the chuck plate 220.
  • the heating plate 210 has alignment pins 216 on its upper surface.
  • the alignment pins 216 are for aligning the heating plate 210 and the chuck plate 220, and a plurality of alignment pins may be provided.
  • the alignment pins 216 may be disposed on the upper surface edge of the heating plate 210.
  • the heating plate 210 has a groove 218 formed along the upper surface edge.
  • the groove 218 may be used to secure the guide ring 230.
  • the chuck plate 220 has a substantially disc shape and is placed on the heating plate 210.
  • the chuck plate 220 supports the wafer 20 on its upper surface.
  • the chuck plate 220 has a fifth vacuum line 222 connected to a third vacuum line 214 for adsorbing the wafer 20.
  • the fifth vacuum line 222 has a vacuum groove 222a and a plurality of vacuum holes 222b.
  • the vacuum groove 222a is formed on the lower surface of the chuck plate 220.
  • the vacuum groove 222a may have a shape in which concentric grooves and radially extending grooves are coupled with each other with respect to the center of the lower surface of the chuck plate 220, or may have a circular groove shape. At this time, the vacuum groove 222a does not extend to the lower edge of the chuck plate 220 to prevent leakage of the vacuum force.
  • the chuck plate 220 is placed on the heating plate 210 while the vacuum groove 222a is defined by the upper surface of the heating plate 210 to form a space. Further, the vacuum groove 222a is connected to the third vacuum line 214.
  • the vacuum holes 222b extend through the chuck plate 220 to the upper surface of the chuck plate 220 on the lower surface where the vacuum grooves 222a are formed.
  • the vacuum holes 222b are arranged to be spaced apart from each other.
  • the vacuum holes 222b may be arranged concentrically or radially.
  • the fifth vacuum line 222 is connected to the third vacuum line 214 and can vacuum the wafer 20 with the vacuum force provided through the third vacuum line 214.
  • the chuck plate 220 has a vacuum groove 223 connected to the fourth vacuum line 215 on the lower surface so as to be vacuum-adsorbed to the heating plate 210.
  • the vacuum groove 223 is formed on the lower surface of the chuck plate 220.
  • the vacuum groove 223 may have a shape in which concentric grooves and radially extending grooves are combined with each other with respect to the center of the lower surface of the chuck plate 220, or may have a circular groove shape. At this time, the vacuum groove 223 does not extend to the lower edge of the chuck plate 220 to prevent leakage of the vacuum force. Further, as shown in FIG. 8, the vacuum groove 223 may be formed so as not to be connected to the fifth vacuum line 222.
  • the chuck plate 220 is placed on the heating plate 210 while the vacuum groove 223 is defined by the upper surface of the heating plate 210 to form a space. Further, the vacuum groove 223 is connected to the fourth vacuum line 215.
  • the vacuum groove 223 is connected to the fourth vacuum line 215 and the chuck plate 220 can be tightly fixed on the heating plate 210 by the vacuum force provided through the fourth vacuum line 215 . Therefore, the wafer 20 on the chuck plate 220 can be supported evenly by minimizing warping and bending of the chuck plate 220.
  • the heating plate 210 and the chuck plate 220 can be kept in close contact by the vacuum force provided through the fourth vacuum line 215 and the vacuum groove 223. [ Therefore, a separate fastening member for fastening the heating plate 210 and the chuck plate 220 is unnecessary.
  • the vacuum force provided through the third vacuum line 214 and the fourth vacuum line 215 is released to separate and replace the heating plate 210 and the chuck plate 220. Therefore, the maintenance of the chuck structure 200 can be performed quickly.
  • the vacuum force can leak through the gap between the heating plate 210 and the chuck plate 220.
  • the upper surface of the heating plate 210 and the lower surface of the chuck plate 220 each have a flatness of about 10 ⁇ ⁇ or less, preferably 7 ⁇ ⁇ or less.
  • the heating plate 210 and the chuck plate 220 can be in close contact with each other, and the vacuum force can be prevented from leaking through the space between the heating plate 210 and the chuck plate 220.
  • the chuck plate 220 transfers heat generated in the heating plate 210 to the wafer 20.
  • the wafer 20 can be maintained at a temperature of about 140 to 150 ° C. so that the bonding of the chip 10 and the wafer 20 is facilitated.
  • the heating plate 210 and the chuck plate 220 may each be made of a ceramic material.
  • An example of the ceramic material is aluminum nitride (AlN). Since the aluminum nitride has a high thermal conductivity, the heat generated in the heating body 212 can be uniformly transferred to the heating plate 210 and the chuck plate 220. In addition, the temperature distribution of the chuck plate 220 can be made uniform, and the wafer 20 can be uniformly heated.
  • the chuck plate 220 has a receiving groove 224 for receiving the alignment pin 216.
  • the receiving groove 224 may be formed at a position corresponding to the alignment pin 216 of the heating plate 210.
  • the receiving groove 224 may also be disposed at the edge of the chuck plate 220.
  • the alignment pin 216 of the heating plate 210 can be inserted into the receiving groove 224 of the chuck plate 220 when the chuck plate 220 is seated on the upper surface of the heating plate 210. Accordingly, the heating plate 210 and the chuck plate 220 can be accurately aligned.
  • the heating plate 210 is provided with the alignment pins 216 and the chuck plate 220 is formed with the receiving grooves 224.
  • the receiving grooves are formed in the heating plate 210, 220 may be provided with alignment pins.
  • the chuck plate 220 also has a groove 226 formed along the top edge. Groove 226 may be used to secure clamp 240.
  • the guide ring 230 hits the groove 218 formed along the upper edge of the heating plate 210 and guides the periphery of the heating plate 210.
  • the guide ring 230 has a first locking protrusion 232, and the guide ring 230 is mounted on the heating plate 210 by engaging the first locking protrusion 232 with the groove 218.
  • the upper surface of the guide ring 230 and the upper surface of the heating plate 210 may be located at the same height.
  • the chuck plate 220 can be easily placed on the upper surface of the heating plate 210 while the guide ring 230 is mounted on the heating plate 210.
  • the clamp 240 is fixed to the guide ring so as to cover the top edge of the chuck plate 220.
  • the clamp 240 can be fixed to the guide ring 230 by a fastening screw 242.
  • a plurality of clamps 240 may be provided to partially cover the top edge of the chuck plate 220.
  • the clamp 240 has a generally ring shape and may cover the entire upper edge of the chuck plate 220 as a whole.
  • the clamp 240 can be pressed downward by the clamp 240 because the clamp 240 is fixed to the guide ring 230 while covering the top edge of the chuck plate 220. [ Therefore, the clamp 240 can bring the chuck plate 220 into close contact with the heating plate 210. Therefore, leakage of the vacuum force can be additionally prevented between the heating plate 210 and the chuck plate 220.
  • the clamp 240 has a second latching jaw 244 and the second latching jaw 244 can be placed in the groove 226 of the chuck plate 220. Therefore, the upper surface of the clamp 240 and the upper surface of the chuck plate 220 can be positioned at the same height. Therefore, the wafer 20 can be reliably transferred to the upper surface of the chuck plate 220 without interference of the clamp 240 and can be seated.
  • the guide ring 230 and the clamp 240 may each be made of a ceramic material.
  • the guide ring 230 and the clamp 240 may be formed of a ceramic material having a thermal conductivity lower than that of the heating plate 210 and the chuck plate 220.
  • the guide ring 230 and the clamp 240 may be made of aluminum oxide (Al 2 O 3). Since the aluminum oxide has a thermal conductivity lower than that of aluminum nitride, the guide ring 230 and the clamp 240 can prevent heat loss through the side surfaces of the heating plate 210 and the chuck plate 220.
  • the power cable 250 extends to the inside of the heating plate 210 and is connected to the heating body 212, and the heating body 212 provides power for generating heat.
  • the temperature sensor 260 extends from the outside of the heating plate 210 to the inside thereof, and measures the temperature of the heating element 212.
  • the temperature measured by the temperature sensor 260 may be used for temperature control of the heating element 212.
  • thermocouple An example of the temperature sensor 260 is a thermocouple.
  • the chuck structure 200 can bring the heating plate 210 and the chuck plate 220 into close contact with each other with a vacuum force for attracting the wafer 20. Therefore, a separate fastening member for fastening the heating plate 210 and the chuck plate 220 is unnecessary.
  • the heating plate 210 and the chuck plate 220 can be separated and replaced. Therefore, the maintenance of the chuck structure 200 can be performed quickly.
  • the bonding apparatus 300 fixes the wafer 20 using the chuck structure 200 and transfers the chip 10 to the wafer 20 while the chip 10 is heated to a predetermined temperature by the bonding head 100,
  • the chip 10 is bonded to the wafer 20 by melting the bumps of the chip 10 by heating the chip 10 with the bonding head 100 and then cooling the chip 10. Therefore, solder of good quality and good shape can be formed between the chip 10 and the wafer 20.
  • the heating and cooling of the chip 10 can be performed quickly, the efficiency of the process of bonding the chip 10 using the bonding apparatus 300 to the wafer 20 can be improved.
  • the bonding head according to the present invention can reduce the maintenance cost and can bond the wafer and the chip quickly and stably. Therefore, efficiency and productivity of the bonding process using the bonding head can be improved.
  • the bonding apparatus can bring the heating plate and the chuck plate into close contact with each other by vacuum force in the chuck structure.
  • the heating plate and the chuck plate can be separated from each other by releasing only the vacuum force, so that maintenance or replacement of the chuck structure can be performed quickly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Wire Bonding (AREA)

Abstract

A bonding head of a bonding device includes: a base block; a heating block provided on the base block and equipped with a heating element for generating heat by using power applied from the outside to heat a bump of a chip, and having a first vacuum line and a second vacuum line extending to the top surface in order to provide a vacuum force; a suction plate fixed on the heating block by the vacuum force of the first vacuum line and having a vacuum hole connected to the second vacuum line so as to fix the chip by means of the vacuum force; and a cooling line extending from the inside of the base block to the top surface of the base block and providing a cooling fluid to the heating block to cool the bump of the chip, thereby forming a solder. The heating block may have an opening that partially exposes the cooling line so that the cooling fluid in the cooling line is provided to the suction plate to further cool the bump of the chip.

