Nothing Special   »   [go: up one dir, main page]

WO2019059079A1 - アニオン変性セルロースナノファイバーの製造方法 - Google Patents

アニオン変性セルロースナノファイバーの製造方法 Download PDF

Info

Publication number
WO2019059079A1
WO2019059079A1 PCT/JP2018/033924 JP2018033924W WO2019059079A1 WO 2019059079 A1 WO2019059079 A1 WO 2019059079A1 JP 2018033924 W JP2018033924 W JP 2018033924W WO 2019059079 A1 WO2019059079 A1 WO 2019059079A1
Authority
WO
WIPO (PCT)
Prior art keywords
anion
modified cellulose
cation exchange
cellulose
exchange resin
Prior art date
Application number
PCT/JP2018/033924
Other languages
English (en)
French (fr)
Inventor
武史 中山
眞 松本
啓吾 渡部
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Priority to JP2019543593A priority Critical patent/JP7197490B2/ja
Publication of WO2019059079A1 publication Critical patent/WO2019059079A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/02Alkyl or cycloalkyl ethers
    • C08B11/04Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals
    • C08B11/10Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals
    • C08B11/12Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals substituted with carboxylic radicals, e.g. carboxymethylcellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • C08B15/04Carboxycellulose, e.g. prepared by oxidation with nitrogen dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B5/00Preparation of cellulose esters of inorganic acids, e.g. phosphates
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres

