Elektrische Maschine, insbesondere für ein Fahrzeug
Die Erfindung betrifft eine elektrische Maschine, insbesondere für ein Fahrzeug, sowie ein Fahrzeug mit einer solchen Maschine.
Bei einer derartigen elektrischen Maschine kann es sich allgemein um einen Elektromotor oder um einen Generator handeln. Die elektrische Maschine kann als Außenläufer oder als Innenläufer ausgebildet sein.
Eine gattungsgemäße Maschine ist beispielsweise aus der US 5,214,325 bekannt. Sie umfasst ein Gehäuse, das einen Innenraum umgibt und das einen in einer Umfangsrichtung des Gehäuses umlaufenden, den Innenraum radial begrenzenden Mantel, axial einerseits eine den Innenraum axial begrenzende Rückseitenwand und axial andererseits eine den Innenraum axial begrenzende Vorderseitenwand aufweist. Fest mit dem Mantel ist ein Stator der Maschine verbunden. Im Stator ist ein Rotor der Maschine angeordnet, wobei eine Rotorwelle des Rotors über ein vorderes Wellenlager an der Vorderseitenwand drehbar gelagert ist.
Typischerweise umfasst der Stator einer herkömmlichen elektrischen Maschine Statorwicklungen, die im Betrieb der Maschine elektrisch bestromt werden. Dabei entsteht Wärme, die zur Vermeidung einer Überhitzung und einer damit verbundenen Beschädigung oder gar Zerstörung des Stators abgeführt werden muss. Hierzu ist es aus herkömmlichen elektrischen Maschinen bekannt, diese mit einer Kühleinrichtung zum Kühlen des Stators - insbesondere besagter Statorwicklungen - auszustatten. Eine solche Kühleinrichtung umfasst einen oder mehrere Kühlkanäle, die von einem Kühlmittel durchströmt werden und in der Nähe der
Statorwicklungen im Stators angeordnet sind. Durch Wärmeübertragung von den Statorwicklungen auf das Kühlmittel kann Wärme vom Stator abgeführt werden.
Als nachteilig erweist sich dabei, dass ein effizienter Wärmeübergang vom Stator auf das durch den jeweiligen Kühlkanal strömende Kühlmittel nur mit erheblichem konstruktiven Aufwand verbunden ist. Dies wirkt sich jedoch nachteilig auf die Herstellungskosten der elektrischen Maschine aus.
Es ist daher eine Aufgabe der vorliegenden Erfindung, eine verbesserte Ausführungsform für eine elektrische Maschine zu schaffen, bei welcher dieser Nachteil weitgehend oder gar vollständig beseitigt ist. Insbesondere soll eine verbesserte Ausführungsform für eine elektrische Maschine geschaffen werden, welche sich durch eine verbesserte Kühlung der Statorwicklungen des Stators auszeichnet.
Diese Aufgabe wird durch den Gegenstand der unabhängigen Patentansprüche gelöst. Bevorzugte Ausführungsformen sind Gegenstand der abhängigen Patentansprüche.
Grundidee der Erfindung ist demnach, die Statorwicklungen einer elektrischen Maschine zusammen mit einem mit Kühlmittel durchströmbaren Kühlkanal zum Kühlen der Statorwicklungen in eine Kunststoffmasse aus einem elektrisch isolierenden Kunststoff einzubetten. Somit kann der Kunststoff als wärmeübertragendes Medium zur Übertragung von Wärme von den Statorwicklungen auf das Kühlmittel einerseits und als elektrischer Isolator für die Statorwicklungen andererseits wirken. Auf diese Weise wird insbesondere ein besonders guter Wärmeübergang zwischen den Statorwicklungen und dem durch den Kühlkanal geführten Kühlmittel hergestellt. Dies gilt insbesondere, wenn ein Kunststoff verwendet wird, der eine hohe thermische Leitfähigkeit aufweist. Hierzu eignen sich besonders sogenannte duroplastische Kunststoffe. Durch Verwendung eines elektrisch
isolierenden Kunststoffs wird gleichzeitig sichergestellt, dass die zu kühlenden Statorwicklungen durch den Kunststoff nicht auf unerwünschte Weise elektrisch kurzgeschlossen werden.
Die direkte thermische Ankopplung des Kühlkanals mit dem Kühlmittel an die zu kühlenden Statorwicklungen mithilfe der erfindungswesentlichen Einbettung dieser beiden Komponenten in eine Kunststoffmasse aus Kunststoff führt zu einer gegenüber herkömmlichen Kühleinrichtungen besonders effektiven Kühlung der Statorwicklungen. Somit kann auch bei hoher Abwärme-Entwicklung im Stator, wie sie beispielsweise in einem Hochlastbetrieb der elektrischen Maschine auftritt, sichergestellt werden, dass die anfallende Abwärme vom Stator abgeführt werden kann. Eine Beschädigung oder gar Zerstörung der elektrischen Maschine durch Überhitzung des Stators kann somit vermieden werden. Die Herstellung der erfindungswesentlichen Kunststoffmasse kann bevorzugt mittels Spritzgießens erfolgen, bei welchem die zu kühlenden Statorwicklungen sowie der Kühlkanal zur Ausbildung der Kunststoffmasse mit dem Kunststoff umspritzt werden. Die Einbettung der Statorwicklungen und des Kühlkanal in die Kunststoffmasse gestaltet sich daher sehr einfach. Daraus ergeben sich erhebliche Kostenvorteile bei der Herstellung der erfindungsgemäßen elektrischen Maschine.
