WO2019003294A1 - 車両制御装置 - Google Patents
車両制御装置 Download PDFInfo
- Publication number
- WO2019003294A1 WO2019003294A1 PCT/JP2017/023539 JP2017023539W WO2019003294A1 WO 2019003294 A1 WO2019003294 A1 WO 2019003294A1 JP 2017023539 W JP2017023539 W JP 2017023539W WO 2019003294 A1 WO2019003294 A1 WO 2019003294A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- traveling
- environment
- traveling environment
- control device
- Prior art date
Links
- 238000001514 detection method Methods 0.000 claims description 22
- 238000004891 communication Methods 0.000 claims description 19
- 230000004044 response Effects 0.000 abstract description 13
- 238000000034 method Methods 0.000 description 29
- 230000008569 process Effects 0.000 description 11
- 230000001133 acceleration Effects 0.000 description 10
- 238000012545 processing Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 4
- 230000010365 information processing Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000008014 freezing Effects 0.000 description 3
- 238000007710 freezing Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000012790 confirmation Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007562 laser obscuration time method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T7/00—Brake-action initiating means
- B60T7/12—Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D6/00—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
Definitions
- the present invention relates to a vehicle control device for autonomous driving.
- Patent Document 1 discloses an automatically driven vehicle which extracts a non-operation point of automatic driving in a searched route, calculates a degree of continuation of the automatic driving, and selects a route to be traveled from the searched route based on the calculated degree of continuity.
- a navigation device is described.
- the inoperative points include, for example, a sharp curve, an intersection, a junction, a branch, a lane decrease, a lane increase, and a sudden cant.
- the inactive point described in Patent Document 1 is, as its name suggests, a point that can be statically determined from, for example, the state of the road included in the map information.
- the appropriateness of traveling by automatic driving also depends on the traveling environment which changes in a short time, such as weather conditions. Therefore, even when traveling on the same route, for example, there are cases where automatic driving can be started without problems and continued depending on the driving environment that changes due to weather conditions etc.
- the possibility of takeover to manual driving It may be desirable to alert the driver about
- the present invention has been made in view of the above conventional example, and it is an object of the present invention to provide a vehicle control apparatus that determines the traveling environment in the traveling route of a vehicle and calls the driver's attention about the start or continuation of automatic driving. I assume.
- the present invention has the following configuration.
- a vehicle control apparatus for controlling the traveling of a vehicle, comprising: Environment specifying means for specifying a traveling environment of the vehicle; A control unit configured to control the traveling of the vehicle according to the traveling environment specified by the environment specifying unit when the automatic driving mode is set; And output means for notifying the driver, The control means determines whether the traveling environment is a predetermined traveling environment, and when it is determined that the predetermined traveling environment is determined, the output means outputs a notification of the result of the determination. It is characterized by
- a vehicle control device capable of judging the traveling environment in the traveling route of the vehicle and alerting the driver of the start or continuation of the automatic driving.
- FIG. 1 is an explanatory view showing the configuration of a vehicle system.
- FIG. 2 is a flowchart showing a procedure of presetting of the automatic operation mode.
- FIG. 3 is a flowchart showing a procedure of presetting of the automatic operation mode.
- FIG. 4 is a flowchart showing the procedure of determining the traveling environment while traveling.
- FIG. 5 is a flow chart showing a procedure of setting an automatic driving mode while traveling.
- FIG. 6 is a flowchart showing another example of the procedure of setting the automatic operation mode while traveling.
- FIG. 1 is a block diagram of a control device for a vehicle according to an embodiment of the present invention, which controls a vehicle 1.
- the vehicle 1 is schematically shown in a plan view and a side view.
- the vehicle 1 is a sedan-type four-wheeled passenger car as an example.
- the control device of FIG. 1 includes a control unit 2.
- the control unit 2 includes a plurality of ECUs 20 to 29 communicably connected by an in-vehicle network.
- Each ECU includes a processor represented by a CPU, a storage device such as a semiconductor memory, an interface with an external device, and the like.
- the storage device stores programs executed by the processor, data used by the processor for processing, and the like.
- Each ECU may include a plurality of processors, storage devices, interfaces, and the like.
- each of the ECUs 20 to 29 takes charge of will be described below.
- the number of ECUs and the functions to be in charge can be appropriately designed, and can be subdivided or integrated as compared with the present embodiment.
- the ECU 20 executes control related to automatic driving of the vehicle 1.
- automatic driving at least one of steering of the vehicle 1 and acceleration / deceleration is automatically controlled.
- the ECU 21 controls the electric power steering device 3.
- the electric power steering apparatus 3 includes a mechanism for steering the front wheels in response to a driver's driving operation (steering operation) on the steering wheel 31. Further, the electric power steering device 3 includes a motor for assisting a steering operation or a driving force for automatically steering the front wheels, a sensor for detecting a steering angle, and the like.
- the ECU 21 automatically controls the electric power steering device 3 in response to an instruction from the ECU 20 to control the traveling direction of the vehicle 1.
- the ECUs 22 and 23 perform control of detection units 41 to 43 for detecting the surrounding situation of the vehicle and perform information processing of detection results.
- the detection unit 41 is a camera for capturing an image in front of the vehicle 1 (hereinafter, may be referred to as a camera 41), and in the case of the present embodiment, two are provided on the roof front of the vehicle 1. By analyzing the image captured by the camera 41, it is possible to extract the contour of the target and extract the lane line (white line etc.) on the road.
- the detection unit 42 is a lidar (laser radar) (hereinafter, may be referred to as a lidar 42), detects a target around the vehicle 1, or measures the distance to the target.
- a lidar 42 laser radar
- the detection unit 43 is a millimeter wave radar (hereinafter, may be referred to as a radar 43), detects a target around the vehicle 1, and measures the distance to the target.
- five radars 43 are provided, one at the center of the front of the vehicle 1, one at each of the front corners, and one at each of the rear corners.
- the ECU 22 performs control of one camera 41 and each lidar 42 and information processing of detection results.
- the ECU 23 controls the other camera 41 and each radar 43 and performs information processing of detection results.
- the reliability of the detection results can be improved by providing two sets of devices for detecting the surrounding environment of the vehicle, and by providing different types of detection units such as cameras, lidars and radars, analysis of the environment around the vehicle Can be done in many ways.
- These detection units 41, 42, 43 may be referred to as sensors outside the vehicle (external sensors).
- the outside sensor may include other sensors such as an outside air temperature sensor for specifying other outside environment.
- the detection result of the sensor it may be processed by ECU22 or ECU23.
- the detection result by the external sensor can be used by another ECU, for example, the ECU 20 or the like, to specify a traveling environment.
- the ECU 24 controls the gyro sensor 5, the GPS sensor 24b, and the communication device 24c, and performs information processing of a detection result or a communication result.
- the gyro sensor 5 detects the rotational motion of the vehicle 1, for example, the angular velocity around the longitudinal axis of the vehicle 1, or in addition to that, the angular velocity around the vertical and horizontal axes.
- the ECU 24 can also acquire the yaw rate (yaw angular velocity) of the vehicle 1 from the detection result of the gyro sensor 5.
- the course of the vehicle 1 can be determined from the detection result of the gyro sensor 5, the wheel speed, and the like.
- the GPS sensor 24 b detects the current position of the vehicle 1.
- the communication device 24 c performs wireless communication with a server that provides map information and traffic information, and acquires such information. Furthermore, external information such as weather information and road surface information related to the road surface condition can be acquired via the communication device 24c.
- the weather information and the road surface information are not only information on the vicinity of the current position of the vehicle, but when a travel route is set, it is also possible to acquire information on an area along the route.
- the ECU 24 can access a database 24a of map information built in a storage device, and the ECU 24 performs a route search from a current location to a destination.
- the ECU 24 may process output signals of an acceleration sensor for detecting acceleration in the left and right and front and back directions (or further in the vertical direction) of the vehicle 1 and an angular acceleration sensor around those axes.
- These sensors may be provided in the same sensor unit as the gyro sensor 5.
- These sensors, the wheel speed sensor 7c described later, and the like are sensors inside the vehicle that detect the state of the vehicle 1 itself, and are also generically referred to as internal sensors. Further, the yaw rate and acceleration obtained from these sensors are handed over to another ECU, for example, the ECU 20 via a bus, and can be used to specify a traveling environment.
- the ECU 25 includes a communication device 25a for inter-vehicle communication.
- the communication device 25a performs wireless communication with other vehicles in the vicinity to exchange information between the vehicles.
- the communication device 25a can also be used to acquire the above-described external information.
- the ECU 26 controls the power plant 6.
- the power plant 6 is a mechanism that outputs a driving force for rotating the drive wheels of the vehicle 1 and includes, for example, an engine and a transmission.
- the ECU 26 controls the output of the engine in response to the driver's driving operation (accelerator operation or acceleration operation) detected by the operation detection sensor 7a provided on the accelerator pedal 7A, for example, or the vehicle speed detected by the wheel speed sensor 7c.
- the transmission gear is switched based on information such as
- the ECU 26 automatically controls the power plant 6 in response to an instruction from the ECU 20 to control acceleration / deceleration of the vehicle 1.
- the wheel speed (or information obtained from other detection signals) obtained from the signal of the wheel speed sensor 7a may be used for specific processing of the traveling environment by another ECU such as the ECU 20. .
- the ECU 27 controls a lamp (headlight, taillight, etc.) including the direction indicator 8 (turner).
- the turn indicator 8 is provided at the front, the door mirror and the rear of the vehicle 1.
- the ECU 28 controls the input / output device 9.
- the input / output device 9 outputs information to the driver and accepts input of information from the driver.
- the voice output device 91 reports information to the driver by voice.