Definitions

  • the present invention relates to a method of producing anion-modified cellulose nanofibers.
  • Cellulose base material is processed in the coexistence of 2,2,6,6-tetramethyl-1-piperidine-N-oxy radical (hereinafter referred to as "TEMPO") and sodium hypochlorite which is an inexpensive oxidizing agent
  • TEMPO 2,2,6,6-tetramethyl-1-piperidine-N-oxy radical
  • sodium hypochlorite which is an inexpensive oxidizing agent
  • carboxyl groups can be efficiently introduced to the surface of the microfibrils of cellulose
  • a carboxymethyl group can be introduced into cellulose by reacting a cellulose-based material with mercuric and subsequent reaction with monochloroacetic acid or sodium monochloroacetate (Patent Document 2).
  • anion-modified cellulose In cellulose in which a carboxyl group or a carboxymethyl group has been introduced, these groups are negatively charged in a solvent (hereinafter referred to as "anion-modified cellulose"). It is known that when such anion-modified cellulose is treated with a mixer or the like in a solvent, a cellulose nanofiber dispersion, which is microfibrils of cellulose, can be obtained (Patent Document 3).
  • Cellulose nanofibers are biodegradable water-dispersible materials. Since the cellulose nanofibers obtained by the above-mentioned method are in the form of a dispersion, they can be blended with various water-soluble polymers, or complexed with organic / inorganic pigments to be modified. In addition, cellulose nanofibers can also be sheeted or fiberized. Based on such characteristics, development of new high-performance products in which cellulose nanofibers are applied to high-performance packaging materials, transparent organic substrate members, high-performance fibers, separation membranes, regenerative medical materials, etc. are being studied.
  • anionic groups such as carboxyl groups present on the surface of the cellulose nanofibers form salts such as sodium salts, resulting in high hydrophilicity.
  • a cellulose nanofiber in which the anionic group is converted to an acid form to reduce the hydrophilicity is required.
  • an acid treatment using a mineral acid such as hydrochloric acid or sulfuric acid is performed (see Patent Document 4).
  • An object of the present invention is to provide a method for producing anion-modified cellulose nanofibers in which the used cation exchange resin does not mix into the cellulose nanofibers.
  • the present invention provides the following (1) to (12).
  • a step of using a positive displacement reciprocating pump in the liquid transfer and pressure filtration of the mixture in the recovery step, or in the liquid transfer between the desalting step and the recovery step (1) to (5) The manufacturing method of the anion modified cellulose nanofiber in any one of these.
  • the preparation step includes the step of oxidizing the cellulose-based raw material with an oxidizing agent in the presence of an N-oxyl compound and a compound selected from the group consisting of bromide, iodide, and a mixture thereof
  • the preparation step includes the step of reacting a cellulose-based material with a mercerizing agent followed by reacting with a carboxymethylating agent, and the anion-modified cellulose obtained by the preparation step has a carboxymethyl group to cellulose
  • the preparation step includes the step of adding a phosphoric acid compound to a cellulose-based material, and the anion-modified cellulose obtained by the preparation step is one in which a phosphate group is introduced into cellulose (1)
  • the method for producing anion-modified cellulose nanofibers of the present invention comprises a preparation step of preparing anion-modified cellulose, and disintegration of the anion-modified cellulose obtained in the preparation step to obtain anion-modified cellulose nanofiber salt And the anion-modified cellulose nanofiber salt obtained in the defibrating step are subjected to a desalting treatment by performing a cation exchange reaction using a cation exchange resin to obtain anion-modified cellulose nanofibers A desalting step, and a recovery step of recovering the cation exchange resin from a mixture containing the anion-modified cellulose nanofibers obtained in the desalting step and the cation exchange resin.
  • the cellulose-based material is anion-modified to prepare anion-modified cellulose.
  • Cellulose-based raw materials examples include plants (eg, wood, bamboo, hemp, jute, kenaf, agricultural waste, cloth, pulp (softwood unbleached kraft pulp (NUKP), softwood bleached kraft pulp (NBKP), hardwood unbleached kraft pulp) (LUKP), hardwood bleached kraft pulp (LBKP), softwood unbleached sulphite pulp (NUSP), softwood bleached sulphite pulp (NBSP) thermomechanical pulp (TMP), regenerated pulp, waste paper etc., animals (eg ascidians) , Algae, microorganisms (such as acetic acid bacteria (acetobacter)), products of microbial products, etc. are known, and any of them can be used in the present invention, preferably cellulose fibers of plant or microorganism origin, plant origin Cellulose fibers are more preferred.
  • plants eg, wood, bamboo, hemp, jute, kenaf, agricultural waste, cloth, pulp (softwood unble
  • Anion modification is introducing a anion group to cellulose, and specifically introducing an anion group to a pyranose ring by oxidation or substitution reaction.
  • the above-mentioned oxidation reaction means a reaction of oxidizing the hydroxyl group of the pyranose ring directly to the carboxyl group.
  • the substitution reaction is a reaction which introduces an anionic group to the pyranose ring by substitution reaction other than the oxidation.
  • Carboxylation Carboxylated (oxidized) cellulose can be used as anion-modified cellulose.
  • the carboxy group in the present invention refers to -COOH (acid form) or -COOM (salt form).
  • M is a metal ion, and examples thereof include sodium and potassium.
  • Carboxylated cellulose (also referred to as "oxidized cellulose") can be obtained by carboxylating (oxidizing) the above-mentioned cellulose-based raw material by a known method.
  • the amount of carboxyl group is preferably 0.6 to 3.0 mmol / g, more preferably 1.0 to 2.0 mmol / g, with respect to the dry weight of the anion-modified cellulose nanofiber.
  • the cellulose-based raw material is dissolved in water using an oxidizing agent in the presence of an N-oxyl compound and a compound selected from the group consisting of bromide, iodide, and mixtures thereof.
  • a method of oxidation can be mentioned. This oxidation reaction, C6-position primary hydroxyl groups of the glucopyranose ring of the cellulose surface is selectively oxidized, and an aldehyde group on the surface, a carboxyl group (-COOH) or carboxylate groups (-COO -) and cellulosic fibers having a You can get
  • the concentration of cellulose at the time of reaction is not particularly limited, but is preferably 5% by mass or less.
  • the N-oxyl compound refers to a compound capable of generating a nitroxy radical.
  • any compound may be used as long as it promotes the target oxidation reaction.
  • 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO) and its derivatives (eg 4-hydroxy TEMPO) can be mentioned.
  • the amount of the N-oxyl compound used is not particularly limited as long as it is a catalytic amount capable of oxidizing the cellulosic raw material.
  • 0.01 to 10 mmol is preferable, 0.01 to 1 mmol is more preferable, and 0.01 to 0.5 mmol is more preferable with respect to 1 g of the cellulose-based raw material which is completely dried.
  • about 0.1 to 4 mmol / L is preferable to the reaction system.
  • Bromides are compounds containing bromine, examples of which include alkali metal bromides which can be dissociated and ionized in water.
  • iodide is a compound containing iodine, and examples thereof include alkali metal iodides.
  • the amount of bromide or iodide used can be selected as long as the oxidation reaction can be promoted.
  • the total amount of the bromide and the iodide is, for example, preferably 0.1 to 100 mmol, more preferably 0.1 to 10 mmol, and still more preferably 0.5 to 5 mmol relative to 1 g of the cellulose-based raw material.
  • the modification is modification by oxidation reaction.
  • oxidizing agent known ones can be used, and for example, halogen, hypohalous acid, halogenous acid, perhalogenated acid or salts thereof, halogen oxides, peroxides and the like can be used.
  • sodium hypochlorite which is inexpensive and has a low environmental impact, is preferable.
  • An appropriate amount of the oxidizing agent used is, for example, preferably 0.5 to 500 mmol, more preferably 0.5 to 50 mmol, and still more preferably 2.5 to 25 mmol, per 1 g of the cellulose-based material which is extremely dry.
  • 1 to 40 mol is preferable to 1 mol of the N-oxyl compound.
  • the reaction temperature is preferably 4 to 40 ° C., and may be room temperature of about 15 to 30 ° C.
  • carboxyl groups are formed in the cellulose, so the pH of the reaction solution is lowered.
  • an alkaline solution such as an aqueous sodium hydroxide solution is optionally added to the reaction system to maintain the pH of the reaction solution at about 9 to 12, preferably about 10 to 11.
  • the reaction medium is preferably water because of ease of handling and the difficulty of side reaction.
  • the reaction time in the oxidation reaction can be appropriately set according to the degree of progress of the oxidation, and is usually about 0.5 to 6 hours, for example, about 0.5 to 4 hours.
  • the oxidation reaction may be carried out in two stages. For example, by oxidizing oxidized cellulose obtained by filtering off after completion of the first stage reaction again under the same or different reaction conditions, cellulose is not affected by the reaction inhibition by the salt by-produced in the first stage reaction. A carboxyl group can be efficiently introduced into the system raw material.
  • the amount of carboxyl groups of oxidized cellulose can be adjusted by controlling the reaction conditions such as the addition amount of the above-mentioned oxidizing agent and the reaction time.
  • the amount of carboxyl groups in the anion-modified cellulose nanofibers is preferably the same as the amount of carboxyl groups in the cellulose nanofibers.
  • the carboxyl group introduced into the cellulose-based material is usually a salt type and is an alkali metal salt such as a sodium salt.
  • the alkali metal salt of oxidized cellulose may be replaced with other cationic salt such as phosphonium salt, imidazolinium salt, ammonium salt, sulfonium salt and the like. The substitution can be performed by known methods.
  • Preferred anionic groups include carboxyalkyl groups such as carboxymethyl groups.
  • the carboxyalkyl group in the present invention refers to -RCOOH (acid type) or -RCOOM (salt type).
  • R is an alkylene group such as a methylene group or ethylene group
  • M is a metal ion.
  • the carboxyalkylated cellulose may be obtained by a known method, or a commercially available product may be used. It is preferred that the degree of carboxyalkyl substitution per anhydrous glucose unit of cellulose is less than 0.60. Furthermore, when the anionic group is a carboxymethyl group, the degree of carboxymethyl substitution is preferably less than 0.60.
  • the degree of substitution is 0.60 or more, the crystallinity is lowered and the proportion of the dissolved component is increased, so that the function as a nanofiber is lost.
  • the lower limit value of the degree of carboxyalkyl substitution is preferably 0.01 or more. In consideration of operability, the substitution degree is particularly preferably 0.02 to 0.50, and more preferably 0.10 to 0.30.
  • the modification is modification by substitution reaction. Carboxymethylated cellulose will be described as an example.
  • reaction temperature 0 to 70 ° C, preferably 10 to 60 ° C, and reaction time 15 minutes to 8 hours, preferably 30 minutes to 7 hours
  • a carboxymethylating agent is added in an amount of 0.05 to 10.0 times mole per glucose residue
  • the reaction temperature is 30 to 90 ° C., preferably 40 to 80 ° C.
  • the reaction time is 30 minutes to 10 hours, preferably A step of performing etherification reaction for 1 hour to 4 hours.
  • the above-mentioned cellulose-based materials can be used as the base material.
  • As the solvent 3 to 20 times by mass of water or lower alcohol, specifically water, methanol, ethanol, N-propyl alcohol, isopropyl alcohol, N-butanol, isobutanol, tertiary butanol, etc. alone or More than mixed media of species can be used. When lower alcohols are mixed, the mixing ratio is 60 to 95% by mass.
  • the mercerizing agent 0.5 to 20 moles of alkali metal hydroxide, specifically sodium hydroxide and potassium hydroxide, can be used per anhydroglucose residue of the base stock.
  • the degree of carboxymethyl substitution per glucose unit of cellulose is less than 0.04, preferably not less than 0.01 and less than 0.60.
  • the celluloses electrically repel each other.
  • the carboxymethyl substituent can be easily nano-fibrillated.
  • the carboxymethyl substituent per glucose unit is smaller than 0.02, nano defibration may not be enough.
  • the degree of substitution in anion-modified cellulose nanofibers and the degree of substitution when made into cellulose nanofibers are generally the same.
  • the carboxyalkyl group introduced into the cellulose-based material is usually in a salt form, and is an alkali metal salt such as a sodium salt.
  • the alkali metal salt of carboxyalkylated cellulose may be replaced with other cationic salt such as phosphonium salt, imidazolinium salt, ammonium salt, sulfonium salt and the like. The substitution can be performed by known methods.
  • Esterified cellulose can also be used as anion-modified cellulose.
  • the method of mixing the powder and aqueous solution of phosphoric acid type compound A with a cellulose type raw material, the method of adding the aqueous solution of phosphoric acid type compound A to the slurry of a cellulose type raw material, etc. are mentioned.
  • the phosphoric acid compound A includes phosphoric acid, polyphosphoric acid, phosphorous acid, phosphonic acid, polyphosphonic acid, and esters of these. These may be in the form of a salt.
  • a compound having a phosphate group is preferable because it is low in cost, easy to handle, and a phosphate group is introduced into cellulose of pulp fiber to improve the disaggregation efficiency.
  • phosphoric acid sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, sodium pyrophosphate, sodium metaphosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, phosphorus
  • examples thereof include tripotassium acid potassium, pyrophosphate potassium, potassium metaphosphate, ammonium dihydrogenphosphate, ammonium dihydrogenphosphate, ammonium triphosphate, ammonium pyrophosphate, ammonium metaphosphate and the like. These may be introduced singly or in combination of two or more kinds to introduce a phosphate group.
  • phosphoric acid sodium salt of phosphoric acid, potassium salt of phosphoric acid, phosphoric acid, from the viewpoint of high efficiency of phosphate group introduction, easy disaggregation in the following fibrillation step, and industrial application.
  • Ammonium salts are preferred.
  • sodium dihydrogen phosphate and disodium hydrogen phosphate are preferable.
  • the phosphoric acid compound A is preferably used as an aqueous solution because the reaction can proceed uniformly and the efficiency of introducing a phosphoric acid group becomes high.
  • the pH of the aqueous solution of the phosphoric acid type compound A is preferably 7 or less because the efficiency of introducing a phosphoric acid group is increased, but a pH of 3 to 7 is preferable from the viewpoint of suppressing the hydrolysis of pulp fibers.
  • a phosphoric acid compound A is added to a suspension of a cellulose-based material having a solid content concentration of 0.1 to 10% by mass with stirring to introduce a phosphate group to cellulose.
  • the amount of the phosphoric acid-based compound A added is preferably 0.2 to 500 parts by mass, and more preferably 1 to 400 parts by mass, as the amount of phosphorus element when the amount of the cellulose-based material is 100 parts by mass. . If the ratio of phosphoric acid type compound A is more than the above-mentioned lower limit, the yield of fine fibrous cellulose can be improved more. However, if the above upper limit is exceeded, the effect of improving the yield becomes flat, which is not preferable from the viewpoint of cost.
  • a powder or an aqueous solution of the compound B may be mixed.
  • the compound B is not particularly limited, but a nitrogen-containing compound exhibiting basicity is preferable.
  • “Basic” here is defined as the aqueous solution exhibiting a peach to red color in the presence of a phenolphthalein indicator or that the pH of the aqueous solution is greater than 7.
  • the nitrogen-containing compound having basicity used in the present invention is not particularly limited as long as the effects of the present invention are exhibited, but a compound having an amino group is preferable.
  • urea methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine and the like can be mentioned. Above all, urea which is easy to handle at low cost is preferable.
  • the amount of the compound B added is preferably 2 to 1000 parts by mass, and more preferably 100 to 700 parts by mass, with respect to 100 parts by mass of the solid content of the cellulose-based material.
  • the reaction temperature is preferably 0 to 95 ° C., more preferably 30 to 90 ° C.
  • the reaction time is not particularly limited, but is about 1 to 600 minutes, and more preferably 30 to 480 minutes.
  • the degree of phosphate substitution per glucose unit of the phosphated cellulose is preferably 0.001 or more and less than 0.40.
  • the degree of phosphate substitution per glucose unit of the phosphated cellulose is preferably 0.001 or more and less than 0.40.
  • the celluloses electrically repel each other. For this reason, the cellulose which introduce
  • the phosphated cellulose-based raw material obtained above is boiled and then washed with cold water.
  • These esterification modifications are substitution reactions.
  • the degree of substitution in the anion-modified cellulose nanofibers is preferably the same as the degree of substitution when made into cellulose nanofibers.
  • the phosphate group introduced into the cellulose-based material is usually in a salt form, and is an alkali metal salt such as a sodium salt.
  • the alkali metal salt of phosphated cellulose may be substituted with other cationic salt such as phosphonium salt, imidazolinium salt, ammonium salt, sulfonium salt and the like. The substitution can be performed by known methods.
  • anion-modified cellulose is fibrillated.
  • a known device such as a high-speed shear mixer or a high-pressure homogenizer.
  • the type of defibration apparatus include a high-speed rotation type, a colloid mill type, a high pressure type, a roll mill type, and an ultrasonic type. These devices may be used alone or in combination of two or more.
  • the shear rate is preferably 1000 sec -1 or more. When the shear rate is 1000 sec ⁇ 1 or more, the aggregation structure is small and nanofibers can be uniformly formed.
  • a high pressure homogenizer 50 MPa or more is preferable, 100 MPa or more is more preferable, 140 MPa or more is more preferable.
  • the formation of nanofibers can be efficiently proceeded, and when it is made an aqueous dispersion, anion-modified cellulose nanofibers with low viscosity can be efficiently obtained.
  • Anion-modified cellulose is subjected to disintegration treatment as an aqueous dispersion such as water.
  • the concentration of the anion-modified cellulose in the aqueous dispersion is high, the viscosity may be excessively increased during the defibration treatment to prevent uniform defibration, or the device may stop. Therefore, the concentration of anion-modified cellulose needs to be set appropriately depending on the processing conditions of anion-modified cellulose.
  • the concentration of anion-modified cellulose is preferably 0.3 to 50% (w / v), more preferably 0.5 to 10% (w / v), and 1.0 to 5% (w / v) Is more preferred.
  • an anion-modified cellulose nanofiber salt is obtained after defibrillation of the anion-modified cellulose.
  • the anion-modified cellulose nanofiber salt is desalted by contacting a cation exchange resin and performing a cation exchange reaction to obtain anion-modified cellulose nanofibers.
