WO2018124375A1 - Method for manufacturing implant having hydrophilic surface - Google Patents
Method for manufacturing implant having hydrophilic surface Download PDFInfo
- Publication number
- WO2018124375A1 WO2018124375A1 PCT/KR2017/001371 KR2017001371W WO2018124375A1 WO 2018124375 A1 WO2018124375 A1 WO 2018124375A1 KR 2017001371 W KR2017001371 W KR 2017001371W WO 2018124375 A1 WO2018124375 A1 WO 2018124375A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- implant
- titanium
- sla
- treated
- acid
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C8/00—Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
- A61C8/0012—Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
- A61C8/0013—Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy with a surface layer, coating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C13/00—Dental prostheses; Making same
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C13/00—Dental prostheses; Making same
- A61C13/0003—Making bridge-work, inlays, implants or the like
- A61C13/0006—Production methods
- A61C13/0007—Production methods using sand blasting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C8/00—Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C8/00—Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
- A61C8/0012—Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
- A61C8/0013—Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy with a surface layer, coating
- A61C8/0015—Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy with a surface layer, coating being a conversion layer, e.g. oxide layer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/28—Materials for coating prostheses
- A61L27/30—Inorganic materials
Definitions
- the present invention relates to a method of making an implant having a hydrophilic surface. More specifically, the present invention relates to a method for manufacturing an implant that can provide improved bone adhesion or cell adhesion properties by treating the implant surface of titanium through the combination of a plurality of treatment processes.
- implants are implanted in the upper and lower jaw in place of natural teeth that are lost in the areas where the teeth are missing.
- Implant materials, design, surface characteristics, bone mass and bone quality, surgical procedures, loading conditions and the oral environment of patients can be exemplified as factors influencing the function of the implant and stable bone adhesion. Therefore, when the implant is implanted into the alveolar bone in the oral cavity, it is necessary to select a material having good biocompatibility with respect to the living tissue, so as to select a material having no side effects with the living tissue.
- metal materials such as titanium (or titanium alloy), cobalt alloy, stainless steel, platinum, iridium, niobium, tantalum and the like can be used.
- titanium (Ti) or titanium alloy is a material having good biocompatibility and corrosion resistance, and when used as an implant material, the dissolution rate is slow and the dissolved product is chemically inert, thereby allowing the growth of bone and Bone adhesion occurs at the interface.
- titanium or titanium alloys generally do not have direct bonding with bone tissue due to bioinertness. For this reason, various attempts have been made to increase the success rate of the implant and to shorten the healing time by applying the bioactive material to the surface of the metallic implant by applying a surface treatment to the implant. As such, the surface treatment imparting activity to the surface of titanium or titanium alloy can reduce the period of fixation to the alveolar bone because it can induce rapid bone adhesion without causing inflammation in the alveolar bone.
- the homogeneous nanotube TiO 2 layer has been reported to be beneficial to the bone adhesion because it expands the specific surface area in contact with the bone, the bone adhesion reaction by the hydroxyapatite (HAp) coating method is a titanium surface.
- the bone adhesion reaction by the hydroxyapatite (HAp) coating method is a titanium surface
- the calcification circulation treatment method which has a similar effect to the HAp coating method and can form a thin film layer, is used, and surface treatments such as chemical acid treatment, injection treatment using fine particles, anodization treatment, and plasma injection treatment are performed.
- surface treatments such as chemical acid treatment, injection treatment using fine particles, anodization treatment, and plasma injection treatment are performed.
- the present disclosure is to provide a surface treatment method for producing a titanium-based implant having excellent bone adhesion properties with improved properties, specifically hydrophilicity and stability compared to the conventional surface treatment technology of titanium or titanium alloy implants .
- the calcium ion source may be CaO, CaCl 2 or a combination thereof.
- the electrolyte may include a mixture of 0.005 to 0.05 M CaO aqueous solution and 3 to 8 M CaCl 2 aqueous solution.
- the hydrothermal reaction may be carried out for 1 to 6 hours at a temperature of 150 to 250 °C and pressure conditions of 15 to 25 bar.
- the water contact angle of the surface of the implant passed through step d) may be 20 ° or less.
- the contact angle of the implant surface of the titanium or titanium alloy material provided in step b) may be at least 100 °.
- the method for producing an implant having a hydrophilic surface according to an embodiment of the present disclosure is such that the implant of titanium or titanium alloy material has excellent bone adhesion or cell adhesion properties by combining a plurality of surface treatment steps with improved hydrophilicity and stability. Provide advantages.
- FIG. 1 is a view showing a schematic process sequence of the surface treatment method of a titanium-based implant according to an embodiment of the present invention
- FIGS. 2A and 2B each show scanning electron microscopy (SEM) photographs showing the microsurface of titanium disks surface-treated (or coated) according to Example 1 and SLA-treated titanium discs according to Comparative Example 1 in Example 2; ego;
- 3A and 3B are diagrams showing contact angle measurement results of titanium disks surface-treated (or coated) according to Example 1 and SLA-treated titanium disks according to Comparative Example 1 in Example 3;
- FIG. 4A shows test results by crystal violet staining after cell adhesion for titanium disks surface-treated (or coated) according to Example 1 and SLA-treated titanium disks according to Comparative Example 1 in Example 4;
- 4B is a photograph staining osteoblasts attached to the titanium disk surface-treated (or coated) according to Example 1 and the SLA-treated titanium disk according to Comparative Example 1 in Example 4.
- FIG. 1 shows a schematic process sequence of the surface treatment method of a titanium-based implant according to an embodiment of the present invention. Hereinafter, the individual steps constituting the entire process will be described in detail.
- an implant of titanium material is used.
- the titanium-based implant may be made of pure titanium or titanium alloy.
- titanium alloys include (i) titanium (Ti) and (ii) aluminum (Al), silicon (Si), vanadium (V), niobium (Nb), zirconium (Zr), molybdenum (Mo), and chromium.
- Cr tin (Sn), tantalum (Ta), and palladium (Pd) may be made of a combination of metals selected from at least one.
- titanium alloys include Ti-6Al-4V, Ti-6Al-7Nb, Ti-13Nb-13Zr, Ti-8Al-1Mo-1V, Ti-6Al-6V-2Sn, Ti-35.3Nb-5.1Ta-7.1Zr , Ti-29Nb-13Ta-4.6Zr, Ti-29Nb-13Ta-2Sn, Ti-29Nb-13Ta-4.6Sn, Ti-29Nb-13Ta-6Sn, Ti-16Nb-13Ta-4Mo, Ti-6Al-5Zr-0.5 Mo-0.2Si, Ti-6Al-2Sn-4Zr-2Mo-0.08Si, Ti-5.5Al-3.5Sn-3Zr-1Nb-0.5Mo-0.3Si, Ti-6Al-3Sn-4Zr-0.5Mo-0.5-Si , Ti-4Al-4Mo-2Sn-0.5Si, Ti-4Al-4Mo-4Sn-0.5Si, Ti-6Al-2Sn-4Zr-6Mo, Ti-3Al-8V
- the sandblasted, large grit, acid etched (SLA) treatment method typically results in micro grit sand blasting on the surface of the titanium alloy to form micron level surface roughness, followed by acid etching ( acid etching) to further form a finer micron surface roughness.
- SLA acid etched
- ceramic particles are sprayed onto the surface of the titanium implant for sandblasting.
- the average particle diameter (size) of the ceramic particles may be, for example, about 100 to 550 ⁇ m, specifically about 140 to 500 ⁇ m, and more specifically about 180 to 425 ⁇ m.
- the injection pressure may range from, for example, about 1 to 10 atm, specifically about 2 to 7 atm, more specifically about 3 to 5 atm.
- sandblasting equipment known in the art can be used, which can be connected to a pressurized air circuit and configured to spray ceramic grit.