- the display device 92 notifies the driver of the information by displaying an image.
- the display device 92 is disposed, for example, on the surface of the driver's seat, and constitutes an instrument panel or the like.
- voice and a display were illustrated here, you may alert
- the input device 93 is disposed at a position where the driver can operate, and is a switch group or a touch panel that gives an instruction to the vehicle 1, but a voice input device may also be included.
- the ECU 29 controls the brake device 10 and a parking brake (not shown).
- the brake device 10 is, for example, a disc brake device, and is provided on each wheel of the vehicle 1 and decelerates or stops the vehicle 1 by adding resistance to the rotation of the wheel.
- the ECU 29 controls the operation of the brake device 10 in response to the driver's driving operation (brake operation) detected by the operation detection sensor 7b provided on the brake pedal 7B, for example.
- the ECU 29 automatically controls the brake device 10 in response to an instruction from the ECU 20 to control the deceleration and stop of the vehicle 1.
- the brake device 10 and the parking brake can also be operated to maintain the vehicle 1 in the stopped state.
- the transmission of the power plant 6 is provided with a parking lock mechanism, it can be operated to maintain the vehicle 1 in the stopped state.
- Example of Automatic Driving Setting Procedure Control related to the automatic driving of the vehicle 1 executed by the ECU 20 will be described.
- the ECU 20 automatically controls the traveling of the vehicle 1 toward the destination according to the guidance route searched by the ECU 24.
- the ECU 20 executes a process according to the procedure of FIG. 2 before starting traveling by automatic driving.
- the traveling environment of the guidance route that is, the planned traveling route is specified, and if there is a predetermined traveling environment during the travel, the driver is informed of that and prompts to decide whether to start the automatic driving.
- the automatic driving is started according to the determination input by the driver, or the automatic driving is canceled and the manual driving is performed.
- automatic driving is a technology which automates all or at least one of driving, braking, and steering, and is different from so-called driving support such as an antilock brake and a skid prevention function. Driving support is provided even when automatic driving is not performed.
- FIG. 2 is a flowchart showing a control procedure implemented by executing a program stored in the memory of the ECU 20, for example. This procedure is executed, for example, when the driver gets into the vehicle 1 and turns on the start switch, and then the automatic driving is set by default or when the driver sets the automatic driving by manual operation.
- the driver receives an input of a destination set using the input / output device (also referred to as an operation unit) 9 (S200).
- a travel route (or a travel) to the set destination is determined with reference to the current position and the map information (S202).
- a message or image prompting the user to confirm the travel route is displayed on the input / output device 9 (S204), and it is determined whether to re-search the travel route based on the driver's input thereto. (S206). If the re-searching is selected, the process returns to step S202 to re-search the traveling route.
- a plurality of route candidates may be searched for in step S202, and the driver may select among the candidates. At this time, the driver may be made to select an option such as using a transit point or an expressway.
- external information such as weather information and road information, which is the basis of the travel environment for the travel route, is collected using the communication device 24c (S208).
- Weather information and road information are identified, for example, in geographical units.
- the map is divided in advance into predetermined geographical units, and the server stores and manages weather information and road information for each of the geographical units. Then, the ECU 20 requests external information, such as weather information and road information, from the server for the geographical unit including the determined travel route.
- the ECU 20 acquires external environment information indicating the current external condition of the vehicle, and vehicle state information (S210).
- External environment information is acquired to determine the possibility that the driving environment affects the automatic driving.
- the traveling environment that affects automatic driving includes, for example, road surface conditions such as a road surface with a low coefficient of friction (also referred to as a low ⁇ road), and visibility limitations due to weather conditions.
- the external environment information acquired in step S210 includes information acquired by the external sensor, for example, the outside air temperature acquired by the external air temperature sensor, the visibility specified from the distance to the target acquired by the rider 42, etc.
- step S210 vehicle state information indicating the state of the vehicle may be acquired by the inside sensor.
- the state information of the vehicle includes, for example, a yaw rate, a lateral acceleration, a wheel speed, a throttle opening degree, a brake depression force, and the like.
- the traveling environment is specified for the traveling route from the current location to the destination (referred to as a planned traveling route) (S212).
- the travel environment to be identified includes the road surface condition and visibility as described above.
- the road surface state is predicted for each of the above-described geographical units through which the planned traveling route passes, based on, for example, the weather information and the road information on the planned traveling route acquired in step S208.
- the predicted road surface condition may be stored in association with the geographical position. For example, information on a frozen road surface or a snowy road may be obtained directly from weather information or road information, or may be predicted from air temperature or weather.
- a road whose temperature is included in an area below the freezing point can be predicted as a frozen road surface, and a general road in an area where there is snowfall more than a predetermined amount can be predicted as snow coverage.
- there is no travel environment that affects automatic driving anywhere on the travel route, and the road surface condition, that is, the travel environment. can be expected to be good.
- the traveling environment including the road surface condition can be specified based on, for example, external environment information acquired by the outside sensor and vehicle condition information acquired by the inside sensor. For example, if the entire road surface is white by image recognition of an image taken by the camera 41, it can be determined that the road is a snowy road. If the temperature below freezing (or the temperature below freezing and below a predetermined temperature) is detected as the current outside temperature by the outside air temperature sensor, it may be determined that the road surface is frozen.
- the ghost when a ghost is detected by the rider 42 or by both the rider 42 and the radar 43, the ghost can be estimated to be the winding up of snow due to traveling on a snowy road, and also in this case it can be determined as a snowy road surface.
- the friction coefficient of the road surface can be estimated together with the throttle opening degree at which the slip occurs and the brake depression force at which the skid occurs.
- the yaw rate and the lateral acceleration can be detected by a sensor, and the lateral rate can be detected by comparing the yaw rate and the lateral acceleration obtained from the velocity and the steering angle of the vehicle.
- the degree of the coefficient of friction of the road surface can be estimated from the speed at which the side slip occurs and the steering angle. If the estimated friction coefficient of the road surface is smaller than a predetermined threshold, it can be determined that the current road surface is a low friction coefficient (low ⁇ road).
- the traveling environment in the planned traveling route identified in step S212 includes a predetermined traveling environment that is considered to affect automatic driving, as in the example described above (S214).
- the predetermined traveling environment is a traveling environment that can affect automatic driving, and in addition to low ⁇ roads such as frozen roads and snow roads, for example, visibility of external sensors such as snow blowing and fog becomes short. You may include the situation.
- a message prompting the driver to input whether or not to re-search the traveling route is displayed by the input / output device 9, and the input thereto is the traveling route. It is determined whether or not it is a re-search of (S216). If a re-search is instructed, the process branches to step S202.
- the input / output device 9 allows the driver to have a predetermined traveling environment on the planned traveling route, that is, affect the automatic driving. Report that there is a sex (S218).
- This notification may include, in addition to a message simply indicating the possibility, a message that allows the driver to select whether or not to perform the automatic driving.
- a predetermined time is set in the timer possessed by the ECU 20, measurement thereof is started (S222), and input by the driver for the message is awaited.
- the automatic driving mode is set (S220).
- Level 3 (second level) achieves the highest level automatic operation. For example, the driver does not have to operate at all for driving, steering, or braking, and furthermore, it is not necessary to prepare for takeover to manual operation (hands off-eye off).
- Level 2 (first level) realizes lower level automatic operation than level 3. For example, the driver does not have to operate for driving, steering, or braking, but must monitor messages from the vehicle, for example, and be prepared for takeover from automatic driving to manual driving (hands off-eyes on).
- Level 1 of automatic driving is, for example, automatic driving more limited than level 2, such as follow-up driving on a freeway.
- step S214 If it is determined in step S214 that there is a predetermined traveling environment on the planned traveling route, the process may branch to step S218 without executing the route search again in step S216.
- step S218 of FIG. 2 the procedure of FIG. 3 is executed by the ECU 20 when there is an input thereto or the timer set in step S222 expires. If the driver has not entered a response to the notification and the predetermined time has expired, the automatic driving mode of the selected level is set. This is because the driver who has left without responding to the notification from the vehicle 1 may not be aware of the notification and may expect traveling in the automatic driving mode.
- a level is provided for the automatic operation, so if the predetermined time has expired, the level of the automatic operation is first set to a high level (for example, the highest level that can be set such as level 3) or a low level For example, it is determined whether the level is a lower level such as level 2) (S302). This determination may require the driver to have an input for selecting a level, for example, and may make a determination based on that, or may be determined based on a preset reference. If it is determined that the level to be set is not the highest level, the level 2 automatic operation mode is set (S304). On the other hand, if it is determined that the level is the highest level, the level 3 automatic operation mode is set (S306).
- the automatic operation level to be set may be limited by the amount of rainfall or snowfall or visibility. For example, based on the weather information etc. acquired from the server, if it is a predetermined amount of rainfall (the amount of rainfall of XX mm or more), dropping the highest level of automatic operation that can be set from level 3 to level 2 When entering, the maximum level may be set to level 2 or the like. Thus, the level of automatic operation to be set may be limited according to the environment.
- step S300 When the driver inputs a response to the notification, it is determined whether to set the automatic driving mode based on the input (S300). If there is an input indicating that the automatic operation mode is not set, the process is ended without setting the automatic operation mode (ie, in the manual operation). In this case, driving of the vehicle is performed by the driver after this. On the other hand, when an input indicating that the automatic operation mode is to be set is input, the process branches to step S302. The rest is as described above. However, when the level of automatic driving is input as a response to the notification, step S304 or step S306 may be executed according to the designated level to set the automatic driving mode.
- the planned travel route to the destination set before the start of travel includes a portion of the predetermined travel environment, that is, before the start of travel by automatic driving (that is, in advance), To the driver. Then, the driver provides an opportunity to indicate the intention, and sets the automatic driving mode according to the intention.