Eine erfindungsgemäße elektrische Maschine, insbesondere für ein Fahrzeug, umfasst einen Rotor, der um eine Rotationsachse drehbar ist. Durch die Rotationsachse wird eine axiale Richtung der elektrischen Maschine definiert. Die Maschine umfasst außerdem einen Stator, der mehrere Statorwicklungen aufweist. Die Maschine umfasst ferner einen Kühlmittelverteilerraum und einen axial im Abstand zu diesem angeordneten Kühlmittelsammlerraum. Dabei kommuniziert der Kühlmittelverteilerraum mittels wenigstens eines von einem Kühlmittel durchströmbaren Kühlkanals fluidisch mit dem Kühlmittelsammlerraum. Bevorzugt sind zwischen dem Kühlmittelverteilerraum und dem Kühlmittelsammlerraum mehrere
solche Kühlkanäle vorgesehen. Erfindungsgemäß sind der zumindest eine Kühlkanal und die zumindest eine Statorwicklung zur thermischen Ankopplung an das Kühlmittel zumindest abschnittsweise in eine Kunststoffmasse aus einem elektrisch isolierenden Kunststoff eingebettet.
Gemäß einer bevorzugten Ausführungsform ist der Kühlmittelverteilerraum und/oder der Kühlmittelsammlerraum zur thermischen Ankopplung an die Statorwicklungen wenigstens teilweise in der zumindest einen Kunststoffmasse angeordnet. Dies ermöglicht einen besonders guten Wärmeübergang zwischen dem Kühlmittelverteilerraum bzw. Kühlmittelsammlerraum und den Statorwicklungen, sodass auch der Kühlmittelverteilerraum bzw. der Kühlmittelsammlerraum zur direkten Aufnahme von Wärme von den Statorwicklungen verwendet werden kann.
Gemäß einer anderen bevorzugten Ausführungsform besitzt der Stator sich entlang der axialen Richtung erstreckende und entlang einer Umfangsrichtung beabstandet zueinander angeordnete Statorzähne, welche die Statorwicklungen tragen. Bei dieser Ausführungsform ist die Kunststoffmasse mit dem zumindest einen Kühlkanal und mit der zumindest einen Statorwicklung in einem Zwischenraum angeordnet, welcher zwischen zwei in der Umfangsrichtung benachbarten Statorzähnen ausgebildet ist. Diese Maßnahme stellt einen besonders guten Wärmeübergang zwischen den Statorwicklungen und dem Kühlkanal sicher, da der Kühlkanal in dem Zwischenraum in unmittelbarer Nachbarschaft zu den zu kühlenden Statorwicklungen angeordnet ist. Darüber hinaus kann besagter Zwischenraum zwischen den Statorzähnen bei der Herstellung der Kunststoffmasse in der Art einer Gussform verwendet werden, in welche der Kunststoff der Kunst- stoffmasse eingespritzt wird. Dies vereinfacht die Herstellung der Kunststoffmas- se, da die Bereitstellung einer separaten Gussform entfallen kann.
Eine weitere bevorzugte Ausgestaltung schlägt vor, den Zwischenraum in einen ersten und einen zweiten Teilraum zu unterteilen. Bei dieser Ausgestaltung ist im ersten Teilraum die zumindest eine Statorwicklung angeordnet. Im zweiten Teilraum ist der zumindest eine Kühlkanal angeordnet. Zwischen den beiden Teilräumen ist eine Positionierhilfe ausgebildet, mittels welcher der zumindest eine Kühlkanal im zweiten Teilraum positioniert werden kann. Diese Maßnahme erlaubt eine präzise und stabile Positionierung des Kühlkanal - bei welchem es sich typischerweise um einen Rohrkörper bzw. um ein Flachrohr handelt -, wenn dieser zusammen mit den Statorwicklungen im Zwischenraum zwischen den beiden Statorzähnen mit dem die Kunststoffmasse ergebenden Kunststoff umspritzt wird.
Bei einer vorteilhaften Weiterbildung dieser Ausgestaltung umfasst die Positionierhilfe zwei Vorsprünge, die an zwei in der Umfangsrichtung benachbarten Statorzähnen ausgebildet sind. Die beiden Vorsprünge sind einander in der Umfangsrichtung des Rotors zugewandt und ragen zum Positionieren des Kühlkanals in den Zwischenraum hinein. Diese Ausgestaltung erlaubt eine besonders genaue Ausrichtung des Kühlkanals im Zwischenraum vor dem Umspritzen mit dem Kunststoff der Kunststoffmasse.
Zweckmäßig ragt die Kunststoffmasse axial, vorzugsweise beidseitig, aus dem jeweiligen Zwischenraum heraus. Somit kann die Kunststoffmasse auch zum teilweisen Begrenzen des Kühlmittelverteilerraums bzw. des Kühlmittelsammlerraums verwendet werden. Insbesondere kann ein im Zuge der Herstellung der Maschine erforderliches Entfernen des aus dem Zwischenraum herausragenden Teils der Kunststoffmasse entfallen, womit Kostenvorteile bei der Herstellung der Maschine einhergehen.
Eine weitere vorteilhafte Ausgestaltung schlägt daher vor, dass die zumindest eine Kunststoffmasse den Kühlmittelverteilerraum und/oder den Kühlmittelsammler-
räum zumindest teilweise begrenzt. Die Bereitstellung einer separaten Begrenzung für den Kühlmittelverteilerraum bzw. den Kühlmittelsammlerraum, etwa in Form eines Gehäuses, kann somit entfallen.
Gemäß einer bevorzugten Ausführungsform besteht die in dem Zwischenraum angeordnete Kunststoffmasse aus einem einzigen Kunststoffmaterial. Bei dieser Ausführungsform ist in dem Zwischenraum, bevorzugt zwischen der Statorwicklung bzw. Kunststoffmasse und dem Statorzahn, eine zusätzliche elektrische Isolation aus einem elektrisch isolierenden Material angeordnet. Da bei dieser Ausführungsform nur ein einziges Kunststoffmaterial in die Zwischenräume eingebracht werden muss, kann die Herstellung der Kunststoffmasse aus diesem Kunststoff in einem einzigen Spritzgussschritt erfolgen. Die Herstellung der Kunststoffmasse gestaltet sich daher besonders einfach, womit Kostenvorteile einhergehen.
Zweckmäßig füllt die Kunststoffmasse den Zwischenraum im Wesentlichen vollständig aus. Auf diese Weise wird die Ausbildung von unerwünschten Zwischenräumen, etwa in der Art von Luftspalten, die zu einer unerwünschten Minderung des Wärmeübergangs führen würden, vermieden.
