Nothing Special   »   [go: up one dir, main page]

WO2018235199A1 - Light source lighting device and illumination apparatus - Google Patents

Light source lighting device and illumination apparatus Download PDF

Info

Publication number
WO2018235199A1
WO2018235199A1 PCT/JP2017/022880 JP2017022880W WO2018235199A1 WO 2018235199 A1 WO2018235199 A1 WO 2018235199A1 JP 2017022880 W JP2017022880 W JP 2017022880W WO 2018235199 A1 WO2018235199 A1 WO 2018235199A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
light source
voltage
period
lighting device
Prior art date
Application number
PCT/JP2017/022880
Other languages
French (fr)
Japanese (ja)
Inventor
雄一郎 伊藤
岳秋 飯田
信一 芝原
Original Assignee
三菱電機株式会社
三菱電機照明株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 三菱電機照明株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/022880 priority Critical patent/WO2018235199A1/en
Priority to JP2019524779A priority patent/JP6725075B2/en
Priority to CN201780091889.0A priority patent/CN110809909B/en
Publication of WO2018235199A1 publication Critical patent/WO2018235199A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/355Power factor correction [PFC]; Reactive power compensation

Definitions

  • the present invention relates to a light source lighting device and a luminaire using the same.
  • This type of light source lighting device comprises an AC-DC conversion circuit that rectifies and smoothes commercial AC power to generate a DC voltage, and DC- that supplies an optimal current to a light emitting diode from the DC voltage obtained from the conversion circuit. It has a DC converter.
  • a high power factor is required in many luminaires. Therefore, as shown in Patent Document 1, a two-converter system using a step-up chopper type power factor improvement circuit as an AC-DC conversion circuit and a step-down chopper circuit as a DC-DC converter is widely adopted.
  • Patent Document 3 discloses a method of suppressing the rise of the switching frequency and operating stably by delaying the timing of turning on the switching element and operating in the current discontinuous mode.
  • Japanese Unexamined Patent Publication No. 2010-040400 Japanese Patent Application Laid-Open No. 2001-313423 Japanese Patent Application Laid-Open No. 2016-119830
  • the frequency reduction operation by the current discontinuous mode is disclosed. Specifically, based on the input timing of the output signal of the zero current detector, the turn-on timing of the switching element is controlled through the delay time corresponding to the control signal indicating the load state, and the frequency reduction control at light load is executed. Be done.
  • the current discontinuous mode control described in Patent Document 3 turns on the switching element after a predetermined delay time has elapsed with reference to the input timing of the output signal of the zero current detector.
  • the stray capacitance between the inductor of the power factor correction circuit and the electrode of the switching element causes resonant operation. With this resonance operation, a minute oscillating current flows through the switching element.
  • this oscillating current is superimposed on the inductor current.
  • the stray capacitance between the electrodes depends on the drain-source voltage. Therefore, for example, when the drain-source voltage changes due to the phase angle of the AC power supply voltage, the frequency of the resonant operation fluctuates.
  • the on time of the switching element is approximately constant during a half cycle of the AC power supply, the value of the oscillating current superimposed on the inductor current will differ depending on the phase of the power supply. That is, during the half cycle of the AC power supply, a large oscillating current is superimposed on the inductor current at a certain timing, and almost no oscillating current is superimposed on the inductor current at another timing. In this case, assuming that the on-time of the switching element is substantially constant, the envelope indicated by the peak value of the sum of the inductor current and the oscillating current does not become sinusoidal, and the power factor is lowered.
  • the current flowing through the switching element is monitored every switching cycle, and the switching element is turned on so that the peak value of the sum of the inductor current and the oscillating current superimposed thereon is sinusoidal.
  • You have to control the time For example, in order to realize such control with a microcomputer, it is necessary to calculate the on-time at very short intervals, which is computationally expensive.
  • the present invention has been made to solve the above-mentioned problems, and it is possible to provide a light source lighting device and a luminaire which can determine the off period of the switching element by a simple control method and can suppress the reduction in power factor. To aim.
  • a light source lighting device includes a rectifier circuit that rectifies AC power, a switching element and an inductor, a power factor improvement circuit that receives an output of the rectifier circuit and outputs a DC voltage, and the inductor And a control unit that receives the voltage detected by the detection winding and drives the switching element, and the control unit turns the switching element off. After the first off period until the oscillating voltage of the detection winding falls at least twice, the off state of the switching element is continued until the predetermined second off period elapses, and the second off period The switching element is turned on after the lapse of time.
  • a lighting fixture includes a rectifier circuit that rectifies an AC power supply, a switching element and an inductor, a power factor improvement circuit that receives an output of the rectifier circuit and outputs a DC voltage, and the inductor
  • the control unit includes a detection winding that detects a voltage to be generated, and a control unit that receives the voltage detected by the detection winding and drives the switching element, and the control unit turns the switching element off before the control unit turns off the switching element. After lapse of the first off period until the oscillating voltage of the detection winding falls at least twice, the switching element continues to be in the off state until a predetermined second off period elapses, during the second off period.
  • a light source lighting device characterized in that the switching element is turned on after lapse of time, and an LED or an organic EL which is turned on by the light source lighting device.
  • the switching element after detecting the second and subsequent falling of the oscillating voltage generated after the current of the inductor becomes zero after the switching element is turned off, the switching element is selected after a predetermined delay time has elapsed. Turn on. As a result, the rate of delay time during turn-off can be reduced while suppressing an increase in switching frequency, so distortion of the input current waveform can be reduced and a decrease in power factor can be prevented.
  • FIG. 1 is a circuit configuration diagram of a light source lighting device according to a first embodiment.
  • FIG. 5 is a waveform chart showing an operation in a steady state of the light source lighting device according to Embodiment 1.
  • FIG. 6 is a waveform diagram showing a power factor improvement operation of the light source lighting device according to Embodiment 1. It is a wave form diagram of the voltage between drain sources, and the electric current of an inductor. It is a wave form diagram which shows that oscillating current was superimposed on inductor current. It is a flowchart which shows the sequence of a process. It is a figure which shows the update timing of on time. It is a block diagram of a control part realized by hardware. It is a block diagram of a control part realized by software. FIG.
  • FIG. 13 is a diagram showing correspondence between a light source current and an off time of a switching element according to the second embodiment. It is a figure which shows the operation
  • FIG. 7 is a cross-sectional view of a lighting fixture according to Embodiment 3.
  • a light source lighting device and a lighting fixture according to an embodiment of the present invention will be described with reference to the drawings.
  • the same or corresponding components may be assigned the same reference numerals and repetition of the description may be omitted.
  • FIG. 1 is a circuit diagram of a light source lighting device 100 according to a first embodiment of the present invention.
  • the light source lighting device 100 receives the supply of power from the AC power supply 1 to light the light source 9.
  • a configuration in which the light source 9 is added to the light source lighting device 100 is referred to as a lighting fixture.
  • the light source 9 of the first embodiment is not particularly limited, but is, for example, a light emitting diode (LED).
  • the light source lighting device 100 includes a rectifier circuit 2, a power factor correction circuit 3, a DC-DC converter 4, a controller 5, a DC-DC converter controller 7, and a dimming signal interface 8.
  • the rectifier circuit 2 rectifies AC power. Specifically, the AC voltage input from the AC power supply 1 is full-wave rectified. The full-wave rectified voltage is not smoothed during the operation of the power factor correction circuit 3 and becomes a ripple voltage including a frequency twice that of the AC power supply 1.
  • a power factor improvement circuit 3 is connected to the rectifier circuit 2.
  • the power factor correction circuit 3 includes a filter capacitor C1, an inductor L1, for example, a switching element SW1 formed of a MOSFET, a diode D1, and a smoothing capacitor C2.
  • the power factor correction circuit 3 is a boost chopper circuit configured by these circuit elements. That is, in order to supply a direct current to the light source 9 through the DC-DC converter 4, the power factor improvement circuit 3 charges and discharges energy with the switching element SW1 and the inductor L1 to generate a desired DC voltage. That is, the power factor correction circuit 3 includes the switching element SW1 and the inductor L1, receives the output of the rectifier circuit 2, and outputs a DC voltage.
  • a detection winding L2 is magnetically coupled to the inductor L1. That is, the detection winding L2 is provided in the inductor L1. Specifically, it is preferable to wind the detection winding L2 around a ferromagnetic material around which the inductor L1 winds.
  • the detection winding L2 detects a voltage generated in the inductor L1.
  • the power factor correction circuit 3 includes a power supply voltage detection unit R1 and an output voltage detection unit R2.
  • the power supply voltage detection unit R1 is a voltage dividing circuit that divides a power supply voltage by two resistance elements connected in series.
  • the output voltage detection unit R2 is a voltage dividing circuit that divides the output voltage of the power factor correction circuit 3 by two resistance elements connected in series.
  • a DC-DC converter 4 for supplying a current to the light source 9 is connected to the output of the power factor correction circuit 3.
  • the power factor improvement circuit 3 operates under the control of the control unit 5.
  • the power factor correction circuit 3 boosts the voltage full-wave rectified by the rectification circuit 2 and smoothes the DC voltage. Further, the power factor improvement circuit 3 operates so that the input current waveform has a sine wave shape and the same phase as the voltage of the AC power supply 1 under the control of the control unit 5, and performs the power factor improvement.
  • the control unit 5 drives the switching element SW1.
  • the control unit 5 includes an output voltage detection unit 5a, a drive unit 5b, a delay time setting unit 5c, a power supply voltage detection unit 5d, and an oscillating voltage detection unit 5e.
  • the control unit 5 determines that the voltage of the smoothing capacitor C2, which is the output voltage of the power factor correction circuit 3, is a preset voltage value, and the input current waveform of the light source lighting device 100 has substantially the same phase and sine wave as the voltage of the AC power supply 1.
  • the switching element SW1 is driven such that
  • Output voltage detection unit 5a is a signal generated in output voltage detection unit R2 formed of a voltage dividing resistor provided inside power factor correction circuit 3, and target signal E1 corresponding to the output voltage target value of power factor improvement circuit 3. And a signal corresponding to the difference between the two.
  • the driver 5b receives the signal from the output voltage detector 5a, determines the on time of the switching element SW1, and drives the switching element SW1.
  • the control unit 5 receives the voltage detected by the detection winding L2.
  • the voltage generated in the detection winding L2 is converted by the oscillating voltage detection unit 5e and input to the delay time setting unit 5c.
  • the delay time setting unit 5c counts the number of oscillations until the oscillation voltage input via the oscillation voltage detection unit 5e falls a predetermined number of times. At this time, the delay time setting unit 5c continues the off state of the switching element SW1.
  • delay time setting unit 5c When the oscillating voltage falls by a predetermined number of times, delay time setting unit 5c outputs a command to further continue turning off of switching element SW1 for a predetermined delay time from that point to driving unit 5b. When the delay time passes, the delay time setting unit 5c turns on the switching element SW1 via the drive unit 5b.
  • the dimming controller 10 is provided outside the light source lighting device 100 in order to control the brightness of the light source 9.
  • a dimming signal from the dimming controller 10 is read by the dimming signal interface 8.
  • the dimming signal interface 8 outputs a signal corresponding to the target current value to the DC-DC converter control unit 7 and the delay time setting unit 5c.
  • the delay time setting unit 5c determines the number of falling times and the delay time of the above-mentioned oscillating voltage in accordance with the target current value signal output from the dimming signal interface 8.
  • the power supply voltage detection unit 5d detects the full-wave rectified voltage divided by the power supply voltage detection unit R1 and detects the phase of the power supply voltage.
  • the power supply voltage detection unit 5d updates the ON time of the switching element SW1 according to the state of the output voltage when the power supply voltage phase determined in advance, for example, near the zero cross point.
  • the on-time of the switching element SW1 is updated once in a half cycle of the AC power supply voltage, and the on-time of the previous updating is maintained in the other periods.
  • the DC-DC converter 4 is driven by a DC-DC converter control unit 7.
  • the DC-DC converter 4 receives the target current value signal output from the dimming signal interface 8 and is constant current feedback controlled so that the light source current becomes the target current value.
  • the detailed configuration of the DC-DC converter 4 is not shown, but any known DC-DC converter can be employed.
  • the DC-DC converter 4 can be configured by a step-down chopper circuit or a flyback converter.
  • the rectifier circuit 2 full-wave rectifies the inputted AC voltage, and the rectified voltage is applied to both ends of the filter capacitor C1.
  • the filter capacitor C1 is provided for the purpose of removing switching ripples, and is not for smoothing the power supply frequency component of the full-wave rectified waveform here. Therefore, the voltage across the filter capacitor C1 during the operation of the power factor correction circuit 3 is a full-wave rectified voltage that pulsates sinusoidally at a frequency twice that of the AC power supply frequency.
  • the operation of the power factor correction circuit 3 in the steady operation state will be described.
  • the switching element SW1 is turned on by the drive unit 5b, a full-wave rectified voltage is applied to the inductor L1, current is supplied from the power supply side through the path of the inductor L1 and the switching element SW1, and energy is stored in the inductor L1. At this time, the current of the inductor L1 increases.
  • the switching element SW1 When the on time of the switching element SW1 set by the drive unit 5b elapses, the switching element SW1 is turned off. When the switching element SW1 is turned off, the energy stored in the inductor L1 is released, and current flows in the order of the inductor L1, the diode D1, and the smoothing capacitor C2. Thereby, the smoothing capacitor C2 is charged. By thus transferring energy, the DC-DC converter 4 supplies a current to the light source 9 with the voltage charged in the smoothing capacitor C2 as an input.
  • FIG. 2 is a waveform diagram showing an operation in a steady state of the light source lighting device 100 according to the first embodiment of the present invention. The operation of the control unit 5 will be described with reference to the waveform diagram of FIG.
  • the current of the inductor L1 increases during this period, the current flowing to the switching element SW1 also increases.
  • the voltage VL1 is applied to the inductor L1 in the direction of the arrow in FIG. 1, and therefore, a voltage VL2 is generated in the direction of the arrow on the detection winding L2.
  • Both arrows mean that the potential is higher on the end point side than on the start point side. Therefore, a negative voltage is input from the detection winding L2 to the oscillating voltage detection unit 5e.
  • the oscillating voltage detection unit 5e converts a voltage generated in the detection winding L2 into a voltage or the like suitable for inputting to the delay time setting unit 5c.
  • the oscillating voltage detection unit 5e is configured by a circuit for waveform shaping or the like so that a negative voltage or an overvoltage is not input to the microcomputer. As shown in FIG. 2, preferably, the oscillating voltage detection unit 5 e outputs an oscillating voltage signal Vs in which the negative voltage is cut.
  • Time t2 is a time at which the inductor current IL1 becomes zero.
  • the diode D1 is turned off, and a resonant operation occurs between the inductor L1 and the interelectrode capacitance of the switching element SW1.
  • This resonant operation generates an oscillating voltage in the inductor L1.
  • an oscillating voltage is also generated in the detection winding L2.
  • the voltage generated in the detection winding L2 is input to the delay time setting unit 5c via the oscillating voltage detection unit 5e.
  • the delay time setting unit 5c counts the number of falling of the oscillating voltage output from the oscillating voltage detection unit 5e.
  • the number of falling of the oscillating voltage counted by the delay time setting unit 5c is not particularly limited as long as it is at least two, but here, the case of counting twice will be described.
  • the delay time setting unit 5c maintains the off state of the switching element SW1 while counting the number of falling times of the oscillating voltage.
  • the delay time setting unit 5c further maintains the switching element SW1 in the OFF state for a predetermined delay time from that point on.
  • the delay time setting unit 5c starts counting the delay time from that point.
  • a period from when the switching element SW1 is turned off to when the falling of the oscillating voltage reaches a predetermined number of times is referred to as a first off period.
  • the delay time provided after the first off period is the second off period.
  • the delay time setting unit 5c gives the drive unit 5b an instruction signal to turn on the switching element SW1 when the delay time has elapsed. Then, the drive unit 5b turns on the switching element SW1 to turn on the switching element SW1. Thus, the next switching cycle is started.
  • the delay time is preset so that the switching element SW1 is turned on at a position where the drain-source voltage Vds of the switching element SW1 is at the bottom of the vibration. This can reduce switching loss and noise.
  • the control of the charging voltage of the smoothing capacitor C2, which is the output voltage of the power factor correction circuit 3, will be described. If the voltage generated by the output voltage detection unit R2 is higher than the target signal E1, the output voltage detection unit 5a outputs, to the drive unit 5b, a signal that shortens the on time of the switching element SW1. In response to this, the drive unit 5b reduces the on time of the switching element SW1 and reduces the output voltage of the power factor correction circuit 3.
  • the output voltage detection unit 5a outputs a signal that increases the on time of the switching element SW1 to the drive unit 5b.
  • the drive unit 5b increases the on time of the switching element SW1 and increases the output voltage of the power factor correction circuit 3.
  • the drive unit 5b receives the signal from the output voltage detection unit 5a and updates the on time of the switching element SW1.
  • the power supply voltage detection unit 5d detects the timing when the power supply voltage phase is near the zero cross, and the drive unit 5b receives this phase detection signal from the power supply voltage detection unit 5d, and switching elements at that timing. It is preferable to update the on time of SW1.
  • the on time of the switching element SW1 becomes short.
  • the energy discharge time of the inductor L1 is also shortened, so that the switching frequency is increased.
  • An increase in switching frequency causes negative effects such as an increase in switching loss. Therefore, in the present embodiment, in order to suppress the rise of the switching frequency, at the time of light load, the number of falling times of the oscillating voltage of detection winding L2 reaches a predetermined number, and thereafter, until the delay time elapses, The switching element SW1 is turned off. Therefore, an increase in switching frequency can be suppressed.
  • FIG. 3 is a waveform diagram showing a power factor improvement operation of the light source lighting device 100 according to the first embodiment of the present invention.
  • the switching element SW1 When the switching element SW1 is turned on, the current IL1 of the inductor L1 is proportional to the instantaneous value E of the full-wave rectified voltage and inversely proportional to the inductance of the inductor L1, and the slope of E / L1 is approximately proportional to the on time It will rise linearly.
  • the on time t (ON) of the switching element SW1 during a half cycle of the AC power supply becomes a fixed value. That is, the plurality of switchings of the switching element SW1 performed in the half cycle period of the AC power supply have the same on time. Therefore, when the full-wave rectified AC power supply 1 is operated for a half cycle of the waveform of the AC power supply 1, the inductance of the inductor L1 has a constant value, and the peak value of the current of the inductor L1 in each switching cycle is proportional to the power supply voltage. Therefore, as shown in FIG. 3, the envelope of the peak value has a sinusoidal waveform.
  • the input current flowing from the AC power supply 1 can be made closer to a sine wave and can be made approximately in phase with the AC power supply voltage. Therefore, the power factor can be improved and the harmonics can be reduced.
  • a filter circuit may be added to the AC input side of the rectifier circuit 2 as necessary.
  • the power factor can be improved and the harmonics can be reduced by setting the on time t (ON) of the switching element SW1 to a constant value during a half cycle of the AC power supply.
  • distortion may be generated in the input current waveform only by setting the on time to a constant value in a half cycle of the AC power supply, and the power factor may not be improved, so the principle in such a case will be described.
  • FIG. 4 is a diagram showing waveforms of the drain-source voltage Vds and the current IL1 of the inductor L1 when the switching element SW1 is turned on near the voltage zero cross of the AC power supply.
  • FIG. 5 is a diagram showing Vds and IL1 when the switching element SW1 is turned on near the voltage peak of the AC power supply. In FIGS. 4 and 5, td indicates the off period of the switching element SW1. From FIGS.
  • switching element SW1 when the switching element SW1 can be turned on near the voltage zero cross of the AC power supply, it is possible to prevent the oscillation current from being superimposed on the current IL1 of the inductor L1. It can be seen that the oscillating current is superimposed on the current IL1 when the In order to avoid a decrease in power factor, switching element SW1 is turned on at the same oscillation current timing in the half cycle of the AC power supply, or desirably switching current is not superimposed on current IL1 of inductor L1 at the timing The element SW1 has to be turned on.
  • the inter-electrode capacitance of the switching element SW1 depends on the drain-source voltage, and in a general MOSFET, the inter-electrode capacitance decreases as the drain-source voltage increases. Therefore, since the voltage applied between the drain and the source differs according to the phase of the AC power supply, the oscillation period of the oscillating voltage also differs according to the phase. Specifically, the oscillation period is shorter in the vicinity of the power supply voltage peak than in the vicinity of the power supply voltage zero cross.
  • the delay time is also a constant value in the AC power supply half cycle as in the on time of the switching element SW1
  • the delay time becomes longer, so the delay time becomes susceptible to the fluctuation of the oscillation cycle as described above. That is, since the delay time is long in the comparative example, the oscillating current is likely to be superimposed on the current IL1 of the inductor L1. Therefore, as in the comparative example, when the switching element SW1 is turned on after the first oscillation voltage fall is detected and a predetermined delay time elapses therefrom, the input current waveform is distorted and the power factor is lowered. Do.
  • control unit 5 sets a predetermined delay after the elapse of the first off period until the oscillating voltage of detection winding L2 falls at least twice after switching element SW1 is turned off.
  • the off state of the switching element SW2 is continued until the second off period, which is time, elapses.
  • the switching element SW1 is turned on. That is, under the condition that the drive frequency at the time of light load increases, the number of falling times of the oscillating voltage is counted as the off period of switching element SW1 necessary to suppress the increase in switching frequency.
  • a period is set which is the sum of the time until reaching the set number of times and the delay time.
  • the delay time can be shortened, and the influence of the fluctuation of the vibration cycle can be reduced.
  • the first off period can be provided long enough by counting the falling of the oscillating voltage twice or more, it is susceptible to the fluctuation of the oscillating cycle, and the ratio of the delay time fixed at the power supply half cycle Can be made smaller. Therefore, speaking quantitatively, it is preferable to make the first off period longer than the second off period.
  • the settable off period depends on the oscillation cycle, so the setting freedom is It is small and can not be set to any frequency. Therefore, as described in the first embodiment, it is necessary to add a second off period, which is a delay time, to the first off period.
  • a limit value occurs in setting the off period only by the falling count of the oscillating voltage. That is, when the oscillating voltage is attenuated, a trigger signal for turning on the switching element next time can not be obtained.
  • the off period of the switching element SW1 can be freely set according to the load.
  • the control unit 5 can set the change timing of the on time of the switching element involved in the constant voltage feedback control of the DC voltage to be near the zero cross of the AC power supply. Therefore, the on time of the switching element SW1 may be updated every half cycle of the AC power supply, and this can be made a constant value in the other periods.
  • control unit 5 can set the second off period to a substantially fixed value.
  • control unit 5 can be configured by an inexpensive microcomputer having a low calculation processing speed.
  • the control unit 5 sets the on time of the switching element SW1 to a substantially fixed value at least during a half cycle of the AC power supply. That is, in order to improve the power factor, the on time of the switching element SW1 is updated every half cycle of the AC power supply. The purpose is to prevent the on time of the switching element SW1 from largely fluctuating at least during a half cycle of the AC power supply. If the on time of the switching element SW1 does not greatly fluctuate during the half cycle of the AC power supply, the method of updating the on time may be changed.
  • the response speed of feedback control for maintaining the output voltage at a desired voltage may be set to a sufficiently low speed so as not to largely fluctuate between power supply half cycles of the AC power supply. That is, although the on time of the switching element SW1 is changed between the half cycles of the AC power supply, the amount of change is sufficiently reduced.
  • the loop gain of feedback control is set to be equal to or less than one-half (0 dB) in one-half or more cycles of the AC power supply 1.
  • the frequency is set to be less than or equal to one time (0 dB) at a frequency equal to or less than twice the frequency of the AC power supply 1.
  • constant voltage feedback control is performed by setting the loop gain of constant voltage feedback control to 1 or less (0 dB) or less in that half cycle, that is, 100 Hz or less corresponding to a half wave. Set to not respond in a cycle shorter than 1/2.
  • the variation of the on-time t (ON) of the switching element SW1 can be suppressed within a half cycle of the power supply cycle, and the same effect can be obtained.
  • a microcomputer with a low processing speed can be used.
  • the number of falling of the oscillating voltage detected in the first off period and the delay time which is the second off period may be variable according to the load or the power supply voltage.
  • the off period of the switching element SW1 can be increased as the driving frequency is increased.
  • the power supply voltage is not AC 100 V input but AC 200 V input, at least one of the number of falling of the oscillating voltage detected in the first off period and the delay time as the second off period is increased.
  • FIG. 6 is a flowchart of processing performed inside the control unit 5 when the control unit 5 is configured by a microcomputer.
  • step S1 the control unit 5 turns on the switching element SW1.
  • step S2 the count value of the oscillating voltage signal is reset in step S2, and the count value of the delay time is reset in step S3.
  • step S4 it is determined whether the on time of the switching element SW1 has reached a specified value. If the on time has reached the specified value, the switching element SW1 is turned off in step S5.
  • step S6 counting of the number of falling of the oscillating voltage signal is started. In the first embodiment, the falling of the oscillating voltage is detected twice or more.
  • step S7 it is determined whether the number of falling times of the oscillating voltage has reached a specified number. If the number of falling times has reached the specified number, counting of delay times is started in step S8.
  • step S9 it is determined whether the count value of the delay time has reached a specified time. If the delay time has reached a specified time, the process returns to step S1 and the switching element SW1 is turned on again.
  • the number of times of oscillation of the oscillating voltage becomes a predetermined number, and thereafter a predetermined delay time elapses. , And maintain the off state of the switching element SW1. Thereby, the rise of the drive frequency can be suppressed while suppressing the harmonics.
  • the timing at which the on-time of the switching element SW1 is updated is set, for example, near the zero cross at every half cycle of the power supply, and is set to a fixed value in the other periods. Therefore, the processing load of the control unit 5 can be significantly reduced.
  • the on time of the switching element SW1 is the same time within a half cycle of the AC power supply, but the switching element SW1 may be driven with the on time of a specific pattern.
  • the power factor correction circuit 3 includes the filter capacitor C1 for the purpose of removing switching ripples.
  • the filter capacitor C1 when the filter capacitor C1 is provided, the input current is slightly advanced in phase with respect to the power supply voltage, which causes the power factor decrease. . Therefore, in order to correct this, for example, the on time of the switching element SW1 may be temporally changed in the pattern shown in FIG.
  • the on-time for feedback control of the output voltage is updated every half cycle of the power supply, for example, near the zero cross, so the processing load on the control unit 5 is significantly reduced. it can.
  • the on-time is updated, for example, as shown in FIG. 7, the on-time is increased or decreased while maintaining the tendency of the specific pattern.
  • the control unit 5 may be realized by hardware or software using a microcomputer. At least a part of the control unit 5 may be configured by a microcomputer.
  • FIG. 8 is a block diagram showing the control unit 5 implemented by hardware.
  • the output voltage detection unit 5a, the power supply voltage detection unit 5d, and the vibration voltage detection unit 5e of FIG. 1 are the receiving device 20 of FIG.
  • the respective functions of the drive unit 5b and the delay time setting unit 5c of FIG. 1 are realized by the processing circuit 22 of FIG.
  • the processing circuit 22 is dedicated hardware.
  • the processing circuit 22 corresponds to, for example, a single circuit, a complex circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • Each function of the drive unit 5b and the delay time setting unit 5c may be realized by the processing circuit 22, or the function of each unit may be realized by the processing circuit 22.
  • FIG. 9 is a block diagram showing the control unit 5 implemented by software.
  • the output voltage detection unit 5a, the power supply voltage detection unit 5d, and the oscillating voltage detection unit 5e of FIG. 1 are the receiving device 30 of FIG.
  • the processing circuit is a CPU
  • each function of the drive unit 5b and the delay time setting unit 5c in FIG. 1 is realized by software, firmware, or a combination of software and firmware.
  • the software or firmware is written as a program and stored in the memory 34.
  • the processor 32 which is a processing circuit, reads out and executes the program stored in the memory 34 to realize the functions of the respective units. That is, there is a memory 34 for storing a program that results in the operations described in the flowchart of FIG. 6 and the first embodiment.
  • the memory corresponds to, for example, non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD.
  • RAM random access memory
  • ROM read-only memory
  • flash memory EPROM
  • EEPROM electrically erasable programmable read-only memory
  • magnetic disk magnetically readable media
  • flexible disk magnetically readable media
  • optical disk magnetic disk
  • compact disk compact disk
  • mini disk DVD
  • a part of each function of drive unit 5b and delay time setting unit 5c may be realized by dedicated hardware and a part may be realized by software or firmware.
  • substantially fixed used in the present embodiment does not mean that a certain value is strictly fixed, but is fixed in design. Therefore, the change of a certain value due to an actual operation error or measurement error is included in the term substantially fixed.
  • the switching element SW1 may be formed of Si or a wide band gap semiconductor.
  • the switching frequency can be increased.
  • the wide band gap can be increased to, for example, 500 kHz.
  • the upper limit of the switching frequency is high, the upper limit of the frequency to which the current critical mode can be applied can be increased to reduce the load on the microcomputer.
  • the light source lighting device and the lighting apparatus according to the second embodiment differ from the light source lighting device according to the first embodiment in the operation of the control unit 5 during light adjustment in order to cope with a wide load fluctuation.
  • FIG. 10 is a diagram showing the correspondence between the light source current and the off period of the switching element SW1 according to the second embodiment.
  • the off period of the switching element SW1 is the sum of the first off period for detecting the falling of the oscillating voltage and the second off period which is a predetermined delay time.
  • the number of falling of the oscillating voltage detected in the first off period is gradually increased in order to suppress the frequency rise.
  • FIG. 10 shows that as the light source current decreases, the number of falling of the oscillating voltage detected in the first off period increases every two to five times. As the number of falling of the oscillating voltage increases, the off period of the switching element SW1 increases. At this time, the delay time can be made approximately constant.
  • the further decrease of the light source current corresponds to the increase of the delay time.
  • the progress of the delay time is prioritized and the oscillating voltage signal is ignored even if the falling of the next oscillating voltage is detected. That is, when the upper limit of the number of falling times set in advance is reached, the counting of the number of falling times is not necessary.
  • FIG. 11 is an operation waveform in the case where the upper limit number of falling times of the oscillating voltage is set to three and the delay time is set after the number of falling times reaches the upper limit.
  • the current IL1 of the inductor L1 decreases and reaches zero.
  • the number of falling times of the oscillating voltage from the detection winding L2 is counted in a period from time t2 to time t3. From the set light source current value, it is possible to set the upper limit of the number of fallings and the delay time by, for example, referring to a table by a program of a microcomputer constituting the control unit 5 or the like.
  • the number of falling times and the delay time are set three times.
  • the number of falling times of the oscillating voltage of the detection winding L2 reaches three times at time t3.
  • the delay time count starts from time t3 and reaches the delay time set at time t4.
  • the off state of the switching element SW1 is maintained from time t1 to time t4.
  • the switching element SW1 is turned on when the set delay time is reached, so there is no problem. Conversely, it is desirable that the upper limit value of the number of falling times be set to the maximum value within the range in which the oscillating voltage can be detected.
  • the switching element SW1 is turned on again, and the next switching cycle is started. As described above, since the period from time t2 to t4 is set according to the light source current, it is possible to suppress an increase in frequency.
  • the control unit 5 increases the number of falling times of the oscillating voltage detected in the first off period as the load power decreases, thereby lengthening the off period of the switching element SW1.
  • An upper limit is provided for the number of falling of the oscillating voltage detected in the first off period.
  • the control unit 5 lengthens the second off period if the load power is further reduced.
  • variable width of the light source current is large, the adjustment range of the brightness of the light source can be widely set, and wide load fluctuation can be coped with.
  • the delay time it is desirable to set the delay time so that the next on-timing comes in the vicinity of the bottom of the oscillation of the voltage between the drain and the source of the switching element SW1.
  • the delay time can be minimized, and the influence of the fluctuation of the oscillating cycle of the oscillating voltage due to the voltage phase of the AC power supply can be reduced. That is, it is possible to minimize the occurrence of distortion in the input current waveform by superimposing the oscillating current on the current IL1 of the inductor L1.
  • the off period of the switching element SW1 is set according to the light source current.
  • the frequency rises so the same control may be performed, for example, when the voltage applied to the light source decreases and the load becomes light.
  • the number of oscillations or the delay time of the oscillating voltage may be increased, or the voltage applied to the light source 9 and the light source
  • the product of the current may be calculated, the load power may be calculated, and the number of oscillations or the delay time of the oscillating voltage may be adjusted according to the load power.
  • the number of oscillations and the delay time of the oscillation voltage may be adjusted according to the AC power supply voltage.
  • the power factor correction circuit 3 may be operated by switching to the normal current critical mode control.
  • the number of falling of the oscillating voltage detected in the first off period is increased as the light source current decreases, and the delay time is increased when the light source current decreases.
  • the control unit 5 lengthens the second off period while fixing the number of falling of the oscillating voltage detected in the first off period as the load power decreases.
  • the off period of the switching element SW1 can be extended while solving the problem that the falling of the oscillating voltage can not be detected when the oscillating voltage is small. Furthermore, even if the delay time is increased when the oscillating voltage is small, the current superimposed on the current of the inductor L1 is small, so there is almost no problem.
  • FIG. 12 is a cross-sectional view of the lighting fixture 200 according to the third embodiment.
  • the lighting fixture 200 includes a lighting fixture body 40, a connector 41, a light source substrate 42, and a light source lighting device 43.
  • the lighting device main body 40 is a housing for attaching the light source lighting device 43 and the like.
  • the connector 41 is a connection unit for receiving supply of power from an AC power supply such as a commercial power supply.
  • the light source substrate 42 is a substrate on which a light source such as an LED or an organic EL is mounted.
  • the circuit configuration of the light source lighting device 43 is the same as that of any of the light source lighting devices described above. Therefore, the lighting fixture 200 of Embodiment 3 is provided with the above-mentioned light source lighting device, and LED or organic EL which the light source lighting device makes it light.
  • the light source lighting device 43 receives power supply from an AC power supply via the connector 41 and the wiring 44.
  • the light source lighting device 43 converts the input power and supplies the converted power to the light source substrate 42 through the wiring 45.
  • the power supplied from the light source lighting device 43 causes the light source mounted on the light source substrate 42 to light.
  • the lighting fixture 200 provided with the advantage of the light source lighting device according to the first or second embodiment is provided.
  • this lighting fixture 200 by providing any one of the light source lighting devices described in Embodiment 1 or 2, it is possible to suppress the increase in switching loss and the light source flicker due to the increase in switching frequency.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