Description

본딩 헤드 및 이를 갖는 본딩 장치Bonding head and bonding apparatus having the same
본 발명은 본딩 헤드 및 이를 갖는 본딩 장치에 관한 것으로, 보다 상세하게는 칩을 웨이퍼 상에 본딩하기 위한 본딩 헤드 및 이를 갖는 본딩 장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bonding head and a bonding apparatus having the bonding head, and more particularly, to a bonding head for bonding a chip onto a wafer and a bonding apparatus having the bonding head.
최근, 반도체 패키지를 비롯한 전자 부품의 소형화 요구에 대응하기 위해 복수의 전자 부품을 적층시켜 적층 칩 패키지를 형성하는 기술이 개발되었다. 2. Description of the Related Art Recently, a technique for forming a multilayer chip package by stacking a plurality of electronic parts in order to meet the demand for miniaturization of electronic parts including semiconductor packages has been developed.
상기 적층 칩 패키지는 패키지 기판 위에 칩들이 적층된 반도체 패키지로서, 고집적화를 이룰 수 있다. 상기 적층 칩 패키지는 칩 레벨(chip level) 또는 웨이퍼 레벨(wafer level)에서 제조가 이루어진다.The stacked chip package is a semiconductor package in which chips are stacked on a package substrate, and can achieve high integration. The stacked chip package is manufactured at a chip level or a wafer level.
상기 칩 레벨 또는 웨이퍼 레벨에서 적층 칩 패키지를 제조하기 위하여 칩과 칩, 웨이퍼와 웨이퍼 또는 칩과 웨이퍼에 열과 압력을 가하여 본딩 작업이 수행되는데, 상기 본딩 작업을 수행하는 장치를 본딩 장치라 한다. 상기 본딩 장치는 웨이퍼 상에 칩을 적층하여 상기 웨이퍼와 칩을 본딩 헤드로 열압착한다. In order to manufacture a multilayer chip package at the chip level or the wafer level, bonding and bonding are performed by applying heat and pressure to chips, chips, wafers, wafers or chips and wafers. The bonding apparatus is referred to as a bonding apparatus. The bonding apparatus stacks chips on a wafer and thermally compresses the wafer and the chips with a bonding head.
그러나, 상기 본딩 헤드는 적층된 웨이퍼와 칩을 단순히 본딩하는 작업만을 수행하므로, 상기 칩을 상기 웨이퍼 상에 적층시키기 위한 별도의 칩 이송 수단이 요구된다. 그러므로, 상기 본딩 장치의 구조가 복잡해질 수 있다.However, since the bonding head merely performs bonding work of bonding the stacked wafers and chips, a separate chip transfer means for stacking the chips on the wafer is required. Therefore, the structure of the bonding apparatus can be complicated.
본 발명은 칩을 이송하여 웨이퍼에 적층한 후 상기 칩과 상기 웨이퍼를 본딩할 수 있는 본딩 헤드를 제공한다. The present invention provides a bonding head capable of bonding a chip and a wafer after the chip is transferred and stacked on a wafer.
본 발명은 상기 본딩 헤드를 갖는 본딩 장치를 제공한다. The present invention provides a bonding apparatus having the bonding head.
본 발명에 따른 본딩 헤드는 베이스 블록과, 상기 베이스 블록 상에 구비되고, 외부로부터 인가되는 전원에 의해 열을 발생하여 칩의 범프를 가열하기 위한 발열체를 내장하며, 진공력을 제공하기 위해 상부면까지 연장하는 제1 진공 라인 및 제2 진공 라인을 갖는 가열 블록과, 상기 가열 블록 상에 상기 제1 진공 라인의 진공력에 의해 고정되며, 칩을 진공력으로 고정하기 위해 상기 제2 진공 라인과 연결되는 진공홀을 갖는 흡착판 및 상기 베이스 블록의 내부에서 상기 베이스 블록의 상부면까지 연장하며, 상기 가열 블록으로 냉각 유체를 제공하여 상기 칩의 범프를 냉각시킴으로써 솔더를 형성하기 위한 냉각 라인을 포함하고, 상기 가열 블록은 상기 칩의 범퍼를 추가적으로 냉각하기 위해 상기 냉각 라인의 냉각 유체가 상기 흡착판으로도 제공되도록 상기 냉각 라인을 부분적으로 노출하는 개구를 가질 수 있다. A bonding head according to the present invention comprises a base block and a heating element provided on the base block for generating heat by a power source applied from the outside to heat the bumps of the chip, A heating block having a first vacuum line and a second vacuum line extending to the first vacuum line and extending from the first vacuum line to the second vacuum line, And a cooling line extending to an upper surface of the base block inside the base block and providing a cooling fluid to the heating block to cool the bumps of the chip to form a solder, , The heating block is also provided with a cooling fluid of the cooling line as the adsorption plate to further cool the bumper of the chip And may have openings that partially expose the cooling lines.
본 발명의 일 실시예들에 따르면, 상기 개구는 상기 냉각 라인의 영역 중 30% 내지 70%를 노출할 수 있다. According to one embodiment of the present invention, the opening may expose 30% to 70% of the area of the cooling line.
본 발명의 일 실시예들에 따르면, 상기 개구는 상기 가열 블록의 내측에서 측면까지 연장하는 홈일 수 있다. According to one embodiment of the present invention, the opening may be a groove extending from the inside to the side of the heating block.
본 발명의 일 실시예들에 따르면, 상기 개구는 상기 가열 블록의 상하를 관통하는 관통홀일 수 있다. According to one embodiment of the present invention, the opening may be a through hole passing through the upper and lower portions of the heating block.
본 발명의 일 실시예들에 따르면, 상기 본딩 헤드는 상기 가열 블록의 상부면과 상기 흡착판의 하부면 중 적어도 하나에 상기 관통홀과 연결되도록 형성되며, 상기 냉각 라인을 통해 공급된 냉각 유체를 상기 가열 블록과 상기 흡착판 사이를 통해 외부로 배출하기 위한 연결홈을 더 포함할 수 있다. According to one embodiment of the present invention, the bonding head is formed to be connected to the through hole at least one of the upper surface of the heating block and the lower surface of the attracting plate, and the cooling fluid supplied through the cooling line And a connection groove for discharging the heat to the outside through the space between the heating block and the adsorption plate.
본 발명의 일 실시예들에 따르면, 상기 흡착판의 손상이나 상기 칩 사이즈의 변경에 따라 상기 흡착판은 교체가능할 수 있다. According to one embodiment of the present invention, the adsorption plate may be replaceable in accordance with damage of the adsorption plate or change of the chip size.
본 발명의 일 실시예들에 따르면, 상기 베이스 블록은, 금속 재질로 이루어지는 제1 블록 및 상기 제1 블록 상에 구비되며, 가열 블록에서 발생한 열이 상기 제1 블록으로 전달되는 것을 감소시키기 위해 상기 가열 블록보다 낮은 열전도성을 갖는 세라믹 재질로 이루어지는 제2 블록을 포함할 수 있다. According to one embodiment of the present invention, the base block includes a first block made of a metal material and a second block disposed on the first block, And a second block made of a ceramic material having lower thermal conductivity than the heating block.
본 발명의 일 실시예들에 따르면, 상기 베이스 블록은, 상기 제1 블록과 상기 제2 블록 사이에 구비되며, 상기 제2 블록의 열이 상기 제1 블록으로 전달되는 것을 감소시키기 위해 세라믹 재질로 이루어지는 제3 블록을 더 포함할 수 있다. According to one embodiment of the present invention, the base block is provided between the first block and the second block, and is formed of a ceramic material to reduce the transfer of heat of the second block to the first block. And a third block that is formed by the second block.
본 발명의 일 실시예들에 따르면, 상기 본딩 헤드는 상기 가열 블록의 내부에 구비되며 상기 가열 블록의 온도를 감지하기 위한 온도 센서를 더 포함할 수 있다. According to an embodiment of the present invention, the bonding head may further include a temperature sensor provided inside the heating block and sensing a temperature of the heating block.
본 발명에 따른 본딩 장치는 웨이퍼를 지지하는 척 구조물 및 베이스 블록과, 상기 베이스 블록 상에 구비되고, 외부로부터 인가되는 전원에 의해 열을 발생하여 칩의 범프를 가열하기 위한 발열체를 내장하며, 진공력을 제공하기 위해 상부면까지 연장하는 제1 진공 라인 및 제2 진공 라인을 갖는 가열 블록과, 상기 가열 블록 상에 상기 제1 진공 라인의 진공력에 의해 고정되며, 칩을 진공력으로 고정하기 위해 상기 제2 진공 라인과 연결되는 진공홀을 갖는 흡착판 및 상기 베이스 블록의 내부에서 상기 베이스 블록의 상부면까지 연장하며, 상기 가열 블록으로 냉각 유체를 제공하여 상기 칩의 범프를 냉각시킴으로써 솔더를 형성하기 위한 냉각 라인을 포함하며, 상기 흡착판이 하방을 향하도록 상기 척 구조물의 상방에 이동 가능하도록 배치되며, 상기 칩을 상기 웨이퍼에 본딩하는 본딩 헤드로 이루어지며, 상기 가열 블록은 상기 칩의 범퍼를 추가적으로 냉각하기 위해 상기 냉각 라인의 냉각 유체가 상기 흡착판으로도 제공되도록 상기 냉각 라인을 부분적으로 노출하는 개구를 가질 수 있다. A bonding apparatus according to the present invention includes: a chuck structure and a base block for supporting a wafer; a heating element provided on the base block for generating heat by an external power source to heat the bumps of the chip; A heating block having a first vacuum line and a second vacuum line extending to the top surface to provide a force to the heating block, and a second vacuum line fixed to the heating block by the vacuum force of the first vacuum line, A suction plate having a vacuum hole connected to the second vacuum line, and an upper surface extending to the upper surface of the base block in the base block, wherein the cooling block is provided with the heating block to cool the bumps of the chip to form a solder Wherein the adsorption plate is arranged to be movable above the chuck structure so as to face downward, Wherein the heating block has an opening that partially exposes the cooling line so that the cooling fluid of the cooling line is also provided to the adsorption plate to further cool the bumper of the chip .
본 발명의 일 실시예들에 따르면, 상기 척 구조물은, 외부로부터 인가되는 전원에 의해 열을 발생하는 발열체를 내장하며, 진공력을 제공하기 위해 상부면까지 연장하는 제3 진공 라인 및 제4 진공 라인을 갖는 가열 플레이트 및 상기 가열 플레이트 상에 놓여지며, 상면에 웨이퍼를 지지하며, 상기 웨이퍼가 가열되도록 상기 가열 플레이트에서 발생한 열을 상기 웨이퍼로 전달하고, 상기 진공력으로 상기 웨이퍼를 흡착하기 위해 상기 제3 진공 라인과 연결되는 제5 진공 라인 및 상기 가열 플레이트에 진공 흡착되도록 하부면에 상기 제4 진공 라인과 연결되도록 구비되며, 상기 가열 플레이트의 상부면에 의해 한정되어 공간을 형성하는 진공 홈을 갖는 척 플레이트를 포함할 수 있다. According to an embodiment of the present invention, the chuck structure includes a heating element that generates heat by a power source applied from the outside, a third vacuum line extending to the upper surface to provide a vacuum force, A heating plate having a line and a heating plate disposed on the heating plate for supporting a wafer on an upper surface thereof and transferring heat generated in the heating plate to the wafer to heat the wafer, A fifth vacuum line connected to the third vacuum line, and a vacuum groove connected to the fourth vacuum line on the lower surface so as to be vacuum-absorbed on the heating plate, the vacuum groove defined by the upper surface of the heating plate, And a chuck plate having a base plate.
본 발명의 일 실시예들에 따르면, 상기 척 구조물에서 상기 가열 플레이트의 상부면과 상기 척 플레이트의 하부면 중 어느 한 면에는 정렬 핀이 구비되고, 나머지 한 면에는 상기 정렬 핀을 수용하여 상기 가열 플레이트와 상기 척 플레이트를 정렬하기 위한 수용홈이 구비될 수 있다. According to one embodiment of the present invention, in the chuck structure, the upper surface of the heating plate and the lower surface of the chuck plate are provided with alignment pins, and the other surface is provided with the alignment pins, And a receiving groove for aligning the plate and the chuck plate may be provided.
본 발명의 일 실시예들에 따르면, 상기 척 구조물은, 상기 가열 플레이트의 상면 가장자리를 따라 형성된 홈에 걸리며 상기 가열 플레이트의 둘레를 가이드하는 가이드 링 및 상기 척 플레이트의 상부면 가장자리를 덮은 상태로 상기 가이드 링에 고정되며, 상기 척 플레이트를 상기 가열 플레이트에 밀착시키는 고정시키는 클램프를 더 포함할 수 있다. According to one embodiment of the present invention, the chuck structure includes a guide ring which is hooked on a groove formed along a top edge of the heating plate and guides the periphery of the heating plate, and a guide ring which covers the top edge of the chuck plate, And a clamp fixed to the guide ring for fixing the chuck plate to the heating plate.
본 발명의 일 실시예들에 따르면, 상기 클램프의 상면과 상기 척 플레이트의 상면이 동일한 높이에 위치하도록 상기 클램프는 상기 척 플레이트의 상면 가장자리를 따라 형성된 홈에 놓여질 수 있다. According to one embodiment of the present invention, the clamp may be placed in a groove formed along the top edge of the chuck plate such that the top surface of the clamp and the top surface of the chuck plate are at the same height.
본 발명의 일 실시예들에 따르면, 상기 가열 플레이트 및 상기 척 플레이트의 측면을 통한 열손실을 방지하기 위해 상기 가이드 링 및 상기 클램프는 상기 가열 플레이트 및 상기 척 플레이트보다 열전도율이 낮은 재질로 이루어질 수 있다.According to an embodiment of the present invention, in order to prevent heat loss through the side surfaces of the heating plate and the chuck plate, the guide ring and the clamp may be made of a material having a lower thermal conductivity than the heating plate and the chuck plate .
본 발명에 따른 본딩 헤드는 진공력을 이용하여 흡착판을 고정하므로, 상기 진공력을 제공하거나 해제함으로써 상기 흡착판을 용이하게 교체할 수 있다. 따라서, 상기 흡착판이 손상되거나 상기 흡착판에 고정되는 칩의 사이즈가 변경되는 경우, 상기 본딩 헤드 전체를 교체하지 않고 상기 흡착판만을 교체하여 대응할 수 있다. The bonding head according to the present invention fixes the attracting plate using a vacuum force, so that the attracting plate can be easily replaced by providing or releasing the vacuum force. Therefore, when the adsorption plate is damaged or the size of a chip fixed to the adsorption plate is changed, the adsorption plate can be replaced by replacing only the adsorption plate without replacing the entire bonding head.
또한, 상기 본딩 헤드는 상기 칩을 웨이퍼에 밀착시킨 상태에서 상기 칩을 가열하여 범프를 녹인 후 다시 냉각시킴으로써 상기 칩을 상기 웨이퍼에 본딩한다. 특히, 상기 본딩 헤드는 가열 블록에 베이스 블록의 상부면까지 연장하는 냉각 라인을 부분적으로 노출하는 개구를 형성함으로써 상기 냉각 라인의 냉각 유체가 상기 개구를 통해 상기 흡착판으로도 직접 제공될 수 있다. 따라서, 상기 칩의 범퍼를 보다 신속하게 냉각할 수 있다. 상기 본딩 헤드가 상기 칩을 급속으로 가열하고 냉각하므로, 상기 웨이퍼와 상기 칩 사이에 우수한 품질과 양호한 형상의 솔더를 형성할 수 있다. 따라서, 상기 웨이퍼와 상기 칩을 안정적으로 본딩할 수 있다. In addition, the bonding head heats the chip with the chip closely attached to the wafer to melt the bump, and then re-bonds the chip to the wafer. In particular, the bonding head may be provided with a cooling fluid of the cooling line directly through the opening to the adsorption plate, by forming an opening in the heating block which partially exposes the cooling line extending to the upper surface of the base block. Therefore, the bumper of the chip can be cooled more quickly. Since the bonding head rapidly heats and cools the chip, it is possible to form solder of good quality and good shape between the wafer and the chip. Therefore, the wafer and the chip can be stably bonded.