- the biocompatibility of the titanium implant is increased to some extent by sandblasting, and the surface of the titanium implant may be subsequently cleaned or cleaned using pressurized air and / or ultrasonic waves.
- the acid composition may contain hydrochloric acid and sulfuric acid.
- a hydrothermal reaction or treatment using a basic electrolyte may be additionally performed on the surface of the SLA-treated titanium implant.
- a basic electrolyte is prepared separately, which contains a calcium ion source.
- the calcium ion source can be specifically CaO, CaCl 2 or a combination thereof, more specifically a combination of CaO and CaCl 2 .
- CaO is effective to facilitate the coating of components (that is, CaTiO 3 coating layer) formed on the surface of titanium based upon a subsequent hydrothermal reaction
- CaCl 2 offers a good bioactivity (bioactivity).
- the electrolyte is about 0.005 to 0.05 M (specifically about 0.008 to 0.04 M, more specifically about 0.01 to 0.03 M) aqueous CaO solution and about 3 to 8 M (specifically about 3.5 to 7 M) And, more specifically, about 4-6 M) of a CaCl 2 aqueous solution.
- the SLA treated titanium implant is hydrothermally reacted in the presence of an electrolyte containing a calcium ion source.
- This hydrothermal reaction can be carried out by the following Scheme 1.
- the calcium ion supplied from the electrolyte reacts with TiO 2 formed on the implant surface to form CaTiO 3 , and thus CaTiO 3 can be advantageously applied under oral environment because it has good stability as well as hydrophilicity. .
- the temperature of the hydrothermal reaction can be adjusted, for example, within the range of about 150 to 280 ° C, specifically about 160 to 250 ° C, more specifically about 180 to 220 ° C.
- reaction pressure may, for example, be in the range of about 4 to 40 bar, specifically about 10 to 35 bar, more specifically about 15 to 25 bar.
- the inside of the reactor is provided with an inert gas, for example helium, argon, xenon, nitrogen and the like can be used.
- hydrothermal reaction can be carried out, for example, over about 1 to 6 hours, specifically about 2 to 5 hours, more specifically about 3 to 4 hours.
- the present invention is not limited to the above reaction conditions.
- the titanium-based implant treated in the subsequent process may be washed with water (eg, ultrapure water) and injected into alcohol (eg, ethanol) to perform ultrasonic cleaning.
- water eg, ultrapure water
- alcohol eg, ethanol
- a CaTiO 3 layer is formed on the surface of the titanium-based implant where the hydrothermal reaction is completed, thereby increasing hydrophilicity.
- the water contact angle of the surface of the titanium implant before the hydrothermal reaction is low hydrophilic, for example at least about 100 °.
- the water contact angle of the titanium-based implant surface-treated according to the present embodiment may be, for example, about 20 ° or less, specifically about 15 ° or less, more specifically about 13 ° or less.
- SLA surface treated titanium disks were fastened to the jig. Separately, 0.02 M aqueous CaO solution and 5.4 M aqueous CaCl 2 solution were prepared, followed by stirring for 15 minutes. CaO aqueous solution and CaCl 2 aqueous solution were mixed in a volume ratio of 1: 1, and stirred for another 15 minutes to prepare an electrolyte solution.
- a titanium disc having a jig fastened in a Hastelloy hydrothermal reactor was deposited on the prepared electrolyte solution. Thereafter, an argon atmosphere was formed in the reactor by purging three times with argon gas, and subjected to hydrothermal reaction for 3 hours under a reaction temperature of 200 ° C. and a reaction pressure of 20 bar.
- the jig was taken out to clean the treated titanium disc in ultrapure water, and ultrasonic cleaning was performed for 30 minutes in ethanol (aqueous solution).
- the ultrasonically cleaned jig in ethanol was transferred to ultrapure water and then further ultrasonically washed and dried for 60 minutes to obtain a surface treated titanium disc.
- a titanium disk surface-treated in the same manner as in Example 1 was obtained except that no hydrothermal reaction was performed.
- the microsurface shape of the titanium disks prepared in each of Example 1 and Comparative Example 1 was observed by Scanning Electron Microscopy (SEM), and the results are shown in FIGS. 2A and 2B. According to the drawings, it can be seen that an additional coating layer is formed while the SLA treated surface is maintained by the hydrothermal reaction.
- the contact angle was measured, and the results are shown in Figures 3a and 3b.
- the contact angle measurement was performed by measuring the contact angle of the analogous liquid formed on the surface of the specimen using a static drop method.
- pictures were taken with equipment equipped with a video camera, and the average values were obtained after measuring left and right contact angles.
- the contact angle of the titanium disk surface-treated according to Example 1 was 104.718 °, whereas the contact angle of the titanium disk surface-treated according to Comparative Example 1 was measured to 12.766 °, the surface treatment according to Example 1 It can be seen that the hydrophilicity of the titanium disk surface is significantly increased through.
- the cell adhesion test was performed on the titanium disk surface-treated according to each of Example 1 and Comparative Example 1.
- the osteoblasts (MG63 cell) to each of the titanium disk was attached to one ⁇ 10 4 cell / 100 ⁇ l. After 3 hours, the degree of attachment of osteoblasts to the specimens was measured at 595 nm by ELISA Reader using crystal violet staining.
- Figures 4a and 4b it can be seen that the titanium disk according to Example 1 increased the initial cell adhesion capacity compared to the titanium disk according to Comparative Example 1, which may be attributed to the increased hydrophilic surface Can be.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Dentistry (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Dermatology (AREA)
- Medicinal Chemistry (AREA)
- Transplantation (AREA)
- Manufacturing & Machinery (AREA)
- Materials For Medical Uses (AREA)
Abstract
Disclosed in this disclosure is a method for manufacturing an implant having a hydrophilic surface which provides superior osseointegration or cell attachment properties by performing an SLA treatment and a hydrothermal treatment on an implant made of titanium or a titanium alloy to form CaTiO3 on the surface of the implant.
Description
본 발명은 친수성 표면을 갖는 임플란트의 제조방법에 관한 것이다. 보다 구체적으로, 본 발명은 복수의 처리 공정의 결합을 통하여 티타늄 재질의 임플란트 표면을 처리함으로써 개선된 골 유착 특성 또는 세포부착 특성을 제공할 수 있는 임플란트의 제조방법에 관한 것이다. The present invention relates to a method of making an implant having a hydrophilic surface. More specifically, the present invention relates to a method for manufacturing an implant that can provide improved bone adhesion or cell adhesion properties by treating the implant surface of titanium through the combination of a plurality of treatment processes.
치과에서 임플란트는 치아가 결손된 부위에 소실된 자연 치아를 대신하여 상, 하악골에 매식체를 식립하고 안정적으로 구강의 기능과 치아의 기능을 회복시키는 시술 방법이다. 임플란트의 기능 회복과 안정적 골 유착에 영향을 주는 요소로서 임플란트의 재질, 디자인, 표면특성, 골량 및 골질, 외과적 시술, 하중 조건과 환자의 구강 환경 등을 예시할 수 있다. 따라서, 임플란트는 구강 내 치조골에 이식되는 경우에 생체 조직에 대한 생체친화성(biocompatibility)이 양호한 재료를 선택하여 생체조직과 생화학적으로 부작용이 없는 재료를 선택할 필요가 있다. 이와 관련하여, 티타늄(또는 티타늄 합금), 코발트 합금, 스테인레스 스틸, 백금, 이리듐, 니오븀, 탄탈륨 등의 금속 재료를 사용할 수 있다.In dentistry, implants are implanted in the upper and lower jaw in place of natural teeth that are lost in the areas where the teeth are missing. Implant materials, design, surface characteristics, bone mass and bone quality, surgical procedures, loading conditions and the oral environment of patients can be exemplified as factors influencing the function of the implant and stable bone adhesion. Therefore, when the implant is implanted into the alveolar bone in the oral cavity, it is necessary to select a material having good biocompatibility with respect to the living tissue, so as to select a material having no side effects with the living tissue. In this connection, metal materials such as titanium (or titanium alloy), cobalt alloy, stainless steel, platinum, iridium, niobium, tantalum and the like can be used.