The invention is characterized by including a rectifier circuit for rectifying an alternating current power source, a power factor correction circuit into which the output from the rectification circuit enters and from which a direct current voltage exits that has a switching element and an inductor, a detector coil for detecting the voltage arising at the inductor, and a control unit into which the voltage detected by the detector coil is input and which drives the switching element, wherein after a first off-period has elapsed, from when the switching element has been turned-off to when the oscillation voltage of the detector coil has dropped at least twice, the control unit maintains the off-state of the switching element until a pre-defined second off-period elapses, and, after the second off-period has elapsed, turns-on the switching element.

Description

光源点灯装置、照明器具Light source lighting device, lighting equipment
 この発明は光源点灯装置とそれを用いた照明器具に関する。 The present invention relates to a light source lighting device and a luminaire using the same.
 従来、例えば発光ダイオードなどの発光素子を点灯させるための各種の光源点灯装置が知られている。この種の光源点灯装置は、商用交流電源を整流および平滑して直流電圧を生成するAC-DC変換回路と、その変換回路から得られた直流電圧から発光ダイオードに最適な電流を供給するDC-DCコンバータを備える。多くの照明器具においては高力率が要求される。そのため、特許文献1に示すように、昇圧チョッパ形の力率改善回路をAC-DC変換回路として用い、DC-DCコンバータに降圧チョッパ回路を用いた2コンバータ方式が広く採用されている。 Conventionally, various light source lighting devices for lighting light emitting elements such as light emitting diodes are known. This type of light source lighting device comprises an AC-DC conversion circuit that rectifies and smoothes commercial AC power to generate a DC voltage, and DC- that supplies an optimal current to a light emitting diode from the DC voltage obtained from the conversion circuit. It has a DC converter. A high power factor is required in many luminaires. Therefore, as shown in Patent Document 1, a two-converter system using a step-up chopper type power factor improvement circuit as an AC-DC conversion circuit and a step-down chopper circuit as a DC-DC converter is widely adopted.
 この場合、特許文献2の明細書段落0085に記載のとおり、昇圧チョッパ形の力率改善回路を電流臨界モードで動作させることが一般的である。電流臨界モードとは、スイッチング素子がオフとなった後、チョークコイルの電流がゼロになったことを検出するゼロ電流検出を行い、ゼロ電流検出後、直ちに次のスイッチングを開始するものである。電流臨界モードでは、光源の明るさを調節する調光機能により光源の明るさを暗くすると軽負荷となるためスイッチング素子のオン、オフ時間が短くなりスイッチング周波数が上昇する。これに伴ってスイッチング損失が増大したり、スイッチング素子が駆動できる限界の周波数を超えたりして、回路動作が不安定となる。その結果、力率の低下及び光源のちらつきが発生する問題がある。 In this case, as described in paragraph 0085 of the specification of Patent Document 2, it is general to operate the step-up chopper type power factor correction circuit in the current critical mode. In the current critical mode, zero current detection is performed to detect that the current of the choke coil has become zero after the switching element is turned off, and the next switching is started immediately after the zero current detection. In the current critical mode, when the brightness of the light source is reduced by the dimming function to adjust the brightness of the light source, the load is light and the on / off time of the switching element is shortened and the switching frequency is increased. Along with this, the switching loss is increased or the frequency of the switching element can be exceeded, which causes the circuit operation to become unstable. As a result, there is a problem that a decrease in power factor and flicker of a light source occur.
 そこで、特許文献3には、スイッチング素子のオンするタイミングを遅らせて電流不連続モードで動作させることにより、スイッチング周波数の上昇を抑制し安定的に動作させる方法が開示されている。 Therefore, Patent Document 3 discloses a method of suppressing the rise of the switching frequency and operating stably by delaying the timing of turning on the switching element and operating in the current discontinuous mode.
日本特開2010-040400号公報Japanese Unexamined Patent Publication No. 2010-040400 日本特開2001-313423号公報Japanese Patent Application Laid-Open No. 2001-313423 日本特開2016-119830号公報Japanese Patent Application Laid-Open No. 2016-119830
 特許文献3の明細書段落0039~0043には電流不連続モードによる周波数低減動作が開示されている。具体的には、ゼロ電流検出器の出力信号の入力タイミングを基準として、負荷状態を示す制御信号に応じた遅延時間を経てスイッチング素子のターンオンタイミングが制御され、軽負荷時における周波数低減制御が実行される。 In the specification paragraphs 0039 to 0043 of Patent Document 3, the frequency reduction operation by the current discontinuous mode is disclosed. Specifically, based on the input timing of the output signal of the zero current detector, the turn-on timing of the switching element is controlled through the delay time corresponding to the control signal indicating the load state, and the frequency reduction control at light load is executed. Be done.
 特許文献3に記載された電流不連続モード制御は、ゼロ電流検出器の出力信号の入力タイミングを基準として予め定められた遅延時間が経過した後にスイッチング素子をターンオンするものである。スイッチング素子がオフとなっている遅延時間中は、力率改善回路のインダクタとスイッチング素子の電極間の浮遊容量により共振動作が生じる。この共振動作に伴ってスイッチング素子には微小な振動電流が流れる。予め定められた遅延時間が経過し、スイッチング素子がターンオンする際、この振動電流がインダクタ電流に重畳する。 The current discontinuous mode control described in Patent Document 3 turns on the switching element after a predetermined delay time has elapsed with reference to the input timing of the output signal of the zero current detector. During the delay time in which the switching element is off, the stray capacitance between the inductor of the power factor correction circuit and the electrode of the switching element causes resonant operation. With this resonance operation, a minute oscillating current flows through the switching element. When a predetermined delay time has elapsed and the switching element is turned on, this oscillating current is superimposed on the inductor current.
 スイッチング素子として例えばMOSFETを使用した場合、電極間の浮遊容量はドレインソース間電圧に依存する。そのため、例えば交流電源電圧の位相角によりドレインソース間電圧が変化すると共振動作の周波数が変動する。そして、スイッチング素子のオン時間が交流電源の半周期間で略一定とすると、インダクタ電流に重畳する振動電流の値が電源の位相により異なってしまう。つまり、交流電源の半周期の期間中に、あるタイミングではインダクタ電流に大きな振動電流が重畳し、別のタイミングではインダクタ電流にほとんど振動電流が重畳しない。その場合、スイッチング素子のオン時間を略一定とすると、インダクタ電流と振動電流の合計のピーク値で示される包絡線が正弦波状とならず、力率が低下してしまう。 When, for example, a MOSFET is used as a switching element, the stray capacitance between the electrodes depends on the drain-source voltage. Therefore, for example, when the drain-source voltage changes due to the phase angle of the AC power supply voltage, the frequency of the resonant operation fluctuates. If the on time of the switching element is approximately constant during a half cycle of the AC power supply, the value of the oscillating current superimposed on the inductor current will differ depending on the phase of the power supply. That is, during the half cycle of the AC power supply, a large oscillating current is superimposed on the inductor current at a certain timing, and almost no oscillating current is superimposed on the inductor current at another timing. In this case, assuming that the on-time of the switching element is substantially constant, the envelope indicated by the peak value of the sum of the inductor current and the oscillating current does not become sinusoidal, and the power factor is lowered.
 このような力率低下を抑制するためには、スイッチング周期毎にスイッチング素子に流れる電流を監視し、インダクタ電流とそれに重畳する振動電流の合計のピーク値が正弦波状となるようにスイッチング素子のオン時間を制御しなければならない。例えばマイクロコンピュータでこのような制御を実現しようとすると、非常に短い間隔でオン時間を演算しなければならず、演算負担が大きい。 In order to suppress such a reduction in power factor, the current flowing through the switching element is monitored every switching cycle, and the switching element is turned on so that the peak value of the sum of the inductor current and the oscillating current superimposed thereon is sinusoidal. You have to control the time. For example, in order to realize such control with a microcomputer, it is necessary to calculate the on-time at very short intervals, which is computationally expensive.
 本発明は上述の問題を解決するためになされたものであり、簡易な制御方法でスイッチング素子のオフ期間を決めることができ、力率低下を抑制できる光源点灯装置および照明器具を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and it is possible to provide a light source lighting device and a luminaire which can determine the off period of the switching element by a simple control method and can suppress the reduction in power factor. To aim.
 本願の発明にかかる光源点灯装置は、交流電源を整流する整流回路と、スイッチング素子とインダクタとを有し、該整流回路の出力が入力され、直流電圧を出力する力率改善回路と、該インダクタで発生する電圧を検出する検出巻線と、該検出巻線で検出した電圧が入力され、該スイッチング素子を駆動させる制御部と、を備え、該制御部は、該スイッチング素子をオフしてから該検出巻線の振動電圧が少なくとも2回立下がるまでの第1オフ期間の経過後、予め定められた第2オフ期間が経過するまで該スイッチング素子のオフ状態を継続し、該第2オフ期間の経過後に該スイッチング素子をオンすることを特徴とする。 A light source lighting device according to the invention of the present application includes a rectifier circuit that rectifies AC power, a switching element and an inductor, a power factor improvement circuit that receives an output of the rectifier circuit and outputs a DC voltage, and the inductor And a control unit that receives the voltage detected by the detection winding and drives the switching element, and the control unit turns the switching element off. After the first off period until the oscillating voltage of the detection winding falls at least twice, the off state of the switching element is continued until the predetermined second off period elapses, and the second off period The switching element is turned on after the lapse of time.
 本願の発明にかかる照明器具は、交流電源を整流する整流回路と、スイッチング素子とインダクタとを有し、該整流回路の出力が入力され、直流電圧を出力する力率改善回路と、該インダクタで発生する電圧を検出する検出巻線と、該検出巻線で検出した電圧が入力され、該スイッチング素子を駆動させる制御部と、を備え、該制御部は、該スイッチング素子をオフしてから該検出巻線の振動電圧が少なくとも2回立下がるまでの第1オフ期間の経過後、予め定められた第2オフ期間が経過するまで該スイッチング素子のオフ状態を継続し、該第2オフ期間の経過後に該スイッチング素子をオンすることを特徴とする光源点灯装置と、該光源点灯装置が点灯させるLEDまたは有機ELと、を備えることを特徴とする。 A lighting fixture according to the invention of this application includes a rectifier circuit that rectifies an AC power supply, a switching element and an inductor, a power factor improvement circuit that receives an output of the rectifier circuit and outputs a DC voltage, and the inductor The control unit includes a detection winding that detects a voltage to be generated, and a control unit that receives the voltage detected by the detection winding and drives the switching element, and the control unit turns the switching element off before the control unit turns off the switching element. After lapse of the first off period until the oscillating voltage of the detection winding falls at least twice, the switching element continues to be in the off state until a predetermined second off period elapses, during the second off period. A light source lighting device characterized in that the switching element is turned on after lapse of time, and an LED or an organic EL which is turned on by the light source lighting device.
 本発明のその他の特徴は以下に明らかにする。 Other features of the present invention will be clarified below.
 この発明によれば、スイッチング素子のターンオフ後にインダクタの電流がゼロになってから生じる振動電圧の、少なくとも2回目以降の立下がりを検知した後、予め定めた遅延時間が経過してからスイッチング素子をオンする。これにより、スイッチング周波数の上昇を抑制しつつ、ターンオフ中の遅延時間の割合を小さくできるので、入力電流波形のひずみを軽減し力率低下を防止することができる。 According to the present invention, after detecting the second and subsequent falling of the oscillating voltage generated after the current of the inductor becomes zero after the switching element is turned off, the switching element is selected after a predetermined delay time has elapsed. Turn on. As a result, the rate of delay time during turn-off can be reduced while suppressing an increase in switching frequency, so distortion of the input current waveform can be reduced and a decrease in power factor can be prevented.
実施の形態1にかかる光源点灯装置の回路構成図である。FIG. 1 is a circuit configuration diagram of a light source lighting device according to a first embodiment. 実施の形態1にかかる光源点灯装置の定常状態における動作を示す波形図である。FIG. 5 is a waveform chart showing an operation in a steady state of the light source lighting device according to Embodiment 1. 実施の形態1にかかる光源点灯装置の力率改善動作を示す波形図である。FIG. 6 is a waveform diagram showing a power factor improvement operation of the light source lighting device according to Embodiment 1. ドレインソース間電圧とインダクタの電流の波形図である。It is a wave form diagram of the voltage between drain sources, and the electric current of an inductor. インダクタ電流に振動電流が重畳したことを示す波形図である。It is a wave form diagram which shows that oscillating current was superimposed on inductor current. 処理のシーケンスを示すフローチャートである。It is a flowchart which shows the sequence of a process. オン時間の更新タイミングを示す図である。It is a figure which shows the update timing of on time. ハードウェアで実現された制御部のブロック図である。It is a block diagram of a control part realized by hardware. ソフトウェアで実現された制御部のブロック図である。It is a block diagram of a control part realized by software. 実施の形態2に係る光源電流とスイッチング素子のオフ時間の対応を示す図である。FIG. 13 is a diagram showing correspondence between a light source current and an off time of a switching element according to the second embodiment. 振動電圧の上限立下り回数が3回の場合の動作波形を示す図である。It is a figure which shows the operation | movement waveform in case the upper limit fall frequency | count of oscillating voltage is 3 times. 実施の形態3に係る照明器具の断面図である。FIG. 7 is a cross-sectional view of a lighting fixture according to Embodiment 3.
 本発明の実施の形態に係る光源点灯装置と照明器具について図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。 A light source lighting device and a lighting fixture according to an embodiment of the present invention will be described with reference to the drawings. The same or corresponding components may be assigned the same reference numerals and repetition of the description may be omitted.
実施の形態1.
 図1は、本発明の実施の形態1にかかる光源点灯装置100の回路構成図である。光源点灯装置100は、交流電源1から電力の供給を受けて光源9を点灯させるものである。光源点灯装置100に光源9を加えた構成を照明器具という。実施の形態1の光源9は特に限定されないが例えばLED(Light Emitting Diode)である。光源点灯装置100は、整流回路2、力率改善回路3、DC-DCコンバータ4、制御部5、DC-DCコンバータ制御部7および調光信号インターフェース8を備えている。整流回路2は交流電源を整流する。具体的には、交流電源1から入力した交流電圧を全波整流する。この全波整流電圧は、力率改善回路3の動作中は平滑されず、交流電源1の2倍の周波数を含むリプル電圧となる。
Embodiment 1
FIG. 1 is a circuit diagram of a light source lighting device 100 according to a first embodiment of the present invention. The light source lighting device 100 receives the supply of power from the AC power supply 1 to light the light source 9. A configuration in which the light source 9 is added to the light source lighting device 100 is referred to as a lighting fixture. The light source 9 of the first embodiment is not particularly limited, but is, for example, a light emitting diode (LED). The light source lighting device 100 includes a rectifier circuit 2, a power factor correction circuit 3, a DC-DC converter 4, a controller 5, a DC-DC converter controller 7, and a dimming signal interface 8. The rectifier circuit 2 rectifies AC power. Specifically, the AC voltage input from the AC power supply 1 is full-wave rectified. The full-wave rectified voltage is not smoothed during the operation of the power factor correction circuit 3 and becomes a ripple voltage including a frequency twice that of the AC power supply 1.
 整流回路2には力率改善回路3が接続されている。力率改善回路3は、フィルタコンデンサC1、インダクタL1、例えばMOSFETで構成されるスイッチング素子SW1、ダイオードD1および平滑コンデンサC2を備えている。力率改善回路3は、これらの回路素子によって構成された昇圧チョッパ回路である。すなわち、力率改善回路3は、DC-DCコンバータ4を介して光源9に直流電流を供給するために、スイッチング素子SW1とインダクタL1でエネルギの充放電を行い所望の直流電圧を発生させる。つまり、力率改善回路3は、スイッチング素子SW1とインダクタL1とを有し、整流回路2の出力が入力され、直流電圧を出力するものである。 A power factor improvement circuit 3 is connected to the rectifier circuit 2. The power factor correction circuit 3 includes a filter capacitor C1, an inductor L1, for example, a switching element SW1 formed of a MOSFET, a diode D1, and a smoothing capacitor C2. The power factor correction circuit 3 is a boost chopper circuit configured by these circuit elements. That is, in order to supply a direct current to the light source 9 through the DC-DC converter 4, the power factor improvement circuit 3 charges and discharges energy with the switching element SW1 and the inductor L1 to generate a desired DC voltage. That is, the power factor correction circuit 3 includes the switching element SW1 and the inductor L1, receives the output of the rectifier circuit 2, and outputs a DC voltage.
