Nothing Special   »   [go: up one dir, main page]

WO2018180524A1 - 窒化物半導体レーザ素子および窒化物半導体レーザ装置 - Google Patents

窒化物半導体レーザ素子および窒化物半導体レーザ装置 Download PDF

Info

Publication number
WO2018180524A1
WO2018180524A1 PCT/JP2018/010129 JP2018010129W WO2018180524A1 WO 2018180524 A1 WO2018180524 A1 WO 2018180524A1 JP 2018010129 W JP2018010129 W JP 2018010129W WO 2018180524 A1 WO2018180524 A1 WO 2018180524A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride semiconductor
layer
semiconductor laser
laser element
electrode
Prior art date
Application number
PCT/JP2018/010129
Other languages
English (en)
French (fr)
Inventor
裕幸 萩野
修 今藤
信一郎 能崎
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2019509239A priority Critical patent/JPWO2018180524A1/ja
Publication of WO2018180524A1 publication Critical patent/WO2018180524A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser

Definitions

  • the present disclosure relates to a nitride semiconductor laser element and a nitride semiconductor laser device mounted with the nitride semiconductor laser element.
  • semiconductor laser elements have been used in light sources for image display devices such as displays and projectors, light sources for in-vehicle headlamps, light sources for industrial lighting and consumer lighting, or industries such as laser welding equipment, thin film annealing equipment, and laser processing equipment. It attracts attention as a light source for various uses such as a light source of equipment.
  • nitride semiconductor laser elements capable of covering the wavelength band from ultraviolet to blue have been actively developed.
  • a semiconductor laser device used as a light source for the above applications is desired to have a high output with a light output greatly exceeding 1 watt and a long life of tens of thousands of hours.
  • Patent Document 1 discloses a conventional nitride semiconductor laser element.
  • FIG. 6 is a cross-sectional view of a conventional nitride semiconductor laser device disclosed in Patent Document 1. In FIG.
  • an n-type nitride semiconductor layer 1020, an active layer 1030, and a p-type nitride semiconductor layer 1040 are sequentially stacked on a substrate 1010. Structure.
  • a ridge stripe 1040a and a flat portion 1040b are formed in the p-type nitride semiconductor layer 1040.
  • An insulating film 1060 made of SiO 2 is formed from the side surface of the ridge stripe 1040a to the flat portion 1040b.
  • a p-side electrode 1051 is formed on the ridge stripe 1040a of the p-type nitride semiconductor layer 1040, and a pad electrode 1052 made of gold (Au) is formed on the p-side electrode 1051 and the insulating film 1060. Note that an n-side electrode 1080 is formed on the back surface of the substrate 1010.
  • the pad electrode made of Au has low adhesion to the insulating film made of SiO 2, there is a problem that the electrode is peeled off when the semiconductor laser element is mounted or when the laser is driven.
  • Patent Document 2 discloses a nitride semiconductor laser element with improved adhesion between an electrode and an insulating film.
  • FIG. 7 is a cross-sectional view of a conventional nitride semiconductor laser device disclosed in Patent Document 2. In FIG.
  • an adhesion layer 2070 made of Ti or the like is formed on the surface of the insulating film 2060 formed on the side surface of the ridge portion 2040a of the p-type semiconductor layer 2040.
  • the ridge portion 2040 a is covered with a p-type electrode 2051 through 2070. Accordingly, the adhesion between the insulating film 2060 and the p-type electrode 2051 can be improved, and peeling of the p-type electrode 2051 from the insulating film 2060 can be suppressed.
  • Non-Patent Document 1 discloses the diffusion rate of hydrogen in a metal.
  • This disclosure is intended to provide a nitride semiconductor laser element or the like that can suppress an increase in operating voltage.
  • an aspect of the nitride semiconductor laser device includes a first nitride semiconductor layer and a nitride semiconductor formed on the first nitride semiconductor layer.
  • the second nitride semiconductor layer has a flat portion on the side of the ridge portion, and the side surface of the ridge portion and the flat portion have SiO 2 on the side of the ridge portion.
  • the adhesion layer formed on the dielectric layer is not in contact with the ohmic electrode, so that hydrogen contained in the dielectric layer made of SiO 2 can be prevented from diffusing into the ohmic electrode. Thereby, it can suppress that an operating voltage raises with progress of energization time. Furthermore, since the adhesion layer formed on the dielectric layer is in contact with the pad electrode, the adhesion between the pad electrode and the dielectric layer is improved, so that the nitride semiconductor laser element can be mounted or can be driven (operated). Peeling of the pad electrode can be suppressed.
  • a distance between the adhesion layer and the ohmic electrode is preferably 0.6 ⁇ m or more and 3.0 ⁇ m or less.
  • the pad electrode may be in contact with the dielectric layer.
  • the width of the ridge portion may be 10 ⁇ m or more and 50 ⁇ m or less.
  • the adhesion layer includes a layer including a layer having at least one of Ti and Ni.
  • the pad electrode including an Au layer is suitable.
  • the nitride semiconductor laser element and a submount that holds the nitride semiconductor laser element are provided.
  • heat generated when the nitride semiconductor laser element is driven can be released to, for example, a submount on which the nitride semiconductor laser element is mounted, so that the nitride semiconductor laser element can be operated with high light output. it can.
  • the nitride semiconductor laser element has the first nitride semiconductor layer side bonded to the submount and a wire connected to the pad electrode. Good.
  • the nitride semiconductor laser device can be easily electrically connected by, for example, an external power source and wire bonding.
  • the nitride semiconductor laser element is bonded to the submount on the pad electrode side, and a solder layer is provided between the pad electrode and the submount. It is good to intervene.
  • the submount is located near the light emitting portion of the nitride semiconductor laser element, the heat from the light emitting portion is radiated more efficiently than the submount, and the heat dissipation characteristics are improved.
  • the pad electrode may include at least a layer made of Au in contact with the solder layer, and the solder layer may include Sn.
  • nitride semiconductor laser element and the like of the present disclosure it is possible to suppress an increase in operating voltage.
  • FIG. 1A is a plan view showing a configuration of a nitride semiconductor laser element according to an embodiment.
  • FIG. 1B is a cross-sectional view showing the configuration of the nitride semiconductor laser device according to the embodiment taken along line IB-IB in FIG. 1A.
  • FIG. 2A is a cross-sectional view showing a process of forming each of the first nitride semiconductor layer, the light emitting layer, and the second nitride semiconductor layer in the method for manufacturing the nitride semiconductor laser element according to the embodiment.
  • FIG. 2B is a cross-sectional view showing a step of forming a protective film in the method for manufacturing the nitride semiconductor laser element according to the embodiment.
