Nothing Special   »   [go: up one dir, main page]

WO2019058849A1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
WO2019058849A1
WO2019058849A1 PCT/JP2018/030890 JP2018030890W WO2019058849A1 WO 2019058849 A1 WO2019058849 A1 WO 2019058849A1 JP 2018030890 W JP2018030890 W JP 2018030890W WO 2019058849 A1 WO2019058849 A1 WO 2019058849A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
refrigerant
compressor
chamber
separation
Prior art date
Application number
PCT/JP2018/030890
Other languages
French (fr)
Japanese (ja)
Inventor
芳夫 小和田
Original Assignee
サンデンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデンホールディングス株式会社 filed Critical サンデンホールディングス株式会社
Publication of WO2019058849A1 publication Critical patent/WO2019058849A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/04Measures to avoid lubricant contaminating the pumped fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present invention relates to a compressor, for example, a compressor suitable for use in a vehicle air conditioner system.
  • oil is mixed in refrigerant gas, and each part of the compressor is lubricated.
  • the operating efficiency of the vehicle air conditioner system etc. decreases, so the amount of oil flowing out from the compressor to the external refrigerant circuit is reduced, and the oil circulation ratio (Oil Circulation Ratio: There is a need to optimize the OCR).
  • Patent Document 1 discloses a compressor provided with an oil separator that performs collision separation type oil separation and an oil separator that performs centrifugal separation oil separation.
  • the collision separation type oil separator causes the discharge refrigerant gas discharged from the compression mechanism to the discharge chamber to collide with the partition of the discharge chamber to separate the oil in the discharge refrigerant gas.
  • the centrifugal type oil separator swirls the discharged refrigerant gas around a cylindrical separator disposed in the separation chamber to centrifuge oil in the discharged refrigerant gas.
  • the discharge chamber and the separation chamber are respectively communicated with the oil storage chamber via the communication passage, and the oil separated by each oil separator is collectively collected in the oil storage chamber.
  • the oil collected at one time flows to the suction chamber while lubricating the lubrication target including bearings etc., and is returned together with the refrigerant to the suction side of the compression chamber. At this time, the oil contained in the suction refrigerant lubricates the compression mechanism. .
  • Patent Document 1 oil separators having different separation systems and having different oil separation capacities are disposed in different separation chambers.
  • the oil separated by each oil separator is collectively collected in the oil storage chamber through each communication passage, then lubricates the lubrication target, passes through the suction chamber, and forms a single oil flow path leading to the suction side of the compression chamber. It distributes.
  • each separation chamber may be lower than that in the oil storage chamber, or the pressure in each separation chamber may be higher. For this reason, if the restriction of each communication passage between the oil storage chamber and each separation chamber is insufficient, a back flow of oil from the oil storage chamber to each separation chamber may occur. On the other hand, if each communication passage between the oil storage chamber and each separation chamber is narrowed too much, oil may not flow from each separation chamber to the oil storage chamber.
  • each oil separator of Patent Document 1 has different oil separation ability and the amount of oil that can be separated from the discharged refrigerant is different, the oil separated by each oil separator is collectively collected in the oil storage chamber, It flows through a single oil flow path and is used for lubrication to be lubricated.
  • the oil can not be properly distributed according to the oil separation capacity of the oil separator and the lubrication requirement of each part of the compressor. Therefore, the oil separation capacity from the discharged refrigerant is enhanced over the entire operation range of the compressor. There was still a challenge in improving the lubrication performance of
  • the present invention has been made in view of such problems, and can increase the oil separation capability from the discharged refrigerant over the entire operation range of the compressor, improve the OCR in the compressor, and improve the durability of the compressor, It is an object of the present invention to provide a compressor capable of improving the performance of the compressor and the operation efficiency of a system using the compressor.
  • the compressor according to the present invention comprises a suction chamber for sucking in a refrigerant containing oil, a compression chamber for compressing the refrigerant sucked in the suction chamber, and a discharge from the compression chamber.
  • a first oil flow path for circulating oil separated by the first oil separator to the suction side of the refrigerant in the compression chamber and a second oil flow path for circulating oil separated by the second oil separator to the suction chamber side .
  • the oil separation ability from the discharged refrigerant can be enhanced over the entire operation range of the compressor, the OCR in the compressor is improved, the durability of the compressor is improved, the performance of the compressor is improved, The improvement of the operating efficiency of the system using the compressor can be realized.
  • FIG. 1 shows a longitudinal sectional view of a compressor according to a first embodiment of the present invention.
  • the compressor 1 is used, for example, in a vehicle air conditioner system or the like, by connecting a condenser, an expansion valve, an evaporator and the like in communication and circulating a refrigerant in a refrigerant circuit (not shown).
  • the compressor 1 is an expansion valve downstream of a liquid phase refrigerant that has dissipated heat and condensed in the condenser, and refrigerant gas that has partially evaporated and decompressed and expanded, and the remaining liquid phase refrigerant downstream of the expansion valve.
  • the evaporator heat is taken from the ambient air to compress and heat the vaporized refrigerant gas, and then it is pressure-fed to the condenser, whereby the refrigerant circulates in the refrigerant circuit.
  • oil is mixed in the refrigerant gas in order to lubricate each part of the compressor 1.
  • the compressor 1 compresses the refrigerant gas sucked into the suction chamber 3 and the suction chamber 3 for suctioning the refrigerant gas through the suction port 2 and the suction port 2, which are suction ports for sucking the refrigerant gas from the outside. And a discharge port 5 for discharging the refrigerant gas discharged from the compression chamber 4 to the outside, and a pair of spiral members of the same shape are engaged in the compression chamber 4 to , And the other is a closed type scroll electric compressor which compresses the refrigerant gas by turning it using the rotational force of the electric motor 20.
  • One scroll fixed is referred to as a fixed scroll 10
  • the other scroll to be turned is referred to as a turning scroll 11.
  • the fixed scroll 10 and the turning scroll 11 form a compression mechanism of the compressor 1.
  • the compressor 1 also incorporates an inverter 30 for driving the electric motor 20.
  • the fixed scroll 10 has a scroll wrap 10b projecting in a substantially vertical direction from the end plate 10a
  • the orbiting scroll 11 has a scroll wrap 11b projecting in a substantially vertical direction from the end plate 11a.
  • an airtight tip seal (not shown) is embedded which blocks the flow of the refrigerant gas in the gap between the scroll wrap 10b and the end plate 11a, and the protruding end of the scroll wrap 10b It contacts with the end plate 11a via A similar tip seal (not shown) is embedded in the projecting end of the scroll wrap 11b, and the projecting end of the scroll wrap 11b contacts the end plate 10a via the tip seal.
  • the orbiting scroll 11 meshed with the fixed scroll 10 as described above is configured to be able to revolve around the central axis of the fixed scroll 10 via a crank mechanism 40 described later, in a state where its rotation is blocked. .
  • the orbiting scroll 11 performs the orbiting motion so that the fluid pocket 12 partially formed by the both end plates 10a and 11a and the scroll wraps 10b and 11b is from the outer end of the scroll wraps 10b and 11b.
  • the volume of the fluid pocket 12 gradually shrinks as one moves towards the central inner end. Therefore, the refrigerant gas taken into the fluid pocket 12 from the outer end side of the scroll wraps 10b and 11b is compressed.
  • the electric motor 20 comprises a cylindrical or cylindrical rotor (rotor) 22 in which permanent magnets are disposed in a central space of a cylindrical stator (stator) 21 in which a coil is disposed in a slot of an armature core.
  • the apparatus is rotatably provided while maintaining the inner circumferential surface of 21 and the air gap.
  • the rotor 22 is provided on its axis with a drive shaft 23 for driving the orbiting scroll 11.
  • the drive shaft 23 is connected to the end plate 11 a of the orbiting scroll 11 via the crank mechanism 40, and when the rotor 22 is rotated about its axis by the interaction of the electromagnetic force between the rotor 22 and the stator 21, the electric motor 20. Torque is transmitted from the drive shaft 23 to the orbiting scroll 11.
  • the inverter 30 is electrically connected to the coil of the stator 21 in the electric motor 20, controls the amount of current supplied to the coil in accordance with an instruction signal from an external control device (not shown), and arbitrarily changes the rotational speed of the rotor 22. It is possible.
  • the crank mechanism 40 is eccentric to a cylindrical boss portion 41 formed to project from the end plate 11a to the opposite side to the scroll wrap 11b and a crank 23b provided at one shaft end 23a of the drive shaft 23 And an eccentric bushing 42 mounted in a state.
  • the eccentric bush 42 is rotatably supported in the boss 41.
  • the compressor 1 is provided with a rotation preventing mechanism for preventing rotation of the orbiting scroll 11, whereby the orbiting scroll 11 is prevented from rotating by means of the crank mechanism 40. It is configured to be able to revolve around the central axis of the fixed scroll 10.
  • a balancer weight 43 is attached that cancels out the centrifugal force generated when the orbiting scroll 11 pivots.
  • the housing of the compressor 1 has a front housing 50 for housing the electric motor 20 and the inverter 30, an inverter cover 60, a center housing 70 for housing the fixed scroll 10 and the orbiting scroll 11, and a rear housing 80. Become. The front housing 50 and the rear housing 80 are disposed sandwiching the center housing 70.
  • the inverter cover 60 is disposed on the opposite side of the front housing 50 to the center housing 70. And between the front housing 50 and the center housing 70, between the center housing 70 and the rear housing 80, and between the front housing 50 and the inverter cover 60 are fastened by fastening means (not shown) such as bolts. Constitute an integral housing.
  • the front housing 50 has a substantially cylindrical peripheral wall portion 51, and a partition wall portion 52 that divides the internal space of the peripheral wall portion 51 into one end opening side and the other end opening side.
  • the electric motor 20 is accommodated and fixed in the peripheral wall portion 51 from the partition wall portion 52 to the one end opening side from the front housing 50 toward the center housing 70, and the peripheral wall from the partition wall portion 52 to the other end opening side
  • the inverter 30 is accommodated and fixed in the portion 51.
  • One end opening of the circumferential wall 51 is closed by the center housing 70, and the other opening of the circumferential wall 51 is closed by the inverter cover 60. Further, the front housing 50 is open toward the center housing 70 on the one end opening side of the partition wall 52, and the other shaft end 23c of the drive shaft 23 of the electric motor 20 is rotatably fitted. The shaft end 23 c is supported by the support 53.
  • the center housing 70 has a substantially cylindrical peripheral wall portion 71, an annular inner flange portion 72 which is opened toward the front housing 50 while projecting inward from the inner surface of the peripheral wall portion 71, and an opening peripheral portion of the inner flange portion 72. And a bowl-like bulging portion 73 bulging toward the front housing 50.
  • One end opening of the peripheral wall portion 71 is closed by the rear housing 80, and the other end opening of the peripheral wall portion 71 is closed by the front housing 50.
  • the fixed scroll 10 and the orbiting scroll 11 are accommodated in the peripheral wall 71 at the one end opening side with respect to the inner flange 72.
  • the surface on the one end opening side of the inner flange portion 72 contacts the end plate 11 a of the orbiting scroll 11 via the annular thrust plate 74, and supports the orbiting scroll 11 in the thrust direction of the drive shaft 23.
  • a crank mechanism 40 is accommodated in the back pressure chamber 6 formed by being surrounded by the bulging portion 73 and the end plate 11a, and a bearing portion 75 for pivotally supporting the drive shaft 23 is disposed. .
  • the bearing portion 75 extends from the electric motor 20 of the front housing 50 and penetrates the bulging portion 73.
  • the end plate 10 a of the fixed scroll 10 engaged with the orbiting scroll 11 closes one end opening of the peripheral wall portion 71.
  • the suction port 2 is formed on one end side of the peripheral wall 51 of the front housing 50 from the partition wall 52, and the suction chamber 3 for sucking the refrigerant through the suction port 2 is the peripheral wall 51 and partition of the front housing 50.
  • the wall 52 and the peripheral wall 71 of the center housing 70, the inner flange 72, and the bulging portion 73 are rigidly formed.
  • the compression chamber 4 is formed by being fixed to the end plate 10a, the peripheral wall portion 71 on the one end opening side from the inner flange portion 72, the inner flange portion 72, and the end plate 11a closing the opening of the inner flange portion 72.
  • a refrigerant introduction passage L1 for introducing the refrigerant gas sucked into the suction chamber 3 to the compression chamber 4 is formed.
  • a discharge hole 7 for discharging the refrigerant gas compressed in the fluid pocket 12 to the outside of the compression chamber 4 is formed at the inner end of the scroll wrap 10b.
  • a one-way valve V is provided on the outlet side of the discharge hole 7 to prevent the discharged refrigerant gas (discharged refrigerant gas) from flowing back to the compression chamber 4.
  • the one-way valve V is used to compress the discharged refrigerant gas.
  • the elastically deformable valve body that closes the discharge hole 7 when flowing back to 4 is fastened to the end plate 10 a of the fixed scroll 10 by fastening means such as a bolt.
  • the rear housing 80 is formed in a substantially bottomed cylindrical shape having a bottom portion 81 and a peripheral wall portion 82, and the opening end surface of the peripheral wall portion 82 contacts one end opening in the peripheral wall portion 71 of the center housing 70 and the end plate 10a of the fixed scroll 10.
  • An exhaust port 5 is formed in contact with the inner space to connect the inner space with the outside, and is provided on the side of the circumferential wall 82 of the rear housing 80 near the bottom 81.
  • the compressor 1 is installed with the discharge port 5 upward.
  • the compressor 1 includes a first oil separator 90 and a second oil separator 91 that separate and lower the oil from the discharged refrigerant gas in the internal space of the rear housing 80.
  • a partition wall 86 is provided to face the bottom 81 and the end plate 10a.
  • the partition wall 86 communicates with the first separation chamber 83, which is a space on the discharge hole 7 side communicating the internal space of the rear housing 80 with the compression chamber 4 via the discharge hole 7, and discharge from the discharge port 5. It is divided into a second separation chamber 84 which is a space on the port 5 side.
  • the first oil separator 90 is disposed in the first separation chamber 83
  • the second oil separator 91 is disposed in the second separation chamber 84.
  • the first separation chamber 83 and the second separation chamber 84 communicate with each other by the flow passage L2 penetrating the partition wall 86 in the upper portions 83a and 84a while making the vertical direction the same. Therefore, the refrigerant flow path formed until the discharged refrigerant gas discharged from the compression chamber 4 through the discharge hole 7 is discharged from the discharge port 5 to the outside is the first separation chamber 83, the flow passage L2, the second The first oil separator 90 and the second oil separator 91 are arranged in series in this order as viewed in the flow direction of the refrigerant.
  • the first oil separator 90 of the present embodiment is a collision separation type oil separator.
  • the first separation chamber 83 has a collided body 83 b for causing the discharged refrigerant gas discharged from the compression chamber 4 through the discharge hole 7 to collide.
  • the first oil separator 90 promotes the separation of the oil from the discharged refrigerant gas by the collision with the collided body 83b, and selectively lowers the separated oil by the relative specific gravity difference. Perform oil separation process.
  • the collided body 83 b is provided so that the discharge refrigerant gas discharged from the discharge hole 7 does not scatter to the lower portion 83 c of the first separation chamber 83.
  • the collision target body 83b is configured, for example, as a substantially U-shaped collision wall which stands upright from the end plate 10a and surrounds the lower side of the periphery of the discharge hole 7.
  • the discharged refrigerant gas may directly collide with the partition wall 86, the peripheral wall portion 82, and the like from the discharge hole 7.
  • the discharge refrigerant gas is allowed to fall in the first separation chamber 83 at a position not above the collided body 83b (for example, the lowermost position of the collided body 83b or below), while the oil separated from the discharged refrigerant gas is allowed to fall.
  • a shield 83d is provided for suppressing the descent of the first separation chamber 83 (in particular, the approach of the first separation chamber 83 to the lower portion 83c of the discharged refrigerant gas which has collided with the collision target 83b).
  • the shield 83d is, for example, configured as a shield wall having a gap with the end plate 10a (including the collided body 83b) while extending from the partition wall 86 toward the end plate 10a at the lowermost position of the collided body 83b. Be done.
  • the second oil separator 91 of the present embodiment is a centrifugal oil separator.
  • the second oil separator 91 swirls the discharged refrigerant gas introduced into the second separation chamber 84 from the first separation chamber 83 via the flow passage L2, and the oil contained in the discharged refrigerant gas due to the relative specific gravity difference. Promote the centrifugation of the oil, let down the separated oil and perform the oil separation process.
  • the oil separation capacity of the second oil separator 91 which is a centrifugal separation system, is about 4 over the oil separation capacity of the first oil separator 90, which is a collision separation system, over the entire operation range from low flow to high flow of the compressor 1. It has been proved by experiments etc that it is higher by 5 times. That is, the amount of oil separated by the second oil separator 91 is several times the amount of oil separated by the first oil separator 90.
  • the second separation chamber 84 has, for example, a circumferential surface 84b having a substantially circular cross section, and the introductory tube 84c substantially coaxial with the second separation chamber 84 has one end opened in the second separation chamber 84 and the other end
  • the refrigerant gas is directed so as to be introduced between the inner peripheral surface 84b of the second separation chamber 84 and the outer peripheral surface of the inner tube 84c from a direction substantially tangential to the second separation chamber 84.
  • the first separation chamber 83 communicates with the suction side of the refrigerant in the compression chamber 4 by the first oil flow path 92 formed in the peripheral wall portion 82 of the rear housing 80 and the peripheral wall portion 71 of the center housing 70.
  • the second separation chamber 84 is formed by the second oil flow passage 93 formed in the peripheral wall 82 of the rear housing 80 and the peripheral wall 71 and the inner flange 72 (which may include the bulging part 73) of the center housing 70. It communicates with the back pressure chamber 6.
  • the second oil flow passage 93 includes an axial through hole 93a penetrating from one back end 23a to the other axial end 23c inside the drive shaft 23 from the back pressure chamber 6, and through the axial through hole 93a Are formed up to the suction chamber 3. Further, the second oil flow passage 93 includes a throttle hole (a passage resistance portion) 93b which is open to the back pressure chamber 6 and has a passage cross-sectional area smaller than that of the shaft through hole 93a.
  • the throttling hole 93 b functions as an orifice for reducing and accelerating the oil flowing through the second oil passage 93.
  • the discharged refrigerant gas (indicated by the broken arrow in FIG. 2) discharged from the compression chamber 4 to the first separation chamber 83 through the discharge hole 7 first promotes oil separation in the first oil separator 90. .
  • the discharged refrigerant gas discharged to the first separation chamber 83 collides with the collided body 83b in the first separation chamber 83, and oil separated from the discharged refrigerant gas (white arrows in FIG. 2). Is lowered to the lower portion 83c of the first separation chamber 83 by the relative specific gravity difference.
  • the oil separated from the discharged refrigerant gas drops to the lower portion 83c of the first separation chamber 83 through the gap between the shield 83d and the end plate 10a (including the collided body 83b).
  • most of the discharged refrigerant gas rises toward the upper portion 83a and partially drops after colliding with the collision target 83b, but a part of the discharged refrigerant gas is separated by the shield 83d into the first separation chamber 83. Since the entry of the oil into the lower portion 83c is suppressed, re-mixing of the separated oil into the discharged refrigerant gas can be suppressed.
  • the oil separated by the first oil separator 90 and dropped to the lower portion 83c of the first separation chamber 83 flows to the suction side of the refrigerant in the compression chamber 4 via the first oil passage 92, and the fixed scroll 10 and the orbiting scroll And 11 mainly lubricate the compression mechanism formed from That is, the first oil passage 92 is formed from the first separation chamber 83 to the compression chamber 4.
  • the discharged refrigerant gas subjected to the oil separation processing by the first oil separator 90 is introduced into the second separation chamber 84 through the flow passage L2 of the upper portion 83a, and the oil separation is promoted in the second oil separator 91.
  • Ru the discharged refrigerant gas introduced into the second separation chamber 84 swirls between the inner peripheral surface 84 b and the outer peripheral surface of the inner tube 84 c and descends in a spiral shape
  • the discharged refrigerant gas is introduced into the discharged refrigerant gas.
  • the contained oil is centrifuged by the relative specific gravity difference, and the separated oil falls along the inner circumferential surface 84b to the lower portion 84d of the second separation chamber 84.
  • the second oil passage 93 is formed from the second separation chamber 84 to the suction chamber 3 and has a passage length several times or more than that of the first oil passage 92.
  • the oil flowing into the suction chamber 3 mixes with the refrigerant gas drawn into the suction chamber 3 from the suction port 2.
  • the suction refrigerant gas containing oil is introduced to the compression chamber 4 through the refrigerant introduction passage L1.
  • the discharged refrigerant gas starts rising toward the one end opening of the outflow pipe as the turning motion becomes smaller, and is discharged from the exhaust port 5 to the system such as the vehicle air conditioning system through the outflow pipe.
  • the compressor 1 of the present embodiment discharges the refrigerant gas discharged from the compression chamber 4 through the discharge hole 7 after being compressed by the compression mechanism, as the discharge port 5.
  • the refrigerant flow path 94 (shown by a solid line in FIG. 3) passes through to an external system such as a vehicle air conditioning system.
  • the refrigerant flow path 94 includes a first oil separator 90 (indicated as collision separation OS in FIG. 3) and a second oil separator 91 (indicated as centrifugation OS in FIG. 3) having different oil separation capacities. It arranges in series in this order.
  • the oil separated by the first oil separator 90 is made to flow to the suction side of the suction refrigerant gas in the compression chamber 4 via the first oil flow path 92 (shown by a broken line in FIG. 3). Furthermore, the oil separated by the second oil separator 91 having an oil separation ability higher than that of the first oil separator 90 is circulated to the back pressure chamber 6 via the second oil flow path 93 (shown by the alternate long and short dash line in FIG. 3). The pressure is reduced and accelerated by the throttle hole 93b to lubricate the object to be lubricated, and then the fluid is circulated to the suction chamber 3 side.
  • the oil separated by the first and second oil separators 90 and 91 is less likely to be affected by the pressure of the first and second separation chambers 83 and 84, and hence the operation from low flow to high flow of the compressor
  • the flow of oil can be properly maintained over the entire area. Therefore, it is possible to prevent the backflow and retention of oil over the entire operation range of the compressor 1 and maintain the flow of oil appropriately.
  • the second oil separator 91 has a higher oil separation ability than the first oil separator 90, and the amount of oil separated by the second oil separator 91 is the amount of oil separated by the first oil separator 90. It tends to be more than that.
  • a relatively large amount of oil separated by the second oil separator 91 has a longer flow path length than the first oil flow path 92 and has more lubrication targets, ie, preferentially to the second oil flow path 93 having a high lubrication requirement. It can be distributed. Therefore, in the second oil flow path 93 having a relatively long flow path length, it is possible to prevent an oil film to be lubricated, etc. from running out.
  • the oil separated by the first oil separator 90 is required to be lubricated during operation of the compressor 1 via the first oil flow path 92 shorter than the second oil flow path 93 even though the amount is relatively small. In particular, it can be supplied directly and quickly to high compression mechanisms.
  • the entire operation range of the compressor 1 can be achieved by appropriately distributing the oil according to the oil separation capability of the first and second oil separators 90 and 91, the lubrication request of each part of the compressor 1, and the request type. Since the oil separation capability can be enhanced and the lubricating performance of the compressor 1 can be enhanced, the OCR improvement in the compressor 1, the durability improvement of the compressor 1, the performance improvement of the compressor 1, and the compressor can be improved. The operation efficiency of the system using 1 can be improved.
  • FIG. 4 is an enlarged cross-sectional view of the inside of a rear housing 80 according to a second embodiment of the present invention.
  • the compressor 1 of the present embodiment includes an oil storage chamber 95 for storing the oil separated and dropped in the first separation chamber 83, and an oil storage chamber for storing the oil separated and dropped in the second separation chamber 84. And 96.
  • the oil storage chamber 95 is provided in the middle of the first oil flow passage 92 formed in the peripheral wall portion 82 of the rear housing 80, and temporarily stores oil separated by the first oil separator 90 and flowing through the first oil flow passage 92. .
  • the oil storage chamber 96 is provided in the middle of the second oil flow passage 93 formed in the peripheral wall portion 82 of the rear housing 80, separates by the second oil separator 91, and temporarily stores the oil flowing through the second oil flow passage 93.
  • a throttle hole (passage resistance portion) 92a in which the passage cross-sectional area is reduced is formed in the first oil flow passage 92 so as to, for example, straddle the peripheral wall 82 of the rear housing 80 and the peripheral wall 71 of the center housing 70, and reduces or accelerates the oil flowing through the first oil flow passage 92. Function as an orifice.
  • the compressor 1 according to the present embodiment is similar to the first embodiment in that the first oil separator 90 (shown as the collision separation OS in FIG. And a second oil separator 91 (shown as centrifugal OS in FIG. 5) are arranged in series in this order.
  • the oil separated by the first oil separator 90 is disposed in the first oil flow path 92 (shown by a broken line in FIG. 5), the oil storage chamber 95 and the throttle hole 92a. Distribute to the suction side. Furthermore, the oil separated by the second oil separator 91 having an oil separation ability higher than that of the first oil separator 90 is disposed via the oil storage chamber 96 disposed in the second oil flow passage 93 (shown by the alternate long and short dash line in FIG. 5). After flowing into the back pressure chamber 6 and reducing pressure and acceleration through the throttle hole 93 b to lubricate the object to be lubricated, it is circulated to the suction chamber 3 side.
  • the compressor 1 includes the oil storage chambers 95 and 96 and the throttle holes 92 a and 93 b which are independent of each other in both the first oil flow channel 92 and the second oil flow channel 93. .
  • the oil can be supplied to the lubrication target more quickly than the throttle holes 92a and 93b while appropriately holding the oil in the oil storage chambers 95 and 96. Therefore, it is possible to more efficiently allocate the oil according to the oil separation capability of the first and second oil separators 90 and 91 and the lubrication requirement of each part of the compressor 1.
  • the compressor 1 includes the first oil separator 90 and the second oil separator 91 arranged in series in this order in the refrigerant flow path 94.
  • the present invention is not limited to this, and as shown in FIG. 6 as a modified example of the second embodiment, the first oil separator 90 and the second oil separator 91 may be interchanged.
  • both of the first oil separator 90 and the second oil separator 91 may be centrifugal type oil separators as long as they have different oil separation capacities.
  • the first centrifugal separation OS shown in FIG. 7 has a specification in which the oil separation capacity is enhanced compared to the second centrifugal separation OS, and the oil separated by the second centrifugal separation OS is passed through the first oil flow passage 92. Flow to the suction side of the refrigerant in the compression chamber 4 and to the oil separated by the second centrifugal separation OS through the second oil flow passage 93 to the suction chamber 3 side, similar to the above embodiments. It can produce an effect.
  • both of the first oil separator 90 and the second oil separator 91 may be collision separation type oil separators as long as they have different oil separation capabilities.
  • the first collision separation OS shown in FIG. 8 has a specification in which the oil separation capacity is enhanced compared to the second collision separation OS, and the oil separated by the second collision separation OS is passed through the first oil flow path 92. Flow to the suction side of the refrigerant in the compression chamber 4 and the oil separated by the second collision separation OS to flow to the suction chamber 3 side via the second oil flow path 93, as in the above embodiments. It can produce an effect.
  • FIGS. 6 to 8 are also applicable to the compressor 1 not provided with the oil storage chambers 95 and 96 as described in the first embodiment.
  • the compressor 1 there may be a form in which only one of the oil storage chambers 95 and 96 is formed, and a form in which only one of the throttle holes 92a and 93b is formed.
  • other means for passage resistance may be provided in the first and second oil flow passages 92 and 93.
  • such a passage resistance portion is preferably provided between the first separation chamber 83 and the compression chamber 4 in the first oil passage 92 where the pressure difference of the flowing oil becomes relatively large, while the second oil passage 92
  • the oil passage 93 is provided between the second separation chamber 84 and the back pressure chamber 6.
  • the discharge refrigerant discharged from the discharge hole 7 of the compressor 1 is described as the discharge refrigerant gas, but the discharge refrigerant may include not only a gas phase refrigerant but also a liquid phase refrigerant.
  • the first and second oil separators 90 and 91 may be separation methods other than the collision separation method or the centrifugal separation method as long as the oil separation ability is different.
  • one or more oil separators may be additionally provided, provided that the pressure loss of the discharged refrigerant does not become excessive.
  • the first oil flow passage 92 is formed in the peripheral wall 82 of the rear housing 80 and the peripheral wall 71 of the center housing 70.
  • the first oil passage 92 may be formed in the end plate 11 a of the fixed scroll 10 and may be in communication with the suction side of the refrigerant in the first separation chamber 83 and the compression chamber 4.
  • the compressor 1 meshes the pair of fixed scrolls 10 and the orbiting scroll 11 having the same shape in the compression chamber 4 and uses the rotational force of the electric motor 20 with the orbiting scroll 11. It has been described that the refrigerant gas is compressed by turning. However, instead of the built-in electric motor 20, the orbiting scroll 11 may be pivoted by an external drive source.
  • the compressor 1 when the compressor 1 is applied to a vehicle air conditioner system, an engine may be used as an external drive source, and the rotational force of the crank 23b shaft may be transmitted to the drive shaft 23 via a pulley.
  • the compressor 1 is described as a sealed scroll compressor in which oil circulates in the housing and the back pressure chamber 6 is formed on the back side of the orbiting scroll 11.
  • the present invention is also applicable to an open scroll compressor in which the back pressure chamber 6 is not formed.
  • a reciprocating compressor that compresses the refrigerant gas by the volume change of the cylinder due to the reciprocating motion of the piston
  • the present invention can be applied to any compression type compressor, such as a rotary vane type compressor which compresses a refrigerant gas by rotating the rotor with the vane in contact with the inner wall of the housing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