 インダクタL1には検出巻線L2が磁気的に結合されている。つまり、インダクタL1に検出巻線L2が設けられている。具体的には、インダクタL1が巻きつく強磁性体に検出巻線L2を巻きつけることが好ましい。検出巻線L2はインダクタL1で発生する電圧を検出する。力率改善回路3は電源電圧検出部R1と出力電圧検出部R2を備えている。電源電圧検出部R1は直列接続された2つの抵抗素子で電源電圧を分圧する分圧回路である。出力電圧検出部R2は直列接続された2つの抵抗素子で力率改善回路3の出力電圧を分圧する分圧回路である。力率改善回路3の出力には、光源9に電流を供給するためのDC-DCコンバータ4が接続されている。 A detection winding L2 is magnetically coupled to the inductor L1. That is, the detection winding L2 is provided in the inductor L1. Specifically, it is preferable to wind the detection winding L2 around a ferromagnetic material around which the inductor L1 winds. The detection winding L2 detects a voltage generated in the inductor L1. The power factor correction circuit 3 includes a power supply voltage detection unit R1 and an output voltage detection unit R2. The power supply voltage detection unit R1 is a voltage dividing circuit that divides a power supply voltage by two resistance elements connected in series. The output voltage detection unit R2 is a voltage dividing circuit that divides the output voltage of the power factor correction circuit 3 by two resistance elements connected in series. A DC-DC converter 4 for supplying a current to the light source 9 is connected to the output of the power factor correction circuit 3.
 力率改善回路3は制御部5の制御を受けて動作するものである。力率改善回路3は、整流回路2が全波整流した電圧を昇圧して直流平滑する。さらに力率改善回路3は、制御部5の制御により入力電流波形を正弦波状でかつ交流電源1の電圧と同位相となるように動作し、力率改善を行う。 The power factor improvement circuit 3 operates under the control of the control unit 5. The power factor correction circuit 3 boosts the voltage full-wave rectified by the rectification circuit 2 and smoothes the DC voltage. Further, the power factor improvement circuit 3 operates so that the input current waveform has a sine wave shape and the same phase as the voltage of the AC power supply 1 under the control of the control unit 5, and performs the power factor improvement.
 制御部5はスイッチング素子SW1を駆動させる。制御部5は、出力電圧検出部5a、駆動部5b、遅延時間設定部5c、電源電圧検出部5dおよび振動電圧検出部5eを備えている。制御部5は、力率改善回路3の出力電圧である平滑コンデンサC2の電圧が予め設定された電圧値となり、光源点灯装置100の入力電流波形が交流電源1の電圧とほぼ同位相かつ正弦波となるように、スイッチング素子SW1を駆動する。 The control unit 5 drives the switching element SW1. The control unit 5 includes an output voltage detection unit 5a, a drive unit 5b, a delay time setting unit 5c, a power supply voltage detection unit 5d, and an oscillating voltage detection unit 5e. The control unit 5 determines that the voltage of the smoothing capacitor C2, which is the output voltage of the power factor correction circuit 3, is a preset voltage value, and the input current waveform of the light source lighting device 100 has substantially the same phase and sine wave as the voltage of the AC power supply 1. The switching element SW1 is driven such that
 出力電圧検出部5aは、力率改善回路3の内部に設けられた分圧抵抗からなる出力電圧検出部R2に発生する信号と、力率改善回路3の出力電圧目標値に相当する目標信号E1とを比較し、両者の差に応じた信号を出力する。駆動部5bは出力電圧検出部5aの信号を受けてスイッチング素子SW1のオン時間を決定し、スイッチング素子SW1を駆動する。 Output voltage detection unit 5a is a signal generated in output voltage detection unit R2 formed of a voltage dividing resistor provided inside power factor correction circuit 3, and target signal E1 corresponding to the output voltage target value of power factor improvement circuit 3. And a signal corresponding to the difference between the two. The driver 5b receives the signal from the output voltage detector 5a, determines the on time of the switching element SW1, and drives the switching element SW1.
 検出巻線L2には、スイッチング素子SW1がオフした後、インダクタL1とスイッチング素子SW1の電極間容量により発生する振動電圧に比例した電圧が発生する。制御部5には、検出巻線L2で検出した電圧が入力される。遅延時間設定部5cには、検出巻線L2で生じた電圧が振動電圧検出部5eで変換されて入力される。遅延時間設定部5cは、振動電圧検出部5eを介して入力される振動電圧が予め定められた回数だけ立下がるまでその振動回数をカウントする。この時、遅延時間設定部5cはスイッチング素子SW1のオフ状態を継続させる。遅延時間設定部5cは、振動電圧が予め定められた回数だけ立下がると、その時点から予め定められた遅延時間だけスイッチング素子SW1のオフをさらに継続させる指令を駆動部5bに出力する。その遅延時間が経過すると、遅延時間設定部5cは、駆動部5bを介してスイッチング素子SW1をオンする。 In the detection winding L2, after the switching element SW1 is turned off, a voltage proportional to the oscillating voltage generated by the interelectrode capacitance of the inductor L1 and the switching element SW1 is generated. The control unit 5 receives the voltage detected by the detection winding L2. The voltage generated in the detection winding L2 is converted by the oscillating voltage detection unit 5e and input to the delay time setting unit 5c. The delay time setting unit 5c counts the number of oscillations until the oscillation voltage input via the oscillation voltage detection unit 5e falls a predetermined number of times. At this time, the delay time setting unit 5c continues the off state of the switching element SW1. When the oscillating voltage falls by a predetermined number of times, delay time setting unit 5c outputs a command to further continue turning off of switching element SW1 for a predetermined delay time from that point to driving unit 5b. When the delay time passes, the delay time setting unit 5c turns on the switching element SW1 via the drive unit 5b.
 調光コントローラ10は光源9の明るさをコントロールするために光源点灯装置100の外部に設けられている。調光コントローラ10からの調光信号は調光信号インターフェース8で読み取られる。そして、調光信号インターフェース8は、目標電流値に相当する信号をDC-DCコンバータ制御部7及び遅延時間設定部5cへ出力する。遅延時間設定部5cは、調光信号インターフェース8から出力される目標電流値信号に応じて、前述の振動電圧の立下がり回数と遅延時間を決定する。 The dimming controller 10 is provided outside the light source lighting device 100 in order to control the brightness of the light source 9. A dimming signal from the dimming controller 10 is read by the dimming signal interface 8. Then, the dimming signal interface 8 outputs a signal corresponding to the target current value to the DC-DC converter control unit 7 and the delay time setting unit 5c. The delay time setting unit 5c determines the number of falling times and the delay time of the above-mentioned oscillating voltage in accordance with the target current value signal output from the dimming signal interface 8.
 電源電圧検出部5dは、電源電圧検出部R1により分圧した全波整流電圧を検出し、電源電圧の位相を検知する。電源電圧検出部5dは予め定めた電源電圧位相、例えばゼロクロス付近となると、スイッチング素子SW1のオン時間を出力電圧の状態に応じて更新する。本実施形態ではスイッチング素子SW1のオン時間を更新する周期は交流電源電圧の半周期に1回とし、それ以外の期間では前回更新時のオン時間を維持する。 The power supply voltage detection unit 5d detects the full-wave rectified voltage divided by the power supply voltage detection unit R1 and detects the phase of the power supply voltage. The power supply voltage detection unit 5d updates the ON time of the switching element SW1 according to the state of the output voltage when the power supply voltage phase determined in advance, for example, near the zero cross point. In the present embodiment, the on-time of the switching element SW1 is updated once in a half cycle of the AC power supply voltage, and the on-time of the previous updating is maintained in the other periods.
 DC-DCコンバータ4はDC-DCコンバータ制御部7により駆動される。DC-DCコンバータ4は、調光信号インターフェース8から出力される目標電流値信号を受けて、光源電流が目標電流値となるように定電流フィードバック制御される。DC-DCコンバータ4の詳細な構成は図示しないが、周知のあらゆるDC-DCコンバータを採用することができる。例えば、降圧チョッパ回路又はフライバックコンバータなどでDC-DCコンバータ4を構成することができる。 The DC-DC converter 4 is driven by a DC-DC converter control unit 7. The DC-DC converter 4 receives the target current value signal output from the dimming signal interface 8 and is constant current feedback controlled so that the light source current becomes the target current value. The detailed configuration of the DC-DC converter 4 is not shown, but any known DC-DC converter can be employed. For example, the DC-DC converter 4 can be configured by a step-down chopper circuit or a flyback converter.
 次に、実施の形態1にかかる光源点灯装置100の動作を説明する。光源点灯装置100に交流電源1が印加されると、整流回路2は入力された交流電圧を全波整流し、整流された電圧がフィルタコンデンサC1の両端に印加される。フィルタコンデンサC1は、スイッチングリプルを除去する目的で設けられたものであり、ここでは全波整流波形の電源周波数成分を平滑するためのものではない。したがって力率改善回路3の動作中におけるフィルタコンデンサC1の両端電圧は、交流電源周波数の2倍周波数で正弦波状に脈動する全波整流電圧となる。 Next, the operation of the light source lighting device 100 according to the first embodiment will be described. When the AC power supply 1 is applied to the light source lighting device 100, the rectifier circuit 2 full-wave rectifies the inputted AC voltage, and the rectified voltage is applied to both ends of the filter capacitor C1. The filter capacitor C1 is provided for the purpose of removing switching ripples, and is not for smoothing the power supply frequency component of the full-wave rectified waveform here. Therefore, the voltage across the filter capacitor C1 during the operation of the power factor correction circuit 3 is a full-wave rectified voltage that pulsates sinusoidally at a frequency twice that of the AC power supply frequency.
 定常動作状態における力率改善回路3の動作を説明する。駆動部5bによりスイッチング素子SW1がオンすると、全波整流電圧はインダクタL1に印加され、インダクタL1とスイッチング素子SW1の経路で電流が電源側より供給され、インダクタL1にエネルギが蓄えられる。このとき、インダクタL1の電流は増加していく。 The operation of the power factor correction circuit 3 in the steady operation state will be described. When the switching element SW1 is turned on by the drive unit 5b, a full-wave rectified voltage is applied to the inductor L1, current is supplied from the power supply side through the path of the inductor L1 and the switching element SW1, and energy is stored in the inductor L1. At this time, the current of the inductor L1 increases.
 駆動部5bにより設定されたスイッチング素子SW1のオン時間が経過すると、スイッチング素子SW1はオフする。スイッチング素子SW1がオフするとインダクタL1に蓄えられたエネルギが放出され、インダクタL1、ダイオードD1、平滑コンデンサC2の順に電流が流れる。これにより、平滑コンデンサC2を充電する。このようにエネルギを伝達して、DC-DCコンバータ4は平滑コンデンサC2に充電された電圧を入力として光源9に電流を供給する。 When the on time of the switching element SW1 set by the drive unit 5b elapses, the switching element SW1 is turned off. When the switching element SW1 is turned off, the energy stored in the inductor L1 is released, and current flows in the order of the inductor L1, the diode D1, and the smoothing capacitor C2. Thereby, the smoothing capacitor C2 is charged. By thus transferring energy, the DC-DC converter 4 supplies a current to the light source 9 with the voltage charged in the smoothing capacitor C2 as an input.
 図2は、本発明の実施の形態1にかかる光源点灯装置100の定常状態における動作を示す波形図である。図2の波形図を参照しつつ制御部5の動作を説明する。 FIG. 2 is a waveform diagram showing an operation in a steady state of the light source lighting device 100 according to the first embodiment of the present invention. The operation of the control unit 5 will be described with reference to the waveform diagram of FIG.
(期間t0~t1)
 この期間は、駆動部5bによりスイッチング素子SW1がオンした状態である。スイッチング素子SW1がオンしたときスイッチング素子SW1にはインダクタL1の電流が流れる。
(Period t0 to t1)
During this period, the switching element SW1 is turned on by the drive unit 5b. When the switching element SW1 is turned on, the current of the inductor L1 flows through the switching element SW1.
 この期間中はインダクタL1の電流は増加していくため、スイッチング素子SW1に流れる電流も増加していく。このとき、インダクタL1には図1の矢印の方向に電圧VL1が印加されるため検出巻線L2には矢印の方向に電圧VL2が発生する。2つの矢印はどちらも始点側よりも終点側で電位が高いことを意味する。そのため、検出巻線L2から振動電圧検出部5eに負電圧が入力される。振動電圧検出部5eは、検出巻線L2に発生する電圧を遅延時間設定部5cに入力するのに適した電圧等に変換するものである。例えば遅延時間設定部5cをマイクロコンピュータで構成する場合、振動電圧検出部5eは、負電圧又は過電圧が当該マイクロコンピュータに入力しないように、波形整形等をするための回路で構成される。図2に示すように、振動電圧検出部5eは、負電圧がカットされた振動電圧信号Vsを出力することが好ましい。 Since the current of the inductor L1 increases during this period, the current flowing to the switching element SW1 also increases. At this time, the voltage VL1 is applied to the inductor L1 in the direction of the arrow in FIG. 1, and therefore, a voltage VL2 is generated in the direction of the arrow on the detection winding L2. Both arrows mean that the potential is higher on the end point side than on the start point side. Therefore, a negative voltage is input from the detection winding L2 to the oscillating voltage detection unit 5e. The oscillating voltage detection unit 5e converts a voltage generated in the detection winding L2 into a voltage or the like suitable for inputting to the delay time setting unit 5c. For example, when the delay time setting unit 5c is configured by a microcomputer, the oscillating voltage detection unit 5e is configured by a circuit for waveform shaping or the like so that a negative voltage or an overvoltage is not input to the microcomputer. As shown in FIG. 2, preferably, the oscillating voltage detection unit 5 e outputs an oscillating voltage signal Vs in which the negative voltage is cut.
(時刻t1)
 予め定められた時間が経過し時刻t1になると、駆動部5bはスイッチング素子SW1をオフし、スイッチング素子SW1の電流を遮断する。スイッチング素子SW1のオン時間は出力電圧検出部5aによって決定される。
(Time t1)
When a predetermined time elapses and time t1 is reached, the drive unit 5b turns off the switching element SW1 and cuts off the current of the switching element SW1. The on time of the switching element SW1 is determined by the output voltage detection unit 5a.
(期間t1~t2)
 時刻t1においてスイッチング素子SW1がオフすると、インダクタL1に蓄えられたエネルギはダイオードD1を介して平滑コンデンサC2に放出される。このとき、インダクタL1に発生する電圧は、スイッチング素子SW1がオンの時とは逆向きの電圧となる。すなわち、インダクタL1には、図1の矢印で示される電圧VL1とは逆方向の電圧が発生する。これにより検出巻線L2に発生する電圧も図1中の矢印とは逆方向の電圧となるので、振動電圧検出部5eには正電圧が入力される。スイッチング素子SW1をオフすると、平滑コンデンサC2に流れる電流は徐々に減少していき、エネルギ放出が終わるとインダクタL1の電流はゼロとなる。
(Period t1 to t2)
When the switching element SW1 is turned off at time t1, the energy stored in the inductor L1 is released to the smoothing capacitor C2 via the diode D1. At this time, the voltage generated in the inductor L1 is a voltage reverse to that when the switching element SW1 is on. That is, in the inductor L1, a voltage in the reverse direction to the voltage VL1 shown by the arrow in FIG. 1 is generated. As a result, the voltage generated in the detection winding L2 is also a voltage in the reverse direction to the arrow in FIG. When the switching element SW1 is turned off, the current flowing to the smoothing capacitor C2 gradually decreases, and the current of the inductor L1 becomes zero when the energy release ends.
(時刻t2~t3)
 時刻t2はインダクタ電流IL1が0になる時刻である。インダクタ電流IL1がゼロになるとダイオードD1がオフとなり、インダクタL1とスイッチング素子SW1の電極間容量との間で共振動作が発生する。この共振動作によってインダクタL1に振動電圧が発生する。これに伴って検出巻線L2にも振動電圧が発生する。検出巻線L2に発生した電圧は振動電圧検出部5eを介して遅延時間設定部5cに入力される。
(Time t2 to t3)
Time t2 is a time at which the inductor current IL1 becomes zero. When the inductor current IL1 becomes zero, the diode D1 is turned off, and a resonant operation occurs between the inductor L1 and the interelectrode capacitance of the switching element SW1. This resonant operation generates an oscillating voltage in the inductor L1. Along with this, an oscillating voltage is also generated in the detection winding L2. The voltage generated in the detection winding L2 is input to the delay time setting unit 5c via the oscillating voltage detection unit 5e.
 遅延時間設定部5cは振動電圧検出部5eより出力される振動電圧の立下り回数をカウントする。遅延時間設定部5cがカウントするする振動電圧の立下がり回数は、少なくとも2回であれば特に限定されないが、ここでは2回カウントする場合について説明する。遅延時間設定部5cは、振動電圧の立下がり回数のカウント中、スイッチング素子SW1のオフ状態を維持する。 The delay time setting unit 5c counts the number of falling of the oscillating voltage output from the oscillating voltage detection unit 5e. The number of falling of the oscillating voltage counted by the delay time setting unit 5c is not particularly limited as long as it is at least two, but here, the case of counting twice will be described. The delay time setting unit 5c maintains the off state of the switching element SW1 while counting the number of falling times of the oscillating voltage.
(時刻t3~t4)
 時刻t3の時点で振動電圧信号Vsの立下り回数が予め定められた回数に達する。つまり、立下がり回数が2回となる。遅延時間設定部5cはその時点から予め定めた遅延時間だけさらにスイッチング素子SW1をオフ状態で維持する。本実施の形態においては、振動電圧の立下り回数を2回に設定し2回目の振動電圧の立下りを検出するとその時点から遅延時間設定部5cは遅延時間のカウントを開始する。図2に示されているように、スイッチング素子SW1がオフしてから振動電圧の立下りが予め定められた回数に達するまでの期間を第1オフ期間とする。第1オフ期間の後に設ける遅延時間は第2オフ期間である。
(Time t3 to t4)