그리고, 상기 본딩 헤드는 상기 칩의 가열과 냉각을 신속하게 수행할 수 있으므로, 상기 칩을 상기 웨이퍼에 본딩하는 공정의 효율성을 향상시킬 수 있다.In addition, since the bonding head can quickly perform the heating and cooling of the chip, the efficiency of the process of bonding the chip to the wafer can be improved.
본 발명에 따른 본딩 장치의 척 구조물은 진공력에 의해 척 플레이트가 가열 플레이트 상에 밀착되어 고정될 수 있다. 그러므로, 상기 척 플레이트의 뒤틀림이나 벤딩을 최소화할 수 있고, 상기 가열 플레이트와 상기 척 플레이트를 체결하기 위한 별도의 체결 부재가 불필요하다. The chuck structure of the bonding apparatus according to the present invention can be firmly fixed on the heating plate by the vacuum force. Therefore, warping and bending of the chuck plate can be minimized, and a separate fastening member for fastening the heating plate and the chuck plate is unnecessary.
또한, 상기 척 구조물은 상기 진공력을 해제하여 상기 가열 플레이트와 상기 척 플레이트를 분리하여 교체할 수 있다. 그러므로, 상기 척 구조물의 유지 보수를 신속하게 수행할 수 있다.In addition, the chuck structure can release the vacuum force to separate and replace the heating plate and the chuck plate. Therefore, maintenance of the chuck structure can be performed quickly.
도 1은 본 발명의 일 실시예에 따른 본딩 헤드를 설명하기 위한 단면도이다. 1 is a cross-sectional view illustrating a bonding head according to an embodiment of the present invention.
도 2는 도 1에 도시된 본딩 헤드에서 가열 블록의 개구를 설명하기 위한 평면도이다. Fig. 2 is a plan view for explaining the opening of the heating block in the bonding head shown in Fig. 1. Fig.
도 3은 본 발명의 다른 실시예에 따른 가열 블록의 개구를 설명하기 위한 단면도이다. 3 is a cross-sectional view illustrating an opening of a heating block according to another embodiment of the present invention.
도 4는 도 3에 도시된 가열 블록의 개구를 설명하기 위한 평면도이다. 4 is a plan view for explaining the opening of the heating block shown in Fig.
도 5는 본 발명의 또 다른 실시예에 따른 가열 블록의 개구를 설명하기 위한 단면도이다.5 is a cross-sectional view illustrating an opening of a heating block according to another embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 본딩 장치를 설명하기 위한 개략적인 구성도이다.6 is a schematic diagram illustrating a bonding apparatus according to an embodiment of the present invention.
도 7은 도 6에 도시된 척 구조물을 설명하기 위한 평면도이다.7 is a plan view for explaining the chuck structure shown in FIG.
도 8은 도 6에 도시된 척 플레이트를 설명하기 위한 저면도이다.8 is a bottom view for explaining the chuck plate shown in Fig.
도 9는 도 6에 도시된 A 부분을 확대한 확대 단면도이다. Fig. 9 is an enlarged cross-sectional view of the portion A shown in Fig. 6 enlarged.
본 발명에 따른 본딩 헤드는 베이스 블록과, 상기 베이스 블록 상에 구비되고, 외부로부터 인가되는 전원에 의해 열을 발생하여 칩의 범프를 가열하기 위한 발열체를 내장하며, 진공력을 제공하기 위해 상부면까지 연장하는 제1 진공 라인 및 제2 진공 라인을 갖는 가열 블록과, 상기 가열 블록 상에 상기 제1 진공 라인의 진공력에 의해 고정되며, 칩을 진공력으로 고정하기 위해 상기 제2 진공 라인과 연결되는 진공홀을 갖는 흡착판 및 상기 베이스 블록의 내부에서 상기 베이스 블록의 상부면까지 연장하며, 상기 가열 블록으로 냉각 유체를 제공하여 상기 칩의 범프를 냉각시킴으로써 솔더를 형성하기 위한 냉각 라인을 포함하고, 상기 가열 블록은 상기 칩의 범퍼를 추가적으로 냉각하기 위해 상기 냉각 라인의 냉각 유체가 상기 흡착판으로도 제공되도록 상기 냉각 라인을 부분적으로 노출하는 개구를 가질 수 있다. A bonding head according to the present invention comprises a base block and a heating element provided on the base block for generating heat by a power source applied from the outside to heat the bumps of the chip, A heating block having a first vacuum line and a second vacuum line extending to the first vacuum line and extending from the first vacuum line to the second vacuum line, And a cooling line extending to an upper surface of the base block inside the base block and providing a cooling fluid to the heating block to cool the bumps of the chip to form a solder, , The heating block is also provided with a cooling fluid of the cooling line as the adsorption plate to further cool the bumper of the chip And may have openings that partially expose the cooling lines.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 따른 본딩 헤드 및 이를 갖는 본딩 장치에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다. Hereinafter, a bonding head and a bonding apparatus having the bonding head according to embodiments of the present invention will be described in detail with reference to the accompanying drawings. The present invention is capable of various modifications and various forms, and specific embodiments are illustrated in the drawings and described in detail in the text. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed, but includes all modifications, equivalents, and alternatives falling within the spirit and scope of the invention. Like reference numerals are used for like elements in describing each drawing. In the accompanying drawings, the dimensions of the structures are enlarged to illustrate the present invention in order to clarify the present invention.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. The terms first, second, etc. may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as a second component, and similarly, the second component may also be referred to as a first component.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used in this application is used only to describe a specific embodiment and is not intended to limit the invention. The singular expressions include plural expressions unless the context clearly dictates otherwise. In this application, the terms "comprises", "having", and the like are used to specify that a feature, a number, a step, an operation, an element, a part or a combination thereof is described in the specification, But do not preclude the presence or addition of one or more other features, integers, steps, operations, components, parts, or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in commonly used dictionaries are to be interpreted as having a meaning consistent with the contextual meaning of the related art and are to be interpreted as either ideal or overly formal in the sense of the present application Do not.
도 1은 본 발명의 일 실시예에 따른 본딩 헤드를 설명하기 위한 단면도이고, 도 2는 도 1에 도시된 본딩 헤드에서 가열 블록의 개구를 설명하기 위한 평면도이다. FIG. 1 is a cross-sectional view illustrating a bonding head according to an embodiment of the present invention, and FIG. 2 is a plan view illustrating an opening of a heating block in the bonding head shown in FIG.
도 1 및 도 2를 참조하면, 본딩 헤드(100)는 칩(10)을 웨이퍼(미도시)로 이송하여 상기 웨이퍼에 본딩하기 위한 것으로, 베이스 블록(110), 가열 블록(120) 및 흡착판(130)을 포함한다. 도시되지는 않았지만, 본딩 헤드(100)는 칩(10)의 이송을 위해 수평 이동, 상하 이동, 회전, 반전 등이 가능하도록 구비될 수 있다. 1 and 2, the bonding head 100 is for transferring the chip 10 to a wafer (not shown) and bonding the chip 10 to the wafer. The base block 110, the heating block 120, 130). Although not shown, the bonding head 100 may be provided so as to be able to horizontally move, vertically move, rotate, reverse, etc. in order to transport the chip 10.
베이스 블록(110)은 제1 블록(112) 및 제2 블록(114)을 포함한다.The base block 110 includes a first block 112 and a second block 114.
제1 블록(112)은 금속 재질로 이루어진다. 상기 금속 재질의 예로는 스테인리스 스틸 재질일 수 있다. The first block 112 is made of a metal material. An example of the metal material may be a stainless steel material.
제2 블록(114)은 제1 블록(112) 상에 구비된다. 제2 블록(114)은 가열 블록(120)보다 낮은 열전도성을 갖는 세라믹 재질로 이루어질 수 있다. 상기 세라믹 재질의 예로는 산화알루미늄(Al2O3)을 들 수 있다. 제2 블록(114)의 열전도성이 가열 블록(120)의 열전도성보다 낮으므로, 제2 블록(114)은 가열 블록(120)에서 발생한 열이 제1 블록(112)으로 전달되는 것을 감소시킬 수 있다. The second block 114 is provided on the first block 112. The second block 114 may be made of a ceramic material having lower thermal conductivity than the heating block 120. An example of the ceramic material is aluminum oxide (Al2O3). The thermal conductivity of the second block 114 is lower than the thermal conductivity of the heating block 120 so that the second block 114 reduces the transfer of heat generated in the heating block 120 to the first block 112 .
또한, 베이스 블록(110)은 제3 블록(116)을 더 포함한다.In addition, the base block 110 further includes a third block 116.
제3 블록(116)은 제1 블록(112)과 제2 블록(114) 사이에 구비된다. 제3 블록(116)은 버퍼 블록으로 작용하여 제2 블록(114)의 열이 제1 블록(112)으로 전달되는 것을 감소시킨다. 제3 블록(116)은 세라믹 재질로 이루어질 수 있으며, 상기 세라믹 재질의 예로는 산화알루미늄을 들 수 있다.A third block 116 is provided between the first block 112 and the second block 114. The third block 116 acts as a buffer block to reduce the transfer of the column of the second block 114 to the first block 112. The third block 116 may be made of a ceramic material, and examples of the ceramic material include aluminum oxide.
가열 블록(120)은 베이스 블록(110), 구체적으로 제2 블록(114) 상에 구비된다. 가열 블록(120)은 발열체(122)를 내장한다. 발열체(122)는 금속 재질로 이루어질 수 있다. 발열체(122)는 외부로부터 인가되는 전원에 의해 열을 발생하고, 상기 열을 이용하여 흡착판(130)에 흡착되는 칩(10)을 가열한다. 상기 열을 이용하여 칩(10)의 범프를 녹일 수 있다. 예를 들면, 칩(10)의 범프를 녹이기 위해 발열체(122)는 칩(10)을 순간적으로 약 450 ℃까지 가열할 수 있다. The heating block 120 is provided on the base block 110, specifically on the second block 114. The heating block 120 incorporates a heating element 122. The heating element 122 may be made of a metal material. The heating element 122 generates heat by a power source applied from the outside, and uses the heat to heat the chip 10 adsorbed on the adsorption plate 130. The bumps of the chip 10 can be melted using the heat. For example, to dissolve the bumps in the chip 10, the heating element 122 may instantaneously heat the chip 10 to about 450 ° C.
가열 블록(120)을 절연성과 열전도성이 우수한 세라믹 재질로 이루어질 수 있다. 예를 들면, 가열 블록(120)은 질화알루미늄(AlN) 재질일 수 있다. 이때, 상기 열전도성은 약 170 W/m·k 이상일 수 있다. The heating block 120 may be made of a ceramic material having excellent insulation and thermal conductivity. For example, the heating block 120 may be an aluminum nitride (AlN) material. At this time, the thermal conductivity may be about 170 W / m · k or more.
가열 블록(120)의 열전도성이 우수하므로, 발열체(122)에서 발생된 열을 이용하여 칩(10)을 신속하게 가열시킬 수 있다. Since the heat block 120 has a good thermal conductivity, the chip 10 can be rapidly heated using the heat generated by the heat generating body 122.
가열 블록(120)은 진공력을 제공하기 위해 상부면까지 연장하는 제1 진공 라인(124) 및 제2 진공 라인(126)을 갖는다. The heating block 120 has a first vacuum line 124 and a second vacuum line 126 extending to the top surface to provide vacuum force.
제1 진공 라인(124)과 제2 진공 라인(126)은 서로 연결되지 않으며, 상기 진공력이 각각 제공된다. 예를 들면, 제1 진공 라인(124)은 가열 블록(120)의 가장자리 부위의 상하를 관통하고, 제2 진공 라인(126)은 가열 블록(120)의 중앙 부위의 상하를 관통한다. 특히 제1 진공 라인(124)은 가열 블록(120)의 상부면에 일정 길이로 형성된 홈(125)과 연결될 수 있다. 따라서, 제1 진공 라인(124)을 통해 제공된 진공력이 보다 넓은 범위에서 작용할 수 있다. The first vacuum line 124 and the second vacuum line 126 are not connected to each other, and the vacuum force is provided, respectively. For example, the first vacuum line 124 passes above and below the edge of the heating block 120, and the second vacuum line 126 passes above and below the center of the heating block 120. The first vacuum line 124 may be connected to the groove 125 formed on the upper surface of the heating block 120 to have a predetermined length. Thus, the vacuum force provided through the first vacuum line 124 can act in a wider range.
일 예로, 도 1 및 도 2에 도시된 바와 같이 제1 진공 라인(124)과 제2 진공 라인(126)은 베이스 블록(110)까지 연장되어 구비될 수 있다. 다른 예로, 도시되지는 않았지만, 제1 진공 라인(124)과 제2 진공 라인(126)은 베이스 블록(110)까지 연장되지 않고 가열 블록(120)에만 구비될 수도 있다. For example, as shown in FIGS. 1 and 2, the first vacuum line 124 and the second vacuum line 126 may extend to the base block 110. As another example, although not shown, the first vacuum line 124 and the second vacuum line 126 may be provided only in the heating block 120 without extending to the base block 110.
흡착판(130)은 가열 블록(120) 상에 구비된다. 흡착판(130)은 제1 진공 라인(124)의 진공력에 의해 가열 블록(120)의 상부면에 고정된다. 제1 진공 라인(124)으로 진공력을 제공하거나 상기 진공력을 해제함으로써 흡착판(130)을 교체할 수 있다. 따라서, 흡착판(130)이 손상되거나 칩(10)의 사이즈가 변경되는 경우, 흡착판(130)만을 선택적으로 교체함으로써 흡착판(130)의 손상이나 칩(10)의 사이즈 변경에 용이하게 대응할 수 있다. The attracting plate 130 is provided on the heating block 120. The suction plate 130 is fixed to the upper surface of the heating block 120 by the vacuum force of the first vacuum line 124. The suction plate 130 can be replaced by providing a vacuum force to the first vacuum line 124 or by releasing the vacuum force. Therefore, when the suction plate 130 is damaged or the size of the chip 10 is changed, only the suction plate 130 is selectively replaced, so that the suction plate 130 can be easily damaged or the size of the chip 10 can be easily changed.