Zweckmäßig umfasst der elektrisch isolierende Kunststoff der Kunststoffmasse einen Duroplasten oder ist ein Duroplast. Alternativ kann der elektrisch isolierende Kunststoff der Kunststoffmasse einen Thermoplasten umfassen oder ein Thermoplast sein. Auch eine Kombination aus einem Duroplasten und einem Thermoplasten ist in einer weiteren Variante denkbar.
Zweckmäßig können in zumindest einem, vorzugsweise in jedem Zwischenraum, zwischen zwei jeweils in Umfangsrichtung benachbarten Statorzähnen jeweils zumindest ein Kühlkanal und die Kunststoffmasse vorgesehen sein. Auf diese
Weise ist sichergestellt, dass aus allen vorhandenen Statorwicklungen betriebsmäßig erzeugte Abwärme abgeführt werden kann.
Gemäß einer anderen bevorzugten Ausführungsform ist der zumindest eine Kühlkanal radial außerhalb und/oder radial innerhalb der jeweiligen Statorwicklung in dem Zwischenraum angeordnet. Dies ermöglicht eine platzsparende Anordnung des Kühlkanals nahe an den zu kühlenden Statorwicklungen, so dass die elektrische Maschine für die Kühlung der Statorwicklungen nur wenig Bauraum benötigt.
Eine bevorzugte Ausgestaltung schlägt vor, den zumindest einen Kühlkanal als Rohrkörper auszubilden, der einen Rohrkorperinnenraum umgibt. Bei dieser Variante ist am Rohrkörper wenigstens ein Trennelement ausgeformt, welches den Rohrkorperinnenraum in wenigstens zwei fluidisch voneinander getrennte Teilkühlkanäle unterteilt. Mittels besagter Trennelemente kann der Rohrkörper ausgesteift werden, sodass sich seine mechanische Festigkeit erhöht.
Eine vorteilhafte Weiterbildung schlägt vor, den Rohrkörper als Flachrohr auszubilden, welches sich entlang der axialen Richtung erstreckt und in einem Querschnitt senkrecht zur axialen Richtung zwei Breitseiten und zwei Schmalseiten aufweist. Zweckmäßig erstreckt sich in dem Querschnitt senkrecht zur axialen Richtung zumindest eine Breitseite des Flachrohrs im Wesentlichen senkrecht zur radialen Richtung. Eine Länge der beiden Breitseiten kann dabei bevorzugt wenigstens das Vierfache, vorzugsweise wenigstens das Zehnfache, einer Länge der beiden Schmalseiten betragen.
Gemäß einer weiteren bevorzugten Ausführungsform sind der Kühlmittelverteilerraum und/oder der Kühlmittelsammlerraum durch einen zumindest teilweise, vorzugsweise vollständig, in der Kunststoffmasse vorhandenen Hohlraum gebildet. Die Bereitstellung einer separaten Umhüllung bzw. eines Gehäuses zur Begren-
zung des Kühlmittel Verteilers bzw. Kühlmittelsammlerraums kann somit entfallen. Damit gehen nicht unerhebliche Kostenvorteile einher.
Besonders bevorzugt ist die Kunststoffmasse eine Spritzgussmasse aus einem elektrisch isolierenden Kunststoff. Die Anwendung eines Spritzgussverfahrens vereinfacht und beschleunigt die Herstellung der Kunststoffmasse. Dies führt zu Kostenvorteilen bei der Herstellung der elektrischen Maschine.
Bei einer vorteilhaften Weiterbildung umfasst der Stator einen, vorzugsweise ringförmigen, Statorkörper, von welchem die Statorzähne abstehen. Bei dieser Weiterbildung ist die Kunststoffmasse aus dem elektrisch isolierenden Kunststoff auf einer Außenumfangsseite des Statorkörpers angeordnet ist und vorzugsweise auf dieser Außenumfangsseite eine Kunststoffbeschichtung ausbildet. Somit kann der Stator elektrisch gegen die Umgebung isoliert werden. Die Bereitstellung eines separaten Gehäuses zur Aufnahme des Statorkörpers kann somit entfallen. Auch eine Beschichtung zumindest einer oder beider Stirnseiten des Statorkörpers mit der Kunststoffmasse ist in einer optionalen Variante denkbar. In einer weiteren Variante kann die Kunststoffmasse den Statorkörper, vorzugsweise vollständig, umhüllen.
Gemäß einer bevorzugten Ausführungsform umgibt die Kunststoffmasse zumindest eine axial aus der Zwischenraum des Statorkörpers herausragenden Wicklungsabschnitt zumindest einer Statorwicklung zumindest teilweise und begrenzt dabei den Kühlmittelverteilerraum und/oder den Kühlmittelsammlerraum teilweise, so dass dieser Wicklungsabschnitt der Statorwicklung elektrisch gegenüber dem Kühlmittel isoliert ist. Ein unerwünschter elektrischer Kurzschluss des Kühlmittels mit der Statorwicklung im Betrieb der elektrischen Maschine wird auf diese Weise verhindert.
Gemäß einer vorteilhaften Weiterbildung kommuniziert der Kühlmittelverteilerraum mittels einer Mehrzahl von Kühlkanälen fluidisch mit dem Kühlmittelverteilerraum.
Zweckmäßig erstreckt sich die Mehrzahl von Kühlkanälen, jeweils im Abstand zueinander, entlang der axialen Richtung. Diese Maßnahme stellt sicher, dass alle axialen Abschnitte der Statorwicklungen gekühlt werden.
Bevorzugt sind die Kühlkanäle entlang einer Umfangsrichtung des Stators im Abstand zueinander angeordnet. Diese Maßnahme stellt sicher, dass entlang der Umfangsrichtung alle Statorwicklungen gekühlt werden.