At time t3, the number of falling of the oscillating voltage signal Vs reaches a predetermined number. That is, the number of falling times is two. The delay time setting unit 5c further maintains the switching element SW1 in the OFF state for a predetermined delay time from that point on. In the present embodiment, when the number of falling of the oscillating voltage is set to 2 and the second falling of the oscillating voltage is detected, the delay time setting unit 5c starts counting the delay time from that point. As shown in FIG. 2, a period from when the switching element SW1 is turned off to when the falling of the oscillating voltage reaches a predetermined number of times is referred to as a first off period. The delay time provided after the first off period is the second off period.
(時刻t4~t5)
 遅延時間設定部5cは、遅延時間が経過すると駆動部5bにスイッチング素子SW1をオンする指示信号を与える。そして、駆動部5bはスイッチング素子SW1をオンしスイッチング素子SW1を導通状態とする。こうして、次のスイッチングサイクルに移る。本実施の形態においては、スイッチング素子SW1のドレインソース間電圧Vdsが振動のボトムとなる位置でスイッチング素子SW1がオンするように遅延時間を予め設定している。これによりスイッチング損失およびノイズを低減することができる。
(Time t4 to t5)
The delay time setting unit 5c gives the drive unit 5b an instruction signal to turn on the switching element SW1 when the delay time has elapsed. Then, the drive unit 5b turns on the switching element SW1 to turn on the switching element SW1. Thus, the next switching cycle is started. In the present embodiment, the delay time is preset so that the switching element SW1 is turned on at a position where the drain-source voltage Vds of the switching element SW1 is at the bottom of the vibration. This can reduce switching loss and noise.
 ここで、力率改善回路3の出力電圧である平滑コンデンサC2の充電電圧の制御について説明する。目標信号E1よりも出力電圧検出部R2で発生する電圧の方が高ければ、出力電圧検出部5aは、スイッチング素子SW1のオン時間が短くなる信号を駆動部5bへ出力する。駆動部5bはこれを受けてスイッチング素子SW1のオン時間を減少させ、力率改善回路3の出力電圧を減少させる。 Here, the control of the charging voltage of the smoothing capacitor C2, which is the output voltage of the power factor correction circuit 3, will be described. If the voltage generated by the output voltage detection unit R2 is higher than the target signal E1, the output voltage detection unit 5a outputs, to the drive unit 5b, a signal that shortens the on time of the switching element SW1. In response to this, the drive unit 5b reduces the on time of the switching element SW1 and reduces the output voltage of the power factor correction circuit 3.
 他方、目標信号E1よりも出力電圧検出部R2で発生する電圧の方が低ければ、出力電圧検出部5aはスイッチング素子SW1のオン時間が長くなる信号を駆動部5bへ出力する。駆動部5bはこれを受けてスイッチング素子SW1のオン時間を増加させ、力率改善回路3の出力電圧を増加させる。駆動部5bは、出力電圧検出部5aからの信号を受けてスイッチング素子SW1のオン時間を更新する。この更新のタイミングについては、電源電圧検出部5dにて電源電圧位相がゼロクロス付近となるタイミングを検出し、駆動部5bはこの位相検出信号を電源電圧検出部5dより受けて、そのタイミングでスイッチング素子SW1のオン時間を更新することが好ましい。 On the other hand, if the voltage generated by the output voltage detection unit R2 is lower than the target signal E1, the output voltage detection unit 5a outputs a signal that increases the on time of the switching element SW1 to the drive unit 5b. In response to this, the drive unit 5b increases the on time of the switching element SW1 and increases the output voltage of the power factor correction circuit 3. The drive unit 5b receives the signal from the output voltage detection unit 5a and updates the on time of the switching element SW1. With regard to the timing of this update, the power supply voltage detection unit 5d detects the timing when the power supply voltage phase is near the zero cross, and the drive unit 5b receives this phase detection signal from the power supply voltage detection unit 5d, and switching elements at that timing. It is preferable to update the on time of SW1.
 調光により光源9の電流が減少すると軽負荷となって力率改善回路3の出力電圧が上昇しやすくなるため、スイッチング素子SW1のオン時間が短くなる。スイッチング素子SW1のオン時間が短くなると、インダクタL1のエネルギ放電時間も短くなるため、スイッチング周波数が上昇する。スイッチング周波数の増大はスイッチング損失の増大などの弊害を引き起こす。そこで、本実施の形態では、スイッチング周波数の上昇を抑制するため、軽負荷時は、検出巻線L2の振動電圧の立下り回数が予め定められた回数に達し、その後遅延時間が経過するまで、スイッチング素子SW1をオフとする。よって、スイッチング周波数の上昇を抑制できる。 When the current of the light source 9 decreases due to light adjustment, the load becomes a light load and the output voltage of the power factor correction circuit 3 easily increases, so the on time of the switching element SW1 becomes short. When the on time of the switching element SW1 is shortened, the energy discharge time of the inductor L1 is also shortened, so that the switching frequency is increased. An increase in switching frequency causes negative effects such as an increase in switching loss. Therefore, in the present embodiment, in order to suppress the rise of the switching frequency, at the time of light load, the number of falling times of the oscillating voltage of detection winding L2 reaches a predetermined number, and thereafter, until the delay time elapses, The switching element SW1 is turned off. Therefore, an increase in switching frequency can be suppressed.
 次に力率改善動作について説明する。図3は、本発明の実施の形態1にかかる光源点灯装置100の力率改善動作を示す波形図である。スイッチング素子SW1をオンすると、インダクタL1の電流IL1は、全波整流電圧の瞬時値Eに比例し、インダクタL1のインダクタンスに反比例する電流値となり、E/L1の傾きでオン時間に比例してほぼ直線的に上昇していく。 Next, the power factor improvement operation will be described. FIG. 3 is a waveform diagram showing a power factor improvement operation of the light source lighting device 100 according to the first embodiment of the present invention. When the switching element SW1 is turned on, the current IL1 of the inductor L1 is proportional to the instantaneous value E of the full-wave rectified voltage and inversely proportional to the inductance of the inductor L1, and the slope of E / L1 is approximately proportional to the on time It will rise linearly.
 前述のとおり、スイッチング素子SW1のオン時間は電源電圧位相のゼロクロス付近で更新するため、交流電源の半周期間のスイッチング素子SW1のオン時間t(ON)は固定値となる。つまり交流電源の半周期の期間中に行われるスイッチング素子SW1の複数のスイッチングは、同一のオン時間となる。したがって、全波整流された交流電源1の波形の半周期分動作させると、インダクタL1のインダクタンスは一定値であるため、各スイッチング周期におけるインダクタL1の電流のピーク値は電源電圧に比例する。そのため、図3に示すように、ピーク値の包絡線が正弦波状の波形となる。そして、フィルタコンデンサC1によりインダクタ電流のスイッチングリプルを取り除き平均化することで、交流電源1から流れ込む入力電流を正弦波状に近づけるとともに交流電源電圧とほぼ同位相にすることができる。よって、力率改善及び高調波低減ができる。なお、必要に応じて整流回路2の交流入力側にフィルタ回路を追加してもよい。 As described above, since the on time of the switching element SW1 is updated near the zero crossing of the power supply voltage phase, the on time t (ON) of the switching element SW1 during a half cycle of the AC power supply becomes a fixed value. That is, the plurality of switchings of the switching element SW1 performed in the half cycle period of the AC power supply have the same on time. Therefore, when the full-wave rectified AC power supply 1 is operated for a half cycle of the waveform of the AC power supply 1, the inductance of the inductor L1 has a constant value, and the peak value of the current of the inductor L1 in each switching cycle is proportional to the power supply voltage. Therefore, as shown in FIG. 3, the envelope of the peak value has a sinusoidal waveform. Then, by removing the switching ripple of the inductor current by the filter capacitor C1 and averaging it, the input current flowing from the AC power supply 1 can be made closer to a sine wave and can be made approximately in phase with the AC power supply voltage. Therefore, the power factor can be improved and the harmonics can be reduced. A filter circuit may be added to the AC input side of the rectifier circuit 2 as necessary.
 このように、スイッチング素子SW1のオン時間t(ON)を交流電源の半周期間で一定値とすれば力率改善及び高調波低減ができる。しかしながら,オン時間を交流電源の半周期で一定値とするのみでは、入力電流波形にひずみが発生し、力率改善しない場合があるのでそのような場合の原理を説明する。 As described above, the power factor can be improved and the harmonics can be reduced by setting the on time t (ON) of the switching element SW1 to a constant value during a half cycle of the AC power supply. However, distortion may be generated in the input current waveform only by setting the on time to a constant value in a half cycle of the AC power supply, and the power factor may not be improved, so the principle in such a case will be described.
 図2においては,時刻t2においてインダクタL1の電流IL1がゼロに到達し、そのままスイッチング素子SW1をオフ状態で維持すると電流IL1はゼロ状態を維持するものとして図示した。しかし、実際には上述した通り、インダクタL1とスイッチング素子SW1の電極間容量との間で共振現象が発生するため、インダクタL1とスイッチング素子SW1との間で微小な振動電流が流れる。 In FIG. 2, when the current IL1 of the inductor L1 reaches zero at time t2 and the switching element SW1 is maintained in the OFF state as it is, the current IL1 is illustrated as maintaining the zero state. However, in fact, as described above, since a resonance phenomenon occurs between the inductor L1 and the interelectrode capacitance of the switching element SW1, a minute oscillating current flows between the inductor L1 and the switching element SW1.
 この場合、スイッチング素子SW1のターンオン時にこの振動電流がインダクタL1の電流IL1に重畳することがある。図4は、交流電源の電圧ゼロクロス付近でスイッチング素子SW1をターンオンしたときのドレインソース間電圧VdsとインダクタL1の電流IL1の波形を示す図である。図5は、交流電源の電圧ピーク付近でスイッチング素子SW1をターンオンしたときのVdsとIL1を示す図である。図4、5においてtdはスイッチング素子SW1のオフ期間を示す。図4、5から、交流電源の電圧ゼロクロス付近でスイッチング素子SW1をターンオンできたときはインダクタL1の電流IL1に振動電流が重畳することを回避できるが、ゼロクロス付近以外の例えばピーク付近でスイッチング素子SW1をターンオンしてしまうと電流IL1に振動電流が重畳することが分かる。力率の低下を回避するためには、交流電源の半周期において、同一の振動電流となるタイミングでスイッチング素子SW1をターンオンさせるか、望ましくはインダクタL1の電流IL1に振動電流が重畳されないタイミングでスイッチング素子SW1をターンオンさせなければならない。 In this case, this oscillating current may be superimposed on the current IL1 of the inductor L1 when the switching element SW1 is turned on. FIG. 4 is a diagram showing waveforms of the drain-source voltage Vds and the current IL1 of the inductor L1 when the switching element SW1 is turned on near the voltage zero cross of the AC power supply. FIG. 5 is a diagram showing Vds and IL1 when the switching element SW1 is turned on near the voltage peak of the AC power supply. In FIGS. 4 and 5, td indicates the off period of the switching element SW1. From FIGS. 4 and 5, when the switching element SW1 can be turned on near the voltage zero cross of the AC power supply, it is possible to prevent the oscillation current from being superimposed on the current IL1 of the inductor L1. It can be seen that the oscillating current is superimposed on the current IL1 when the In order to avoid a decrease in power factor, switching element SW1 is turned on at the same oscillation current timing in the half cycle of the AC power supply, or desirably switching current is not superimposed on current IL1 of inductor L1 at the timing The element SW1 has to be turned on.
 ところで、スイッチング素子SW1の電極間容量はドレインソース間電圧に依存し、一般的なMOSFETではドレインソース間電圧が高いほど電極間容量が減少する。したがって交流電源の位相に応じてドレインソース間に印加する電圧が異なってくるため、振動電圧の振動周期も位相に応じて異なる。具体的には電源電圧ゼロクロス付近と比較して電源電圧ピーク付近の方が、振動周期が短くなる。 The inter-electrode capacitance of the switching element SW1 depends on the drain-source voltage, and in a general MOSFET, the inter-electrode capacitance decreases as the drain-source voltage increases. Therefore, since the voltage applied between the drain and the source differs according to the phase of the AC power supply, the oscillation period of the oscillating voltage also differs according to the phase. Specifically, the oscillation period is shorter in the vicinity of the power supply voltage peak than in the vicinity of the power supply voltage zero cross.
 このことから、スイッチング素子SW1のターンオン時に電流IL1に振動電流が重畳される問題を解消するためには、電源電圧の周期に合わせてオフ期間tdを変動させなければならない。仮に、図4に示したインダクタL1の電流IL1に重畳する振動電流がゼロとなる交流電源のゼロクロス付近においてスイッチング素子SW1がオンするようにスイッチング素子SW1のオフ期間Tdを決定したとしても、そのTdを全期間で用いることはできない。つまり、電源電圧ピーク付近においては振動周期が短くなるので、図5のオフ期間Tdと図4のオフ期間Tdとを一致させると、振動電流のピーク付近でスイッチング素子SW1がオンしてしまうことがある。この場合インダクタL1の電流IL1に振動電流が重畳してしまう。 From this, in order to eliminate the problem that the oscillating current is superimposed on the current IL1 when the switching element SW1 is turned on, it is necessary to change the off period td in accordance with the cycle of the power supply voltage. Even if the off period Td of the switching element SW1 is determined so that the switching element SW1 is turned on near the zero cross of the AC power supply where the oscillating current superimposed on the current IL1 of the inductor L1 shown in FIG. Can not be used for the whole period. That is, since the oscillation period becomes short near the power supply voltage peak, when the off period Td of FIG. 5 and the off period Td of FIG. 4 coincide with each other, the switching element SW1 is turned on near the peak of the oscillation current. is there. In this case, the oscillating current is superimposed on the current IL1 of the inductor L1.
 上記の考察から、オフ期間Tdを固定値とすると、インダクタL1の電流IL1に振動電流が重畳されることを回避できない。そこで、図2において、1回目の振動電圧立下りを検出して、そこから予め定められた遅延時間を経過してからスイッチング素子SW1をオンすることが考えられる。このような動作シーケンスを比較例と称する。比較例の場合、2回目の振動電圧の立下りを検出した時点から遅延時間を設ける本実施形態の場合と同等のスイッチング周波数とするためには、遅延時間をより長く設定する必要がある。しかしながら、遅延時間もスイッチング素子SW1のオン時間と同様に交流電源半周期で一定値の場合、遅延時間が長くなる分、上述のような振動周期の変動の影響を受けやすくなる。つまり、比較例では遅延時間が長くなるので、振動電流がインダクタL1の電流IL1に重畳されやすい。よって、比較例のように1回目の振動電圧立下りを検出して、そこから予め定められた遅延時間を経過してからスイッチング素子SW1をオンする場合、入力電流波形がひずみ、力率が低下する。 From the above consideration, if the off period Td is a fixed value, it can not be avoided that the oscillating current is superimposed on the current IL1 of the inductor L1. Therefore, in FIG. 2, it is conceivable to detect the first oscillation voltage fall and to turn on the switching element SW1 after a predetermined delay time has elapsed from there. Such an operation sequence is referred to as a comparative example. In the case of the comparative example, it is necessary to set the delay time longer in order to obtain the same switching frequency as in the case of the present embodiment in which the delay time is provided from the time when the second fall of the oscillating voltage is detected. However, when the delay time is also a constant value in the AC power supply half cycle as in the on time of the switching element SW1, the delay time becomes longer, so the delay time becomes susceptible to the fluctuation of the oscillation cycle as described above. That is, since the delay time is long in the comparative example, the oscillating current is likely to be superimposed on the current IL1 of the inductor L1. Therefore, as in the comparative example, when the switching element SW1 is turned on after the first oscillation voltage fall is detected and a predetermined delay time elapses therefrom, the input current waveform is distorted and the power factor is lowered. Do.
 ところが、本実施の形態においては、制御部5は、スイッチング素子SW1をオフしてから検出巻線L2の振動電圧が少なくとも2回立下がるまでの第1オフ期間の経過後、予め定められた遅延時間である第2オフ期間が経過するまでスイッチング素子SW2のオフ状態を継続する。そして、第2オフ期間の経過後にスイッチング素子SW1をオンする。つまり、軽負荷時の駆動周波数が上昇する条件において、スイッチング周波数の上昇を抑制するために必要なスイッチング素子SW1のオフ期間として、振動電圧の立下り回数をカウントしカウント値が2回以上の予め定められた回数に達するまでの時間と、遅延時間と、を合計した期間を設定する。これにより、遅延時間を短くでき、振動周期の変動の影響を受けにくくすることができる。言いかえれば、振動電圧の立下りを2回以上カウントすることで第1オフ期間を十分長く設けることができるので、振動周期の変動の影響を受けやすく電源半周期で一定とする遅延時間の割合を小さくすることができる。そのため、定量的に言えば、第1オフ期間は第2オフ期間より長くすることが好ましい。 However, in the present embodiment, control unit 5 sets a predetermined delay after the elapse of the first off period until the oscillating voltage of detection winding L2 falls at least twice after switching element SW1 is turned off. The off state of the switching element SW2 is continued until the second off period, which is time, elapses. Then, after the second off period has elapsed, the switching element SW1 is turned on. That is, under the condition that the drive frequency at the time of light load increases, the number of falling times of the oscillating voltage is counted as the off period of switching element SW1 necessary to suppress the increase in switching frequency. A period is set which is the sum of the time until reaching the set number of times and the delay time. As a result, the delay time can be shortened, and the influence of the fluctuation of the vibration cycle can be reduced. In other words, since the first off period can be provided long enough by counting the falling of the oscillating voltage twice or more, it is susceptible to the fluctuation of the oscillating cycle, and the ratio of the delay time fixed at the power supply half cycle Can be made smaller. Therefore, speaking quantitatively, it is preferable to make the first off period longer than the second off period.