또한, 흡착판(130)은 진공홀(132)을 갖는다. 진공홀(132)은 가열 블록(120)의 제2 진공 라인(126)과 연결된다. 따라서, 제2 진공 라인(126)을 통해 제공되는 진공력으로 흡착판(130) 상에 놓여지는 칩(10)을 고정할 수 있다.Further, the attracting plate 130 has a vacuum hole 132. The vacuum hole 132 is connected to the second vacuum line 126 of the heating block 120. Therefore, the chip 10 to be placed on the attracting plate 130 can be fixed by the vacuum force provided through the second vacuum line 126.
흡착판(130)으로 칩(10)을 고정한 상태에서 본딩 헤드(100)가 이동하여 칩(10)을 상기 웨이퍼 상에 적층할 수 있다. 또한, 흡착판(130)으로 상기 웨이퍼를 향해 칩(10)을 가압할 수 있다. The bonding head 100 moves while the chip 10 is fixed by the attracting plate 130 so that the chip 10 can be stacked on the wafer. In addition, the chip 10 can be pressed toward the wafer by the attracting plate 130.
본딩 헤드(100)는 냉각 라인(140)을 더 포함한다. The bonding head 100 further includes a cooling line 140.
냉각 라인(140)은 가열 블록(120)을 냉각하여 칩(10)을 냉각시킨다. 칩(10)이 냉각됨에 따라 칩(10)의 범프가 냉각되어 솔더를 형성할 수 있다. 이때, 냉각 라인(140)에 의해 칩(10)은 약 100℃로 냉각될 수 있다. The cooling line 140 cools the heating block 120 to cool the chip 10. As the chip 10 is cooled, the bumps of the chip 10 are cooled to form solder. At this time, the chip 10 can be cooled to about 100 캜 by the cooling line 140.
구체적으로, 냉각 라인(140)은 제1 냉각 라인(142)과 제2 냉각 라인(144)을 포함한다.Specifically, the cooling line 140 includes a first cooling line 142 and a second cooling line 144.
제1 냉각 라인(142)은 베이스 블록(110)에서 제2 블록(114)의 상부면까지 연장한다. 제1 냉각 라인(142)을 통해 냉각 유체를 가열 블록(120)으로 제공한다. 상기 냉각 유체의 예로는 공기, 가스 등을 들 수 있다. 상기 냉각 유체는 가열 블록(120)과 직접 접촉하여 가열 블록(120)을 냉각한다.The first cooling line 142 extends from the base block 110 to the upper surface of the second block 114. And provides the cooling fluid to the heating block 120 through the first cooling line 142. Examples of the cooling fluid include air, gas and the like. The cooling fluid directly contacts the heating block 120 to cool the heating block 120.
제2 냉각 라인(144)은 베이스 블록(110)에서 제1 블록(112)의 내부에 구비되며, 제1 블록(112)을 냉각한다. 제1 블록(112)이 냉각됨에 따라 열전도를 통해 제3 블록(116), 제2 블록(114) 및 가열 블록(120)이 냉각될 수 있다. 따라서, 제2 냉각 라인(144)은 보조적으로 가열 블록(120)을 냉각할 수 있다. The second cooling line 144 is provided inside the first block 112 in the base block 110 and cools the first block 112. As the first block 112 is cooled, the third block 116, the second block 114, and the heating block 120 can be cooled through heat conduction. Thus, the second cooling line 144 can cooperatively cools the heating block 120.
제1 냉각 라인(142)을 이용하여 가열 블록(120)을 주로 냉각하고, 제2 냉각 라인(144)을 이용하여 보조적으로 냉각한다. 따라서, 냉각 라인(140)을 이용하여 가열 블록(120)을 신속하게 냉각할 수 있다. 가열 블록(120)이 냉각됨에 따라 흡착판(130)에 고정된 칩(10)의 범프를 신속하게 냉각하여 상기 솔더를 형성할 수 있다The first cooling line 142 is used to primarily cool the heating block 120 and the second cooling line 144 to assist cooling. Accordingly, the cooling block 140 can be used to quickly cool the heating block 120. [ As the heating block 120 is cooled, the bumps of the chip 10 fixed to the attracting plate 130 can be quickly cooled to form the solder
한편, 가열 블록(120)은 냉각 라인(140), 구체적으로, 제1 냉각 라인(142)을 부분적으로 노출하는 개구(127)를 갖는다. 예를 들면 개구(127)는 가열 블록(120)의 상하를 관통하면서 측면까지 연장하는 홈일 수 있다. On the other hand, the heating block 120 has an opening 127 for partially exposing the cooling line 140, specifically, the first cooling line 142. For example, the opening 127 may be a groove extending through the upper and lower portions of the heating block 120 and extending to the side.
개구(127)는 베이스 블록(110)의 상부면까지 연장한 다수의 제1 냉각 라인(142)들 중에서 일부를 선택적으로 노출하거나, 제1 냉각 라인(142)들 각각을 부분적으로 노출할 수 있다. The openings 127 may selectively expose a portion of the plurality of first cooling lines 142 extending to the top surface of the base block 110 or may partially expose each of the first cooling lines 142 .
특히, 개구(127)가 다수의 제1 냉각 라인(142)들 중에서 일부를 선택적으로 노출하는 경우, 개구(127)들이 가열 블록(120)의 일측에 배치되면, 가열 블록(120)과 흡착판(130)의 온도 분포가 불균일하게 된다. 따라서, 칩(10)에 형성되는 솔더의 품질이 저하될 수 있다. Particularly, when the openings 127 are disposed on one side of the heating block 120, the heating block 120 and the adsorption plate (not shown) 130 are uneven in temperature distribution. Therefore, the quality of the solder formed on the chip 10 may be deteriorated.
그러므로, 개구(127)가 다수의 제1 냉각 라인(142)들 중에서 일부를 선택적으로 노출하는 경우, 개구(127)들은 가열 블록(120)의 중심을 기준으로 대칭되도록 배치될 수 있다. 이 경우, 가열 블록(120)과 흡착판(130)의 온도 분포를 상대적으로 균일하게 함으로써 칩(10)에 형성되는 솔더의 품질이 향상시킬 수 있다. The openings 127 may be arranged to be symmetrical with respect to the center of the heating block 120 when the openings 127 selectively expose some of the plurality of first cooling lines 142. [ In this case, the quality of the solder formed on the chip 10 can be improved by making the temperature distribution of the heating block 120 and the attracting plate 130 relatively uniform.
제1 냉각 라인(142)을 통해 제공된 냉각 유체 중 일부는 가열 블록(120)으로 제공되어 가열 블록(120)을 냉각하고, 상기 냉각 유체 중 나머지는 개구(127)를 통해 흡착판(130)으로 제공되어 흡착(130)을 직접 냉각한다. 즉, 제1 냉각 라인(142)을 통해 제공된 냉각 유체는 가열 블록(120)을 냉각하여 흡착판(130)을 냉각하면서 흡착판(130)을 직접 냉각할 수 있다. 또한, 제1 냉각 라인(142)을 통해 제공된 냉각 유체는 가열 블록(120)과 흡착판(130)을 냉각한 후 개구(127)를 통해 외부로 배출될 수 있다. A portion of the cooling fluid provided through the first cooling line 142 is provided to the heating block 120 to cool the heating block 120 and the remainder of the cooling fluid is supplied to the adsorption plate 130 through the opening 127 Thereby directly cooling the adsorption 130. That is, the cooling fluid provided through the first cooling line 142 can directly cool the adsorption plate 130 while cooling the adsorption plate 130 by cooling the heating block 120. The cooling fluid provided through the first cooling line 142 may be discharged to the outside through the opening 127 after cooling the heating block 120 and the adsorption plate 130.
따라서, 흡착판(130)에 고정된 칩(10)의 범프를 보다 신속하게 냉각할 수 있다. 그러므로, 가열 블록(120)에 의해 녹은 칩(10)의 범프를 급속으로 냉각하여 양호한 형상의 솔더를 형성할 수 있다. Therefore, the bumps of the chip 10 fixed to the suction plate 130 can be cooled more quickly. Therefore, the bumps of the chip 10 melted by the heating block 120 can be rapidly cooled to form a solder of a good shape.
한편, 개구(127)가 가열 블록(120)의 상하를 관통하면서 측면까지 연장하는 홈 형태를 가지므로, 가열 블록(120)을 가공하여 개구(127)를 형성하기가 용이하다. On the other hand, since the opening 127 has a groove shape extending through the upper and lower sides of the heating block 120 and extending to the side, it is easy to form the opening 127 by processing the heating block 120.
또한, 개구(127)가 가열 블록(120)의 상하를 관통하면서 측면까지 연장하는 홈 형태를 가지므로, 개구(127)에 의해 흡착판(130)이 상대적으로 많이 노출될 수 있다. 따라서, 제1 냉각 라인(142)을 통해 제공된 냉각 유체가 개구(127)를 통해 외부로 배출되면서 흡착판(130)과 접촉하는 면적이 늘어날 수 있다. 그러므로, 제1 냉각 라인(142)을 통해 제공된 냉각 유체에 의해 흡착판(130)이 직접 냉각되는 효과를 보다 높일 수 있다. Further, since the opening 127 has a groove shape extending through the heating block 120 and extending to the side surface, the suction plate 130 can be relatively exposed by the opening 127. Accordingly, the cooling fluid provided through the first cooling line 142 is discharged to the outside through the opening 127, so that the contact area with the adsorption plate 130 can be increased. Therefore, the effect of directly cooling the adsorption plate 130 by the cooling fluid provided through the first cooling line 142 can be further enhanced.
개구(127)가 제1 냉각 라인(142)의 영역 중 약 30% 미만을 노출하는 경우, 제1 냉각 라인(142)을 통해 제공된 냉각 유체가 흡착판(130)을 직접 냉각하는 효과가 상대적으로 저하될 수 있다. 따라서, 제1 냉각 라인(142)을 통해 제공된 냉각 유체가 칩(10)의 범프를 급속으로 냉각하기 어렵다.If the opening 127 exposes less than about 30% of the area of the first cooling line 142, the effect of direct cooling of the adsorption plate 130 by the cooling fluid provided through the first cooling line 142 is relatively reduced . Therefore, it is difficult for the cooling fluid provided through the first cooling line 142 to rapidly cool the bumps of the chip 10. [
개구(127)가 제1 냉각 라인(142)의 영역 중 약 70%를 초과하여 노출하는 경우, 제1 냉각 라인(142)을 통해 제공된 냉각 유체가 흡착판(130)을 직접 냉각하는 효과는 상대적으로 높아지지만 제1 냉각 라인(142)을 통해 제공된 냉각 유체가 가열 블록(120)을 냉각하는 효과가 상대적으로 저하될 수 있다. 제1 냉각 라인(142)을 통해 제공된 냉각 유체가 흡착판(130)을 직접 냉각하더라도 가열 블록(120)의 열이 흡착판(130)으로 전달될 수 있으므로, 칩(10)의 범프를 급속으로 냉각하기 어렵다. 또한, 개구(127)의 영역이 증가할수록 가열 블록(120)의 영역이 감소하므로, 가열 블록(120)의 발열량이 감소할 수 있다. 따라서, 칩(10)의 범프를 급속으로 녹이기 어렵다. The effect of direct cooling of the adsorption plate 130 by the cooling fluid provided through the first cooling line 142 when the openings 127 are exposed in excess of about 70% of the area of the first cooling line 142, The effect of cooling fluid provided through the first cooling line 142 to cool the heating block 120 may be relatively lowered. Even if the cooling fluid provided through the first cooling line 142 directly cools the adsorption plate 130, the heat of the heating block 120 can be transferred to the adsorption plate 130, so that the bumps of the chip 10 are rapidly cooled it's difficult. Further, since the area of the heating block 120 decreases as the area of the opening 127 increases, the amount of heat generated by the heating block 120 can be reduced. Therefore, it is difficult to rapidly dissolve the bumps of the chip 10.
그러므로, 개구(127)는 제1 냉각 라인(142)의 영역 중 약 30% 내지 70%를 노출할 수 있다.Therefore, the openings 127 can expose about 30% to 70% of the area of the first cooling line 142.
도 3은 본 발명의 다른 실시예에 따른 가열 블록의 개구를 설명하기 위한 단면도이고, 도 4는 도 3에 도시된 가열 블록의 개구를 설명하기 위한 평면도이다. FIG. 3 is a cross-sectional view for explaining an opening of a heating block according to another embodiment of the present invention, and FIG. 4 is a plan view for explaining an opening of the heating block shown in FIG.
도 3 및 도 4를 참조하면, 가열 블록(120)은 제1 냉각 라인(142)을 부분적으로 노출하는 개구(128)를 갖는다. 예를 들면, 개구(128)는 상하를 관통하는 관통홀일 수 있다. 이때, 제1 냉각 라인(142)을 통해 제공된 냉각 유체는 제1 냉각 라인(142)을 따라 순환하거나, 가열 블록(120)과 흡착판(130) 사이 또는 가열 블록(120)과 베이스 블록(110)의 제2 블록(114) 사이를 통해 외부로 배출될 수 있다. Referring to FIGS. 3 and 4, the heating block 120 has an opening 128 that partially exposes the first cooling line 142. For example, the opening 128 may be a through hole passing through the top and bottom. The cooling fluid supplied through the first cooling line 142 may be circulated along the first cooling line 142 or may be circulated between the heating block 120 and the adsorption plate 130 or between the heating block 120 and the base block 110, The first and second blocks 114 and 114 of the first embodiment.
개구(128)는 제1 냉각 라인(142)의 영역 중 약 30% 내지 70%를 노출할 수 있다.The opening 128 may expose about 30% to 70% of the area of the first cooling line 142.
도 5는 본 발명의 또 다른 실시예에 따른 가열 블록의 개구를 설명하기 위한 단면도이다.5 is a cross-sectional view illustrating an opening of a heating block according to another embodiment of the present invention.
도 5를 참조하면, 가열 블록(120)은 제1 냉각 라인(142)을 부분적으로 노출하는 개구(128)를 갖는다. 예를 들면, 개구(128)는 상하를 관통하는 관통홀일 수 있다. Referring to FIG. 5, the heating block 120 has an opening 128 that partially exposes the first cooling line 142. For example, the opening 128 may be a through hole passing through the top and bottom.
또한, 개구(128)와 연결되는 연결홈(129)이 더 형성될 수 있다. 연결홈(129)은 가열 블록(120)의 상부면과 흡착판(130)의 하부면 중 적어도 하나에 구비될 수 있다. Further, a connection groove 129 connected to the opening 128 may be further formed. The connection groove 129 may be provided on at least one of the upper surface of the heating block 120 and the lower surface of the attracting plate 130.
일 예로, 연결홈(129)은 도 5에 도시된 바와 같이 가열 블록(120)의 상부면에 형성될 수 있다. 다른 예로, 연결홈(129)은 흡착판(130)의 하부면에 형성될 수도 있다. 또 다른 예로, 연결홈(129)은 가열 블록(120)의 상부면과 흡착판(130)의 하부면에 각각 형성될 수도 있다. For example, the connection groove 129 may be formed on the upper surface of the heating block 120 as shown in FIG. As another example, the connection groove 129 may be formed on the lower surface of the attracting plate 130. As another example, the connection groove 129 may be formed on the upper surface of the heating block 120 and the lower surface of the attraction plate 130, respectively.
제1 냉각 라인(142)을 통해 제공된 냉각 유체는 연결홈(129)을 통해 외부로 배출될 수 있다. The cooling fluid provided through the first cooling line 142 may be discharged to the outside through the connection groove 129.
한편, 도시되지는 않았지만, 연결홈(129)은 가열 블록(120)의 하부면과 베이스 블록(110)의 상부면 중 적어도 하나에 개구(128)와 연결되도록 구비될 수도 있다. Although not shown, the connection groove 129 may be formed to be connected to the opening 128 on at least one of the lower surface of the heating block 120 and the upper surface of the base block 110.
