Nothing Special   »   [go: up one dir, main page]

WO2019088660A1 - Manufacturing method of led display device - Google Patents

Manufacturing method of led display device Download PDF

Info

Publication number
WO2019088660A1
WO2019088660A1 PCT/KR2018/013019 KR2018013019W WO2019088660A1 WO 2019088660 A1 WO2019088660 A1 WO 2019088660A1 KR 2018013019 W KR2018013019 W KR 2018013019W WO 2019088660 A1 WO2019088660 A1 WO 2019088660A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
polymer
led chip
aligning
structures
Prior art date
Application number
PCT/KR2018/013019
Other languages
French (fr)
Korean (ko)
Inventor
조제희
Original Assignee
전북대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전북대학교산학협력단 filed Critical 전북대학교산학협력단
Publication of WO2019088660A1 publication Critical patent/WO2019088660A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages

Definitions

  • the present invention relates to a method of manufacturing an LED display device and a LED structure used therefor.
  • inorganic (eg, semiconductor) based light emitting diode (LED) displays are gaining popularity as well as organic EL (organic electro luminescence) displays.
  • LED light emitting diode
  • organic EL organic electro luminescence
  • semiconductor light-emitting diodes have been manufactured to be as small as a few tens of micro-degrees to overcome the inherent problems (such as brittleness) of inorganic materials and show possibility of expansion of new display devices such as flexible display and curved surface display.
  • a transfer process capable of placing micro-sized (e.g., several hundreds ⁇ or less) LED chips on a desired substrate (e.g., flexible substrate) in a desired arrangement.
  • a desired substrate e.g., flexible substrate
  • the distance ratio between the chips is limited to a 1: 1 arrangement and can be useful for some high resolution displays (eg AR or VR).
  • the wafer level transfer process can not actively cope with defects or wavelength variations of some chips in the wafer.
  • One of the problems to be solved by the present invention is to provide an LED chip transfer method capable of easily transferring a micro-sized LED chip to a desired position, and a method of manufacturing an LED display device using the same.
  • One embodiment of the present invention is directed to a method of manufacturing a display device, comprising: providing a plurality of LED structures each having an LED chip and a polymer extension applied to the LED chip; aligning the plurality of LED structures in desired areas of the display panel, And removing the polymer extensions from the plurality of LED structures.
  • the polymer extensions may surround the LED chip such that the surface of the LED chip on which the electrodes are formed is exposed.
  • Each of the desired regions may be provided with a circuit pattern, and the step of aligning the plurality of LED structures may include aligning the plurality of LED structures such that the exposed electrodes are positioned in the circuit pattern.
  • an electrode connecting conductor is disposed on at least one surface of the electrode and the circuit pattern, and after the step of removing the polymer extensions, melting the electrode connecting conductor so that the electrode is connected to the circuit pattern .
  • At least one of the electrode and the circuit pattern of the LED chip may have magnetism so that electrodes of the LED chip are aligned on the circuit pattern in the step of aligning the plurality of LED structures.
  • the desired regions may have a concave structure for aligning the plurality of LED structures.
  • the polymer extensions and the desired regions may be self-assembled monomers so that the LED structures are each aligned with the desired regions.
  • the step of arranging the plurality of LED structures may include a step of arranging the plurality of LED structures by using a jetting method And aligning the plurality of LED structures together with the solvent.
  • aligning the plurality of LED structures may be performed using a sieve in which the desired regions are open.
  • the polymer extender may have a spherical shape and may have a diameter greater than the length of the LED chip.
  • the polymer extensions may have a non-spherical shape, and in the step of aligning the plurality of LED structures, the desired regions may each have a concave structure for receiving the non-spherical shape such that the plurality of LED structures are aligned.
  • the polymer extensions may have a width and height greater than the length of the LED chip.
  • the polymer extensions include a polymer that is capable of calcining at a temperature of 300 ° C or less, and the step of removing the polymer extensions may include heating to the calcineable temperature.
  • a method of manufacturing an LED comprising: providing an LED structure including an LED chip having electrodes on at least one side thereof and a polymer extension portion having a three-dimensional structure surrounding the LED chip, Aligning the LED structure in a mounting area where a circuit pattern is formed, the electrodes of the LED chip being disposed on the circuit pattern; and after the step of aligning the LED structure, heating the LED structure so that the polymer extender is calcined
  • the method comprising the steps of:
  • an electrode connecting conductor is disposed on at least one surface of the electrode and the circuit pattern, and after the heating of the LED structure, the electrode connecting conductor is melted so that the electrode is connected to the circuit pattern .
  • the micro LED chip can be easily transferred to a desired area (particularly, a sub-pixel) of the display panel by providing an expanding part using a polymer that can be calcined.
  • the expansion part made of a polymer A simple calcination process can be eliminated.
  • the polymer extensions can be easily aligned using various methods by employing spherical or partially spherical shapes.
  • FIG. 1 is a flowchart illustrating a method of manufacturing an LED display device according to an embodiment of the present invention.
  • FIGS. 2 and 3 are cross-sectional views for explaining a manufacturing process of an LED structure employable in an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of the semiconductor light emitting diode chip shown in FIG. 2
  • FIG. 5 is a cross-sectional view of the LED structure shown in FIG.
  • Figure 6 schematically depicts a solvent containing LED structures.
  • FIG. 7 is a plan view showing an LED display device according to an embodiment of the present invention.
  • FIGS. 8 to 14 are cross-sectional views illustrating a method of manufacturing an LED display device according to an exemplary embodiment of the present invention.
  • 15 is a perspective view showing an example of a LED structure that can be employed in an embodiment of the present invention.
  • FIG. 16 is a perspective view showing a mold used for manufacturing the LED structure shown in Fig.
  • 17 and 18 are a plan view and a sectional view, respectively, showing an example of a LED structure that can be employed in an embodiment of the present invention.
  • 19 and 20 are sectional views showing various examples of LED chips that can be employed in an embodiment of the present invention, respectively.
  • 21 and 22 are a plan view and a sectional view, respectively, showing an example of a LED structure that can be employed in an embodiment of the present invention.
  • 23 to 27 are cross-sectional views for explaining a method of transferring an LED chip according to an embodiment of the present invention.
  • FIG. 1 is a flowchart illustrating a method of manufacturing an LED display device according to an embodiment of the present invention.
  • the manufacturing method of the LED display device may start with the step S11 of providing a micro LED chip (see FIG. 3A).
  • micro-LED chip refers to an LED chip having a micro-unit size, for example, a length of one side having a relatively long length of 500 mu m or less, Of LED chips.
  • the micro LED chip can be used as a light source for a pixel (especially a sub-pixel) of a display device.
  • the micro LED chip may be an LED chip having an active layer emitting a wavelength in a visible light band. For example, red, green, and blue LED chips.
  • the micro LED chip is a semiconductor LED chip obtained by forming a semiconductor epitaxial on a wafer.
  • the micro LED chip is made of Al x In y Ga (1-xy) N (0 ⁇ x ⁇ 1, 1, 0 ⁇ x + y ⁇ 1), Al x In y Ga (1-xy) P (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1), Al x In y Ga ( 1-xy) As (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1).
  • the micro LED chips used in the present invention are individually transferred (e.g., in units of subpixels), the LED chips of each color (each subpixel unit) are formed by using different epitaxial growth processes in different wafers without a separate wavelength conversion layer. Can be prepared in advance.
  • the defective chip can be removed or a binning process according to the emission wavelength can be performed. Even when fabricated on the same wafer to obtain a single-color LED chip, the wavelength may vary slightly depending on the wafer area. Therefore, it is possible to classify the LED chips more precisely by measuring the emission wavelength in advance, and to provide a color of a more accurate wavelength in each sub-pixel.
  • step S13 a polymer extension is formed in the micro LED chip to provide a LED structure (see FIG. 5) having a polymer extension.
  • the polymer extensions may have the shape of another three-dimensional structure.
  • a desired three-dimensional shape can be produced using a mold structure (see FIG. 15).
  • Such a three-dimensional shape may be a structure corresponding to the groove shape so as to be easily arranged in the groove of the subpixel.
  • it can be formed into a hemispherical or inverted structure (a structure having a lower surface than an upper surface) (see Figs. 16 to 18).
  • Fig. 2 A specific example of this step will be described later with reference to Figs. 2 and 3.
  • Fig. The size of the polymer extensions can be controlled by the dropping amount of the polymer.
  • the material that constitutes the polymer extender is selected by a simple process to remove the material.
  • a polymer material that can be calcined at a relatively low temperature e.g., 100 to 300 ⁇
  • a polymer material that is capable of being calcined at a temperature lower than the temperature that is applied when the electrode of the LED chip is bonded to the circuit pattern e.g., a reflow process
  • the constituent material of the polymer extender may be a polymer in which almost no optically-influencing residual material is present.
  • the polymer extensions may be formed of polystyrene or polymethyl methacrylate (PMMA).
  • step S15 the LED structure can be aligned on the display panel.
  • a LED structure can be placed in a desired area (e.g., a sub-pixel) using a jetting or sieve such as an inkjet.
  • a variety of self-aligning processes can be utilized for precise alignment (e.g., placing the electrodes on the circuit pattern) in the desired area.
  • a self assembly monomer can be used to treat the surface of the polymer extensions and the surface of the area in which the LED structure is to be placed to be hydrophobic and / or hydrophilic.
  • the area of the subpixel may be formed in a concave structure and the size and shape of the concave structure may be arranged to be aligned in the process of insertion of the polymer extensions or LED structures (see FIGS. 24 and 25).
  • the LED structure can be accurately aligned using magnetism.
  • at least one of the electrodes and the circuit pattern of the LED chip may be configured to have magnetism so that the electrodes of the LED chip are aligned on the circuit pattern.
  • the above-described alignment process can be used alone, but can be combined with each other to realize more effective alignment.
  • step S17 the polymer extensions are removed from the micro LED chips.
  • the step of removing the polymer extensions after arranging them all in the desired subpixels.
  • the micro LED chips remain and can be disposed on the sub-pixel region (e.g., a circuit pattern).
  • the process of removing such polymer extensions may be performed by heating to an appropriate temperature as described above.
  • the heating temperature in this step can be selected to be lower than the melting point of the electrical connection conductor (e.g., solder) disposed on the electrode.
  • the electrode shape of the micro LED chip and the circuit pattern located in the sub pixel can be variously changed in the design of the electrode and the circuit pattern so as to be easily connected to each other. Further, as described above, when the electrodes and / or the circuit pattern are magnetized or the SAM process is used, after the process of removing the polymer extensions, the electrode of the micro LED chip is repositioned .
  • step S19 the micro LED chip is bonded to the circuit pattern of the subpixel.
  • the LED chip can be bonded to a desired location (e.g., a sub-pixel) by melting (e.g., reflowing) the electrical connecting conductor located on the electrode or circuit pattern of the micro LED chip.
  • a desired display device can be manufactured by forming additional wiring on the upper-positioned electrode.
  • FIG. 2 is a cross-sectional view of the semiconductor light-emitting diode chip shown in FIG. 2
  • FIG. 3 is a cross-sectional view of the semiconductor light- Sectional view of the LED structure shown.
  • a micro LED chip 50 may be arranged on the temporary support 10.
  • the micro LED chip 50 may be arranged such that the surface on which the electrode 57 is formed faces downward.
  • the electrode 57 in contact with the temporary support 10 may further include an electrical connection conductor such as a solder bump as a bonding electrode.
  • the LED chip 50 employed in this embodiment may be a vertical structure in which the two electrodes 57 and 58 are located on opposite sides, as shown in Fig.
  • a horizontal-type LED chip in which two electrodes are disposed on the same plane may be used (see Figs. 19 and 20).
  • the LED chip 50 includes a conductive substrate 51 and a semiconductor epitaxial layer 55 disposed on the conductive substrate 51.
  • the semiconductor epitaxial layer 55 includes a laminate including first and second conductivity type semiconductor layers 55a and 55c and an active layer 55b disposed therebetween.
  • the first and second electrodes 57 and 58 may be connected to the conductive substrate 51 and the second conductive type semiconductor layer 55c, respectively.
  • the first and second conductivity type semiconductor layers 55a and 55c may be p-type and n-type semiconductor layers, respectively, and may be a nitride semiconductor, for example, Al x In y Ga (1-xy) x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1). Of course, it may be a GaAs-based semiconductor or a GaP-based semiconductor in addition to a nitride semiconductor.
  • the active layer 55b formed between the first and second conductivity type semiconductor layers 55a and 55c may be configured to emit light of a predetermined wavelength.
  • the active layer 55b may have a multiple quantum well (MQW) structure in which quantum well layers and quantum barrier layers are alternately stacked. In the case of a multiple quantum well structure, for example, it may be InGaN / GaN, AlGaN / GaN structure.
  • MQW multiple quantum well
  • an appropriate amount of liquid polymer is dotted on the micro LED chip 50 using a dispensing process to form a polymer extender 60.
  • the polymer extensions 60 may have a generally spherical shape (e.g., ball type) that is easy to handle. Such spherical polymer extensions 60 utilize the surface tension of the liquid polymer, and thus can be manufactured simply without a separate mold structure.
  • the LED structure 80 formed in this process is shown enlarged in Fig. Referring to FIG. 5, one surface of the micro LED chip 50, that is, the surface on which the first electrode 57 is formed, may be exposed on one side of the polymer extension 60. In the process of disposing the LED structure 80 in a desired region (e.g., a subpixel), the exposed first electrode 57 may be in contact with a circuit pattern located in the subpixel.
  • a solvent containing the LED structures may be used, as shown in FIG.
  • a non-reactive solvent 90 in which a plurality of substantially spherical LED structures 80 are dispersed is contained in a container V.
  • the solvent 90 containing the LED structure 80 may be used in an alignment process using a jetting and sheave, such as storing the LED structure 80 or inkjet.
  • the non-reactive solvent may be a solvent that does not substantially react with the polymer extender, and a solvent that hardly reacts with other elements of the display panel (e.g., circuit patterns, etc.) when utilized in the alignment process.
  • the polymer extender is made of polystyrene
  • an organic solvent free of benzene groups can be used and a non-polar solvent such as ethanol can be used because it reacts with a polar solvent when the polymer extender is made of PMMA.
  • the jetting process using the solvent 90 containing the LED structure 80 may be performed by mixing the LED structure 80 and injecting the desired mixture into the desired area.
  • the LED structure 90 is selectively disposed on each subpixel in such a manner that the solvent 90 containing the LED structure 80 is poured onto the sheave in the case where the region to which the specific subpixel is selectively used is used (See FIG. 10).
  • FIG. 7 is a plan view of an LED display device according to an embodiment of the present invention
  • FIGS. 8 to 14 are cross-sectional views illustrating a method of manufacturing an LED display device according to an embodiment of the present invention.
  • Figs. 8 to 14 each show a section cut into I-I 'of the LED display device shown in Fig. 7, respectively.
  • a display substrate 110 on which a circuit pattern 115 is formed is provided.
  • the barrier rib structure defining the first through third sub-pixels S1, S2, 120 are shown.
  • the display substrate 110 may be a TFT substrate including a thin film transistor (TFT).
  • the display substrate 110 includes circuitry configured to independently drive each of the first through third sub-pixels S1, S2, and S2.
  • the circuit pattern 115 includes sub-pixels S1, S2, and S2, respectively.
  • the first through third sub-pixels S1, S2, and S3 may be provided as regions providing red, green, and blue light, respectively.
  • the first through third sub-pixels S1, S2, and S2 are repeatedly arranged along a row, but the present invention is not limited thereto. In other embodiments, The subpixels may be arranged in a known arrangement.
  • the barrier structure 120 disposed on the display substrate 110 provides a recess C for receiving the LED structure 80.
  • the concave portion C can be set in consideration of the shape and the size of the LED structure 80.
  • the barrier structure 120 employed in this embodiment may be a light blocking structure such as a black matrix.
  • the black matrix is not limited to a black color, and may be used in other colors such as a white matrix or green if necessary, and the white matrix may further include a reflective material or a scattering material.
  • the barrier structure 120 employed in this embodiment is illustrated as a light shielding structure of each pixel in the final product, in another embodiment, the barrier structure 120 is used only as a structure providing a recess for arranging the LED structure, After the completion of the bonding process (see FIG. 13), the barrier structure may be removed and a new light blocking structure may be introduced.
  • the LED structure 80 may be aligned on the display substrate 110 using the sieves 130. Referring to FIG. 1
  • the sheave 130 employed in the present process has a structure in which only the first sub-pixel S1 is selectively opened and the other second and third sub-pixels S2 and S3 are blocked.
  • the first LED structure 80R through such a sheave 130 can be accurately arranged in the concave portion C of the first sub-pixel S1.
  • the first sub-pixel S1 may be a red pixel and the first LED structure 80R may include a red LED chip 50R.
  • the shape and size of the concave portion C can be set according to the LED structure.
  • the width w of the recess C may be somewhat larger than the diameter d2 of the polymer extensions 60 so that the first LED structure 80R can be easily accommodated.
  • the deviation between the width w of the concave portion C and the diameter d2 of the polymer extension portion is excessively large, accurate alignment of the first LED structure 80R in the concave portion C may be difficult, Can be suitably limited.
  • the height H of the barrier rib structure 120 does not need to be greater than the height of the first LED structure 80R and is less than the height of the first LED structure 80R, A height that can be guaranteed is sufficient.
  • the barrier structure 120 may be at least about 50% of the height of the first LED structure 80R.
  • the self-alignment monomer may be used to treat the polymer extender 60 and the bottom surface of the subpixel as hydrophobic and / or hydrophilic, or the electrode 57 of the LED chip 50 and the circuit pattern 115 may provide magnetism to achieve accurate alignment taking into account the electrode location.
  • SAM self-alignment monomer
  • the other sheaves used in this process have a structure for selectively opening the regions of the second and third sub-pixels S2 and S3, respectively.
  • Second and third LED structures 80G and 80B having green and blue LED chips 50G and 50B may be arranged in the second and third subpixels S2 and S3, respectively.
  • the second and third LED structures 80G and 80B employed in this embodiment may have similar polymer extensions 60.
  • this process can also combine additional self-aligning processes (e.g., using SAM or magnetic) similar to the previous process.
  • the concave portion of each sub pixel region and each LED structure may be formed in different shapes so that only the corresponding LED structure is accommodated in the concave portion of each sub pixel.
  • the polymer extensions 60 are removed from the micro-LED chip 50. Referring to FIG. 12
  • the process of removing the polymer extensions 60 can be uniformly performed on the LED structures 80R, 80G, and 80B disposed in the entire sub-pixels S1, S2, and S3. In this process, only the micro LED chip 50 remains and can be disposed on a sub-pixel region (e.g., a circuit pattern).
  • the present process can be carried out by heating to an appropriate temperature.
  • the micro LED chips 50R, 50G, and 50B may be additionally and partially reordered by other self-aligning elements (e.g., SAM or magnetic), but are not so limited.
  • a reflow process is performed to bond the micro LED chip 50 to the sub-pixel circuit pattern 115.
  • This process can be uniformly performed on the LED chip 50 disposed in the entire sub-pixels S1, S2, and S3 similar to the polymer extender removal process described above.
  • the electrode 57 'of the micro LED chip 50 can be melted on each circuit pattern 115 and bonded to a desired position (for example, a circuit pattern of a sub pixel). 12 when the respective electrodes 57 are relatively accurately aligned with the desired circuit pattern 115, the process of removing the polymer extensions 60 and the reflow process may be performed simultaneously or sequentially It is possible.
  • a desired display device can be manufactured by forming a separate wiring 140 on the second electrode 58 positioned on the upper side.
  • Such a wiring 140 may be formed of a transparent electrode such as ITO so as to have no optical influence.
  • the insulating layer 130 may be additionally formed in the concave portion so that the second electrode 58 is opened to form the wiring 140.
  • the insulating layer 130 may be formed of a material such as silicon oxide, silicon nitride, or other polymer.
  • the connection between the LED chip and the circuit pattern can be completed by the preceding bonding process 27).
  • the LED structures that can be employed in the present invention may have various shapes depending on the shape of the polymer extensions.
  • Various examples of LED structures that can be employed in an embodiment of the present invention are illustrated in Figs. 15, 17, 18, 21, and 22.
  • the LED structure 80 ' may have a partially spherical or hemispherical polymer extension 60'.
  • the side surface SP of the polymer extension 60 ' has a curved surface obtained from a spherical shape, so that it can be easily inserted into the concave structure of the sub pixel similarly to the polymer extension 60 according to the previous embodiment.
  • the top surface (TP) of the polymer extensions may have a substantially planar surface. The insertion into the concave structure can be easily induced by using the squeeze structure through the upper surface TP.
  • the polymer extensions of the spherical three-dimensional structure can be formed using a mold.
  • 16 is a perspective view showing a mold used for manufacturing the LED structure shown in Fig.
  • a mold 200 having a plurality of mold holes MC of a desired shape is shown.
  • the LED chip structure 80 'shown in FIG. 15 can be manufactured by disposing the LED chip 50 in each molten metal hole MC, filling the mold hole MC with the liquid polymer, and curing it.
  • the above-described examples of the LED structure are exemplified as including a vertically-structured LED chip, they may be similarly applied to a horizontal-type LED chip such as a flip chip structure.
  • the surface on which the two electrodes are formed may be exposed from one side of the polymer expansion part to the outside.
  • a flip chip LED chip requires alignment of two electrodes to two different circuit patterns in a mounting scene, thus requiring more precise alignment. This exact arrangement can be implemented using an asymmetric structure of the polymer extensions.
  • 17 and 18 are a plan view and a sectional view, respectively, showing an example of a LED structure that can be employed in an embodiment of the present invention.
  • the LED structure 80A includes an LED chip 50A having a flip chip structure and a hemispherical polymer extension 60A similar to the polymer extension 60 ' ).
  • the polymer extensions 60A employed in this embodiment have an asymmetric structure with one side cut off CP.
  • the cut surface CP is located at one side of the polymer extension 60A along the arrayed direction of the two electrodes 59a, 59b of the LED chip 50A (which may be electrical connection conductors). Therefore, the cut surface CP not only indicates the direction in which the electrodes are arranged, but also can ensure a more accurate alignment process. Specifically, by designing the concave structure of the sub-pixel to correspond thereto, the LED structure 80A can be aligned such that the arrangement of the electrodes 59a and 59b of the LED chip 50A coincides with the predetermined arrangement of the circuit patterns 24 and Fig. 25).
  • 19 and 20 are sectional views showing various examples of LED chips that can be employed in an embodiment of the present invention, respectively.
  • the LED chip 50A shown in Fig. 19 may include a light-transmissive substrate 51 and a semiconductor epitaxial layer 55 disposed on the light-transmissive substrate 51.
  • the light-transmitting substrate 51 may be an insulating substrate such as sapphire.
  • the present invention is not limited thereto, and the substrate 51 may be a conductive or semiconductor substrate that can ensure light transmission in addition to an insulating substrate.
  • the semiconductor epitaxial layer 55 may include a first conductive type semiconductor layer 55a, an active layer 55b, and a second conductive type semiconductor layer 55c sequentially disposed on the light-transmitting substrate 51 .
  • the structure of each layer can be referred to the description of FIG. 3A.
  • the first and second electrodes 58a and 58b are formed on the same plane so that the mesa-etched region of the first conductivity type semiconductor layer 55a and the mesa-etched region of the second conductivity type semiconductor layer 55c Respectively.
  • the first electrode 58a may include at least one of Al, Au, Cr, Ni, Ti, and Sn.
  • the second electrode 58b may be formed of a reflective metal.
  • the second electrode 58b may include a material such as Ag, Ni, Al, Cr, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Structure.
  • the first and second electrodes 58a and 58b may include first and second electrical connection conductors 59a and 59b, respectively.
  • the first and second electrical connection conductors 59a and 59b may include conductive bumps such as solder and may be formed of a conductive material such as Au, Ag, Al, Ti, W, Cu, Sn, Ni, Pt, Cr, NiSn, TiW, AuSn or their eutectic metals.
  • the LED chip 50B shown in Fig. 20 includes a semiconductor epitaxial layer 55 disposed on one side of the light-transmissive substrate 51.
  • the semiconductor epitaxial layer 55 may include a first conductive type semiconductor layer 55a, an active layer 55b, and a second conductive type semiconductor layer 55c.
  • the LED chip 50B includes first and second electrodes E1 and E2 connected to the first and second conductivity type semiconductor layers 55a and 55c, respectively.
  • the first electrode E1 includes a connection electrode 57a such as a conductive via connected to the first conductive type semiconductor layer 55a through the second conductive type semiconductor layer 55c and the active layer 55b, And a first electrode pad 58a connected to the electrode 57a.
  • connection electrode 57a may be surrounded by the insulating portion 53 and electrically separated from the active layer 55b and the second conductivity type semiconductor layer 55c.
  • the connection electrode 57a may be disposed in a region where the semiconductor epitaxial layer 55 is etched.
  • the number, shape, pitch, or contact area of the connection electrode 57a with the first conductive type semiconductor layer 55a can be appropriately designed so as to lower the contact resistance.
  • the connection electrode 57a is arranged in rows and columns on the semiconductor laminate 55, thereby improving current flow.
  • the second electrode E2 may include an ohmic contact layer 57b and a second electrode pad 58b on the second conductive semiconductor layer 55c.
  • First and second electrical connection conductors 59a and 59b may be provided on the first and second electrode pads 58a and 58b.
  • the material of each constitution can be referred to the description of Fig.
  • 21 and 22 are a plan view and a sectional view, respectively, showing an example of a LED structure that can be employed in an embodiment of the present invention.
  • the LED structure 80B has a flip chip structure LED chip 50A and a polygonal column extension portion 60B.
  • the polymer extender 60B has a left-right asymmetric structure, that is, a shape in which the plane and the cross-section are trapezoidal. Especially, opposite sides SP1, SP2 of the polymer extension portion 60A have different sizes along the electrode array direction.
  • the concave structure of the subpixel is designed to correspond to the shape and size of the polymer extension portion 60B, so that the arrangement of the electrodes 59a and 59b of the LED chip 50A
  • the LED structure 80B can be aligned so as to match the arrangement of the predetermined circuit patterns.
  • FIG. 23 to 27 are cross-sectional views for explaining a method of transferring an LED chip according to an embodiment of the present invention, and show an example using the LED structure 80A shown in Figs. 19 and 20.
  • a substrate 110 on which first and second circuit patterns 115a and 115b are formed is provided.
  • the present process can also be understood as a display manufacturing method, but is not limited thereto and can be understood as a transfer technology of a micro LED chip for a manufacturing process of another illumination device.
  • the substrate 110 employed in the present embodiment can be understood as a circuit board for a lighting apparatus or the like as well as a display panel such as a TFT substrate.
  • a barrier structure 120 defining a desired mounting region C is formed on a substrate 110.
  • the septum structure 120 employed in this embodiment provides a recess C for receiving the LED structure 80A.
  • the concave portion C has a structure corresponding to the planar shape of the LED structure 80A.
  • the LED structure 80A is accommodated in the concave portion C only in a specific direction by the cut surface CP of the polymer extension portion 60A, and the LED structure 80A aligned in that direction has the first And the second electrical connection conductors 59a and 59b may be disposed on the first and second circuit patterns 115a and 115b, respectively.
  • This sorting process can be implemented by one or more than two of the various sorting schemes described in the foregoing embodiments.
  • the polymer extension 60A is removed from the micro LED chip 50A.
  • the process of removing the polymer extensions 60A can be performed uniformly with respect to the LED structure 80A disposed in the entire mounting area C. [ In this process, only the micro LED chip 50A remains and is disposed in the mounting area, and the first and second electrical connection conductors 59a and 59b of the micro LED chip 50A are electrically connected to the first and second circuit patterns 115a and 115b, 115b.
  • the present process can be carried out by heating to an appropriate temperature.
  • the first and second electrodes 58a and 58b of the micro LED chip 50A are electrically connected to the first and second electrodes 58a and 59b 'using the first and second electrical connection conductors 59a' and 59b ' Two circuit patterns 115a and 115b, respectively.
  • This process can be uniformly performed on the entire LED chip 50A similarly to the polymer extender removal process described above.
  • the first and second electrical connection conductors 59a 'and 59b' of the micro LED chip 50 can be melted in the reflow process and bonded to the first and second circuit patterns 115a and 115b have.
  • the reflow process may be performed simultaneously with or concurrently with the process of removing the polymer extender 60A.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)

Abstract

An embodiment of the present invention provides a manufacturing method of an LED display device comprising: a step of providing a plurality of LED structures which have an LED chip and a polymer extended portion applied to the LED chip, respectively; a step of arranging the plurality of LED structures in desired areas of the display panel, respectively; and a step of removing the polymer extended portion from the plurality of LED structures.