Gemäß einer anderen bevorzugten Ausführungsform ist der Kühlmittelverteilerraum und/oder Kühlmittelsammlerraum ausschließlich in einer axialen Verlängerung des Statorkörpers benachbart zu diesem angeordnet. Bevorzugt ragt bei dieser Ausführungsform der Kühlmittelverteilerraum bzw. der Kühlmittelsammlerraum entlang einer radialen Richtung des Statorkörpers bzw. Stators nicht über diesen hinaus. Diese Ausführungsform benötigt in radialer Richtung nur sehr wenig Bauraum.
Besonders bevorzugt ist zumindest eine Statorwicklung derart ausgebildet, dass sie im Betrieb der elektrischen Maschine zumindest im Bereich innerhalb des jeweiligen Zwischenraums elektrisch vom Kühlmittel und vom Statorkörper isoliert. Besonders bevorzugt gilt dies für alle Statorwicklungen der elektrischen Maschine. Ein unerwünschter elektrischer Kurzschluss der Statorwicklung mit dem Statorkörper - im Betrieb der elektrischen Maschine - mit dem Kühlmittel wird auf diese Weise verhindert.
Besonders zweckmäßig ist diese elektrische Isolierung der zumindest einen Statorwicklung vom Statorkörper, vorzugsweise auch von den den Zwischenraum begrenzenden Statorzähnen, vollständig durch die Kunststoffmasse und/oder durch den - bereits oben erwähnten - zusätzliche elektrische Isolation gebildet. Die Bereitstellung eines weiteren elektrischen Isolators kann auf diese Weise entfallen.
Gemäß einer anderen bevorzugten Ausführungsform erstreckt sich die zusätzliche elektrische Isolation innerhalb des Zwischenraums über die gesamte entlang der axialen Richtung gemessene Länge des Zwischenraums, so dass sie die Statorwicklung vom Statorkörper und von den den Zwischenraum begrenzenden Statorzähnen isoliert.
Gemäß einer vorteilhaften Weiterbildung umschließt die zusätzliche elektrische Isolation die Statorwicklung innerhalb des Zwischenraums über mindestens die gesamte Länge des Zwischenraums entlang dessen Umfang.
Bei einer besonders bevorzugten Ausführungsform ist die zumindest eine Statorwicklung auch elektrisch von dem als Rohrkörper ausgebildeten Kühlkanal isoliert. Dabei ist die elektrische Isolierung durch die Kunststoffmasse und/oder die zusätzliche Isolation gebildet.
Besonders bevorzugt können die Statorwicklungen Teil einer verteilten Wicklung sein.
Die Erfindung betrifft ferner ein Fahrzeug, insbesondere ein Kraftfahrzeug mit einer vorangehend vorgestellten elektrischen Maschine. Die oben erläuterten Vorteile der elektrischen Maschine übertragen sich daher auch auf das erfindungsgemäße Fahrzeug.
Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.
Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert.
Es zeigen, jeweils schematisch:
Fig. 1 ein Beispiel einer erfindungsgemäßen elektrischen Maschine in einem Längsschnitt entlang der Rotationsachse des Rotor
Fig. 2 den Stator der elektrischen Maschine gemäß Figur 1 in einem Querschnitt senkrecht zur Rotationsachse des Rotors
Fig. 3 eine Detaildarstellung des Stators der Figur 2 im Bereich eines Zwischenraum zwischen zwei in Umfangsrichtung benachbarten
Statorzähnen
Fig. 4 eine Weiterbildung der Variante gemäß Figur 3
Fig. 5 eine erste Variante der elektrischen Maschine der Figur 1 , bei welcher das durch die Kühlkanäle strömende Kühlmittel auch zur Kühlung der Wellenlager des Rotors verwendet wird,
Fig. 6 eine zweite Variante der elektrischen Maschine gemäß Figur 1 , welche besonders wenig Bauraum beansprucht,
Fig. 7 eine dritte Variante der Maschine gemäß Figur 1 , welche eine besonders effektive Kühlung der Statorwicklungen ermöglicht.
Figur 1 illustriert ein Beispiel einer erfindungsgemäßen elektrischen Maschine 1 in einer Schnittdarstellung. Die elektrische Maschine 1 ist so dimensioniert, dass sie in einem Fahrzeug, vorzugsweise in einem Straßenfahrzeug, eingesetzt werden kann.
Die elektrische Maschine 1 umfasst einen in der Figur 1 nur grobschematisch dargestellten Rotor 3 und einen Stator 2. Zur Verdeutlichung ist der Stator 2 in Figur 2 in einem Querschnitt senkrecht zur Rotationsachse D entlang der Schnittlinie II - II der Figur 1 in separater Darstellung dargestellt. Entsprechend Figur 1 besitzt der Rotor 3 eine Rotorwelle 31 und kann mehrere, in der Figur 1 nicht näher dargestellte Magnete aufweisen, deren magnetischer Polarisation entlang der Umfangsrichtung U abwechselt. Der Rotor 3 ist um eine Rotationsachse D drehbar, deren Lage durch die Mittellängsachse M der Rotorwelle 31 festgelegt ist. Durch die Rotationsachse D wird eine axiale Richtung A definiert, welche sich parallel zur Rotationsachse D erstreckt. Eine radiale Richtung R steht senkrecht zur axialen Richtung A. Eine Umfangsrichtung U rotiert um die Rotationsachse D.
Wie Figur 1 erkennen lässt, ist der Rotor 3 im Stator 2 angeordnet. Somit handelt es sich bei der hier gezeigten elektrischen Maschine 1 um einen sogenannten Innenläufer. Denkbar ist aber auch eine Realisierung als sogenannter Außenläufer, bei welcher der Rotor 3 außerhalb des Stators 2 angeordnet ist. Die Rotorwelle 31 ist in einem ersten Wellenlager 32a und, dazu axial beabstandet, in einem zweiten Wellenlager 32b um die Rotationsachse D drehbar am Stator 2 gelagert.
Der Stator 2 umfasst außerdem in bekannter Weise mehrere, zum Erzeugen eines magnetischen Feld elektrisch bestrombare Statorwicklungen 6. Durch magnetische Wechselwirkung des von den Magneten des Rotor 3 erzeugten magnetischen Feldes mit dem von den Statorwicklungen 6 erzeugten magnetischen Feld wird der Rotor 3 in Rotation versetzt. Die Statorwicklungen 6 können Teil einer verteilten Wicklung sein.