  • FIG. 1A is a plan view showing a configuration of a nitride semiconductor laser element according to an embodiment.
  • FIG. 1B is a cross-sectional view showing the configuration of the nitride semiconductor laser device according to the embodiment taken along line IB-
  • FIG. 2C is a cross-sectional view showing the step of patterning the protective film in the method for manufacturing the nitride semiconductor laser element according to the embodiment.
  • FIG. 2D is a cross-sectional view showing a step of forming the ridge portion and the flat portion in the method for manufacturing the nitride semiconductor laser element according to the embodiment.
  • FIG. 2E is a cross-sectional view showing the step of forming a dielectric layer in the method for manufacturing the nitride semiconductor laser element according to the embodiment.
  • FIG. 2F is a cross-sectional view showing the step of forming the p-side electrode in the method for manufacturing the nitride semiconductor laser element according to the embodiment.
  • FIG. 2G is a cross-sectional view showing the step of forming the adhesion layer in the method for manufacturing the nitride semiconductor laser element according to the embodiment.
  • FIG. 2H is a cross-sectional view showing a step of forming a pad electrode in the method for manufacturing a nitride semiconductor laser element according to the embodiment.
  • FIG. 2I is a cross-sectional view showing the step of forming the n-side electrode in the method for manufacturing the nitride semiconductor laser element according to the embodiment.
  • FIG. 3A is a plan view for explaining the mounting form 1 of the nitride semiconductor laser element according to the embodiment.
  • FIG. 3B is a cross-sectional view for explaining the mounting form 1 of the nitride semiconductor laser device according to the embodiment along the line IIIB-IIIB in FIG. 3A.
  • FIG. 4A is a diagram for explaining a mounting form 2 of the nitride semiconductor laser element according to the embodiment.
  • FIG. 4B is a cross-sectional view for explaining the mounting form 2 of the nitride semiconductor laser device according to the embodiment taken along the line IVB-IVB in FIG. 4A.
  • FIG. 5A is a cross-sectional view of a laser structure schematically showing a nitride semiconductor laser element of a comparative example.
  • FIG. 5B is a cross-sectional view of a laser structure schematically showing the nitride semiconductor laser element according to the embodiment.
  • FIG. 5C is a diagram showing a change with time of the operating voltage of the laser structure in the comparative example and the embodiment.
  • FIG. 5D is a diagram illustrating a calculation result of a change over time in the hydrogen concentration calculated using the diffusion equation of the laser structure in the comparative example and the embodiment.
  • FIG. 6 is a cross-sectional view of a conventional nitride semiconductor laser device.
  • FIG. 7 is a cross-sectional view of a conventional nitride semiconductor laser device.
  • the X axis, the Y axis, and the Z axis represent the three axes of the three-dimensional orthogonal coordinate system.
  • the X axis and the Y axis are orthogonal to each other and both are orthogonal to the Z axis.
  • the Z-axis positive direction side may be described as the upper side, and the Z-axis negative direction side as the lower side.
  • 1A, 3A, and 4A are not cross-sectional views, but are shown with hatching for explanation.
  • FIG. 1A is a plan view showing a configuration of a nitride semiconductor laser device 1 according to an embodiment.
  • 1B is a cross-sectional view of nitride semiconductor laser device 1 taken along line IB-IB in FIG. 1A.
  • nitride semiconductor laser element 1 is a semiconductor laser element made of a nitride semiconductor material.
  • the nitride semiconductor laser device 1 includes a substrate 10, a first nitride semiconductor layer 20, a light emitting layer 30, a second nitride semiconductor layer 40, an electrode member 50, a dielectric layer 60, and an adhesion layer. 70.
  • the second nitride semiconductor layer 40 includes a striped ridge portion 40a extending in the laser resonator length direction (Y-axis direction) and a flat portion 40b extending in the lateral direction (X-axis direction) from the root of the ridge portion 40a. And have.
  • the width and height of the ridge portion 40a are not particularly limited.
  • the width (stripe width) of the ridge portion 40a is 1 ⁇ m to 100 ⁇ m, and the height of the ridge portion 40a is 100 nm to 1 ⁇ m. is there.
  • the width of the ridge portion 40a is preferably 10 ⁇ m or more and 50 ⁇ m or less, and the height of the ridge portion 40a is preferably 300 nm or more and 800 nm or less.
  • the substrate 10 is, for example, a GaN substrate.
  • an n-type hexagonal GaN substrate whose main surface is a (0001) plane is used as the substrate 10.
  • the first nitride semiconductor layer 20 is formed on the substrate 10.
  • the first nitride semiconductor layer 20 is an n-side cladding layer made of n-type AlGaN, for example.
  • the light emitting layer 30 is formed on the first nitride semiconductor layer 20.
  • the light emitting layer 30 is made of a nitride semiconductor.
  • the light emitting layer 30 has, for example, a stacked structure of an n-side light guide layer 31 made of n-GaN, an active layer 32 made of an InGaN quantum well layer, and a p-side light guide layer 33 made of p-GaN.
  • the second nitride semiconductor layer 40 is formed on the light emitting layer 30.
  • the second nitride semiconductor layer 40 has, for example, a stacked structure of an electron barrier layer 41 made of AlGaN, a p-side cladding layer 42 made of a p-type AlGaN layer, and a p-side contact layer 43 made of p-type GaN. .
  • the p-side contact layer 43 is formed as the uppermost layer of the ridge portion 40a.
  • the p-side cladding layer 42 has a convex portion.
  • the convex portion of the p-side cladding layer 42 and the p-side contact layer 43 constitute a ridge portion 40a.
  • the p-side cladding layer 42 has a flat portion as a flat portion 40b on both sides of the ridge portion 40a. That is, the uppermost surface of the flat portion 40b is the surface of the p-side cladding layer 42, and the p-side contact layer 43 is not formed on the uppermost surface of the flat portion 40b.
  • the electrode member 50 is formed on the second nitride semiconductor layer 40.
  • the electrode member 50 is wider than the ridge portion 40a. That is, the width of the electrode member 50 (width in the X-axis direction) is larger than the width of the ridge portion 40a (width in the X-axis direction).
  • the electrode member 50 is in contact with the upper surface of the dielectric layer 60, the adhesion layer 70, and the ridge portion 40a.
  • the electrode member 50 includes a p-side electrode (ohmic electrode) 51 for supplying current and a pad electrode 52 formed on the p-side electrode 51.
  • the p-side electrode 51 is in contact with the upper surface of the ridge portion 40a.
  • the p-side electrode 51 is an ohmic electrode that is in ohmic contact with the p-side contact layer 43 above the ridge portion 40a, and is in contact with the upper surface of the p-side contact layer 43 that is the upper surface of the ridge portion 40a.