Description

LED 디스플레이 장치 제조방법Manufacturing method of LED display device
본 발명은 LED 디스플레이 장치 제조방법 및 이에 사용되는 LED 구조체에 관한 것이다. The present invention relates to a method of manufacturing an LED display device and a LED structure used therefor.
디스플레이 분야에서는 유기 EL(Organic electro luminescence) 디스플레이와 함께 무기물(예, 반도체)기반 발광다이오드(LED, light emitting diode) 디스플레이가 각광을 받고 있다. 최근에는, 반도체 발광다이오드를 수십 마이크로 수준으로 작게 제조하여 무기물의 고질적인 문제(취성 등)를 극복하고 플렉서블 디스플레이 및 곡면 디스플레이와 같은 새로운 디스플레이 장치의 확장 가능성을 보여 주고 있다. In the field of displays, inorganic (eg, semiconductor) based light emitting diode (LED) displays are gaining popularity as well as organic EL (organic electro luminescence) displays. In recent years, semiconductor light-emitting diodes have been manufactured to be as small as a few tens of micro-degrees to overcome the inherent problems (such as brittleness) of inorganic materials and show possibility of expansion of new display devices such as flexible display and curved surface display.
이를 구현하기 위해서는, 마이크로 사이즈(예, 수백㎛ 이하)의 LED 칩을 원하는 기판(예, 플레서블 기판)에 원하는 배열로 위치시킬 수 있는 전사 공정이 요구된다. 현재 고안된 웨이퍼 레벨의 전사공정의 경우에는 칩간의 거리비가 1:1 배열로 제한되며, 일부 고해상도 디스플레이(예, AR 또는 VR)의 경우에 유용하게 활용될 수 있다. 하지만, 웨이퍼 레벨의 전사공정은 웨이퍼에서의 일부 칩의 불량이나 파장 편차에 능동적으로 대응할 수 없다는 문제가 있다. In order to realize this, there is a need for a transfer process capable of placing micro-sized (e.g., several hundreds 탆 or less) LED chips on a desired substrate (e.g., flexible substrate) in a desired arrangement. In the case of the currently designed wafer level transfer process, the distance ratio between the chips is limited to a 1: 1 arrangement and can be useful for some high resolution displays (eg AR or VR). However, there is a problem that the wafer level transfer process can not actively cope with defects or wavelength variations of some chips in the wafer.
한편, 개별 LED 칩을 픽-앤-플레이스(pick and place) 공정을 사용하여 원하는 다양한 1:N 배열의 디스플레이 장치를 구현할 수 있다. 하지만, 이러한 픽-앤-플레이스와 같은 전사공정은 개별 LED 칩 단위로 이루어지므로 공정이 극히 비효율적이며(예, 수 백만회의 공정이 요구됨), 이로 인해 공정시간이 길고 수율이 낮다는 문제가 있다. On the other hand, it is possible to implement a variety of 1: N arrangements of display devices by using a pick-and-place process for individual LED chips. However, since the transfer process such as the pick-and-place process is performed on an individual LED chip basis, the process is extremely inefficient (e.g., millions of processes are required), which results in a long process time and low yield.
본 발명의 해결하고자 하는 과제 중 하나는, 마이크로 사이즈의 LED 칩을 원하는 위치에 용이하게 전사할 수 있는 LED 칩 전사 방법 및 이를 이용한 LED 디스플레이 장치 제조방법을 제공하는데 있다. One of the problems to be solved by the present invention is to provide an LED chip transfer method capable of easily transferring a micro-sized LED chip to a desired position, and a method of manufacturing an LED display device using the same.
본 발명의 일 실시예는, 각각, LED 칩과 상기 LED 칩에 적용된 폴리머 확장부를 갖는 복수의 LED 구조체를 마련하는 단계와, 디스플레이 패널의 원하는 영역들에 상기 복수의 LED 구조체를 각각 정렬하는 단계와, 상기 복수의 LED 구조체로부터 상기 폴리머 확장부를 제거하는 단계를 포함하는 LED 디스플레이 장치 제조방법을 제공한다. One embodiment of the present invention is directed to a method of manufacturing a display device, comprising: providing a plurality of LED structures each having an LED chip and a polymer extension applied to the LED chip; aligning the plurality of LED structures in desired areas of the display panel, And removing the polymer extensions from the plurality of LED structures.
일 예로, 상기 폴리머 확장부는 상기 LED 칩의 표면들 중 전극이 형성된 면이 노출되도록 상기 LED 칩을 둘러쌀 수 있다. For example, the polymer extensions may surround the LED chip such that the surface of the LED chip on which the electrodes are formed is exposed.
상기 원하는 영역들에는 각각 회로 패턴이 배치되며, 상기 복수의 LED 구조체를 정렬하는 단계는, 상기 회로 패턴에 상기 노출된 전극이 위치하도록 상기 복수의 LED 구조체를 정렬하는 단계를 포함할 수 있다. Each of the desired regions may be provided with a circuit pattern, and the step of aligning the plurality of LED structures may include aligning the plurality of LED structures such that the exposed electrodes are positioned in the circuit pattern.
이 경우에, 상기 전극 및 상기 회로 패턴 중 적어도 하나의 표면에는 전극 연결 도체가 배치되며, 상기 폴리머 확장부를 제거하는 단계 후에, 상기 전극이 상기 회로 패턴에 연결되도록 상기 전극 연결 도체를 용융하는 단계를 더 포함할 수 있다. In this case, an electrode connecting conductor is disposed on at least one surface of the electrode and the circuit pattern, and after the step of removing the polymer extensions, melting the electrode connecting conductor so that the electrode is connected to the circuit pattern .
일 예로, 상기 복수의 LED 구조체를 정렬하는 단계에서, 상기 LED 칩의 전극이 상기 회로 패턴 상에 정렬되도록 상기 LED 칩의 전극과 상기 회로 패턴 중 적어도 하나는 자성을 가질 수 있다. For example, at least one of the electrode and the circuit pattern of the LED chip may have magnetism so that electrodes of the LED chip are aligned on the circuit pattern in the step of aligning the plurality of LED structures.
일 예로, 상기 원하는 영역들은, 상기 복수의 LED 구조체를 정렬하기 위한 오목 구조를 가질 수 있다.In one example, the desired regions may have a concave structure for aligning the plurality of LED structures.
일 예로, 상기 복수의 LED 구조체를 정렬하는 단계에서, 상기 LED 구조체가 상기 원하는 영역들에 각각 정렬되도록 상기 폴리머 확장부 및 상기 원하는 영역들은 자기정렬 모노머(self-assembly monomer)가 적용될 수 있다. In one example, in aligning the plurality of LED structures, the polymer extensions and the desired regions may be self-assembled monomers so that the LED structures are each aligned with the desired regions.
일 예로, 상기 복수의 LED 구조체를 형성하는 단계 후에, 상기 복수의 LED 구조체가 함유된 용매를 마련하는 단계를 더 포함하며, 상기 복수의 LED 구조체를 정렬하는 단계는, 젯팅(jetting) 방식을 이용하여 상기 용매와 함께 복수의 LED 구조체를 정렬하는 단계를 포함할 수 있다. For example, after forming the plurality of LED structures, the step of arranging the plurality of LED structures may include a step of arranging the plurality of LED structures by using a jetting method And aligning the plurality of LED structures together with the solvent.
일 예로, 상기 복수의 LED 구조체를 정렬하는 단계는, 상기 원하는 영역들이 개방된 시브(sieve)를 이용하여 수행될 수 있다. As an example, aligning the plurality of LED structures may be performed using a sieve in which the desired regions are open.
일 예로, 상기 폴리머 확장부는 구형상을 가지며, 상기 LED 칩의 길이보다 큰 직경을 가질 수 있다. For example, the polymer extender may have a spherical shape and may have a diameter greater than the length of the LED chip.
이와 달리, 상기 폴리머 확장부는 비구형상을 가지며, 상기 복수의 LED 구조체를 정렬하는 단계에서, 상기 원하는 영역들은 각각 상기 복수의 LED 구조체가 정렬되도록 상기 비구형상에 수용하기 위한 오목 구조를 가질 수 있다. Alternatively, the polymer extensions may have a non-spherical shape, and in the step of aligning the plurality of LED structures, the desired regions may each have a concave structure for receiving the non-spherical shape such that the plurality of LED structures are aligned.
일 예로, 상기 폴리머 확장부는 상기 LED 칩의 길이보다 큰 폭과 높이를 가질 수 있다. For example, the polymer extensions may have a width and height greater than the length of the LED chip.
일 예로, 상기 폴리머 확장부는 300℃ 이하의 온도에서 하소 가능한 폴리머를 포함하며, 상기 폴리머 확장부를 제거하는 단계는 상기 하소 가능한 온도로 가열하는 단계를 포함할 수 있다. In one embodiment, the polymer extensions include a polymer that is capable of calcining at a temperature of 300 ° C or less, and the step of removing the polymer extensions may include heating to the calcineable temperature.
본 발명의 일 실시예는, 적어도 일 면에 전극을 갖는 LED 칩과, 전극이 형성된 면이 노출되도록 상기 LED 칩을 둘러싸는 3차원 구조를 갖는 폴리머 확장부를 포함하는 LED 구조체를 마련하는 단계와, 회로 패턴이 형성된 실장 영역에 상기 LED 구조체를 정렬하는 단계 - 상기 LED 칩의 전극이 상기 회로 패턴 상에 배치됨 -와, 상기 LED 구조체를 정렬하는 단계 후에, 상기 폴리머 확장부가 하소되도록 상기 LED 구조체를 가열하는 단계를 포함하는 LED 칩 전사방법을 제공한다. According to an embodiment of the present invention, there is provided a method of manufacturing an LED, comprising: providing an LED structure including an LED chip having electrodes on at least one side thereof and a polymer extension portion having a three-dimensional structure surrounding the LED chip, Aligning the LED structure in a mounting area where a circuit pattern is formed, the electrodes of the LED chip being disposed on the circuit pattern; and after the step of aligning the LED structure, heating the LED structure so that the polymer extender is calcined The method comprising the steps of:
일 예로, 상기 전극 및 상기 회로 패턴 중 적어도 하나의 표면에는 전극 연결 도체가 배치되며, 상기 LED 구조체를 가열하는 단계 후에, 상기 전극이 상기 회로 패턴에 연결되도록 상기 전극 연결 도체를 용융하는 단계를 더 포함할 수 있다.For example, an electrode connecting conductor is disposed on at least one surface of the electrode and the circuit pattern, and after the heating of the LED structure, the electrode connecting conductor is melted so that the electrode is connected to the circuit pattern .
상술한 바와 같이, 마이크로 LED 칩에 하소 가능한 폴리머를 이용하여 확장부를 제공함으로써 디스플레이 패널의 원하는 영역(특히, 서브 픽셀)에 용이하게 전사시킬 수 있으며, 폴리머로 이루어진 확장부(이하, 폴리머 확장부라 함)는 간단한 하소 공정을 제거될 수 있다. 특히, 폴리머 확장부를 구형상 또는 부분 구형상을 채용함으로써 다양한 방식을 이용하여 용이하게 정렬시킬 수 있다. As described above, the micro LED chip can be easily transferred to a desired area (particularly, a sub-pixel) of the display panel by providing an expanding part using a polymer that can be calcined. The expansion part made of a polymer ), A simple calcination process can be eliminated. In particular, the polymer extensions can be easily aligned using various methods by employing spherical or partially spherical shapes.
도1은 본 발명의 일 실시예에 따른 LED 디스플레이 장치의 제조방법을 설명하기 위한 순서도이다.1 is a flowchart illustrating a method of manufacturing an LED display device according to an embodiment of the present invention.
도2 및 도3은 본 발명의 일 실시예에 채용가능한 LED 구조체 제조과정을 설명하기 위한 공정별 단면도이다.FIGS. 2 and 3 are cross-sectional views for explaining a manufacturing process of an LED structure employable in an embodiment of the present invention.
도4는 도2에 도시된 반도체 발광다이오드 칩의 단면도이며, 도5는 도3에 도시된 LED 구조체의 단면도이다. FIG. 4 is a cross-sectional view of the semiconductor light emitting diode chip shown in FIG. 2, and FIG. 5 is a cross-sectional view of the LED structure shown in FIG.
도6은 LED 구조체들을 함유한 용매를 개략적으로 나타낸다. Figure 6 schematically depicts a solvent containing LED structures.
도7은 본 발명의 일 실시예에 따른 LED 디스플레이 장치를 나타내는 평면도이다. 7 is a plan view showing an LED display device according to an embodiment of the present invention.
도8 내지 도14는 본 발명의 일 실시예에 따른 LED 디스플레이 장치의 제조방법을 설명하기 위한 공정별 단면도이다.FIGS. 8 to 14 are cross-sectional views illustrating a method of manufacturing an LED display device according to an exemplary embodiment of the present invention.
도15는 본 발명의 일 실시예에 채용가능한 LED 구조체의 일 예를 나타내는 사시도이다.15 is a perspective view showing an example of a LED structure that can be employed in an embodiment of the present invention.
도16은 도15에 도시된 LED 구조체를 제조하는데 사용되는 몰드를 나타내는 사시도이다. 16 is a perspective view showing a mold used for manufacturing the LED structure shown in Fig.
도17 및 도18은 각각 본 발명의 일 실시예에 채용가능한 LED 구조체의 일 예를 나타내는 평면도 및 단면도이다.17 and 18 are a plan view and a sectional view, respectively, showing an example of a LED structure that can be employed in an embodiment of the present invention.
도19 및 도20는 각각 본 발명의 일 실시예에 채용가능한 LED 칩의 다양한 예를 나타내는 단면도이다.19 and 20 are sectional views showing various examples of LED chips that can be employed in an embodiment of the present invention, respectively.
도21 및 도22는 각각 본 발명의 일 실시예에 채용가능한 LED 구조체의 일 예를 나타내는 평면도 및 단면도이다.21 and 22 are a plan view and a sectional view, respectively, showing an example of a LED structure that can be employed in an embodiment of the present invention.