- the driver is notified that there is a predetermined traveling environment regardless of where the predetermined traveling environment appears on the planned traveling route.
- the corresponding place is far from the present position. Therefore, when the corresponding place is separated by a predetermined distance or more from the current position, the information of the place and the fact that there is a predetermined traveling environment are stored, and the automatic driving mode is set once to start traveling. You may Then, when the position of a certain distance (or time) is reached to the corresponding place, the driver may be informed that there is a place of a predetermined traveling environment. Also in this case, the process for the notification is as described above.
- the automatic operation mode may be switched whether to set the automatic operation mode or not. In this case, when the predetermined time in FIG. 3 has expired or when there is an input for setting the automatic operation mode, the automatic operation mode may be set.
- ⁇ Control procedure at the time of automatic driving As shown in FIGS. 2 and 3, it is determined whether the current traveling environment is a predetermined traveling environment or not while the traveling environment is determined in advance while the traveling by automatic driving is performed. On a continuous basis. Thus, even when the predetermined traveling environment can not be predicted in advance, it can be determined that the predetermined traveling environment is actually present.
- the procedure is shown in FIG.
- the procedure of FIG. 4 is also executed by the ECU 20.
- the procedure of FIG. 4 is executed periodically or periodically, for example, while traveling in automatic driving. Alternatively, it may be executed each time the vehicle travels a predetermined distance.
- the repetition cycle may be variable according to the setting or may be fixed in advance. The cycle may not be as frequent as, for example, one minute, five minutes, or ten minutes.
- the repetition cycle may be relatively low, for example, 1 km, 5 km, 10 km, and so on.
- it may be performed more frequently if there is rainfall or snowfall, and less frequently if it is sunny.
- external environment information is acquired from an external sensor (S400).
- the communication device 24c may be used to acquire the external information.
- the external information to be acquired may be, for example, weather information or road information of an area including the current position.
- the current traveling environment is specified based on the acquired external environment information (and also the external information, if any) (S402).
- the predetermined travel environment may be the same as described for FIG. If it is determined that it corresponds, the driver is notified of the possibility of affecting automatic driving (S406), measurement of a predetermined time is started using a timer (S408), and input by the driver is awaited.
- step S400 external information such as weather information and road information acquired via the communication device 24c may be acquired for the planned traveling route that will travel in the future, as in FIG.
- the external information to be acquired may be, for example, related to the area scheduled to travel after a predetermined time from the present time, and based on it, the predicted travel environment after the predetermined time may be specified.
- FIG. 5 shows a processing procedure by the ECU 20 when there is an input by the driver or when a predetermined time has elapsed. First, it is determined whether the input is an input for continuing the automatic driving (S520). If it is determined that the input is to continue, the process ends without performing anything.
- the current level of the automatic driving is determined (S522). If the current level is a high level (for example, level 3), the level of the automatic driving is transitioned to a low level (for example, level 2) (S524). At this time, it is desirable to notify the driver to lower the level of the automatic driving. If it is determined in step S522 that the current level is a low level (for example, level 2), the automatic operation mode is ended, and the mode is switched to the manual operation mode (S526). This is a so-called takeover, and it is desirable to notify the driver of the takeover and to request an input for confirmation of the takeover.
- the automatic operation mode when the automatic operation mode is continued, the automatic operation is continued as it is, but otherwise, the level of the automatic operation is controlled to be lowered. If a predetermined time has elapsed without a response to the notification performed in step S408, the processing ends without performing any particular processing assuming that continuation of the automatic driving is selected. However, in this case, there is also a possibility that the driver has not noticed the notification, so that notification to continue the automatic driving may be further performed.
- FIG. 5 it is described in FIG. 5 that there are two levels of automatic operation levels, if there are three or more levels, manual operation will be taken over if the current level is at the lowest level, and levels will be lowered at higher levels. You may control as follows.
- step S404 of FIG. 4 when it determines with the present driving
- an external sensor such as the camera 41, the radar 42, or the rider 43, although it may be determined that the weather or the surrounding traveling environment has significantly changed.
- the traveling environment is not classified into two values such as a predetermined traveling environment and other traveling environments, and evaluated in at least three or more stages. For example, when the stages are “good running environment”, “intermediate running environment”, and “predetermined running environment”, the time when the “good running environment” transitions to the “intermediate running environment”, The time difference with the time of transition from the "intermediate traveling environment” to the "predetermined traveling environment” is determined. If this time difference is smaller than a predetermined value, it may be judged as an abrupt change.
- FIG. 6 also shows another example of the processing procedure by the ECU 20 when there is an input by the driver or when a predetermined time has elapsed.
- the level of automatic operation either automatic operation is continued or take-over to manual operation is performed.
- S500 it is determined whether the input is an input to continue automatic driving (S500). If it is determined that the input is to continue, the process ends without performing anything. On the other hand, when it is determined that the input is not for continuing the automatic operation, the automatic operation mode is ended, and the mode is switched to the manual operation mode (S502). Also in this case, it is desirable that notification of takeover to the driver and request for confirmation of takeover be performed.
- step S408 If a predetermined time has elapsed without a response to the notification performed in step S408, the processing ends without performing any particular processing assuming that continuation of the automatic driving is selected. However, in this case, there is also a possibility that the driver has not noticed the notification, so that notification to continue the automatic driving may be further performed. In this way, when the automatic operation mode is continued, the automatic operation is continued as it is, but otherwise the automatic operation is canceled.
- the present embodiment it is possible to determine that there is a predetermined traveling environment on the planned traveling route by the above configuration and procedure, and when it is determined that there is a predetermined traveling environment, the driver is notified beforehand Can be notified. And the opportunity for a driver to determine the driving mode according to the information can be provided. Furthermore, it is possible to determine that the vehicle is in a predetermined traveling environment while traveling, and when it is determined that the vehicle is in a predetermined traveling environment, it is possible to notify the driver of the fact. And the opportunity for a driver to determine the driving mode according to the information can be provided.
- a first aspect of the present embodiment is a vehicle control device for controlling the traveling of a vehicle, Environment specifying means for specifying a traveling environment of the vehicle; A control unit configured to control the traveling of the vehicle according to the traveling environment specified by the environment specifying unit when the automatic driving mode is set; And output means for notifying the driver, The control means determines whether the traveling environment is a predetermined traveling environment, and when it is determined that the predetermined traveling environment is determined, the output means outputs a notification of the result of the determination. It is characterized by With this configuration, it can be determined that the traveling environment is a predetermined traveling environment, and the driver can be notified of the result of the determination.
- the traveling environment includes the state of the vehicle detected by the vehicle state detection means and the outside of the vehicle detected by the external detection means State and / or external information obtained via communication means
- the environment identification means determines that the predetermined traveling environment is based on at least one of a state of the vehicle included in the traveling environment, a state outside the vehicle, and the external information. It is characterized by With this configuration, it is possible to determine that the vehicle is in the predetermined traveling environment based on at least one of the state of the vehicle and the external information.
- the third aspect of the present embodiment further includes input means for receiving an input by the driver,
- the control means outputs, as the notification, an inquiry as to whether or not to set the automatic operation mode, and an input according to the notification is not made within a predetermined time after the output of the notification, or
- an instruction to set an automatic operation mode is input, the automatic operation mode is set.
- setting the automatic operation mode newly sets the automatic operation mode when the automatic operation mode is not set. And continuing the automatic operation mode when the automatic operation mode is already set.
- the determination of the predetermined traveling environment can be performed before the automatic driving mode is set, or can be performed during traveling in the automatic driving mode.
- the fifth aspect of the present embodiment is characterized in that the automatic operation mode has a first level and a degree of driver's intervention lower than the first level. Including two levels,
- the control means determines that the traveling environment is the predetermined traveling environment while controlling the traveling of the vehicle in the automatic driving mode of the second level, the control means is used as an input for the notification.
- the automatic operation mode is transitioned to the first level based on that. With this configuration, automatic driving can be performed at a lower level in a predetermined traveling environment.
- the sixth aspect of the present embodiment further includes setting means for setting a traveling route in advance,
- the control device acquires the external information on the traveling route set via the communication unit, and the traveling environment in the traveling route is the predetermined. It is characterized by judging whether it is a driving environment.
- the control device sets the automatic driving mode to set the automatic operation mode when the travel route is set in advance. Before starting travel control, it is determined whether or not the travel environment on the travel route is the predetermined travel environment, and notification according to the result of the determination is performed. With this configuration, it is possible to set a traveling route prior to traveling, and to determine in advance whether there is a predetermined traveling environment in the set traveling route.
- the level of automatic driving determines the maximum vehicle speed permitted at that level and the user-set vehicle speed. Therefore, according to the control of the automatic driving of the present embodiment, by detecting the change of the traveling environment, the maximum vehicle speed permitted at each level is limited, or the user-set vehicle speed is reduced.