  • the p-side electrode 51 is formed using a metal material such as Pd, Pt, or Ni, for example. In the present embodiment, the p-side electrode 51 has a Pd / Pt two-layer structure.
  • the pad electrode 52 is wider than the ridge portion 40 a and is in contact with the dielectric layer 60 and the adhesion layer 70. That is, the pad electrode 52 is formed so as to cover the ridge portion 40a, the dielectric layer 60, and the adhesion layer 70.
  • the material of the pad electrode 52 may be a metal material made of Au, and the pad electrode 52 may be a single layer of Au or a multilayer of Au / Ti / Au.
  • the adhesion layer 70 is formed in a part of the region on the dielectric layer 60, specifically, on both sides of the ridge portion 40a, in a region on the dielectric layer 60 away from the ridge portion 40a.
  • the adhesion layer 70 is in contact with the pad electrode 52 and the dielectric layer 60, but not in contact with the p-side electrode 51.
  • the adhesion layer 70 is in contact with the dielectric layer 60 at a position away from the ridge portion 40a on the flat portion 40b.
  • the distances between the left and right adhesion layers 70 and the p-side electrode 51 with respect to the ridge portion 40a are defined as distances d1 and d2, respectively.
  • Non-Patent Document 1 the diffusion distance of hydrogen in a metal can be calculated from Fick's second law.
  • the expression (2) (specifically, the expression (1) shown below) described in Non-Patent Document 1 is called a diffusion equation.
  • FIG. 5D From the experimental results shown in FIG. 5D, it was found that if the distances d1 and d2 are 0.6 ⁇ m or more, the nitride semiconductor laser device 1 can suppress hydrogen diffusion during operation.
  • D is the diffusion coefficient
  • C (x, t) is the hydrogen concentration distribution inside the sample
  • x is the distance from the anode side inside the sample.
  • T is time.
  • the adhesiveness between the pad electrode 52 and the dielectric layer 60 can be secured if the distances d1 and d2 are 3.0 ⁇ m or less.
  • the adhesion layer 70 is separated from the portion formed on the side surface of the ridge portion 40a of the dielectric layer 60 on the flat portion 40b.
  • the dielectric layer 60 is formed at a position through a portion formed on the flat portion 40b. In the vicinity of the ridge portion 40a on the flat portion 40b, there is a portion on the dielectric layer 60 where the adhesion layer 70 is not formed.
  • the pad electrode 52 and the dielectric layer 60 are in direct contact between the adhesion layer 70 and the ridge portion 40a.
  • the distance between the adhesion layer 70 and the p-side electrode 51 a configuration in which the distance is in the height direction (specifically, the Z-axis direction) of the ridge portion 40a is conceivable, but in the case of the nitride semiconductor laser element 1, Since the ridge portion 40a is formed of the p-side cladding layer 42 having a high electric resistance, there is a problem that the operating voltage increases when the ridge portion 40a is increased. For this reason, there is a limit to the distance between the adhesion layer 70, the p-side electrode 51, and the Z-axis direction.
  • the adhesion layer 70 and the p-side electrode 51 can be separated in the Z-axis direction by making the dielectric layer 60 thinner.
  • the distance between the light emitting portion (specifically, the light emitting layer 30) and the electrode portion (specifically, the p-side electrode 51) is shortened, the light from the electrode portion (for example, the p-side electrode 51). Absorption occurs, causing a problem that utilization efficiency (that is, light emission efficiency) of light emitted from the nitride semiconductor laser element 1 is lowered. Therefore, when the distance between the adhesion layer 70 and the p-side electrode 51 is increased, it is effective to increase the distance in the width direction (specifically, the X-axis direction) of the ridge portion 40a. 70 is formed away from the ridge portion 40a.
  • distance d1 distance d2 is set, but distance d1 and distance d2 may be different. Further, even if either one of the distances d1 and d2 is in the range of 0.6 ⁇ m or more and 3.0 ⁇ m or less, the increase of the operating voltage of the nitride semiconductor laser device 1 due to hydrogen diffusion is suppressed, and the pad electrode Although the effect of ensuring the adhesion between 52 and the dielectric layer 60 is obtained, it is more preferable that the distances d1 and d2 are both in the range of 0.6 ⁇ m or more and 3.0 ⁇ m or less.
  • the material of the adhesion layer 70 is not particularly limited, but may include a layer having at least one of Ti and Ni.
  • the adhesion layer 70 is a metal material having a two-layer structure of Ti or Ti / Pt.
  • the p-side electrode 51 is a metal material made of Ti.
  • the pad electrode 52 is formed inside the second nitride semiconductor layer 40 in order to improve the yield when the nitride semiconductor laser device 1 is separated. That is, when the nitride semiconductor laser element 1 is viewed from above, the pad electrode 52 is not formed on the peripheral edge of the nitride semiconductor laser element 1. That is, the nitride semiconductor laser device 1 has a non-current injection region where no current is supplied to the periphery of the end portion. Further, the cross-sectional shape of the region where the pad electrode 52 is formed has the structure shown in FIG.
  • the dielectric layer 60 is an insulating film made of SiO 2 formed on the side surface of the ridge portion 40a in order to confine light. Specifically, the dielectric layer 60 is continuously formed from the side surface of the ridge portion 40a to the flat portion 40b. In the present embodiment, the dielectric layer 60 is continuously formed around the side surface of the p-side contact layer 43, the side surface of the convex portion of the p-side cladding layer 42, and the upper surface of the p-side cladding layer 42 around the ridge portion 40a. Is formed.
  • the shape of the dielectric layer 60 is not particularly limited, but the dielectric layer 60 may be in contact with the side surface of the ridge portion 40a and the flat portion 40b. Thereby, the light emitted immediately below the ridge 40a can be stably confined.
  • an end face coating film such as a dielectric multilayer film is formed on the light emitting end face.
  • This end face coat film is difficult to be formed only on the end face, and also goes around the upper surface of the nitride semiconductor laser device 1.
  • the pad electrode 52 is not formed at the end portion in the longitudinal direction (Y-axis direction) of the nitride semiconductor laser element 1, the nitride semiconductor laser element is formed when the end face coat film wraps up to the upper surface.
  • the dielectric layer 60 and the end face coat film may be in contact with each other at the end in the longitudinal direction of 1.
  • the film thickness of the dielectric layer 60 is preferably 100 nm or more.
  • the thickness of the dielectric layer 60 is preferably set to be equal to or less than the height of the ridge portion 40a.
  • etching damage may remain in the side surface of the ridge portion 40a and the flat portion 40b in the etching process when the ridge portion 40a is formed, and a leak current may be generated.