도23 내지 도27는 본 발명의 일 실시예에 따른 LED 칩의 전사방법을 설명하기 위한 공정별 단면도이다.23 to 27 are cross-sectional views for explaining a method of transferring an LED chip according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 다양한 실시예를 상세히 설명한다. Hereinafter, various embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 실시예들은 다른 형태로 변형되거나 여러 실시예가 서로 조합될 수 있으며, 본 발명의 범위가 이하 설명하는 실시예로 한정되는 것은 아니다. 또한, 본 실시예들은 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. 예를 들어, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있으며, 도면 상의 동일한 부호로 표시되는 요소는 동일한 요소이다. 또한, 본 명세서에서, '상부', '상면', '하부', '하면', '측면' 등의 용어는 도면을 기준으로 한 것이며, 실제로는 소자가 배치되는 방향에 따라 달라질 수 있을 것이다.The embodiments may be modified in other forms or various embodiments may be combined with each other, and the scope of the present invention is not limited to the embodiments described below. Further, the embodiments are provided so that those skilled in the art can more fully understand the present invention. For example, the shapes and sizes of the elements in the drawings may be exaggerated for clarity of description, and the elements denoted by the same reference numerals in the drawings are the same elements. Also, in this specification, terms such as "upper", "upper surface", "lower", "lower surface", "side surface" and the like are based on the drawings and may actually vary depending on the direction in which the devices are arranged.
한편, 본 명세서에서 사용되는 "일 실시예(one example)"라는 표현은 서로 동일한 실시예를 의미하지 않으며, 각각 서로 다른 고유한 특징을 강조하여 설명하기 위해서 제공되는 것이다. 그러나, 아래 설명에서 제시된 실시예들은 다른 실시예의 특징과 결합되어 구현되는 것을 배제하지 않는다. 예를 들어, 특정한 실시예에서 설명된 사항이 다른 실시예에서 설명되어 있지 않더라도, 다른 실시예에서 그 사항과 반대되거나 모순되는 설명이 없는 한, 다른 실시예에 관련된 설명으로 이해될 수 있다. The term " one example " used in this specification does not mean the same embodiment, but is provided to emphasize and describe different unique features. However, the embodiments presented in the following description do not exclude that they are implemented in combination with the features of other embodiments. For example, although the matters described in the specific embodiments are not described in the other embodiments, they may be understood as descriptions related to other embodiments unless otherwise described or contradicted by those in other embodiments.
도1은 본 발명의 일 실시예에 따른 LED 디스플레이 장치의 제조방법을 설명하기 위한 순서도이다.1 is a flowchart illustrating a method of manufacturing an LED display device according to an embodiment of the present invention.
우선, 본 실시예에 따른 LED 디스플레이 장치의 제조방법은, 마이크로 LED 칩(도3a 참조)을 마련하는 단계(S11)로 시작될 수 있다. First, the manufacturing method of the LED display device according to the present embodiment may start with the step S11 of providing a micro LED chip (see FIG. 3A).
본 명세서에서 사용되는 "마이크로 LED 칩"이란 용어는 마이크로 단위의 사이즈를 갖는 LED 칩을 말하며, 예를 들어, 상대적으로 긴 길이를 갖는 한 변의 길이를 기준으로 500㎛ 이하, 나아가 10∼200㎛ 범위의 LED 칩일 수 있다. As used herein, the term " micro-LED chip " refers to an LED chip having a micro-unit size, for example, a length of one side having a relatively long length of 500 mu m or less, Of LED chips.
마이크로 LED 칩은 디스플레이 장치의 픽셀(특히, 서브 픽셀)을 위한 광원으로 사용될 수 있다. 마이크로 LED 칩은 가시광선 대역의 파장을 방출하는 활성층을 갖는 LED 칩일 수 있다. 예를 들어, 적색, 녹색 및 청색의 LED 칩일 수 있다.The micro LED chip can be used as a light source for a pixel (especially a sub-pixel) of a display device. The micro LED chip may be an LED chip having an active layer emitting a wavelength in a visible light band. For example, red, green, and blue LED chips.
마이크로 LED 칩은 웨이퍼 상에 반도체 에피택셜을 형성하여 얻어진 반도체 LED 칩으로서, 이에 한정되지는 않으나, 예를 들어 AlxInyGa(1-x-y)N(0<x<1, 0<y<1, 0<x+y<1), AlxInyGa(1-x-y)P(0<x<1, 0<y<1, 0<x+y<1), AlxInyGa(1-x-y)As(0<x<1, 0<y<1, 0<x+y<1)와 같은 Ⅲ-Ⅴ족 화합물 반도체로 형성될 수 있다.The micro LED chip is a semiconductor LED chip obtained by forming a semiconductor epitaxial on a wafer. For example, the micro LED chip is made of Al x In y Ga (1-xy) N (0 <x <1, 1, 0 <x + y < 1), Al x In y Ga (1-xy) P (0 <x <1, 0 <y <1, 0 <x + y <1), Al x In y Ga ( 1-xy) As (0 < x < 1, 0 < y < 1, 0 < x + y < 1).
본 발명에 사용되는 마이크로 LED 칩은 개별적으로(예, 서브 픽셀단위로) 전사되므로, 별도의 파장변환층 없이 다른 웨이퍼에서 다른 에피택셜 성장공정을 이용하여 각 색(각 서브 픽셀단위)의 LED 칩들을 미리 마련할 수 있다.Since the micro LED chips used in the present invention are individually transferred (e.g., in units of subpixels), the LED chips of each color (each subpixel unit) are formed by using different epitaxial growth processes in different wafers without a separate wavelength conversion layer. Can be prepared in advance.
또한, 마이크로 LED 칩을 마련하는 과정에서, 마이크로 LED 칩의 광특성을 측정한 후에 불량칩을 제거하거나 방출파장에 따른 비닝(binning) 공정을 수행할 수 있다. 단일한 색의 LED 칩을 얻기 위해서 동일한 웨이퍼에서 제조할 경우에도, 웨이퍼 영역에 따라 파장이 다소 차이가 있을 수 있다. 따라서, 방출파장을 미리 측정하여 더욱 정밀하게 LED 칩을 분류하여 각 서브 픽셀에서 더욱 정확한 파장의 색을 제공할 수 있다. Further, in the process of preparing the micro LED chip, after the optical characteristic of the micro LED chip is measured, the defective chip can be removed or a binning process according to the emission wavelength can be performed. Even when fabricated on the same wafer to obtain a single-color LED chip, the wavelength may vary slightly depending on the wafer area. Therefore, it is possible to classify the LED chips more precisely by measuring the emission wavelength in advance, and to provide a color of a more accurate wavelength in each sub-pixel.
이어, 단계(S13)에서, 마이크로 LED 칩에 폴리머 확장부를 형성하여 폴리머 확장부를 갖는 LED 구조체(도5 참조)를 제공한다. Next, in step S13, a polymer extension is formed in the micro LED chip to provide a LED structure (see FIG. 5) having a polymer extension.
액상 폴리머를 마이크로 LED 칩에 적용하여 폴리머 확장부를 형성함으로써, 후속 정렬 과정에서 마이크로 LED 칩을 용이하게 취급할 수 있으며, 폴리머 확장부에 의해 마이크로 LED 칩이 보호될 수 있다. 다른 예에서, 폴리머 확장부는 다른 3차원 구조의 형상을 가질 수 있다. 예를 들어, 몰드 구조를 이용하여 원하는 다른 3차원 형상으로 제조할 수 있다(도15 참조). 이러한 3차원 형상은 서브 픽셀의 홈에 용이하게 배치할 수 있도록 그 홈 형상에 대응되는 구조일 수 있다. 예를 들어, 반구형 또는 역전구조(상면보다 하면이 작은 구조)로 형성할 수 있다(도16 내지 도18 참조). By applying the liquid polymer to the micro LED chip to form the polymer extension, the micro LED chip can be easily handled in the subsequent alignment process and the micro LED chip can be protected by the polymer extension. In another example, the polymer extensions may have the shape of another three-dimensional structure. For example, a desired three-dimensional shape can be produced using a mold structure (see FIG. 15). Such a three-dimensional shape may be a structure corresponding to the groove shape so as to be easily arranged in the groove of the subpixel. For example, it can be formed into a hemispherical or inverted structure (a structure having a lower surface than an upper surface) (see Figs. 16 to 18).
본 공정의 구체적인 예는 도2 및 도3을 참조하여 후술하기로 한다. 폴리머 확장부의 사이즈는 폴리머의 적하량으로 조절될 수 있다. A specific example of this step will be described later with reference to Figs. 2 and 3. Fig. The size of the polymer extensions can be controlled by the dropping amount of the polymer.
폴리머 확장부를 구성하는 물질은 간단한 처리로 제거가능한 물질을 선택한다. 예를 들어, 비교적 낮은 온도(예, 100∼300℃)에서 하소가능한 폴리머 물질을 사용할 수 있다. 바람직하게 LED 칩의 전극을 회로 패턴에 접합할 때(예, 리플로우(reflow) 공정)에 적용되는 온도보다 낮은 온도에서 하소가능한 폴리머 물질을 사용할 수 있다. 한편, 폴리머 확장부의 구성물질은 광학적으로 영향을 주는 잔류 물질이 거의 존재하지 않는 폴리머를 사용할 수 있다. The material that constitutes the polymer extender is selected by a simple process to remove the material. For example, a polymer material that can be calcined at a relatively low temperature (e.g., 100 to 300 캜) can be used. Preferably, a polymer material that is capable of being calcined at a temperature lower than the temperature that is applied when the electrode of the LED chip is bonded to the circuit pattern (e.g., a reflow process) may be used. On the other hand, the constituent material of the polymer extender may be a polymer in which almost no optically-influencing residual material is present.
일 예에서, 폴리머 확장부는 폴리스틸렌(polystyrene) 또는 PMMA(polymethyl methacrylate)으로 형성될 수 있다. 예를 들어, 폴리스틸렌인 폴리머 확장부는 약 145℃의 온도에서 하소되어 거의 잔류물 없이 제거될 수 있다. In one example, the polymer extensions may be formed of polystyrene or polymethyl methacrylate (PMMA). For example, the polymer extensions, which are polystyrene, can be calcined at a temperature of about &lt; RTI ID = 0.0 &gt; 145 C &lt; / RTI &gt;
다음으로, 단계(S15)에서, 디스플레이 패널에 LED 구조체를 정렬할 수 있다. Next, in step S15, the LED structure can be aligned on the display panel.
본 정렬 공정은 폴리머 확장부를 이용한 다양한 방식이 활용될 수 있다. 예를 들어, 잉크젯과 같은 젯팅(jetting) 또는 시브(sieve)를 이용하여 LED 구조체를 원하는 영역(예, 서브 픽셀)에 각각 배치할 수 있다.Various methods using the polymer extender can be utilized in this alignment process. For example, a LED structure can be placed in a desired area (e.g., a sub-pixel) using a jetting or sieve such as an inkjet.
추가적으로, 원하는 영역에 정확한 배열(예, 전극을 회로 패턴 상에 배치)을 위해서, 다양한 자기정렬공정을 활용할 수 있다. 일 예에서, 자기정렬 모노머(self assembly monomer)를 이용하여 폴리머 확장부의 표면 및 LED 구조체가 배치될 영역의 표면이 소수성 및/또는 친수성을 갖도록 처리할 수 있다. 다른 예에서는, 서브 픽셀의 영역을 오목 구조로 형성하고, 오목 구조의 크기 및 형상을 폴리머 확장부 또는 LED 구조체가 삽입되는 과정에서 정렬될 수 있도록 구성할 수 있다(도24 및 도25 참조). 또 다른 예에서 자성을 이용하여 LED 구조체를 정확히 정렬할 수 있다. 구체적으로, LED 칩의 전극이 회로 패턴 상에 정렬되도록 LED 칩의 전극과 회로 패턴 중 적어도 하나는 자성을 갖도록 구성할 수 있다. In addition, a variety of self-aligning processes can be utilized for precise alignment (e.g., placing the electrodes on the circuit pattern) in the desired area. In one example, a self assembly monomer can be used to treat the surface of the polymer extensions and the surface of the area in which the LED structure is to be placed to be hydrophobic and / or hydrophilic. In another example, the area of the subpixel may be formed in a concave structure and the size and shape of the concave structure may be arranged to be aligned in the process of insertion of the polymer extensions or LED structures (see FIGS. 24 and 25). In another example, the LED structure can be accurately aligned using magnetism. Specifically, at least one of the electrodes and the circuit pattern of the LED chip may be configured to have magnetism so that the electrodes of the LED chip are aligned on the circuit pattern.
상술된 정렬공정은 단독으로 사용될 수 있으나, 서로 조합되어 더욱 효과적인 정렬을 실현할 수 있다. 예를 들어, 잉크젯 공정을 이용하여 LED 구조체를 서브 픽셀에 배치하되, 서브 픽셀의 오목구조 또는 자성을 이용하여 회로 패턴 상에 LED 칩의 전극이 위치하도록 더욱 정확한 정렬을 실현할 수 있다. The above-described alignment process can be used alone, but can be combined with each other to realize more effective alignment. For example, it is possible to arrange the LED structure in a subpixel using an inkjet process, and more precise alignment can be realized so that the electrode of the LED chip is located on the circuit pattern using the concave structure or the magnetism of the subpixel.
이어, 단계(S17)에서, 마이크로 LED 칩으로부터 폴리머 확장부를 제거한다. Then, in step S17, the polymer extensions are removed from the micro LED chips.
원하는 서브 픽셀에 모두 배치한 후에, 폴리머 확장부를 제거하는 공정을 일률적으로 적용할 수 있다. 이 과정에서, 마이크로 LED 칩만이 잔류하여 서브 픽셀영역(예, 회로 패턴) 상에 배치될 수 있다. 이러한 폴리머 확장부를 제거하는 공정은 앞서 설명한 바와 같이 적정한 온도로 가열함으로써 수행될 수 있다. 본 공정에서의 가열 온도는 전극에 배치된 전기 연결 도체(예, 솔더)의 녹는점보다 낮은 온도로 선택할 수 있다. It is possible to uniformly apply the step of removing the polymer extensions after arranging them all in the desired subpixels. In this process, only the micro LED chips remain and can be disposed on the sub-pixel region (e.g., a circuit pattern). The process of removing such polymer extensions may be performed by heating to an appropriate temperature as described above. The heating temperature in this step can be selected to be lower than the melting point of the electrical connection conductor (e.g., solder) disposed on the electrode.
마이크로 LED 칩의 전극 형상 및 서브 픽셀에 위치한 회로 패턴은 서로 용이하게 연결되도록 전극 및 회로 패턴의 설계를 다양하게 변경할 수 있다. 또한, 앞서 설명한 바와 같이, 전극 및/또는 회로패턴에 자성을 부여하거나 SAM 처리를 이용할 경우에, 폴리머 확장부를 제거하는 과정 후에, 마이크로 LED 칩의 전극이 서브 픽셀의 회로 패턴 상에 정확히 위치하도록 재정렬될 수 있다. The electrode shape of the micro LED chip and the circuit pattern located in the sub pixel can be variously changed in the design of the electrode and the circuit pattern so as to be easily connected to each other. Further, as described above, when the electrodes and / or the circuit pattern are magnetized or the SAM process is used, after the process of removing the polymer extensions, the electrode of the micro LED chip is repositioned .
다음으로, 단계(S19)에서, 마이크로 LED 칩을 서브 픽셀의 회로 패턴과 본딩한다. Next, in step S19, the micro LED chip is bonded to the circuit pattern of the subpixel.