- a transition may be made from a hands-off mode in which the driver holds the steering wheel off while maintaining the lane to a hands-on mode in which the driver holds the lane while holding the steering wheel.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Automation & Control Theory (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Traffic Control Systems (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
自動運転の開始時に、予定の走行経路に低μ路などの所定の走行環境があるか判定し、また、自動運転中に現在の走行経路あるいは予定の走行経路に所定の走行環境があるか判定する。所定の走行環境があれば、そのことを運転者に報知する。そして運転者がその報知に対して自動運転の設定を指示した場合には、自動運転開始前ならば自動運転を新たに設定し、自動運転による走行中ならば自動運転を継続する。また自動運転の設定が指示されなければ、手動運転へとテイクオーバするか、より低レベルの自動運転を設定する。
Description
本発明は自動運転のための車両制御装置に関する。
車両の自動運転は運転者の負担軽減に寄与する。しかし、自動運転での走行が困難か、或いは、手動運転の方が適している場合がある。特許文献1には、探索した経路における自動運転の不動作地点を抽出し、自動運転の継続度を演算し、演算した継続度に基づいて探索された経路から走行する経路を選択する自動運転車両用ナビゲーション装置が記載されている。また不動作地点には、例えば、急カーブ、交差点、合流、分岐、車線減少、車線増加及び急カントが含まれることが記載されている。
特許文献1に記載された不動作地点は、その名称が示す通り、例えば地図情報に含まれた道路の状態から静的に決定できる地点である。しかしながら、自動運転による走行の適切さは、気象条件等、短時間で変動する走行環境にも左右される。そのため、たとえば同一の経路を走行する場合であっても、気象条件等により変化する走行環境に応じて、自動運転を問題なく開始し、継続できる場合もあれば、手動運転へのテイクオーバの可能性について運転者の注意を喚起することが望ましいこともある。
本発明は上記従来例に鑑みて成されたもので、車両の走行経路における走行環境を判断し、自動運転の開始あるいは継続について、運転者の注意を喚起する車両制御装置を提供することを目的とする。
上記目的を達成するために本発明は以下の構成を有する。
すなわち、本発明の一側面によれば、車両の走行を制御する車両制御装置であって、
前記車両の走行環境を特定する環境特定手段と、
自動運転モードが設定されている場合には、前記環境特定手段により特定した前記走行環境に応じて前記車両の走行を制御する制御手段と、
運転者への報知を行うための出力手段とを有し、
前記制御手段は、前記走行環境が所定の走行環境であるか否かを判定し、前記所定の走行環境であると判定された場合には、前記出力手段により、前記判定の結果の報知を出力することを特徴とする。
前記車両の走行環境を特定する環境特定手段と、
自動運転モードが設定されている場合には、前記環境特定手段により特定した前記走行環境に応じて前記車両の走行を制御する制御手段と、
運転者への報知を行うための出力手段とを有し、
前記制御手段は、前記走行環境が所定の走行環境であるか否かを判定し、前記所定の走行環境であると判定された場合には、前記出力手段により、前記判定の結果の報知を出力することを特徴とする。
本発明によれば、車両の走行経路における走行環境を判断し、自動運転の開始あるいは継続について、運転者の注意を喚起することができる車両制御装置を提供できる。
本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
図1は車両システムの構成を示した説明図である。
図2は自動運転モードの事前設定の手順を示すフローチャートである。
図3は自動運転モードの事前設定の手順を示すフローチャートである。
図4は走行中における走行環境の判定の手順を示すフローチャートである。
図5は走行中における自動運転モードの設定の手順を示すフローチャートである。
図6は走行中における自動運転モードの設定の手順の他の例を示すフローチャートである。
[第一実施形態]
●車両用制御装置の構成
図1は、本発明の一実施形態に係る車両用制御装置のブロック図であり、車両1を制御する。図1において、車両1はその概略が平面図と側面図とで示されている。車両1は一例としてセダンタイプの四輪の乗用車である。
●車両用制御装置の構成
図1は、本発明の一実施形態に係る車両用制御装置のブロック図であり、車両1を制御する。図1において、車両1はその概略が平面図と側面図とで示されている。車両1は一例としてセダンタイプの四輪の乗用車である。
図1の制御装置は、制御ユニット2を含む。制御ユニット2は車内ネットワークにより通信可能に接続された複数のECU20~29を含む。各ECUは、CPUに代表されるプロセッサ、半導体メモリ等の記憶デバイス、外部デバイスとのインタフェース等を含む。記憶デバイスにはプロセッサが実行するプログラムやプロセッサが処理に使用するデータ等が格納される。各ECUはプロセッサ、記憶デバイスおよびインタフェース等を複数備えていてもよい。
以下、各ECU20~29が担当する機能等について説明する。なお、ECUの数や、担当する機能については適宜設計可能であり、本実施形態よりも細分化したり、あるいは、統合することが可能である。
ECU20は、車両1の自動運転に関わる制御を実行する。自動運転においては、車両1の操舵と、加減速の少なくともいずれか一方を自動制御する。
ECU21は、電動パワーステアリング装置3を制御する。電動パワーステアリング装置3は、ステアリングホイール31に対する運転者の運転操作(操舵操作)に応じて前輪を操舵する機構を含む。また、電動パワーステアリング装置3は操舵操作をアシストしたり、あるいは、前輪を自動操舵するための駆動力を発揮するモータや、操舵角を検知するセンサ等を含む。車両1の運転状態が自動運転の場合、ECU21は、ECU20からの指示に対応して電動パワーステアリング装置3を自動制御し、車両1の進行方向を制御する。
ECU22および23は、車両の周囲状況を検知する検知ユニット41~43の制御および検知結果の情報処理を行う。検知ユニット41は、車両1の前方を撮影するカメラであり(以下、カメラ41と表記する場合がある。)、本実施形態の場合、車両1のルーフ前部に2つ設けられている。カメラ41が撮影した画像の解析により、物標の輪郭抽出や、道路上の車線の区画線(白線等)を抽出可能である。
検知ユニット42は、ライダ(レーザレーダ)であり(以下、ライダ42と表記する場合がある)、車両1の周囲の物標を検知したり、物標との距離を測距する。本実施形態の場合、ライダ42は5つ設けられており、車両1の前部の各隅部に1つずつ、後部中央に1つ、後部各側方に1つずつ設けられている。検知ユニット43は、ミリ波レーダであり(以下、レーダ43と表記する場合がある)、車両1の周囲の物標を検知したり、物標との距離を測距する。本実施形態の場合、レーダ43は5つ設けられており、車両1の前部中央に1つ、前部各隅部に1つずつ、後部各隅部に1つずつ設けられている。
ECU22は、一方のカメラ41と、各ライダ42の制御および検知結果の情報処理を行う。ECU23は、他方のカメラ41と、各レーダ43の制御および検知結果の情報処理を行う。車両の周囲状況を検知する装置を二組備えたことで、検知結果の信頼性を向上でき、また、カメラ、ライダ、レーダといった種類の異なる検知ユニットを備えたことで、車両の周辺環境の解析を多面的に行うことができる。これら検知ユニット41,42,43を車両外部のセンサ(外界センサ)と呼ぶことがある。なお、外界センサには、このほか外気温センサなど、他の外部環境を特定するためのセンサを含めてもよい。そのセンサの検知結果についても、やはりECU22やECU23によって処理されてよい。外界センサによる検知結果は、他のECU例えばECU20等によって、走行環境を特定するために利用することができる。
ECU24は、ジャイロセンサ5、GPSセンサ24b、通信装置24cの制御および検知結果あるいは通信結果の情報処理を行う。ジャイロセンサ5は車両1の回転運動、たとえば車両1の前後軸周りの角速度、或いはそれに加えて上下軸および左右軸周りの角速度を検知する。ジャイロセンサ5の検知結果からECU24は車両1のヨーレート(ヨー角速度)を取得することもできる。ジャイロセンサ5の検知結果や、車輪速等により車両1の進路を判定することができる。GPSセンサ24bは、車両1の現在位置を検知する。通信装置24cは、地図情報や交通情報を提供するサーバと無線通信を行い、これらの情報を取得する。さらに、通信装置24cを介して気象情報や路面状態に関する路面情報などの外部情報を取得できる。気象情報や路面情報は車両の現在位置付近に関する情報のみならず、走行経路が設定されている場合には、その経路に沿った地域に関する情報を取得することもできる。ECU24は、記憶デバイスに構築された地図情報のデータベース24aにアクセス可能であり、ECU24は現在地から目的地へのルート探索等を行う。ECU24はこのほか、車両1の左右及び前後方向(あるいはさらに上下方向)の加速度を検知する加速度センサや、それら軸周りの角加速度センサの出力信号の処理を行ってもよい。これらセンサはジャイロセンサ5と同じセンサユニットに設けてもよい。これらのセンサおよび後述する車輪速センサ7cなどは車両1自身の状態を検知する車両内部のセンサであり、内界センサとも総称される。またこれらセンサから得られたヨーレートや加速度は、他のECU例えばECU20にバスを介して引き渡され、走行環境の特定のために利用することができる。
ECU25は、車車間通信用の通信装置25aを備える。通信装置25aは、周辺の他車両と無線通信を行い、車両間での情報交換を行う。上述した外部情報を取得するために、通信装置25aを用いることもできる。
ECU26は、パワープラント6を制御する。パワープラント6は車両1の駆動輪を回転させる駆動力を出力する機構であり、例えば、エンジンと変速機とを含む。ECU26は、例えば、アクセルペダル7Aに設けた操作検知センサ7aにより検知した運転者の運転操作(アクセル操作あるいは加速操作)に対応してエンジンの出力を制御したり、車輪速センサ7cが検知した車速等の情報に基づいて変速機の変速段を切り替える。車両1の運転状態が自動運転の場合、ECU26は、ECU20からの指示に対応してパワープラント6を自動制御し、車両1の加減速を制御する。上述したように車輪速センサ7aの信号から得られた車輪速(あるいは他の検知信号から得られた情報)は、他のECU例えばECU20による走行環境の特定の処理のために用いられてもよい。
ECU27は、方向指示器8(ウィンカ)を含む灯火器(ヘッドライト、テールライト等)を制御する。図1の例の場合、方向指示器8は車両1の前部、ドアミラーおよび後部に設けられている。