  • etching damage may remain in the side surface of the ridge portion 40a and the flat portion 40b in the etching process when the ridge portion 40a is formed, and a leak current may be generated.
  • an n-side electrode 80 is formed on the lower surface of the substrate 10 as an ohmic electrode in ohmic contact with the substrate 10.
  • FIGS. 2A to 2I are cross-sectional views of each step in the method for manufacturing nitride semiconductor laser device 1 according to the embodiment.
  • 2A to 2I are cross sections at positions corresponding to the line IB-IB in FIG. 1A.
  • a substrate 10 that is an n-type hexagonal GaN substrate having a (0001) plane as a main surface
  • MOCVD metal organic chemical vapor deposition
  • an n-side cladding layer made of n-type AlGaN is grown as a first nitride semiconductor layer 20 on the substrate 10 by 3 ⁇ m.
  • an n-side light guide layer 31 made of n-GaN is grown by 0.1 ⁇ m.
  • an active layer 32 having three periods of a barrier layer made of InGaN and an InGaN quantum well layer is grown.
  • a p-side light guide layer 33 made of p-GaN is grown by 0.1 ⁇ m.
  • an electron barrier layer 41 made of AlGaN is grown by 10 nm.
  • a p-side cladding layer 42 made of a 0.48 ⁇ m strained superlattice formed by repeating 160 cycles of a p-AlGaN layer (1.5 nm) and a GaN layer (1.5 nm) is grown.
  • a p-side contact layer 43 made of p-GaN is grown by 0.05 ⁇ m.
  • TMG trimethylgallium
  • TMA trimethylammonium
  • TMI trimethylindium
  • ammonia NH 3
  • a protective film 91 is formed on the second nitride semiconductor layer 40. Specifically, a 300 nm thick silicon oxide film (SiO 2 ) is formed as the protective film 91 on the p-side contact layer 43 by plasma CVD (Chemical Vapor Deposition) using silane (SiH 4 ).
  • the method for forming the protective film 91 is not limited to the plasma CVD method.
  • a known film formation method such as a thermal CVD method, a sputtering method, a vacuum evaporation method, or a pulsed laser film formation method is used. Can do.
  • the material for forming the protective film 91 is not limited to the above, and for example, a second nitride semiconductor layer 40 (a p-side cladding layer 42, a p-side contact layer 43, which will be described later) such as a dielectric or a metal. Any material may be used as long as it is selective with respect to the etching.
  • the protective film 91 is selectively removed using a photolithography method and an etching method so that the protective film 91 remains in a stripe shape.
  • an etching method for example, dry etching by reactive ion etching (RIE) using a fluorine-based gas such as CF 4 or wet etching such as hydrofluoric acid (HF) diluted to about 1:10 is used. be able to.
  • the p-side contact layer 43 and the p-side cladding layer 42 are etched using the protective film 91 formed in a stripe shape as a mask, thereby forming a ridge on the second nitride semiconductor layer 40.
  • the part 40a and the flat part 40b are formed.
  • dry etching by RIE using a chlorine-based gas such as Cl 2 may be used.
  • the dielectric layer 60 is formed so as to cover the p-side contact layer 43 and the p-side cladding layer 42. Film. That is, the dielectric layer 60 is formed on the ridge portion 40a and the flat portion 40b.
  • a silicon oxide film (SiO 2 ) having a thickness of 300 nm is formed by a plasma CVD method using silane (SiH 4 ).
  • the film formation method of the dielectric layer 60 is not limited to the plasma CVD method, and a film formation method such as a thermal CVD method, a sputtering method, a vacuum deposition method, or a pulse laser film formation method may be used.
  • the p-side electrode 51 made of Pd / Pt is formed only on the ridge portion 40a by using a vacuum deposition method and a lift-off method. Specifically, the p-side electrode 51 is formed on the p-side contact layer 43 exposed from the dielectric layer 60.
  • the film formation method of the p-side electrode 51 is not limited to the vacuum evaporation method, and may be a sputtering method or a pulse laser film formation method.
  • the electrode material of the p-side electrode 51 may be any material that is in ohmic contact with the second nitride semiconductor layer 40 (p-side contact layer 43), such as Ni / Au or Pt.
  • an adhesion layer 70 made of Ti is formed on the dielectric layer 60 by using a photolithography method, a vacuum deposition method, and a lift-off method.
  • the method for forming the adhesion layer 70 is not limited to the vacuum evaporation method, and may be a sputtering method or a pulse laser film formation method.
  • the material of the adhesion layer 70 may be any material that improves the adhesion to the dielectric layer 60, such as Ni.
  • a pad electrode 52 is formed so as to cover the p-side electrode 51, the dielectric layer 60, and the adhesion layer. Specifically, a resist is patterned on a portion other than a portion to be formed by a photolithography method or the like, a pad electrode 52 made of Au is formed on the entire upper surface of the substrate 10 by a vacuum deposition method or the like, and unnecessary using a lift-off method. By removing the portion of the electrode, a pad electrode 52 having a predetermined shape is formed on the p-side electrode 51, the dielectric layer 60 and the adhesion layer 70. Thereby, the electrode member 50 including the p-side electrode 51 and the pad electrode 52 is formed.
  • an n-side electrode 80 is formed on the lower surface of the substrate 10. Specifically, an n-side electrode 80 made of Ti / Pt / Au is formed on the back surface of the substrate 10 by vacuum vapor deposition or the like, and patterned using a photolithography method and an etching method, whereby an n-side electrode having a predetermined shape is formed. 80 is formed. Thereby, nitride semiconductor laser device 1 according to the present embodiment can be manufactured.
  • FIG. 3A is a diagram for explaining a mounting form 1 of the nitride semiconductor laser element 1 according to the embodiment.
  • 3B is a cross-sectional view of the mounting form 1 of the nitride semiconductor laser element 1 taken along the line IIIB-IIIB in FIG. 3A.
  • the nitride semiconductor laser device 200 includes a nitride semiconductor laser element 1 and a submount 100. Specifically, the nitride semiconductor laser element 1 is held (mounted) on the submount 100.
  • the submount 100 is a mounting substrate on which the nitride semiconductor laser element 1 is mounted.
  • the submount 100 includes a base 101, a first electrode 102a, a second electrode 102b, a first solder layer 103a, and a second solder layer 103b.
  • the base 101 is a substrate that supports the nitride semiconductor laser element 1.
  • the material of the base 101 is not particularly limited, but ceramics such as aluminum nitride (AlN) and silicon carbide (SiC), diamond (C) formed by CVD, and metals such as Cu and Al It is preferable that the thermal conductivity is equal to or higher than that of the nitride semiconductor laser element 1 such as a single substance or an alloy such as CuW.