마이크로 LED 칩의 전극 또는 회로 패턴 상에 위치한 전기 연결 도체를 용융시킴(예, 리플로우 공정)으로써 LED 칩을 원하는 위치(예, 서브 픽셀)에 본딩시킬 수 있다. 전극들이 반대에 위치한 양 면에 위치하는 수직 구조의 LED 칩일 경우에, 상부에 위치한 전극에 별도의 배선을 추가 형성함으로써 원하는 디스플레이 장치를 제조할 수 있다. The LED chip can be bonded to a desired location (e.g., a sub-pixel) by melting (e.g., reflowing) the electrical connecting conductor located on the electrode or circuit pattern of the micro LED chip. In the case where the electrodes are vertical-type LED chips located on opposite sides positioned opposite to each other, a desired display device can be manufactured by forming additional wiring on the upper-positioned electrode.
도2 및 도3은 본 발명의 일 실시예에 채용가능한 LED 구조체 제조과정을 설명하기 위한 공정별 단면도이며, 도4는 도2에 도시된 반도체 발광다이오드 칩의 단면도이며, 도5는 도3에 도시된 LED 구조체의 단면도이다. FIG. 2 is a cross-sectional view of the semiconductor light-emitting diode chip shown in FIG. 2, and FIG. 3 is a cross-sectional view of the semiconductor light- Sectional view of the LED structure shown.
도2 및 도3에 도시된 단면은 도1에 도시된 단계(11, 13)에 해당되는 공정으로 나타내는 것으로 이해할 수 있다. It can be understood that the cross-sections shown in Figs. 2 and 3 are represented by the processes corresponding to the steps 11 and 13 shown in Fig.
도2를 참조하면, 임시 지지체(10) 상에 마이크로 LED 칩(50)을 배열할 수 있다. Referring to FIG. 2, a micro LED chip 50 may be arranged on the temporary support 10.
마이크로 LED 칩(50)은 전극(57)이 형성된 면이 아래를 향하도록 배열될 수 있다. 임시 지지체(10)에 접하는 전극(57)은 본딩 전극으로서 솔더 범프와 같은 전기 연결 도체를 더 포함할 수 있다.The micro LED chip 50 may be arranged such that the surface on which the electrode 57 is formed faces downward. The electrode 57 in contact with the temporary support 10 may further include an electrical connection conductor such as a solder bump as a bonding electrode.
본 실시예에 채용된 LED 칩(50)은 도4에 도시된 바와 같이, 두 전극(57,58)이 반대에 위치한 양 면에 위치한 수직 구조일 수 있다. 물론, 다른 예에서는 두 전극이 동일한 면에 배치된 수평 구조의 LED 칩이 사용될 수도 있다(도19 및 도20 참조).The LED chip 50 employed in this embodiment may be a vertical structure in which the two electrodes 57 and 58 are located on opposite sides, as shown in Fig. Of course, in another example, a horizontal-type LED chip in which two electrodes are disposed on the same plane may be used (see Figs. 19 and 20).
도4를 참조하면, 본 실시예에 채용되는 LED 칩(50)가 도시되어 있다. LED 칩(50)은 도전성 기판(51)과 상기 도전성 기판(51) 상에 배치된 반도체 에피택셜(55)을 포함한다. 상기 반도체 에피택셜(55)은 제1 및 제2 도전형 반도체층(55a,55c)과 그 사이에 배치된 활성층(55b)을 구비한 적층체를 포함한다. 제1 및 제2 전극(57,58)은 각각 도전성 기판(51)과 제2 도전형 반도체층(55c)에 접속될 수 있다. Referring to Fig. 4, there is shown an LED chip 50 employed in this embodiment. The LED chip 50 includes a conductive substrate 51 and a semiconductor epitaxial layer 55 disposed on the conductive substrate 51. The semiconductor epitaxial layer 55 includes a laminate including first and second conductivity type semiconductor layers 55a and 55c and an active layer 55b disposed therebetween. The first and second electrodes 57 and 58 may be connected to the conductive substrate 51 and the second conductive type semiconductor layer 55c, respectively.
상기 제1 및 제2 도전형 반도체층(55a,55c)은 각각 p형 및 n형 반도체층이 될 수 있으며, 질화물 반도체, 예를 들어, AlxInyGa(1-x-y)N(0<x<1, 0<y<1, 0<x+y<1)로 이루어질 수 있다. 물론, 질화물 반도체 외에도 GaAs계 반도체나 GaP계 반도체일 수 있다. 제1 및 제2 도전형 반도체층(55a,55c) 사이에 형성되는 활성층(55b)은 소정의 파장의 광을 방출하도록 구성될 수 있다. 예를 들어, 상기 활성층(55b)은 양자우물층과 양자장벽층이 서로 교대로 적층된 다중 양자우물(MQW) 구조로 이루어질 수 있다. 다중 양자우물 구조의 경우, 예를 들어, InGaN/GaN, AlGaN/GaN 구조일 수 있다. The first and second conductivity type semiconductor layers 55a and 55c may be p-type and n-type semiconductor layers, respectively, and may be a nitride semiconductor, for example, Al x In y Ga (1-xy) x <1, 0 <y <1, 0 <x + y <1). Of course, it may be a GaAs-based semiconductor or a GaP-based semiconductor in addition to a nitride semiconductor. The active layer 55b formed between the first and second conductivity type semiconductor layers 55a and 55c may be configured to emit light of a predetermined wavelength. For example, the active layer 55b may have a multiple quantum well (MQW) structure in which quantum well layers and quantum barrier layers are alternately stacked. In the case of a multiple quantum well structure, for example, it may be InGaN / GaN, AlGaN / GaN structure.
이어, 도3을 참조하면, 디스펜싱 공정을 이용하여 마이크로 LED 칩(50)에 적정한 양의 액상 폴리머를 도팅(dotting)하여 폴리머 확장부(60)를 형성한다.Referring to FIG. 3, an appropriate amount of liquid polymer is dotted on the micro LED chip 50 using a dispensing process to form a polymer extender 60.
상기 폴리머 확장부(60)는 취급이 용이한 거의 구형상(예, 볼타입)을 가질 수 있다. 이러한 구형상의 폴리머 확장부(60)는 액상 폴리머의 표면 장력을 이용하므로, 별도의 몰드 구조 없이 간단히 제조될 수 있다. 본 공정에서 형성되는 LED 구조체(80)는 도5에 확대하여 도시되어 있다. 도5를 참조하면, 마이크로 LED 칩(50)의 일면, 즉 제1 전극(57)이 형성된 면이 폴리머 확장부(60)의 일 측에 위치하여 노출될 수 있다. LED 구조체(80)가 원하는 영역(예, 서브 픽셀)에 배치하는 과정에서, 노출된 제1 전극(57)은 서브 픽셀에 위치한 회로 패턴과 접촉될 수 있다. The polymer extensions 60 may have a generally spherical shape (e.g., ball type) that is easy to handle. Such spherical polymer extensions 60 utilize the surface tension of the liquid polymer, and thus can be manufactured simply without a separate mold structure. The LED structure 80 formed in this process is shown enlarged in Fig. Referring to FIG. 5, one surface of the micro LED chip 50, that is, the surface on which the first electrode 57 is formed, may be exposed on one side of the polymer extension 60. In the process of disposing the LED structure 80 in a desired region (e.g., a subpixel), the exposed first electrode 57 may be in contact with a circuit pattern located in the subpixel.
LED 구조체의 보관 또는 정렬하는 방안으로서 도6에 도시된 바와 같이, LED 구조체들을 함유한 용매가 사용될 수 있다. As a method for storing or aligning the LED structure, a solvent containing the LED structures may be used, as shown in FIG.
도6을 참조하면, 용기(V) 내에 다수의 거의 구형상인 LED 구조체(80)가 분산된 무반응성 용매(90)가 수용되어 있다. LED 구조체(80) 함유 용매(90)는 LED 구조체(80)를 보관하거나 잉크젯과 같은 젯팅(jetting) 및 시브를 이용한 정렬 공정에 활용될 수 있다. 무반응성 용매는 폴리머 확장부와 실질적으로 반응하지 않는 용매일 수 있으며, 정렬 공정에도 활용될 경우에 디스플레이 패널의 다른 요소(예, 회로 패턴 등)과도 거의 반응하지 않는 용매를 사용할 수 있다. 예를 들어, 폴리머 확장부를 폴리스틸렌로 형성할 경우에, 벤젠기 없는 유기용매는 사용할 수 있으며, 폴리머 확장부를 PMMA로 형성할 경우에 극성용매에 반응하므로, 에탄올과 같은 무극성 용매를 사용할 수 있다.Referring to FIG. 6, a non-reactive solvent 90 in which a plurality of substantially spherical LED structures 80 are dispersed is contained in a container V. The solvent 90 containing the LED structure 80 may be used in an alignment process using a jetting and sheave, such as storing the LED structure 80 or inkjet. The non-reactive solvent may be a solvent that does not substantially react with the polymer extender, and a solvent that hardly reacts with other elements of the display panel (e.g., circuit patterns, etc.) when utilized in the alignment process. For example, when the polymer extender is made of polystyrene, an organic solvent free of benzene groups can be used and a non-polar solvent such as ethanol can be used because it reacts with a polar solvent when the polymer extender is made of PMMA.
LED 구조체(80) 함유 용매(90)를 이용한 젯팅 공정은 LED 구조체(80)를 혼합하여 원하는 영역에 인젝션(injection)하는 방식으로 수행될 수 있다. 특정 서브 픽셀이 해당되는 영역이 선택적으로 개방된 시브를 이용한 경우에, LED 구조체(80) 함유 용매(90)를 시브 상에 붓는 방식으로, 각 서브 픽셀에 LED 구조체(90)를 선택적으로 배치할 수 있다(도10 참조). The jetting process using the solvent 90 containing the LED structure 80 may be performed by mixing the LED structure 80 and injecting the desired mixture into the desired area. The LED structure 90 is selectively disposed on each subpixel in such a manner that the solvent 90 containing the LED structure 80 is poured onto the sheave in the case where the region to which the specific subpixel is selectively used is used (See FIG. 10).
도7은 본 발명의 일 실시예에 따른 LED 디스플레이 장치를 나타내는 평면도이며, 도8 내지 도14는 본 발명의 일 실시예에 따른 LED 디스플레이 장치의 제조방법을 설명하기 위한 공정별 단면도이다. 여기서 도8 내지 도14는 각각 도7에 도시된 LED 디스플레이 장치의 Ⅰ-Ⅰ'로 절개한 부분을 나타낸다. FIG. 7 is a plan view of an LED display device according to an embodiment of the present invention, and FIGS. 8 to 14 are cross-sectional views illustrating a method of manufacturing an LED display device according to an embodiment of the present invention. Here, Figs. 8 to 14 each show a section cut into I-I 'of the LED display device shown in Fig. 7, respectively.
도8을 참조하면, 회로 패턴(115)이 형성된 디스플레이 기판(110)을 마련하고, 도9를 참조하면, 각각의 제1 내지 제3 서브 픽셀(S1,S2,S3)을 정의하는 격벽 구조물(120)을 도시되어 있다. Referring to FIG. 8, a display substrate 110 on which a circuit pattern 115 is formed is provided. Referring to FIG. 9, the barrier rib structure defining the first through third sub-pixels S1, S2, 120 are shown.
디스플레이 기판(110)은 박막 트랜지스터(TFT)를 포함하는 TFT 기판일 수 있다. 상기 디스플레이 기판(110)은 각 제1 내지 제3 서브 픽셀(S1,S2,S2)을 독립적으로 구동하도록 구성된 회로를 포함하며, 회로 패턴(115)은 각 픽셀(PX)의 서브 픽셀(S1,S2,S2)에 연장되어 배치될 수 있다. 제1 내지 제3 서브 픽셀(S1,S2,S3)은 각각 적색, 녹색 및 청색 광을 제공하는 영역으로 제공될 수 있다. The display substrate 110 may be a TFT substrate including a thin film transistor (TFT). The display substrate 110 includes circuitry configured to independently drive each of the first through third sub-pixels S1, S2, and S2. The circuit pattern 115 includes sub-pixels S1, S2, and S2, respectively. The first through third sub-pixels S1, S2, and S3 may be provided as regions providing red, green, and blue light, respectively.
도7을 참조하면, 제1 내지 제3 서브 픽셀(S1,S2,S2)은 행을 따라 반복적으로 배열되는 것으로 예시되어 있으나, 이에 한정되지 않으며, 다른 실시예에서는 베이어(bayer) 패턴과 같은 다양한 공지된 배열로 서브 픽셀이 배열될 수 있다.Referring to FIG. 7, the first through third sub-pixels S1, S2, and S2 are repeatedly arranged along a row, but the present invention is not limited thereto. In other embodiments, The subpixels may be arranged in a known arrangement.
도9에 도시된 바와 같이, 디스플레이 기판(110) 상에 배치된 격벽 구조물(120)은 LED 구조체(80)를 수용하기 위한 오목부(C)를 제공한다. 이러한 오목부(C)는 LED 구조체(80)의 형상과 크기를 고려하여 설정할 수 있다. 9, the barrier structure 120 disposed on the display substrate 110 provides a recess C for receiving the LED structure 80. As shown in FIG. The concave portion C can be set in consideration of the shape and the size of the LED structure 80.
본 실시예에 채용된 격벽 구조물(120)은 블랙 매트릭스(black matrix)와 같은 광차단 구조체일 수 있다. 블랙 매트릭스는 블랙(black) 색상에 한정되는 것은 아니며 필요에 따라 백색(white) 매트릭스 또는 녹색(green) 등 다른 색깔로도 사용할 수 있으며, 백색 매트릭스는 반사 물질 또는 산란물질을 더 포함할 수 있다. The barrier structure 120 employed in this embodiment may be a light blocking structure such as a black matrix. The black matrix is not limited to a black color, and may be used in other colors such as a white matrix or green if necessary, and the white matrix may further include a reflective material or a scattering material.
본 실시예에 채용된 격벽 구조물(120)은 최종 제품에서 각 픽셀의 광차단 구조체로 예시되어 있으나, 다른 실시예에서 격벽 구조물(120)은 LED 구조체를 배열하기 위한 오목부를 제공하는 구조로만 사용되고, 본딩공정 완료(도13 참조) 후에 격벽 구조물을 제거하고 새로운 광차단 구조체를 도입할 수도 있다. Although the barrier structure 120 employed in this embodiment is illustrated as a light shielding structure of each pixel in the final product, in another embodiment, the barrier structure 120 is used only as a structure providing a recess for arranging the LED structure, After the completion of the bonding process (see FIG. 13), the barrier structure may be removed and a new light blocking structure may be introduced.
이어, 도10을 참조하면, 시브(130)를 이용하여 디스플레이 기판(110) 상에 LED 구조체(80)를 정렬할 수 있다. 10, the LED structure 80 may be aligned on the display substrate 110 using the sieves 130. Referring to FIG.
본 공정에 채용된 시브(130)는 제1 서브 픽셀(S1)만이 선택적으로 개방되며 다른 제2 및 제3 서브 픽셀(S2,S3)은 차단된 구조를 갖는다. 따라서, 도10에 도시된 바와 같이, 이러한 시브(130)를 통해 제1 LED 구조체(80R)는 제1 서브 픽셀(S1)의 오목부(C)에 정확히 배열될 수 있다. 예를 들어, 제1 서브 픽셀(S1)은 적색 픽셀이며, 제1 LED 구조체(80R)는 적색 LED 칩(50R)을 포함할 수 있다. The sheave 130 employed in the present process has a structure in which only the first sub-pixel S1 is selectively opened and the other second and third sub-pixels S2 and S3 are blocked. Thus, as shown in FIG. 10, the first LED structure 80R through such a sheave 130 can be accurately arranged in the concave portion C of the first sub-pixel S1. For example, the first sub-pixel S1 may be a red pixel and the first LED structure 80R may include a red LED chip 50R.