본딩 헤드(100)는 온도 센서를 더 포함할 수 있다. 상기 온도 센서는 가열 블록(120)의 내부에 구비되며, 가열 블록(120)의 온도를 감지한다. 상기 온도 센서의 감지 결과에 따라 발열체(122)에 제공되는 전원의 온오프 및 냉각 라인(140)의 냉각 유체의 분사, 냉매 온도 및 순환을 제어할 수 있다. The bonding head 100 may further include a temperature sensor. The temperature sensor is provided inside the heating block 120 and senses the temperature of the heating block 120. The ON / OFF of the power provided to the heating element 122 and the injection of the cooling fluid in the cooling line 140, the temperature and the circulation of the coolant can be controlled according to the detection result of the temperature sensor.
한편, 상기 온도 센서는 흡착판(130)에 구비될 수도 있다. Meanwhile, the temperature sensor may be provided on the attracting plate 130.
본딩 헤드(100)는 칩(10)을 이송하여 상기 웨이퍼에 밀착시킨 상태에서 가열 블록(120)으로 칩(10)의 가열하여 칩(10)의 범프를 녹인다. 이후 본딩 헤드(100)는 냉각 라인(140)을 이용하여 상기 칩(10)을 냉각시킴으로써 칩(10)을 상기 웨이퍼에 본딩한다. 본딩 헤드(100)가 칩(10)을 급속으로 가열하고 급속으로 냉각하므로, 상기 웨이퍼와 칩(10) 사이에 우수한 품질과 양호한 형상의 솔더를 형성할 수 있다. The bonding head 100 melts the bumps of the chip 10 by heating the chips 10 with the heating block 120 in a state in which the chips 10 are transferred and adhered to the wafer. The bonding head 100 then uses the cooling line 140 to cool the chip 10 to bond the chip 10 to the wafer. Since the bonding head 100 rapidly heats and rapidly cools the chip 10, it is possible to form a solder of good quality and good shape between the wafer and the chip 10. [
본딩 헤드(100)는 상기 칩(10)의 가열과 냉각을 신속하게 수행할 수 있으므로, 칩(10)을 상기 웨이퍼에 본딩하는 공정의 효율성을 향상시킬 수 있다. The bonding head 100 can quickly perform the heating and cooling of the chip 10, so that the efficiency of the process of bonding the chip 10 to the wafer can be improved.
실험예Experimental Example
개구가 제1 냉각 라인의 영역을 노출하는 비율(%)The percentage (%) at which the opening exposes the area of the first cooling line. 냉각 소요 시간(sec)Cooling time (sec)
실험예1Experimental Example 1 00 5.45.4
실험예2Experimental Example 2 33.3333.33 3.53.5
실험예3Experimental Example 3 5050 4.64.6
실험예4Experimental Example 4 66.6666.66 4.84.8
표 1을 참조하면, 본딩 헤드(100)에서 가열 블록(120)의 개구(127)를 일정한 크기로 유지한 상태에서 베이스 블록(110)의 제1 냉각 라인(114)의 영역을 노출하는 비율을 변화시키면서 흡착판(130)을 일정 온도로 냉각하는데 소요되는 시간을 측정하였다. The ratio of exposing the area of the first cooling line 114 of the base block 110 in a state where the opening 127 of the heating block 120 is maintained at a constant size in the bonding head 100 The time required for cooling the adsorption plate 130 to a predetermined temperature was measured.
개구(127)가 제1 냉각 라인(114)의 영역을 노출하지 않는 경우, 흡착판(13)의 냉각 소요시간은 5.4 초로 가장 길었고, 개구(127)가 제1 냉각 라인(114)의 영역을 33.33%, 즉 1/3 노출하는 경우 노출하는 경우, 흡착판(13)의 냉각 소요시간은 3.5초로 가장 짧았다. 또한, 개구(127)가 제1 냉각 라인(114)의 영역을 노출하지 않는 경우보다 개구(127)가 제1 냉각 라인(114)의 영역을 노출하는 경우, 흡착판(13)의 냉각 소요시간이 짧음을 알 수 있다. When the opening 127 does not expose the area of the first cooling line 114, the time required for the cooling of the adsorption plate 13 is the longest at 5.4 seconds and the opening 127 changes the area of the first cooling line 114 to 33.33 %, That is, 1/3 exposure, the time required for cooling the adsorption plate 13 was 3.5 seconds, which is the shortest. When the opening 127 exposes the area of the first cooling line 114 compared to when the opening 127 does not expose the area of the first cooling line 114, Short is known.
즉, 개구(127)가 제1 냉각 라인(114)의 영역을 노출하는 경우, 제1 냉각 라인(142)을 통해 제공된 냉각 유체가 가열 블록(120)을 냉각하여 흡착판(130)을 간접적으로 냉각할 뿐만 아니라 흡착판(130)을 직접 냉각함으로써 흡착판(130)이 신속하게 냉각됨을 알 수 있다. That is, when the opening 127 exposes the area of the first cooling line 114, the cooling fluid provided through the first cooling line 142 cools the heating block 120 to indirectly cool the adsorption plate 130 It can be seen that the adsorption plate 130 is rapidly cooled by directly cooling the adsorption plate 130.
도 6은 본 발명의 일 실시예에 따른 본딩 장치를 설명하기 위한 개략적인 구성도이고, 도 7은 도 6에 도시된 척 구조물을 설명하기 위한 평면도이며, 도 8은 도 6에 도시된 척 플레이트를 설명하기 위한 저면도이고, 도 9는 도 6에 도시된 A 부분을 확대한 확대 단면도이다. 6 is a schematic plan view for explaining a bonding apparatus according to an embodiment of the present invention, FIG. 7 is a plan view for explaining a chuck structure shown in FIG. 6, and FIG. 8 is a cross- Fig. 9 is an enlarged cross-sectional view of the portion A shown in Fig. 6 enlarged.
도 6 내지 도 9를 참조하면, 본딩 장치(300)는 본딩 헤드(100) 및 척 구조물(200)을 포함한다. Referring to FIGS. 6 to 9, the bonding apparatus 300 includes a bonding head 100 and a chuck structure 200.
본딩 헤드(100)는 칩(10)을 척 구조물(200) 상의 이송하여 웨이퍼(20)에 본딩하기 위한 것으로, 베이스 블록(110), 가열 블록(120) 및 흡착판(130)을 포함한다. 도시되지는 않았지만, 본딩 헤드(100)는 칩(10)의 이송을 위해 수평 이동, 상하 이동, 회전, 반전 등이 가능하도록 구비될 수 있다. The bonding head 100 includes a base block 110, a heating block 120, and a sucking plate 130 for transferring the chip 10 onto the chuck structure 200 and bonding the wafer 20 to the wafer 20. Although not shown, the bonding head 100 may be provided so as to be able to horizontally move, vertically move, rotate, reverse, etc. in order to transport the chip 10.
본딩 헤드(100)에 대한 구체적인 설명은 도 1 내지 도 5에 도시된 본딩 헤드(100)와 실질적으로 동일하므로 생략한다. The detailed description of the bonding head 100 is substantially the same as that of the bonding head 100 shown in FIGS.
또한, 본딩 헤드(100)는 칩(10)과 웨이퍼(20)의 본딩을 위해 흡착판(130)이 하방을 향하도록 배치될 수 있다. Also, the bonding head 100 may be disposed such that the attraction plate 130 faces downward for bonding the chip 10 and the wafer 20.
척 구조물(200)은 웨이퍼(20)를 지지한다. 이때, 웨이퍼(20)에는 회로 패턴이 형성될 수 있다. The chuck structure 200 supports the wafer 20. At this time, a circuit pattern may be formed on the wafer 20.
척 구조물(200)은 가열 플레이트(210), 척 플레이트(220), 가이드 링(230), 클램프(240), 전원케이블(250) 및 온도 센서(260)를 포함한다. The chuck structure 200 includes a heating plate 210, a chuck plate 220, a guide ring 230, a clamp 240, a power cable 250, and a temperature sensor 260.
가열 플레이트(210)는 대략 원판 형태를 가지며, 외부로부터 인가되는 전원에 의해 열을 발생하는 발열체(212)를 내장한다. The heating plate 210 has a substantially disc shape and incorporates a heating element 212 that generates heat by a power source applied from the outside.
발열체(212)는 가열 플레이트(210)의 내측면에 일정한 패턴을 이루도록 구비될 수 있다. 발열체(212)의 예로는 전극층, 발열 코일 등을 들 수 있다. The heating element 212 may be formed to have a predetermined pattern on the inner surface of the heating plate 210. Examples of the heating element 212 include an electrode layer, a heating coil, and the like.
가열 플레이트(210)는 상부면까지 연장하는 제3 진공 라인(214) 및 제4 진공 라인(215)을 갖는다. 제3 진공 라인(214)과 제4 진공 라인(215)은 각각 가열 플레이트(210)의 하부면 또는 측면에서 상기 상부면까지 연장할 수 있다. 제3 진공 라인(214)과 제4 진공 라인(215)은 각각 서로 연결되지 않는다. 제3 진공 라인(214)은 진공 펌프(미도시)와 연결되며, 웨이퍼(20)를 흡착하기 위한 진공력을 제공한다. 제4 진공 라인(215)은 진공 펌프(미도시)와 연결되며, 척 플레이트(220)를 흡착하기 위한 진공력을 제공한다. The heating plate 210 has a third vacuum line 214 and a fourth vacuum line 215 extending to the upper surface. The third vacuum line 214 and the fourth vacuum line 215 may extend from the lower surface or side of the heating plate 210 to the upper surface, respectively. The third vacuum line 214 and the fourth vacuum line 215 are not connected to each other. The third vacuum line 214 is connected to a vacuum pump (not shown) and provides a vacuum force for adsorbing the wafer 20. The fourth vacuum line 215 is connected to a vacuum pump (not shown) and provides a vacuum force for adsorbing the chuck plate 220.
가열 플레이트(210)는 상부면에 정렬 핀(216)을 갖는다. 정렬 핀(216)은 가열 플레이트(210)와 척 플레이트(220)를 정렬하기 위한 것으로, 복수 개가 구비될 수 있다. 정렬 핀(216)은 가열 플레이트(210)의 상부면 가장자리에 배치될 수 있다. The heating plate 210 has alignment pins 216 on its upper surface. The alignment pins 216 are for aligning the heating plate 210 and the chuck plate 220, and a plurality of alignment pins may be provided. The alignment pins 216 may be disposed on the upper surface edge of the heating plate 210.
또한, 가열 플레이트(210)는 상부면 가장자리를 따라 형성된 홈(218)을 갖는다. 홈(218)은 가이드 링(230)을 고정하는데 이용될 수 있다. Further, the heating plate 210 has a groove 218 formed along the upper surface edge. The groove 218 may be used to secure the guide ring 230.
척 플레이트(220)는 대략 원판 형태를 가지며, 가열 플레이트(210) 상에 놓여진다. 척 플레이트(220)는 상부면에 웨이퍼(20)를 지지한다. The chuck plate 220 has a substantially disc shape and is placed on the heating plate 210. The chuck plate 220 supports the wafer 20 on its upper surface.
척 플레이트(220)는 웨이퍼(20)를 흡착하기 위해 제3 진공 라인(214)과 연결되는 제5 진공 라인(222)을 갖는다. The chuck plate 220 has a fifth vacuum line 222 connected to a third vacuum line 214 for adsorbing the wafer 20.
제5 진공 라인(222)은 진공 홈(222a) 및 다수의 진공 홀(222b)들을 갖는다. The fifth vacuum line 222 has a vacuum groove 222a and a plurality of vacuum holes 222b.
진공 홈(222a)은 척 플레이트(220)의 하부면에 형성된다. 예를 들면, 진공 홈(222a)은 척 플레이트(220)의 하부면 중심을 기준으로 동심원 형태를 갖는 홈들과 방사상으로 연장하는 홈들이 결합된 형상을 갖거나, 원형 홈 형상을 가질 수 있다. 이때, 진공 홈(222a)은 상기 진공력의 누설을 방지하기 위해 척 플레이트(220)의 하부면 가장자리까지 연장하지 않는다. The vacuum groove 222a is formed on the lower surface of the chuck plate 220. [ For example, the vacuum groove 222a may have a shape in which concentric grooves and radially extending grooves are coupled with each other with respect to the center of the lower surface of the chuck plate 220, or may have a circular groove shape. At this time, the vacuum groove 222a does not extend to the lower edge of the chuck plate 220 to prevent leakage of the vacuum force.
척 플레이트(220)는 가열 플레이트(210) 상에 놓여지면서 진공 홈(222a)은 가열 플레이트(210)의 상부면에 의해 한정되어 공간을 형성한다. 또한, 진공 홈(222a)은 제3 진공 라인(214)과 연결된다. The chuck plate 220 is placed on the heating plate 210 while the vacuum groove 222a is defined by the upper surface of the heating plate 210 to form a space. Further, the vacuum groove 222a is connected to the third vacuum line 214.
진공 홀(222b)들은 척 플레이트(220)를 관통하여 진공 홈(222a)이 형성된 하부면에서 척 플레이트(220)의 상부면까지 연장한다. 진공 홀(222b)은 서로 이격되도록 배열된다. 예를 들면, 진공 홀(222b)들은 동심원 형상 또는 방사 형상으로 배열될 수 있다. The vacuum holes 222b extend through the chuck plate 220 to the upper surface of the chuck plate 220 on the lower surface where the vacuum grooves 222a are formed. The vacuum holes 222b are arranged to be spaced apart from each other. For example, the vacuum holes 222b may be arranged concentrically or radially.
따라서, 제5 진공 라인(222)은 제3 진공 라인(214)과 연결되며, 제3 진공 라인(214)을 통해 제공되는 진공력으로 웨이퍼(20)를 흡착할 수 있다. Thus, the fifth vacuum line 222 is connected to the third vacuum line 214 and can vacuum the wafer 20 with the vacuum force provided through the third vacuum line 214.
또한, 척 플레이트(220)는 가열 플레이트(210)에 진공 흡착되도록 하부면에 제4 진공 라인(215)과 연결되도록 구비되는 진공 홈(223)을 갖는다. Further, the chuck plate 220 has a vacuum groove 223 connected to the fourth vacuum line 215 on the lower surface so as to be vacuum-adsorbed to the heating plate 210.
진공 홈(223)은 척 플레이트(220)의 하부면에 형성된다. 예를 들면, 진공 홈(223)은 척 플레이트(220)의 하부면 중심을 기준으로 동심원 형태를 갖는 홈들과 방사상으로 연장하는 홈들이 결합된 형상을 갖거나, 원형 홈 형상을 가질 수 있다. 이때, 진공 홈(223)은 상기 진공력의 누설을 방지하기 위해 척 플레이트(220)의 하부면 가장자리까지 연장하지 않는다. 또한, 도 8에 도시된 바와 같이 진공 홈(223)은 제5 진공 라인(222)과 서로 연결되지 않도록 형성될 수 있다. The vacuum groove 223 is formed on the lower surface of the chuck plate 220. For example, the vacuum groove 223 may have a shape in which concentric grooves and radially extending grooves are combined with each other with respect to the center of the lower surface of the chuck plate 220, or may have a circular groove shape. At this time, the vacuum groove 223 does not extend to the lower edge of the chuck plate 220 to prevent leakage of the vacuum force. Further, as shown in FIG. 8, the vacuum groove 223 may be formed so as not to be connected to the fifth vacuum line 222.
척 플레이트(220)는 가열 플레이트(210) 상에 놓여지면서 진공 홈(223)은 가열 플레이트(210)의 상부면에 의해 한정되어 공간을 형성한다. 또한, 진공 홈(223)은 제4 진공 라인(215)과 연결된다. The chuck plate 220 is placed on the heating plate 210 while the vacuum groove 223 is defined by the upper surface of the heating plate 210 to form a space. Further, the vacuum groove 223 is connected to the fourth vacuum line 215.
진공 홈(223)은 제4 진공 라인(215)과 연결되며, 제4 진공 라인(215)을 통해 제공되는 진공력으로 척 플레이트(220)가 가열 플레이트(210) 상에 밀착되어 고정될 수 있다. 그러므로, 척 플레이트(220)의 뒤틀림이나 벤딩을 최소화하여 척 플레이트(220) 상의 웨이퍼(20)를 평탄하게 지지할 수 있다. The vacuum groove 223 is connected to the fourth vacuum line 215 and the chuck plate 220 can be tightly fixed on the heating plate 210 by the vacuum force provided through the fourth vacuum line 215 . Therefore, the wafer 20 on the chuck plate 220 can be supported evenly by minimizing warping and bending of the chuck plate 220.