Dem Querschnitt der Figur 2 entnimmt man, dass der Stator 2 einen ringförmigen Statorkörper 7, beispielsweise aus Eisen, aufweisen kann. Insbesondere kann der Statorkörper 7 aus mehreren, entlang der axialen Richtung A aufeinandergesta- pelten und miteinander verklebten Statorkörperplatten (nicht gezeigt) gebildet sein. An dem Statorkörper 7 sind radial innen mehrere Statorzähne 8 angeformt, die sich entlang der axialen Richtung A erstrecken, radial nach innen vom Statorkörper 7 weg abstehen und entlang der Umfangsrichtung U beabstandet zueinander angeordnet sind. Jeder Statorzahn 8 trägt eine Statorwicklung 6. Die einzelnen Statorwicklungen 6 bilden zusammen eine Wicklungsanordnung. Je nach Anzahl der von den Statorwicklungen 6 zu bildenden magnetischen Pole können die einzelnen Statorwicklungen 6 der gesamten Wicklungsanordnung in geeigneter Weise elektrisch miteinander verdrahtet sein.
Im Betrieb der Maschine 1 erzeugen die elektrisch bestromten Statorwicklungen 6 Abwärme, die aus der Maschine 1 abgeführt werden muss, um eine Überhitzung
und eine damit einhergehende Beschädigung oder gar Zerstörung der Maschine 1 verhindern. Daher werden die Statorwicklungen 6 mithilfe eines Kühlmittels K gekühlt, welches durch den Stator 2 geführt wird und die von den Statorwicklungen 6 erzeugte Abwärme durch Wärmeübertragung aufnimmt.
Um das Kühlmittel K durch den Stator 2 zu führen, umfasst die Maschine 1 einen Kühlmittelverteilerraum 4, in welchen über einen Kühlmitteleinlass 33 ein Kühlmittel K eingeleitet werden kann. Entlang der axialen Richtung A im Abstand zum Kühlmittelverteilerraum 4 ist ein Kühlmittelsammlerraum 5 angeordnet. Der Kühlmittelverteilerraum 4 kommuniziert mittels mehrerer Kühlkanäle 10, von welchen in der Darstellung der Figur 1 nur ein einziger erkennbar ist, fluidisch mit dem Kühlmittelsammlerraum 5. In einem in den Figuren nicht gezeigten Querschnitt senkrecht zur axialen Richtung A können der Kühlmittelverteilerraum 4 und der Kühlmittelsammlerraum 5 jeweils eine ringförmige Geometrie besitzen. Entlang der Umfangsrichtung U sind mehrere Kühlkanäle 10 beabstandet zueinander angeordnet, die sich jeweils entlang der axialen Richtung A vom ringförmigen Kühlmittelverteilerraum 4 zum ringförmigen Kühlmittelsammlerraum 5 erstrecken. Somit kann das über den Kühlmitteleinlass 33 in den Kühlmittelverteilerraum 4 eingebrachtes Kühlmittel K auf die einzelnen Kühlkanäle 10 verteilt werden. Nach dem Durchströmen der Kühlkanäle 10 und der Aufnahme von Wärme von den Statorwicklungen wird das Kühlmittel K im Kühlmittelsammlerraum 5 gesammelt und über einen am Stator 2 vorgesehenen Kühlmittelauslass 34 wieder aus der Maschine 1 ausgeleitet.
Wie die Darstellungen der Figuren 1 und 2 erkennen lassen, sind die Statorwicklungen 6 in Zwischenräumen 9 angeordnet, die zwischen jeweils zwei in Umfangsrichtung U benachbarten Statorzähnen 8 ausgebildet sind. Besagte Zwischenräume 9 sind dem einschlägigen Fachmann auch als sogenannte "Stator-
Nuten" oder "Stator-Schlitze" bekannt, die sich ebenso wie die Statorzähne 8 entlang der axialen Richtung A erstrecken.
Nun sei das Augenmerk auf die Darstellung der Figur 3 gerichtet, welche einen zwischen zwei in Umfangsrichtung U benachbarten Statorzähnen 8 - im Folgenden auch als Statorzähne 8a, 8b bezeichnet - ausgebildeten Zwischenraum 9 in einer Detaildarstellung zeigt. Um die Wärmeübertragung der von den Statorwicklungen 6 erzeugten Abwärme auf das durch die Kühlkanäle 10 strömende Kühlmittel K zu verbessern, ist entsprechend Figur 3 in den Zwischenräumen 9 jeweils eine Kunststoffmasse 1 1 aus einem Kunststoff vorgesehen. Besonders bevorzugt ist die Kunststoffmasse 1 1 eine Spritzgussmasse aus einem elektrisch isolierenden Kunststoff. Die Anwendung eines Spritzgussverfahrens vereinfacht und beschleunigt die Herstellung der Kunststoffmasse. Beim Beispiel der Figur 3 besteht die Kunststoffmasse 1 1 aus einem einzigen Kunststoffmaterial. In die Kunststoffmasse 1 1 , die beispielsweise aus einem Duroplasten oder Thermoplasten bestehen kann, sind der in den Zwischenraum 9 angeordnete Kühlkanal 10 und die in demselben Zwischenraum 9 angeordnete Statorwicklung 6 eingebettet. Es versteht sich, die dass die gemäß Figur 3 in dem Zwischenraum 9 angeordnete Statorwicklung 6 jeweils teilweise einer ersten Statorwicklung 6a zugehörig ist, die von einem ersten Statorzahn 8a getragen ist, und teilweise einer zweiten Statorwicklung 6b zugeordnet ist, die von einem dem ersten Statorzahn 8a in Umfangsrichtung U benachbarten, zweiten Statorzahn 8b getragen ist. Zur Verdeutlichung dieses Szenarios ist in Figur 3 eine virtuelle Trennlinie 12 eingezeichnet. Die in Figur 3 links der Trennlinie 12 gezeigten Wicklungsdrähte 13a gehören zu der von dem Statorzahn 8a getragenen Statorwicklung 6a. Die rechts der Trennlinie 12 gezeigten Wicklungsdrähte 13b gehören zu der von dem Statorzahn 8b getragenen Statorwicklung 6b.