앞서 설명한 바와 같이, 오목부(C)의 형상 및 크기는 LED 구조체에 따라 설정될 수 있다. 예를 들어, 오목부(C)의 폭(w)은 제1 LED 구조체(80R)가 쉽게 수용될 수 있도록 폴리머 확장부(60)의 직경(d2)보다 다소 큰 구조를 가질 수 있다. 다만, 오목부(C)의 폭(w)와 폴리머 확장부의 직경(d2)의 편차를 지나치게 크게 할 경우에 오목부(C) 내에서 제1 LED 구조체(80R)의 정확한 정렬이 어려울 수 있으므로, 적절히 제한할 수 있다. As described above, the shape and size of the concave portion C can be set according to the LED structure. For example, the width w of the recess C may be somewhat larger than the diameter d2 of the polymer extensions 60 so that the first LED structure 80R can be easily accommodated. However, when the deviation between the width w of the concave portion C and the diameter d2 of the polymer extension portion is excessively large, accurate alignment of the first LED structure 80R in the concave portion C may be difficult, Can be suitably limited.
한편, 격벽 구조물(120)의 높이(H)는 제1 LED 구조체(80R)의 높이보다 클 필요는 없으며, 제1 LED 구조체(80R)의 높이보다 낮더라도 제1 LED 구조체(80R)의 안정적인 정렬이 보장될 수 있는 높이이면 충분하다. 예를 들어, 격벽 구조물(120)은 제1 LED 구조체(80R)의 높이의 약 50% 이상일 수 있다. The height H of the barrier rib structure 120 does not need to be greater than the height of the first LED structure 80R and is less than the height of the first LED structure 80R, A height that can be guaranteed is sufficient. For example, the barrier structure 120 may be at least about 50% of the height of the first LED structure 80R.
본 과정에서 추가적인 자기 정렬공정이 결합될 수 있다. 예를 들어, 자기정렬 모노머(SAM)를 이용하여 폴리머 확장부(60) 및 서브 픽셀의 바닥 표면을 소수성 및/또는 친수성으로 처리하거나, LED 칩(50)의 전극(57)과 상기 회로 패턴(115) 중 적어도 하나는 자성을 부여하여 전극 위치까지 고려한 정확한 정렬을 구현할 수 있다. Additional self-aligning processes can be combined in this process. For example, the self-alignment monomer (SAM) may be used to treat the polymer extender 60 and the bottom surface of the subpixel as hydrophobic and / or hydrophilic, or the electrode 57 of the LED chip 50 and the circuit pattern 115 may provide magnetism to achieve accurate alignment taking into account the electrode location.
다음으로, 도11을 참조하면, 다른 시브를 교체하여 도10에 도시된 공정과 유사한 공정을 반복 수행함으로써, 제2 및 제3 서브 픽셀(S2,S3)의 오목부(C)에도 다른 색의 제2 및 제3 LED 구조체(80G,80B)를 각각 배치할 수 있다. 11, the process similar to the process shown in Fig. 10 is repeated to replace the other sheaves so that the concave portion C of the second and third sub-pixels S2 and S3 can be formed with different colors The second and third LED structures 80G and 80B, respectively.
본 공정에서 사용되는 다른 시브는 각각 제2 및 제3 서브 픽셀(S2,S3)의 영역을 선택적으로 개방하는 구조를 갖는다. 제2 및 제3 서브 픽셀(S2,S3)에는 각각 녹색 및 청색 LED 칩(50G,50B)을 갖는 제2 및 제3 LED 구조체(80G,80B)가 배열될 수 있다. 본 실시예에 채용된 제2 및 제3 LED 구조체(80G,80B)는 유사한 폴리머 확장부(60)를 가질 수 있다. 또한, 본 공정도 앞선 공정과 유사하게 추가적인 자기 정렬공정(예, SAM 또는 자성 이용)을 결합할 수 있다. 물론, 다른 실시예에서는, 각 서브 픽셀 영역의 오목부와 각 LED 구조체를 다른 형상으로 제조하여 각 서브 픽셀의 오목부에는 해당 LED 구조체만 수용가능하도록 구성할 수도 있다. The other sheaves used in this process have a structure for selectively opening the regions of the second and third sub-pixels S2 and S3, respectively. Second and third LED structures 80G and 80B having green and blue LED chips 50G and 50B may be arranged in the second and third subpixels S2 and S3, respectively. The second and third LED structures 80G and 80B employed in this embodiment may have similar polymer extensions 60. [ In addition, this process can also combine additional self-aligning processes (e.g., using SAM or magnetic) similar to the previous process. Of course, in another embodiment, the concave portion of each sub pixel region and each LED structure may be formed in different shapes so that only the corresponding LED structure is accommodated in the concave portion of each sub pixel.
이어, 도12를 참조하면, 마이크로 LED 칩(50)으로부터 폴리머 확장부(60)를 제거한다. 12, the polymer extensions 60 are removed from the micro-LED chip 50. Referring to FIG.
본 폴리머 확장부(60)를 제거하는 공정은 전체 서브 픽셀(S1,S2,S3)에 배치된 LED 구조체(80R,80G,80B)에 대해서 일률적으로 수행될 수 있다. 이 과정에서, 마이크로 LED 칩(50)만이 잔류하여 서브 픽셀영역(예, 회로 패턴) 상에 배치될 수 있다. 본 공정은 적정한 온도로 가열함으로써 수행될 수 있다. 폴리머 확장부가 제거된 후에도, 마이크로 LED 칩(50R,50G,50B)은 다른 자기정렬요소(예, SAM 또는 자성)에 의해 추가적이면서도 부분적인 재정렬이 수행될 수 있으나, 이에 한정되는 것은 아니다. The process of removing the polymer extensions 60 can be uniformly performed on the LED structures 80R, 80G, and 80B disposed in the entire sub-pixels S1, S2, and S3. In this process, only the micro LED chip 50 remains and can be disposed on a sub-pixel region (e.g., a circuit pattern). The present process can be carried out by heating to an appropriate temperature. After the polymer extensions are removed, the micro LED chips 50R, 50G, and 50B may be additionally and partially reordered by other self-aligning elements (e.g., SAM or magnetic), but are not so limited.
다음으로, 도13을 참조하면, 마이크로 LED 칩(50)을 서브 픽셀의 회로패턴(115)과 본딩하는 리플로우 공정을 수행한다. Next, referring to FIG. 13, a reflow process is performed to bond the micro LED chip 50 to the sub-pixel circuit pattern 115.
본 공정은 앞선 폴리머 확장부 제거공정과 유사하게 전체 서브 픽셀(S1,S2,S3)에 배치된 LED 칩(50)에 대해서 일률적으로 수행될 수 있다. 본 공정에서 마이크로 LED 칩(50)의 전극(57')은 각각의 회로 패턴(115) 상에 용융되어 원하는 위치(예, 서브 픽셀의 회로 패턴)에 본딩할 수 있다. 본 실시예와 달리, 도12에서 각 전극(57)이 원하는 회로 패턴(115)에 비교적 정확히 정렬된 경우에는, 폴리머 확장부(60)를 제거하는 공정과 리플로우 공정을 동시에 또는 연속적으로 수행할 수도 있다. This process can be uniformly performed on the LED chip 50 disposed in the entire sub-pixels S1, S2, and S3 similar to the polymer extender removal process described above. In this process, the electrode 57 'of the micro LED chip 50 can be melted on each circuit pattern 115 and bonded to a desired position (for example, a circuit pattern of a sub pixel). 12, when the respective electrodes 57 are relatively accurately aligned with the desired circuit pattern 115, the process of removing the polymer extensions 60 and the reflow process may be performed simultaneously or sequentially It is possible.
이어, 도14를 참조하면, 상부에 위치한 제2 전극(58)에 별도의 배선(140)을 형성함으로써 원하는 디스플레이 장치를 제조할 수 있다. Referring to FIG. 14, a desired display device can be manufactured by forming a separate wiring 140 on the second electrode 58 positioned on the upper side.
이러한 배선(140)은 광학적 영향이 없도록 ITO와 같은 투명 전극으로 형성될 수 있다. 배선(140)을 형성하기 위해서 제2 전극(58)이 개방되도록 오목부에 절연층(130)을 추가로 형성할 수 있다. 이러한 절연층(130)은 실리콘 산화물, 실리콘 질화물 또는 다른 폴리머와 같은 물질로 형성될 수 있다. Such a wiring 140 may be formed of a transparent electrode such as ITO so as to have no optical influence. The insulating layer 130 may be additionally formed in the concave portion so that the second electrode 58 is opened to form the wiring 140. The insulating layer 130 may be formed of a material such as silicon oxide, silicon nitride, or other polymer.
본 실시예와 달리, 전극들이 반대에 위치한 양 면에 위치한 수직 구조의 LED 칩가 아닌 플립칩 구조의 LED 칩일 경우에는 앞선 본딩 공정에 의해 LED 칩과 회로 패턴의 연결을 완성할 수 있다(도23 내지 도27 참조).Unlike the present embodiment, in the case where the electrodes are LED chips having a flip chip structure rather than a vertically arranged LED chip located on opposite sides, the connection between the LED chip and the circuit pattern can be completed by the preceding bonding process 27).
본 발명에 채용가능한 LED 구조체는 폴리머 확장부의 형상에 따라 다양한 형태를 가질 수 있다. 본 발명의 일 실시예에 채용가능한 LED 구조체의 다양한 예는 도15, 도17, 도18, 도21 및 도22에 예시되어 있다.The LED structures that can be employed in the present invention may have various shapes depending on the shape of the polymer extensions. Various examples of LED structures that can be employed in an embodiment of the present invention are illustrated in Figs. 15, 17, 18, 21, and 22.
우선, 도15를 참조하면, 본 실시예에 따른 LED 구조체(80')는 부분 구형상 또는 반구형상의 폴리머 확장부(60')를 가질 수 있다. Referring first to FIG. 15, the LED structure 80 'according to the present embodiment may have a partially spherical or hemispherical polymer extension 60'.
폴리머 확장부(60')의 측면(SP)은 구형상으로부터 얻어진 곡면을 가지므로, 앞선 실시예에 따른 폴리머 확장부(60)와 유사하게 서브 픽셀의 오목 구조에 용이하게 삽입될 수 있다. 반면에 폴리머 확장부의 상면(TP)은 거의 평탄한 면을 가질 수 있다. 이러한 상면(TP)을 통해 스퀴즈(squeeze) 구조를 이용하여 오목구조로의 삽입을 쉽게 유도할 수 있다. The side surface SP of the polymer extension 60 'has a curved surface obtained from a spherical shape, so that it can be easily inserted into the concave structure of the sub pixel similarly to the polymer extension 60 according to the previous embodiment. While the top surface (TP) of the polymer extensions may have a substantially planar surface. The insertion into the concave structure can be easily induced by using the squeeze structure through the upper surface TP.
이러한 구형 외의 3차원 구조의 폴리머 확장부는 몰드를 이용한 형성할 수 있다. 도16은 도15에 도시된 LED 구조체를 제조하는데 사용되는 몰드를 나타내는 사시도이다. The polymer extensions of the spherical three-dimensional structure can be formed using a mold. 16 is a perspective view showing a mold used for manufacturing the LED structure shown in Fig.
도16을 참조하면, 원하는 형상(예, 반구형)의 복수의 몰드용 홀(MC)을 갖는 몰드(200)가 도시되어 있다. 각 몰두용 홀(MC)에 LED 칩(50)을 배치하고 몰드용 홀(MC)을 액상 폴리머로 충전하고 경화시킴으로써 도15에 도시된 LED 칩 구조체(80')를 제조할 수 있다. Referring to Fig. 16, a mold 200 having a plurality of mold holes MC of a desired shape (e.g. hemispherical) is shown. The LED chip structure 80 'shown in FIG. 15 can be manufactured by disposing the LED chip 50 in each molten metal hole MC, filling the mold hole MC with the liquid polymer, and curing it.
상술된 LED 구조체의 예들은 수직 구조의 LED 칩을 포함하는 것으로 예시되어 있으나, 플립칩 구조와 같은 수평 구조의 LED 칩에도 유사하게 적용될 수 있다. 플립칩 구조의 LED 칩의 경우에도 두 전극이 형성된 면을 폴리머 확장부의 일측에서 외부로 노출되도록 구성할 수 있다. Although the above-described examples of the LED structure are exemplified as including a vertically-structured LED chip, they may be similarly applied to a horizontal-type LED chip such as a flip chip structure. In the case of the LED chip having the flip chip structure, the surface on which the two electrodes are formed may be exposed from one side of the polymer expansion part to the outside.
플립칩 구조의 LED 칩은 수직 구조의 LED 칩과 달리, 실장면에서 2개의 전극을 2개의 다른 회로 패턴에 정렬시켜야 하므로 더욱 정확한 배열이 요구될 수 있다. 이러한 정확한 배열은 폴리머 확장부의 비대칭 구조를 이용하여 구현할 수 있다. 이러한 실시예들을 도17 내지 도22를 참조하여 설명한다.Unlike a vertical LED chip, a flip chip LED chip requires alignment of two electrodes to two different circuit patterns in a mounting scene, thus requiring more precise alignment. This exact arrangement can be implemented using an asymmetric structure of the polymer extensions. These embodiments will be described with reference to Figs. 17 to 22. Fig.
도17 및 도18은 각각 본 발명의 일 실시예에 채용가능한 LED 구조체의 일 예를 나타내는 평면도 및 단면도이다.17 and 18 are a plan view and a sectional view, respectively, showing an example of a LED structure that can be employed in an embodiment of the present invention.
도17 및 도18을 참조하면, 본 실시예에 따른 LED 구조체(80A)는 플립칩 구조의 LED 칩(50A)과, 도15의 폴리머 확장부(60')와 유사한 반구형상의 폴리머 확장부(60A)를 갖는다. 17 and 18, the LED structure 80A according to the present embodiment includes an LED chip 50A having a flip chip structure and a hemispherical polymer extension 60A similar to the polymer extension 60 ' ).
하지만, 본 실시예에 채용된 폴리머 확장부(60A)는 도15의 폴리머 확장부(60')와 달리, 일측이 절단된 면(CP)을 갖는 비대칭구조를 갖는다. 절단된 면(CP)은 LED 칩(50A)의 두 전극(59a,59b)(예, 전기 연결도체일 수 있음)의 배열된 방향으로 따라 폴리머 확장부(60A)의 일측에 위치한다. 따라서, 절단면(CP)은 전극의 배열방향을 나타낼 뿐만 아니라, 이를 이용하여 더욱 정확한 정렬 공정을 보장할 수 있다. 구체적으로, 서브 픽셀의 오목 구조도 이에 대응되도록 설계함으로써 LED 칩(50A)의 전극(59a,59b)의 배열이 미리 정해진 회로 패턴의 배열과 일치하도록 LED 구조체(80A)를 정렬할 수 있다(도24 및 도25 참조). However, unlike the polymer extensions 60 'of FIG. 15, the polymer extensions 60A employed in this embodiment have an asymmetric structure with one side cut off CP. The cut surface CP is located at one side of the polymer extension 60A along the arrayed direction of the two electrodes 59a, 59b of the LED chip 50A (which may be electrical connection conductors). Therefore, the cut surface CP not only indicates the direction in which the electrodes are arranged, but also can ensure a more accurate alignment process. Specifically, by designing the concave structure of the sub-pixel to correspond thereto, the LED structure 80A can be aligned such that the arrangement of the electrodes 59a and 59b of the LED chip 50A coincides with the predetermined arrangement of the circuit patterns 24 and Fig. 25).