[Problem] To provide a compressor with which it is possible to increase the capacity to separate oil from ejected refrigerant in the entire operation range of the compressor, to increase the OCR in the compressor, durability and performance of the compressor, and to achieve an increase in the operation efficiency of a system in which the compressor is used. [Solution] The compressor 1 is provided with: a suction chamber 3 for suctioning a refrigerant which contains oil; a compression chamber 4 for compressing the refrigerant suctioned into the suction chamber 3; a refrigerant flow path 94 formed to externally discharge ejected refrigerant ejected from the compression chamber 4; first and second oil separators 90, 91 which are arranged in series in the refrigerant flow path 94, and which separate the oil contained in the ejected refrigerant using different oil separating capacities; a first oil flow path 92 for distributing the oil separated in the first oil separator 90 to a refrigerant suction side of the compression chamber 4; and a second oil flow path 93 for distributing the oil separated in the second oil separator 91 to the suction chamber 3 side.

Description

圧縮機Compressor
 本発明は、圧縮機に関し、例えば車両エアコンシステムに使用して好適な圧縮機に関する。 The present invention relates to a compressor, for example, a compressor suitable for use in a vehicle air conditioner system.
 例えば車両エアコンシステム等に使用される圧縮機では、冷媒ガス中にオイルを混入させて圧縮機各部の潤滑を行っている。しかし、熱交換のための外部冷媒回路へオイルが流出すると車両エアコンシステム等の運転効率が低下するため、圧縮機から外部冷媒回路へ流出するオイル量を低減し、オイル循環率(Oil Circulation Ratio:OCR)を最適化することが求められている。 For example, in a compressor used for a vehicle air-conditioner system etc., oil is mixed in refrigerant gas, and each part of the compressor is lubricated. However, when oil flows out to the external refrigerant circuit for heat exchange, the operating efficiency of the vehicle air conditioner system etc. decreases, so the amount of oil flowing out from the compressor to the external refrigerant circuit is reduced, and the oil circulation ratio (Oil Circulation Ratio: There is a need to optimize the OCR).
 例えば特許文献1は、衝突分離方式のオイル分離を行うオイルセパレータと、遠心分離方式のオイル分離を行うオイルセパレータとを備えた圧縮機を開示している。衝突分離方式のオイルセパレータは、圧縮機構から吐出室に吐出された吐出冷媒ガスを吐出室の隔壁に衝突させて、吐出冷媒ガス中のオイルを分離する。遠心分離方式のオイルセパレータは、吐出冷媒ガスを分離室に配置された円筒状の分離器の周囲に旋回させて、吐出冷媒ガス中のオイルを遠心分離する。 For example, Patent Document 1 discloses a compressor provided with an oil separator that performs collision separation type oil separation and an oil separator that performs centrifugal separation oil separation. The collision separation type oil separator causes the discharge refrigerant gas discharged from the compression mechanism to the discharge chamber to collide with the partition of the discharge chamber to separate the oil in the discharge refrigerant gas. The centrifugal type oil separator swirls the discharged refrigerant gas around a cylindrical separator disposed in the separation chamber to centrifuge oil in the discharged refrigerant gas.
 吐出室及び分離室は、それぞれ連通路を介して貯油室に連通され、各オイルセパレータで分離されたオイルが貯油室に一括回収される。一括回収されたオイルは、軸受等を含む潤滑対象を潤滑しながら吸入室まで流れ、冷媒とともに圧縮室の吸入側に戻され、この際、吸入冷媒に含まれるオイルによって圧縮機構の潤滑が行われる。 The discharge chamber and the separation chamber are respectively communicated with the oil storage chamber via the communication passage, and the oil separated by each oil separator is collectively collected in the oil storage chamber. The oil collected at one time flows to the suction chamber while lubricating the lubrication target including bearings etc., and is returned together with the refrigerant to the suction side of the compression chamber. At this time, the oil contained in the suction refrigerant lubricates the compression mechanism. .
 即ち、特許文献1では、異なる分離方式であって異なるオイル分離能力を有する各オイルセパレータが、異なる分離室に配置される。各オイルセパレータで分離したオイルは、各連通路を介して貯油室で一括回収された後、潤滑対象を潤滑して吸入室を経由し、圧縮室の吸入側に至る単一のオイル流路を流通する。 That is, in Patent Document 1, oil separators having different separation systems and having different oil separation capacities are disposed in different separation chambers. The oil separated by each oil separator is collectively collected in the oil storage chamber through each communication passage, then lubricates the lubrication target, passes through the suction chamber, and forms a single oil flow path leading to the suction side of the compression chamber. It distributes.
特開2008-88945号公報JP 2008-88945 A
 圧縮機の運転条件によって、吐出冷媒の圧力や流量が変化すると、貯油室よりも、各分離室の方が低圧になったり、或いは各分離室の方が高圧になったりすることがある。このため、貯油室と各分離室との間の各連通路の絞りが不足すると、貯油室から各分離室へのオイルの逆流が生じ得る。一方、貯油室と各分離室との間の各連通路を絞り過ぎると、各分離室から貯油室にオイルが流れないおそれがある。 Depending on the operating conditions of the compressor, when the pressure or flow rate of the discharged refrigerant changes, the pressure in each separation chamber may be lower than that in the oil storage chamber, or the pressure in each separation chamber may be higher. For this reason, if the restriction of each communication passage between the oil storage chamber and each separation chamber is insufficient, a back flow of oil from the oil storage chamber to each separation chamber may occur. On the other hand, if each communication passage between the oil storage chamber and each separation chamber is narrowed too much, oil may not flow from each separation chamber to the oil storage chamber.
 オイルの逆流や滞留が生じると、圧縮機内のOCR低下、潤滑不良による圧縮機の耐久性低下、ひいては圧縮機構の摺動部等のシール性低下によって圧縮機の性能(体積効率)の低下を招くおそれがある。また、吐出冷媒に含有されるオイル量が増大することによって、圧縮機から外部冷媒回路へ排出されるオイル量も増大し、車両エアコンシステム等の運転効率が低下するおそれもある。 If backflow or stagnation of oil occurs, the performance (volume efficiency) of the compressor decreases due to a decrease in OCR in the compressor, a decrease in durability of the compressor due to a lubrication failure, and a decrease in sealability of sliding parts of the compression mechanism. There is a fear. In addition, as the amount of oil contained in the discharged refrigerant increases, the amount of oil discharged from the compressor to the external refrigerant circuit also increases, which may lower the operating efficiency of the vehicle air conditioner system or the like.
 このようなオイルの逆流や滞留を防止するためには、貯油室と各分離室との圧力差のバランスを取るべく各連通路の絞りを最適化する必要がある。しかし、各オイルセパレータで分離したオイルが各連通路を介して貯油室で一括回収されるため、貯油室が各分離室の圧力の影響を受け易く、圧縮機の低流量から高流量の運転全域に亘ってオイルの流れを適切に維持するべく各連通路の絞りを最適化するのは困難であった。 In order to prevent such backflow and retention of oil, it is necessary to optimize the throttling of each communication passage in order to balance the pressure difference between the oil storage chamber and each separation chamber. However, since the oil separated by each oil separator is collectively collected in the oil storage chamber via each communication passage, the oil storage chamber is easily affected by the pressure of each separation chamber, and the entire range of operation from low flow to high flow of the compressor It was difficult to optimize the throttling of each communication passage in order to maintain the flow of oil properly.
 また、特許文献1の各オイルセパレータは、異なるオイル分離能力を有し、吐出冷媒から分離可能なオイル量が異なるにもかかわらず、各オイルセパレータで分離されたオイルは貯油室に一括回収され、単一のオイル流路を流れて潤滑対象の潤滑に供される。これでは、オイルセパレータのオイル分離能力と圧縮機の各部の潤滑要求とに応じたオイルの適切な配分ができないため、圧縮機の運転全域に亘って吐出冷媒からのオイル分離能力を高め、圧縮機の潤滑性能を向上することについては依然として課題が残されていた。 In addition, although each oil separator of Patent Document 1 has different oil separation ability and the amount of oil that can be separated from the discharged refrigerant is different, the oil separated by each oil separator is collectively collected in the oil storage chamber, It flows through a single oil flow path and is used for lubrication to be lubricated. In this case, the oil can not be properly distributed according to the oil separation capacity of the oil separator and the lubrication requirement of each part of the compressor. Therefore, the oil separation capacity from the discharged refrigerant is enhanced over the entire operation range of the compressor. There was still a challenge in improving the lubrication performance of
 本発明は、このような課題に鑑みてなされたもので、圧縮機の運転全域に亘って吐出冷媒からのオイル分離能力を高めることができ、圧縮機内のOCR向上、圧縮機の耐久性向上、圧縮機の性能向上、及び、圧縮機を使用するシステムの運転効率向上を実現することができる圧縮機を提供することを目的とする。 The present invention has been made in view of such problems, and can increase the oil separation capability from the discharged refrigerant over the entire operation range of the compressor, improve the OCR in the compressor, and improve the durability of the compressor, It is an object of the present invention to provide a compressor capable of improving the performance of the compressor and the operation efficiency of a system using the compressor.
 上記の目的を達成するべく、本発明の圧縮機は、オイルを含有する冷媒を吸入するための吸入室と、吸入室に吸入された冷媒を圧縮するための圧縮室と、圧縮室から吐出された吐出冷媒を外部に排出するまでに形成される冷媒流路と、冷媒流路に直列に配置され、吐出冷媒に含有されるオイルを異なるオイル分離能力で分離する第1及び第2オイルセパレータと、第1オイルセパレータで分離したオイルを圧縮室における冷媒の吸入側に流通させる第1オイル流路と、第2オイルセパレータで分離したオイルを吸入室側に流通させる第2オイル流路とを備える。 In order to achieve the above object, the compressor according to the present invention comprises a suction chamber for sucking in a refrigerant containing oil, a compression chamber for compressing the refrigerant sucked in the suction chamber, and a discharge from the compression chamber. A refrigerant flow path formed until the discharged refrigerant is discharged to the outside, and first and second oil separators disposed in series in the refrigerant flow path and separating oil contained in the discharged refrigerant with different oil separation capabilities And a first oil flow path for circulating oil separated by the first oil separator to the suction side of the refrigerant in the compression chamber, and a second oil flow path for circulating oil separated by the second oil separator to the suction chamber side .
 本発明の圧縮機によれば、圧縮機の運転全域に亘って吐出冷媒からのオイル分離能力を高めることができ、圧縮機内のOCR向上、圧縮機の耐久性向上、圧縮機の性能向上、及び、圧縮機を使用するシステムの運転効率向上を実現することができる。 According to the compressor of the present invention, the oil separation ability from the discharged refrigerant can be enhanced over the entire operation range of the compressor, the OCR in the compressor is improved, the durability of the compressor is improved, the performance of the compressor is improved, The improvement of the operating efficiency of the system using the compressor can be realized.
本発明の第1実施形態に係る圧縮機の縦断面図である。It is a longitudinal section of a compressor concerning a 1st embodiment of the present invention. 図1のリアハウジングの内部を拡大した断面図である。It is sectional drawing to which the inside of the rear housing of FIG. 1 was expanded. 図2の冷媒流路と各オイル流路とを示した模式図である。It is the model which showed the refrigerant | coolant flow path and each oil flow path of FIG. 本発明の第2実施形態に係るリアハウジングの内部を拡大した断面図である。It is sectional drawing to which the inside of the rear housing which concerns on 2nd Embodiment of this invention was expanded. 図4の冷媒流路と各オイル流路とを示した模式図である。It is the model which showed the refrigerant | coolant flow path of FIG. 4, and each oil flow path. 本発明の変形例に係る冷媒流路と各オイル流路とを示した模式図である。It is the schematic diagram which showed the refrigerant | coolant flow path and each oil flow path which concern on the modification of this invention. 本発明の別の変形例に係る冷媒流路と各オイル流路とを示した模式図である。It is the schematic diagram which showed the refrigerant | coolant flow path and each oil flow path which concern on another modification of this invention. 本発明の更に別の変形例に係る冷媒流路と各オイル流路とを示した模式図である。It is the model which showed the refrigerant | coolant flow path and each oil flow path which concern on another modification of this invention.
 以下、添付された図面を参照し、本発明を実施するための各実施形態について説明する。
<第1実施形態>
 図1は、本発明の第1実施形態に係る圧縮機の縦断面図を示す。圧縮機1は、例えば車両用エアコンシステム等において、凝縮器、膨張弁、蒸発器等を連通接続して冷媒を循環させる冷媒回路(図示省略)に組み込まれて使用される。
Hereinafter, each embodiment for carrying out the present invention will be described with reference to the attached drawings.
First Embodiment
FIG. 1 shows a longitudinal sectional view of a compressor according to a first embodiment of the present invention. The compressor 1 is used, for example, in a vehicle air conditioner system or the like, by connecting a condenser, an expansion valve, an evaporator and the like in communication and circulating a refrigerant in a refrigerant circuit (not shown).