  • the first electrode 102 a is formed on one surface of the base 101.
  • the second electrode 102b is formed on the other surface of the base 101.
  • the first electrode 102a and the second electrode 102b are, for example, laminated films made of a metal material of Ti (0.1 ⁇ m), Pt (0.2 ⁇ m), and Au (0.2 ⁇ m).
  • the first solder layer 103a is formed on the first electrode 102a.
  • the second solder layer 103b is formed on the second electrode 102b.
  • the first solder layer 103a and the second solder layer 103b are eutectic solder made of an Sn—Au (gold tin) alloy made of, for example, Au (70%) and Sn (30%).
  • the nitride semiconductor laser element 1 is mounted on the submount 100.
  • the nitride semiconductor laser element 1 has the first nitride semiconductor layer 20 side bonded to the submount 100. More specifically, the n-side electrode 80 of the nitride semiconductor laser device 1 is connected to the submount 100 since the n-side of the nitride semiconductor laser device 1 is connected to the submount 100, that is, junction-up mounting. Connected to the solder layer 103a.
  • the wire 110 formed of a metal material is connected to each of the pad electrode 52 of the nitride semiconductor laser element 1 and the first electrode 102a of the submount 100 by wire bonding. Thereby, a current can be supplied to the nitride semiconductor laser device 1 by the wire 110.
  • the submount 100 may be mounted on a metal package such as a CAN package, for the purpose of improving heat dissipation and simplifying handling.
  • the mounting form 1 As described above, in the mounting form 1, the case where the nitride semiconductor laser element 1 is junction-up mounted has been described. However, the mounting form in which the p-side electrode of the nitride semiconductor laser element 1 is connected to the submount 100, that is, Junction down implementation may be applied. In the mounting mode 2, a case where the nitride semiconductor laser element 1 is mounted by junction down will be described.
  • FIG. 4A is a plan view for explaining a mounting form 2 (nitride semiconductor laser device 200a) of the nitride semiconductor laser element 1 according to the embodiment.
  • 4B is a cross-sectional view of the mounting form 2 of the nitride semiconductor laser element 1 taken along the line IVB-IVB in FIG. 4A.
  • the nitride semiconductor laser device 200a includes the nitride semiconductor laser element 1 and the submount 100 as in the first embodiment. Specifically, the nitride semiconductor laser element 1 is mounted on the submount 100. In addition, the nitride semiconductor laser device 200 a includes a first solder layer (solder layer) 103 a that joins the nitride semiconductor laser element 1 and the submount 100.
  • solder layer solder layer
  • the nitride semiconductor laser device 1 is bonded to the submount 100 on the pad electrode 52 side.
  • the first solder layer 103 a is located between the pad electrode 52 and the submount 100.
  • the electrode member 50 of the nitride semiconductor laser element 1 is connected to the first solder layer 103 a of the submount 100.
  • the pad electrode 52 made of Au and the first solder layer 103a made of Sn—Au (gold tin) are connected, the Sn (tin) in the first solder layer 103a is padded. It diffuses into the electrode 52 and forms a Sn—Au (gold tin) eutectic structure over the first solder layer 103 a and the pad electrode 52. Even in this configuration, since hydrogen diffusion is suppressed, an increase in operating voltage during laser oscillation is suppressed. That is, the pad electrode 52 preferably includes at least a layer made of Au in contact with the first solder layer 103a. Further, the first solder layer 103a may contain Sn.
  • a gold-tin alloy is shown as the material of the solder layer, but a material used for known semiconductor bonding, such as Sn—Ag solder or Sn—Cu solder, may be used.
  • FIG. 5A is a cross-sectional view of a laser structure 1000X schematically showing a nitride semiconductor laser element of a comparative example.
  • FIG. 5B is a cross-sectional view of a laser structure 1X schematically showing the nitride semiconductor laser element 1 according to the embodiment.
  • FIG. 5C is a diagram showing a change over time of the operating voltage of the laser structure 1000X of the comparative example and the laser structure 1X of the nitride semiconductor laser element 1 according to the embodiment.
  • dielectric materials widely used in semiconductor devices include those shown in Table 1 below.
  • SiO 2 has the lowest refractive index and is transparent to light. For this reason, SiO 2 is useful as an insulating film of a semiconductor laser element.
  • FIGS. 5A and 5B laser structures 1000X and 1X simulating nitride semiconductor laser elements were actually fabricated and energization experiments were performed.
  • a laser structure (laser structure of a comparative example) 1000X schematically showing a nitride semiconductor laser element of a comparative example includes a substrate 10 made of a GaN substrate and a first made of an n-side AlGaN cladding layer.
  • 2 nitride semiconductor layers 40 are examples of the semiconductor layers 40.
  • the second nitride semiconductor layer 40 includes a ridge portion 40a and a flat portion 40b extending in the lateral direction from the root of the ridge portion 40a.
  • a dielectric layer 60 made of SiO 2 is laminated on the ridge portion 40a and the flat portion 40b.
  • the dielectric layer 60 has an opening, and a p-side electrode 51 made of Pd / Pt is formed in the opening.
  • an adhesion layer 70 made of Ti is formed so as to cover the p-side electrode 51 and the dielectric layer 60.
  • a pad electrode 52 made of Au is formed on the adhesion layer 70.
  • An n-side electrode 80 is formed on the lower surface of the substrate 10.
  • a laser structure (laser structure of the embodiment) 1X schematically showing the nitride semiconductor laser element 1 according to the embodiment is a GaN substrate, similarly to the laser structure 1000X of the comparative example.
  • a substrate 10 comprising: a first nitride semiconductor layer 20 comprising an n-side AlGaN cladding layer; a light-emitting layer 30 comprising an n-side GaN light guide layer, an InGaN active layer and a p-side GaN light guide layer; and an AlGaN electron barrier.
  • the second nitride semiconductor layer 40 includes a ridge portion 40a and a flat portion 40b extending in the lateral direction from the root of the ridge portion 40a.
  • a dielectric layer 60 made of SiO 2 is laminated on the ridge portion 40a and the flat portion 40b.
  • the dielectric layer 60 has an opening, and a p-side electrode 51 made of Pd / Pt is formed in the opening.
  • the adhesion layer 70 made of Ti is formed only on the dielectric layer 60, and the adhesion layer 70 and the p-side electrode 51 are in contact with each other. Not done.
  • a pad electrode 52 made of Au is formed so as to cover the p-side electrode 51, the dielectric layer 60 and the adhesion layer 70.
  • the operating voltage gradually increased as the energization time passed, and the operating voltage increased rapidly when the energization time exceeded 200 hours.