 また、振動電圧の立下り回数をカウントし、予め定められた回数のカウントを終えた直後にスイッチング素子SW1をオンさせる場合、設定できるオフ期間が振動周期に依存してしまうため、設定自由度が小さく、任意の周波数に設定できない。よって、実施の形態1で説明したとおり、第1オフ期間に遅延時間である第2オフ期間を付加する必要がある。また、振動電圧は時間経過とともに減衰してしまうため、振動電圧の立下りカウントのみによるオフ期間の設定には限界値が生じてしまう。すなわち振動電圧が減衰してしまうと、次にスイッチング素子をオンするためのトリガ信号が得られなくなってしまう。これに対し、実施の形態1の方式では負荷に応じてスイッチング素子SW1のオフ期間を自在に設定することができる。 In addition, when the number of falling of the oscillation voltage is counted and the switching element SW1 is turned on immediately after counting the predetermined number of times, the settable off period depends on the oscillation cycle, so the setting freedom is It is small and can not be set to any frequency. Therefore, as described in the first embodiment, it is necessary to add a second off period, which is a delay time, to the first off period. In addition, since the oscillating voltage is attenuated with the passage of time, a limit value occurs in setting the off period only by the falling count of the oscillating voltage. That is, when the oscillating voltage is attenuated, a trigger signal for turning on the switching element next time can not be obtained. On the other hand, in the method of the first embodiment, the off period of the switching element SW1 can be freely set according to the load.
 次に、制御部5をマイクロコンピュータで構成した場合の演算負荷について考える。スイッチング素子SW1のスイッチング毎に電流IL1を監視し、ピーク値が正弦波状となるようにスイッチング素子SW1をオフするタイミングを決定する場合、多大な演算負荷が掛かってしまう。この場合、高速演算が可能なマイクロコンピュータを使用する必要があり高コスト化する。これに対し、実施の形態1の光源点灯装置では、制御部5は、直流電圧の定電圧フィードバック制御に伴うスイッチング素子のオン時間の変更タイミングを交流電源のゼロクロス付近とすることができる。したがって、交流電源の半周期毎にスイッチング素子SW1のオン時間を更新すればよく、それ以外の期間ではこれを一定値にすることができる。また、力率改善回路3の出力を一定とする期間においては、制御部5は、第2オフ期間を略固定値とすることができる。このように処理の負荷を軽減することで、演算処理速度の小さい安価なマイクロコンピュータで制御部5を構成することができる。 Next, the calculation load when the control unit 5 is configured by a microcomputer will be considered. When the current IL1 is monitored for each switching of the switching element SW1 and the timing at which the switching element SW1 is turned off is determined so that the peak value has a sine wave, a large calculation load is applied. In this case, it is necessary to use a microcomputer capable of high-speed operation, resulting in high cost. On the other hand, in the light source lighting device according to the first embodiment, the control unit 5 can set the change timing of the on time of the switching element involved in the constant voltage feedback control of the DC voltage to be near the zero cross of the AC power supply. Therefore, the on time of the switching element SW1 may be updated every half cycle of the AC power supply, and this can be made a constant value in the other periods. Further, in a period in which the output of the power factor correction circuit 3 is constant, the control unit 5 can set the second off period to a substantially fixed value. By reducing the processing load as described above, the control unit 5 can be configured by an inexpensive microcomputer having a low calculation processing speed.
 次に、スイッチング素子のオン時間の更新について検討する。本実施形態では、制御部5は、スイッチング素子SW1のオン時間を少なくとも交流電源の半周期間において略固定値とする。つまり、力率改善のために交流電源の半周期毎にスイッチング素子SW1のオン時間を更新することとした。その趣旨は、少なくとも交流電源の半周期間にスイッチング素子SW1のオン時間が大きく変動しないようにするというものである。交流電源の半周期間にスイッチング素子SW1のオン時間が大きく変動しなければ、当該オン時間の更新方法を変更してもよい。例えば、出力電圧を所望の電圧に保つためのフィードバック制御の応答速度を、交流電源の電源半周期間で大きく変動しないように、十分低速に設定してもよい。つまり、スイッチング素子SW1のオン時間を交流電源の半周期間で変化させるが、その変化量を十分小さくする。より具体的に述べると、フィードバック制御のループゲインを交流電源1の1周期の1/2周期以上で1倍(0dB)以下となるように設定する。言い換えると、交流電源1の周波数の2倍以下の周波数で1倍(0dB)以下となるように設定する。例えば電源周波数が50Hzの場合、その半周期、つまり半波にあたる100Hz以下、すなわち周期10ms以上で定電圧フィードバック制御のループゲインを1倍(0dB)以下とすることにより定電圧フィードバック制御を電源周期の1/2より短い周期で応答しないように設定する。これにより電源周期の1/2周期以内においては、スイッチング素子SW1のオン時間t(ON)の変動が抑制され、同様の効果を得ることができる。この場合もスイッチング毎にインダクタL1の電流を監視してピーク電流を制御する必要がないので、演算処理速度の小さいマイクロコンピュータを用いることができる。 Next, the update of the on time of the switching element is considered. In the present embodiment, the control unit 5 sets the on time of the switching element SW1 to a substantially fixed value at least during a half cycle of the AC power supply. That is, in order to improve the power factor, the on time of the switching element SW1 is updated every half cycle of the AC power supply. The purpose is to prevent the on time of the switching element SW1 from largely fluctuating at least during a half cycle of the AC power supply. If the on time of the switching element SW1 does not greatly fluctuate during the half cycle of the AC power supply, the method of updating the on time may be changed. For example, the response speed of feedback control for maintaining the output voltage at a desired voltage may be set to a sufficiently low speed so as not to largely fluctuate between power supply half cycles of the AC power supply. That is, although the on time of the switching element SW1 is changed between the half cycles of the AC power supply, the amount of change is sufficiently reduced. More specifically, the loop gain of feedback control is set to be equal to or less than one-half (0 dB) in one-half or more cycles of the AC power supply 1. In other words, the frequency is set to be less than or equal to one time (0 dB) at a frequency equal to or less than twice the frequency of the AC power supply 1. For example, when the power supply frequency is 50 Hz, constant voltage feedback control is performed by setting the loop gain of constant voltage feedback control to 1 or less (0 dB) or less in that half cycle, that is, 100 Hz or less corresponding to a half wave. Set to not respond in a cycle shorter than 1/2. Thus, the variation of the on-time t (ON) of the switching element SW1 can be suppressed within a half cycle of the power supply cycle, and the same effect can be obtained. Also in this case, since it is not necessary to monitor the current of the inductor L1 and control the peak current for each switching, a microcomputer with a low processing speed can be used.
 第1オフ期間で検出する振動電圧の立下がり回数と、第2オフ期間である遅延時間は、負荷又は電源電圧に応じて可変なものとしてもよい。具体的には、通常の電流臨界モードで駆動した場合に、駆動周波数が上昇する条件になるほどスイッチング素子SW1のオフ期間が増加するようにすることができる。例えば、LED電流が減少して負荷が軽くなるほど、第1オフ期間で検出する振動電圧の立下がり回数と第2オフ期間である遅延時間の少なくとも一方を増加させる。あるいは、電源電圧が、交流100V入力ではなく、交流200V入力の場合には、第1オフ期間で検出する振動電圧の立下がり回数と第2オフ期間である遅延時間の少なくとも一方を増加させる。これらは、調光信号インターフェース8又は電源電圧検出部5dからの検出信号に基づいて周波数が上昇する条件を予めプロフラム等に設定しておけば容易に設定可能である。また、駆動周波数が十分低い動作条件の時は通常の電流臨界モード制御に切り替えても良い。 The number of falling of the oscillating voltage detected in the first off period and the delay time which is the second off period may be variable according to the load or the power supply voltage. Specifically, in the case of driving in the normal current critical mode, the off period of the switching element SW1 can be increased as the driving frequency is increased. For example, as the LED current decreases and the load decreases, at least one of the number of falling of the oscillating voltage detected in the first off period and the delay time that is the second off period is increased. Alternatively, when the power supply voltage is not AC 100 V input but AC 200 V input, at least one of the number of falling of the oscillating voltage detected in the first off period and the delay time as the second off period is increased. These can be easily set by setting conditions for increasing the frequency in advance to a program or the like based on a detection signal from the dimming signal interface 8 or the power supply voltage detection unit 5d. In addition, when the driving frequency is sufficiently low, switching to normal current critical mode control may be performed.
 図6は、制御部5がマイクロコンピュータで構成された場合に、制御部5の内部で行われる処理のフローチャートである。まず、ステップS1にて、制御部5がスイッチング素子SW1をオンする。ステップS1にてスイッチング素子SW1がオンすると、ステップS2にて振動電圧信号のカウント値がリセットされ、ステップS3にて遅延時間のカウント値がリセットされる。 FIG. 6 is a flowchart of processing performed inside the control unit 5 when the control unit 5 is configured by a microcomputer. First, in step S1, the control unit 5 turns on the switching element SW1. When the switching element SW1 is turned on in step S1, the count value of the oscillating voltage signal is reset in step S2, and the count value of the delay time is reset in step S3.
 ステップS4では、スイッチング素子SW1のオン時間が規定値に達したか判定する。オン時間が規定値に達した場合、ステップS5にてスイッチング素子SW1をオフする。次いで、ステップS6にて、振動電圧信号の立下り回数のカウントを開始する。本実施の形態1では、2回以上の振動電圧の立下りを検出する。ステップS7では、振動電圧の立下り回数が規定回数に達したか判定する。立下り回数が規定回数に達した場合、ステップS8にて、遅延時間のカウントを開始する。ステップS9では、遅延時間のカウント値が規定時間に達したか判定する。遅延時間が規定の時間に達した場合、ステップS1に戻り、再びスイッチング素子SW1をオンする。 In step S4, it is determined whether the on time of the switching element SW1 has reached a specified value. If the on time has reached the specified value, the switching element SW1 is turned off in step S5. Next, in step S6, counting of the number of falling of the oscillating voltage signal is started. In the first embodiment, the falling of the oscillating voltage is detected twice or more. In step S7, it is determined whether the number of falling times of the oscillating voltage has reached a specified number. If the number of falling times has reached the specified number, counting of delay times is started in step S8. In step S9, it is determined whether the count value of the delay time has reached a specified time. If the delay time has reached a specified time, the process returns to step S1 and the switching element SW1 is turned on again.
 以上のように本発明の実施の形態1では、軽負荷動作を伴う力率改善回路において、振動電圧の振動回数が予め定められた回数となり、その後予め定められた遅延時間が経過するまでの間、スイッチング素子SW1のオフ状態を維持する。これにより、高調波を抑制しながら駆動周波数の上昇を抑制できる。また、スイッチング素子SW1のオン時間を更新するタイミングを電源半周期毎に、例えばゼロクロス付近とし、それ以外の期間では固定値とした。よって、制御部5の処理負荷を大幅に削減できる。 As described above, according to the first embodiment of the present invention, in the power factor correction circuit with light load operation, the number of times of oscillation of the oscillating voltage becomes a predetermined number, and thereafter a predetermined delay time elapses. , And maintain the off state of the switching element SW1. Thereby, the rise of the drive frequency can be suppressed while suppressing the harmonics. Further, the timing at which the on-time of the switching element SW1 is updated is set, for example, near the zero cross at every half cycle of the power supply, and is set to a fixed value in the other periods. Therefore, the processing load of the control unit 5 can be significantly reduced.
 本実施の形態においてはスイッチング素子SW1のオン時間を交流電源の半周期内で同一の時間としたが、ある特定パターンのオン時間でスイッチング素子SW1を駆動しても良い。例えば、力率改善回路3はスイッチングリプルを取り除く目的でフィルタコンデンサC1を備えているが、フィルタコンデンサC1を設けると入力電流が電源電圧に対して僅かに進み位相となり、力率低下の原因となる。そこでこれを補正するために、例えばスイッチング素子SW1のオン時間を図7に示すパターンで時間変化させても良い。交流電源の半周期に対して図7に示すオン時間でスイッチング素子を駆動することで、進み位相を補償でき力率を改善することができる。 In the present embodiment, the on time of the switching element SW1 is the same time within a half cycle of the AC power supply, but the switching element SW1 may be driven with the on time of a specific pattern. For example, the power factor correction circuit 3 includes the filter capacitor C1 for the purpose of removing switching ripples. However, when the filter capacitor C1 is provided, the input current is slightly advanced in phase with respect to the power supply voltage, which causes the power factor decrease. . Therefore, in order to correct this, for example, the on time of the switching element SW1 may be temporally changed in the pattern shown in FIG. By driving the switching element with the on time shown in FIG. 7 for a half cycle of the AC power supply, the lead phase can be compensated and the power factor can be improved.
 このような、特定パターンでオン時間を推移させた場合においても、出力電圧のフィードバック制御に対するオン時間の更新は電源半周期毎、例えばゼロクロス付近とするので、制御部5の処理負荷を大幅に削減できる。オン時間を更新する場合は、例えば図7に示すように特定パターンの傾向を保ったままオン時間の増減を行う。 Even when the on-time is transitioned in such a specific pattern, the on-time for feedback control of the output voltage is updated every half cycle of the power supply, for example, near the zero cross, so the processing load on the control unit 5 is significantly reduced. it can. When the on-time is updated, for example, as shown in FIG. 7, the on-time is increased or decreased while maintaining the tendency of the specific pattern.
 上記の変形例に加えて、本発明の実施の形態1に係る光源点灯装置100と照明器具はその特徴を失わない範囲で様々な変形が可能である。例えば、制御部5は、ハードウェアで実現してもよいし、マイクロコンピュータを用いたソフトウェアで実現してもよい。制御部5の少なくとも一部をマイクロコンピュータで構成してもよい。図8は、ハードウェアで実現された制御部5を示すブロック図である。この場合、図1の出力電圧検出部5a、電源電圧検出部5d及び振動電圧検出部5eは、図8の受信装置20である。図1の駆動部5bと遅延時間設定部5cの各機能は、図8の処理回路22により実現される。処理回路22は専用のハードウェアである。処理回路22は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、またはこれらを組み合わせたものが該当する。駆動部5bと遅延時間設定部5cの各機能それぞれを処理回路22で実現してもよいし、各部の機能をまとめて処理回路22で実現してもよい。 In addition to the above-described modifications, the light source lighting device 100 and the lighting fixture according to Embodiment 1 of the present invention can be variously modified without losing their features. For example, the control unit 5 may be realized by hardware or software using a microcomputer. At least a part of the control unit 5 may be configured by a microcomputer. FIG. 8 is a block diagram showing the control unit 5 implemented by hardware. In this case, the output voltage detection unit 5a, the power supply voltage detection unit 5d, and the vibration voltage detection unit 5e of FIG. 1 are the receiving device 20 of FIG. The respective functions of the drive unit 5b and the delay time setting unit 5c of FIG. 1 are realized by the processing circuit 22 of FIG. The processing circuit 22 is dedicated hardware. The processing circuit 22 corresponds to, for example, a single circuit, a complex circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof. Each function of the drive unit 5b and the delay time setting unit 5c may be realized by the processing circuit 22, or the function of each unit may be realized by the processing circuit 22.
 図9は、ソフトウェアで実現された制御部5を示すブロック図である。この場合、図1の出力電圧検出部5a、電源電圧検出部5d及び振動電圧検出部5eは、図9の受信装置30である。処理回路がCPUの場合、図1の駆動部5bと遅延時間設定部5cの各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア又はファームウェアはプログラムとして記述され、メモリ34に格納される。処理回路であるプロセッサ32はメモリ34に記憶されたプログラムを読み出して実行することにより各部の機能を実現する。すなわち、図6のフローチャート及び実施の形態1で説明した動作が結果的に実行されることになるプログラムを格納するためのメモリ34がある。このプログラムは上記の手順又は方法をコンピュータに実行させるものであるとも言える。ここで、メモリとは例えばRAM、ROM、フラッシュメモリー、EPROM、EEPROM等の、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVDが該当する。なお、駆動部5bと遅延時間設定部5cの各機能の一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現してもよい。 FIG. 9 is a block diagram showing the control unit 5 implemented by software. In this case, the output voltage detection unit 5a, the power supply voltage detection unit 5d, and the oscillating voltage detection unit 5e of FIG. 1 are the receiving device 30 of FIG. When the processing circuit is a CPU, each function of the drive unit 5b and the delay time setting unit 5c in FIG. 1 is realized by software, firmware, or a combination of software and firmware. The software or firmware is written as a program and stored in the memory 34. The processor 32, which is a processing circuit, reads out and executes the program stored in the memory 34 to realize the functions of the respective units. That is, there is a memory 34 for storing a program that results in the operations described in the flowchart of FIG. 6 and the first embodiment. It can be said that this program causes a computer to execute the above procedure or method. Here, the memory corresponds to, for example, non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD. A part of each function of drive unit 5b and delay time setting unit 5c may be realized by dedicated hardware and a part may be realized by software or firmware.