  • the cation salt is substituted with a proton by contacting with a cation exchange resin. Since a cation exchange resin is used, unnecessary by-products such as sodium chloride are not generated.
  • the aqueous dispersion obtained in the defibration step can be subjected as it is to the desalting step.
  • water can be added to lower the concentration as needed.
  • both strongly acidic ion exchange resin and weak acid ion exchange resin can be used.
  • a strongly acidic ion exchange resin and weakly acidic ion exchange resin what introduce
  • the shape of the cation exchange resin is not particularly limited, and various shapes such as fine particles (particulates), membranes, fibers and the like can be used.
  • particulate is preferable from the viewpoint of efficiently treating the anion-modified cellulose nanofiber salt and facilitating separation after the treatment.
  • a commercial item can be used as such a cation exchange resin.
  • Commercially available products include, for example, Amberjet 1020, 1024, 1060, 1220 (above, manufactured by Organo Corporation), Amberlite IR-200C, IR-120B (above, manufactured by Tokyo Organic Chemical Co., Ltd.), Levachit SP 112 S100 (above, manufactured by Bayer), GEL CK08P (manufactured by Mitsubishi Chemical), Dowex 50W-X8 (manufactured by Dow Chemical), and the like.
  • a particulate cation exchange resin and an aqueous dispersion of the anion-modified cellulose nanofiber salt are mixed, and the anion modification is performed while stirring and shaking as necessary. It can carry out by contacting a cellulose nanofiber salt and a cation exchange resin for a fixed time.
  • the concentration of the aqueous dispersion and the ratio to the cation exchange resin are not particularly limited, and can be appropriately set by those skilled in the art from the viewpoint of efficiently performing proton substitution.
  • the concentration of the aqueous dispersion is preferably 0.05 to 10% by mass. If the concentration of the aqueous dispersion is less than 0.05% by mass, it may take too long for proton substitution. If the concentration of the aqueous dispersion is more than 10% by mass, the effect of sufficient proton substitution may not be obtained.
  • the contact time is also not particularly limited, and can be appropriately set by those skilled in the art from the viewpoint of efficiently performing proton substitution. For example, it can be conducted in contact for 0.2 to 4 hours.
  • the desalting treatment can be carried out by contacting the anion-modified cellulose nanofiber salt with a suitable amount of cation exchange resin for a sufficient time.
  • a step of pumping a mixture containing anion-modified cellulose nanofibers and a cation exchange resin is provided between the desalting step and the recovery step described later.
  • any pump capable of feeding high viscosity cellulose nanofibers can be used. Although it does not matter, it is preferable to use one which does not damage the ion exchange resin as much as possible by shearing by a pump.
  • Turbo-type pumps include centrifugal pumps such as spiral pumps, diffuser pumps, and vortex pumps, mixed flow pumps, and axial flow pumps.
  • the positive displacement pump corresponds to a reciprocating pump such as a piston pump, a plunger pump, or a diaphragm pump, or a rotary pump such as a gear pump, a vane pump, or a screw pump. Among these, it is more preferable to use a positive displacement screw pump or a positive displacement reciprocating pump.
  • This type of pump has lower shear force applied to the fluid as compared with a turbo type (non-positive displacement) pump that imparts kinetic energy to the fluid by rotating the impeller at high speed in the casing, and the rotor and stator It is characterized by the fact that it is possible to feed a fluid with a relatively high viscosity and a relatively high viscosity, since there is very little leakage between them.
  • a turbo type non-positive displacement
  • a positive displacement screw pump As a positive displacement screw pump, a positive displacement uniaxial eccentric screw pump (mono pump), a positive displacement twin screw pump, etc. can be exemplified, and it is preferable to use a mono pump.
  • a metal rotor having a single-threaded structure rotates a space formed between the rotor and the stator continuously by transferring the fluid by rotating in a stator cut with a double-threaded structure. It is a pump.
  • a positive displacement twin screw pump is a pump that transfers fluid confined in a space formed by two screws and a casing in the axial direction of the screw by the rotation of the screw.
  • a positive displacement diaphragm pump membrane pump
  • the diaphragm pump is composed of a diaphragm and a valve, and is a pump that reciprocates the diaphragm to change its volume, and performs suction and discharge to transfer fluid.
  • the diaphragm pump is superior to the foreign matter in terms of the seal system and the valve system. Since the sliding portion of the positive displacement screw pump is in liquid contact, resin is easily bite in, and since there is usually no check valve, when the sliding portion is exhausted, pressure does not build up.
  • a cation exchange resin is recovered from a mixture containing anion-modified cellulose nanofibers and a cation exchange resin. Since a cation exchange resin is used in the above desalting step, unnecessary by-products such as sodium chloride are not generated. Therefore, after acid treatment using a cation exchange resin, the water of the anion-modified cellulose nanofibers as a filtrate is recovered by recovering the cation exchange resin from the mixture containing the anion-modified cellulose nanofibers and the cation exchange resin. A dispersion is obtained.
  • recovery method of a cation exchange resin is not limited, The method of filtering using a filtration apparatus is preferable. In addition, you may provide the process of performing precision filtration by auxiliary
  • the shape of the filter medium used in the filtration device is not limited, and any shape such as mesh or slit may be used. Moreover, as a filter medium, what opened the hole may be used. Further, the material of the filter medium is not limited, and any material such as resin, metal or ceramic can be used, but it is preferable to use a material having acid resistance.
  • the opening or slit width of the filter medium may be a size capable of capturing the cation exchange resin, preferably 500 ⁇ m or less, and more preferably 400 ⁇ m or less. If the opening is too large, the cation exchange resin will pass through the filter medium and the cation exchange resin can not be recovered.
  • the minimum diameter of the opening or slit width of the filter medium depends on the amount of fibrous foreign matter contained in the cellulose nanofibers. That is, in the case where microfiltration of cellulose nanofibers in advance is carried out by auxiliary agent filtration or the like, 5 ⁇ m or more is preferable, and in the case where microfiltration is not performed in advance, 10 ⁇ m or more is preferable, and 50 ⁇ m or more is more preferable. If the mesh size is too small, clogging due to unbroken fibers occurs and the amount of filtration processing decreases.
  • filter aids used for filtration either inorganic compounds or organic compounds may be used, but diatomaceous earth, silica, perlite, finely powdered cellulose, activated carbon etc. may be mentioned as commonly used aids. .
  • diatomaceous earth, silica, perlite, finely powdered cellulose, activated carbon etc. may be mentioned as commonly used aids. .
  • the type of auxiliary can be adjusted.
  • any device that can perform pressure filtration or vacuum filtration can be used regardless of its type, for example, Nutche type, candle type, leaf disc type, drum type, filter press type, belt filter type Etc. It is preferable to have a mechanism capable of recovering cellulose nanofibers in the filtration container after filtration. From the viewpoint of facilitating recovery and transport of the cellulose nanofibers and the cation exchange resin, it is preferable to use a candle type or leaf disc type filtration device.
  • the pressure in the case of air pressurization is preferably 0.01 to 1.0 MPa, and more preferably 0.05 to 0.5 MPa.
  • the pressure is lower than the above lower limit, it is difficult to transport the high viscosity cellulose nanofibers, and when the pressure is higher than the above upper limit, it is necessary to improve the pressure resistance of the air tank and the filtration device. Not desirable.
  • the pressure in the case of pressure filtration is preferably 0.01 MPa or more and 5 MPa or less, and the pressure in the case of vacuum filtration is preferably 0.01 MPa or more and 0.1 MPa or less.
  • the filtration device has a mechanism for recovering the cation exchange resin after filtration. From the viewpoint of facilitating recovery of the cation exchange resin, the opening of the filtration device is preferably large.
  • a mechanism for backwashing, a mechanism for scraping with a scraper, or a mechanism capable of tilting and inverting the filtration container may be provided to the filtration device. Moreover, you may provide the mechanism which conveys the collect
  • a target to be recovered as a filter with a metal mesh or the like is a cation exchange resin, and anion-modified cellulose nanofibers are difficult to be removed by the diameter of the metal mesh or the like, and almost all of them are contained in the filtrate. Therefore, it is considered that the decrease in yield is extremely reduced.
  • washing of the cellulose nanofibers mixed in a trace amount to the recovered cation exchange resin, or acid treatment and drainage for regeneration of the recovered cation exchange resin may be performed. These steps may all be performed by one device or may be performed by a plurality of devices. When using a plurality of devices, different types of devices may be combined.
  • the method for carrying out the step of regenerating the cation exchange resin by acid treatment is not limited to the recovered cation exchange resin, and for example, 5 times the amount of 1 M hydrochloric acid is added to 1 kg of used resin and stirred, A method such as repeating washing four times with ion exchange water can be mentioned.
  • the cation exchange resin that has undergone the recovery step and the regeneration step can be used repeatedly, so the cost can be reduced.
  • the present invention will be described in detail by way of examples.
  • the following examples are intended to illustrate the invention but not to limit it.
  • the measuring method of physical-property value etc. is a measuring method described below.
  • the H-CMC was wetted with 15 mL of 80% methanol, 100 mL of 0.1 N NaOH was added and shaken at room temperature for 3 hours. The excess NaOH was back titrated with 0.1 N H 2 SO 4 using phenolphthalein as an indicator, and the degree of carboxymethyl group substitution was calculated using the following formula.
  • Example 1 Preparation of carboxylated cellulose
  • TEMPO manufactured by Sigma Aldrich
  • 754 mg (7.4 mmol) of sodium bromide Stir until the pulp was uniformly dispersed.
  • a 250 ⁇ m mesh wire mesh was attached as a filter medium to a stainless steel holder with a tank (KST-47, manufactured by Advantec, filtration area 12.5 cm 2 ) to prepare a filtration device.
  • the mixture of the carboxylated cellulose nanofiber dispersion and the cation exchange resin obtained in the above desalting step was filled in a pressure tank of a filtration apparatus, pressurized to 0.35 MPa using nitrogen gas, and filtered. Thirty minutes after the start of filtration, the filtration was terminated, and visual evaluation was performed to determine whether the cation exchange resin was not mixed in the filtrate.
  • Example 2 A mixture of carboxylated cellulose nanofiber dispersion and cation exchange resin is obtained in the same manner as in Example 1 except that the type of cation exchange resin is changed to "Amberlite IR 124" manufactured by Organo Corporation, followed by filtration, and I made an evaluation. The results are shown in Table 1.
  • Example 3 A mixture of a carboxylated cellulose nanofiber dispersion and a cation exchange resin was obtained in the same manner as in Example 1 except that a wire mesh with an aperture of 400 ⁇ m was used as a filter medium, and filtration and evaluation were performed. The results are shown in Table 1.
  • Example 4 A mixture of a carboxylated cellulose nanofiber dispersion and a cation exchange resin was obtained in the same manner as in Example 1 except that a metal mesh with an opening of 100 ⁇ m was used as a filter medium, and filtration and evaluation were performed. The results are shown in Table 1.
  • Example 5 A mixture of a carboxylated cellulose nanofiber dispersion and a cation exchange resin was obtained in the same manner as in Example 1 except that a nylon mesh with an aperture of 250 ⁇ m was used as a filter medium, and filtration and evaluation were performed. The results are shown in Table 1.
  • Example 6 A metal slit filter (slit width: 50 ⁇ m) was attached as a filter medium to a candle type filter (manufactured by Shibata, filtration area 0.097 m 2 ) to prepare a filtration device. A mixture of carboxylated cellulose nanofiber dispersion and cation exchange resin was obtained in the same manner as in Example 1 except that this filtration apparatus was used, and filtration and evaluation were performed. The results are shown in Table 1.
  • Example 7 A stainless steel holder with a tank (KST-47, manufactured by Advantec, filtration area 12.5 cm 2 ) was diluted with pure water by diluting diatomaceous earth (manufactured by Showa Chemical Industry Co., Ltd., Radiolite 3000, particle diameter 74.9 ⁇ m) as a filter aid. The solution was precoated and layered with diatomaceous earth. Thereafter, using the dispersion liquid of carboxylated cellulose nanofiber salt before the desalting step of Example 1, the first-stage filtration treatment was performed. The obtained filtrate was desalted in the same manner as in Example 1 to obtain a mixture of a carboxylated cellulose nanofiber dispersion and a cation exchange resin.
  • the second stage filtration was performed using this mixture.
  • a metal filter with an aperture of 5 ⁇ m was attached as a filter medium, and a filtration device was prepared.
  • the mixture was filtered and evaluated in the same manner as in Example 1 except that this filter medium was used. The results are shown in Table 1.
  • Example 1 A mixture of a carboxylated cellulose nanofiber dispersion and a cation exchange resin was obtained in the same manner as in Example 1 except that a metal filter with an aperture of 5 ⁇ m was used as a filter medium, and filtration and evaluation were performed. The results are shown in Table 1.
  • Example 2 A mixture of a carboxylated cellulose nanofiber dispersion and a cation exchange resin was obtained in the same manner as in Example 1 except that a PET filter cloth having an air permeability of 12 was used as a filter medium, and filtration and evaluation were performed. The results are shown in Table 1.
  • Comparative Examples 1 and 2 had small openings of the filter medium and could not obtain good filtration throughput due to clogging, while Examples 1 to 6 were filter media having a large opening or slit width. There was almost no clogging due to unbroken fiber etc. contained. Moreover, in Example 7, by removing in advance unbroken fibers and the like contained in CNF, a good amount of filtration was obtained without clogging.
  • Example 8 A 250 ⁇ m-open nylon mesh was attached to the tip of the outlet hose of a mono pump (pump for liquid delivery) with a hopper attached. Into the hopper was charged a mixture of a dispersion and a cation exchange resin obtained in the same manner as in Example 1. Thereafter, the solution was pumped and pressurized filtration was carried out for 30 minutes to filter out the cation exchange resin and the cellulose nanofibers. The pressure at the start of filtration was 0.1 MPa, and the pressure at the end of filtration was 0.3 MPa.
  • the B-type viscosity of a 1% dispersion of the obtained carboxylated cellulose nanofibers was 2500 mPa ⁇ s (60 rpm, 20 ° C.).
  • the obtained dispersion liquid of cellulose nanofibers was observed with a microscope, mixing of resin fragments was not observed.
  • Example 9 Preparation of carboxymethylated cellulose
  • a dry mass of 250 g of pulp (LBKP, manufactured by Nippon Paper Industries Co., Ltd.) was placed in a reactor capable of stirring the pulp, and 112 g of a 50 mass% aqueous solution of sodium hydroxide and 67 g of water were added while stirring.
  • the mixture was stirred at 30 ° C. for 45 minutes and mercerized, and then 364 g of 35% by mass aqueous sodium monochloroacetate solution was added while stirring.
  • the mixture was stirred at 30 ° C. for 60 minutes, heated to 70 ° C. over 30 minutes, and reacted at 70 ° C. for 1 hour. Thereafter, the reaction product was taken out to obtain a carboxymethylated pulp having a degree of carboxymethyl substitution of 0.27 per glucose unit (hereinafter also referred to as "carboxymethylated cellulose").
  • the carboxymethylated cellulose was adjusted to 1% (w / v) with water, and treated three times with an ultrahigh pressure homogenizer (20 ° C., 140 Mpa) to obtain a dispersion of carboxymethylated cellulose nanofiber salt.
  • a 250 ⁇ m-open nylon mesh was attached to the tip of the outlet hose of a mono pump (pump for liquid delivery) with a hopper attached.
  • a mono pump pump for liquid delivery
  • a hopper Into the hopper was charged the mixture of the above-obtained carboxymethyl cellulose nanofiber dispersion and cation exchange resin. Thereafter, the solution was pumped and pressurized filtration was carried out for 30 minutes to filter out the cation exchange resin and the cellulose nanofibers.
  • the pressure at the start of filtration was 0.1 MPa, and the pressure at the end of filtration was 0.3 MPa.
  • the B-type viscosity of a 1% dispersion of the obtained carboxymethyl cellulose nanofibers was 3500 mPa ⁇ s (60 rpm, 20 ° C.). When the obtained dispersion liquid of cellulose nanofibers was observed with a microscope, mixing of resin fragments was not observed.
  • Example 10 A mixture of a cellulose nanofiber dispersion and a cation exchange resin was charged in the same manner as in Example 8 except that the pump of Example 8 was changed to a diaphragm pump, and then it was pumped and pressurized filtration was performed for 30 minutes.
  • the cation exchange resin and cellulose nanofibers were separated by filtration.
  • the pressure at the start of filtration was 0.1 MPa, and the pressure at the end of filtration was 0.3 MPa.
  • the B-type viscosity of a 1% dispersion of the obtained carboxylated cellulose nanofibers was 2600 mPa ⁇ s (60 rpm, 20 ° C.). When the obtained dispersion liquid of cellulose nanofibers was observed with a microscope, mixing of resin fragments was not observed.
  • Example 3 A cation exchange resin and cellulose nanofibers were filtered in the same manner as in Example 10 except that a vortex pump was used as a pump for liquid transfer.
  • the pressure at the start of filtration was 0.1 MPa, and the pressure at the end of filtration was 0.3 MPa.
  • the B-type viscosity of a 1% dispersion of the obtained carboxylated cellulose nanofibers was 2500 mPa ⁇ s (60 rpm, 20 ° C.). The dispersion of the obtained cellulose nanofibers was observed with a microscope, and resin fragments were detected.
  • Example 4 A cation exchange resin and cellulose nanofibers were filtered in the same manner as in Example 11 except that a vortex pump was used as a pump for liquid transfer.
  • the pressure at the start of filtration was 0.1 MPa, and the pressure at the end of filtration was 0.3 MPa.
  • the B-type viscosity of a 1% dispersion of the obtained carboxymethyl cellulose nanofibers was 3500 mPa ⁇ s (60 rpm, 20 ° C.). The dispersion of the obtained cellulose nanofibers was observed with a microscope, and resin fragments were detected.
  • anion-modified cellulose nanofibers When a mixture containing anion-modified cellulose nanofibers and a cation exchange resin is sent to a recovery step for recovering a cation exchange resin, the positive ion is used to feed the solution using a uniaxial eccentric screw pump or a positive displacement diaphragm pump. It has been found that anion-modified cellulose nanofibers can be obtained without the inclusion of fragments of exchange resin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