ECU28は、入出力装置9の制御を行う。入出力装置9は運転者に対する情報の出力と、運転者からの情報の入力の受け付けを行う。音声出力装置91は運転者に対して音声により情報を報知する。表示装置92は運転者に対して画像の表示により情報を報知する。表示装置92は例えば運転席表面に配置され、インストルメントパネル等を構成する。なお、ここでは、音声と表示を例示したが振動や光により情報を報知してもよい。また、音声、表示、振動または光のうちの複数を組み合わせて情報を報知してもよい。更に、報知すべき情報のレベル(例えば緊急度)に応じて、組み合わせを異ならせたり、報知態様を異ならせてもよい。
入力装置93は運転者が操作可能な位置に配置され、車両1に対する指示を行うスイッチ群あるいはタッチパネル等であるが、音声入力装置も含まれてもよい。
ECU29は、ブレーキ装置10やパーキングブレーキ(不図示)を制御する。ブレーキ装置10は例えばディスクブレーキ装置であり、車両1の各車輪に設けられ、車輪の回転に抵抗を加えることで車両1を減速あるいは停止させる。ECU29は、例えば、ブレーキペダル7Bに設けた操作検知センサ7bにより検知した運転者の運転操作(ブレーキ操作)に対応してブレーキ装置10の作動を制御する。車両1の運転状態が自動運転の場合、ECU29は、ECU20からの指示に対応してブレーキ装置10を自動制御し、車両1の減速および停止を制御する。ブレーキ装置10やパーキングブレーキは車両1の停止状態を維持するために作動することもできる。また、パワープラント6の変速機がパーキングロック機構を備える場合、これを車両1の停止状態を維持するために作動することもできる。
●自動運転設定手順の例
ECU20が実行する車両1の自動運転に関わる制御について説明する。ECU20は、運転者により目的地と自動運転が指示されると、ECU24により探索された案内ルートにしたがって、目的地へ向けて車両1の走行を自動制御する。本実施形態では、自動運転による走行を開始する前に、ECU20が図2の手順による処理を実行する。それによって案内ルートすなわち予定された走行経路の走行環境を特定し、行程中に所定の走行環境があれば、その旨を運転者に報知し、自動運転を開始するか否かの決定を促す。そして運転者により入力される決定に応じて自動運転を開始し、あるいは自動運転を取りやめて手動運転とする。
ECU20が実行する車両1の自動運転に関わる制御について説明する。ECU20は、運転者により目的地と自動運転が指示されると、ECU24により探索された案内ルートにしたがって、目的地へ向けて車両1の走行を自動制御する。本実施形態では、自動運転による走行を開始する前に、ECU20が図2の手順による処理を実行する。それによって案内ルートすなわち予定された走行経路の走行環境を特定し、行程中に所定の走行環境があれば、その旨を運転者に報知し、自動運転を開始するか否かの決定を促す。そして運転者により入力される決定に応じて自動運転を開始し、あるいは自動運転を取りやめて手動運転とする。
なお以下の説明でいう自動運転は、駆動、制動、操舵の全部または少なくともひとつを自動化する技術であり、アンチロックブレーキや横滑り防止機能などのいわゆる運転支援とは異なる。自動運転を行わない場合であっても、走行支援は行われる。
図2は例えばECU20のメモリに格納されたプログラムを実行して実現される制御手順を示すフローチャートである。この手順はたとえば、運転者が車両1に乗り込んで起動スイッチをオンにした後、デフォルトで自動運転が設定されている場合、あるいは運転者がマニュアル操作で自動運転を設定した場合に実行される。
まず、運転者が入出力装置(操作部とも呼ぶ)9を用いて設定する目的地の入力を受け付ける(S200)。目的地が設定されると、現在の位置と地図情報とを参照して、設定された目的地への走行経路(或いは行程)を決定する(S202)。次に、入出力装置9に、走行経路を提示してその確認を促すメッセージや画像を表示し(S204)、それに対する運転者の入力に基づいて、走行経路の再探索を行うかどうか判定する(S206)。再探索が選択されればステップS202に戻って走行経路の再探索を行う。なおステップS202~S206をループで実行せず、複数の経路の候補をステップS202で探索しておき、その候補のうちから運転者に選択させてもよい。このとき、経由地や高速道路の利用などのオプションを運転者に選択させてもよい。
走行経路が確定的に決定されると、走行経路についてその走行環境の基となるたとえば気象情報や道路情報などの外部情報を、通信装置24cを用いて収集する(S208)。気象情報や道路情報は、たとえば地理的な単位ごとに特定される。たとえば地図を予め所定の地理的な単位に区分しておき、サーバはそれら地理的単位ごとに気象情報や道路情報を格納し、管理する。そしてECU20は、決定した走行経路を含む地理的単位を対象として、気象情報や道路情報といった外部情報をサーバに要求する。
さらにECU20は、現在の車両外部の状態を示す外部環境情報や、車両の状態情報を取得する(S210)。外部環境情報は、走行環境が自動運転に影響を及ぼす可能性を判断するために取得される。自動運転に影響を及ぼす走行環境には、例えば低摩擦係数の路面(低μ路とも呼ぶ)などの路面状態や、気象条件による視程の制限などが含まれる。このため、ステップS210で取得する外部環境情報には、外界センサにより取得した情報、例えば外気温センサで取得した外気温度や、ライダ42により得た物標までの距離から特定される視程などが含まれる。ただし、車両が駐車されている場合など、たとえばライダ42により特定した視程が気象条件によるものとは言えない場合もあるので、ステップS210では、カメラ41やライダ42に基づく外部環境情報は取得しなくともよい。またステップS210では、車両の状態を示す車両状態情報を内界センサにより取得してもよい。車両の状態情報にはたとえば、ヨーレートや横加速度、車輪速、スロットル開度やブレーキ踏力などが含まれる。
次に現在地から目的地までの走行経路(予定走行経路と呼ぶ)について、走行環境を特定する(S212)。特定する走行環境には、上述したように路面状態や視程を含む。ステップS212では、たとえばステップS208で取得した予定走行経路上の気象情報や道路情報に基づいて、予定走行経路が通る上述した地理的な単位ごとに路面状態を予測する。予測した路面状態は地理的な位置と紐づけられて保存されてもよい。凍結路面や積雪路に関する情報は、たとえば気象情報や道路情報から直接的に取得してもよいし、気温や気象から予測してもよい。たとえば気温が氷点下の地域に含まれた道路は凍結路面と予測できるし、所定量以上の降雪がある地域の一般道は積雪があると予測できる。また気象情報が霧や吹雪であったり、あるいは所定量以上の降雪があり、かつ所定値以上の風速の地域は、視程が限られているものと予測できる。また予定走行経路全体にわたって降雨や降雪がなく、霧の発生もないような気象条件であれば、走行経路上のどこにも自動運転に影響を及ぼすような走行環境はなく、路面の状態すなわち走行環境は良好であると予測できる。
また車両が走行中あるいは屋外で停車中であれば、たとえば外界センサで取得した外部環境情報や内界センサで取得した車両状態情報に基づいて路面状態を含む走行環境を特定できる。たとえば、カメラ41による撮影画像を画像認識して路面全体が白ければ、積雪路であると判定できる。また外気温センサにより現在の外気温として氷点下の温度(あるいは氷点下且つ所定温度以下の温度)が検知されたなら、凍結路面であると判定してもよい。また例えば、ライダ42で、あるいはライダ42とレーダ43との両方でゴーストが検出された場合にはそのゴーストは積雪路の走行による雪の巻き上げと推定でき、その場合にも積雪路面と判定できる。またたとえば内界センサにより、車輪速などから車輪のスリップやスキッドが検出されたなら、スリップが生じたスロットル開度やスキッドが生じたブレーキ踏力と併せて、路面の摩擦係数を推定できる。また例えばヨーレートおよび横方向の加速度をセンサで検知し、車両の速度および舵角とから求められたヨーレートおよび横方向の加速度とを比較して、その一致の程度により車両の横滑りを検知できる。そしてたとえばこの横滑りが発生した速度や舵角からも路面の摩擦係数の程度を推定できる。推定した路面の摩擦係数が所定の閾値よりも小さければ、現在の路面は低摩擦係数(低μ路)であると判定できる。
そこで、ステップS212で特定した予定走行経路における走行環境に、上述した例のような、自動運転に影響を及ぼすと考えられる所定の走行環境が含まれているかを判定する(S214)。所定の走行環境とは上述したように、自動運転に影響を及ぼし得る走行環境であり、たとえば凍結路面や積雪路などの低μ路に加えて、吹雪や霧など、外界センサの視程が短くなる状況を含めてもよい。所定の走行環境が含まれている判定した場合には、運転者に対して走行経路の再探索を行うか否かの入力を促すメッセージを入出力装置9により表示し、それに対する入力が走行経路の再探索か否かを判定する(S216)。再探索が指示された場合にはステップS202に分岐する。
一方、走行経路の再探索が選択されなかった場合には、入出力装置9により、運転者に対して、予定走行経路上に、所定の走行環境があること、すなわち自動運転に影響を及ぼす可能性があることを報知する(S218)。この報知には、単にその可能性を示すメッセージのほか、自動運転を行うか否かを運転者に選択させるメッセージを含めてもよい。ここでは報知の出力後にECU20が持つタイマに所定時間をセットしてその計測を開始し(S222)、そのメッセージに対する運転者による入力を待つ。
一方、予定走行経路上には所定の走行環境がないとステップS214で判定された場合、自動運転モードを設定する(S220)。本実施形態では自動運転モードには、二つのレベルがあるものとしている。レベル3(第2レベル)は最も高いレベル自動運転を実現する。たとえば、運転者は駆動、操舵、制動のいずれについても全く操作しなくともよく、さらに、手動運転へのテイクオーバに備える必要もない(ハンズオフ-アイズオフ)。レベル2(第1レベル)はレベル3よりも低いレベルの自動運転を実現する。たとえば、運転者は駆動、操舵、制動のいずれについても操作しなくともよいが、たとえば車両からメッセージを監視し、自動運転から手動運転へのテイクオーバに備えていなくてはならない(ハンズオフ-アイズオン)。自動運転モードが設定されると、自動運転の制御が開始され、車両1は設定された予定走行経路にしたがって自動運転により走行する。なお自動運転のレベル1は例えば高速道路における追従走行など、レベル2よりもさらに限定的な自動運転である。
なお、ステップS214で、予定走行経路に所定の走行環境があると判定された場合には、ステップS216で経路の再探索を実行せず、ステップS218に分岐してもよい。