 冷媒回路において、圧縮機1は、凝縮器で放熱・凝縮した液相冷媒が下流の膨張弁で、減圧・膨張して一部蒸発した冷媒ガスと、残りの液相冷媒が膨張弁の下流の蒸発器において周囲空気から熱を奪って気化した冷媒ガスと、を圧縮して昇温した後、凝縮器に向けて圧送し、これにより冷媒が冷媒回路を循環する。圧縮機1において、冷媒ガスには、圧縮機1の各部の潤滑を行うためにオイルが混入される。 In the refrigerant circuit, the compressor 1 is an expansion valve downstream of a liquid phase refrigerant that has dissipated heat and condensed in the condenser, and refrigerant gas that has partially evaporated and decompressed and expanded, and the remaining liquid phase refrigerant downstream of the expansion valve. In the evaporator, heat is taken from the ambient air to compress and heat the vaporized refrigerant gas, and then it is pressure-fed to the condenser, whereby the refrigerant circulates in the refrigerant circuit. In the compressor 1, oil is mixed in the refrigerant gas in order to lubricate each part of the compressor 1.
 圧縮機1は、冷媒ガスを外部から吸入する吸入口である吸入ポート2、吸入ポート2を介して冷媒ガスを吸入するための吸入室3と、吸入室3に吸入された冷媒ガスを圧縮するための圧縮室4と、圧縮室4から吐出された冷媒ガスを外部へ排出する排出口である排出ポート5と、を備え、圧縮室4において一対の同一形状の渦巻き体を噛合わせて、一方を固定し他方を電動モータ20の回転力を用いて旋回せしめることで冷媒ガスを圧縮する密閉型のスクロール電動圧縮機である。固定される一方の渦巻き体を固定スクロール10といい、旋回せしめる他方の渦巻き体を旋回スクロール11といい、固定スクロール10と旋回スクロール11とは圧縮機1の圧縮機構を形成する。また、圧縮機1は、電動モータ20を駆動するためのインバータ30を内蔵している。 The compressor 1 compresses the refrigerant gas sucked into the suction chamber 3 and the suction chamber 3 for suctioning the refrigerant gas through the suction port 2 and the suction port 2, which are suction ports for sucking the refrigerant gas from the outside. And a discharge port 5 for discharging the refrigerant gas discharged from the compression chamber 4 to the outside, and a pair of spiral members of the same shape are engaged in the compression chamber 4 to , And the other is a closed type scroll electric compressor which compresses the refrigerant gas by turning it using the rotational force of the electric motor 20. One scroll fixed is referred to as a fixed scroll 10, and the other scroll to be turned is referred to as a turning scroll 11. The fixed scroll 10 and the turning scroll 11 form a compression mechanism of the compressor 1. The compressor 1 also incorporates an inverter 30 for driving the electric motor 20.
 固定スクロール10は、端板10aから略垂直方向に渦巻き状のスクロールラップ10bを突設させてなり、また、旋回スクロール11は、端板11aから略垂直方向にスクロールラップ11bを突設させてなる。固定スクロール10のスクロールラップ10bと旋回スクロール11のスクロールラップ11bとを噛合わせると端板10aと端板11aとが平行になり、固定スクロール10におけるスクロールラップ10bの突設端が端板11aに対向し、旋回スクロール11におけるスクロールラップ11bの突設端が端板10aに対向する。 The fixed scroll 10 has a scroll wrap 10b projecting in a substantially vertical direction from the end plate 10a, and the orbiting scroll 11 has a scroll wrap 11b projecting in a substantially vertical direction from the end plate 11a. . When the scroll wrap 10b of the fixed scroll 10 and the scroll wrap 11b of the orbiting scroll 11 mesh with each other, the end plate 10a and the end plate 11a become parallel, and the protruding end of the scroll wrap 10b of the fixed scroll 10 faces the end plate 11a. The protruding end of the scroll wrap 11b in the orbiting scroll 11 faces the end plate 10a.
 スクロールラップ10bの突設端には、これと端板11aとの隙間における冷媒ガスの流通を阻害する気密性のチップシール(図示省略)が埋設され、スクロールラップ10bの突設端はチップシールを介して端板11aと接触する。また、スクロールラップ11bの突設端にも、同様のチップシール(図示省略)が埋設され、スクロールラップ11bの突設端はチップシールを介して端板10aと接触する。 At the protruding end of the scroll wrap 10b, an airtight tip seal (not shown) is embedded which blocks the flow of the refrigerant gas in the gap between the scroll wrap 10b and the end plate 11a, and the protruding end of the scroll wrap 10b It contacts with the end plate 11a via A similar tip seal (not shown) is embedded in the projecting end of the scroll wrap 11b, and the projecting end of the scroll wrap 11b contacts the end plate 10a via the tip seal.
 また、固定スクロール10と旋回スクロール11とは、両スクロールラップ10b,14bの周方向の角度が互いにずれた状態で、両スクロールラップ10b,11bの突設端を除く側面は周方向で異なる複数箇所で接触するように噛合わされ、これにより、両端板10a,11a及び両スクロールラップ10b,11bは、端板10a(あるいは端板11a)に対して垂直方向からみて三日月状の密閉空間である流体ポケット12を部分的に形成する。 Further, in the fixed scroll 10 and the orbiting scroll 11, in the state in which the circumferential direction angles of both scroll wraps 10b and 14b are shifted from each other, the side faces excluding the protruding ends of both scroll wraps 10b and 11b differ in plural in circumferential direction And the scroll plates 10a and 11b and the scroll wraps 10b and 11b are sealed in a crescent-like sealed space as viewed from the direction perpendicular to the end plate 10a (or the end plate 11a). Form 12 in part.
 固定スクロール10と前述のように噛合わされた旋回スクロール11は、その自転が阻止された状態で、後述するクランク機構40を介して、固定スクロール10の中心軸周りに公転旋回運動可能に構成される。旋回スクロール11が前述のように公転旋回運動することで、両端板10a,11a及び両スクロールラップ10b,11bで部分的に形成される流体ポケット12が、両スクロールラップ10b,11bの外端部から中心の内端部へ向かつて移動するとともに流体ポケット12の容積が徐々に縮小する。従って、両スクロールラップ10b,11bの外端部側から流体ポケット12内に取込まれた冷媒ガスが圧縮される。 The orbiting scroll 11 meshed with the fixed scroll 10 as described above is configured to be able to revolve around the central axis of the fixed scroll 10 via a crank mechanism 40 described later, in a state where its rotation is blocked. . As described above, the orbiting scroll 11 performs the orbiting motion so that the fluid pocket 12 partially formed by the both end plates 10a and 11a and the scroll wraps 10b and 11b is from the outer end of the scroll wraps 10b and 11b. The volume of the fluid pocket 12 gradually shrinks as one moves towards the central inner end. Therefore, the refrigerant gas taken into the fluid pocket 12 from the outer end side of the scroll wraps 10b and 11b is compressed.
 電動モータ20は、電機子鉄心のスロットにコイルを配設した円筒状のステータ(固定子)21の中央空間に、永久磁石を配設した円筒又は円柱状のロータ(回転子)22を、ステータ21の内周面とエアギャップを維持しつつ回転可能に備えて構成される。ロータ22には、その軸線上に、旋回スクロール11を駆動するための駆動軸23が設けられる。 The electric motor 20 comprises a cylindrical or cylindrical rotor (rotor) 22 in which permanent magnets are disposed in a central space of a cylindrical stator (stator) 21 in which a coil is disposed in a slot of an armature core. The apparatus is rotatably provided while maintaining the inner circumferential surface of 21 and the air gap. The rotor 22 is provided on its axis with a drive shaft 23 for driving the orbiting scroll 11.
 駆動軸23は旋回スクロール11の端板11aにクランク機構40を介して連結され、ロータ22とステータ21との間における電磁力の相互作用によってロータ22が軸線周りに回転したときに、電動モータ20の回転力が駆動軸23から旋回スクロール11へ伝達される。インバータ30は、電動モータ20におけるステータ21のコイルと電気的に接続され、外部制御装置(図示省略)からの指示信号に応じてコイルに対する通電量を制御し、ロータ22の回転速度を任意に変更可能である。 The drive shaft 23 is connected to the end plate 11 a of the orbiting scroll 11 via the crank mechanism 40, and when the rotor 22 is rotated about its axis by the interaction of the electromagnetic force between the rotor 22 and the stator 21, the electric motor 20. Torque is transmitted from the drive shaft 23 to the orbiting scroll 11. The inverter 30 is electrically connected to the coil of the stator 21 in the electric motor 20, controls the amount of current supplied to the coil in accordance with an instruction signal from an external control device (not shown), and arbitrarily changes the rotational speed of the rotor 22. It is possible.
 クランク機構40は、端板11aからスクロールラップ11bとは反対側に向けて突出形成された円筒状のボス部41と、駆動軸23のうち一方の軸端部23aに設けられたクランク23bに偏心状態で取り付けられた偏心ブッシュ42と、を含む。偏心ブッシュ42はボス部41内に回転可能に支持される。また、図示省略したが、圧縮機1には、旋回スクロール11の自転を阻止する自転阻止機構が設けられ、これにより、旋回スクロール11はその自転が阻止された状態で、クランク機構40を介して固定スクロール10の中心軸周りに公転旋回運動可能に構成される。なお、駆動軸23の一方の軸端部23aには、旋回スクロール11の旋回時に生じる遠心力を相殺するパランサウエイト43が取り付けられる。 The crank mechanism 40 is eccentric to a cylindrical boss portion 41 formed to project from the end plate 11a to the opposite side to the scroll wrap 11b and a crank 23b provided at one shaft end 23a of the drive shaft 23 And an eccentric bushing 42 mounted in a state. The eccentric bush 42 is rotatably supported in the boss 41. Further, although not shown, the compressor 1 is provided with a rotation preventing mechanism for preventing rotation of the orbiting scroll 11, whereby the orbiting scroll 11 is prevented from rotating by means of the crank mechanism 40. It is configured to be able to revolve around the central axis of the fixed scroll 10. At one shaft end 23 a of the drive shaft 23, a balancer weight 43 is attached that cancels out the centrifugal force generated when the orbiting scroll 11 pivots.
 圧縮機1のハウジングは、電動モータ20及びインバータ30を収容するフロントハウジング50と、インバータカバー60と、固定スクロール10及び旋回スクロール11を収容するセンターハウジング70と、リアハウジング80と、を有してなる。フロントハウジング50及びリアハウジング80は、センターハウジング70を挟んで配置されている。 The housing of the compressor 1 has a front housing 50 for housing the electric motor 20 and the inverter 30, an inverter cover 60, a center housing 70 for housing the fixed scroll 10 and the orbiting scroll 11, and a rear housing 80. Become. The front housing 50 and the rear housing 80 are disposed sandwiching the center housing 70.
 また、インバータカバー60はフロントハウジング50のうちセンターハウジング70と反対側に配置される。そして、フロントハウジング50とセンターハウジング70との間、センターハウジング70とリアハウジング80との間、及びフロントハウジング50とインバータカバー60との間は、ボルト等の締結手段(図示省略)によって締結されることで一体的なハウジングを構成する。 Further, the inverter cover 60 is disposed on the opposite side of the front housing 50 to the center housing 70. And between the front housing 50 and the center housing 70, between the center housing 70 and the rear housing 80, and between the front housing 50 and the inverter cover 60 are fastened by fastening means (not shown) such as bolts. Constitute an integral housing.
 フロントハウジング50は、略筒状の周壁部51と、周壁部51の内部空間を一端開口側と他端開口側とに区画する仕切壁部52と、を有する。仕切壁部52から一端開口側の周壁部51内には、駆動軸23をフロントハウジング50からセンターハウジング70に向けて電動モータ20が収容・固定され、仕切壁部52から他端開口側の周壁部51内にはインバータ30が収容・固定される。 The front housing 50 has a substantially cylindrical peripheral wall portion 51, and a partition wall portion 52 that divides the internal space of the peripheral wall portion 51 into one end opening side and the other end opening side. The electric motor 20 is accommodated and fixed in the peripheral wall portion 51 from the partition wall portion 52 to the one end opening side from the front housing 50 toward the center housing 70, and the peripheral wall from the partition wall portion 52 to the other end opening side The inverter 30 is accommodated and fixed in the portion 51.
 周壁部51の一端開口は、センターハウジング70によって閉止され、周壁部51の他端開口は、インバータカバー60によって閉止される。また、フロントハウジング50は、仕切壁部52のうち一端開口側において、センターハウジング70に向けて開口し、電動モータ20の駆動軸23のうち他方の軸端部23cが回転自在に嵌め込まれる筒状の支持部53を有し、この支持部53によって軸端部23cが支持される。 One end opening of the circumferential wall 51 is closed by the center housing 70, and the other opening of the circumferential wall 51 is closed by the inverter cover 60. Further, the front housing 50 is open toward the center housing 70 on the one end opening side of the partition wall 52, and the other shaft end 23c of the drive shaft 23 of the electric motor 20 is rotatably fitted. The shaft end 23 c is supported by the support 53.
 センターハウジング70は、略筒状の周壁部71と、周壁部71の内面から内方へ突出しつつフロントハウジング50に向けて開口する環状の内フランジ部72と、内フランジ部72の開口周縁部からフロントハウジング50に向けて膨出する椀状の膨出部73と、を有する。周壁部71の一端開口は、リアハウジング80によって閉止され、周壁部71の他端開口は、フロントハウジング50によって閉止される。 The center housing 70 has a substantially cylindrical peripheral wall portion 71, an annular inner flange portion 72 which is opened toward the front housing 50 while projecting inward from the inner surface of the peripheral wall portion 71, and an opening peripheral portion of the inner flange portion 72. And a bowl-like bulging portion 73 bulging toward the front housing 50. One end opening of the peripheral wall portion 71 is closed by the rear housing 80, and the other end opening of the peripheral wall portion 71 is closed by the front housing 50.
 センターハウジング70において、固定スクロール10及び旋回スクロール11は内フランジ部72に対して一端開口側の周壁部71内に収容される。内フランジ部72の一端開口側の表面は、環状のスラストプレート74を介して旋回スクロール11の端板11aと当接して、旋回スクロール11を駆動軸23のスラスト方向で支持する。 In the center housing 70, the fixed scroll 10 and the orbiting scroll 11 are accommodated in the peripheral wall 71 at the one end opening side with respect to the inner flange 72. The surface on the one end opening side of the inner flange portion 72 contacts the end plate 11 a of the orbiting scroll 11 via the annular thrust plate 74, and supports the orbiting scroll 11 in the thrust direction of the drive shaft 23.