 光源9としてLEDを用いたが他の光源を用いてもよい。例えば、有機EL(Electro Luminescence)素子を用いてもよい。本実施形態で用いた略固定という表現は、厳密にある値を固定することを意味するのではなく、設計上固定するということである。したがって、実動作上の誤差または計測誤差などによるある値の変化分は、略固定という文言に包含される。 Although an LED is used as the light source 9, another light source may be used. For example, an organic EL (Electro Luminescence) element may be used. The expression "substantially fixed" used in the present embodiment does not mean that a certain value is strictly fixed, but is fixed in design. Therefore, the change of a certain value due to an actual operation error or measurement error is included in the term substantially fixed.
 スイッチング素子SW1はSiで形成してもよいし、ワイドバンドギャップ半導体で形成してもよい。スイッチング素子SW1をワイドバンドギャップ半導体で形成すると、スイッチング周波数を高くできる。例えば、Siを材料とするMOSFETではスイッチング周波数を300kHzまで高めることが限度であったとしても、ワイドバンドギャップであれば例えば500kHzまで高めることができる。スイッチング周波数の上限が高ければ、電流臨界モードを適用できる周波数の上限を高めて、マイコンの負荷を低減することができる。実施の形態1で言及した変形は以下の実施の形態に係る光源点灯装置と照明器具にも応用できる。なお、以下の実施の形態に係る光源点灯装置と照明器具は、実施の形態1との共通点が多いので、実施の形態1との相違点を中心に説明する。 The switching element SW1 may be formed of Si or a wide band gap semiconductor. When the switching element SW1 is formed of a wide band gap semiconductor, the switching frequency can be increased. For example, in the MOSFET made of Si, even if the switching frequency is increased to 300 kHz, the wide band gap can be increased to, for example, 500 kHz. If the upper limit of the switching frequency is high, the upper limit of the frequency to which the current critical mode can be applied can be increased to reduce the load on the microcomputer. The modifications mentioned in the first embodiment can also be applied to a light source lighting device and a lighting apparatus according to the following embodiments. Since the light source lighting device and the lighting apparatus according to the following embodiments have many points in common with the first embodiment, the differences with the first embodiment will be mainly described.
実施の形態2.
 実施の形態2に係る光源点灯装置と照明器具は、広い負荷変動に対応させるため、調光時の制御部5の動作が実施の形態1の光源点灯装置と異なる。
Second Embodiment
The light source lighting device and the lighting apparatus according to the second embodiment differ from the light source lighting device according to the first embodiment in the operation of the control unit 5 during light adjustment in order to cope with a wide load fluctuation.
 図10は、実施の形態2に係る光源電流とスイッチング素子SW1のオフ期間の対応を示す図である。実施の形態1で述べたとおり、スイッチング素子SW1のオフ期間は振動電圧の立下りを検出する第1オフ期間と、予め定められた遅延時間である第2オフ期間の和である。光源9の電流である光源電流が大きい状態から徐々に光源電流を減少させる場合、周波数が上昇することを抑制するため、第1オフ期間で検知する振動電圧の立下がり回数を徐々に増加させる。図10には、光源電流の減少に伴い、第1オフ期間で検出する振動電圧の立下がり回数が、2回から5回に1回ずつ増加していくことが示されている。振動電圧の立下り回数が増えた分、スイッチング素子SW1のオフ期間が増加する。この時、遅延時間はほぼ一定値とすることができる。 FIG. 10 is a diagram showing the correspondence between the light source current and the off period of the switching element SW1 according to the second embodiment. As described in the first embodiment, the off period of the switching element SW1 is the sum of the first off period for detecting the falling of the oscillating voltage and the second off period which is a predetermined delay time. When the light source current is gradually decreased from the state where the light source current which is the current of the light source 9 is large, the number of falling of the oscillating voltage detected in the first off period is gradually increased in order to suppress the frequency rise. FIG. 10 shows that as the light source current decreases, the number of falling of the oscillating voltage detected in the first off period increases every two to five times. As the number of falling of the oscillating voltage increases, the off period of the switching element SW1 increases. At this time, the delay time can be made approximately constant.
 次に、光源電流をさらに減少させた場合について説明する。光源電流が予め定められた値まで低下し、振動電圧の立下り回数が上限回数に達した場合、さらなる光源電流の低下には遅延時間の増加で対応する。このとき、振動電圧の立下がり回数が上限に達すると、次の振動電圧の立下りを検知しても、遅延時間の進行が優先され、振動電圧信号は無視される。すなわち、予め設定している立下り回数の上限に達したらそれ以上の立下り回数のカウントは不要となる。 Next, the case of further reducing the light source current will be described. When the light source current decreases to a predetermined value, and the number of falling times of the oscillating voltage reaches the upper limit number, the further decrease of the light source current corresponds to the increase of the delay time. At this time, when the number of falling of the oscillating voltage reaches the upper limit, the progress of the delay time is prioritized and the oscillating voltage signal is ignored even if the falling of the next oscillating voltage is detected. That is, when the upper limit of the number of falling times set in advance is reached, the counting of the number of falling times is not necessary.
 図11は、振動電圧の上限立下り回数を3回に設定し、立下り回数が上限に達した後は、遅延時間を設定した場合の動作波形である。時刻t1~t2の期間にインダクタL1の電流IL1が減少しゼロに到達する。時刻t2~t3の期間で検出巻線L2から振動電圧の立下り回数をカウントする。設定された光源電流値から、例えば制御部5を構成するマイクロコンピュータのプログラムによりテーブルを参照するなどして、立下り回数の上限と遅延時間を設定することができる。ここでは,3回の立下り回数と遅延時間が設定される。時刻t3時点で検出巻線L2の振動電圧の立下り回数が3回に到達する。時刻t3から遅延時間のカウントが開始され、時刻t4に設定された遅延時間に到達する。時刻t1から時刻t4までスイッチング素子SW1のオフ状態を維持する。 FIG. 11 is an operation waveform in the case where the upper limit number of falling times of the oscillating voltage is set to three and the delay time is set after the number of falling times reaches the upper limit. During a period from time t1 to t2, the current IL1 of the inductor L1 decreases and reaches zero. The number of falling times of the oscillating voltage from the detection winding L2 is counted in a period from time t2 to time t3. From the set light source current value, it is possible to set the upper limit of the number of fallings and the delay time by, for example, referring to a table by a program of a microcomputer constituting the control unit 5 or the like. Here, the number of falling times and the delay time are set three times. The number of falling times of the oscillating voltage of the detection winding L2 reaches three times at time t3. The delay time count starts from time t3 and reaches the delay time set at time t4. The off state of the switching element SW1 is maintained from time t1 to time t4.
 遅延時間カウント中の時刻t3~t4の期間中に、検出巻線L2による振動電圧の立下りを検知してもその立下り電圧は無視される。仮に、時刻t3~t4の期間中に、振動電圧が減衰したとしても設定した遅延時間に到達するとスイッチング素子SW1はオンするので問題ない。逆に言えば、立下り回数の上限値は、振動電圧が検出可能な範囲内の最大値に設定されることが望ましい。時刻t4で設定した遅延時間に到達すると再度スイッチング素子SW1をターンオンし、次のスイッチングサイクルが開始される。このように時刻t2~t4の期間は光源電流に応じて設定されるので、周波数の上昇を抑制できる。 During the period from time t3 to t4 during the delay time counting, even if the falling of the oscillating voltage due to the detection winding L2 is detected, the falling voltage is ignored. Even if the oscillating voltage is attenuated during the period from time t3 to time t4, the switching element SW1 is turned on when the set delay time is reached, so there is no problem. Conversely, it is desirable that the upper limit value of the number of falling times be set to the maximum value within the range in which the oscillating voltage can be detected. When the delay time set at time t4 is reached, the switching element SW1 is turned on again, and the next switching cycle is started. As described above, since the period from time t2 to t4 is set according to the light source current, it is possible to suppress an increase in frequency.
 上述したように、実施の形態2では、制御部5は、負荷電力が小さくなるほど、第1オフ期間で検出する振動電圧の立下がり回数を増加させることでスイッチング素子SW1のオフ期間を長くする。第1オフ期間で検知する振動電圧の立下がり回数には上限を設ける。制御部5は、第1オフ期間で検出する振動電圧の立下がり回数を増加させた後に、さらに負荷電力が小さくなった場合、第2オフ期間を長くする。こうすることで、軽負荷状態でスイッチング素子SW1のオフ期間を長くしなければならない場合において、振動電圧が減衰して立下り電圧が検出できなくなってもスイッチング素子のオフ期間を十分確保することができる。つまり、軽負荷状態でもスイッチング周波数の上昇を抑制することができる。したがって、実施の形態2の光源点灯装置は、光源電流の可変幅が大きく、光源の明るさの調整範囲を広く設定でき、広い負荷変動に対応できるものである。 As described above, in the second embodiment, the control unit 5 increases the number of falling times of the oscillating voltage detected in the first off period as the load power decreases, thereby lengthening the off period of the switching element SW1. An upper limit is provided for the number of falling of the oscillating voltage detected in the first off period. After increasing the number of falling times of the oscillating voltage detected in the first off period, the control unit 5 lengthens the second off period if the load power is further reduced. By doing this, when the off period of the switching element SW1 has to be extended in the light load state, the off period of the switching element can be sufficiently secured even if the oscillation voltage is attenuated and the falling voltage can not be detected. it can. That is, an increase in switching frequency can be suppressed even in a light load state. Therefore, in the light source lighting device of the second embodiment, the variable width of the light source current is large, the adjustment range of the brightness of the light source can be widely set, and wide load fluctuation can be coped with.
 実施の形態1で述べたように、遅延時間は、スイッチング素子SW1のドレインソース間電圧の振動のボトムとなる付近で次のオンタイミングが来るように設定することが望ましい。このとき、振動電圧の直近の立下り信号から遅延時間をカウントするので、遅延時間を最小にでき、交流電源の電圧位相により振動電圧の振動周期が変動することによる影響を小さくできる。すなわち、振動電流がインダクタL1の電流IL1に重畳して入力電流波形にひずみが発生することを最小限に抑制できる。 As described in the first embodiment, it is desirable to set the delay time so that the next on-timing comes in the vicinity of the bottom of the oscillation of the voltage between the drain and the source of the switching element SW1. At this time, since the delay time is counted from the latest falling signal of the oscillating voltage, the delay time can be minimized, and the influence of the fluctuation of the oscillating cycle of the oscillating voltage due to the voltage phase of the AC power supply can be reduced. That is, it is possible to minimize the occurrence of distortion in the input current waveform by superimposing the oscillating current on the current IL1 of the inductor L1.
 本実施の形態においては、光源電流に応じてスイッチング素子SW1のオフ期間を設定した。しかし、軽負荷となれば周波数が上昇するので、例えば光源に印加される電圧が減少して軽負荷となる場合に、同様の制御を行っても良い。例えば、DC-DCコンバータ4に接続される光源9を印加電圧の低いものに付け替えた場合に、振動電圧の振動回数または遅延時間を増加させても良いし、光源9に印加される電圧と光源電流の積をとり、負荷電力を演算し、負荷電力に応じて振動電圧の振動回数または遅延時間を加減させても良い。また、交流電源電圧によっても駆動周波数は増減するため、交流電源電圧に応じて振動電圧の振動回数と遅延時間を加減させても良い。駆動周波数が十分低い動作条件の時は、通常の電流臨界モード制御に切り替えて力率改善回路3を動作させても良い。 In the present embodiment, the off period of the switching element SW1 is set according to the light source current. However, if the load is light, the frequency rises, so the same control may be performed, for example, when the voltage applied to the light source decreases and the load becomes light. For example, when the light source 9 connected to the DC-DC converter 4 is replaced with one having a low applied voltage, the number of oscillations or the delay time of the oscillating voltage may be increased, or the voltage applied to the light source 9 and the light source The product of the current may be calculated, the load power may be calculated, and the number of oscillations or the delay time of the oscillating voltage may be adjusted according to the load power. In addition, since the drive frequency is increased or decreased depending on the AC power supply voltage, the number of oscillations and the delay time of the oscillation voltage may be adjusted according to the AC power supply voltage. When the drive frequency is a sufficiently low operating condition, the power factor correction circuit 3 may be operated by switching to the normal current critical mode control.
 実施の形態2では、光源電流の減少にともないまずは第1オフ期間で検出する振動電圧の立下がり回数を増加させ、さらに光源電流が減少した場合に遅延時間を増加させた。しかし、光源電流が小さい場合に第1オフ期間を長くすると振動電圧を検出できなくなるおそれがある。その場合、第1オフ期間で検出する振動電圧の立下がり回数を例えば2回に固定して増加させず、遅延時間を長くすることが好ましい。すなわち、制御部5は、負荷電力が小さくなるほど、第1オフ期間で検出する振動電圧の立下がり回数を固定しつつ第2オフ期間を長くする。これにより、振動電圧が小さい場合に振動電圧の立下がりを検知できなくなる問題を解消しつつ、スイッチング素子SW1のオフ期間を長くできる。しかも、振動電圧が小さい場合に遅延時間を長くしてもインダクタL1の電流に重畳される電流は小さいのでほとんど弊害はない。 In the second embodiment, the number of falling of the oscillating voltage detected in the first off period is increased as the light source current decreases, and the delay time is increased when the light source current decreases. However, when the light source current is small, the oscillation voltage may not be detected if the first off period is extended. In that case, it is preferable to lengthen the delay time without fixing and increasing the number of falling times of the oscillating voltage detected in the first off period, for example, twice. That is, the control unit 5 lengthens the second off period while fixing the number of falling of the oscillating voltage detected in the first off period as the load power decreases. Thereby, the off period of the switching element SW1 can be extended while solving the problem that the falling of the oscillating voltage can not be detected when the oscillating voltage is small. Furthermore, even if the delay time is increased when the oscillating voltage is small, the current superimposed on the current of the inductor L1 is small, so there is almost no problem.
実施の形態3.
 図12は、実施の形態3に係る照明器具200の断面図である。照明器具200は、照明器具本体40、コネクタ41、光源基板42、及び光源点灯装置43を備えている。照明器具本体40は、光源点灯装置43などを取り付けるための筺体である。コネクタ41は、商用電源などの交流電源から電力の供給を受けるための接続部である。光源基板42は、LED又は有機ELなどの光源を実装した基板である。
Third Embodiment
FIG. 12 is a cross-sectional view of the lighting fixture 200 according to the third embodiment. The lighting fixture 200 includes a lighting fixture body 40, a connector 41, a light source substrate 42, and a light source lighting device 43. The lighting device main body 40 is a housing for attaching the light source lighting device 43 and the like. The connector 41 is a connection unit for receiving supply of power from an AC power supply such as a commercial power supply. The light source substrate 42 is a substrate on which a light source such as an LED or an organic EL is mounted.
 光源点灯装置43の回路構成は上述した光源点灯装置のいずれかと同じ回路構成である。したがって、実施の形態3の照明器具200は、上述の光源点灯装置と、その光源点灯装置が点灯させるLEDまたは有機ELを備える。光源点灯装置43は、コネクタ41と配線44を介して交流電源からの電力供給を受ける。光源点灯装置43は、入力した電力を変換し、変換された電力を配線45を介して光源基板42に供給する。光源点灯装置43から供給された電力により、光源基板42に実装された光源が点灯する。 The circuit configuration of the light source lighting device 43 is the same as that of any of the light source lighting devices described above. Therefore, the lighting fixture 200 of Embodiment 3 is provided with the above-mentioned light source lighting device, and LED or organic EL which the light source lighting device makes it light. The light source lighting device 43 receives power supply from an AC power supply via the connector 41 and the wiring 44. The light source lighting device 43 converts the input power and supplies the converted power to the light source substrate 42 through the wiring 45. The power supplied from the light source lighting device 43 causes the light source mounted on the light source substrate 42 to light.
 これにより、実施の形態1または2にかかる光源点灯装置の利点を備える照明器具200が提供される。この照明器具200によれば、実施の形態1または2で述べた光源点灯装置のいずれか1つを備えることで、スイッチング周波数の上昇に伴うスイッチング損失増加と光源ちらつきを抑制できる。 Thereby, the lighting fixture 200 provided with the advantage of the light source lighting device according to the first or second embodiment is provided. According to this lighting fixture 200, by providing any one of the light source lighting devices described in Embodiment 1 or 2, it is possible to suppress the increase in switching loss and the light source flicker due to the increase in switching frequency.
 3 力率改善回路、 5 制御部、 5c 遅延時間設定部、 9 光源 3 Power factor correction circuit, 5 control units, 5c delay time setting unit, 9 light sources