さて、図2のステップS218で所定の走行環境があることが報知された場合、それに対する入力があるか、あるいはステップS222でセットしたタイマが満了すると、図3の手順がECU20により実行される。運転者が報知に対する応答を入力せずに所定時間が満了した場合、選択されたレベルの自動運転モードが設定される。これは、車両1からの報知に対応せず放置した運転者は、その報知に気づいておらず、自動運転モードでの走行が行われることを期待している可能性があるためである。本実施形態では自動運転にレベルが設けられているので、所定時間が満了した場合にはまず自動運転のレベルを高レベル(たとえばレベル3など設定可能な最高レベル)とするか、それとも低レベル(たとえばレベル2など下位レベル)とするか判定する(S302)。この判定は、たとえば運転者にレベルを選択するための入力を求め、それに基づいて判定してもよいし、予め設定されている基準で判定してもよい。設定されるレベルが最高レベルではないと判定された場合にはレベル2の自動運転モードを設定する(S304)。一方、最高レベルと判定された場合にはレベル3の自動運転モードを設定する(S306)。なお設定される自動運転レベルは、降雨・降雪量や視程などにより、制限してもよい。たとえばサーバから取得した気象情報等に基づいて、所定の降雨量(XXmm以上の降雨量)であれば、設定できる自動運転の最高レベルをレベル3からレベル2へ落とすことや、そもそも、悪天候情報が入った場合には、最大レベルをレベル2にするなどしてもよい。このように、設定する自動運転レベルを、環境に応じて制限してもよい。
また、運転者により報知に対する応答が入力された場合には、その入力に基づいて自動運転モードを設定するか判定する(S300)。自動運転モードを設定しない旨の入力があった場合には、自動運転モードを設定せず(すなわち手動運転で)、処理を終了する。この場合には、車両の運転はこの後運転者により行われる。一方、自動運転モードを設定する旨の入力がされた場合には、ステップS302に分岐する。後は上述した通りである。ただし、報知に対する応答として自動運転のレベルが入力された場合には、指定されたレベルに応じてステップS304またはステップS306を実行し、自動運転モードを設定してよい。
このようにして、走行開始前に設定された目的地までの予定走行経路に所定の走行環境の部分が含まれていると、自動運転による走行を開始する前に(すなわち事前に)、その旨を運転者に報知する。そして、運転者による意思表示の機会を提供し、その意思表示に応じて自動運転モードを設定する。
なお上記手順では、所定の走行環境が予定走行経路のどこに現れても、所定の走行環境があることを運転者に報知している。しかし該当する場所が現在地よりも遠方にあることもあり得る。そこで、該当する場所が現在地よりも所定距離以上離れている場合には、その場所の情報とそこが所定の走行環境である旨を記憶しておき、いったん自動運転モードを設定して走行を開始してもよい。そして該当する場所まで一定の距離(または時間)の位置に達したなら、そこで、所定の走行環境の場所がある旨を運転者に報知してもよい。この場合にも、報知に対する処理は上記した通りである。
また、自動運転モードにレベルを設けずに、自動運転モードを設定するか、あるいはしないかを切り替えてもよい。この場合には図3において所定時間が満了した場合、または自動運転モードを設定する入力があった場合には、自動運転モードを設定すればよい。
●自動運転時の制御手順
図2,3に示したように、事前に走行環境の判定を行う一方で、自動運転による走行中にも、現在の走行環境が所定の走行環境であるか否かを継続的に判定する。これにより所定の走行環境を事前に予測できなかった場合でも、現にその所定の走行環境であることを判定できる。その手順を図4に示す。図4の手順もECU20により実行される。図4の手順は例えば自動運転で走行中、周期的あるいは定期的に実行される。あるいは所定の距離を走行する都度実行するものとしてもよい。繰り返し周期は設定に応じて可変であってもよいし、予め固定しておいてもよい。周期は例えば1分や5分、10分など、さほど高頻度でなくともよい。また所定の走行距離ごとに繰り返す場合にも、その繰返し周期は、例えば1キロ、5キロ、10キロなど、比較的低頻度で良い。あるいは、気象条件に応じて、たとえば降雨や降雪のある場合にはより高頻度で実行し、晴天であればより低頻度で実行してもよい。
図2,3に示したように、事前に走行環境の判定を行う一方で、自動運転による走行中にも、現在の走行環境が所定の走行環境であるか否かを継続的に判定する。これにより所定の走行環境を事前に予測できなかった場合でも、現にその所定の走行環境であることを判定できる。その手順を図4に示す。図4の手順もECU20により実行される。図4の手順は例えば自動運転で走行中、周期的あるいは定期的に実行される。あるいは所定の距離を走行する都度実行するものとしてもよい。繰り返し周期は設定に応じて可変であってもよいし、予め固定しておいてもよい。周期は例えば1分や5分、10分など、さほど高頻度でなくともよい。また所定の走行距離ごとに繰り返す場合にも、その繰返し周期は、例えば1キロ、5キロ、10キロなど、比較的低頻度で良い。あるいは、気象条件に応じて、たとえば降雨や降雪のある場合にはより高頻度で実行し、晴天であればより低頻度で実行してもよい。
図4において、車両の走行中に、外界センサから外部環境情報を取得する(S400)。また外部環境情報に加えて、通信装置24cを用いて外部情報を取得してもよい。この場合には取得する外部情報は、例えば現在地を含む地域の気象情報や道路情報であってよい。そして取得した外部環境情報(及びあれば外部情報も)を基に、現在の走行環境を特定する(S402)。そして現在地の走行環境が所定の走行環境に該当するか判定する(S404)。所定の走行環境は図2について説明したものと同じでよい。該当すると判定した場合には、自動運転に影響を及ぼす可能性を運転者に報知し(S406)、タイマを用いて所定時間の計測を開始し(S408)、運転者による入力を待つ。
なおステップS400で、将来走行するであろう予定走行経路についても図2と同様に、通信装置24cを介して取得した気象情報や道路情報等の外部情報を取得してもよい。この場合には取得した外部情報に基づいて、所定の走行環境であるか否かを判定してもよい。これは図2で説明した通りである。ただしこの場合には、取得する外部情報は、たとえば現在時点から所定時間後に走行する予定の地域に関するものとし、それに基づいて所定時間後の予想される走行環境を特定してよい。このようにすることで、自動運転による走行中に、現在のみならず近い将来の走行環境を特定でき、所定の走行環境であるか判定できる。
図5に、運転者による入力があった場合、または所定時間経過した場合のECU20による処理手順を示す。まず入力が、自動運転を継続する旨の入力か否かを判定する(S520)。継続する旨の入力であると判定した場合には、特に何も行うことなく処理を終了する。
一方、自動運転を継続する旨の入力ではないと判定した場合には、現在の自動運転のレベルを判定する(S522)。現在のレベルが高レベル(例えばレベル3)であれば、自動運転のレベルを低いレベル(例えばレベル2)へと遷移させる(S524)。このとき、自動運転のレベルを下げる旨の報知を運転者へ行うのが望ましい。ステップS522で現在のレベルが低レベル(例えばレベル2)と判定された場合には、自動運転モードを終了させ、手動運転モードへと切り替える(S526)。これはいわゆるテイクオーバであり、運転者へのテイクオーバの報知を行い、それに対するテイクオーバの確認の入力を求めることが望ましい。
このようにして、自動運転モードを継続する場合にはそのまま自動運転を続けるが、そうでない場合には、自動運転のレベルを下げるように制御する。またステップS408で行った報知に対する応答がないまま所定時間経過した場合には、自動運転の続行が選択されたものとして特になにもすることなく処理を終了する。ただし、この場合には運転者が報知に気づいていない可能性もあるので、自動運転を続行する旨の報知をさらに行ってもよい。また図5では自動運転レベルが2段階であるものとして説明しているが、3段階以上ある場合には、現在のレベルが最低レベルならば手動運転にテイクオーバし、それ以上のレベルではレベルを下げるように制御してもよい。
なお、図4のステップS404で現在の走行環境が所定の走行環境に該当すると判定した場合に、直ちに自動運転のレベルを遷移させてもよい。この場合にはたとえば図4のステップS406の直後に、著しく天候や周辺の走行環境が変化したことを判定する。そして該当するならば、ステップS408を実行せずに、図5のステップS522へと分岐する。このようにすることで、急激な走行環境の変動に対して迅速に追従することができる。なお著しく天候や周辺の走行環境が変化したことを判定は、たとえば気象情報に基づいてもよいが、カメラ41やレーダ42、ライダ43等の外界センサにより検知した外部環境情報に基づいて行ってもよいし、それらの情報から総合的に判断してもよい。外部センサで検知した外部環境に基づく場合には、走行環境を、所定の走行環境とその他の走行環境というように二値的に分類せず、少なくとも三段階以上の複数の段階で評価する。たとえばそれら段階を「良好な走行環境」、「中間的な走行環境」、「所定の走行環境」とした場合に、「良好な走行環境」から「中間的な走行環境」に遷移した時刻と、「中間的な走行環境」から「所定の走行環境」に遷移した時刻との時間差を決定する。この時間差が所定値より小さければ急激な変動と判断してよい。
図6にも、運転者による入力があった場合、または所定時間経過した場合のECU20による処理手順の他の例を示す。ただし図6では、自動運転のレベルに関わらず、自動運転を継続するか手動運転へとテイクオーバするかのいずれかである。まず入力が、自動運転を継続する旨の入力か否かを判定する(S500)。継続する旨の入力であると判定した場合には、特に何も行うことなく処理を終了する。一方、自動運転を継続する旨の入力ではないと判定した場合には、自動運転モードを終了させ、手動運転モードへと切り替える(S502)。このときもやはり、運転者へのテイクオーバの報知と、テイクオーバの確認の入力を求めることとを行うことが望ましい。またステップS408で行った報知に対する応答がないまま所定時間経過した場合には、自動運転の続行が選択されたものとして特になにもすることなく処理を終了する。ただし、この場合には運転者が報知に気づいていない可能性もあるので、自動運転を続行する旨の報知をさらに行ってもよい。このようにして、自動運転モードを継続する場合にはそのまま自動運転を続けるが、そうでない場合には、自動運転を取りやめる。
以上の構成及び手順により、本実施形態によれば、予定走行経路に所定の走行環境があることを判定でき、所定の走行環境があると判定された場合には、そのことを運転者に事前に報知することができる。そしてその報知に応じた運転モードを運転者が決定する機会を提供することができる。さらに、走行中に所定の走行環境であることを判定することができ、所定の走行環境であると判定された場合には、そのことを運転者に報知することができる。そしてその報知に応じた運転モードを運転者が決定する機会を提供することができる。
●実施形態のまとめ
以上説明した本実施形態をまとめると以下のとおりである。
(1)本実施形態の第一の態様は、車両の走行を制御する車両制御装置であって、
前記車両の走行環境を特定する環境特定手段と、
自動運転モードが設定されている場合には、前記環境特定手段により特定した前記走行環境に応じて前記車両の走行を制御する制御手段と、
運転者への報知を行うための出力手段とを有し、