  • the operating voltage does not increase substantially even after a long time, and it is understood that the increase in operating voltage is significantly suppressed as compared with the laser structure 1000X of the comparative example. It was.
  • SiO 2 is a material containing a large amount of hydrogen. Therefore, in the laser structure 1000X of the comparative example, hydrogen contained in the dielectric layer 60 during operation is in contact with the adhesion layer. It was found that it diffused to the p-side electrode 51 via 70 and caused an increase in operating voltage due to this. In addition, materials such as Ti and Ni used as the adhesion layer 70 and materials such as Pd and Pt used as the p-side electrode 51 are highly reactive with hydrogen. It is considered that hydrogen diffused from the dielectric layer 60 containing 2 to the p-side electrode 51 through the adhesion layer 70.
  • the adhesion layer 70 in contact with the dielectric layer 60 containing SiO 2 is not in contact with the p-side electrode 51.
  • the pad electrode 52 is in contact with the dielectric layer 60 and the adhesion layer 70.
  • the material of the pad electrode 52 is composed of Au that has a very low reactivity with hydrogen.
  • FIG. 5D shows the calculation result of the change over time of the hydrogen concentration calculated using the diffusion equation.
  • 5D uses the laser structure 1000X of the comparative example shown in FIG. 5A and the laser structure 1X of the embodiment shown in FIG. 5B, respectively, and the hydrogen in SiO 2 is transferred to the adhesion layer 70 and the pad electrode 52. And a model of diffusing up to the p-side electrode 51.
  • the hydrogen concentration at the origin was fixed at 1E + 21 cm ⁇ 3 , and the hydrogen concentration after 40,000 hours was calculated with respect to the distance from the origin. That is, in the graph shown in FIG. 5D, the horizontal axis indicates the hydrogen diffusion distance (unit: ⁇ m) from the origin, and the vertical axis indicates the hydrogen concentration (unit: cm ⁇ 3 ).
  • the parameters used for the calculation are extracted from the experimental results of FIG. 5C, and the diffusion coefficient is 1E-11 m 2 / sec in the comparative laser structure 1000X, and 1E-18 m 2 / sec in the laser structure 1X of the embodiment. Calculated.
  • the operating voltage of the nitride semiconductor laser device 1 increases when the hydrogen concentration becomes 1E + 17 cm ⁇ 3 or more.
  • the distance at which the hydrogen concentration becomes 1E + 17 cm ⁇ 3 is 0.6 ⁇ m. Therefore, if the adhesion layer 70 is separated from the p-side electrode 51 by 0.6 ⁇ m or more, the nitride semiconductor laser An increase in the operating voltage of the element 1 can be suppressed.
  • the technique of the present disclosure has been made based on such knowledge, and SiO 2 was used as the dielectric layer 60 by preventing hydrogen contained in the dielectric layer 60 from diffusing into the electrode member 50. Even in this case, the increase of the operating voltage is suppressed.
  • the adhesion layer 70 made of Ti is not in contact with the p-side electrode 51.
  • the adhesion layer 70 and the p-side electrode 51 are completely in non-contact. However, even if the adhesion layer 70 and the p-side electrode 51 are partially in contact with each other due to manufacturing variations or the like, if the contact area is sufficiently small, the influence on the operating voltage is small and the increase in the operating voltage is suppressed. can do.
  • the nitride semiconductor laser device 1 includes the first nitride semiconductor layer 20 and the light emitting layer 30 formed of the nitride semiconductor formed on the first nitride semiconductor layer 20.
  • a second nitride semiconductor layer 40 having a ridge portion 40 a formed on the light emitting layer 30, a p-side electrode (ohmic electrode) 51 formed on the ridge portion 40 a, and a p-side electrode 51
  • the pad electrode 52 is formed and is wider than the ridge portion 40a.
  • the second nitride semiconductor layer 40 has a flat portion 40b on the side of the ridge portion 40a.
  • a dielectric layer 60 made of SiO 2 is formed on the side surface of the ridge portion 40a and the flat portion 40b.
  • An adhesion layer 70 is formed on the dielectric layer 60 on the flat portion 40b. The adhesion layer 70 is separated from the dielectric layer 60 on the side surface of the ridge portion 40a, is in contact with the pad electrode 52, and is not in contact with the p-side electrode 51.
  • the contact layer 70 and the p-side electrode 51 are not in contact with each other by the pad electrode 52 formed between the contact layer 70 and the p-side electrode 51.
  • hydrogen contained in the dielectric layer 60 can be prevented from diffusing into the p-side electrode 51. Therefore, it is possible to suppress an increase in operating voltage due to hydrogen.
  • the driving current of the nitride semiconductor laser element 1 flows to the ridge portion 40a through the p-side electrode 51 that is an ohmic electrode. Further, since the pad electrode 52 is formed widely up to the flat portion 40b, electrical connection by wire bonding or the like is facilitated.
  • the distances d1 and d2 between the adhesion layer 70 and the p-side electrode 51 are preferably 0.6 ⁇ m or more and 3.0 ⁇ m or less.
  • the second nitride semiconductor layer 40 may have a p-side contact layer 43 formed as the uppermost layer of the ridge portion 40a.
  • the p-side electrode 51 (ohmic electrode) is in contact with the upper surface of the p-side contact layer 43 that is the upper surface of the ridge portion 40a.
  • the width of the ridge portion 40a is preferably 10 ⁇ m or more and 50 ⁇ m or less.
  • the nitride semiconductor laser element 1 that can be operated with high light output can be realized.
  • the adhesion layer 70 preferably includes a layer having at least one of Ti and Ni.
  • heat generated when the nitride semiconductor laser element 1 is driven can be released to, for example, the submount 100 on which the nitride semiconductor laser element 1 is mounted, so that the nitride semiconductor laser element 1 operates at a high light output. Can be made.
  • the pad electrode 52 including a layer made of Au is suitable.
  • the nitride semiconductor laser device 1 can be operated with high light output.
  • the nitride semiconductor laser device 200 includes the nitride semiconductor laser element 1 and a submount 100 that holds the nitride semiconductor laser element 1.
  • the nitride semiconductor laser element 1 may have the first nitride semiconductor layer 20 side bonded to the submount 100 and the wire 110 connected to the pad electrode 52. .
  • the nitride semiconductor laser device 200 can be easily electrically connected by, for example, an external power source and wire bonding.
  • the nitride semiconductor laser element 1 may be bonded to the submount 100 on the pad electrode 52 side.
  • a solder layer 103 a may be interposed between the pad electrode 52 and the submount 100.
  • the pad electrode 52 may include at least a layer made of Au in contact with the solder layer 103a.
  • the solder layer 103a may contain Sn.