가열 플레이트(210)와 척 플레이트(220)는 제4 진공 라인(215) 및 진공 홈(223)을 통해 제공되는 상기 진공력에 의해 밀착된 상태를 유지할 수 있다. 그러므로, 가열 플레이트(210)와 척 플레이트(220)를 체결하기 위한 별도의 체결 부재가 불필요하다. The heating plate 210 and the chuck plate 220 can be kept in close contact by the vacuum force provided through the fourth vacuum line 215 and the vacuum groove 223. [ Therefore, a separate fastening member for fastening the heating plate 210 and the chuck plate 220 is unnecessary.
또한, 제3 진공 라인(214)과 제4 진공 라인(215)을 통해 제공되는 상기 진공력을 해제하여 가열 플레이트(210)와 척 플레이트(220)를 분리하여 교체할 수 있다. 그러므로, 척 구조물(200)의 유지 보수를 신속하게 수행할 수 있다. In addition, the vacuum force provided through the third vacuum line 214 and the fourth vacuum line 215 is released to separate and replace the heating plate 210 and the chuck plate 220. Therefore, the maintenance of the chuck structure 200 can be performed quickly.
한편, 가열 플레이트(210)의 상부면과 척 플레이트(220)의 하부면은 각각 약 10 ㎛를 초과하는 평탄도를 갖는 경우, 가열 플레이트(210)와 척 플레이트(220) 사이에 미세한 간격이 존재할 수 있다. 따라서, 가열 플레이트(210)와 척 플레이트(220) 사이를 통해 상기 진공력이 누설될 수 있다. On the other hand, if the upper surface of the heating plate 210 and the lower surface of the chuck plate 220 each have a flatness exceeding about 10 μm, there is a slight gap between the heating plate 210 and the chuck plate 220 . Therefore, the vacuum force can leak through the gap between the heating plate 210 and the chuck plate 220.
가열 플레이트(210)의 상부면과 척 플레이트(220)의 하부면은 각각 약 10 ㎛ 이하, 바람직하게는 7 ㎛ 이하의 평탄도를 갖는다. 이 경우, 가열 플레이트(210)와 척 플레이트(220)가 밀착될 수 있고, 가열 플레이트(210)와 척 플레이트(220) 사이를 통해 상기 진공력이 누설되는 것을 방지할 수 있다. The upper surface of the heating plate 210 and the lower surface of the chuck plate 220 each have a flatness of about 10 占 퐉 or less, preferably 7 占 퐉 or less. In this case, the heating plate 210 and the chuck plate 220 can be in close contact with each other, and the vacuum force can be prevented from leaking through the space between the heating plate 210 and the chuck plate 220.
척 플레이트(220)는 가열 플레이트(210)에서 발생한 열을 웨이퍼(20)로 전달한다. 이때, 칩(10)과 웨이퍼(20)의 본딩이 용이하게 이루어지도록 웨이퍼(20)는 약 140 내지 150 ℃의 온도로 유지될 수 있다. The chuck plate 220 transfers heat generated in the heating plate 210 to the wafer 20. At this time, the wafer 20 can be maintained at a temperature of about 140 to 150 ° C. so that the bonding of the chip 10 and the wafer 20 is facilitated.
가열 플레이트(210) 및 척 플레이트(220)는 각각 세라믹 재질로 이루어질 수 있다. 상기 세라믹 재질의 예로는 질화알루미늄(AlN)을 들 수 있다. 상기 질화알루미늄은 높은 열전도율을 가지므로, 발열체(212)에서 발생한 열이 가열 플레이트(210) 및 척 플레이트(220)에 균일하게 전달될 수 있다. 또한, 척 플레이트(220)의 온도 분포를 균일하게 하여 웨이퍼(20)를 균일하게 가열할 수 있다. The heating plate 210 and the chuck plate 220 may each be made of a ceramic material. An example of the ceramic material is aluminum nitride (AlN). Since the aluminum nitride has a high thermal conductivity, the heat generated in the heating body 212 can be uniformly transferred to the heating plate 210 and the chuck plate 220. In addition, the temperature distribution of the chuck plate 220 can be made uniform, and the wafer 20 can be uniformly heated.
척 플레이트(220)는 정렬 핀(216)을 수용하기 위한 수용홈(224)을 갖는다. 수용홈(224)은 가열 플레이트(210)의 정렬 핀(216)과 대응하는 위치에 형성될 수 있다. 예를 들면 수용홈(224)도 척 플레이트(220)의 가장자리에 배치될 수 있다. The chuck plate 220 has a receiving groove 224 for receiving the alignment pin 216. The receiving groove 224 may be formed at a position corresponding to the alignment pin 216 of the heating plate 210. For example, the receiving groove 224 may also be disposed at the edge of the chuck plate 220.
척 플레이트(220)가 가열 플레이트(210)의 상부면에 안착될 때, 가열 플레이트(210)의 정렬 핀(216)이 척 플레이트(220)의 수용홈(224)에 삽입될 수 있다. 따라서, 가열 플레이트(210)와 척 플레이트(220)가 정확하게 정렬될 수 있다. The alignment pin 216 of the heating plate 210 can be inserted into the receiving groove 224 of the chuck plate 220 when the chuck plate 220 is seated on the upper surface of the heating plate 210. Accordingly, the heating plate 210 and the chuck plate 220 can be accurately aligned.
상기에서 가열 플레이트(210)에 정렬 핀(216)이 구비되고, 척 플레이트(220)에 수용홈(224)이 형성되는 것으로 설명되었지만, 가열 플레이트(210)에 수용홈이형성되고, 척 플레이트(220)에 정렬 핀이 구비될 수도 있다. The heating plate 210 is provided with the alignment pins 216 and the chuck plate 220 is formed with the receiving grooves 224. The receiving grooves are formed in the heating plate 210, 220 may be provided with alignment pins.
또한, 척 플레이트(220)는 상부면 가장자리를 따라 형성된 홈(226)을 갖는다. 홈(226)은 클램프(240)가 안착되는데 이용될 수 있다. The chuck plate 220 also has a groove 226 formed along the top edge. Groove 226 may be used to secure clamp 240.
가이드 링(230)은 가열 플레이트(210)의 상면 가장자리를 따라 형성된 홈(218)에 걸리며 가열 플레이트(210)의 둘레를 가이드한다.The guide ring 230 hits the groove 218 formed along the upper edge of the heating plate 210 and guides the periphery of the heating plate 210.
구체적으로, 가이드 링(230)은 제1 걸림턱(232)을 가지며, 제1 걸림턱(232)이 홈(218)에 걸림으로서 가이드 링(230)이 가열 플레이트(210)에 장착된다. Specifically, the guide ring 230 has a first locking protrusion 232, and the guide ring 230 is mounted on the heating plate 210 by engaging the first locking protrusion 232 with the groove 218.
한편, 가이드 링(230)의 상면과 가열 플레이트(210)의 상면은 동일한 높이에 위치할 수 있다. 이 경우, 가열 플레이트(210)에 가이드 링(230)을 장착한 상태에서 척 플레이트(220)를 가열 플레이트(210)의 상부면에 용이하게 안착시킬 수 있다. Meanwhile, the upper surface of the guide ring 230 and the upper surface of the heating plate 210 may be located at the same height. In this case, the chuck plate 220 can be easily placed on the upper surface of the heating plate 210 while the guide ring 230 is mounted on the heating plate 210.
또한, 가이드 링(230)의 상면이 가열 플레이트(210)의 상면보다 높게 위치하는 경우, 척 플레이트(220)를 가열 플레이트(210)의 상부면에 안착할 때 가이드 링(230)을 정렬 기준으로 이용할 수 있다. When the upper surface of the guide ring 230 is positioned higher than the upper surface of the heating plate 210, when the chuck plate 220 is placed on the upper surface of the heating plate 210, Can be used.
클램프(240)는 척 플레이트(220)의 상부면 가장자리를 덮은 상태로 가이드 링에 고정된다. 클램프(240)는 체결 나사(242)에 의해 가이드 링(230)에 고정될 수 있다. The clamp 240 is fixed to the guide ring so as to cover the top edge of the chuck plate 220. The clamp 240 can be fixed to the guide ring 230 by a fastening screw 242.
일 예로, 클램프(240)는 다수개가 구비되어 척 플레이트(220)의 상부면 가장자리를 부분적으로 덮을 수 있다. 다른 예로, 클램프(240)가 대략 링 형태를 가지며, 척 플레이트(220)의 상부면 가장자리를 전체적으로 덮을 수도 있다. In one example, a plurality of clamps 240 may be provided to partially cover the top edge of the chuck plate 220. As another example, the clamp 240 has a generally ring shape and may cover the entire upper edge of the chuck plate 220 as a whole.
클램프(240)가 척 플레이트(220)의 상부면 가장자리를 덮은 상태로 가이드 링(230)에 고정되므로, 클램프(240)가 척 플레이트(220)를 하방으로 가압할 수 있다. 따라서, 클램프(240)는 척 플레이트(220)를 가열 플레이트(210)에 밀착시킬 수 있다. 그러므로 가열 플레이트(210)와 척 플레이트(220) 사이를 통해 상기 진공력이 누설되는 것을 추가적으로 방지할 수 있다.The clamp 240 can be pressed downward by the clamp 240 because the clamp 240 is fixed to the guide ring 230 while covering the top edge of the chuck plate 220. [ Therefore, the clamp 240 can bring the chuck plate 220 into close contact with the heating plate 210. Therefore, leakage of the vacuum force can be additionally prevented between the heating plate 210 and the chuck plate 220.
클램프(240)는 제2 걸림턱(244)을 가지며, 제2 걸림턱(244)이 척 플레이트(220)의 홈(226)에 놓여질 수 있다. 따라서, 클램프(240)의 상면과 척 플레이트(220)의 상면을 동일한 높이에 위치시킬 수 있다. 그러므로, 클램프(240)의 방해없이 웨이퍼(20)를 척 플레이트(220)의 상부면으로 안정적으로 이송하여 안착할 수 있다. The clamp 240 has a second latching jaw 244 and the second latching jaw 244 can be placed in the groove 226 of the chuck plate 220. Therefore, the upper surface of the clamp 240 and the upper surface of the chuck plate 220 can be positioned at the same height. Therefore, the wafer 20 can be reliably transferred to the upper surface of the chuck plate 220 without interference of the clamp 240 and can be seated.
가이드 링(230) 및 클램프(240)는 각각 세라믹 재질로 이루어질 수 있다. 이때, 가이드 링(230) 및 클램프(240)는 가열 플레이트(210) 및 척 플레이트(220)보다 낮은 열전도율을 갖는 세라믹 재질이 사용될 수 있다. 예를 들면, 가이드 링(230) 및 클램프(240)는 산화알루미늄(Al2O3) 재질로 이루어질 수 있다. 상기 산화알루미늄은 상기 질화알루미늄보다 열전도율이 낮으므로, 가이드 링(230) 및 클램프(240)는 가열 플레이트(210) 및 척 플레이트(220)의 측면을 통한 열손실을 방지할 수 있다. The guide ring 230 and the clamp 240 may each be made of a ceramic material. The guide ring 230 and the clamp 240 may be formed of a ceramic material having a thermal conductivity lower than that of the heating plate 210 and the chuck plate 220. For example, the guide ring 230 and the clamp 240 may be made of aluminum oxide (Al 2 O 3). Since the aluminum oxide has a thermal conductivity lower than that of aluminum nitride, the guide ring 230 and the clamp 240 can prevent heat loss through the side surfaces of the heating plate 210 and the chuck plate 220.
전원케이블(250)은 가열 플레이트(210)의 내부까지 연장하여 발열체(212)와 연결되며, 발열체(212)가 열을 발생시키기 위한 전원을 제공한다. The power cable 250 extends to the inside of the heating plate 210 and is connected to the heating body 212, and the heating body 212 provides power for generating heat.
온도 센서(260)는 가열 플레이트(210)의 외부에서 내부까지 연장하며, 발열체(212)의 온도를 측정한다. 온도 센서(260)에서 측정된 온도는 발열체(212)의 온도 제어에 이용될 수 있다. The temperature sensor 260 extends from the outside of the heating plate 210 to the inside thereof, and measures the temperature of the heating element 212. The temperature measured by the temperature sensor 260 may be used for temperature control of the heating element 212. [
온도 센서(260)의 예로는 열전대를 들 수 있다. An example of the temperature sensor 260 is a thermocouple.
상기 척 구조물(200)은 웨이퍼(20)를 흡착하기 위한 진공력으로 가열 플레이트(210)와 척 플레이트(220)를 서로 밀착시킬 수 있다. 따라서, 가열 플레이트(210)와 척 플레이트(220)를 체결하기 위한 별도의 체결 부재가 불필요하다. The chuck structure 200 can bring the heating plate 210 and the chuck plate 220 into close contact with each other with a vacuum force for attracting the wafer 20. Therefore, a separate fastening member for fastening the heating plate 210 and the chuck plate 220 is unnecessary.
또한, 상기 진공력만을 해제하여 가열 플레이트(210)와 척 플레이트(220)를 분리하여 교체할 수 있다. 그러므로, 척 구조물(200)의 유지 보수를 신속하게 수행할 수 있다. Further, only the vacuum force is released, and the heating plate 210 and the chuck plate 220 can be separated and replaced. Therefore, the maintenance of the chuck structure 200 can be performed quickly.
본딩 장치(300)는 척 구조물(200)을 이용하여 웨이퍼(20)를 고정하여 일정 온도로 가열한 상태에서 본딩 헤드(100)로 칩(10)을 이송하여 웨이퍼(20)에 밀착시킨 후, 본딩 헤드(100)로 칩(10)의 가열하여 칩(10)의 범프를 녹인 후 칩(10)을 냉각시킴으로써 칩(10)을 웨이퍼(20)에 본딩한다. 따라서, 칩(10)과 웨이퍼(20) 사이에 우수한 품질과 양호한 형상의 솔더를 형성할 수 있다. 또한, 칩(10)의 가열과 냉각을 신속하게 수행할 수 있으므로, 본딩 장치(300)를 이용한 칩(10)을 웨이퍼(20)에 본딩하는 공정의 효율성을 향상시킬 수 있다.The bonding apparatus 300 fixes the wafer 20 using the chuck structure 200 and transfers the chip 10 to the wafer 20 while the chip 10 is heated to a predetermined temperature by the bonding head 100, The chip 10 is bonded to the wafer 20 by melting the bumps of the chip 10 by heating the chip 10 with the bonding head 100 and then cooling the chip 10. Therefore, solder of good quality and good shape can be formed between the chip 10 and the wafer 20. [ In addition, since the heating and cooling of the chip 10 can be performed quickly, the efficiency of the process of bonding the chip 10 using the bonding apparatus 300 to the wafer 20 can be improved.
본 발명에 따른 본딩 헤드는 유지 보수 비용을 절감할 수 있고, 웨이퍼와 칩을 신속하고 안정적으로 본딩할 수 있다. 따라서, 상기 본딩 헤드를 이용하는 본딩 공정의 효율 및 생산성을 향상시킬 수 있다. The bonding head according to the present invention can reduce the maintenance cost and can bond the wafer and the chip quickly and stably. Therefore, efficiency and productivity of the bonding process using the bonding head can be improved.
또한, 본 발명에 따른 본딩 장치는 척 구조물에서 진공력으로 가열 플레이트와 척 플레이트를 밀착시킬 수 있다. 상기 진공력만을 해제하여 상기 가열 플레이트와 상기 척 플레이트를 분리할 수 수리 또는 교체가 가능하므로, 상기 척 구조물에 대한 유지 보수를 신속하게 수행할 수 있다.In addition, the bonding apparatus according to the present invention can bring the heating plate and the chuck plate into close contact with each other by vacuum force in the chuck structure. The heating plate and the chuck plate can be separated from each other by releasing only the vacuum force, so that maintenance or replacement of the chuck structure can be performed quickly.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the present invention as defined by the following claims. It can be understood that it is possible.