도19 및 도20은 각각 본 발명의 일 실시예에 채용가능한 LED 칩의 다양한 예를 나타내는 단면도이다.19 and 20 are sectional views showing various examples of LED chips that can be employed in an embodiment of the present invention, respectively.
도19에 도시된 LED 칩(50A)은, 광투과성 기판(51)과, 상기 광투과성 기판(51) 상에 배치된 반도체 에피택셜(55)를 포함할 수 있다. The LED chip 50A shown in Fig. 19 may include a light-transmissive substrate 51 and a semiconductor epitaxial layer 55 disposed on the light-transmissive substrate 51. Fig.
상기 광투과성 기판(51)은 사파이어와 같은 절연성 기판일 수 있다. 하지만, 이에 한정되지 않으며, 상기 기판(51)은 절연성 기판 외에도 광투과성을 보장할 수 있는 도전성 또는 반도체 기판일 수 있다. The light-transmitting substrate 51 may be an insulating substrate such as sapphire. However, the present invention is not limited thereto, and the substrate 51 may be a conductive or semiconductor substrate that can ensure light transmission in addition to an insulating substrate.
상기 반도체 에피택셜(55)은 상기 광투광성 기판(51) 상에 순차적으로 배치된 제1 도전형 반도체층(55a), 활성층(55b) 및 제2 도전형 반도체층(55c)을 포함할 수 있다. 각 층의 구성은 도3a의 설명을 참조할 수 있다.The semiconductor epitaxial layer 55 may include a first conductive type semiconductor layer 55a, an active layer 55b, and a second conductive type semiconductor layer 55c sequentially disposed on the light-transmitting substrate 51 . The structure of each layer can be referred to the description of FIG. 3A.
상기 제1 및 제2 전극(58a,58b)은, 동일한 면(제1 면)에 위치하도록, 상기 제1 도전형 반도체층(55a)의 메사 에칭된 영역과 상기 제2 도전형 반도체층(55c)에 각각 배치될 수 있다. 예를 들어, 상기 제1 전극(58a)은 Al, Au, Cr, Ni, Ti, Sn 중 적어도 하나를 포함할 수 있다. 상기 제2 전극(58b)은 반사성 금속으로 형성될 수 있다. 예를 들어, 상기 제2 전극(58b)은 Ag, Ni, Al, Cr, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au 등의 물질을 포함할 수 있으며, 단일층 또는 2층 이상의 구조로 채용될 수 있다. 각 제1 및 제2 전극(58a,58b) 상에는 각각 제1 및 제2 전기 연결 도체(59a,59b)를 포함할 수 있다. 제1 및 제2 전기 연결 도체(59a,59b)는 솔더와 같은 도전성 범프를 포함할 수 있으며, 예를 들어 Au, Ag, Al, Ti, W, Cu, Sn, Ni, Pt, Cr, NiSn, TiW, AuSn 또는 이들의 공융 금속을 포함할 수 있다. The first and second electrodes 58a and 58b are formed on the same plane so that the mesa-etched region of the first conductivity type semiconductor layer 55a and the mesa-etched region of the second conductivity type semiconductor layer 55c Respectively. For example, the first electrode 58a may include at least one of Al, Au, Cr, Ni, Ti, and Sn. The second electrode 58b may be formed of a reflective metal. For example, the second electrode 58b may include a material such as Ag, Ni, Al, Cr, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Structure. The first and second electrodes 58a and 58b may include first and second electrical connection conductors 59a and 59b, respectively. The first and second electrical connection conductors 59a and 59b may include conductive bumps such as solder and may be formed of a conductive material such as Au, Ag, Al, Ti, W, Cu, Sn, Ni, Pt, Cr, NiSn, TiW, AuSn or their eutectic metals.
도20에 도시된 LED 칩(50B)은 광투과성 기판(51)의 일면에 배치된 반도체 에피택셜(55)을 포함한다. 상기 반도체 에피택셜(55)는 제1 도전형 반도체층(55a), 활성층(55b) 및 제2 도전형 반도체층(55c)을 포함할 수 있다. The LED chip 50B shown in Fig. 20 includes a semiconductor epitaxial layer 55 disposed on one side of the light-transmissive substrate 51. Fig. The semiconductor epitaxial layer 55 may include a first conductive type semiconductor layer 55a, an active layer 55b, and a second conductive type semiconductor layer 55c.
상기 LED 칩(50B)은 상기 제1 및 제2 도전형 반도체층(55a,55c)에 각각 접속된 제1 및 제2 전극(E1,E2)을 포함한다. 상기 제1 전극(E1)은 제2 도전형 반도체층(55c) 및 활성층(55b)을 관통하여 제1 도전형 반도체층(55a)과 접속된 도전성 비아와 같은 연결 전극(57a)과, 상기 연결 전극(57a)에 연결된 제1 전극 패드(58a)를 포함할 수 있다.  The LED chip 50B includes first and second electrodes E1 and E2 connected to the first and second conductivity type semiconductor layers 55a and 55c, respectively. The first electrode E1 includes a connection electrode 57a such as a conductive via connected to the first conductive type semiconductor layer 55a through the second conductive type semiconductor layer 55c and the active layer 55b, And a first electrode pad 58a connected to the electrode 57a.
상기 연결 전극(57a)은 절연부(53)에 의하여 둘러싸여 활성층(55b) 및 제2 도전형 반도체층(55c)과 전기적으로 분리될 수 있다. 상기 연결 전극(57a)은 반도체 에피택셜(55)이 식각된 영역에 배치될 수 있다. 상기 연결 전극(57a)은 접촉 저항이 낮아지도록 개수, 형상, 피치 또는 제1 도전형 반도체층(55a)과의 접촉 면적 등을 적절히 설계할 수 있다. 또한, 연결 전극(57a)은 반도체 적층체(55) 상에 행과 열을 이루도록 배열됨으로써 전류 흐름을 개선시킬 수 있다. 상기 제2 전극(E2)은 제2 도전형 반도체층(55c) 상의 오믹 콘택층(57b) 및 제2 전극 패드(58b)를 포함할 수 있다. 제1 및 제2 전극 패드(58a,58b) 상에 제1 및 제2 전기 연결 도체(59a,59b)가 제공될 수 있다. 각 구성의 물질은 도19의 설명을 참조할 수 있다.The connection electrode 57a may be surrounded by the insulating portion 53 and electrically separated from the active layer 55b and the second conductivity type semiconductor layer 55c. The connection electrode 57a may be disposed in a region where the semiconductor epitaxial layer 55 is etched. The number, shape, pitch, or contact area of the connection electrode 57a with the first conductive type semiconductor layer 55a can be appropriately designed so as to lower the contact resistance. Further, the connection electrode 57a is arranged in rows and columns on the semiconductor laminate 55, thereby improving current flow. The second electrode E2 may include an ohmic contact layer 57b and a second electrode pad 58b on the second conductive semiconductor layer 55c. First and second electrical connection conductors 59a and 59b may be provided on the first and second electrode pads 58a and 58b. The material of each constitution can be referred to the description of Fig.
도21 및 도22는 각각 본 발명의 일 실시예에 채용가능한 LED 구조체의 일 예를 나타내는 평면도 및 단면도이다.21 and 22 are a plan view and a sectional view, respectively, showing an example of a LED structure that can be employed in an embodiment of the present invention.
도21 및 도22를 참조하면, 본 실시예에 따른 LED 구조체(80B)는 플립칩 구조의 LED 칩(50A)과, 다각기둥의 폴리머 확장부(60B)를 갖는다. Referring to FIGS. 21 and 22, the LED structure 80B according to the present embodiment has a flip chip structure LED chip 50A and a polygonal column extension portion 60B.
또한, 폴리머 확장부(60B)는 좌우 비대칭구조, 즉 평면과 단면이 사다리꼴인 형상을 갖는다. 특히 전극 배열 방향으로 따라 폴리머 확장부(60A)의 마주하는 양 측면(SP1,SP2)이 다른 크기를 갖는다. 따라서, 도21 및 도22에 도시된 예와 유사하게, 서브 픽셀의 오목 구조도 폴리머 확장부(60B)의 형상과 크기에 대응되도록 설계함으로써 LED 칩(50A)의 전극(59a,59b)의 배열이 미리 정해진 회로 패턴의 배열과 일치하도록 LED 구조체(80B)를 정렬할 수 있다. Further, the polymer extender 60B has a left-right asymmetric structure, that is, a shape in which the plane and the cross-section are trapezoidal. Especially, opposite sides SP1, SP2 of the polymer extension portion 60A have different sizes along the electrode array direction. Thus, similar to the example shown in Figs. 21 and 22, the concave structure of the subpixel is designed to correspond to the shape and size of the polymer extension portion 60B, so that the arrangement of the electrodes 59a and 59b of the LED chip 50A The LED structure 80B can be aligned so as to match the arrangement of the predetermined circuit patterns.
도23 내지 도27은 본 발명의 일 실시예에 따른 LED 칩의 전사방법을 설명하기 위한 공정별 단면도이며, 도19 및 도20에 도시된 LED 구조체(80A)를 이용하는 예를 도시한다. 23 to 27 are cross-sectional views for explaining a method of transferring an LED chip according to an embodiment of the present invention, and show an example using the LED structure 80A shown in Figs. 19 and 20. Fig.
우선, 도23을 참조하면, 제1 및 제2 회로 패턴(115a,115b)이 형성된 기판(110)을 마련한다. First, referring to FIG. 23, a substrate 110 on which first and second circuit patterns 115a and 115b are formed is provided.
본 공정은 디스플레이 제조방법으로도 이해될 수 있으나, 이에 한정되지 않고 다른 조명 장치의 제조공정을 위한 마이크로 LED 칩의 전사기술로 이해될 수 있다. 본 실시예에 채용된 기판(110)은 TFT 기판과 같은 디스플레이 패널 뿐만 아니라 조명장치 등을 위한 회로 기판으로 이해될 수 있다. The present process can also be understood as a display manufacturing method, but is not limited thereto and can be understood as a transfer technology of a micro LED chip for a manufacturing process of another illumination device. The substrate 110 employed in the present embodiment can be understood as a circuit board for a lighting apparatus or the like as well as a display panel such as a TFT substrate.
이어, 도24를 참조하면, 기판(110) 상에 원하는 실장영역(C)을 정의하는 격벽 구조물(120)을 형성한다. Next, referring to FIG. 24, a barrier structure 120 defining a desired mounting region C is formed on a substrate 110.
본 실시예에 채용된 격벽 구조물(120)은 LED 구조체(80A)를 수용하기 위한 오목부(C)를 제공한다. 이러한 오목부(C)는 LED 구조체(80A)의 평면 형상에 대응되는 구조를 갖는다.The septum structure 120 employed in this embodiment provides a recess C for receiving the LED structure 80A. The concave portion C has a structure corresponding to the planar shape of the LED structure 80A.
다음으로, 도25를 참조하면, 실장영역(C)에 LED 구조체(80A)를 정렬한다. Next, referring to Fig. 25, the LED structure 80A is aligned in the mounting area C. Fig.
본 정렬 과정에서, 폴리머 확장부(60A)의 절단면(CP)에 의해 LED 구조체(80A)는 특정 방향으로만 오목부(C)에 수용되며, 그 방향으로 정렬된 LED 구조체(80A)는 제1 및 제2 전기 연결 도체(59a,59b)가 제1 및 제2 회로 패턴(115a,115b) 상에 각각 배치될 수 있다. 이러한 정렬 과정은 앞선 실시예들에서 설명된 다양한 정렬 방식 중 하나 또는 2이상의 조합으로 구현될 수 있다. In this alignment process, the LED structure 80A is accommodated in the concave portion C only in a specific direction by the cut surface CP of the polymer extension portion 60A, and the LED structure 80A aligned in that direction has the first And the second electrical connection conductors 59a and 59b may be disposed on the first and second circuit patterns 115a and 115b, respectively. This sorting process can be implemented by one or more than two of the various sorting schemes described in the foregoing embodiments.
이어, 도26을 참조하면, 마이크로 LED 칩(50A)으로부터 폴리머 확장부(60A)를 제거한다. 26, the polymer extension 60A is removed from the micro LED chip 50A.
본 폴리머 확장부(60A)를 제거하는 공정은 전체 실장영역(C)에 배치된 LED 구조체(80A)에 대해서 일률적으로 수행될 수 있다. 이 과정에서, 마이크로 LED 칩(50A)만이 잔류하여 실장영역에 배치되고 마이크로 LED 칩(50A)의 제1 및 제2 전기 연결 도체(59a,59b)는 각각 제1 및 제2 회로 패턴(115a,115b) 상에 배치될 수 있다. 본 공정은 적정한 온도로 가열함으로써 수행될 수 있다. The process of removing the polymer extensions 60A can be performed uniformly with respect to the LED structure 80A disposed in the entire mounting area C. [ In this process, only the micro LED chip 50A remains and is disposed in the mounting area, and the first and second electrical connection conductors 59a and 59b of the micro LED chip 50A are electrically connected to the first and second circuit patterns 115a and 115b, 115b. The present process can be carried out by heating to an appropriate temperature.
다음으로, 도27을 참조하면, 마이크로 LED 칩(50A)의 제1 및 제2 전극(58a,58b)이 제1 및 제2 전기 연결 도체(59a',59b')를 이용하여 제1 및 제2 회로패턴(115a,115b)과 각각 본딩한다. 27, the first and second electrodes 58a and 58b of the micro LED chip 50A are electrically connected to the first and second electrodes 58a and 59b 'using the first and second electrical connection conductors 59a' and 59b ' Two circuit patterns 115a and 115b, respectively.
본 공정은 앞선 폴리머 확장부 제거공정과 유사하게 전체 LED 칩(50A)에 대해서 일률적으로 수행될 수 있다. 본 공정에서 마이크로 LED 칩(50)의 제1 및 제2 전기 연결 도체(59a',59b')를 리플로우공정으로 용융시켜 각각 제1 및 제2 회로 패턴(115a,115b) 상에 접합시킬 수 있다. 본 리플로우공정은 폴리머 확장부(60A)를 제거하는 공정과 동시에 또는 연속적으로 수행할 수도 있다. This process can be uniformly performed on the entire LED chip 50A similarly to the polymer extender removal process described above. The first and second electrical connection conductors 59a 'and 59b' of the micro LED chip 50 can be melted in the reflow process and bonded to the first and second circuit patterns 115a and 115b have. The reflow process may be performed simultaneously with or concurrently with the process of removing the polymer extender 60A.
본 발명은 상술한 실시형태 및 첨부된 도면에 의해 한정되는 것이 아니며, 첨부된 청구범위에 의해 한정하고자 한다. 따라서, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 당 기술분야의 통상의 지식을 가진 자에 의해 다양한 형태의 치환, 변형 및 변경이 가능할 것이며, 이 또한 본 발명의 범위에 속한다고 할 것이다.The present invention is not limited by the above-described embodiments and the accompanying drawings, but is intended to be limited only by the appended claims. It will be apparent to those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. something to do.