Wie die Detaildarstellung der Figur 3 weiter erkennen lässt, ist im jeweiligen Zwischenraum 9 zwischen der Kunststoffmasse 1 1 und dem Statorkörper 7 bzw. den beiden den Zwischenraum 9 in Umfangsrichtung U begrenzenden Statorzähnen 8a, 8b eine zusätzliche elektrische Isolation 15 aus einem elektrisch isolierenden Material angeordnet. Als besonders kostengünstig erweist sich eine elektrische Isolation 15 aus Papier. Auf diese Weise kann im Falle, dass die Kunststoffmasse 1 1 aufgrund von thermischer Überlastung aufspringt oder auf andere Weise beschädigt wird, ein unerwünschter elektrischer Kurzschluss der Statorwicklung 6 mit dem Material des Statorkörpers 7 bzw. der Statorzähne 8 bzw. 8a, 8b - typischerweise Eisen oder ein anderes geeignetes, elektrisch leitendes Material - vermieden werden.
Wie die Detaildarstellung der Figur 3 belegt, können die Kühlkanäle 10 jeweils durch einen Rohrkörper 13, beispielsweise aus Aluminium, gebildet sein, der einen Rohrkörperinnenraum 22 umgibt. Optional können, wie in der Detaildarstellung der Figur 3 gezeigt, am Rohrkörper 16 ein oder mehrere Trennelemente 18 ausgeformt sein, welche den Kühlkanal 10 in fluidisch voneinander getrennte Teilkühlkanäle 19 unterteilt. Auf diese Weise kann das Strömungsverhalten des Kühlmittels K im Kühlkanal 10 verbessert werden, womit ein verbesserter Wärmeübergang auf das Kühlmittel K einhergeht. Außerdem wird der Rohrkörper 16 auf diese Weise zusätzlich mechanisch ausgesteift. In Figur 3 sind exemplarisch drei solche Trennelemente 18 dargestellt, so dass sich vier Teilkühlkanäle 19 ergeben. Selbstredend ist in Varianten des Beispiels eine andere Anzahl an Trennelementen 18 möglich. Der den Kühlkanal 10 bildenden Rohrkörper 16 ist als Flachrohr 17 ausgebildet, welches in einem Querschnitt senkrecht zur Rotationsachse D des Rotors 3 (vgl. Figur 3) zwei Breitseiten 20 und zwei Schmalseiten 21 besitzt. In dem in Figur 3 gezeigten Querschnitt senkrecht zur axialen Richtung A erstrecken sich die beiden Breitseiten 20 des Flachrohrs 17 senkrecht zur radialen Richtung R. Eine Länge der beiden Breitseiten 20 beträgt wenigstens das
Vierfache, vorzugsweise wenigstens das Zehnfache, einer Länge der beiden Schmalseiten 21 .
Im Beispiel der Figuren 1 bis 3 sind die Kühlkanäle 10 radial außerhalb der Statorwicklungen 6 im jeweiligen Zwischenraum 9 angeordnet. Der radiale Abstand der Kühlkanäle 10 zur Rotationsachse D des Rotors 3 ist also größer als jener der Statorwicklungen 6 zur Rotationsachse D. Denkbar ist aber auch eine Anordnung der Kühlkanäle 10 radial innen.
Zur Herstellung einer elektrischen Maschine 1 gemäß den Figuren 1 bis 3 werden zunächst die durch Rohrkörper 16 bzw. Flachrohre 17 gebildeten Kühlkanäle 10 in die Zwischenräume 9 eingebracht. Anschließend wird die elektrische Isolation 15, beispielsweise aus Papier, in die Zwischenräume 9 eingesetzt. Danach werden die Statorwicklungen 6 auf den Statorzähnen 8 angeordnet und somit auch in die Zwischenräume 9 eingebracht und anschließend mit dem die Kunststoffmas- se 1 1 ergebenden Kunststoff, beispielsweise einem Duroplasten, umspritzt. Im Zuge der Herstellung der Kunststoffmasse 1 1 kann auch der Statorkörper 7 mit dem die Kunststoffmasse 1 1 ergebenden Kunststoff, also insbesondere mit dem Duroplasten, umspritzt werden.
Gemäß Figur 3 umfasst der Zwischenraum 9 einen ersten Teilraum 9c, in welchem die Statorwicklung 6 angeordnet ist, und einen zweiten Teilraum 9d, in welchem der Kühlkanal 10 angeordnet ist und welcher den ersten Teilraum 9c zum Zwischenraum 9 ergänzt. Wie die Figuren 3 und 4 erkennen lassen, kann
zwischen den beiden Teilräumen eine Fixiereinrichtung 27 angeordnet sein, mittels welcher der Kühlkanal 10 im zweiten Teilraum 9d fixiert wird. Besagte Fixiereinrichtung 27 umfasst zwei Vorsprünge 28a, 28b, die an den beiden in der Umfangsrichtung U benachbarten und den Zwischenraum 9 begrenzenden Statorzähnen 8a, 8b ausgebildet sind. Die beiden Vorsprünge 28a, 28b sind ei-
nander in der Umfangsrichtung U zugewandt und ragen zur Fixierung des Kühlkanals in den Zwischenraum hinein. Die Vorsprünge 28a, 28b wirken für den als Rohrkörper 16 bzw. Flachrohr 17 ausgebildeten Kühlkanal 10 als radialer Anschlag, der eine unerwünschte Bewegung des Kühlkanals 10, insbesondere beim Herstellen der Kunststoffmasse 1 1 mittels Spritzgießens radial nach innen verhindert.