 膨出部73及び端板11aに囲まれて形成される背圧室6には、クランク機構40が収容されるとともに、駆動軸23を回動自在に軸支する軸受部75が配設される。軸受部75はフロントハウジング50の電動モータ20から延出して膨出部73を貫通する。旋回スクロール11と噛合わされた固定スクロール10の端板10aは、周壁部71の一端開口を閉塞する。 A crank mechanism 40 is accommodated in the back pressure chamber 6 formed by being surrounded by the bulging portion 73 and the end plate 11a, and a bearing portion 75 for pivotally supporting the drive shaft 23 is disposed. . The bearing portion 75 extends from the electric motor 20 of the front housing 50 and penetrates the bulging portion 73. The end plate 10 a of the fixed scroll 10 engaged with the orbiting scroll 11 closes one end opening of the peripheral wall portion 71.
 吸入ポート2は、フロントハウジング50の周壁部51のうち仕切壁部52から一端開口側に形成され、吸入ポート2を介して冷媒を吸入する吸入室3は、フロントハウジング50の周壁部51及び仕切壁部52、並びにセンターハウジング70の周壁部71、内フランジ部72及び膨出部73に固まれて形成される。また、圧縮室4は、端板10a、内フランジ部72から一端開口側の周壁部71、内フランジ部72、及び内フランジ部72の開口を閉塞する端板11aに固まれて形成される。 The suction port 2 is formed on one end side of the peripheral wall 51 of the front housing 50 from the partition wall 52, and the suction chamber 3 for sucking the refrigerant through the suction port 2 is the peripheral wall 51 and partition of the front housing 50. The wall 52 and the peripheral wall 71 of the center housing 70, the inner flange 72, and the bulging portion 73 are rigidly formed. Further, the compression chamber 4 is formed by being fixed to the end plate 10a, the peripheral wall portion 71 on the one end opening side from the inner flange portion 72, the inner flange portion 72, and the end plate 11a closing the opening of the inner flange portion 72.
 センターハウジング70の周壁部71及び内フランジ部72の少なくとも一方には、吸入室3に吸入された冷媒ガスを圧縮室4へ導くための冷媒導入通路L1が形成される。固定スクロール10の端板10aには、スクロールラップ10bの内端部において、流体ポケット12内で圧縮された冷媒ガスを圧縮室4の外部へ吐出する吐出孔7が形成される。 In at least one of the peripheral wall portion 71 and the inner flange portion 72 of the center housing 70, a refrigerant introduction passage L1 for introducing the refrigerant gas sucked into the suction chamber 3 to the compression chamber 4 is formed. In the end plate 10a of the fixed scroll 10, a discharge hole 7 for discharging the refrigerant gas compressed in the fluid pocket 12 to the outside of the compression chamber 4 is formed at the inner end of the scroll wrap 10b.
 吐出孔7の出口側には、吐出した冷媒ガス(吐出冷媒ガス)が圧縮室4へ逆流することを阻止するための一方弁Vが設けられ、一方弁Vは、吐出した冷媒ガスが圧縮室4へ逆流したときに吐出孔7を塞ぐ弾性変形可能な弁体が、ボルト等の締結手段によって固定スクロール10の端板10aに締結されて構成される。 A one-way valve V is provided on the outlet side of the discharge hole 7 to prevent the discharged refrigerant gas (discharged refrigerant gas) from flowing back to the compression chamber 4. The one-way valve V is used to compress the discharged refrigerant gas. The elastically deformable valve body that closes the discharge hole 7 when flowing back to 4 is fastened to the end plate 10 a of the fixed scroll 10 by fastening means such as a bolt.
 リアハウジング80は、底部81と周壁部82とを有する略有底筒状に形成され、周壁部82の開口端面がセンターハウジング70の周壁部71における一端開口及び固定スクロール10の端板10aと当接して内部空間を形成し、その内部空間と外部とを連通する排出ポート5は、リアハウジング80の周壁部82のうち底部81に近い側に設けられる。圧縮機1は排出ポート5を上側にして設置される。 The rear housing 80 is formed in a substantially bottomed cylindrical shape having a bottom portion 81 and a peripheral wall portion 82, and the opening end surface of the peripheral wall portion 82 contacts one end opening in the peripheral wall portion 71 of the center housing 70 and the end plate 10a of the fixed scroll 10. An exhaust port 5 is formed in contact with the inner space to connect the inner space with the outside, and is provided on the side of the circumferential wall 82 of the rear housing 80 near the bottom 81. The compressor 1 is installed with the discharge port 5 upward.
 ここで、図2に示すように、圧縮機1は、リアハウジング80の内部空間において、吐出冷媒ガスからオイルを分離降下させる第1オイルセパレータ90及び第2オイルセパレータ91を備える。リアハウジング80の内部空間には、底部81及び端板10aに対向して隔壁86が設けられる。隔壁86は、リアハウジング80の内部空間を、吐出孔7を介して圧縮室4と連通する吐出孔7側の空間である第1分離室83と、排出ポート5を介して外部と連通する排出ポート5側の空間である第2分離室84とに区画する。第1オイルセパレータ90は第1分離室83に配置され、第2オイルセパレータ91は第2分離室84に配置される。 Here, as shown in FIG. 2, the compressor 1 includes a first oil separator 90 and a second oil separator 91 that separate and lower the oil from the discharged refrigerant gas in the internal space of the rear housing 80. In the inner space of the rear housing 80, a partition wall 86 is provided to face the bottom 81 and the end plate 10a. The partition wall 86 communicates with the first separation chamber 83, which is a space on the discharge hole 7 side communicating the internal space of the rear housing 80 with the compression chamber 4 via the discharge hole 7, and discharge from the discharge port 5. It is divided into a second separation chamber 84 which is a space on the port 5 side. The first oil separator 90 is disposed in the first separation chamber 83, and the second oil separator 91 is disposed in the second separation chamber 84.
 第1分離室83及び第2分離室84は、上下方向を同じにしつつ、それぞれの上部83a,84aにおいて隔壁86を貫通する流通路L2によって連通する。従って、圧縮室4から吐出孔7を介して吐出された吐出冷媒ガスが排出ポート5から外部に排出されるまでに形成される冷媒流路は、第1分離室83、流通路L2、第2分離室84、排出ポート5の順で構成され、この冷媒流路に、第1オイルセパレータ90と第2オイルセパレータ91とが、冷媒の流れ方向で見てこれらの順で直列に配置される。 The first separation chamber 83 and the second separation chamber 84 communicate with each other by the flow passage L2 penetrating the partition wall 86 in the upper portions 83a and 84a while making the vertical direction the same. Therefore, the refrigerant flow path formed until the discharged refrigerant gas discharged from the compression chamber 4 through the discharge hole 7 is discharged from the discharge port 5 to the outside is the first separation chamber 83, the flow passage L2, the second The first oil separator 90 and the second oil separator 91 are arranged in series in this order as viewed in the flow direction of the refrigerant.
 本実施形態の第1オイルセパレータ90は、衝突分離方式のオイルセパレータである。第1分離室83は、圧縮室4から吐出孔7を介して吐出した吐出冷媒ガスを衝突させるための被衝突体83bを有する。第1オイルセパレータ90は、第1分離室83において、被衝突体83bへの衝突によって吐出冷媒ガスからのオイルの分離を促進させ、分離したオイルを相対的な比重差によって選択的に降下させてオイルの分離処理を行う。 The first oil separator 90 of the present embodiment is a collision separation type oil separator. The first separation chamber 83 has a collided body 83 b for causing the discharged refrigerant gas discharged from the compression chamber 4 through the discharge hole 7 to collide. In the first separation chamber 83, the first oil separator 90 promotes the separation of the oil from the discharged refrigerant gas by the collision with the collided body 83b, and selectively lowers the separated oil by the relative specific gravity difference. Perform oil separation process.
 被衝突体83bは、吐出孔7から吐出された吐出冷媒ガスが第1分離室83の下部83cへ飛散しないように設けられる。被衝突体83bは、例えば、端板10aから立設して吐出孔7の周囲のうち下側を囲む略U字形状の衝突壁として構成される。なお、吐出孔7から隔壁86や周壁部82等に吐出冷媒ガスを直接衝突させるようにしてもよい。 The collided body 83 b is provided so that the discharge refrigerant gas discharged from the discharge hole 7 does not scatter to the lower portion 83 c of the first separation chamber 83. The collision target body 83b is configured, for example, as a substantially U-shaped collision wall which stands upright from the end plate 10a and surrounds the lower side of the periphery of the discharge hole 7. The discharged refrigerant gas may directly collide with the partition wall 86, the peripheral wall portion 82, and the like from the discharge hole 7.
 第1分離室83には、被衝突体83bより上方でない位置(例えば、被衝突体83bの最下位置またはその下方)に、吐出冷媒ガスから分離したオイルの降下を許容しつつ、吐出冷媒ガスの降下(特に被衝突体83bに衝突した吐出冷媒ガスの第1分離室83の下部83cへの進入)を抑制するための遮蔽体83dが備えられている。遮蔽体83dは、例えば、被衝突体83bの最下位置において隔壁86から端板10aに向けて延びつつ、端板10a(被衝突体83bを含む)との間に隙間を有する遮蔽壁として構成される。 The discharge refrigerant gas is allowed to fall in the first separation chamber 83 at a position not above the collided body 83b (for example, the lowermost position of the collided body 83b or below), while the oil separated from the discharged refrigerant gas is allowed to fall. A shield 83d is provided for suppressing the descent of the first separation chamber 83 (in particular, the approach of the first separation chamber 83 to the lower portion 83c of the discharged refrigerant gas which has collided with the collision target 83b). The shield 83d is, for example, configured as a shield wall having a gap with the end plate 10a (including the collided body 83b) while extending from the partition wall 86 toward the end plate 10a at the lowermost position of the collided body 83b. Be done.
 本実施形態の第2オイルセパレータ91は、遠心分離方式のオイルセパレータである。第2オイルセパレータ91は、第1分離室83から流通路L2を介して第2分離室84に導入された吐出冷媒ガスを旋回させて、相対的な比重差によって吐出冷媒ガス中に含まれるオイルの遠心分離を促進し、分離したオイルを降下させてオイルの分離処理を行う。遠心分離方式である第2オイルセパレータ91のオイル分離能力は、圧縮機1の低流量から高流量の運転全域に亘って、衝突分離方式である第1オイルセパレータ90のオイル分離能力よりも約4~5倍に高いことが実験等により判明している。即ち、第2オイルセパレータ91で分離したオイル量は第1オイルセパレータ90で分離したオイル量の数倍となる。 The second oil separator 91 of the present embodiment is a centrifugal oil separator. The second oil separator 91 swirls the discharged refrigerant gas introduced into the second separation chamber 84 from the first separation chamber 83 via the flow passage L2, and the oil contained in the discharged refrigerant gas due to the relative specific gravity difference. Promote the centrifugation of the oil, let down the separated oil and perform the oil separation process. The oil separation capacity of the second oil separator 91, which is a centrifugal separation system, is about 4 over the oil separation capacity of the first oil separator 90, which is a collision separation system, over the entire operation range from low flow to high flow of the compressor 1. It has been proved by experiments etc that it is higher by 5 times. That is, the amount of oil separated by the second oil separator 91 is several times the amount of oil separated by the first oil separator 90.
 第2分離室84は、例えば、断面略円形の円周面84bを有し、第2分離室84と略同軸の内挿管84cが、一端を第2分離室84内に開口させ、他端において、吐出冷媒ガスが第2分離室84の略接線方向から第2分離室84の内周面84bと内挿管84cの外周面との間に導入されるように配向される。 The second separation chamber 84 has, for example, a circumferential surface 84b having a substantially circular cross section, and the introductory tube 84c substantially coaxial with the second separation chamber 84 has one end opened in the second separation chamber 84 and the other end The refrigerant gas is directed so as to be introduced between the inner peripheral surface 84b of the second separation chamber 84 and the outer peripheral surface of the inner tube 84c from a direction substantially tangential to the second separation chamber 84.
 ここで、第1分離室83は、リアハウジング80の周壁部82及びセンターハウジング70の周壁部71に形成された第1オイル流路92によって圧縮室4における冷媒の吸入側と連通する。また、第2分離室84は、リアハウジング80の周壁部82、並びにセンターハウジング70の周壁部71及び内フランジ部72(膨出部73も含み得る)に形成された第2オイル流路93によって背圧室6と連通する。 Here, the first separation chamber 83 communicates with the suction side of the refrigerant in the compression chamber 4 by the first oil flow path 92 formed in the peripheral wall portion 82 of the rear housing 80 and the peripheral wall portion 71 of the center housing 70. Further, the second separation chamber 84 is formed by the second oil flow passage 93 formed in the peripheral wall 82 of the rear housing 80 and the peripheral wall 71 and the inner flange 72 (which may include the bulging part 73) of the center housing 70. It communicates with the back pressure chamber 6.
 第2オイル流路93は、背圧室6から駆動軸23の内部に一方の軸端部23aから他方の軸端部23cへ貫通形成された軸貫通孔93aを含み、軸貫通孔93aを介して吸入室3に至るまで形成されている。また、第2オイル流路93は、背圧室6に開口するとともに軸貫通孔93aよりも通路断面積を減じた絞り孔(通路抵抗部)93bを含む。絞り孔93bは第2オイル流路93を流れるオイルを減圧・加速するオリフィスとして機能する。 The second oil flow passage 93 includes an axial through hole 93a penetrating from one back end 23a to the other axial end 23c inside the drive shaft 23 from the back pressure chamber 6, and through the axial through hole 93a Are formed up to the suction chamber 3. Further, the second oil flow passage 93 includes a throttle hole (a passage resistance portion) 93b which is open to the back pressure chamber 6 and has a passage cross-sectional area smaller than that of the shaft through hole 93a. The throttling hole 93 b functions as an orifice for reducing and accelerating the oil flowing through the second oil passage 93.