상기 예시된 금속 중 티타늄(Ti) 또는 티타늄 합금은 생체친화성 및 부식저항성이 양호한 재료로서 임플란트 재료로 사용될 경우, 용해 속도가 느리고 용해산물은 화학적으로 불활성이기 때문에 골의 성장을 허용하여 골과의 계면에서 골 유착 반응이 일어난다. 그러나, 티타늄 또는 티타늄 합금은 일반적으로 생체 불활성으로 인하여 골조직과의 직접적인 결합은 이루어지지 않는다. 이로 인하여, 생체활성을 갖는 재료를 금속성 임플란트 표면에 코팅을 하는 등 표면처리를 하여 임플란트에 생체활성을 부여함으로써 임플란트의 성공률을 높이고 치유기간을 단축하기 위한 다양한 시도가 이루어져 왔다. 이와 같이 티타늄 또는 티타늄 합금 표면에 활성을 부여하는 표면처리는 치조골 내에서 염증의 유발 없이 빠른 골 유착이 일어나도록 유도할 수 있기 때문에 치조골에 고정되는 기간을 감소시킬 수 있다.Among the metals exemplified above, titanium (Ti) or titanium alloy is a material having good biocompatibility and corrosion resistance, and when used as an implant material, the dissolution rate is slow and the dissolved product is chemically inert, thereby allowing the growth of bone and Bone adhesion occurs at the interface. However, titanium or titanium alloys generally do not have direct bonding with bone tissue due to bioinertness. For this reason, various attempts have been made to increase the success rate of the implant and to shorten the healing time by applying the bioactive material to the surface of the metallic implant by applying a surface treatment to the implant. As such, the surface treatment imparting activity to the surface of titanium or titanium alloy can reduce the period of fixation to the alveolar bone because it can induce rapid bone adhesion without causing inflammation in the alveolar bone.
최근, 나노 기술의 급격한 발전으로 인하여 임플란트 소재 분야에서 티타늄 등의 금속 표면에 나노구조의 산화물 층을 형성하는 방법이 연구되어 왔다. 이와 관련하여, 균일한 나노튜브 TiO2 층은 골과 접촉하는 비표면적을 넓혀주므로 골유착에 유리하게 작용하는 것으로 보고되고 있으며, 수산화인회석(Hydroxyapatite, HAp) 코팅법에 의한 골유착 반응은 티타늄 표면과 코팅층 간에 강력한 결합이 곤란하기 때문에 두꺼운 피막 층에서 박리가 쉽게 일어나는 문제점이 있다. Recently, due to the rapid development of nanotechnology, a method of forming a nanostructured oxide layer on a metal surface such as titanium in the implant material field has been studied. In this regard, the homogeneous nanotube TiO 2 layer has been reported to be beneficial to the bone adhesion because it expands the specific surface area in contact with the bone, the bone adhesion reaction by the hydroxyapatite (HAp) coating method is a titanium surface There is a problem that peeling easily occurs in the thick film layer because the strong bonding between the coating layer and the coating layer is difficult.
택일적으로, HAp 코팅법과 유사한 효과를 갖고, 얇은 피막층을 형성할 수 있는 석회화 순환처리법이 이용되고 있고, 화학적 산처리, 미세입자를 이용한 분사처리, 양극산화처리, 플라즈마 분사처리 등의 표면처리를 통하여 임플란트와 골의 경계면에서 혈병(blood clot)의 형성을 안정화하며, 골모세포(Osteoblast cell)의 분화를 촉진시키며, 또한 시술 후 초기에 임플란트 주변의 골 치유를 향상시키는 기술도 알려져 있다. Alternatively, the calcification circulation treatment method, which has a similar effect to the HAp coating method and can form a thin film layer, is used, and surface treatments such as chemical acid treatment, injection treatment using fine particles, anodization treatment, and plasma injection treatment are performed. Techniques to stabilize the formation of blood clot at the interface between the implant and bone, promote differentiation of osteoblast cells, and improve bone healing around the implant early after the procedure are known.
이와 같이, 보다 신속한 초기 골융합을 유도하기 위하여 높은 젖음성(또는 친수성) 또는 부착성 및 안정성이 우수한 임플란트 표면 처리기술에 대한 요구가 지속적으로 증가하고 있다.As such, there is a continuing need for implant surface treatment techniques with high wettability (or hydrophilicity) or superior adhesion and stability to induce faster initial fusion.
본 개시 내용에서는 종래의 티타늄 또는 티타늄 합금 재질의 임플란트의 표면 처리 기술에 비하여 개선된 특성, 구체적으로 친수성 및 안정성이 양호하여 골 유착 특성이 우수한 티타늄계 임플란트를 제조하기 위한 표면 처리방법을 제공하고자 한다.The present disclosure is to provide a surface treatment method for producing a titanium-based implant having excellent bone adhesion properties with improved properties, specifically hydrophilicity and stability compared to the conventional surface treatment technology of titanium or titanium alloy implants .
본 발명의 일 구체예에 따르면,According to one embodiment of the invention,
a) 티타늄 또는 티타늄 합금 재질의 임플란트를 제공하는 단계;a) providing an implant of titanium or titanium alloy material;
b) 상기 임플란트 표면에 대하여 SLA(sandblasting and acid etching) 처리하는 단계;b) sandblasting and acid etching (SLA) the implant surface;
c) 이와 별도로, 칼슘 이온 소스를 함유하는 전해액을 제조하는 단계; 및c) separately, preparing an electrolyte containing a calcium ion source; And
d) 상기 SLA-처리된 임플란트를 상기 전해액의 존재 하에서 수열 반응시킴으로써 상기 SLA-처리된 임플란트의 표면에 CaTiO3을 형성하는 단계;d) forming CaTiO 3 on the surface of the SLA-treated implant by hydrothermally reacting the SLA-treated implant in the presence of the electrolyte solution;
를 포함하는, 친수성 표면을 갖는 임플란트의 제조방법이 제공된다.Provided is a method of making an implant having a hydrophilic surface.
예시적 구체예에 있어서, 상기 칼슘 이온 소스는 CaO, CaCl2 또는 이의 조합일 수 있다.In an exemplary embodiment, the calcium ion source may be CaO, CaCl 2 or a combination thereof.
예시적 구체예에 있어서, 상기 전해액은 0.005 내지 0.05 M의 CaO 수용액 및 3 내지 8 M의 CaCl2 수용액의 혼합물을 포함할 수 있다. In an exemplary embodiment, the electrolyte may include a mixture of 0.005 to 0.05 M CaO aqueous solution and 3 to 8 M CaCl 2 aqueous solution.
예시적 구체예에 있어서, 상기 수열 반응은 150 내지 250℃의 온도 및 15 내지 25 bar의 압력 조건 하에서, 1 내지 6시간 동안 수행될 수 있다.In an exemplary embodiment, the hydrothermal reaction may be carried out for 1 to 6 hours at a temperature of 150 to 250 ℃ and pressure conditions of 15 to 25 bar.
예시적 구체예에 따르면, 상기 단계 d)를 거친 임플란트의 표면의 수접촉각은 20° 이하일 수 있다.According to an exemplary embodiment, the water contact angle of the surface of the implant passed through step d) may be 20 ° or less.
예시적 구체예에 따르면, 상기 단계 b)에서 제공된 티타늄 또는 티타늄 합금 재질의 임플란트 표면의 접촉각은 적어도 100°일 수 있다. According to an exemplary embodiment, the contact angle of the implant surface of the titanium or titanium alloy material provided in step b) may be at least 100 °.