Claims (15)

  1. 베이스 블록;Base block;
    상기 베이스 블록 상에 구비되고, 외부로부터 인가되는 전원에 의해 열을 발생하여 칩의 범프를 가열하기 위한 발열체를 내장하며, 진공력을 제공하기 위해 상부면까지 연장하는 제1 진공 라인 및 제2 진공 라인을 갖는 가열 블록;A first vacuum line and a second vacuum line, which are provided on the base block and extend to the upper surface to provide a vacuum force, a heating element for generating heat by a power source applied from the outside to heat the bumps of the chip, A heating block having a line;
    상기 가열 블록 상에 상기 제1 진공 라인의 진공력에 의해 고정되며, 칩을 진공력으로 고정하기 위해 상기 제2 진공 라인과 연결되는 진공홀을 갖는 흡착판; 및An adsorption plate fixed on the heating block by a vacuum force of the first vacuum line and having a vacuum hole connected to the second vacuum line for fixing the chip by a vacuum force; And
    상기 베이스 블록의 내부에서 상기 베이스 블록의 상부면까지 연장하며, 상기 가열 블록으로 냉각 유체를 제공하여 상기 칩의 범프를 냉각시킴으로써 솔더를 형성하기 위한 냉각 라인을 포함하고, A cooling line extending from the interior of the base block to an upper surface of the base block and providing cooling fluid to the heating block to cool the bumps of the chip to form solder,
    상기 가열 블록은 상기 칩의 범퍼를 추가적으로 냉각하기 위해 상기 냉각 라인의 냉각 유체가 상기 흡착판으로도 제공되도록 상기 냉각 라인을 부분적으로 노출하는 개구를 갖는 것을 특징으로 하는 본딩 헤드. Wherein the heating block has an opening that partially exposes the cooling line so that cooling fluid in the cooling line is also provided to the adsorption plate to further cool the bumper of the chip.
  2. 제1항에 있어서, 상기 개구는 상기 냉각 라인의 영역 중 30% 내지 70%를 노출하는 것을 특징으로 하는 본딩 헤드. The bonding head of claim 1, wherein the opening exposes between 30% and 70% of the area of the cooling line.
  3. 제1항에 있어서, 상기 개구는 상기 가열 블록의 내측에서 측면까지 연장하는 홈인 것을 특징으로 하는 본딩 헤드.The bonding head according to claim 1, wherein the opening is a groove extending from the inside to the side of the heating block.
  4. 제1항에 있어서, 상기 개구는 상기 가열 블록의 상하를 관통하는 관통홀인 것을 특징으로 하는 본딩 헤드.The bonding head according to claim 1, wherein the opening is a through hole penetrating the upper and lower portions of the heating block.
  5. 제4항에 있어서, 상기 가열 블록의 상부면과 상기 흡착판의 하부면 중 적어도 하나에 상기 관통홀과 연결되도록 형성되며, 상기 냉각 라인을 통해 공급된 냉각 유체를 상기 가열 블록과 상기 흡착판 사이를 통해 외부로 배출하기 위한 연결홈을 더 포함하는 것을 특징으로 하는 본딩 헤드. The heat exchanger according to claim 4, further comprising: at least one of an upper surface of the heating block and a lower surface of the attracting plate, the cooling fluid being connected to the through hole, And a connection groove for discharging the bonding head to the outside.
  6. 제1항에 있어서, 상기 흡착판의 손상이나 상기 칩 사이즈의 변경에 따라 상기 흡착판은 교체 가능한 것을 특징으로 하는 본딩 헤드.The bonding head according to claim 1, wherein the attracting plate is replaceable according to damage of the attracting plate or a change of the chip size.
  7. 제1항에 있어서, 상기 베이스 블록은,The apparatus as claimed in claim 1,
    금속 재질로 이루어지는 제1 블록; 및A first block made of a metal material; And
    상기 제1 블록 상에 구비되며, 가열 블록에서 발생한 열이 상기 제1 블록으로 전달되는 것을 감소시키기 위해 상기 가열 블록보다 낮은 열전도성을 갖는 세라믹 재질로 이루어지는 제2 블록을 포함하는 것을 특징으로 하는 본딩 헤드.And a second block provided on the first block and made of a ceramic material having a thermal conductivity lower than that of the heating block in order to reduce the transfer of heat generated in the heating block to the first block. head.
  8. 제7항에 있어서, 상기 베이스 블록은,8. The base block according to claim 7,
    상기 제1 블록과 상기 제2 블록 사이에 구비되며, 상기 제2 블록의 열이 상기 제1 블록으로 전달되는 것을 감소시키기 위해 세라믹 재질로 이루어지는 제3 블록을 더 포함하는 것을 특징으로 하는 본딩 헤드. And a third block provided between the first block and the second block and made of a ceramic material to reduce the transfer of the heat of the second block to the first block.
  9. 제1항에 있어서, 상기 가열 블록의 내부에 구비되며 상기 가열 블록의 온도를 감지하기 위한 온도 센서를 더 포함하는 것을 특징으로 하는 본딩 헤드. The bonding head according to claim 1, further comprising a temperature sensor provided inside the heating block for sensing a temperature of the heating block.
  10. 웨이퍼를 지지하는 척 구조물; 및A chuck structure for supporting a wafer; And
    베이스 블록과, 상기 베이스 블록 상에 구비되고, 외부로부터 인가되는 전원에 의해 열을 발생하여 칩의 범프를 가열하기 위한 발열체를 내장하며, 진공력을 제공하기 위해 상부면까지 연장하는 제1 진공 라인 및 제2 진공 라인을 갖는 가열 블록과, 상기 가열 블록 상에 상기 제1 진공 라인의 진공력에 의해 고정되며, 칩을 진공력으로 고정하기 위해 상기 제2 진공 라인과 연결되는 진공홀을 갖는 흡착판 및 상기 베이스 블록의 내부에서 상기 베이스 블록의 상부면까지 연장하며, 상기 가열 블록으로 냉각 유체를 제공하여 상기 칩의 범프를 냉각시킴으로써 솔더를 형성하기 위한 냉각 라인을 포함하며, 상기 흡착판이 하방을 향하도록 상기 척 구조물의 상방에 이동 가능하도록 배치되며, 상기 칩을 상기 웨이퍼에 본딩하는 본딩 헤드로 이루어지며, A first vacuum line provided on the base block and including a heating element for generating heat by a power source applied from the outside to heat the bumps of the chip, And a vacuum block having a vacuum hole connected to the second vacuum line for fixing the chip by a vacuum force, the suction block being fixed by the vacuum force of the first vacuum line on the heating block, And a cooling line extending from the inside of the base block to an upper surface of the base block to form a solder by cooling the bumps of the chip by providing a cooling fluid to the heating block, And a bonding head disposed to be movable above the chuck structure to bond the chip to the wafer,
    상기 가열 블록은 상기 칩의 범퍼를 추가적으로 냉각하기 위해 상기 냉각 라인의 냉각 유체가 상기 흡착판으로도 제공되도록 상기 냉각 라인을 부분적으로 노출하는 개구를 갖는 것을 특징으로 하는 본딩 장치. Wherein the heating block has an opening that partially exposes the cooling line so that cooling fluid of the cooling line is also provided to the adsorption plate to further cool the bumper of the chip.
  11. 제10항에 있어서, 상기 척 구조물은, The chuck structure according to claim 10,
    외부로부터 인가되는 전원에 의해 열을 발생하는 발열체를 내장하며, 진공력을 제공하기 위해 상부면까지 연장하는 제3 진공 라인 및 제4 진공 라인을 갖는 가열 플레이트; 및A heating plate having a heating element that generates heat by an external power source and has a third vacuum line and a fourth vacuum line extending to the upper surface to provide a vacuum force; And
    상기 가열 플레이트 상에 놓여지며, 상면에 웨이퍼를 지지하며, 상기 웨이퍼가 가열되도록 상기 가열 플레이트에서 발생한 열을 상기 웨이퍼로 전달하고, 상기 진공력으로 상기 웨이퍼를 흡착하기 위해 상기 제3 진공 라인과 연결되는 제5 진공 라인 및 상기 가열 플레이트에 진공 흡착되도록 하부면에 상기 제4 진공 라인과 연결되도록 구비되며, 상기 가열 플레이트의 상부면에 의해 한정되어 공간을 형성하는 진공 홈을 갖는 척 플레이트를 포함하는 것을 특징으로 하는 본딩 장치. A second vacuum line connected to the third vacuum line for holding the wafer on the upper surface and transferring heat generated in the heating plate to the wafer to heat the wafer, And a chuck plate connected to the fourth vacuum line on a lower surface so as to be vacuum-adsorbed on the heating plate and having a vacuum groove defined by the upper surface of the heating plate and forming a space, And the bonding apparatus.
  12. 제11항에 있어서, 상기 척 구조물에서 상기 가열 플레이트의 상부면과 상기 척 플레이트의 하부면 중 어느 한 면에는 정렬 핀이 구비되고, 나머지 한 면에는 상기 정렬 핀을 수용하여 상기 가열 플레이트와 상기 척 플레이트를 정렬하기 위한 수용홈이 구비되는 것을 특징으로 하는 본딩 장치. The chuck structure according to claim 11, wherein the chuck structure is provided with an alignment pin on one of an upper surface of the heating plate and a lower surface of the chuck plate, and the other surface receives the alignment pin, And a receiving groove for aligning the plate is provided.
  13. 제11항에 있어서, 상기 척 구조물은, The chuck structure according to claim 11,
    상기 가열 플레이트의 상면 가장자리를 따라 형성된 홈에 걸리며 상기 가열 플레이트의 둘레를 가이드하는 가이드 링: 및A guide ring which is engaged with a groove formed along the upper surface edge of the heating plate and guides the periphery of the heating plate;
    상기 척 플레이트의 상부면 가장자리를 덮은 상태로 상기 가이드 링에 고정되며, 상기 척 플레이트를 상기 가열 플레이트에 밀착시키는 고정시키는 클램프를 더 포함하는 것을 특징으로 하는 본딩 장치. Further comprising a clamp fixed to the guide ring so as to cover the top edge of the chuck plate and fixing the chuck plate to the heating plate.
  14. 제13항에 있어서, 상기 클램프의 상면과 상기 척 플레이트의 상면이 동일한 높이에 위치하도록 상기 클램프는 상기 척 플레이트의 상면 가장자리를 따라 형성된 홈에 놓여지는 것을 특징으로 하는 본딩 장치. 14. The bonding apparatus according to claim 13, wherein the clamp is placed in a groove formed along a top edge of the chuck plate so that the top surface of the clamp and the top surface of the chuck plate are at the same height.
  15. 제13항에 있어서, 상기 가열 플레이트 및 상기 척 플레이트의 측면을 통한 열손실을 방지하기 위해 상기 가이드 링 및 상기 클램프는 상기 가열 플레이트 및 상기 척 플레이트보다 열전도율이 낮은 재질로 이루어지는 것을 특징으로 하는 본딩 장치.14. The bonding apparatus according to claim 13, wherein the guide ring and the clamp are made of a material having a lower thermal conductivity than the heating plate and the chuck plate to prevent heat loss through the side surfaces of the heating plate and the chuck plate. .
PCT/KR2018/006275 2017-06-27 2018-06-01 Bonding head and bonding device including same WO2019004620A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0080984 2017-06-27
KR1020170080984A KR102439617B1 (en) 2017-06-27 2017-06-27 Bonding head and apparatus for bonding chips having the bonding head