アニオン変性セルロースナノファイバーの製造方法において、アニオン変性セルロースを調製する調製工程と、前記調製工程にて得られた前記アニオン変性セルロースを解繊してアニオン変性セルロースナノファイバー塩を得る解繊工程と、前記解繊工程にて得られた前記アニオン変性セルロースナノファイバー塩に対して、陽イオン交換樹脂を用いた陽イオン交換反応を行うことにより脱塩処理してアニオン変性セルロースナノファイバーを得る脱塩工程と、前記脱塩工程にて得られた前記アニオン変性セルロースナノファイバーと前記陽イオン交換樹脂を含む混合物から前記陽イオン交換樹脂を回収する回収工程とを有する。

Description

アニオン変性セルロースナノファイバーの製造方法
 本発明はアニオン変性セルロースナノファイバーの製造方法に関するものである。
 セルロース系原料を2,2,6,6-テトラメチル-1-ピペリジン-N-オキシラジカル(以下、「TEMPO」と呼ぶ)と安価な酸化剤である次亜塩素酸ナトリウムとの共存下で処理すると、セルロースのミクロフィブリルの表面にカルボキシル基を効率よく導入することができる(特許文献1)。また、セルロース系原料をマーセル化した後にモノクロロ酢酸又はモノクロロ酢酸ナトリウムと反応させることにより、セルロースにカルボキシメチル基を導入することができる(特許文献2)。カルボキシル基やカルボキシメチル基が導入されたセルロースは、溶媒中でこれらの基がマイナスに荷電する(以下、「アニオン変性セルロース」と呼ぶ)。このようなアニオン変性セルロースを溶媒中でミキサー等で処理すると、セルロースのミクロフィブリルであるセルロースナノファイバー分散液が得られることが知られている(特許文献3)。
 セルロースナノファイバーは、生分解性の水分散型素材である。上記の方法により得られたセルロースナノファイバーは、分散液の形態であるため、各種水溶性ポリマーとブレンドすることや、有機・無機系顔料と複合化して改質することもできる。また、セルロースナノファイバーをシート化又は繊維化することもできる。このような特性により、セルロースナノファイバーを高機能包装材料、透明有機基板部材、高機能繊維、分離膜、再生医療材料等に応用した新規高機能性商品の開発が検討されている。
 上記の方法により得られたセルロースナノファイバー水分散液では、セルロースナノファイバーの表面に存在するカルボキシル基等のアニオン性基がナトリウム塩などの塩を形成し、親水性が高い状態となっている。樹脂と複合化する等、用途によっては、アニオン性基を酸型に変換して親水性を下げたセルロースナノファイバーが求められる。アニオン性基を酸型に変換するために、塩酸や硫酸等の鉱酸を用いた酸処理が行われている(特許文献4参照)。
特開2008-001728号公報 特開平10-251301号公報 国際公開第2011/115154号 国際公開第2010/116795号
 アニオン性基を酸型に変化するために鉱酸を用いた酸処理行うと、塩化ナトリウム等の副生成物が生成するため、洗浄によりこの副生成物を取り除く必要がある。また、洗浄に使用した水を脱水して除去する必要があり、脱水後には、ろ布を通過させて残ったろ物を回収するが、極めて短い繊維長のセルロースナノファイバーはろ布を通過してしまうため、収率が大きく低下する場合があった。
 そのため、アニオン変性セルロースナノファイバー塩を脱塩する方法として、副生成物の発生がない陽イオン交換樹脂を用いた方法の検討が始まっている。
 本発明の目的は、使用済みの陽イオン交換樹脂がセルロースナノファイバーに混入することがないアニオン変性セルロースナノファイバーの製造方法を提供することである。
 本発明者は上記の課題を解決するべく鋭意検討した結果、使用済みの陽イオン交換樹脂を回収することにより上記目的を達成できることを見出し、本発明を完成させた。
 即ち、本発明は、以下の(1)~(12)を提供する。
(1)アニオン変性セルロースを調製する調製工程と、前記調製工程にて得られた前記アニオン変性セルロースを解繊してアニオン変性セルロースナノファイバー塩を得る解繊工程と、前記解繊工程にて得られた前記アニオン変性セルロースナノファイバー塩に対して、陽イオン交換樹脂を用いた陽イオン交換反応を行うことにより脱塩処理してアニオン変性セルロースナノファイバーを得る脱塩工程と、前記脱塩工程にて得られた前記アニオン変性セルロースナノファイバーと前記陽イオン交換樹脂を含む混合物から前記陽イオン交換樹脂を回収する回収工程とを有するアニオン変性セルロースナノファイバーの製造方法。
(2)前記回収工程で、0.01MPa以上5MPa以下の加圧ろ過又は0.01MPa以上0.1MPa以下の減圧ろ過を行う(1)に記載のアニオン変性セルロースナノファイバーの製造方法。
(3)前記回収工程において、目開き5μm以上400μm以下のメッシュ状、もしくはスリット幅5μm以上400μm以下のスリット状のろ材を用いる(1)又は(2)に記載のアニオン変性セルロースナノファイバーの製造方法。
(4)前記回収工程の前又は後に、精密ろ過の工程をさらに有する(1)~(3)の何れかに記載のアニオン変性セルロースナノファイバーの製造方法。
(5)前記回収工程で回収された前記陽イオン交換樹脂に対して、酸処理による陽イオン交換樹脂の再生工程を実施する(1)~(4)の何れかに記載のアニオン変性セルロースナノファイバーの製造方法。
(6)前記回収工程での前記混合物の送液及び加圧ろ過、もしくは前記脱塩工程と前記回収工程との間の送液に、容積式ネジポンプを用いる工程を含む(1)~(5)の何れかに記載のアニオン変性セルロースナノファイバーの製造方法。
(7)前記容積式ネジポンプは、容積式一軸偏心ネジポンプ又は容積式二軸スクリューポンプである(6)に記載のアニオン変性セルロースナノファイバーの製造方法。
(8)前記回収工程での前記混合物の送液及び加圧ろ過、もしくは前記脱塩工程と前記回収工程との間の送液に、容積式往復ポンプを用いる工程を含む(1)~(5)の何れかに記載のアニオン変性セルロースナノファイバーの製造方法。
(9)前記容積式往復ポンプは、容積式ダイヤフラムポンプである(8)に記載のアニオン変性セルロースナノファイバーの製造方法。
(10)前記調製工程は、セルロース系原料をN-オキシル化合物と、臭化物、ヨウ化物、およびこれらの混合物からなる群から選択される化合物との存在下で酸化剤を用いて酸化する工程を含み、前記調製工程により得られる前記アニオン変性セルロースは、セルロースにカルボキシル基が導入されたものである(1)~(9)の何れかに記載のアニオン変性セルロースナノファイバーの製造方法。
(11)前記調製工程は、セルロース系原料をマーセル化剤によりマーセル化処理した後、カルボキシメチル化剤と反応させる工程を含み、前記調製工程により得られる前記アニオン変性セルロースは、セルロースにカルボキシメチル基が導入されたものである(1)~(9)の何れかに記載のアニオン変性セルロースナノファイバーの製造方法。
(12)前記調製工程は、セルロース系原料にリン酸系化合物を添加する工程を含み、前記調製工程により得られる前記アニオン変性セルロースは、セルロースにリン酸基が導入されたものである(1)~(9)の何れかに記載のアニオン変性セルロースナノファイバーの製造方法。
 本発明によれば、使用済みの陽イオン交換樹脂がセルロースナノファイバーに混入することがないアニオン変性セルロースナノファイバーの製造方法を提供することができる。
 以下、本発明を詳細に説明する。本発明において「~」は端値を含む。すなわち「X~Y」はその両端の値XおよびYを含む。
 本発明のアニオン変性セルロースナノファイバーの製造方法は、アニオン変性セルロースを調製する調製工程と、前記調製工程にて得られた前記アニオン変性セルロースを解繊してアニオン変性セルロースナノファイバー塩を得る解繊工程と、前記解繊工程にて得られた前記アニオン変性セルロースナノファイバー塩に対して、陽イオン交換樹脂を用いた陽イオン交換反応を行うことにより脱塩処理してアニオン変性セルロースナノファイバーを得る脱塩工程と、前記脱塩工程にて得られた前記アニオン変性セルロースナノファイバーと前記陽イオン交換樹脂を含む混合物から前記陽イオン交換樹脂を回収する回収工程とを有する。
 (調製工程)
 本発明の調製工程においては、セルロース系原料をアニオン変性して、アニオン変性セルロースを調製する。
 (セルロース系原料)
 セルロース系原料としては、植物(例えば、木材、竹、麻、ジュート、ケナフ、農地残廃物、布、パルプ(針葉樹未漂白クラフトパルプ(NUKP)、針葉樹漂白クラフトパルプ(NBKP)、広葉樹未漂白クラフトパルプ(LUKP)、広葉樹漂白クラフトパルプ(LBKP)、針葉樹未漂白サルファイトパルプ(NUSP)、針葉樹漂白サルファイトパルプ(NBSP)サーモメカニカルパルプ(TMP)、再生パルプ、古紙等)、動物(例えばホヤ類)、藻類、微生物(例えば酢酸菌(アセトバクター))、微生物産生物等を起源とするものが知られており、本発明ではそのいずれも使用できる。植物または微生物由来のセルロース繊維が好ましく、植物由来のセルロース繊維がより好ましい。
 (アニオン変性)
 アニオン変性とはセルロースにアニオン基を導入することであり、具体的に酸化または置換反応によってピラノース環にアニオン性基を導入することである。本発明において前記酸化反応とはピラノース環の水酸基を直接カルボキシル基に酸化する反応をいう。また、本発明において置換反応とは、当該酸化以外の置換反応によってピラノース環にアニオン性基を導入する反応である。
 (カルボキシル化)
 アニオン変性セルロースとしてカルボキシル化(酸化)したセルロースを用いることができる。本発明におけるカルボキシ基とは、-COOH(酸型)または-COOM(塩型)をいう。ここで、Mは金属イオンであり、ナトリウムやカリウムが挙げられる。カルボキシル化セルロース(「酸化セルロース」とも呼ぶ)は、上記のセルロース系原料を公知の方法でカルボキシル化(酸化)することにより得ることができる。特に限定されないが、カルボキシル基の量はアニオン変性セルロースナノファイバーの絶乾質量に対して、0.6~3.0mmol/gが好ましく、1.0~2.0mmol/gがさらに好ましい。カルボキシル化(酸化)方法の一例として、セルロース系原料を、N-オキシル化合物と、臭化物、ヨウ化物、およびこれらの混合物からなる群から選択される化合物との存在下で酸化剤を用いて水中で酸化する方法を挙げることができる。この酸化反応により、セルロース表面のグルコピラノース環のC6位の一級水酸基が選択的に酸化され、表面にアルデヒド基と、カルボキシル基(-COOH)またはカルボキシレート基(-COO-)とを有するセルロース繊維を得ることができる。反応時のセルロースの濃度は特に限定されないが、5質量%以下が好ましい。
 N-オキシル化合物とは、ニトロキシラジカルを発生しうる化合物をいう。N-オキシル化合物としては、目的の酸化反応を促進する化合物であればいずれの化合物も使用できる。例えば、2,2,6,6-テトラメチルピペリジン-1-オキシラジカル(TEMPO)およびその誘導体(例えば4-ヒドロキシTEMPO)が挙げられる。N-オキシル化合物の使用量は、セルロース系原料を酸化できる触媒量であればよく、特に制限されない。例えば、絶乾1gのセルロース系原料に対して、0.01~10mmolが好ましく、0.01~1mmolがより好ましく、0.01~0.5mmolがさらに好ましい。また、反応系に対し0.1~4mmol/L程度がよい。
 臭化物とは臭素を含む化合物であり、その例には、水中で解離してイオン化可能な臭化アルカリ金属が含まれる。また、ヨウ化物とはヨウ素を含む化合物であり、その例には、ヨウ化アルカリ金属が含まれる。臭化物またはヨウ化物の使用量は、酸化反応を促進できる範囲で選択できる。臭化物およびヨウ化物の合計量は、例えば、絶乾1gのセルロース系原料に対して、0.1~100mmolが好ましく、0.1~10mmolがより好ましく、0.5~5mmolがさらに好ましい。当該変性は酸化反応による変性である。