Claims (11)

  1.  交流電源を整流する整流回路と、
     スイッチング素子とインダクタとを有し、前記整流回路の出力が入力され、直流電圧を出力する力率改善回路と、
     前記インダクタで発生する電圧を検出する検出巻線と、
     前記検出巻線で検出した電圧が入力され、前記スイッチング素子を駆動させる制御部と、を備え、
     前記制御部は、前記スイッチング素子をオフしてから前記検出巻線の振動電圧が少なくとも2回立下がるまでの第1オフ期間の経過後、予め定められた第2オフ期間が経過するまで前記スイッチング素子のオフ状態を継続し、前記第2オフ期間の経過後に前記スイッチング素子をオンすることを特徴とする光源点灯装置。
    A rectifier circuit that rectifies AC power;
    A power factor improvement circuit having a switching element and an inductor, the output of the rectifier circuit being input, and a DC voltage being output;
    A detection winding for detecting a voltage generated by the inductor;
    A control unit which receives the voltage detected by the detection winding and drives the switching element;
    The control unit is configured to perform the switching until a predetermined second off period elapses after a first off period until the oscillating voltage of the detection winding falls at least twice after the switching element is turned off. A light source lighting device characterized by continuing an off state of the element and turning on the switching element after a lapse of the second off period.
  2.  前記制御部は、前記スイッチング素子のオン時間を少なくとも前記交流電源の半周期間において略固定値とすることを特徴とする請求項1に記載の光源点灯装置。 The light source lighting device according to claim 1, wherein the control unit sets the on time of the switching element to a substantially fixed value at least during a half cycle of the AC power supply.
  3.  前記制御部は、前記力率改善回路の出力を一定とする期間に、前記第2オフ期間を略固定値とすることを特徴とする請求項1又は2に記載の光源点灯装置。 The light source lighting device according to claim 1, wherein the control unit sets the second off period to a substantially fixed value during a period in which the output of the power factor correction circuit is constant.
  4.  前記制御部は、前記直流電圧の定電圧フィードバック制御に伴う前記スイッチング素子のオン時間の変更タイミングを前記交流電源のゼロクロス付近とすることを特徴とする請求項2に記載の光源点灯装置。 The light source lighting device according to claim 2, wherein the control unit sets a change timing of the on time of the switching element accompanying constant voltage feedback control of the direct current voltage to be near a zero cross of the alternating current power supply.
  5.  前記制御部は、負荷電力が小さくなるほど、前記第1オフ期間で検出する前記振動電圧の立下がり回数を増加させることを特徴とする請求項1~4のいずれか1項に記載の光源点灯装置。 The light source lighting device according to any one of claims 1 to 4, wherein the control unit increases the number of falling times of the oscillating voltage detected in the first off period as the load power decreases. .
  6.  前記制御部は、前記第1オフ期間で検出する前記振動電圧の立下がり回数を増加させた後に、さらに前記負荷電力が小さくなった場合、前記第2オフ期間を長くすることを特徴とする請求項5に記載の光源点灯装置。 The control unit may increase the second off period if the load power is further reduced after increasing the number of falling times of the oscillating voltage detected in the first off period. The light source lighting device according to Item 5.
  7.  前記制御部は、負荷電力が小さくなるほど、前記第1オフ期間で検出する前記振動電圧の立下がり回数を固定しつつ第2オフ期間を長くすることを特徴とする請求項1~4のいずれか1項に記載の光源点灯装置。 5. The controller according to any one of claims 1 to 4, wherein the control unit lengthens the second off period while fixing the number of falling of the oscillating voltage detected in the first off period as the load power decreases. The light source lighting device according to item 1.
  8.  前記制御部の少なくとも一部をマイクロコンピュータで構成することを特徴とする請求項1~7のいずれか1項に記載の光源点灯装置。 The light source lighting device according to any one of claims 1 to 7, wherein at least a part of the control unit is configured by a microcomputer.
  9.  前記第1オフ期間は前記第2オフ期間より長いことを特徴とする請求項1~8のいずれか1項に記載の光源点灯装置。 The light source lighting device according to any one of claims 1 to 8, wherein the first off period is longer than the second off period.
  10.  請求項1~9のいずれか1項に記載の光源点灯装置と、
     前記光源点灯装置が点灯させるLEDと、を備えることを特徴とする照明器具。
    A light source lighting device according to any one of claims 1 to 9,
    A light fixture comprising: an LED for lighting the light source lighting device.
  11.  請求項1~9のいずれか1項に記載の光源点灯装置と、
     前記光源点灯装置が点灯させる有機ELと、を備えることを特徴とする照明器具。
    A light source lighting device according to any one of claims 1 to 9,
    A light fixture comprising: an organic EL to be lighted by the light source lighting device.
PCT/JP2017/022880 2017-06-21 2017-06-21 Light source lighting device and illumination apparatus WO2018235199A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/022880 WO2018235199A1 (en) 2017-06-21 2017-06-21 Light source lighting device and illumination apparatus
JP2019524779A JP6725075B2 (en) 2017-06-21 2017-06-21 Light source lighting device, lighting equipment
CN201780091889.0A CN110809909B (en) 2017-06-21 2017-06-21 Light source lighting device and lighting fixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/022880 WO2018235199A1 (en) 2017-06-21 2017-06-21 Light source lighting device and illumination apparatus