본 개시 내용의 구체예에 따른 친수성 표면을 갖는 임플란트의 제조방법은 복수의 표면 처리 단계를 결합함으로써 개선된 친수성 및 안정성에 의하여 티타늄 또는 티타늄 합금 재질의 임플란트가 우수한 골 유착 또는 세포부착 특성을 갖도록 하는 장점을 제공한다.The method for producing an implant having a hydrophilic surface according to an embodiment of the present disclosure is such that the implant of titanium or titanium alloy material has excellent bone adhesion or cell adhesion properties by combining a plurality of surface treatment steps with improved hydrophilicity and stability. Provide advantages.
따라서, 향후 광범위한 상용화가 기대된다. Therefore, broad commercialization is expected in the future.
도 1은 본 발명의 일 구체예에 따른 티타늄계 임플란트의 표면 처리 방법의 개략적인 공정 순서를 도시하는 도면이고; 1 is a view showing a schematic process sequence of the surface treatment method of a titanium-based implant according to an embodiment of the present invention;
도 2a 및 도 2b 각각은 실시예 2에 있어서 실시예 1에 따라 표면처리된(또는 코팅된) 티타늄 디스크 및 비교예 1에 따라 SLA 처리된 티타늄 디스크의 미세표면을 보여주는 주사전자현미경(SEM) 사진이고;2A and 2B each show scanning electron microscopy (SEM) photographs showing the microsurface of titanium disks surface-treated (or coated) according to Example 1 and SLA-treated titanium discs according to Comparative Example 1 in Example 2; ego;
도 3a 및 도 3b 각각은 실시예 3에 있어서 실시예 1에 따라 표면처리된(또는 코팅된) 티타늄 디스크 및 비교예 1에 따라 SLA 처리된 티타늄 디스크의 접촉각 측정 결과를 나타내는 도면이고;3A and 3B are diagrams showing contact angle measurement results of titanium disks surface-treated (or coated) according to Example 1 and SLA-treated titanium disks according to Comparative Example 1 in Example 3;
도 4a는 실시예 4에 있어서 실시예 1에 따라 표면처리된(또는 코팅된) 티타늄 디스크 및 비교예 1에 따라 SLA 처리된 티타늄 디스크에 대한 세포부착 후 크리스탈 바이올렛(crystal violet) 염색법에 의한 테스트 결과를 나타내는 그래프이고; 그리고FIG. 4A shows test results by crystal violet staining after cell adhesion for titanium disks surface-treated (or coated) according to Example 1 and SLA-treated titanium disks according to Comparative Example 1 in Example 4; FIG. A graph representing; And
도 4b는 실시예 4에 있어서 실시예 1에 따라 표면처리된(또는 코팅된) 티타늄 디스크 및 비교예 1에 따라 SLA 처리된 티타늄 디스크에 부착된 조골세포를 염색한 사진이다. 4B is a photograph staining osteoblasts attached to the titanium disk surface-treated (or coated) according to Example 1 and the SLA-treated titanium disk according to Comparative Example 1 in Example 4.
본 발명은 하기의 설명에 의하여 모두 달성될 수 있다. 하기의 설명은 본 발명의 바람직한 구체예를 기술하는 것으로 이해되어야 하며, 본 발명이 반드시 이에 한정되는 것은 아니다. 또한, 첨부된 도면은 이해를 돕기 위한 것으로, 본 발명이 이에 한정되는 것은 아니며, 개별 구성에 관한 세부 사항은 후술하는 관련 기재의 구체적 취지에 의하여 적절히 이해될 수 있다.The present invention can all be achieved by the following description. The following description is to be understood as describing preferred embodiments of the invention, but the invention is not necessarily limited thereto. In addition, the accompanying drawings are for ease of understanding, and the present invention is not limited thereto. Details of individual components may be appropriately understood by specific gist of the related description to be described later.
본 명세서에 있어서, 어떠한 구성요소를 "포함"한다고 할 때, 이는 별도의 언급이 없는 한, 다른 구성 요소 및/또는 단계를 더 포함할 수 있음을 의미한다. In the present specification, when "includes" any component, it means that it may further include other components and / or steps, unless stated otherwise.
도 1은 본 발명의 일 구체예에 따른 티타늄계 임플란트의 표면 처리 방법의 개략적인 공정 순서를 도시한다. 이하에서는 전체 공정을 구성하는 개별 단계에 대하여 상세히 설명하기로 한다. 1 shows a schematic process sequence of the surface treatment method of a titanium-based implant according to an embodiment of the present invention. Hereinafter, the individual steps constituting the entire process will be described in detail.
티타늄계 임플란트의 SLA 처리 단계SLA Treatment Steps for Titanium Implants
본 개시 내용의 일 구체예에 따르면, 티타늄계 재질의 임플란트를 이용한다. 이때, 티타늄계 임플란트는 순수 티타늄 또는 티타늄 합금 재질일 수 있다. 이와 관련하여, 티타늄 합금은 (i) 티타늄(Ti)과 (ii) 알루미늄(Al), 실리콘(Si), 바나듐(V), 니오븀(Nb), 지크코늄(Zr), 몰리브덴(Mo), 크롬(Cr), 주석(Sn), 탄탈륨(Ta) 및 팔라듐(Pd)으로 이루어진 군으로부터 적어도 하나가 선택되는 금속의 조합으로 이루어질 수 있다. 티타늄 합금의 구체적인 예는 Ti-6Al-4V, Ti-6Al-7Nb, Ti-13Nb-13Zr, Ti-8Al-1Mo-1V, Ti-6Al-6V-2Sn, Ti-35.3Nb-5.1Ta-7.1Zr, Ti-29Nb-13Ta-4.6Zr, Ti-29Nb-13Ta-2Sn, Ti-29Nb-13Ta-4.6Sn, Ti-29Nb-13Ta-6Sn, Ti-16Nb-13Ta-4Mo, Ti-6Al-5Zr-0.5Mo-0.2Si, Ti-6Al-2Sn-4Zr-2Mo-0.08Si, Ti-5.5Al-3.5Sn-3Zr-1Nb-0.5Mo-0.3Si, Ti-6Al-3Sn-4Zr-0.5Mo-0.5-Si, Ti-4Al-4Mo-2Sn-0.5Si, Ti-4Al-4Mo-4Sn-0.5Si, Ti-6Al-2Sn-4Zr-6Mo, Ti-3Al-8V-6Cr-4Zr-4Mo, Ti-15Mo-3Nb-3Al-0.2Si, Ti-15V-3Cr-3Sn-3Al 또는 Ti/Pd일 수 있다. According to one embodiment of the present disclosure, an implant of titanium material is used. In this case, the titanium-based implant may be made of pure titanium or titanium alloy. In this regard, titanium alloys include (i) titanium (Ti) and (ii) aluminum (Al), silicon (Si), vanadium (V), niobium (Nb), zirconium (Zr), molybdenum (Mo), and chromium. (Cr), tin (Sn), tantalum (Ta), and palladium (Pd) may be made of a combination of metals selected from at least one. Specific examples of titanium alloys include Ti-6Al-4V, Ti-6Al-7Nb, Ti-13Nb-13Zr, Ti-8Al-1Mo-1V, Ti-6Al-6V-2Sn, Ti-35.3Nb-5.1Ta-7.1Zr , Ti-29Nb-13Ta-4.6Zr, Ti-29Nb-13Ta-2Sn, Ti-29Nb-13Ta-4.6Sn, Ti-29Nb-13Ta-6Sn, Ti-16Nb-13Ta-4Mo, Ti-6Al-5Zr-0.5 Mo-0.2Si, Ti-6Al-2Sn-4Zr-2Mo-0.08Si, Ti-5.5Al-3.5Sn-3Zr-1Nb-0.5Mo-0.3Si, Ti-6Al-3Sn-4Zr-0.5Mo-0.5-Si , Ti-4Al-4Mo-2Sn-0.5Si, Ti-4Al-4Mo-4Sn-0.5Si, Ti-6Al-2Sn-4Zr-6Mo, Ti-3Al-8V-6Cr-4Zr-4Mo, Ti-15Mo-3Nb -3Al-0.2Si, Ti-15V-3Cr-3Sn-3Al or Ti / Pd.