 酸化剤としては、公知のものを使用でき、例えば、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸またはそれらの塩、ハロゲン酸化物、過酸化物などを使用できる。中でも、安価で環境負荷の少ない次亜塩素酸ナトリウムが好ましい。酸化剤の適切な使用量は、例えば、絶乾1gのセルロース系原料に対して、0.5~500mmolが好ましく、0.5~50mmolがより好ましく、2.5~25mmolがさらに好ましい。また、例えば、N-オキシル化合物1molに対して1~40molが好ましい。
 セルロース系原料の酸化工程は、比較的温和な条件であっても反応を効率よく進行させられる。よって、反応温度は4~40℃が好ましく、また15~30℃程度の室温であってもよい。反応の進行に伴ってセルロース中にカルボキシル基が生成するため、反応液のpHが低下する。酸化反応を効率よく進行させるために、水酸化ナトリウム水溶液などのアルカリ性溶液を随時反応系中に添加して、反応液のpHを9~12、好ましくは10~11程度に維持することが好ましい。反応媒体は、取扱い性の容易さや、副反応が生じにくいこと等から、水が好ましい。酸化反応における反応時間は、酸化の進行の程度に従って適宜設定することができ、通常は0.5~6時間、例えば、0.5~4時間程度である。
 また、酸化反応は、2段階に分けて実施してもよい。例えば、1段目の反応終了後にろ別して得られた酸化セルロースを、再度、同一または異なる反応条件で酸化させることにより、1段目の反応で副生する塩による反応阻害を受けることなく、セルロース系原料に効率よくカルボキシル基を導入することができる。
 酸化セルロースのカルボキシル基の量は、上記した酸化剤の添加量、反応時間等の反応条件をコントロールすることで調整することができる。アニオン変性セルロースナノファイバーにおけるカルボキシル基量とセルロースナノファイバーとしたときのカルボキシル基量は同じであることが好ましい。
 本発明では、上記の工程で得られる酸化セルロースにおいて、セルロース系原料に導入したカルボキシル基は、通常、塩型であり、ナトリウム塩等のアルカリ金属塩である。解繊工程の前に、酸化セルロースのアルカリ金属塩を、ホスホニウム塩、イミダゾリニウム塩、アンモニウム塩、スルホニウム塩等の他のカチオン塩に置換してもよい。置換は、公知の方法で行うことができる。
 (カルボキシメチル化)
 好ましいアニオン基としては、カルボキシメチル基等のカルボキシアルキル基が挙げられる。本発明におけるカルボキシアルキル基とは、-RCOOH(酸型)または-RCOOM(塩型)をいう。ここでRはメチレン基、エチレン基等のアルキレン基、Mは金属イオンである。カルボキシアルキル化セルロースは公知の方法で得てもよく、また市販品を用いてもよい。セルロースの無水グルコース単位当たりのカルボキシアルキル置換度は0.60未満であることが好ましい。さらにアニオン基がカルボキシメチル基である場合、カルボキシメチル置換度は0.60未満であることが好ましい。当該置換度が0.60以上であると結晶性が低下し、溶解成分の割合が増加するため、ナノファイバーとしての機能が失われる。またカルボキシアルキル置換度の下限値は0.01以上が好ましい。操業性を考慮すると当該置換度は0.02~0.50であることが特に好ましく、0.10~0.30であることが更に好ましい。このようなカルボキシアルキル化セルロースを製造する方法の一例として、以下の工程を含む方法が挙げられる。当該変性は置換反応による変性である。カルボキシメチル化セルロースを例にして説明する。
 i)発底原料と溶媒、マーセル化剤を混合し、反応温度0~70℃、好ましくは10~60℃、かつ反応時間15分~8時間、好ましくは30分~7時間、マーセル化処理する工程、
 ii)次いで、カルボキシメチル化剤をグルコース残基当たり0.05~10.0倍モル添加し、反応温度30~90℃、好ましくは40~80℃、かつ反応時間30分~10時間、好ましくは1時間~4時間、エーテル化反応を行う工程。
 発底原料としては前述のセルロース系原料を使用できる。溶媒としては、3~20質量倍の水または低級アルコール、具体的には水、メタノール、エタノール、N-プロピルアルコール、イソプロピルアルコール、N-ブタノール、イソブタノール、第3級ブタノール等の単独、または2種以上の混合媒体を使用できる。低級アルコールを混合する場合、その混合割合は60~95質量%である。マーセル化剤としては、発底原料の無水グルコース残基当たり0.5~20倍モルの水酸化アルカリ金属、具体的には水酸化ナトリウム、水酸化カリウムを使用できる。
 前述のとおり、セルロースのグルコース単位当たりのカルボキシメチル置換度は0.04未満であり、0.01以上0.60未満であることが好ましい。セルロースにカルボキシメチル置換基を導入することで、セルロース同士が電気的に反発する。このため、カルボキシメチル置換基を導入したセルロースは容易にナノ解繊することができる。なお、グルコース単位当たりのカルボキシメチル置換基が0.02より小さいと、ナノ解繊が十分でない場合がある。アニオン変性セルロースナノファイバーにおける置換度とセルロースナノファイバーとしたときの置換度は通常、同じである。
 本発明では、上記の工程で得られるカルボキシアルキル化セルロースにおいて、セルロース系原料に導入したカルボキシアルキル基は、通常、塩型であり、ナトリウム塩等のアルカリ金属塩である。解繊工程の前に、カルボキシアルキル化セルロースのアルカリ金属塩を、ホスホニウム塩、イミダゾリニウム塩、アンモニウム塩、スルホニウム塩等の他のカチオン塩に置換してもよい。置換は、公知の方法で行うことができる。
 (エステル化)
 アニオン変性セルロースとしてエステル化したセルロースを用いることもできる。セルロース系原料にリン酸系化合物Aの粉末や水溶液を混合する方法、セルロース系原料のスラリーにリン酸系化合物Aの水溶液を添加する方法等が挙げられる。リン酸系化合物Aはリン酸、ポリリン酸、亜リン酸、ホスホン酸、ポリホスホン酸あるいはこれらのエステルが挙げられる。これらは塩の形態であってもよい。上記の中でも、低コストであり、扱いやすく、またパルプ繊維のセルロースにリン酸基を導入して、解繊効率の向上が図れるなどの理由からリン酸基を有する化合物が好ましい。リン酸基を有する化合物としては、リン酸、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、ピロリン酸ナトリウム、メタリン酸ナトリウム、リン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウム、ピロリン酸カリウム、メタリン酸カリウム、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウム、ピロリン酸アンモニウム、メタリン酸アンモニウム等が挙げられる。これらは1種、あるいは2種以上を併用してリン酸基を導入することができる。これらのうち、リン酸基導入の効率が高く、下記解繊工程で解繊しやすく、かつ工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩、リン酸のアンモニウム塩が好ましい。特にリン酸二水素ナトリウム、リン酸水素二ナトリウムが好ましい。また、反応を均一に進行できかつリン酸基導入の効率が高くなることから前記リン酸系化合物Aは水溶液として用いることが望ましい。リン酸系化合物Aの水溶液のpHは、リン酸基導入の効率が高くなることから7以下であることが好ましいが、パルプ繊維の加水分解を抑える観点からpH3~7が好ましい。
 リン酸エステル化セルロースの製造方法の例として、以下の方法を挙げることができる。固形分濃度0.1~10質量%のセルロース系原料の懸濁液に、リン酸系化合物Aを撹拌しながら添加してセルロースにリン酸基を導入する。セルロース系原料を100質量部とした際に、リン酸系化合物Aの添加量はリン元素量として、0.2~500質量部であることが好ましく、1~400質量部であることがより好ましい。リン酸系化合物Aの割合が前記下限値以上であれば、微細繊維状セルロースの収率をより向上させることができる。しかし、前記上限値を超えると収率向上の効果は頭打ちとなるので、コスト面から好ましくない。
 リン酸系化合物Aの他に化合物Bの粉末や水溶液を混合してもよい。化合物Bは特に限定されないが、塩基性を示す窒素含有化合物が好ましい。ここでの「塩基性」は、フェノールフタレイン指示薬の存在下で水溶液が桃~赤色を呈すること、または水溶液のpHが7より大きいことと定義される。本発明で用いる塩基性を示す窒素含有化合物は、本発明の効果を奏する限り特に限定されないが、アミノ基を有する化合物が好ましい。例えば、尿素、メチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられる。中でも低コストで扱いやすい尿素が好ましい。化合物Bの添加量はセルロース系原料の固形分100質量部に対して、2~1000質量部が好ましく、100~700質量部がより好ましい。反応温度は0~95℃が好ましく、30~90℃がより好ましい。反応時間は特に限定されないが、1~600分程度であり、30~480分がより好ましい。エステル化反応の条件がこれらの範囲内であると、セルロースが過度にエステル化されて溶解しやすくなることを防ぐことができ、リン酸エステル化セルロースの収率が良好となる。得られたリン酸エステル化セルロース懸濁液を脱水した後、セルロースの加水分解を抑える観点から、100~170℃で加熱処理することが好ましい。さらに、加熱処理の際に水が含まれている間は130℃以下、好ましくは110℃以下で加熱し、水を除いた後、100~170℃で加熱処理することが好ましい。
 リン酸エステル化されたセルロースのグルコース単位当たりのリン酸基置換度は0.001以上0.40未満であることが好ましい。セルロースにリン酸基置換基を導入することで、セルロース同士が電気的に反発する。このため、リン酸基を導入したセルロースは容易にナノ解繊することができる。グルコース単位当たりのリン酸基置換度が0.001より小さいと、十分にナノ解繊することができない。一方、グルコース単位当たりのリン酸基置換度が0.40より大きいと、膨潤あるいは溶解するため、ナノファイバーとして得られなくなる場合がある。解繊を効率よく行なうために、上記で得たリン酸エステル化されたセルロース系原料は煮沸した後、冷水で洗浄することで洗浄されることが好ましい。これらのエステル化による変性は置換反応による変性である。アニオン変性セルロースナノファイバーにおける置換度とセルロースナノファイバーとしたときの置換度は同じであることが好ましい。
 本発明では、上記の工程で得られるリン酸エステル化セルロースにおいて、セルロース系原料に導入したリン酸基は、通常、塩型であり、ナトリウム塩等のアルカリ金属塩である。解繊工程の前に、リン酸エステル化セルロースのアルカリ金属塩を、ホスホニウム塩、イミダゾリニウム塩、アンモニウム塩、スルホニウム塩等の他のカチオン塩に置換してもよい。置換は、公知の方法で行うことができる。
 (解繊工程)
 本発明の解繊工程においては、アニオン変性セルロースを解繊する。解繊処理としては、例えば、アニオン変性セルロースを十分に水洗した後、高速せん断ミキサーや高圧ホモジナイザー等の公知の装置を用いて行うことができる。解繊装置の種類としては、例えば、高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式が挙げられる。これらの装置は単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 高速せん断ミキサーを用いる場合、せん断速度は1000sec-1以上が好ましい。せん断速度が1000sec-1以上であると、凝集構造が少なく、均一にナノファイバー化することができる。高圧ホモジナイザーを用いる場合、印加する圧力は、50MPa以上が好ましく、100MPa以上がより好ましく、140MPa以上がさらに好ましい。当該圧力の湿式の高圧又は超高圧ホモジナイザーで処理すると、ナノファイバー化が効率よく進行し、水分散液とした場合に低粘度の、アニオン変性セルロースナノファイバーを効率よく得ることができる。