  • the junction between the nitride semiconductor laser device 200 and the submount 100 has an An—Sn eutectic structure. Therefore, the nitride semiconductor laser element 1 and the submount 100 are difficult to peel off.
  • the nitride semiconductor laser element and the nitride semiconductor laser device according to the present disclosure can be used as a light source for an image display device, illumination, or industrial equipment, and in particular, a light source for equipment that requires a relatively high light output. Useful as.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

窒化物半導体レーザ素子(1)は、第1の窒化物半導体層(20)と、第1の窒化物半導体層(20)の上に形成された窒化物半導体からなる発光層(30)と、発光層(30)の上に形成され、リッジ部(40a)を有する第2の窒化物半導体層(40)と、リッジ部(40a)の上に形成されたp側電極(51)と、第2の窒化物半導体層(40)上に形成され、リッジ部(40a)よりも幅広であるパッド電極(52)とを備え、第2の窒化物半導体層(40)は、リッジ部(40a)の側方に平坦部(40b)を有し、リッジ部(40a)の側面および平坦部(40b)の上には、SiO2からなる誘電体層(60)が形成され、平坦部(40b)上の誘電体層(60)の上には、密着層(70)が形成され、密着層(70)は、リッジ部(40a)の側面上の誘電体層(60)から離れ、且つ、p側電極(51)とは非接触であり、パッド電極(52)と接触している。

Description

窒化物半導体レーザ素子および窒化物半導体レーザ装置
 本開示は、窒化物半導体レーザ素子、および当該窒化物半導体レーザ素子を実装した窒化物半導体レーザ装置に関する。
 近年、半導体レーザ素子は、ディスプレイやプロジェクターなどの画像表示装置の光源、車載ヘッドランプの光源、産業用照明や民生用照明の光源、又は、レーザ溶接装置や薄膜アニール装置、レーザ加工装置などの産業機器の光源など、様々な用途の光源として注目されている。中でも、紫外から青色までの波長帯をカバーできる窒化物半導体レーザ素子が盛んに開発されている。また、上記用途の光源として用いられる半導体レーザ素子には、光出力が1ワットを大きく超える高出力化、および、素子寿命が数万時間以上の高寿命化が望まれている。
 特許文献1に、従来の窒化物半導体レーザ素子が開示されている。図6は、特許文献1に開示された従来の窒化物半導体レーザ素子の断面図である。
 図6に示すように、従来の窒化物半導体レーザ素子1000は、基板1010の上に、n型窒化物半導体層1020と、活性層1030と、p型窒化物半導体層1040とが順に積層された構造である。p型窒化物半導体層1040には、リッジストライプ1040aおよび平坦部1040bが形成されている。リッジストライプ1040aの側面から平坦部1040bにかけて、SiOからなる絶縁膜1060が形成されている。p型窒化物半導体層1040のリッジストライプ1040aの上にはp側電極1051が形成され、p側電極1051および絶縁膜1060の上には金(Au)からなるパッド電極1052が形成されている。なお、基板1010の裏面にはn側電極1080が形成されている。
 しかし、Auからなるパッド電極はSiOからなる絶縁膜との密着性が低いため、半導体レーザ素子の実装時やレーザ駆動時に電極が剥がれるという課題がある。
 特許文献2に、電極と絶縁膜の密着性を向上させた窒化物半導体レーザ素子が開示されている。図7は、特許文献2に開示された従来の窒化物半導体レーザ素子の断面図である。
 図7に示すように、従来の窒化物半導体レーザ素子2000は、p型半導体層2040のリッジ部2040aの側面に形成される絶縁膜2060の表面にTi等の密着層2070を形成し、密着層2070を介してリッジ部2040aをp型電極2051で覆う。これによって、絶縁膜2060とp型電極2051との密着性を向上させ、p型電極2051の絶縁膜2060からの剥離を抑制することができる。
 また、非特許文献1には、金属中の水素の拡散速度について開示されている。
特開平10-242581号公報 特開2010-93042号公報
日本金属学会誌(1973)第37巻 p302
 しかしながら、Ti等の密着層によって電極の密着性を向上させた従来の窒化物半導体レーザ素子では、通電時間の経過にともなって動作電圧が上昇するという課題がある。
 本開示は、動作電圧の上昇を抑制できる窒化物半導体レーザ素子等を提供することを目的とする。
 上記目的を達成するために、本開示に係る窒化物半導体レーザ素子の一態様は、第1の窒化物半導体層と、前記第1の窒化物半導体層の上に形成された窒化物半導体からなる発光層と、前記発光層の上に形成され、リッジ部を有する第2の窒化物半導体層と、前記リッジ部の上に形成されたオーミック電極と、前記オーミック電極の上に形成され、前記リッジ部よりも幅広であるパッド電極とを備え、前記第2の窒化物半導体層は、前記リッジ部の側方に平坦部を有し、前記リッジ部の側面及び前記平坦部の上には、SiOからなる誘電体層が形成され、前記平坦部の上の前記誘電体層の上には、密着層が形成され、前記密着層は、前記リッジ部の側面の上の前記誘電体層から離れ、且つ、前記パッド電極と接触し、前記オーミック電極とは非接触である。
 この構成により、誘電体層上に形成される密着層がオーミック電極と非接触であるため、SiOからなる誘電体層中に含まれる水素がオーミック電極に拡散することを抑制できる。これにより、通電時間の経過にともなって動作電圧が上昇することを抑制できる。さらに、誘電体層上に形成される密着層がパッド電極と接触するため、パッド電極と誘電体層との密着性が向上し、窒化物半導体レーザ素子の実装時やレーザ駆動(動作)時のパッド電極の剥がれを抑制できる。
 また、本開示に係る窒化物半導体レーザ素子の一態様において、前記密着層と前記オーミック電極との距離は、0.6μm以上、3.0μm以下であるとよい。
 この構成により、パッド電極52と誘電体層60との密着性を確保でき、且つ、窒化物半導体レーザ素子における水素に起因して動作電圧が上昇してしまうことを、より抑制できる。
 また、本開示に係る窒化物半導体レーザ素子の一態様において、前記パッド電極は、前記誘電体層と接触しているとよい。
 この構成により、パッド電極がリッジ部の近くに形成されるため、リッジ部における熱がパッド電極を介して効率よく放熱され、放熱特性が向上する。