Claims (13)

  1. 각각, LED 칩과 상기 LED 칩에 적용된 폴리머 확장부를 갖는 복수의 LED 구조체를 마련하는 단계;Providing a plurality of LED structures each having an LED chip and a polymer extension applied to the LED chip;
    디스플레이 패널의 원하는 영역들에 상기 복수의 LED 구조체를 각각 정렬하는 단계; 및Aligning the plurality of LED structures in desired areas of the display panel, respectively; And
    상기 복수의 LED 구조체를 정렬하는 단계 후에, 상기 복수의 LED 구조체로부터 상기 폴리머 확장부를 제거하는 단계;를 포함하는 LED 디스플레이 장치 제조방법.And removing the polymer extensions from the plurality of LED structures after aligning the plurality of LED structures.
  2. 제1항에 있어서,The method according to claim 1,
    상기 폴리머 확장부는 상기 LED 칩의 표면들 중 전극이 형성된 면이 노출되도록 상기 LED 칩을 둘러싸는 LED 디스플레이 장치 제조방법.Wherein the polymer extension portion surrounds the LED chip so that the surface of the LED chip on which the electrode is formed is exposed.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 원하는 영역들에는 각각 회로 패턴이 배치되며, Each of the desired regions is provided with a circuit pattern,
    상기 복수의 LED 구조체를 정렬하는 단계는, 상기 회로 패턴에 상기 노출된 전극이 위치하도록 상기 복수의 LED 구조체를 정렬하는 단계를 포함하는 LED 디스플레이 장치 제조방법.Wherein aligning the plurality of LED structures comprises aligning the plurality of LED structures such that the exposed electrodes are located in the circuit pattern.
  4. 제3항에 있어서,The method of claim 3,
    상기 전극 및 상기 회로 패턴 중 적어도 하나의 표면에는 전극 연결 도체가 배치되며,An electrode connecting conductor is disposed on a surface of at least one of the electrode and the circuit pattern,
    상기 폴리머 확장부를 제거하는 단계 후에, 상기 전극이 상기 회로 패턴에 연결되도록 상기 전극 연결 도체를 용융하는 단계를 더 포함하는 LED 디스플레이 장치 제조방법.And melting the electrode connecting conductor such that the electrode is connected to the circuit pattern after the step of removing the polymer extensions.
  5. 제3항에 있어서,The method of claim 3,
    상기 복수의 LED 구조체를 정렬하는 단계에서, 상기 LED 칩의 전극이 상기 회로 패턴 상에 정렬되도록 상기 LED 칩의 전극과 상기 회로 패턴 중 적어도 하나는 자성을 갖는 LED 디스플레이 장치 제조방법.Wherein at least one of the electrode of the LED chip and the circuit pattern has magnetism so that electrodes of the LED chip are aligned on the circuit pattern in the step of aligning the plurality of LED structures.
  6. 제1항에 있어서,The method according to claim 1,
    상기 원하는 영역들은, 상기 복수의 LED 구조체를 정렬하기 위한 오목 구조를 갖는 LED 디스플레이 장치 제조방법.Wherein the desired regions have a concave structure for aligning the plurality of LED structures.
  7. 제1항에 있어서,The method according to claim 1,
    상기 복수의 LED 구조체를 정렬하는 단계에서, 상기 LED 구조체가 상기 원하는 영역들에 각각 정렬되도록 상기 폴리머 확장부 및 상기 원하는 영역들은 자기정렬 모노머(self-assembly monomer)가 적용되는 LED 디스플레이 장치 제조방법.Wherein the self-assembly monomer is applied to the polymer extensions and the desired regions such that the LED structures are aligned with the desired regions, respectively, in aligning the plurality of LED structures.
  8. 제1항에 있어서,The method according to claim 1,
    상기 복수의 LED 구조체를 형성하는 단계 후에, 상기 복수의 LED 구조체가 함유된 용매를 마련하는 단계를 더 포함하며,Further comprising the step of providing a solvent containing the plurality of LED structures after forming the plurality of LED structures,
    상기 복수의 LED 구조체를 정렬하는 단계는, 젯팅(jetting) 방식을 이용하여 상기 용매와 함께 복수의 LED 구조체를 정렬하는 단계를 포함하는 LED 디스플레이 장치 제조방법.Wherein aligning the plurality of LED structures comprises aligning the plurality of LED structures together with the solvent using a jetting method.
  9. 제1항에 있어서,The method according to claim 1,
    상기 복수의 LED 구조체를 정렬하는 단계는, 상기 원하는 영역들이 개방된 시브(sieve)를 이용하여 수행되는 LED 디스플레이 장치 제조방법. Wherein aligning the plurality of LED structures is performed using an open sieve.
  10. 제1항에 있어서,The method according to claim 1,
    상기 폴리머 확장부는 구형상을 가지며, 상기 LED 칩의 길이보다 큰 직경을 갖는 LED 디스플레이 장치 제조방법.Wherein the polymer extender has a spherical shape and has a diameter larger than the length of the LED chip.
  11. 제1항에 있어서,The method according to claim 1,
    상기 폴리머 확장부는 비구형상을 가지며, Wherein the polymer extender has an acetal shape,
    상기 복수의 LED 구조체를 정렬하는 단계에서, 상기 원하는 영역들은 각각 상기 복수의 LED 구조체가 정렬되도록 상기 비구형상에 수용하기 위한 오목 구조를 갖는 LED 디스플레이 장치 제조방법.Wherein the plurality of LED structures have a concave structure for accommodating the plurality of LED structures in the non-spherical shape, respectively, in the step of aligning the plurality of LED structures.
  12. 제1항에 있어서,The method according to claim 1,
    상기 폴리머 확장부는 300℃ 이하의 온도에서 하소 가능한 폴리머를 포함하며, 상기 폴리머 확장부를 제거하는 단계는 상기 하소 가능한 온도로 가열하는 단계를 포함하는 LED 디스플레이 장치 제조방법.Wherein the polymer extensions comprise a polymer that is capable of being calcined at a temperature of 300 DEG C or less and wherein the step of removing the polymer extensions comprises heating to the calcineable temperature.
  13. 적어도 일 면에 전극을 갖는 LED 칩과, 전극이 형성된 면이 노출되도록 상기 LED 칩을 둘러싸는 3차원 구조를 갖는 폴리머 확장부를 포함하는 LED 구조체를 마련하는 단계;Providing a LED structure including an LED chip having electrodes on at least one side and a polymer extension having a three-dimensional structure surrounding the LED chip such that a surface on which the electrode is formed is exposed;
    회로 패턴이 형성된 실장 영역에 상기 LED 구조체를 정렬하는 단계 - 상기 LED 칩의 전극이 상기 회로 패턴 상에 배치됨 -; 및Aligning the LED structure in a mounting area in which a circuit pattern is formed, the electrodes of the LED chip being disposed on the circuit pattern; And
    상기 LED 구조체를 정렬하는 단계 후에, 상기 폴리머 확장부가 하소되도록 상기 LED 구조체를 가열하는 단계;를 포함하는 LED 칩 전사방법.And heating the LED structure such that the polymer extender is calcined after the step of aligning the LED structure.
PCT/KR2018/013019 2017-11-06 2018-10-30 Manufacturing method of led display device WO2019088660A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170146654A KR101961834B1 (en) 2017-11-06 2017-11-06 Method of fabricating a led display apparatus
KR10-2017-0146654 2017-11-06