 アニオン変性セルロースは、水等の水分散液として解繊処理に供する。水分散液中のアニオン変性セルロースの濃度が高いと、解繊処理の途中で粘度が過度に増大して均一に解繊できない場合や、装置が停止するという場合がある。従って、アニオン変性セルロースの濃度は、アニオン変性セルロースの処理条件に応じて適宣設定する必要がある。一例として、アニオン変性セルロースの濃度は、0.3~50%(w/v)が好ましく、0.5~10%(w/v)がより好ましく、1.0~5%(w/v)がさらに好ましい。本発明においては、アニオン変性セルロースを解繊した後に、アニオン変性セルロースナノファイバー塩が得られる。
 (脱塩工程)
 本発明の脱塩工程においては、アニオン変性セルロースナノファイバー塩に対して、陽イオン交換樹脂を接触させて陽イオン交換反応を行うことにより脱塩処理してアニオン変性セルロースナノファイバーを得る。アニオン変性セルロースナノファイバー塩は、陽イオン交換樹脂と接触することによりカチオン塩がプロトンに置換される。陽イオン交換樹脂を用いるので、不要な塩化ナトリウム等の副生成物が生成しない。
 アニオン変性セルロースナノファイバー塩は、解繊工程で得られた水分散液を脱塩工程にそのまま供することができる。なお、必要に応じて水を添加して濃度を低くすることもできる。
 陽イオン交換樹脂としては、対イオンがH+である限り、強酸性イオン交換樹脂及び弱酸性イオン交換樹脂のいずれも用いることができる。中でも、強酸性イオン交換樹脂を用いることが好ましい。強酸性イオン交換樹脂及び弱酸性イオン交換樹脂としては、例えば、スチレン系樹脂或いはアクリル系樹脂にスルホン酸基或いはカルボキシ基を導入したものが挙げられる。
 陽イオン交換樹脂の形状は、特に限定されず、細粒(粒状)、膜状、繊維等、種々の形状のものを用いることができる。中でも、アニオン変性セルロースナノファイバー塩を効率よく処理し、処理後の分離が容易であるとの観点から、粒状が好ましい。このような陽イオン交換樹脂としては市販品を用いることができる。市販品としては、例えば、アンバージェット1020、同1024、同1060、同1220(以上、オルガノ社製)、アンバーライトIR-200C、同IR-120B(以上、東京有機化学社製)、レバチットSP 112、同S100(以上、バイエル社製)、GEL CK08P(三菱化学社製)、Dowex 50W-X8(ダウ・ケミカル社製)等が挙げられる。
 アニオン変性セルロースナノファイバー塩と陽イオン交換樹脂の接触は、例えば、粒状の陽イオン交換樹脂とアニオン変性セルロースナノファイバー塩の水分散液を混合し、必要に応じ撹拌・振とうしながら、アニオン変性セルロースナノファイバー塩と陽イオン交換樹脂とを一定時間接触させることにより行うことができる。
 水分散液の濃度や陽イオン交換樹脂との比率は、特に限定されず、当業者であれば、プロトン置換を効率的に行うとの観点から適宜設定し得る。一例として、水分散液の濃度は、0.05~10質量%が好ましい。水分散液の濃度が0.05質量%未満であると、プロトン置換に要する時間がかかりすぎる場合がある。水分散液の濃度が10質量%超であると、十分なプロトン置換の効果が得られない場合がある。
 接触時間も特に限定されず、当業者であれば、プロトン置換を効率的に行うとの観点から適宜設定し得る。例えば、0.2~4時間接触させて行うことができる。
 この際、適切な量の陽イオン交換樹脂を用いてアニオン変性セルロースナノファイバー塩を十分な時間接触させることで、脱塩処理を行うことができる。
 (送液する工程)
 本発明においては、上記の脱塩工程と、後述する回収工程との間に、アニオン変性セルロースナノファイバーと陽イオン交換樹脂を含む混合物をポンプで送液する工程を設ける。
 アニオン変性セルロースナノファイバーと陽イオン交換樹脂を含む混合物を、回収工程で用いるろ過装置等に対して送液するためのポンプとしては、高粘度なセルロースナノファイバーを送液可能な能力があれば種類を問わないが、ポンプによるせん断でイオン交換樹脂を極力傷つけないものを用いることが好ましい。
 ポンプはおもにターボ型(非容積式)ポンプと容積式ポンプに大別される。ターボ型ポンプには渦巻きポンプ、ディフューザポンプ、渦流ポンプのような遠心ポンプ、斜流ポンプ、軸流ポンプなどがある。容積式ポンプにはピストンポンプやプランジャーポンプ、ダイヤフラムポンプなどの往復ポンプ、また、ギヤポンプやベーンポンプ、ネジポンプなどの回転ポンプが該当する。これらの中でも、容積式ネジポンプまたは、容積式往復ポンプを用いることがより好ましい。この種のポンプは、羽根車をケーシング内で高速回転させることにより流体に運動エネルギーを与えるターボ型(非容積式)ポンプと比較して、流体に与えるせん断力が小さいことと、ローターとステーターの間の漏れがきわめて少ないことから揚程が高く、比較的粘度の高い流体の送液が可能なことが特徴である。
 容積式ネジポンプとしては、容積式一軸偏心ネジポンプ(モーノポンプ)、容積式二軸スクリューポンプなどを例示することができ、モーノポンプを用いることが好ましい。モーノポンプは、一条ネジの構造を持つ金属製ローターが、二条ネジの構造で切られたステーターの中を回転することで、ローターとステーターの間に生じる空間を連続的に移動させて流体を移送するポンプである。容積式二軸スクリューポンプは、2つのスクリューとケーシングが形成する空間に閉じ込められた流体をスクリューの回転によりスクリューの軸方向に移送するポンプである。
 容積式往復ポンプとしては容積式ダイヤフラムポンプ(膜ポンプ)を用いることがより好ましい。ダイヤフラムポンプはダイヤフラムと弁で構成され、ダイヤフラムを往復運動させて容積を変化させ、吸込、吐出を行い流体を移送するポンプである。ダイヤフラムポンプはシール方式と弁方式の点で異物に対しては優位である。容積式ネジポンプの摺動部は接液しているため樹脂が食い込まれやすく、通常逆止弁がないため摺動部が消耗すると圧力が立たなくなる。容積式往復ポンプであるプランジャーポンプ、ピストンポンプ、ダイヤフラムポンプの摺動部には樹脂が食い込まれ難く、殊にダイヤフラムポンプでは摺動部が接液しないため摺動部に樹脂等の異物を食い込まず、逆止弁に樹脂が挟まり一時的に閉塞不良を起こしても、次回以降の吐出などによって閉塞物が取り除かれる為、より優位である。
 (回収工程)
 本発明の回収工程においては、アニオン変性セルロースナノファイバーと陽イオン交換樹脂を含む混合物から、陽イオン交換樹脂を回収する。上記の脱塩工程では陽イオン交換樹脂を用いるため、不要な塩化ナトリウム等の副生成物が生成しない。そのため、陽イオン交換樹脂を用いて酸処理した後は、アニオン変性セルロースナノファイバーと陽イオン交換樹脂を含む混合物から、陽イオン交換樹脂を回収することにより、ろ液としてアニオン変性セルロースナノファイバーの水分散液が得られる。
 陽イオン交換樹脂の回収方法は限定されないが、ろ過装置を用いてろ過する方法が好ましい。なお、回収工程の前または後に、助剤ろ過などで精密ろ過を行う工程を設けてもよい。
 ろ過装置に用いられるろ材の形状は限定されず、メッシュ状、スリット状など、いずれの形状も用いることができる。また、ろ材としては、孔をあけたものであっても構わない。また、ろ材の素材は限定されず、樹脂製、金属製、セラミック製などいずれの素材も用いることができるが、耐酸性を有した素材を用いることが好ましい。
 ろ材の目開き、もしくはスリット幅は、陽イオン交換樹脂を捕捉できる大きさであればよく、500μm以下が好ましく、400μm以下がより好ましい。目開きが大きすぎる場合は、陽イオン交換樹脂がろ材を通過してしまい、陽イオン交換樹脂を回収することができない。また、ろ材の目開き、もしくはスリット幅の最小径は、セルロースナノファイバーに含まれる繊維状異物の量に依存する。すなわち、セルロースナノファイバーを事前に助剤ろ過などで精密ろ過を行った場合には、5μm以上が好ましく、事前に精密ろ過を行っていない場合には、10μm以上が好ましく、50μm以上がより好ましい。目開きが小さすぎる場合は、未解繊繊維由来の目詰まりが発生し、ろ過処理量が少なくなる。
 助剤ろ過を行う場合に用いるろ過助剤としては、無機化合物、有機化合物のいずれを用いても良いが、汎用的に用いられる助剤として珪藻土、シリカ、パーライト、微粉セルロース、活性炭等が挙げられる。ろ過条件に応じて、助剤の種類を調整することができる。
 ろ過装置としては、加圧ろ過または減圧ろ過を行うことができる装置であれば種類を問わず用いることができ、例えばヌッチェ型、キャンドル型、リーフディスク型、ドラム型、フィルタープレス型、ベルトフィルター型などが挙げられる。ろ過後にろ過容器内のセルロースナノファイバーを回収可能な機構を持つものが好ましい。セルロースナノファイバーおよび陽イオン交換樹脂の回収、搬送が容易となる観点から、キャンドル型、リーフディスク型のろ過装置を用いることが好ましい。
 また、必要に応じてエアーで加圧し、セルロースナノファイバーを取り出し可能な機構を持つものが、回収率が向上するため好ましい。エアーで加圧する場合の圧力としては、0.01~1.0MPaが好ましく、0.05~0.5MPaがより好ましい。上記下限値よりも低い圧力の場合は、高粘度なセルロースナノファイバーの搬送が難しく、上記上限値よりも高い圧力の場合は、エアー用タンク及びろ過装置の耐圧性を高める必要があり、装置設計上好ましくない。
 加圧ろ過を行う場合の圧力としては、0.01MPa以上5MPa以下が好ましく、減圧ろ過を行う場合の圧力としては、0.01MPa以上0.1MPa以下が好ましい。
 ろ過装置は、ろ過後に陽イオン交換樹脂を回収する機構を有する。陽イオン交換樹脂の回収を行いやすくする観点から、ろ過装置の開口部は、大きいものであることが好ましい。ろ過装置に対して、陽イオン交換樹脂を回収するため、逆洗の機構、スクレーパーによる掻き出しの機構、ろ過容器の傾斜・反転が可能な機構などを設けてもよい。また、ろ過装置に対して、回収した陽イオン交換樹脂をコンベヤにより搬送する機構を設けてもよい。
 金属メッシュ等によりろ物として回収する対象は陽イオン交換樹脂であり、アニオン変性セルロースナノファイバーは、金属メッシュ等の径では除去され難く、ほぼ全量がろ液中に含まれる。そのため、収率の低下が極めて少なくなると考えられる。
 なお、回収工程でのアニオン変性セルロースナノファイバーと陽イオン交換樹脂を含む混合物の送液及び加圧ろ過においては、送液する工程と同様に、陽イオン交換樹脂を極力傷つけない方法を選択することが望ましく、例えば容積式ネジポンプまたは容積式往復ポンプを用いることが好ましい。
 必要に応じて、回収した陽イオン交換樹脂に微量に混入したセルロースナノファイバーの洗浄や、回収した陽イオン交換樹脂の再生のための酸処理と脱液を行ってもよい。これらの工程は、1台の装置で全て行ってもよいし、複数台の装置で行ってもよい。複数台の装置で行う場合は、異なる種類の装置を組み合わせてもよい。
 回収した陽イオン交換樹脂に対して酸処理による陽イオン交換樹脂の再生工程を実施する方法は限定されず、例えば、使用済み樹脂1kgに対し、5倍量の1M塩酸を添加して撹拌し、イオン交換水で4回洗浄を繰り返すなどの方法を挙げることができる。回収工程および再生工程を経た陽イオン交換樹脂は繰り返し利用できるため、コストを抑えることができる。
 以下、本発明を実施例により詳細に説明する。以下の実施例は、本発明を好適に説明するためのものであって、本発明を限定するものではない。なお、物性値等の測定方法は、別途記載がない限り、下記に記載した測定方法である。
 (カルボキシル基量の測定方法)
 カルボキシル化セルロースの0.5質量%スラリー(水分散液)60mLを調製し、0.1M塩酸水溶液を加えてpH2.5とした後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定した。電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いてカルボキシル基量を算出した:
 カルボキシル基量〔mmol/gカルボキシル化セルロース〕=a〔mL〕×0.05/カルボキシル化セルロース質量〔g〕