일 구체예에 있어서, SLA(sandblasted, large grit, acid etched) 처리 방법은 전형적으로 티타늄 합금 표면에 세라믹 입자를 분사처리(large grit sand blasting)하여 마이크론 수준의 표면 조도를 형성하고, 이후 산 에칭(acid etching)에 의하여 보다 미세한 마이크론 수준의 표면 조도를 추가적으로 형성하는 방식이다. 그 결과, 티타늄계 임플란트의 표면적은 증가하게 되는 바, 표면에 형성된 다양한 사이즈의 포어가 스폰지와 유사한 네트워크 구조를 형성할 수 있다.In one embodiment, the sandblasted, large grit, acid etched (SLA) treatment method typically results in micro grit sand blasting on the surface of the titanium alloy to form micron level surface roughness, followed by acid etching ( acid etching) to further form a finer micron surface roughness. As a result, the surface area of the titanium implant is increased, so that pores of various sizes formed on the surface may form a sponge-like network structure.
일 구체예에 따르면, 샌드블라스팅을 위하여 세라믹 입자, 구체적으로 알루미나 입자를 티타늄계 임플란트의 표면에 분사한다. 이때, 세라믹 입자의 평균 입경(사이즈)는, 예를 들면 약 100 내지 550 ㎛, 구체적으로 약 140 내지 500 ㎛, 보다 구체적으로 약 180 내지 425 ㎛ 범위일 수 있다. 또한, 분사 압력은, 예를 들면 약 1 내지 10 atm, 구체적으로 약 2 내지 7 atm, 보다 구체적으로 약 3 내지 5 atm 범위일 수 있다. 이를 위하여 당업계에서 알려진 샌드블라스팅 장비를 사용할 수 있는 바, 상기 장비는 가압된 공기 회로에 연결되어 세라믹 그릿(grit)을 분사하도록 구성될 수 있다.According to one embodiment, ceramic particles, specifically alumina particles, are sprayed onto the surface of the titanium implant for sandblasting. In this case, the average particle diameter (size) of the ceramic particles may be, for example, about 100 to 550 μm, specifically about 140 to 500 μm, and more specifically about 180 to 425 μm. In addition, the injection pressure may range from, for example, about 1 to 10 atm, specifically about 2 to 7 atm, more specifically about 3 to 5 atm. For this purpose, sandblasting equipment known in the art can be used, which can be connected to a pressurized air circuit and configured to spray ceramic grit.
이와 같이, 샌드블라스팅에 의하여 티타늄계 임플란트의 생체적합성은 어느 정도 증가하게 되며, 후속적으로 티타늄계 임플란트의 표면을 가압 공기, 및/또는 초음파를 이용하여 세척 또는 세정할 수 있다.As such, the biocompatibility of the titanium implant is increased to some extent by sandblasting, and the surface of the titanium implant may be subsequently cleaned or cleaned using pressurized air and / or ultrasonic waves.
후속적으로, 산 조성물을 이용하여 샌드블라스팅된 티타늄 표면을 처리하는 과정이 수행되는 바, 산 조성물은 염산 및 황산을 함유할 수 있다. Subsequently, a process of treating the sandblasted titanium surface with the acid composition is performed, where the acid composition may contain hydrochloric acid and sulfuric acid.
전술한 샌드블라스팅 및 산 에칭 조건은 예시적 목적으로 제공되는 것으로, 본 발명이 반드시 이에 한정되는 것은 아니다.The aforementioned sandblasting and acid etching conditions are provided for illustrative purposes, and the present invention is not necessarily limited thereto.
상술한 SLA 처리 공정의 완료 후, 잔여 산 성분을 제거하기 위하여 세척하고, 초음파에 의하여 세정한 다음, 건조시키는 후속 공정을 수행할 수 있다. After completion of the above-described SLA treatment process, a subsequent process of washing to remove residual acid components, washing by ultrasonic wave and then drying may be performed.
전해질 용액의 제조 단계Preparation Steps of the Electrolyte Solution
본 개시 내용의 일 구체예에 따르면, SLA 처리된 티타늄계 임플란트의 표면에 대하여 염기성 전해액을 이용한 수열 반응 또는 처리를 추가적으로 수행할 수 있다. 이를 위하여, 염기성 전해액을 별도로 제조하는데, 상기 전해액은 칼슘 이온 소스를 함유한다. 칼슘 이온 소스는, 구체적으로 CaO, CaCl2 또는 이의 조합일 수 있는 바, 보다 구체적으로는 CaO 및 CaCl2의 조합일 수 있다. 이와 관련하여, CaO는 후속 수열 반응 시 티타늄계 표면 상에서 코팅층(즉, CaTiO3 코팅층) 형성을 촉진하는 성분인 한편, CaCl2는 양호한 생활성(bioactivity)을 제공하는데 효과적이다.According to one embodiment of the present disclosure, a hydrothermal reaction or treatment using a basic electrolyte may be additionally performed on the surface of the SLA-treated titanium implant. To this end, a basic electrolyte is prepared separately, which contains a calcium ion source. The calcium ion source can be specifically CaO, CaCl 2 or a combination thereof, more specifically a combination of CaO and CaCl 2 . In this connection, CaO is effective to facilitate the coating of components (that is, CaTiO 3 coating layer) formed on the surface of titanium based upon a subsequent hydrothermal reaction Meanwhile, CaCl 2 offers a good bioactivity (bioactivity).
예시적 구체예에 있어서, 상기 전해액은 약 0.005 내지 0.05 M(구체적으로 약 0.008 내지 0.04 M, 보다 구체적으로 약 0.01 내지 0.03 M)의 CaO 수용액 및 약 3 내지 8 M(구체적으로 약 3.5 내지 7 M, 보다 구체적으로 약 4 내지 6 M)의 CaCl2 수용액의 혼합물을 포함할 수 있다.In an exemplary embodiment, the electrolyte is about 0.005 to 0.05 M (specifically about 0.008 to 0.04 M, more specifically about 0.01 to 0.03 M) aqueous CaO solution and about 3 to 8 M (specifically about 3.5 to 7 M) And, more specifically, about 4-6 M) of a CaCl 2 aqueous solution.
수열 반응 단계Hydrothermal reaction stage
일 구체예에 따르면, 전술한 바와 같이 SLA 처리된 티타늄계 임플란트는 칼슘 이온 소스를 함유하는 전해액의 존재 하에서 수열 반응된다. 이러한 수열 반응은 하기 반응식 1에 의하여 수행될 수 있다.According to one embodiment, as described above, the SLA treated titanium implant is hydrothermally reacted in the presence of an electrolyte containing a calcium ion source. This hydrothermal reaction can be carried out by the following Scheme 1.