Publications (1)

Publication Number Publication Date
WO2018235199A1 true WO2018235199A1 (en) 2018-12-27

Family

ID=64735544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022880 WO2018235199A1 (en) 2017-06-21 2017-06-21 Light source lighting device and illumination apparatus

Country Status (3)

Country Link
JP (1) JP6725075B2 (en)
CN (1) CN110809909B (en)
WO (1) WO2018235199A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020170658A (en) * 2019-04-04 2020-10-15 三菱電機株式会社 Lighting device, luminaire, and control method for lighting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004531195A (en) * 2001-06-25 2004-10-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method for reducing mains harmonics and switching losses in discontinuous mode, switching power converter
JP2014131420A (en) * 2012-12-28 2014-07-10 Sharp Corp Power-supply device
JP2014143017A (en) * 2013-01-22 2014-08-07 Panasonic Corp Lighting device, and illuminating fixture and illumination system using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4735239B2 (en) * 2005-12-22 2011-07-27 パナソニック電工株式会社 Discharge lamp lighting device and image display device
JP6278314B2 (en) * 2014-04-18 2018-02-14 パナソニックIpマネジメント株式会社 Lighting device and lighting apparatus using the same
JP6210936B2 (en) * 2014-05-30 2017-10-11 ミネベアミツミ株式会社 Self-excited resonance type power factor correction circuit and light source driving device
JP6429148B2 (en) * 2014-11-20 2018-11-28 パナソニックIpマネジメント株式会社 Lighting device and lighting apparatus using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004531195A (en) * 2001-06-25 2004-10-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method for reducing mains harmonics and switching losses in discontinuous mode, switching power converter
JP2014131420A (en) * 2012-12-28 2014-07-10 Sharp Corp Power-supply device
JP2014143017A (en) * 2013-01-22 2014-08-07 Panasonic Corp Lighting device, and illuminating fixture and illumination system using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020170658A (en) * 2019-04-04 2020-10-15 三菱電機株式会社 Lighting device, luminaire, and control method for lighting device
JP7326823B2 (en) 2019-04-04 2023-08-16 三菱電機株式会社 LIGHTING DEVICE, LIGHTING EQUIPMENT, CONTROL METHOD FOR LIGHTING DEVICE

Also Published As

Publication number Publication date
JPWO2018235199A1 (en) 2019-11-07
CN110809909A (en) 2020-02-18
CN110809909B (en) 2021-08-31
JP6725075B2 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
JP6288224B2 (en) Light source lighting device and lighting fixture
US9313844B2 (en) Lighting device and luminaire
US9872353B2 (en) LED lighting device and LED illuminating device
JP7081363B2 (en) Lighting equipment, lighting equipment
JP6702112B2 (en) Switching power supply device and LED lighting circuit
JP6023414B2 (en) Power supply device and lighting fixture
KR101185534B1 (en) Power supply for preventing flickering of led lamp
JP6135635B2 (en) Lighting device and lighting apparatus
JP6341378B2 (en) Power supply device and lighting device
JP6725075B2 (en) Light source lighting device, lighting equipment
JP2020109775A (en) Lighting device and illumination tool
JP2019057427A (en) Dimming circuit for led power supply
JP6295540B2 (en) Lighting device and lighting apparatus
JP7293923B2 (en) LIGHT SOURCE LIGHTING DEVICE, LIGHTING EQUIPMENT, LIGHT SOURCE LIGHTING DEVICE CONTROL METHOD
JP6825704B2 (en) Power converters, lighting fixtures, electrical equipment
JP7396219B2 (en) Power supplies and lighting equipment
JP7326823B2 (en) LIGHTING DEVICE, LIGHTING EQUIPMENT, CONTROL METHOD FOR LIGHTING DEVICE
JP2019057428A (en) Dimming circuit for led power supply
JP6070753B2 (en) Lighting device and lighting apparatus
JP2013239387A (en) Lighting device, illuminating fixture, and lighting system
JP5447959B2 (en) Discharge lamp lighting device and lighting control method thereof
JP2023168984A (en) Lighting device
JP6760102B2 (en) Lighting device and lighting equipment
JP2023069496A (en) Lighting device and light fixture
CN112566298A (en) Light source driving device, method and light source equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17914177

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019524779

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17914177

Country of ref document: EP

Kind code of ref document: A1