 以下、図2を参照して、圧縮機1において吐出冷媒ガスからオイルを分離するためのオイル分離処理について説明する。圧縮室4から吐出孔7を介して第1分離室83へ吐出された吐出冷媒ガス(図2中の破線矢印で示される)は、先ず、第1オイルセパレータ90においてオイルの分離が促進される。具体的には、第1分離室83へ吐出された吐出冷媒ガスは第1分離室83内の被衝突体83bと衝突し、そして、吐出冷媒ガスから分離したオイル(図2中の白抜き矢印で示される)は相対的な比重差によって第1分離室83の下部83cへ降下する。 Hereinafter, an oil separation process for separating oil from the discharged refrigerant gas in the compressor 1 will be described with reference to FIG. The discharged refrigerant gas (indicated by the broken arrow in FIG. 2) discharged from the compression chamber 4 to the first separation chamber 83 through the discharge hole 7 first promotes oil separation in the first oil separator 90. . Specifically, the discharged refrigerant gas discharged to the first separation chamber 83 collides with the collided body 83b in the first separation chamber 83, and oil separated from the discharged refrigerant gas (white arrows in FIG. 2). Is lowered to the lower portion 83c of the first separation chamber 83 by the relative specific gravity difference.
 このとき、吐出冷媒ガスから分離したオイルは、遮蔽体83dと端板10a(被衝突体83bを含む)との間の隙間を通って第1分離室83の下部83cへ降下する。一方、吐出冷媒ガスは、被衝突体83bと衝突後、大部分が上部83aに向けて上昇し、一部は降下するが、遮蔽体83dによって、吐出冷媒ガスの一部が第1分離室83の下部83cへの進入することを抑制しているので、吐出冷媒ガスへの分離オイルの再混入を抑制できる。 At this time, the oil separated from the discharged refrigerant gas drops to the lower portion 83c of the first separation chamber 83 through the gap between the shield 83d and the end plate 10a (including the collided body 83b). On the other hand, most of the discharged refrigerant gas rises toward the upper portion 83a and partially drops after colliding with the collision target 83b, but a part of the discharged refrigerant gas is separated by the shield 83d into the first separation chamber 83. Since the entry of the oil into the lower portion 83c is suppressed, re-mixing of the separated oil into the discharged refrigerant gas can be suppressed.
 第1オイルセパレータ90により分離されて第1分離室83の下部83cに降下したオイルは、第1オイル流路92を介して圧縮室4における冷媒の吸入側に流通し、固定スクロール10と旋回スクロール11とから形成された圧縮機構を主として潤滑する。即ち、第1オイル流路92は第1分離室83から圧縮室4に至るまで形成される。 The oil separated by the first oil separator 90 and dropped to the lower portion 83c of the first separation chamber 83 flows to the suction side of the refrigerant in the compression chamber 4 via the first oil passage 92, and the fixed scroll 10 and the orbiting scroll And 11 mainly lubricate the compression mechanism formed from That is, the first oil passage 92 is formed from the first separation chamber 83 to the compression chamber 4.
 更に、第1オイルセパレータ90でオイル分離処理が行われた吐出冷媒ガスは、上部83aの流通路L2を介して第2分離室84へ導入され、第2オイルセパレータ91においてオイルの分離が促進される。具体的には、第2分離室84に導入された吐出冷媒ガスは、内周面84bと内挿管84cの外周面との間を旋回して螺旋状に降下する際に、吐出冷媒ガス中に含まれるオイルは相対的な比重差によって遠心分離し、分離したオイルは内周面84bに沿って第2分離室84の下部84dへ降下する。 Furthermore, the discharged refrigerant gas subjected to the oil separation processing by the first oil separator 90 is introduced into the second separation chamber 84 through the flow passage L2 of the upper portion 83a, and the oil separation is promoted in the second oil separator 91. Ru. Specifically, when the discharged refrigerant gas introduced into the second separation chamber 84 swirls between the inner peripheral surface 84 b and the outer peripheral surface of the inner tube 84 c and descends in a spiral shape, the discharged refrigerant gas is introduced into the discharged refrigerant gas. The contained oil is centrifuged by the relative specific gravity difference, and the separated oil falls along the inner circumferential surface 84b to the lower portion 84d of the second separation chamber 84.
 第2オイルセパレータ91により分離されて第2分離室84の下部84dへ降下したオイルは、第2オイル流路93を介して背圧室6に流通し、クランク機構40、スラストプレート74、軸受部75、駆動軸23等の摺動部を備える潤滑対象を潤滑し、絞り孔93bで減圧・加速された後、軸貫通孔93aを介して吸入室3に流通される。即ち、第2オイル流路93は、第2分離室84から吸入室3に至るまで形成され、第1オイル流路92の数倍以上の流路長を有し、第1オイル流路92よりも潤滑対象が多い。 The oil separated by the second oil separator 91 and dropped to the lower portion 84d of the second separation chamber 84 flows to the back pressure chamber 6 through the second oil passage 93, and the crank mechanism 40, thrust plate 74, bearing portion After lubricating the object to be lubricated including the sliding portion 75 such as the drive shaft 23, etc. and reducing the pressure and accelerating the pressure in the throttle hole 93b, it is circulated to the suction chamber 3 through the shaft through hole 93a. That is, the second oil passage 93 is formed from the second separation chamber 84 to the suction chamber 3 and has a passage length several times or more than that of the first oil passage 92. There are many lubrication targets.
 吸入室3に流入したオイルは、吸入ポート2から吸入室3に吸入された冷媒ガスに混入する。オイルが含有された吸入冷媒ガスは、電動モータ20を流通した後、冷媒導入通路L1を介して圧縮室4へ導かれる。一方、吐出冷媒ガスは、旋回運動が小さくなるに従って流出管の一端開口に向けて上昇し始め、流出管を通って排出ポート5から車両エアコンシステム等のシステムに向けて排出される。 The oil flowing into the suction chamber 3 mixes with the refrigerant gas drawn into the suction chamber 3 from the suction port 2. After flowing through the electric motor 20, the suction refrigerant gas containing oil is introduced to the compression chamber 4 through the refrigerant introduction passage L1. On the other hand, the discharged refrigerant gas starts rising toward the one end opening of the outflow pipe as the turning motion becomes smaller, and is discharged from the exhaust port 5 to the system such as the vehicle air conditioning system through the outflow pipe.
 以上のように、本実施形態の圧縮機1は、図3に示すように、圧縮室4から圧縮機構により圧縮された後に吐出孔7を介して吐出された吐出冷媒ガスを、排出ポート5を介して外部の車両エアコンシステム等のシステムに排出するまでの冷媒流路94(図3中に実線で示される)に流通させる。冷媒流路94には、オイル分離能力の異なる第1オイルセパレータ90(図3中に衝突分離OSと示される)と、第2オイルセパレータ91(図3中に遠心分離OSと示される)とをこの順で直列に配置している。 As described above, the compressor 1 of the present embodiment, as shown in FIG. 3, discharges the refrigerant gas discharged from the compression chamber 4 through the discharge hole 7 after being compressed by the compression mechanism, as the discharge port 5. The refrigerant flow path 94 (shown by a solid line in FIG. 3) passes through to an external system such as a vehicle air conditioning system. The refrigerant flow path 94 includes a first oil separator 90 (indicated as collision separation OS in FIG. 3) and a second oil separator 91 (indicated as centrifugation OS in FIG. 3) having different oil separation capacities. It arranges in series in this order.
 そして、第1オイルセパレータ90で分離したオイルを第1オイル流路92(図3中に破線で示される)を介して圧縮室4における吸入冷媒ガスの吸入側に流通させる。更に、第1オイルセパレータ90よりもオイル分離能力が高い第2オイルセパレータ91で分離したオイルを第2オイル流路93(図3中に一点鎖線で示される)を介して背圧室6に流通させ、絞り孔93bで減圧・加速し、潤滑対象を潤滑した後、吸入室3側に流通させる。 Then, the oil separated by the first oil separator 90 is made to flow to the suction side of the suction refrigerant gas in the compression chamber 4 via the first oil flow path 92 (shown by a broken line in FIG. 3). Furthermore, the oil separated by the second oil separator 91 having an oil separation ability higher than that of the first oil separator 90 is circulated to the back pressure chamber 6 via the second oil flow path 93 (shown by the alternate long and short dash line in FIG. 3). The pressure is reduced and accelerated by the throttle hole 93b to lubricate the object to be lubricated, and then the fluid is circulated to the suction chamber 3 side.
 これにより、第1及び第2オイルセパレータ90,91で分離したオイルが第1及び第2分離室83,84の圧力の影響を相互に受け難くなるため、圧縮機の低流量から高流量の運転全域に亘ってオイルの流れを適切に維持することができる。従って、圧縮機1の運転全域に亘ってオイルの逆流や滞留を防止し、オイルの流れを適切に維持することが可能となる。 As a result, the oil separated by the first and second oil separators 90 and 91 is less likely to be affected by the pressure of the first and second separation chambers 83 and 84, and hence the operation from low flow to high flow of the compressor The flow of oil can be properly maintained over the entire area. Therefore, it is possible to prevent the backflow and retention of oil over the entire operation range of the compressor 1 and maintain the flow of oil appropriately.
 また、前述したように、第2オイルセパレータ91は、第1オイルセパレータ90よりも高いオイル分離能力を有し、第2オイルセパレータ91で分離したオイル量は第1オイルセパレータ90で分離したオイル量よりも多い傾向となる。これにより、第2オイルセパレータ91で分離した比較的大量のオイルを第1オイル流路92よりも流路長が長く潤滑対象も多い、つまり潤滑要求の高い第2オイル流路93に優先的に流通させることができる。従って、比較的長い流路長を有する第2オイル流路93において、潤滑対象の油膜切れ等を防止することができる。 Also, as described above, the second oil separator 91 has a higher oil separation ability than the first oil separator 90, and the amount of oil separated by the second oil separator 91 is the amount of oil separated by the first oil separator 90. It tends to be more than that. As a result, a relatively large amount of oil separated by the second oil separator 91 has a longer flow path length than the first oil flow path 92 and has more lubrication targets, ie, preferentially to the second oil flow path 93 having a high lubrication requirement. It can be distributed. Therefore, in the second oil flow path 93 having a relatively long flow path length, it is possible to prevent an oil film to be lubricated, etc. from running out.
 一方、第1オイルセパレータ90で分離したオイルは、比較的少量であっても、第2オイル流路93よりも短い第1オイル流路92を介して、圧縮機1の運転中において潤滑要求の特に高い圧縮機構に直接的に且つ迅速に供給可能となる。このように、第1及び第2オイルセパレータ90,91のオイル分離能力と圧縮機1の各部の潤滑要求とその要求種別に応じたオイルの適切な配分を行うことにより、圧縮機1の運転全域に亘ってオイル分離能力を高め、圧縮機1の潤滑性能を向上することができるため、圧縮機1内のOCR向上、圧縮機1の耐久性向上、圧縮機1の性能向上、及び、圧縮機1を使用するシステムの運転効率向上を実現することができる。 On the other hand, the oil separated by the first oil separator 90 is required to be lubricated during operation of the compressor 1 via the first oil flow path 92 shorter than the second oil flow path 93 even though the amount is relatively small. In particular, it can be supplied directly and quickly to high compression mechanisms. As described above, the entire operation range of the compressor 1 can be achieved by appropriately distributing the oil according to the oil separation capability of the first and second oil separators 90 and 91, the lubrication request of each part of the compressor 1, and the request type. Since the oil separation capability can be enhanced and the lubricating performance of the compressor 1 can be enhanced, the OCR improvement in the compressor 1, the durability improvement of the compressor 1, the performance improvement of the compressor 1, and the compressor can be improved. The operation efficiency of the system using 1 can be improved.
<第2実施形態>
 図4は、本発明の第2実施形態に係るリアハウジング80の内部を拡大した断面図である。なお、第1実施形態と同様の構成については図中に同符号を付して説明を省略することがある。本実施形態の圧縮機1は、リアハウジング80の内部空間において、第1分離室83で分離降下したオイルを貯留する貯油室95と、第2分離室84で分離降下したオイルを貯留する貯油室96とを備える。
Second Embodiment
FIG. 4 is an enlarged cross-sectional view of the inside of a rear housing 80 according to a second embodiment of the present invention. In addition, about the structure similar to 1st Embodiment, a same sign may be attached | subjected in a figure and description may be abbreviate | omitted. In the internal space of the rear housing 80, the compressor 1 of the present embodiment includes an oil storage chamber 95 for storing the oil separated and dropped in the first separation chamber 83, and an oil storage chamber for storing the oil separated and dropped in the second separation chamber 84. And 96.
 貯油室95は、リアハウジング80の周壁部82に形成された第1オイル流路92の途中に設けられ、第1オイルセパレータ90で分離して第1オイル流路92を流れるオイルを一旦貯留する。貯油室96は、リアハウジング80の周壁部82に形成された第2オイル流路93の途中に設けられ、第2オイルセパレータ91で分離して第2オイル流路93流れるオイルを一旦貯留する。 The oil storage chamber 95 is provided in the middle of the first oil flow passage 92 formed in the peripheral wall portion 82 of the rear housing 80, and temporarily stores oil separated by the first oil separator 90 and flowing through the first oil flow passage 92. . The oil storage chamber 96 is provided in the middle of the second oil flow passage 93 formed in the peripheral wall portion 82 of the rear housing 80, separates by the second oil separator 91, and temporarily stores the oil flowing through the second oil flow passage 93.
 また、第1オイル流路92には、通路断面積を減じた絞り孔(通路抵抗部)92aが形成される。絞り孔92aは、例えばリアハウジング80の周壁部82とセンターハウジング70の周壁部71とに跨るようにして第1オイル流路92に形成され、第1オイル流路92を流れるオイルを減圧・加速するオリフィスとして機能する。
 図5に示すように、本実施形態の圧縮機1は、第1実施形態の場合と同様に、実線で示す冷媒流路94に、第1オイルセパレータ90(図5中に衝突分離OSと示される)と、第2オイルセパレータ91(図5中に遠心分離OSと示される)とをこの順で直列に配置している。
Further, in the first oil flow passage 92, a throttle hole (passage resistance portion) 92a in which the passage cross-sectional area is reduced is formed. The throttling hole 92a is formed in the first oil flow passage 92 so as to, for example, straddle the peripheral wall 82 of the rear housing 80 and the peripheral wall 71 of the center housing 70, and reduces or accelerates the oil flowing through the first oil flow passage 92. Function as an orifice.