Die Figur 4 zeigt eine Weiterbildung des Beispiels der Figur 3. Die Weiterbildung der Figur 4 unterscheidet sich vom Beispiel der Figur 3 darin, dass im Zwischenraum 9 nicht nur radial außen, sondern zusätzlich auch radial innen ein Kühlkanal 10 vorgesehen ist, der wie im Beispiel der Figur 3 als Rohrkörper 16 bzw. als Flachrohr 17 ausgebildet sein kann. Exemplarisch ist der radial innere Kühlkanal 10 als Flachrohr 17 mit zwei Trennelementen 18 und drei Teilkühlkanälen 19 dargestellt. Obige Erläuterungen zum Beispiel der Figur 3 gelten, soweit sinnvoll, mutatis mutandis auch für das Beispiel der Figur 4.
Im Folgenden wird wieder auf die Figur 1 Bezug genommen. Wie die Figur 1 anschaulich belegt, kann die einstückig ausgebildete Kunststoffmasse 1 1 axial beidseitig aus den Zwischenräumen 9 herausragen. Dies erlaubt es, auch den Kühlmittelverteilerraum 4 sowie, alternativ oder zusätzlich, den Kühlmittelsammlerraum 5 zur thermischen Ankopplung an die beiden axialen Endabschnitte 14a, 14b der jeweiligen Statorwicklung 6 in die Kunststoffmasse 1 1 einzubetten, die axial außerhalb des jeweiligen Zwischenraum 9 angeordnet sind. Auf diese Weise kann auch im Bereich der üblicherweise thermisch besonders belasteten axialen Endabschnitte 14a, 14b der betreffenden Statorwicklung 6 ein effektiver Wärmeübergang mit dem im Kühlmittelverteilerraum 4 bzw. Kühlmittelsammlerraum 5 vorhandenen Kühlmittel K hergestellt werden. Diese Maßnahme erlaubt eine besonders effektive Kühlung der beiden axialen Endabschnitte 14a, 14b der Statorwicklung 6.
Ferner ist gemäß Figur 1 der Stator 2 mit dem Statorkörper 7 und den Statorzähnen 8 axial zwischen einem ersten und einem zweiten Lagerschild 25a, 25b angeordnet.
Wie die Figur 1 erkennen lässt, ist ein Teil des Kühlmittelverteilerraums 4 in dem ersten Lagerschild 25a und ein Teil des Kühlmittelsammlerraums 5 in dem zweiten Lagerschild 25b angeordnet. Der Kühlmittelverteilerraum 4 und der Kühlmittelsammlerraum 5 sind somit jeweils teilweise durch einen in der Kunststoffmasse 1 1 vorgesehenen Hohlraum 41 a, 41 b gebildet.
Der erste Hohlraum 41 a wird dabei durch einen im ersten Lagerschild 25a ausgebildeten Hohlraum 42a zum Kühlmittelverteilerraum 4 ergänzt. Entsprechend wird der zweite Hohlraum 41 b durch einen im zweiten Lagerschild 25b ausgebildeten Hohlraum 42b zum Kühlmittelsammlerraum 5 ergänzt. Bei der vorangehend erläuterten Ausführungsvariante begrenzt die Kunststoffmasse 1 1 den Kühlmittelverteilerraum 4 sowie den Kühlmittelsammlerraum 5 also zumindest teilweise.
Im ersten Lagerschild 25a kann ferner eine Kühlmittelzuführung 35 ausgebildet sein, welche den Kühlmittelverteilerraum 4 fluidisch mit einem außen, insbesondere wie in Figur 1 dargestellt umfangsseitig, am ersten Lagerschild 25a vorgesehenen Kühlmitteleinlass 33 verbindet. Im zweiten Lagerschild 25b kann entsprechend eine Kühlmittelabführung 36 ausgebildet sein, welche den Kühlmittelsammlerraum 5 fluidisch mit einem außen, insbesondere wie in Figur 1 dargestellt umfangsseitig, am Lagerschild 25b vorgesehenen Kühlmittelauslass 34 verbindet. Dies ermöglicht eine Anordnung des Kühlmittelverteilerraums 4 bzw. des Kühlmittelsammlerraum 5 jeweils radial außen am ersten bzw. zweiten Endabschnitt 14a, 14b der betreffenden Statorwicklung 6 und auch in der Verlängerung dieser Endabschnitte 14a, 14b entlang der axialen Richtung A. Die im Betrieb der Maschine
1 thermisch besonders belasteten Endabschnitte 14a, 14b der Statorwicklungen 6 werden auch mittels dieser Maßnahme besonders effektiv gekühlt.
Gemäß Figur 1 kann die Kunststoffmasse 1 1 aus dem elektrisch isolierenden Kunststoff auch auf einer Außenumfangsseite 30 des Statorkörpers 7 angeordnet sein und somit auf der Außenumfangsseite 30 eine Kunststoffbeschichtung 1 1 .1 ausbilden. Somit kann der typischerweise aus elektrisch leitenden Statorplatten gebildete Statorkörper 7 des Stators 2 elektrisch gegen die Umgebung isoliert werden. Die Bereitstellung eines separaten Gehäuses zur Aufnahme des Statorkörpers 7 kann somit entfallen.
Die Figur 5 zeigt eine Variante des Beispiels der Figur 1 . Um auch die Rotorwelle 31 sowie die beiden Wellenlager 32a, 32b im Betrieb der Maschine 1 zu kühlen, kann die Kühlmittelzuführung 35 thermisch an das im ersten Lagerschild 25a angeordnete, erste Wellenlager 32a gekoppelt sein. Ebenso kann die Kühlmittelabführung 36 thermisch an das im zweiten Lagerschild 25b angeordnete, zweite Wellenlager 32b gekoppelt sein. Eine separate Kühleinrichtung zum Kühlen der Wellenlager 32a, 32b kann auf diese Weise entfallen, woraus sich nicht unerhebliche Kostenvorteile ergeben. Im Beispiel der Figur 5 sind der Kühlmitteleinlass 33 und der Kühlmittelauslass 34 an der äußeren Stirnseite 26a, 26b des jeweiligen Lagerschilds 25a, 25b vorgesehen. Denkbar ist aber auch eine umfangsseitige bzw. radiale Anordnung. Bei der Variante gemäß den Figuren 5 und 1 sind die Statorwicklungen 6 bzgl. der radialen Richtung R radial innerhalb der Kühlkanäle 10 angeordnet.