[반응식 1]Scheme 1
Ti + 2H2O → TiO2 + 2H2
Ti + 2H 2 O → TiO 2 + 2H 2
TiO2 + 2H2O → Ti(OH)4
TiO 2 + 2H 2 O → Ti (OH) 4
Ti(OH)4 + Ca2+ → CaTiO3 + 2H+ + H2O Ti (OH) 4 + Ca 2+ → CaTiO 3 + 2H + + H 2 O
상술한 반응식에 따르면, 전해액으로부터 공급된 칼슘 이온이 임플란트 표면에 형성된 TiO2와 반응하여 CaTiO3을 형성하는 바, 이와 같이 형성된 CaTiO3은 친수성뿐만 안정성이 양호하기 때문에 구강 환경 하에서 유리하게 적용 가능하다.According to the above reaction formula, the calcium ion supplied from the electrolyte reacts with TiO 2 formed on the implant surface to form CaTiO 3 , and thus CaTiO 3 can be advantageously applied under oral environment because it has good stability as well as hydrophilicity. .
예시적 구체예에 있어서, 상기 수열 반응의 온도는, 예를 들면 약 150 내지 280℃, 구체적으로 약 160 내지 250℃, 보다 구체적으로 약 180 내지 220℃ 범위 내에서 조절할 수 있다. In an exemplary embodiment, the temperature of the hydrothermal reaction can be adjusted, for example, within the range of about 150 to 280 ° C, specifically about 160 to 250 ° C, more specifically about 180 to 220 ° C.
또한, 반응 압력은, 예를 들면 약 4 내지 40 bar, 구체적으로 약 10 내지 35 bar, 보다 구체적으로 약 15 내지 25 bar 범위 내일 수 있다. 이와 관련하여, 반응기 내부는 불활성 가스가 제공되는 바, 예를 들면 헬륨, 아르곤, 제논, 질소 등이 사용 가능하다.In addition, the reaction pressure may, for example, be in the range of about 4 to 40 bar, specifically about 10 to 35 bar, more specifically about 15 to 25 bar. In this regard, the inside of the reactor is provided with an inert gas, for example helium, argon, xenon, nitrogen and the like can be used.
이외에도, 상기 수열 반응은, 예를 들면 약 1 내지 6시간, 구체적으로 약 2 내지 5 시간, 보다 구체적으로 약 3 내지 4 시간에 걸쳐 수행될 수 있다. 다만, 본 발명이 전술한 반응 조건으로 한정되는 것은 아니다.In addition, the hydrothermal reaction can be carried out, for example, over about 1 to 6 hours, specifically about 2 to 5 hours, more specifically about 3 to 4 hours. However, the present invention is not limited to the above reaction conditions.
수열 반응의 완료 후, 후속 공정으로 처리된 티타늄계 임플란트를 물(예를 들면, 초순수)로 세정하고, 알코올(예를 들면, 에탄올)에 투입하여 초음파 세척을 수행할 수 있다. 이러한 세정 및 세척 과정은 1회 또는 2회 이상 수행될 수 있다.After completion of the hydrothermal reaction, the titanium-based implant treated in the subsequent process may be washed with water (eg, ultrapure water) and injected into alcohol (eg, ethanol) to perform ultrasonic cleaning. This cleaning and washing process can be performed once or twice or more.
상술한 바와 같이 수열 반응이 완료되는 티타늄계 임플란트의 표면 상에 CaTiO3 층이 형성되어 친수성이 증가하게 된다. 예시적으로, 수열 반응 전 티타늄계 임플란트의 표면의 수접촉각은, 예를 들면 적어도 약 100°로서 낮은 친수성을 나타낸다. 반면, 본 구체예에 따라 표면처리된 티타늄계 임플란트의 수접촉각은, 예를 들면 약 20° 이하, 구체적으로 약 15° 이하, 보다 구체적으로 약 13° 이하일 수 있다. 그 결과, 구강 이식 후에도 주변 조직과의 부착 특성이 현저히 개선될 수 있다.As described above, a CaTiO 3 layer is formed on the surface of the titanium-based implant where the hydrothermal reaction is completed, thereby increasing hydrophilicity. By way of example, the water contact angle of the surface of the titanium implant before the hydrothermal reaction is low hydrophilic, for example at least about 100 °. On the other hand, the water contact angle of the titanium-based implant surface-treated according to the present embodiment may be, for example, about 20 ° or less, specifically about 15 ° or less, more specifically about 13 ° or less. As a result, adhesion characteristics with surrounding tissues can be significantly improved even after oral transplantation.
본 발명은 하기의 실시예에 의하여 보다 명확히 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적에 불과하며 발명의 영역을 제한하고자 하는 것은 아니다. The present invention can be more clearly understood by the following examples, which are only intended to illustrate the present invention and are not intended to limit the scope of the invention.
실시예 1Example 1
표면 처리된 임플란트의 제조Preparation of Surface Treated Implants
- SLA 표면 처리-SLA surface treatment
시판 중인 10 mm × 1.6 mm 사이즈의 티타늄 디스크를 시편으로 사용하였다. SLA 처리를 위하여, 노즐과 티타늄 디스크 표면 사이의 간격 3㎝를 두고 평균입경 70 ㎛ 세라믹 입자를 3 atm으로 분사 처리한 다음, 순수에 넣고 10분 동안 초음파 세척하였으며, 압축 공기로 건조시켰다. 그 다음, 염산 및 황산의 혼합산 수용액을 이용한 산 처리법에 의하여 티타늄 디스크 표면에 매크로-마이크로 포어를 형성하였다. 그리고 증류수로 초음파 세척 후 건조시켰다.Commercially available 10 mm × 1.6 mm titanium disks were used as specimens. For SLA treatment, the ceramic particles were sprayed at 3 atm with an average particle diameter of 70 μm with a gap of 3 cm between the nozzle and the surface of the titanium disc, then placed in pure water, ultrasonically cleaned for 10 minutes, and dried with compressed air. Then, macro-micropores were formed on the surface of the titanium disc by an acid treatment method using an aqueous mixed acid solution of hydrochloric acid and sulfuric acid. And ultrasonic washing with distilled water and dried.
- 수열 반응Hydrothermal reaction
SLA 표면처리된 티타늄 디스크를 지그에 체결하였다. 이와 별도로, CaO 0.02 M 수용액 및 CaCl2 5.4 M 수용액을 각각 제조한 후에 15분 동안 교반하였다. CaO 수용액 및 CaCl2 수용액을 1 : 1의 체적 비로 혼합하였고, 재차 15분 동안 교반하여 전해액을 제조하였다.SLA surface treated titanium disks were fastened to the jig. Separately, 0.02 M aqueous CaO solution and 5.4 M aqueous CaCl 2 solution were prepared, followed by stirring for 15 minutes. CaO aqueous solution and CaCl 2 aqueous solution were mixed in a volume ratio of 1: 1, and stirred for another 15 minutes to prepare an electrolyte solution.
전해액을 제조한 후, Hastelloy 수열 반응기에 지그가 체결된 티타늄 디스크를 상기 제조된 전해액을 침적시켰다. 이후, 아르곤 가스로 3회 퍼징하여 반응기 내부에 아르곤 분위기를 형성하였으며, 200℃의 반응 온도 및 20 bar의 반응 압력 조건 하에서 3 시간 동안 수열 반응시켰다.After preparing the electrolyte solution, a titanium disc having a jig fastened in a Hastelloy hydrothermal reactor was deposited on the prepared electrolyte solution. Thereafter, an argon atmosphere was formed in the reactor by purging three times with argon gas, and subjected to hydrothermal reaction for 3 hours under a reaction temperature of 200 ° C. and a reaction pressure of 20 bar.
수열 반응이 종료된 후에 지그를 취출하여 초순수에 처리된 티타늄 디스크를 세정하였고, 에탄올(수용액)에 넣어 30분 동안 초음파 세척을 수행하였다. 에탄올 내에서 초음파 세척된 지그를 초순수에 옮긴 후, 60분 동안 추가적으로 초음파 세척하고 건조시켜 표면처리된 티타늄 디스크를 수득하였다.After the hydrothermal reaction was completed, the jig was taken out to clean the treated titanium disc in ultrapure water, and ultrasonic cleaning was performed for 30 minutes in ethanol (aqueous solution). The ultrasonically cleaned jig in ethanol was transferred to ultrapure water and then further ultrasonically washed and dried for 60 minutes to obtain a surface treated titanium disc.