As shown in FIG. 5, the compressor 1 according to the present embodiment is similar to the first embodiment in that the first oil separator 90 (shown as the collision separation OS in FIG. And a second oil separator 91 (shown as centrifugal OS in FIG. 5) are arranged in series in this order.
 そして、第1オイルセパレータ90で分離したオイルを第1オイル流路92(図5中に破線で示される)に配した貯油室95、絞り孔92aを順に介して圧縮室4における吸入冷媒ガスの吸入側に流通させる。更に、第1オイルセパレータ90よりもオイル分離能力が高い第2オイルセパレータ91で分離したオイルを第2オイル流路93(図5中に一点鎖線で示される)に配した貯油室96を介して背圧室6に流通させ、絞り孔93bで減圧・加速し、潤滑対象を潤滑した後、吸入室3側に流通させる。 The oil separated by the first oil separator 90 is disposed in the first oil flow path 92 (shown by a broken line in FIG. 5), the oil storage chamber 95 and the throttle hole 92a. Distribute to the suction side. Furthermore, the oil separated by the second oil separator 91 having an oil separation ability higher than that of the first oil separator 90 is disposed via the oil storage chamber 96 disposed in the second oil flow passage 93 (shown by the alternate long and short dash line in FIG. 5). After flowing into the back pressure chamber 6 and reducing pressure and acceleration through the throttle hole 93 b to lubricate the object to be lubricated, it is circulated to the suction chamber 3 side.
 以上のように、本実施形態の圧縮機1は、第1オイル流路92と第2オイル流路93との双方に、それぞれ独立した貯油室95,96と、絞り孔92a,93bとを備える。これにより、第1及び第2オイル流路92,93において、貯油室95,96でオイルを適度に保持しながら、絞り孔92a,93bより迅速に潤滑対象に供給することができる。従って、第1及び第2オイルセパレータ90,91のオイル分離能力と圧縮機1の各部の潤滑要求とに応じたオイルの適切な配分をより一層効率的に行うことができる。 As described above, the compressor 1 according to the present embodiment includes the oil storage chambers 95 and 96 and the throttle holes 92 a and 93 b which are independent of each other in both the first oil flow channel 92 and the second oil flow channel 93. . Thereby, in the first and second oil flow passages 92 and 93, the oil can be supplied to the lubrication target more quickly than the throttle holes 92a and 93b while appropriately holding the oil in the oil storage chambers 95 and 96. Therefore, it is possible to more efficiently allocate the oil according to the oil separation capability of the first and second oil separators 90 and 91 and the lubrication requirement of each part of the compressor 1.
 以上で本発明の各実施形態についての説明を終えるが、本発明はこれに限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができるものである。
 例えば、上記各実施形態において、圧縮機1は、冷媒流路94に、第1オイルセパレータ90及び第2オイルセパレータ91を、この順で直列に配置して備える。しかし、これに限らず、第2実施形態の変形例として図6に示すように、第1オイルセパレータ90と第2オイルセパレータ91とを入れ換えてもよい。
This completes the description of the embodiments of the present invention, but the present invention is not limited to this, and various modifications can be made without departing from the spirit of the present invention.
For example, in each of the above-described embodiments, the compressor 1 includes the first oil separator 90 and the second oil separator 91 arranged in series in this order in the refrigerant flow path 94. However, the present invention is not limited to this, and as shown in FIG. 6 as a modified example of the second embodiment, the first oil separator 90 and the second oil separator 91 may be interchanged.
 冷媒流路94に第2オイルセパレータ91及び第1オイルセパレータ90をこの順で直列に配置した場合であっても、第1オイルセパレータ90で分離したオイルが第1オイル流路92を介して圧縮室4における冷媒の吸入側に流通し、第2オイルセパレータ91で分離したオイルが第2オイル流路93を介して吸入室3側に個別に流通するため、上記の各実施形態と同様の効果を奏することができる。 Even when the second oil separator 91 and the first oil separator 90 are arranged in series in this order in the refrigerant flow path 94, the oil separated by the first oil separator 90 is compressed via the first oil flow path 92. The same effect as in each of the above embodiments, because the oil in the chamber 4 flows to the suction side of the refrigerant and the oil separated by the second oil separator 91 flows separately to the suction chamber 3 via the second oil flow path 93 Can be played.
 また、図7に示すように、第1オイルセパレータ90及び第2オイルセパレータ91は、異なるオイル分離能力を有するのであれば、双方とも遠心分離方式のオイルセパレータであってもよい。具体的には、図7に示した第1遠心分離OSを第2遠心分離OSよりもオイル分離能力を高めた仕様とし、第2遠心分離OSで分離したオイルを第1オイル流路92を介して圧縮室4における冷媒の吸入側に流通させ、第2遠心分離OSで分離したオイルを第2オイル流路93を介して吸入室3側に流通させることにより、上記の各実施形態と同様の効果を奏することができる。 Further, as shown in FIG. 7, both of the first oil separator 90 and the second oil separator 91 may be centrifugal type oil separators as long as they have different oil separation capacities. Specifically, the first centrifugal separation OS shown in FIG. 7 has a specification in which the oil separation capacity is enhanced compared to the second centrifugal separation OS, and the oil separated by the second centrifugal separation OS is passed through the first oil flow passage 92. Flow to the suction side of the refrigerant in the compression chamber 4 and to the oil separated by the second centrifugal separation OS through the second oil flow passage 93 to the suction chamber 3 side, similar to the above embodiments. It can produce an effect.
 また、図8に示すように、第1オイルセパレータ90及び第2オイルセパレータ91は、異なるオイル分離能力を有するのであれば、双方とも衝突分離方式のオイルセパレータであってもよい。具体的には、図8に示した第1衝突分離OSを第2衝突分離OSよりもオイル分離能力を高めた仕様とし、第2衝突分離OSで分離したオイルを第1オイル流路92を介して圧縮室4における冷媒の吸入側に流通させ、第2衝突分離OSで分離したオイルを第2オイル流路93を介して吸入室3側に流通させることにより、上記の各実施形態と同様の効果を奏することができる。 Further, as shown in FIG. 8, both of the first oil separator 90 and the second oil separator 91 may be collision separation type oil separators as long as they have different oil separation capabilities. Specifically, the first collision separation OS shown in FIG. 8 has a specification in which the oil separation capacity is enhanced compared to the second collision separation OS, and the oil separated by the second collision separation OS is passed through the first oil flow path 92. Flow to the suction side of the refrigerant in the compression chamber 4 and the oil separated by the second collision separation OS to flow to the suction chamber 3 side via the second oil flow path 93, as in the above embodiments. It can produce an effect.
 なお、図6~図8に示した各変形例は、第1実施形態で説明したような貯油室95,96を備えない圧縮機1にも適用可能である。また、圧縮機1の仕様によっては、貯油室95,96の一方のみが形成される形態もあり得るし、絞り孔92a、93bの一方のみが形成される形態もあり得る。また、絞り孔92a、93bのような通路断面積を減じる手段の代わりに、他の通路抵抗の手段を第1及び第2オイル流路92,93に設けてもよい。 Each of the modifications shown in FIGS. 6 to 8 is also applicable to the compressor 1 not provided with the oil storage chambers 95 and 96 as described in the first embodiment. Further, depending on the specification of the compressor 1, there may be a form in which only one of the oil storage chambers 95 and 96 is formed, and a form in which only one of the throttle holes 92a and 93b is formed. Also, instead of means for reducing the passage cross sectional area such as the throttle holes 92a and 93b, other means for passage resistance may be provided in the first and second oil flow passages 92 and 93.
 また、このような通路抵抗部は、流れるオイルの圧力差が比較的大きくなる第1オイル流路92においては第1分離室83と圧縮室4との間に設けるのが好ましく、一方、第2オイル流路93においては第2分離室84と背圧室6との間に設けるのが好ましい。
 また、上記各実施形態では、圧縮機1の吐出孔7から吐出される吐出冷媒を吐出冷媒ガスとして説明したが、吐出冷媒には気相冷媒だけでなく液相冷媒も含み得る。
 また、第1及び第2オイルセパレータ90,91は、オイル分離能力が異なるのであれば、衝突分離方式又は遠心分離方式以外の分離方式であってもよい。
In addition, such a passage resistance portion is preferably provided between the first separation chamber 83 and the compression chamber 4 in the first oil passage 92 where the pressure difference of the flowing oil becomes relatively large, while the second oil passage 92 Preferably, the oil passage 93 is provided between the second separation chamber 84 and the back pressure chamber 6.
In each of the above embodiments, the discharge refrigerant discharged from the discharge hole 7 of the compressor 1 is described as the discharge refrigerant gas, but the discharge refrigerant may include not only a gas phase refrigerant but also a liquid phase refrigerant.
The first and second oil separators 90 and 91 may be separation methods other than the collision separation method or the centrifugal separation method as long as the oil separation ability is different.
 また、第1及び第2オイルセパレータ90,91を少なくとも備える前提であれば、吐出冷媒の圧力損失が過大にならないことを条件として、更に1つ以上のオイルセパレータを追加して設けてもよい。この場合には、追加するオイルセパレータのオイル分離能力を考慮し、このオイルセパレータで分離したオイルを第1オイル流路92に流通させるか、或いは第2オイル流路93に流通させるかが決定される。 Further, on the premise that at least the first and second oil separators 90 and 91 are provided, one or more oil separators may be additionally provided, provided that the pressure loss of the discharged refrigerant does not become excessive. In this case, in consideration of the oil separation ability of the oil separator to be added, it is determined whether the oil separated by the oil separator is to be circulated to the first oil passage 92 or to the second oil passage 93. Ru.
 また、上記各実施形態では、第1オイル流路92はリアハウジング80の周壁部82及びセンターハウジング70の周壁部71に形成される。しかし、これに限らず、第1オイル流路92を固定スクロール10の端板11aに形成し、第1分離室83と圧縮室4における冷媒の吸入側と連通させてもよい。但し、この場合には、旋回スクロール11の旋回によって、第1オイル流路92に旋回スクロール11のスクロールラップ11bが干渉しない位置に形成する必要がある。 Further, in the above embodiments, the first oil flow passage 92 is formed in the peripheral wall 82 of the rear housing 80 and the peripheral wall 71 of the center housing 70. However, the present invention is not limited to this. The first oil passage 92 may be formed in the end plate 11 a of the fixed scroll 10 and may be in communication with the suction side of the refrigerant in the first separation chamber 83 and the compression chamber 4. However, in this case, it is necessary to form the first oil flow path 92 so that the scroll wrap 11 b of the orbiting scroll 11 does not interfere with the orbit of the orbiting scroll 11.
 また、上記の各実施形態において、圧縮機1は、圧縮室4において一対の同一形状の固定スクロール10及び旋回スクロール11を噛合わせて、旋回スクロール11を内蔵の電動モータ20の回転力を用いて旋回せしめることで冷媒ガスを圧縮するものとして説明した。しかし、内蔵する電動モータ20に代えて、外部の駆動源によって旋回スクロール11を旋回させてもよい。 In each of the above-described embodiments, the compressor 1 meshes the pair of fixed scrolls 10 and the orbiting scroll 11 having the same shape in the compression chamber 4 and uses the rotational force of the electric motor 20 with the orbiting scroll 11. It has been described that the refrigerant gas is compressed by turning. However, instead of the built-in electric motor 20, the orbiting scroll 11 may be pivoted by an external drive source.
 例えば、圧縮機1が車両エアコンシステムに適用される場合、外部の駆動源としてはエンジンを用い、クランク23bシャフトの回転力を、プーリを介して駆動軸23に伝達してもよい。
 また、上記の各実施形態において、圧縮機1は、ハウジング内をオイルが循環し、旋回スクロール11の背面側に背圧室6が形成される密閉型スクロール圧縮機であるものとして説明したが、本発明は背圧室6が形成されない開放型スクロール圧縮機にも適用可能である。
For example, when the compressor 1 is applied to a vehicle air conditioner system, an engine may be used as an external drive source, and the rotational force of the crank 23b shaft may be transmitted to the drive shaft 23 via a pulley.
In each of the above embodiments, the compressor 1 is described as a sealed scroll compressor in which oil circulates in the housing and the back pressure chamber 6 is formed on the back side of the orbiting scroll 11. The present invention is also applicable to an open scroll compressor in which the back pressure chamber 6 is not formed.
 また、固定スクロール10及び旋回スクロール11で冷媒ガスを圧縮するスクロール圧縮機に代えて、ピストンの往復運動によるシリンダーの容積変化で冷媒ガスを圧縮する往復圧縮機や、ハウジング内において複数のベーンを側面に有するロータがベーンをハウジング内壁に接触させつつ回転することで冷媒ガスを圧縮するロータリーベーン型圧縮機等、いかなる圧縮方式の圧縮機であって本発明の適用は可能である。 Also, instead of the scroll compressor that compresses the refrigerant gas with the fixed scroll 10 and the orbiting scroll 11, a reciprocating compressor that compresses the refrigerant gas by the volume change of the cylinder due to the reciprocating motion of the piston The present invention can be applied to any compression type compressor, such as a rotary vane type compressor which compresses a refrigerant gas by rotating the rotor with the vane in contact with the inner wall of the housing.
  1 圧縮機
  3 吸入室
  4 圧縮室
83b 被衝突体
 90 第1オイルセパレータ
 91 第2オイルセパレータ
 92 第1オイル流路
92a 絞り孔(通路抵抗部)
 93 第2オイル流路
93b 絞り孔(通路抵抗部)
 94 冷媒流路
 95 貯油室
 96 貯油室
DESCRIPTION OF SYMBOLS 1 compressor 3 suction chamber 4 compression chamber 83b collision object 90 1st oil separator 91 2nd oil separator 92 1st oil flow path 92a throttle hole (passage resistance part)
93 2nd oil flow passage 93b Throttle hole (passage resistance part)
94 Refrigerant channel 95 Oil storage chamber 96 Oil storage chamber