 (カルボキシメチル基置換度の測定方法)
 試料約2.0gを精秤して、300mL共栓三角フラスコに入れた。硝酸メタノール(無水メタノール1Lに特級濃硝酸100mLを加えた液)100mLを加え、3時間振盪して、カルボキシメチル化セルロースのナトリウム塩(以下、「Na-CMC」ともいう)をカルボキシメチル化セルロース(以下、「H-CMC」ともいう)にした。絶乾したH-CMCを1.5~2.0g精秤し、300mL共栓三角フラスコに入れた。80%メタノール15mLでH-CMCを湿潤し、0.1NのNaOH100mLを加えて室温で3時間振盪した。指示薬としてフェノールフタレインを用いて、0.1NのH2SO4で過剰のNaOHを逆滴定し、下記式を用いてカルボキシメチル基置換度を算出した。
 [{100×F'-(0.1NのH2SO4(mL))×F}/(H-CMCの絶乾質量(g))]×0.1=Aカルボキシメチル基置換度=0.162A/(1-0.058A)
A:1gのH-CMCを中和するのに必要な1NのNaOHの量(mL)
F':0.1NのH2SO4のファクター
F:0.1NのNaOHのファクター
 (B型粘度(mPa・s)の測定方法)
 TV-10型粘度計(東機産業社)を用いて、20℃、60rpmの条件で測定した。
 (実施例1)
 (カルボキシル化セルロースの調製)
 漂白済み針葉樹未叩解パルプ(日本製紙社製)5g(絶乾)を、TEMPO(Sigma Aldrich社製)78mg(0.5mmol)と臭化ナトリウム754mg(7.4mmol)を溶解した水溶液500mLに加え、パルプが均一に分散するまで撹拌した。反応系に2M次亜塩素酸ナトリウム水溶液18mL添加した後、0.5N塩酸水溶液でpHを10.3に調整し、酸化反応を開始した。反応中は系内のpHは低下するので、0.5N水酸化ナトリウム水溶液を逐次添加し、pH10に維持した。2時間反応させた後、ガラスフィルターでろ過し、十分に水洗することでカルボキシル基量1.7mmol/gのカルボキシル化セルロースを得た。
 (解繊工程)
 次いで、得られたカルボキシル化セルロースのスラリーを水で1%(w/v)に調整し、超高圧ホモジナイザー(20℃、140MPa)で5回処理し、透明なゲル状のカルボキシル化セルロースナノファイバー塩の分散液(1%(w/v))を得た。
 (脱塩工程)
 得られたカルボキシル化セルロースナノファイバー塩の分散液に陽イオン交換樹脂(オルガノ社製、「アンバージェット1024」)を添加し、20℃で0.3時間撹拌して接触させた。
 (回収工程)
 タンク付ステンレスホルダー(KST-47、Advantec製、ろ過面積12.5cm2)に、ろ材として目開き250μmの金網を取り付け、ろ過装置を準備した。上記脱塩工程で得られたカルボキシル化セルロースナノファイバー分散液と陽イオン交換樹脂の混合物をろ過装置の加圧タンクに充填し、窒素ガスを用いて0.35MPaに加圧し、ろ過を行った。ろ過開始から30分後にろ過を終了し、ろ液内に陽イオン交換樹脂が混入していないか、目視評価を行った。ろ液に陽イオン交換樹脂が混入していない場合に、イオン交換樹脂が回収できたとして、「イオン交換樹脂の回収」欄を「○」とした。また、得られたろ液の量(ろ過処理量)を確認した。結果を表1に示す。なお、セルロースナノファイバーを「CNF」と呼ぶことがある。
 (実施例2)
 陽イオン交換樹脂の種類をオルガノ社製、「アンバーライトIR124」に変更したこと以外は、実施例1と同様にカルボキシル化セルロースナノファイバー分散液と陽イオン交換樹脂の混合物を得て、ろ過、および評価を行った。結果を表1に示す。
 (実施例3)
 ろ材として目開き400μmの金網を用いたこと以外は、実施例1と同様にカルボキシル化セルロースナノファイバー分散液と陽イオン交換樹脂の混合物を得て、ろ過、および評価を行った。結果を表1に示す。
 (実施例4)
 ろ材として目開き100μmの金網を用いたこと以外は、実施例1と同様にカルボキシル化セルロースナノファイバー分散液と陽イオン交換樹脂の混合物を得て、ろ過、および評価を行った。結果を表1に示す。
 (実施例5)
 ろ材として目開き250μmのナイロンメッシュを用いたこと以外は、実施例1と同様にカルボキシル化セルロースナノファイバー分散液と陽イオン交換樹脂の混合物を得て、ろ過、および評価を行った。結果を表1に示す。
 (実施例6)
 キャンドル型フィルター(シバタ製、ろ過面積0.097m2)に、ろ材として金属製のスリット状フィルター(スリット幅:50μm)を取り付け、ろ過装置を準備した。このろ過装置を用いたこと以外は、実施例1と同様にカルボキシル化セルロースナノファイバー分散液と陽イオン交換樹脂の混合物を得て、ろ過、および評価を行った。結果を表1に示す。
 (実施例7)
 タンク付ステンレスホルダー(KST-47、Advantec製、ろ過面積12.5cm2)に、ろ過助剤として珪藻土(昭和化学工業製、ラジオライト3000、粒子径74.9μm)を純水に希釈して送液することでプレコートして珪藻土を積層させた。その後、実施例1の脱塩工程前のカルボキシル化セルロースナノファイバー塩の分散液を用いて、1段目のろ過処理を行った。得られたろ液に対して、実施例1と同様に脱塩処理を行い、カルボキシル化セルロースナノファイバー分散液と陽イオン交換樹脂の混合物を得た。この混合物を用いて2段目のろ過を行なった。2段目のろ過では、ろ材として目開き5μmの金属製フィルターを取り付け、ろ過装置を準備した。このろ材を用いたこと以外は、実施例1と同様に混合物のろ過、および評価を行った。結果を表1に示す。
 (比較例1)
 ろ材として目開き5μmの金属製フィルターを用いたこと以外は、実施例1と同様にしてカルボキシル化セルロースナノファイバー分散液と陽イオン交換樹脂の混合物を得て、ろ過、および評価を行った。結果を表1に示す。
 (比較例2)
 ろ材として通気度12のPET製ろ布を用いたこと以外は、実施例1と同様にカルボキシル化セルロースナノファイバー分散液と陽イオン交換樹脂の混合物を得て、ろ過、および評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1からわかるように、アニオン変性セルロースナノファイバー塩と陽イオン交換樹脂を用いて脱塩処理を行い、アニオン変性セルロースナノファイバーと陽イオン交換樹脂を含む混合物を得て、得られた混合物をろ過装置を用いてろ過することにより、陽イオン交換樹脂を回収することができた。また、得られたセルロースナノファイバーを含むろ液には、陽イオン交換樹脂が混入していなかった。
 比較例1,2は、ろ材の目開きが小さく、閉塞により良好なろ過処理量を得られなかったのに対し、実施例1~6は目開き又はスリット幅の大きなろ材であったため、CNFに含まれる未解繊繊維等による目詰まりはほとんど発生しなかった。また実施例7ではCNFに含まれる未解繊繊維等を事前に除去することで、目詰まりを生じることなく、良好なろ過処理量を得られた。
 (実施例8)
 ホッパーを取り付けたモーノポンプ(送液用ポンプ)の出口ホースの先端に、目開き250μmのナイロンメッシュを取り付けた。ホッパーに、実施例1と同様にして得られた分散液と陽イオン交換樹脂の混合物を投入した。その後、ポンプで送液し、加圧ろ過を30分間実施し、陽イオン交換樹脂とセルロースナノファイバーをろ別した。なお、ろ過開始時の圧力は0.1MPaであり、ろ過終了時の圧力は0.3MPaであった。また、得られたカルボキシル化セルロースナノファイバーの1%分散液のB型粘度は、2500mPa・sであった(60rpm、20℃)。
 得られたセルロースナノファイバーの分散液を顕微鏡で観察したところ、樹脂の破片の混入は認められなかった。
 (実施例9)
 (カルボキシメチル化セルロースの調製)
 パルプを撹拌することができる反応器に、パルプ(LBKP、日本製紙社製)を乾燥質量で250g入れ、撹拌しながら50質量%水酸化ナトリウム水溶液112gと、水67gを添加した。30℃で45分間撹拌し、マーセル化処理した後、撹拌しながら35質量%モノクロロ酢酸ナトリウム水溶液を364g添加した。30℃で60分間撹拌し、30分かけて70℃まで昇温した後、70℃で1時間反応を行った。その後、反応物を取り出し、グルコース単位当たりのカルボキシメチル置換度が0.27のカルボキシメチル化されたパルプ(以下、「カルボキシメチル化セルロース」ともいう)を得た。
 (解繊工程)
 カルボキシメチル化セルロースを水で1%(w/v)に調整し、超高圧ホモジナイザー(20℃、140Mpa)で3回処理して、カルボキシメチル化セルロースナノファイバー塩の分散液を得た。
 (脱塩工程)
 得られたカルボキシメチル化セルロースナノファイバー塩の分散液に陽イオン交換樹脂(オルガノ社製、「アンバージェット1024」)を添加し、20℃で0.3時間撹拌して接触させた。
 ホッパーを取り付けたモーノポンプ(送液用ポンプ)の出口ホースの先端に、目開き250μmのナイロンメッシュを取り付けた。ホッパーに、上記で得られたボキシメチル化セルロースナノファイバー分散液と陽イオン交換樹脂の混合物を投入した。その後、ポンプで送液し、加圧ろ過を30分間実施し、陽イオン交換樹脂とセルロースナノファイバーをろ別した。なお、ろ過開始時の圧力は0.1MPaであり、ろ過終了時の圧力は0.3MPaであった。また、得られたカルボキシメチル化セルロースナノファイバーの1%分散液のB型粘度は、3500mPa・sであった(60rpm、20℃)。
 得られたセルロースナノファイバーの分散液を顕微鏡で観察したところ、樹脂の破片の混入は認められなかった。
 (実施例10)
 実施例8のポンプをダイヤフラムポンプに変更した以外は、実施例8と同様にセルロースナノファイバー分散液と陽イオン交換樹脂の混合物を投入し、その後、ポンプで送液し、加圧ろ過を30分実施し、陽イオン交換樹脂とセルロースナノファイバーをろ別した。なお、ろ過開始時の圧力は0.1MPaであり、ろ過終了時の圧力は0.3MPaであった。また、得られたカルボキシル化セルロースナノファイバーの1%分散液のB型粘度は、2600mPa・sであった(60rpm、20℃)。
 得られたセルロースナノファイバーの分散液を顕微鏡で観察したところ、樹脂の破片の混入は認められなかった。
(比較例3)
 送液用ポンプとして渦流ポンプを用いたこと以外は実施例10と同様にして陽イオン交換樹脂とセルロースナノファイバーのろ別を行った。なお、ろ過開始時の圧力は0.1MPaであり、ろ過終了時の圧力は0.3MPaであった。また、得られたカルボキシル化セルロースナノファイバーの1%分散液のB型粘度は、2500mPa・sであった(60rpm、20℃)。
 得られたセルロースナノファイバーの分散液を顕微鏡で観察したところ、樹脂の破片が検出された。
 (比較例4)
 送液用ポンプとして渦流ポンプを用いたこと以外は実施例11と同様にして陽イオン交換樹脂とセルロースナノファイバーのろ別を行った。なお、ろ過開始時の圧力は0.1MPaであり、ろ過終了時の圧力は0.3MPaであった。また、得られたカルボキシメチル化セルロースナノファイバーの1%分散液のB型粘度は、3500mPa・sであった(60rpm、20℃)。
 得られたセルロースナノファイバーの分散液を顕微鏡で観察したところ、樹脂の破片が検出された。
Figure JPOXMLDOC01-appb-T000002
 表2からわかるように、容積式一軸偏心ネジポンプであるモーノポンプ及び容積式往復ポンプである容積式ダイヤフラムポンプを用いて陽イオン交換樹脂とセルロースナノファイバー分散液の混合物を送液し、ろ別した場合は、ろ液に陽イオン交換樹脂の破片の混入は認められなかった。一方、渦流ポンプを用いて送液し、ろ別した場合は、ろ液に陽イオン交換樹脂の破片が検出された。
 アニオン変性セルロースナノファイバーと陽イオン交換樹脂を含む混合物を、陽イオン交換樹脂を回収する回収工程に送液する際に、容積式一軸偏心ネジポンプ又は容積式ダイヤフラムポンプを用いて送液すると、陽イオン交換樹脂の破片の混入が無いアニオン変性セルロースナノファイバーを得られることがわかった。