비교예 1Comparative Example 1
수열 반응을 수행하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 표면처리된 티타늄 디스크를 수득하였다.A titanium disk surface-treated in the same manner as in Example 1 was obtained except that no hydrothermal reaction was performed.
실시예 2Example 2
시편의 미세 표면 분석Micro Surface Analysis of Specimens
실시예 1 및 비교예 1 각각에서 제조된 티타늄 디스크의 미세표면 형상을 주사전자현미경(Scanning Electron Microscopy; SEM)으로 관찰하였고, 그 결과를 도 2a 및 도 2b에 나타내었다. 상기 도면에 따르면, 수열 반응에 의하여 SLA 처리 표면은 유지되면서 추가적인 코팅층이 형성되어 있음을 확인할 수 있다.The microsurface shape of the titanium disks prepared in each of Example 1 and Comparative Example 1 was observed by Scanning Electron Microscopy (SEM), and the results are shown in FIGS. 2A and 2B. According to the drawings, it can be seen that an additional coating layer is formed while the SLA treated surface is maintained by the hydrothermal reaction.
실시예 3Example 3
친수성 평가 테스트Hydrophilicity test
실시예 1 및 비교예 1 각각에서 제조된 티타늄 디스크 표면의 친수성을 평가하기 위하여 접촉각을 측정하였으며, 그 결과를 도 3a 및 도 3b에 나타내었다. 이와 관련하여, 접촉각 측정은 정적법(sessile drop method)을 이용하여 시편의 표면에 형성된 유사체액의 접촉각을 측정하는 방식으로 수행되었다. 정확한 접촉각 측정을 위하여 동영상 카메라가 부착된 장비로 사진을 촬영하였고, 사진에서 좌우 접촉각을 측정한 후에 평균값을 구하였다. In order to evaluate the hydrophilicity of the titanium disk surface prepared in each of Example 1 and Comparative Example 1, the contact angle was measured, and the results are shown in Figures 3a and 3b. In this regard, the contact angle measurement was performed by measuring the contact angle of the analogous liquid formed on the surface of the specimen using a static drop method. For accurate contact angle measurement, pictures were taken with equipment equipped with a video camera, and the average values were obtained after measuring left and right contact angles.
도 3a에 따르면, 실시예 1에 따라 표면처리된 티타늄 디스크의 접촉각은 104.718°인 반면, 비교예 1에 따라 표면처리된 티타늄 디스크의 접촉각은 12.766°로 측정되었는 바, 실시예 1에 따른 표면 처리를 통하여 티타늄 디스크 표면의 친수성이 현저히 증가하였음을 알 수 있다.According to Figure 3a, the contact angle of the titanium disk surface-treated according to Example 1 was 104.718 °, whereas the contact angle of the titanium disk surface-treated according to Comparative Example 1 was measured to 12.766 °, the surface treatment according to Example 1 It can be seen that the hydrophilicity of the titanium disk surface is significantly increased through.
실시예 4Example 4
세포부착 테스트Cell adhesion test
실시예 1 및 비교예 1 각각에 따라 표면처리된 티타늄 디스크에 대하여 세포부착 테스트를 수행하였다. 상기 각각의 티타늄 디스크에 조골 세포(MG63 cell)를 1 ㅧ 104 cell/100 ㎕로 부착하였다. 3 시간 후, 조골 세포가 시편에 부착되는 정도를 크리스탈 바이올렛(crystal violet) 염색법을 이용하여 ELISA Reader 595 nm에서 측정하였다. 도 4a 및 도 4b에서 확인되는 바와 같이, 실시예 1에 따른 티타늄 디스크가 비교예 1에 따른 티타늄 디스크에 비하여 초기 세포 부착능이 증가하였음을 확인할 수 있는 바, 이는 증가된 친수성 표면으로부터 기인하는 것으로 볼 수 있다.The cell adhesion test was performed on the titanium disk surface-treated according to each of Example 1 and Comparative Example 1. The osteoblasts (MG63 cell) to each of the titanium disk was attached to one ㅧ 10 4 cell / 100 ㎕. After 3 hours, the degree of attachment of osteoblasts to the specimens was measured at 595 nm by ELISA Reader using crystal violet staining. As can be seen in Figures 4a and 4b, it can be seen that the titanium disk according to Example 1 increased the initial cell adhesion capacity compared to the titanium disk according to Comparative Example 1, which may be attributed to the increased hydrophilic surface Can be.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것으로, 본 발명의 구체적인 보호범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.All simple modifications and variations of the present invention fall within the scope of the present invention, and the specific scope of the present invention will be apparent from the appended claims.
Claims (9)
- a) 티타늄 또는 티타늄 합금 재질의 임플란트를 제공하는 단계;a) providing an implant of titanium or titanium alloy material;b) 상기 임플란트 표면에 대하여 SLA(sandblasting and acid etching) 처리하는 단계;b) sandblasting and acid etching (SLA) the implant surface;c) 이와 별도로, 칼슘 이온 소스를 함유하는 전해액을 제조하는 단계; 및c) separately, preparing an electrolyte containing a calcium ion source; Andd) 상기 SLA-처리된 임플란트를 상기 전해액의 존재 하에서 수열 반응시킴으로써 상기 SLA-처리된 임플란트의 표면에 CaTiO3을 형성하는 단계;d) forming CaTiO 3 on the surface of the SLA-treated implant by hydrothermally reacting the SLA-treated implant in the presence of the electrolyte solution;를 포함하는, 친수성 표면을 갖는 임플란트의 제조방법.Including, a method of producing an implant having a hydrophilic surface.
- 제1항에 있어서, 상기 칼슘 이온 소스는 CaO, CaCl2 또는 이의 조합인 것을 특징으로 하는 친수성 표면을 갖는 임플란트의 제조방법.The method of claim 1, wherein the calcium ion source is CaO, CaCl 2 or a combination thereof.
- 제2항에 있어서, 상기 전해액은 0.005 내지 0.05 M의 CaO 수용액 및 3 내지 8 M의 CaCl2 수용액의 혼합물을 포함하는 것을 특징으로 하는 친수성 표면을 갖는 임플란트의 제조방법.The method of claim 2, wherein the electrolyte comprises a mixture of 0.005 to 0.05 M CaO aqueous solution and 3 to 8 M CaCl 2 aqueous solution.
- 제1항에 있어서, 상기 수열 반응은 150 내지 250℃의 온도 및 4 내지 40 bar의 압력 조건 하에서, 1 내지 6시간 동안 수행되는 것을 특징으로 하는 친수성 표면을 갖는 임플란트의 제조방법.The method of claim 1, wherein the hydrothermal reaction is performed for 1 to 6 hours under a temperature of 150 to 250 ° C. and a pressure of 4 to 40 bar.
- 제1항에 있어서, 상기 단계 d)를 거친 임플란트의 표면의 수접촉각은 20° 이하인 것을 특징으로 하는 친수성 표면을 갖는 임플란트의 제조방법.The method of claim 1, wherein the water contact angle of the surface of the implant that has passed through step d) is 20 ° or less.
- 제1항에 있어서, 상기 단계 b)를 거친 티타늄 또는 티타늄 합금 재질의 임플란트 표면의 접촉각은 적어도 100°인 것을 특징으로 하는 친수성 표면을 갖는 임플란트의 제조방법.The method of claim 1, wherein the contact angle of the implant surface of titanium or titanium alloy, which has been subjected to step b), is at least 100 °.