前記制御手段は、前記走行環境が所定の走行環境であるか否かを判定し、前記所定の走行環境であると判定された場合には、前記出力手段により、前記判定の結果の報知を出力することを特徴とする。
この構成により、走行環境が所定の走行環境であることを判定し、その判定の結果を運転者に報知することができる。
以上説明した本実施形態をまとめると以下のとおりである。
(1)本実施形態の第一の態様は、車両の走行を制御する車両制御装置であって、
前記車両の走行環境を特定する環境特定手段と、
自動運転モードが設定されている場合には、前記環境特定手段により特定した前記走行環境に応じて前記車両の走行を制御する制御手段と、
運転者への報知を行うための出力手段とを有し、
前記制御手段は、前記走行環境が所定の走行環境であるか否かを判定し、前記所定の走行環境であると判定された場合には、前記出力手段により、前記判定の結果の報知を出力することを特徴とする。
この構成により、走行環境が所定の走行環境であることを判定し、その判定の結果を運転者に報知することができる。
(2)本実施形態の第二の態様は、第一の態様に加えて、前記走行環境は、車両状態検知手段により検知した前記車両の状態と、外部検知手段により検知した前記車両の外部の状態と、通信手段を介して取得した外部情報との少なくともいずれかを含み、
前記環境特定手段は、前記走行環境に含まれる前記車両の状態と、前記車両の外部の状態と、前記外部情報との少なくともいずれかに基づいて、前記所定の走行環境であることを判定することを特徴とする。
この構成により、車両の状態と外部情報との少なくともいずれかに基づいて所定の走行環境であることを判定できる。
前記環境特定手段は、前記走行環境に含まれる前記車両の状態と、前記車両の外部の状態と、前記外部情報との少なくともいずれかに基づいて、前記所定の走行環境であることを判定することを特徴とする。
この構成により、車両の状態と外部情報との少なくともいずれかに基づいて所定の走行環境であることを判定できる。
(3)本実施形態の第三の態様は、第一の態様または第二の態様に加えて、運転者による入力を受け付ける入力手段をさらに有し、
前記制御手段は、前記報知として、前記自動運転モードを設定するか否かの問い合わせを出力し、前記報知を出力してから所定時間のうちに前記報知に応じた入力がされない場合、または、前記自動運転モードを設定する指示が入力された場合には、前記自動運転モードを設定することを特徴とする。
この構成により、走行環境が所定の走行環境であることの報知に応じて所定時間入力がない場合、または自動運転モードの設定指示が入力された場合には、自動運転モードを設定できる。
前記制御手段は、前記報知として、前記自動運転モードを設定するか否かの問い合わせを出力し、前記報知を出力してから所定時間のうちに前記報知に応じた入力がされない場合、または、前記自動運転モードを設定する指示が入力された場合には、前記自動運転モードを設定することを特徴とする。
この構成により、走行環境が所定の走行環境であることの報知に応じて所定時間入力がない場合、または自動運転モードの設定指示が入力された場合には、自動運転モードを設定できる。
(4)本実施形態の第四の態様は、第三の態様に加えて、前記自動運転モードを設定することは、前記自動運転モードが設定されていない場合に新たに自動運転モードを設定することと、前記自動運転モードが既に設定されている場合に自動運転モードを継続することとを含むことを特徴とする。
この構成により、所定の走行環境の判定を、自動運転モードが設定される前に行うこともできるし、あるいは自動運転モードで走行中に行うこともできる。
この構成により、所定の走行環境の判定を、自動運転モードが設定される前に行うこともできるし、あるいは自動運転モードで走行中に行うこともできる。
(5)本実施形態の第五の態様は、第一乃至第四の態様に加えて、前記自動運転モードは、第一レベルと、前記第一レベルよりも運転者による介入の程度が低い第二レベルとを含み、
前記制御手段は、前記第二レベルの前記自動運転モードで前記車両の走行を制御している際に、前記走行環境が前記所定の走行環境であると判定した場合には、前記報知に対する入力に基づいて、前記自動運転モードを前記第一レベルへと遷移させることを特徴とする。
この構成により、所定の走行環境においては、より低いレベルで自動運転を行うことができる。
前記制御手段は、前記第二レベルの前記自動運転モードで前記車両の走行を制御している際に、前記走行環境が前記所定の走行環境であると判定した場合には、前記報知に対する入力に基づいて、前記自動運転モードを前記第一レベルへと遷移させることを特徴とする。
この構成により、所定の走行環境においては、より低いレベルで自動運転を行うことができる。
(6)本実施形態の第六の態様は、第二の態様に加えて、予め走行経路を設定するための設定手段をさらに有し、
前記制御装置は、前記走行経路が予め設定されている場合には、前記通信手段を介して設定された前記走行経路についての前記外部情報を取得し、前記走行経路における前記走行環境が前記所定の走行環境であるか否かを判定することを特徴とする。
この構成により、走行経路が予め設定されている場合には、通信で得た情報に基づいて設定された走行経路に所定の走行環境があるかどうかを判定できる。
前記制御装置は、前記走行経路が予め設定されている場合には、前記通信手段を介して設定された前記走行経路についての前記外部情報を取得し、前記走行経路における前記走行環境が前記所定の走行環境であるか否かを判定することを特徴とする。
この構成により、走行経路が予め設定されている場合には、通信で得た情報に基づいて設定された走行経路に所定の走行環境があるかどうかを判定できる。
(7)本実施形態の第七の態様は、第六の態様に加えて、前記制御装置は、前記走行経路が予め設定されている場合には、前記自動運転モードを設定して前記車両の走行制御を開始する前に、前記走行経路における前記走行環境が前記所定の走行環境か否かを判定し、判定の結果に応じた報知を行うことを特徴とする。
この構成により、走行に先立って走行経路を設定し、設定された走行経路に所定の走行環境があるかを事前に判定できる。
この構成により、走行に先立って走行経路を設定し、設定された走行経路に所定の走行環境があるかを事前に判定できる。
なお、自動運転のレベルにより、そのレベルで許容される最大車速や、ユーザー設定車速が決まる。そのため、本実施形態の自動運転の制御によれば、走行環境の変化を検出したことにより、夫々のレベルで許容される最大車速を制限したり、ユーザー設定車速を低下させたりすることになる。
また、上記実施形態では、現在の自動運転レベルを、最高レベル(たとえばレベル3)から下位レベル(たとえばレベル2)へと遷移させる例を説明した。しかし、例えばひとつのレベルの中で、特定の機能に関するサブレベルを遷移させてもよい。たとえばレベル2の中で、運転者がハンドルを離した状態で車線を維持するハンズオフモードから、運転者がハンドルを握った状態で車線を維持するハンズオンモードへの遷移としてもよい。
さらに本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。
5 ジャイロセンサ、9 入出力装置、20-29 ECU、24c 通信装置、41 カメラ、42 ライダ
Claims (7)
- 車両の走行を制御する車両制御装置であって、
前記車両の走行環境を特定する環境特定手段と、
自動運転モードが設定されている場合には、前記環境特定手段により特定した前記走行環境に応じて前記車両の走行を制御する制御手段と、
運転者への報知を行うための出力手段とを有し、
前記制御手段は、前記走行環境が所定の走行環境であるか否かを判定し、前記所定の走行環境であると判定された場合には、前記出力手段により、前記判定の結果の報知を出力することを特徴とする車両制御装置。 - 請求項1に記載の車両制御装置であって、
前記走行環境は、車両状態検知手段により検知した前記車両の状態と、外部検知手段により検知した前記車両の外部の状態と、通信手段を介して取得した外部情報との少なくともいずれかを含み、
前記環境特定手段は、前記走行環境に含まれる前記車両の状態と、前記車両の外部の状態と、前記外部情報との少なくともいずれかに基づいて、前記所定の走行環境であることを判定することを特徴とする車両制御装置。 - 請求項1または2に記載の車両制御装置であって、
運転者による入力を受け付ける入力手段をさらに有し、
前記制御手段は、前記報知として、前記自動運転モードを設定するか否かの問い合わせを出力し、前記報知を出力してから所定時間のうちに前記報知に応じた入力がされない場合、または、前記自動運転モードを設定する指示が入力された場合には、前記自動運転モードを設定することを特徴とする車両制御装置。 - 請求項3に記載の車両制御装置であって、
前記自動運転モードを設定することは、前記自動運転モードが設定されていない場合に新たに自動運転モードを設定することと、前記自動運転モードが既に設定されている場合に自動運転モードを継続することとを含むことを特徴とする車両制御装置。 - 請求項1乃至4のいずれか一項に記載の車両制御装置であって、
前記自動運転モードは、第一レベルと、前記第一レベルよりも運転者による介入の程度が低い第二レベルとを含み、
前記制御手段は、前記第二レベルの前記自動運転モードで前記車両の走行を制御している際に、前記走行環境が前記所定の走行環境であると判定した場合には、前記報知に対する入力に基づいて、前記自動運転モードを前記第一レベルへと遷移させることを特徴とする車両制御装置。 - 請求項2または、請求項2を引用する請求項3乃至5のいずれか一項に記載の車両制御装置であって、
予め走行経路を設定するための設定手段をさらに有し、
前記制御装置は、前記走行経路が予め設定されている場合には、前記通信手段を介して設定された前記走行経路についての前記外部情報を取得し、前記走行経路における前記走行環境が前記所定の走行環境であるか否かを判定することを特徴とする車両制御装置。 - 請求項6に記載の車両制御装置であって、
前記制御装置は、前記走行経路が予め設定されている場合には、前記自動運転モードを設定して前記車両の走行制御を開始する前に、前記走行経路における前記走行環境が前記所定の走行環境か否かを判定し、判定の結果に応じた報知を行うことを特徴とする車両制御装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780089933.4A CN110546698A (zh) | 2017-06-27 | 2017-06-27 | 车辆控制装置 |
JP2019526426A JP6911116B2 (ja) | 2017-06-27 | 2017-06-27 | 車両制御装置 |
PCT/JP2017/023539 WO2019003294A1 (ja) | 2017-06-27 | 2017-06-27 | 車両制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/023539 WO2019003294A1 (ja) | 2017-06-27 | 2017-06-27 | 車両制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019003294A1 true WO2019003294A1 (ja) | 2019-01-03 |
Family