Claims (6)

  1.  オイルを含有する冷媒を吸入するための吸入室と、
     前記吸入室に吸入された冷媒を圧縮するための圧縮室と、
     前記圧縮室から吐出された吐出冷媒を外部に排出するまでに形成される冷媒流路と、
     前記冷媒流路に直列に配置され、前記吐出冷媒に含有されるオイルを異なるオイル分離能力で分離する第1及び第2オイルセパレータと、
     前記第1オイルセパレータで分離したオイルを前記圧縮室における冷媒の吸入側に流通させる第1オイル流路と、
     前記第2オイルセパレータで分離したオイルを前記吸入室側に流通させる第2オイル流路とを備える、圧縮機。
    A suction chamber for suctioning a refrigerant containing oil;
    A compression chamber for compressing the refrigerant drawn into the suction chamber;
    A refrigerant flow path formed until the refrigerant discharged from the compression chamber is discharged to the outside;
    First and second oil separators arranged in series in the refrigerant flow path and separating oil contained in the discharged refrigerant with different oil separation capabilities;
    A first oil flow path for causing the oil separated by the first oil separator to flow to the suction side of the refrigerant in the compression chamber;
    A compressor including: a second oil flow path for causing oil separated by the second oil separator to flow to the suction chamber side;
  2.  前記第2オイルセパレータは、第1オイルセパレータよりも前記オイル分離能力が高い、請求項1に記載の圧縮機。 The compressor according to claim 1, wherein the second oil separator has a higher oil separation capacity than the first oil separator.
  3.  前記第1オイルセパレータは、前記吐出冷媒を被衝突体に衝突させて前記オイルを分離降下させる、請求項2に記載の圧縮機。 The compressor according to claim 2, wherein the first oil separator causes the discharged refrigerant to collide with a collision target to separate and lower the oil.
  4.  前記第2オイルセパレータは、前記吐出冷媒を旋回させて前記オイルを分離降下させる、請求項2又は3に記載の圧縮機。 The compressor according to claim 2, wherein the second oil separator swirls the discharged refrigerant to separate and lower the oil.
  5.  前記第1及び第2オイル流路の少なくとも一方に通路抵抗部を備える、請求項1から4の何れか一項に記載の圧縮機。 The compressor according to any one of claims 1 to 4, wherein a passage resistance portion is provided in at least one of the first and second oil flow passages.
  6.  前記第1及び第2オイル流路の少なくとも一方に貯油室を備える、請求項1から5の何れか一項に記載の圧縮機。 The compressor according to any one of claims 1 to 5, wherein an oil storage chamber is provided in at least one of the first and second oil flow paths.
PCT/JP2018/030890 2017-09-21 2018-08-22 Compressor WO2019058849A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017181157A JP2019056322A (en) 2017-09-21 2017-09-21 Compressor
JP2017-181157 2017-09-21