Publications (1)

Publication Number Publication Date
WO2019004620A1 true WO2019004620A1 (en) 2019-01-03

Family

ID=64741676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006275 WO2019004620A1 (en) 2017-06-27 2018-06-01 Bonding head and bonding device including same

Country Status (3)

Country Link
KR (1) KR102439617B1 (en)
TW (1) TWI760499B (en)
WO (1) WO2019004620A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112992730A (en) * 2021-02-04 2021-06-18 中国电子科技集团公司第二十四研究所 Semi-closed eutectic chip mounting device and eutectic chip mounting method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI768640B (en) * 2020-09-08 2022-06-21 旺矽科技股份有限公司 Metal Carriers and Wafer Carriers
KR102435062B1 (en) * 2021-12-20 2022-08-22 주식회사 미코세라믹스 Bonding head and apparatus of boding chips including the same
CN114446833B (en) * 2022-01-25 2023-03-24 北京北方华创微电子装备有限公司 Bearing device and semiconductor process equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110081917A (en) * 2010-01-09 2011-07-15 주식회사 리빙케어 Chuck system for wafer dicing by cooling control
JP2011243860A (en) * 2010-05-20 2011-12-01 Renesas Electronics Corp Manufacturing method of semiconductor device
KR20120040368A (en) * 2010-10-19 2012-04-27 에스케이하이닉스 주식회사 Heater block for wire bonding apparatus
KR20130049819A (en) * 2003-06-30 2013-05-14 램 리써치 코포레이션 Substrate support having dynamic temperature control
JP2016127170A (en) * 2015-01-06 2016-07-11 東京エレクトロン株式会社 Mounting table and substrate processing apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003078299A (en) * 2001-09-06 2003-03-14 Toshiba Corp Stage device, mounting apparatus and method of manufacturing electric component
JP2003209142A (en) 2002-01-17 2003-07-25 Sony Corp Bonding head and packaging unit
JP4014481B2 (en) * 2002-04-30 2007-11-28 東レエンジニアリング株式会社 Bonding method and apparatus
JP2007329306A (en) * 2006-06-08 2007-12-20 Matsushita Electric Ind Co Ltd Thermocompression bonding apparatus
JP4808283B1 (en) * 2010-06-30 2011-11-02 株式会社新川 Electronic component mounting apparatus and electronic component mounting method
US8177862B2 (en) * 2010-10-08 2012-05-15 Taiwan Semiconductor Manufacturing Co., Ltd Thermal compressive bond head
JP6088835B2 (en) * 2012-09-28 2017-03-01 東京応化工業株式会社 Bonding apparatus and bonding method
CH707480B1 (en) * 2013-01-21 2016-08-31 Besi Switzerland Ag Bonding head with a heating and cooling suction device.
US9576928B2 (en) * 2015-02-27 2017-02-21 Kulicke And Soffa Industries, Inc. Bond head assemblies, thermocompression bonding systems and methods of assembling and operating the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130049819A (en) * 2003-06-30 2013-05-14 램 리써치 코포레이션 Substrate support having dynamic temperature control
KR20110081917A (en) * 2010-01-09 2011-07-15 주식회사 리빙케어 Chuck system for wafer dicing by cooling control
JP2011243860A (en) * 2010-05-20 2011-12-01 Renesas Electronics Corp Manufacturing method of semiconductor device
KR20120040368A (en) * 2010-10-19 2012-04-27 에스케이하이닉스 주식회사 Heater block for wire bonding apparatus
JP2016127170A (en) * 2015-01-06 2016-07-11 東京エレクトロン株式会社 Mounting table and substrate processing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112992730A (en) * 2021-02-04 2021-06-18 中国电子科技集团公司第二十四研究所 Semi-closed eutectic chip mounting device and eutectic chip mounting method

Also Published As

Publication number Publication date
TW201906062A (en) 2019-02-01
KR102439617B1 (en) 2022-09-05
KR20190001271A (en) 2019-01-04
TWI760499B (en) 2022-04-11

Similar Documents

Publication Publication Date Title
WO2019093609A1 (en) Chuck plate, chuck structure having chuck plate, and bonding device having chuck structure
WO2019004620A1 (en) Bonding head and bonding device including same
WO2014109526A1 (en) Apparatus and method for continuous processing of semiconductor wafer
WO2017142312A1 (en) Element inspection device and element pressurizing tool used therefor
WO2019017670A1 (en) Apparatus and method for manufacturing led module
WO2021100960A1 (en) Laser reflow device and laser reflow method
WO2022124780A1 (en) Bonding head and bonding device having same
WO2018012783A1 (en) Chuck plate for semiconductor post-processing, chuck structure having same chuck plate and chip separating apparatus having same chuck structure
WO2014109528A1 (en) Method for continuous processing of semiconductor wafer
WO2016204424A1 (en) Hybrid substrate processing system for dry and wet process and substrate processing method thereof
WO2020159341A1 (en) Multibeam laser debonding device and method
WO2019190031A1 (en) Micro-element transfer device and micro-element transfer method
WO2018174355A1 (en) Bonding head and bonding device having same
WO2014084472A1 (en) Wafer etching system and wafer etching process using same
WO2019177337A1 (en) Transfer apparatus and method for transferring light-emitting diode chip
WO2020204394A1 (en) Microelement adsorption picker
WO2022045861A1 (en) Element repair apparatus
WO2017007065A1 (en) Autoclave device capable of removing bubbles in multiple stages
WO2020184859A1 (en) Transfer device and method for transferring semiconductor chip
WO2019203510A1 (en) Apparatus for manufacturing frame-integrated mask
WO2020159338A1 (en) Laser head module of laser debonding device
WO2009134088A2 (en) Holder stage
WO2018066904A1 (en) Substrate-processing device and substrate-processing method using same
WO2022235005A1 (en) Probe array gripper and probe array bonding equipment comprising same
WO2019117657A1 (en) Light sintering device and cooling method for light sintering device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18823852

Country of ref document: EP

Kind code of ref document: A1