ID=64741233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/023539 WO2019003294A1 (ja) | 2017-06-27 | 2017-06-27 | 車両制御装置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6911116B2 (ja) |
CN (1) | CN110546698A (ja) |
WO (1) | WO2019003294A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111717141A (zh) * | 2019-03-20 | 2020-09-29 | 本田技研工业株式会社 | 运输设备以及车辆 |
CN111731299A (zh) * | 2019-03-25 | 2020-10-02 | 株式会社斯巴鲁 | 车辆的控制装置、车辆的控制方法以及存储介质 |
CN111762185A (zh) * | 2019-03-27 | 2020-10-13 | 本田技研工业株式会社 | 车辆控制装置、车辆控制方法、车辆以及存储介质 |
WO2021106159A1 (ja) | 2019-11-28 | 2021-06-03 | 日産自動車株式会社 | 運転制御方法及び運転制御装置 |
WO2021145170A1 (ja) * | 2020-01-17 | 2021-07-22 | 株式会社デンソー | 運転制御装置およびhmi制御装置 |
JP2022096813A (ja) * | 2020-12-18 | 2022-06-30 | トヨタ自動車株式会社 | 自動運転車両 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7158367B2 (ja) * | 2019-12-09 | 2022-10-21 | 本田技研工業株式会社 | 車両制御システム |
JP7474081B2 (ja) * | 2020-03-16 | 2024-04-24 | 本田技研工業株式会社 | 制御装置、システム、及びプログラム |
JP7437500B2 (ja) * | 2020-05-28 | 2024-02-22 | カワサキモータース株式会社 | ユーティリティビークル |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015206655A (ja) * | 2014-04-18 | 2015-11-19 | 株式会社デンソー | 自動運転計画表示装置および自動運転計画表示装置用のプログラム |
JP2015230573A (ja) * | 2014-06-05 | 2015-12-21 | アルパイン株式会社 | 車両運転支援装置、方法およびプログラム |
WO2016080070A1 (ja) * | 2014-11-17 | 2016-05-26 | 日立オートモティブシステムズ株式会社 | 自動運転システム |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8509982B2 (en) * | 2010-10-05 | 2013-08-13 | Google Inc. | Zone driving |
EP2915718B1 (en) * | 2014-03-04 | 2018-07-11 | Volvo Car Corporation | Apparatus and method for continuously establishing a boundary for autonomous driving availability and an automotive vehicle comprising such an apparatus |
JP6287728B2 (ja) * | 2014-09-25 | 2018-03-07 | 株式会社デンソー | 車載システム、車両制御装置、および車両制御装置用のプログラム |
CN105620475A (zh) * | 2016-03-02 | 2016-06-01 | 上海航盛实业有限公司 | 一种带安全保护功能的智能驾驶系统 |
-
2017
- 2017-06-27 WO PCT/JP2017/023539 patent/WO2019003294A1/ja active Application Filing
- 2017-06-27 JP JP2019526426A patent/JP6911116B2/ja active Active
- 2017-06-27 CN CN201780089933.4A patent/CN110546698A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015206655A (ja) * | 2014-04-18 | 2015-11-19 | 株式会社デンソー | 自動運転計画表示装置および自動運転計画表示装置用のプログラム |
JP2015230573A (ja) * | 2014-06-05 | 2015-12-21 | アルパイン株式会社 | 車両運転支援装置、方法およびプログラム |
WO2016080070A1 (ja) * | 2014-11-17 | 2016-05-26 | 日立オートモティブシステムズ株式会社 | 自動運転システム |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111717141A (zh) * | 2019-03-20 | 2020-09-29 | 本田技研工业株式会社 | 运输设备以及车辆 |
CN111717141B (zh) * | 2019-03-20 | 2023-03-17 | 本田技研工业株式会社 | 运输设备以及车辆 |
CN111731299A (zh) * | 2019-03-25 | 2020-10-02 | 株式会社斯巴鲁 | 车辆的控制装置、车辆的控制方法以及存储介质 |
CN111762185A (zh) * | 2019-03-27 | 2020-10-13 | 本田技研工业株式会社 | 车辆控制装置、车辆控制方法、车辆以及存储介质 |
CN111762185B (zh) * | 2019-03-27 | 2023-07-25 | 本田技研工业株式会社 | 车辆控制装置、车辆控制方法、车辆以及存储介质 |
WO2021106159A1 (ja) | 2019-11-28 | 2021-06-03 | 日産自動車株式会社 | 運転制御方法及び運転制御装置 |
WO2021145170A1 (ja) * | 2020-01-17 | 2021-07-22 | 株式会社デンソー | 運転制御装置およびhmi制御装置 |
JP2022096813A (ja) * | 2020-12-18 | 2022-06-30 | トヨタ自動車株式会社 | 自動運転車両 |
JP7439745B2 (ja) | 2020-12-18 | 2024-02-28 | トヨタ自動車株式会社 | 自動運転車両 |
Also Published As
Publication number | Publication date |
---|---|
CN110546698A (zh) | 2019-12-06 |
JP6911116B2 (ja) | 2021-07-28 |
JPWO2019003294A1 (ja) | 2020-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019003294A1 (ja) | 車両制御装置 | |
US10775785B2 (en) | Automatic driving system | |
US20180319402A1 (en) | System and method for automatic activation of driver assistance feature | |
CN111051173B (zh) | 车辆及其控制装置以及控制方法 | |
US20220119000A1 (en) | Control system for vehicle and control method for vehicle | |
JP6932209B2 (ja) | 車両制御装置、車両、および車両制御方法 | |
JP7156989B2 (ja) | 走行制御装置、走行制御方法、およびプログラム | |
US20200307598A1 (en) | Traveling control apparatus, traveling control method, and non-transitory computer-readable storage medium storing program | |
JP6970204B2 (ja) | 車両並びにその制御装置及び制御方法 | |
JP7215596B2 (ja) | 運転制御方法及び運転制御装置 | |
CN113135183B (zh) | 车辆的控制系统、车辆的控制系统的控制方法、车辆以及计算机可读记录介质 | |
CN112172818B (zh) | 车辆的控制系统、车辆的控制方法以及存储介质 | |
US11648938B2 (en) | Braking data mapping | |
JP2006252148A (ja) | 車両用制御装置 | |
CN112441013A (zh) | 基于地图的车辆超速规避 | |
US20240017736A1 (en) | Vehicle control device | |
JP7073313B2 (ja) | 車両制御装置 | |
GB2579346A (en) | Vehicle control system and method | |
US12103524B1 (en) | Driving control method and driving control device | |
JPWO2019167257A1 (ja) | 通知システムおよび通知方法 | |
JP2008046810A (ja) | 運転支援装置及び方法 | |
US20240359701A1 (en) | Driving assistance function proposal system and proposal method for driving assistance function proposal system | |
WO2023002797A1 (ja) | 制御装置 | |
WO2023042272A1 (ja) | 運転制御方法及び運転制御装置 | |
WO2023047452A1 (ja) | 運転制御方法及び運転制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17915336 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019526426 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17915336 Country of ref document: EP Kind code of ref document: A1 |