Claims (12)

  1.  アニオン変性セルロースを調製する調製工程と、
     前記調製工程にて得られた前記アニオン変性セルロースを解繊してアニオン変性セルロースナノファイバー塩を得る解繊工程と、
     前記解繊工程にて得られた前記アニオン変性セルロースナノファイバー塩に対して、陽イオン交換樹脂を用いた陽イオン交換反応を行うことにより脱塩処理してアニオン変性セルロースナノファイバーを得る脱塩工程と、
     前記脱塩工程にて得られた前記アニオン変性セルロースナノファイバーと前記陽イオン交換樹脂を含む混合物から前記陽イオン交換樹脂を回収する回収工程と
    を有するアニオン変性セルロースナノファイバーの製造方法。
  2.  前記回収工程で、0.01MPa以上5MPa以下の加圧ろ過又は0.01MPa以上0.1MPa以下の減圧ろ過を行う請求項1に記載のアニオン変性セルロースナノファイバーの製造方法。
  3.  前記回収工程において、目開き5μm以上400μm以下のメッシュ状、もしくはスリット幅5μm以上400μm以下のスリット状のろ材を用いる請求項1又は2に記載のアニオン変性セルロースナノファイバーの製造方法。
  4.  前記回収工程の前又は後に、精密ろ過の工程をさらに有する請求項1~3の何れか一項に記載のアニオン変性セルロースナノファイバーの製造方法。
  5.  前記回収工程で回収された前記陽イオン交換樹脂に対して、酸処理による陽イオン交換樹脂の再生工程を実施する請求項1~4の何れか一項に記載のアニオン変性セルロースナノファイバーの製造方法。
  6.  前記回収工程での前記混合物の送液及び加圧ろ過、もしくは前記脱塩工程と前記回収工程との間の送液に、容積式ネジポンプを用いる工程を含む請求項1~5の何れか一項に記載のアニオン変性セルロースナノファイバーの製造方法。
  7.  前記容積式ネジポンプは、容積式一軸偏心ネジポンプ又は容積式二軸スクリューポンプである請求項6に記載のアニオン変性セルロースナノファイバーの製造方法。
  8.  前記回収工程での前記混合物の送液及び加圧ろ過、もしくは前記脱塩工程と前記回収工程との間の送液に、容積式往復ポンプを用いる工程を含む請求項1~5の何れか一項に記載のアニオン変性セルロースナノファイバーの製造方法。
  9.  前記容積式往復ポンプは、容積式ダイヤフラムポンプである請求項8に記載のアニオン変性セルロースナノファイバーの製造方法。
  10.  前記調製工程は、セルロース系原料をN-オキシル化合物と、臭化物、ヨウ化物、およびこれらの混合物からなる群から選択される化合物との存在下で酸化剤を用いて酸化する工程を含み、前記調製工程により得られる前記アニオン変性セルロースは、セルロースにカルボキシル基が導入されたものである請求項1~9の何れか一項に記載のアニオン変性セルロースナノファイバーの製造方法。
  11.  前記調製工程は、セルロース系原料をマーセル化剤によりマーセル化処理した後、カルボキシメチル化剤と反応させる工程を含み、前記調製工程により得られる前記アニオン変性セルロースは、セルロースにカルボキシメチル基が導入されたものである請求項1~9の何れか一項に記載のアニオン変性セルロースナノファイバーの製造方法。
  12.  前記調製工程は、セルロース系原料にリン酸系化合物を添加する工程を含み、前記調製工程により得られる前記アニオン変性セルロースは、セルロースにリン酸基が導入されたものである請求項1~9の何れか一項に記載のアニオン変性セルロースナノファイバーの製造方法。
PCT/JP2018/033924 2017-09-20 2018-09-13 アニオン変性セルロースナノファイバーの製造方法 WO2019059079A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019543593A JP7197490B2 (ja) 2017-09-20 2018-09-13 アニオン変性セルロースナノファイバーの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017179750 2017-09-20
JP2017-179750 2017-09-20

Publications (1)

Publication Number Publication Date
WO2019059079A1 true WO2019059079A1 (ja) 2019-03-28

Family

ID=65810880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033924 WO2019059079A1 (ja) 2017-09-20 2018-09-13 アニオン変性セルロースナノファイバーの製造方法

Country Status (2)

Country Link
JP (1) JP7197490B2 (ja)
WO (1) WO2019059079A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240037197A (ko) 2021-08-10 2024-03-21 후타무라 가가쿠 가부시키가이샤 Ii형 미수식 셀룰로오스 미세 섬유, 및 ii형 미수식 셀룰로오스 미세 섬유 및 그 성형체의 제조 방법

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956402A (ja) * 1982-08-20 1984-03-31 ピ−タ−・ロビン・ブロ−トン・ロ−レンス アミン塩およびそれを含有する製品
WO2002060487A1 (fr) * 2001-01-31 2002-08-08 Asahi Kasei Kabushiki Kaisha Procede de production d'une dispersion aqueuse de derives cellulosiques
JP2015508839A (ja) * 2012-02-13 2015-03-23 ウーペーエム−キュンメネ コーポレイションUPM−Ky フィブリルセルロースを処理するための方法および装置、ならびにフィブリルセルロース製品
WO2016066904A1 (en) * 2014-10-29 2016-05-06 Kemira Oyj Method for producing microfibrillated cellulose and microfibrillated cellulose
JP2017065109A (ja) * 2015-09-30 2017-04-06 王子ホールディングス株式会社 シートおよび積層体
JP2017066556A (ja) * 2015-09-30 2017-04-06 王子ホールディングス株式会社 シートおよび積層体
WO2017078084A1 (ja) * 2015-11-02 2017-05-11 日本製紙株式会社 セルロースナノファイバー分散液のろ過方法および製造方法
JP2017088693A (ja) * 2015-11-06 2017-05-25 王子ホールディングス株式会社 地下層処理用組成物、地下層処理用流体、地下層処理用流体の製造方法及び地下層の処理方法
WO2017099078A1 (ja) * 2015-12-08 2017-06-15 王子ホールディングス株式会社 吸収性物品
WO2017138589A1 (ja) * 2016-02-10 2017-08-17 王子ホールディングス株式会社 シート
WO2017141800A1 (ja) * 2016-02-19 2017-08-24 王子ホールディングス株式会社 繊維状セルロース含有物及び繊維状セルロース含有物の製造方法
JP6228707B1 (ja) * 2016-12-21 2017-11-08 日本製紙株式会社 酸型カルボキシメチル化セルロースナノファイバー及びその製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956402A (ja) * 1982-08-20 1984-03-31 ピ−タ−・ロビン・ブロ−トン・ロ−レンス アミン塩およびそれを含有する製品
WO2002060487A1 (fr) * 2001-01-31 2002-08-08 Asahi Kasei Kabushiki Kaisha Procede de production d'une dispersion aqueuse de derives cellulosiques
JP2015508839A (ja) * 2012-02-13 2015-03-23 ウーペーエム−キュンメネ コーポレイションUPM−Ky フィブリルセルロースを処理するための方法および装置、ならびにフィブリルセルロース製品
WO2016066904A1 (en) * 2014-10-29 2016-05-06 Kemira Oyj Method for producing microfibrillated cellulose and microfibrillated cellulose
JP2017065109A (ja) * 2015-09-30 2017-04-06 王子ホールディングス株式会社 シートおよび積層体
JP2017066556A (ja) * 2015-09-30 2017-04-06 王子ホールディングス株式会社 シートおよび積層体
WO2017078084A1 (ja) * 2015-11-02 2017-05-11 日本製紙株式会社 セルロースナノファイバー分散液のろ過方法および製造方法
JP2017088693A (ja) * 2015-11-06 2017-05-25 王子ホールディングス株式会社 地下層処理用組成物、地下層処理用流体、地下層処理用流体の製造方法及び地下層の処理方法
WO2017099078A1 (ja) * 2015-12-08 2017-06-15 王子ホールディングス株式会社 吸収性物品
WO2017138589A1 (ja) * 2016-02-10 2017-08-17 王子ホールディングス株式会社 シート
WO2017141800A1 (ja) * 2016-02-19 2017-08-24 王子ホールディングス株式会社 繊維状セルロース含有物及び繊維状セルロース含有物の製造方法
JP6228707B1 (ja) * 2016-12-21 2017-11-08 日本製紙株式会社 酸型カルボキシメチル化セルロースナノファイバー及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240037197A (ko) 2021-08-10 2024-03-21 후타무라 가가쿠 가부시키가이샤 Ii형 미수식 셀룰로오스 미세 섬유, 및 ii형 미수식 셀룰로오스 미세 섬유 및 그 성형체의 제조 방법

Also Published As

Publication number Publication date
JP7197490B2 (ja) 2022-12-27
JPWO2019059079A1 (ja) 2020-09-03

Similar Documents

Publication Publication Date Title
JP7270194B2 (ja) 乾燥セルロースナノファイバーの製造方法
CN108602895B (zh) 阴离子改性纤维素纳米纤维分散液及其制造方法
JP6899777B2 (ja) セルロースナノファイバー分散液のろ過方法および製造方法
JP6724289B2 (ja) 粘度調整剤
JP7095065B2 (ja) 化学変性パルプ分散液の脱水方法
WO2018143150A1 (ja) 乾燥セルロースナノファイバーの製造方法
WO2018216474A1 (ja) 酸化セルロースナノファイバー、酸化セルロースナノファイバー分散液、および酸化セルロースナノファイバー分散液の製造方法
JP2017025235A (ja) 配管摩擦抵抗低減剤及び輸送媒体
WO2019059079A1 (ja) アニオン変性セルロースナノファイバーの製造方法
WO2017057710A1 (ja) セルロースナノファイバー分散液及びその製造方法
JP2020037650A (ja) 酸化セルロースナノファイバー、および酸化セルロースナノファイバー分散液
JP6671935B2 (ja) セルロースナノファイバーの乾燥固形物の製造方法
JP7432390B2 (ja) 疎水化アニオン変性セルロースナノファイバー分散体及びその製造方法ならびに疎水化アニオン変性セルロースの乾燥固形物及びその製造方法
JP7199230B2 (ja) 疎水化アニオン変性セルロースナノファイバー分散体の製造方法および疎水化アニオン変性セルロースの乾燥固形物
WO2018173761A1 (ja) 化学変性セルロース繊維の保管方法および化学変性セルロースナノファイバーの製造方法
JP7239294B2 (ja) アニオン変性セルロースナノファイバーの製造方法
WO2020145103A1 (ja) 疎水化アニオン変性セルロースナノファイバー分散体の製造方法および疎水化アニオン変性セルロースの乾燥固形物
JP7250455B2 (ja) アニオン変性セルロースナノファイバーを含有する組成物
JP7098467B2 (ja) セルロースナノファイバーの製造方法
JP7068884B2 (ja) 変性パルプの製造方法
WO2024057829A1 (ja) セルロース系ポリマーの粉砕方法
JP2019199518A (ja) 金属イオン含有セルロース繊維
JP2019163390A (ja) カルボキシアルキル化セルロース及びカルボキシアルキル化セルロースナノファイバーの製造方法
JP2024136431A (ja) セルロースナノファイバー製造装置及びセルロースナノファイバーの製造方法
JP2024136432A (ja) セルロースナノファイバー製造装置及びセルロースナノファイバーの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858475

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019543593

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18858475

Country of ref document: EP

Kind code of ref document: A1