Publications (1)

Publication Number Publication Date
WO2019088660A1 true WO2019088660A1 (en) 2019-05-09

Family

ID=65949860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013019 WO2019088660A1 (en) 2017-11-06 2018-10-30 Manufacturing method of led display device

Country Status (2)

Country Link
KR (1) KR101961834B1 (en)
WO (1) WO2019088660A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113707787A (en) * 2020-05-22 2021-11-26 重庆康佳光电技术研究院有限公司 Spherical inverted micro LED, manufacturing method thereof and display panel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11764095B2 (en) 2020-07-10 2023-09-19 Samsung Electronics Co., Ltd. Wet alignment method for micro-semiconductor chip and display transfer structure
KR20220013739A (en) 2020-07-27 2022-02-04 삼성전자주식회사 Method of transferring micro light emitting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090042229A (en) * 2006-07-07 2009-04-29 에너지 릴레이티드 디바이시스, 인코오포레이티드 Micro concentrators elastically coupled with spherical photovoltaic cells
KR20120093880A (en) * 2009-09-15 2012-08-23 유나이티드 스테이츠 오프 아메리카 에즈 리프리젠티드 바이 더 애드미니스트레이터 오프 더 내셔널 에어로너틱스 앤드 스페이스 애드미니스트레이션 Light emitting, photovoltaic or other electronic apparatus and system and method of making same
KR20160059576A (en) * 2014-11-18 2016-05-27 피에스아이 주식회사 Nano-scale LED for horizontal arrayed assembly, method for manufacturing thereof and horizontal arrayed assembly comprising the same
KR20170026957A (en) * 2015-08-31 2017-03-09 삼성디스플레이 주식회사 Display apparatus and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090042229A (en) * 2006-07-07 2009-04-29 에너지 릴레이티드 디바이시스, 인코오포레이티드 Micro concentrators elastically coupled with spherical photovoltaic cells
KR20120093880A (en) * 2009-09-15 2012-08-23 유나이티드 스테이츠 오프 아메리카 에즈 리프리젠티드 바이 더 애드미니스트레이터 오프 더 내셔널 에어로너틱스 앤드 스페이스 애드미니스트레이션 Light emitting, photovoltaic or other electronic apparatus and system and method of making same
KR20160059576A (en) * 2014-11-18 2016-05-27 피에스아이 주식회사 Nano-scale LED for horizontal arrayed assembly, method for manufacturing thereof and horizontal arrayed assembly comprising the same
KR20170026957A (en) * 2015-08-31 2017-03-09 삼성디스플레이 주식회사 Display apparatus and method of manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WINKLEMAN, ADAM ET AL.: "Directed Self-assembly of Spherical Particles on Patterned Electrodes by an Applied Electric Field", ADVANCED MATERIALS, 7 June 2005 (2005-06-07), pages 1507 - 1511, XP55612675 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113707787A (en) * 2020-05-22 2021-11-26 重庆康佳光电技术研究院有限公司 Spherical inverted micro LED, manufacturing method thereof and display panel
CN113707787B (en) * 2020-05-22 2023-07-18 重庆康佳光电技术研究院有限公司 Spherical flip-chip micro LED, manufacturing method thereof and display panel

Also Published As

Publication number Publication date
KR101961834B1 (en) 2019-03-26

Similar Documents

Publication Publication Date Title
WO2021149861A1 (en) Display apparatus using semiconductor light-emitting device
WO2021085935A1 (en) Light-emitting element for display, and display apparatus having same
WO2021149856A1 (en) Display device using semiconductor light-emitting element and manufacturing method thereof
WO2019088660A1 (en) Manufacturing method of led display device
WO2020036278A1 (en) Light emitting device, pixel structure comprising light emitting device, and manufacturing method therefor
WO2020036421A1 (en) Light-emitting element
WO2020130521A1 (en) Display device using semiconductor light emitting device and method for manufacturing the same
WO2020162687A1 (en) Light-emitting element for display and display device comprising same
WO2020166985A1 (en) Method for transferring light-emitting diodes for display, and display device
WO2020218850A1 (en) Light-emitting diode display panel, display device having same, and method for manufacturing same
WO2021125780A1 (en) Method for restoring light emitting elements, and display panel comprising restored light emitting elements
WO2021162152A1 (en) Semiconductor light-emitting device self-assembly apparatus and method
WO2020235857A1 (en) Light-emitting element for display, and display device having same
WO2020085678A1 (en) Display device using semiconductor light emitting device and method for manufacturing the same
WO2021080311A1 (en) Led display device
WO2020085677A1 (en) Apparatus and method for self-assembling semiconductor light-emitting device
WO2021060878A1 (en) Light-emitting device for display, and display apparatus comprising same
WO2021085993A1 (en) Light-emitting device for display, and led display apparatus having same
WO2021112555A1 (en) Display device
WO2021054702A1 (en) Light-emitting element for display, and light-emitting package having same
WO2022086038A1 (en) Display module
WO2021033949A1 (en) Light-emitting element for display, and display device including same
WO2020032394A1 (en) Method for manufacturing display apparatus
WO2021040110A1 (en) Display device using semiconductor light-emitting elements and manufacturing method therefor
WO2021096099A1 (en) Display device manufacturing method and display device manufactured thereby

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18873008

Country of ref document: EP

Kind code of ref document: A1