Die Statorwicklungen 6 sind mit einem elektrischen Anschluss 50 durch eine im zweiten Lagerschild 25b vorgesehene Durchführung 39 aus dem Stator 2 heraus nach außen geführt, so dass sie von außen elektrisch bestromt werden können.
Die Durchführung 39 ist radial zwischen dem Kühlmittelverteilerraum 4 bzw. dem Kühlmittelsammlerraum 5 und der Drehachse D angeordnet.
Im Beispiel der Figur 6, welche eine gegenüber der Figur 5 vereinfachte Ausführungsform zeigt, sind der Kühlmittelverteilerraum 4 und der Kühlmittelsammlerraum 5 ausschließlich in der axialen Verlängerung der Kühlkanäle 10 angeordnet. Diese Variante erfordert für den Kühlmittelverteilerraum 4 sowie für den Kühlmittelsammlerraum 5 besonders wenig Bauraum.
Bei der Variante gemäß Figur 6 sind die Statorwicklungen 6 bzgl. der radialen Richtung R radial innerhalb der Kühlkanäle 10 angeordnet. Die Statorwicklungen 6 sind mit einem elektrischen Anschluss 50 durch eine im zweiten Lagerschild 25b vorgesehene Durchführung 39 aus dem Stator 2 heraus nach außen geführt, so dass sie von außen elektrisch bestromt werden können. Die Durchführung 39 ist bzgl. der radialen Richtung radial außerhalb des Kühlmittelverteilerraums 4 bzw. des Kühlmittelsammlerraum 5 im zweiten Lagerschild 25b angeordnet.
Im Beispiel der Figur 7 ist eine Weiterbildung der Figur 5 gezeigt. Bei dieser Weiterbildung umgibt der Kühlmittelverteilerraum 4 in dem in Figur 7 dargestellten Längsschnitt entlang der Rotationsachse D den ersten axialen Endabschnitt 14a der jeweiligen Statorwicklung 6 U-förmig, also axial endseitig sowie radial innen und radial außen. Entsprechend umgibt der Kühlmittelsammlerraum 5 in dem Längsschnitt entlang der Rotationsachse D den zweiten axialen Endabschnitt 14b der jeweiligen Statorwicklung 6 U-förmig, also axial endseitig sowie radial innen und radial außen. Bei dieser Variante sind Kühlkanäle 10 sowohl radial innerhalb also auch radial außerhalb der Statorwicklung 6 vorgesehen. Somit sind die jeweiligen Statorwicklungen 6 einschließlich ihrer axialen Endabschnitte 14a, 14b über die Kühlkanäle 10 sowie den Kühlmittelverteilerraum 4 sowie den Kühlmittelsammlerraum 5 in direktem thermischem Kontakt mit dem Kühlmittel K. Dies er-
laubt eine besonders effektive Kühlung der Statorwicklung 6 einschließlich der thermisch besonderen Belastungen ausgesetzten axialen Endabschnitte 14a, 14b.
Die Kunststoffmasse 1 1 kann auch den axial aus dem Zwischenraum 9 des Statorkörpers herausragenden Wicklungsabschnitt der Statorwicklung 6 umgeben und dabei den Kühlmittelverteilerraum 4 bzw. den Kühlmittelsammlerraum 5 teilweise begrenzen, so dass die betreffende Statorwicklung 6 bzw. der betreffende Wicklungsabschnitt der Statorwicklung 6 elektrisch gegenüber dem Kühlmittel isoliert ist, wenn dieses im Betrieb der Maschine 1 durch den betreffenden Kühlkanal 10 geführt wird.
Zweckmäßig sind der Kühlmittelverteilerraum 4 sowie der Kühlmittelsammlerraum 5 in einer axialen Verlängerung des Statorkörpers 7 benachbart zu diesem angeordnet. Bevorzugt ragt der Kühlmittelverteilerraum 4 bzw. der Kühlmittelsammlerraum 5 entlang der radialen Richtung R des Statorkörpers 7 bzw. Stators 2 nicht über diesen hinaus.
Die Statorwicklung 6 ist jeweils derart ausgebildet, dass sie im Betrieb der elektrischen Maschine 1 zumindest im Bereich innerhalb des jeweiligen Zwischenraums 9 elektrisch vom Kühlmittel K und vom Statorkörper 7 des Stators 2 isoliert ist. Ein unerwünschter elektrischer Kurzschluss der Statorwicklung 6 mit dem Statorkörper 7 - im Betrieb der elektrischen Maschine 1 - mit dem Kühlmittel K wird auf diese Weise verhindert. Zweckmäßig ist eine solche elektrische Isolierung der Statorwicklung 6 gegenüber dem Statorkörper 7- vorzugsweise auch gegenüber den den Zwischenraum 9 begrenzenden Statorzähnen 8 - vollständig durch die Kunststoffmasse 1 1 und/oder durch die - bereits oben erwähnten - zusätzliche elektrische Isolation 15 gebildet.
Zweckmäßig erstreckt sich die zusätzliche elektrische Isolation 15 innerhalb des Zwischenraums 9 über die gesamte entlang der axialen Richtung A gemessene Länge des Zwischenraums 9, so dass sie die Statorwicklung 6 vom Statorkörper 7 und bzw. von den Statorzähnen 8 isoliert. Ebenfalls zweckmäßig umschließt die zusätzliche elektrische Isolation 15 die Statorwicklung 6 innerhalb des Zwischenraums 9 über mindestens die gesamte Länge des Zwischenraums 9 entlang dessen umfangsseitiger Begrenzung. Zweckmäßig ist die Statorwicklung 6 auch elektrisch von dem als Rohrkörper 16 ausgebildeten Kühlkanal isoliert. Dabei ist die elektrische Isolierung durch die Kunststoffmasse sowie, alternativ oder zusätzlich, den zusätzliche elektrische Isolation 15 gebildet.
*****