Publications (1)

Publication Number Publication Date
WO2019058849A1 true WO2019058849A1 (en) 2019-03-28

Family

ID=65810303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030890 WO2019058849A1 (en) 2017-09-21 2018-08-22 Compressor

Country Status (2)

Country Link
JP (1) JP2019056322A (en)
WO (1) WO2019058849A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022064947A1 (en) * 2020-09-24 2022-03-31 サンデン・オートモーティブコンポーネント株式会社 Scroll-type compressor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021121375A1 (en) * 2020-11-20 2022-05-25 Hanon Systems Scroll compressor for refrigerant-oil mixtures with oil return
WO2024182415A1 (en) * 2023-02-28 2024-09-06 Tyco Fire & Security Gmbh Oil conduit system for hvac&r system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04175492A (en) * 1990-11-06 1992-06-23 Nippondenso Co Ltd Compressor
JP2004232625A (en) * 2003-01-07 2004-08-19 Matsushita Electric Ind Co Ltd Sealed type electric compressor
JP2012241682A (en) * 2011-05-24 2012-12-10 Panasonic Corp Compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04175492A (en) * 1990-11-06 1992-06-23 Nippondenso Co Ltd Compressor
JP2004232625A (en) * 2003-01-07 2004-08-19 Matsushita Electric Ind Co Ltd Sealed type electric compressor
JP2012241682A (en) * 2011-05-24 2012-12-10 Panasonic Corp Compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022064947A1 (en) * 2020-09-24 2022-03-31 サンデン・オートモーティブコンポーネント株式会社 Scroll-type compressor

Also Published As

Publication number Publication date
JP2019056322A (en) 2019-04-11

Similar Documents

Publication Publication Date Title
JP5692177B2 (en) Compressor
JP3124335B2 (en) Horizontal scroll compressor
US6499971B2 (en) Compressor utilizing shell with low pressure side motor and high pressure side oil sump
EP1679441A1 (en) Scroll compressor
US9651047B2 (en) Compressor having a partitioned discharge chamber
JP3242528U (en) rotation mechanism
WO2019058849A1 (en) Compressor
JP2004270668A (en) Hermetic compressor
EP2339180B1 (en) Multiple-stage compressor
WO2018151061A1 (en) Compressor
US20200003199A1 (en) Compressor
WO2018008368A1 (en) Compressor
JP4149947B2 (en) Compressor
WO2020196002A1 (en) Scroll compressor
JP6738174B2 (en) Refrigerant compressor
KR102566589B1 (en) Scroll compressor
CN109404289B (en) Rotary machine
JP2001050162A (en) Closed type compressor
US8944781B2 (en) Electrically driven gas compressor
JP2006348928A (en) Compressor
CN221800108U (en) High-pressure shell, compressor and vehicle
WO2022064947A1 (en) Scroll-type compressor
JPH1047283A (en) Scroll compressor
JP4638313B2 (en) Hermetic rotary compressor
JPS62191677A (en) Motor driven compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18858391

Country of ref document: EP

Kind code of ref document: A1