- 제1항에 있어서, 상기 티타늄 합금은 (i) 티타늄(Ti)과 (ii) 알루미늄(Al), 실리콘(Si), 바나듐(V), 니오븀(Nb), 지크코늄(Zr), 몰리브덴(Mo), 크롬(Cr), 주석(Sn), 탄탈륨(Ta) 및 팔라듐(Pd)으로 이루어진 군으로부터 적어도 하나가 선택되는 금속의 조합으로 이루어지는 것을 특징으로 하는 친수성 표면을 갖는 임플란트의 제조방법.The method of claim 1, wherein the titanium alloy is (i) titanium (Ti) and (ii) aluminum (Al), silicon (Si), vanadium (V), niobium (Nb), zirconium (Zr), molybdenum (Mo) ), Chromium (Cr), tin (Sn), tantalum (Ta) and palladium (Pd) at least one selected from the group consisting of a metal selected from the group consisting of implants having a hydrophilic surface.
- 제1항에 있어서, 상기 단계 b)는 180 내지 425 ㎛의 평균 입경을 갖는 세라믹 입자를 1 내지 10 atm의 분사 압력으로 분사하여 샌드 블라스팅하는 단계; 및The method of claim 1, wherein the step b) comprises the steps of: sandblasting the ceramic particles having an average particle diameter of 180 to 425 ㎛ by spraying pressure of 1 to 10 atm; And상기 샌드 블라스팅된 티타늄 또는 티타늄 합금 재질의 임플란트 표면을 황산 및 염산을 함유하는 산 조성물을 이용하여 산 에칭하는 단계;Acid etching the implant surface of the sand blasted titanium or titanium alloy using an acid composition containing sulfuric acid and hydrochloric acid;를 포함하는 것을 특징으로 하는 친수성 표면을 갖는 임플란트의 제조방법.Method for producing an implant having a hydrophilic surface comprising a.
- 제8항에 있어서, 상기 산 에칭하는 단계는 50 내지 120℃에서 4 내지 60분 동안 수행되는 것을 특징으로 하는 친수성 표면을 갖는 임플란트의 제조방법.The method of claim 8, wherein the acid etching is performed at 50 to 120 ° C. for 4 to 60 minutes.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0183570 | 2016-12-30 | ||
KR1020160183570A KR20180078620A (en) | 2016-12-30 | 2016-12-30 | Method for Preparing Implants Having Hydrophilic Surface |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018124375A1 true WO2018124375A1 (en) | 2018-07-05 |
Family
ID=62709405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/001371 WO2018124375A1 (en) | 2016-12-30 | 2017-02-08 | Method for manufacturing implant having hydrophilic surface |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20180078620A (en) |
WO (1) | WO2018124375A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109731135A (en) * | 2019-03-07 | 2019-05-10 | 江苏创英医疗器械有限公司 | A kind of hydrophilic treatment process of implant surface |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102178123B1 (en) * | 2020-02-20 | 2020-11-12 | (주)한국치과임플란트연구소(Kdi) | Method for treating nano surface |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100611945B1 (en) * | 2005-10-04 | 2006-08-11 | 주식회사 메가젠 | Implant surface treatment method using electrolyte solution and implant manufactured by the same |
KR100775537B1 (en) * | 2007-07-19 | 2007-11-28 | (주)오스테오필 | Method of fabricating implant with improved surface properties and implant fabiricated by the same method |
KR20110059954A (en) * | 2009-11-30 | 2011-06-08 | 서울대학교산학협력단 | Bio-implantable devices and surface reforming method thereof |
KR101046560B1 (en) * | 2009-11-18 | 2011-07-05 | 주식회사 코텍 | Surface treatment method of dental implant fixture using blasting process |
KR101091589B1 (en) * | 2009-06-18 | 2011-12-13 | 오스템임플란트 주식회사 | Implants coated with low crystalline hydroxyapatite in form of a network or an island and a method for coating the same |
-
2016
- 2016-12-30 KR KR1020160183570A patent/KR20180078620A/en not_active Application Discontinuation
-
2017
- 2017-02-08 WO PCT/KR2017/001371 patent/WO2018124375A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100611945B1 (en) * | 2005-10-04 | 2006-08-11 | 주식회사 메가젠 | Implant surface treatment method using electrolyte solution and implant manufactured by the same |
KR100775537B1 (en) * | 2007-07-19 | 2007-11-28 | (주)오스테오필 | Method of fabricating implant with improved surface properties and implant fabiricated by the same method |
KR101091589B1 (en) * | 2009-06-18 | 2011-12-13 | 오스템임플란트 주식회사 | Implants coated with low crystalline hydroxyapatite in form of a network or an island and a method for coating the same |
KR101046560B1 (en) * | 2009-11-18 | 2011-07-05 | 주식회사 코텍 | Surface treatment method of dental implant fixture using blasting process |
KR20110059954A (en) * | 2009-11-30 | 2011-06-08 | 서울대학교산학협력단 | Bio-implantable devices and surface reforming method thereof |
Non-Patent Citations (1)
Title |
---|
HU , XIXUE: "One-step modification of nano-hydroxyapatite coating on titanium surface by hydrothermal method", SURFACE & COATINGS TECHNOLOGY, vol. 205, 2010, pages 2000 - 2006, XP027533901 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109731135A (en) * | 2019-03-07 | 2019-05-10 | 江苏创英医疗器械有限公司 | A kind of hydrophilic treatment process of implant surface |
Also Published As
Publication number | Publication date |
---|---|
KR20180078620A (en) | 2018-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101369388B1 (en) | Deposition of discrete nanoparticles on an implant surface | |
KR100775537B1 (en) | Method of fabricating implant with improved surface properties and implant fabiricated by the same method | |
EP2187982B1 (en) | A bone tissue implant comprising strontium ions | |
EP2079401B1 (en) | Deposition of discrete nanoparticles on a nanostructured surface of an implant | |
WO2017200231A1 (en) | Implant having nano-patterned grooved surface and method for manufacturing same | |
JPH08299429A (en) | Method for surface treatment of titanium implant and bio-compatible titanium implant | |
US6764769B2 (en) | Apatite-coated metallic material, process for its preparation, and its use | |
Manero et al. | Applications of environmental scanning electron microscopy (ESEM) in biomaterials field | |
EP2156851B1 (en) | Method for production of biocompatible implant | |
WO2018124375A1 (en) | Method for manufacturing implant having hydrophilic surface | |
WO2020158985A1 (en) | Method for manufacturing dental implant having improved surface morphological characteristics and osseointegration properties | |
WO2011074779A2 (en) | Surface treatment method for implant and implant surface treated using the method | |
KR100603976B1 (en) | A method for surface treatment of implant | |
KR100453289B1 (en) | Electrolyte solution for implant surface treatment and method of implant surface treatment using the same | |
JP4493290B2 (en) | Artificial biomaterial and method for producing the same | |
KR102078331B1 (en) | Method for coating bioceramic on a titanium implant surface and titanium implant prepared by the method | |
López et al. | Electrochemical behavior of 45S5 bioactive ceramic coating on Ti6Al4V alloy for dental applications | |
WO2021167144A1 (en) | Nano surface treatment method | |
JP2006255319A (en) | Bioactive implant material, and method for manufacturing the same | |
CN107475686A (en) | A kind of preparation method based on ald zirconium oxide corrosion resistance ceramic membrane | |
WO2015147473A1 (en) | Method for preparing titanium-containing implant by using environmentally-friendly etching composition | |
KR101270719B1 (en) | A method for producing high hydrophilic implant | |
CN109675097A (en) | Planting body Nanoscale Surface preparation method | |
Ueda et al. | Hydrothermal Synthesis of Bioinert Oxide Film on Pure Ti: In Vitro and In Vivo Studies | |
KR20040089270A (en) | A method for surface treatment of implant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17886379 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17886379 Country of ref document: EP Kind code of ref document: A1 |