 また、本開示に係る窒化物半導体レーザ素子の一態様において、前記リッジ部の幅は、10μm以上50μm以下であるとよい。
 この構成により、高い光出力で動作させることができる窒化物半導体レーザ素子を実現することができる。
 また、本開示に係る窒化物半導体レーザ素子の一態様において、密着層としては、Ti、Niの少なくとも1つを有する層を含むものが適している。
 また、本開示に係る窒化物半導体レーザ素子の一態様において、パッド電極としては、Auからなる層を含むものが適している。
 また、本開示に係る窒化物半導体レーザ装置の一態様において、前記窒化物半導体レーザ素子と、前記窒化物半導体レーザ素子を保持するサブマウントとを備える。
 これらの構成により、窒化物半導体レーザ素子の駆動時に発生する熱を例えば窒化物半導体レーザ素子が実装されるサブマウントに逃がすことができるので、窒化物半導体レーザ素子を高い光出力で動作させることができる。
 また、本開示に係る窒化物半導体レーザ装置の一態様において、前記窒化物半導体レーザ素子は、前記第1の窒化物半導体層側が前記サブマウントに接合され、前記パッド電極にワイヤが接続されているとよい。
 この構成により、窒化物半導体レーザ装置は、例えば外部電源とワイヤボンディングにより簡単に電気接続が可能となる。
 また、本開示に係る窒化物半導体レーザ装置の一態様において、前記窒化物半導体レーザ素子は、前記パッド電極側が前記サブマウントに接合され、前記パッド電極と前記サブマウントとの間には、半田層が介在しているとよい。
 この構成により、窒化物半導体レーザ素子の発光部の近くにサブマウントが位置するため、発光部からの熱がサブマウントより効率よく放熱され、放熱特性が向上する。
 また、本開示に係る窒化物半導体レーザ装置の一態様において、前記パッド電極は、少なくとも前記半田層と接触するAuからなる層を含み、前記半田層は、Snを含むとよい。
 この構成により、窒化物半導体レーザ素子とサブマウントとは、An-Sn共晶構造となるために、接合がより強固となり、剥がれにくくなる。
 本開示の窒化物半導体レーザ素子等によれば、動作電圧が上昇することを抑制できる。
図1Aは、実施の形態に係る窒化物半導体レーザ素子の構成を示す平面図である。 図1Bは、図1AのIB-IB線における実施の形態に係る窒化物半導体レーザ素子の構成を示す断面図である。 図2Aは、実施の形態に係る窒化物半導体レーザ素子の製造方法における、第1の窒化物半導体層、発光層および第2の窒化物半導体層の各層を形成する工程を示す断面図である。 図2Bは、実施の形態に係る窒化物半導体レーザ素子の製造方法における、保護膜を成膜する工程を示す断面図である。 図2Cは、実施の形態に係る窒化物半導体レーザ素子の製造方法における、保護膜をパターニングする工程を示す断面図である。 図2Dは、実施の形態に係る窒化物半導体レーザ素子の製造方法における、リッジ部および平坦部を形成する工程を示す断面図である。 図2Eは、実施の形態に係る窒化物半導体レーザ素子の製造方法における、誘電体層を成膜する工程を示す断面図である。 図2Fは、実施の形態に係る窒化物半導体レーザ素子の製造方法における、p側電極を形成する工程を示す断面図である。 図2Gは、実施の形態に係る窒化物半導体レーザ素子の製造方法における、密着層を形成する工程を示す断面図である。 図2Hは、実施の形態に係る窒化物半導体レーザ素子の製造方法における、パッド電極を成膜する工程を示す断面図である。 図2Iは、実施の形態に係る窒化物半導体レーザ素子の製造方法における、n側電極を形成する工程を示す断面図である。 図3Aは、実施の形態に係る窒化物半導体レーザ素子の実装形態1を説明するための平面図である。 図3Bは、図3AのIIIB-IIIB線における実施の形態に係る窒化物半導体レーザ素子の実装形態1を説明するための断面図である。 図4Aは、実施の形態に係る窒化物半導体レーザ素子の実装形態2を説明するための図である。 図4Bは、図4AのIVB-IVB線における実施の形態に係る窒化物半導体レーザ素子の実装形態2を説明するための断面図である。 図5Aは、比較例の窒化物半導体レーザ素子を模擬的に示すレーザ構造の断面図である。 図5Bは、実施の形態に係る窒化物半導体レーザ素子を模擬的に示すレーザ構造の断面図である。 図5Cは、比較例および実施の形態におけるレーザ構造の動作電圧の経時的変化を示す図である。 図5Dは、比較例および実施の形態におけるレーザ構造の、拡散方程式を用いて計算した水素濃度の経時変化の計算結果を示す図である。 図6は、従来の窒化物半導体レーザ素子の断面図である。 図7は、従来の窒化物半導体レーザ素子の断面図である。
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本開示の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置および接続形態、並びに、ステップ(工程)およびステップの順序などは、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、各図において縮尺などは必ずしも一致していない。各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。
 また、本明細書および図面において、X軸、Y軸およびZ軸は、三次元直交座標系の三軸を表している。X軸およびY軸は、互いに直交し、且つ、いずれもZ軸に直交する軸である。また、以下の実施の形態において、Z軸正方向側を上側、Z軸負方向側を下側として記載する場合がある。
 また、図1A、図3Aおよび図4Aは、断面を示す図ではないが、説明のためにハッチングを付して図示している。
 (実施の形態)
 [窒化物半導体レーザ素子の構成]
 まず、実施の形態に係る窒化物半導体レーザ素子1の構成について、図1Aおよび図1Bを用いて説明する。図1Aは、実施の形態に係る窒化物半導体レーザ素子1の構成を示す平面図である。図1Bは、図1AのIB-IB線における窒化物半導体レーザ素子1の断面図である。
 図1Aおよび図1Bに示すように、本実施の形態に係る窒化物半導体レーザ素子1は、窒化物半導体材料によって構成された半導体レーザ素子である。窒化物半導体レーザ素子1は、基板10と、第1の窒化物半導体層20と、発光層30と、第2の窒化物半導体層40と、電極部材50と、誘電体層60と、密着層70とを備える。
 第2の窒化物半導体層40は、レーザ共振器長方向(Y軸方向)に延在するストライプ状のリッジ部40aと、リッジ部40aの根元から横方向(X軸方向)に広がる平坦部40bと有する。
 リッジ部40aの幅および高さは、特に限定されるものではないが、一例として、リッジ部40aの幅(ストライプ幅)は1μm以上100μm以下で、リッジ部40aの高さは100nm以上1μm以下である。窒化物半導体レーザ素子1を高い光出力(例えばワットクラス)で動作させるには、リッジ部40aの幅を10μm以上50μm以下とし、リッジ部40aの高さを300nm以上800nm以下にするとよい。
 基板10は、例えば、GaN基板である。本実施の形態では、基板10として、主面が(0001)面であるn型六方晶GaN基板を用いている。
 第1の窒化物半導体層20は、基板10の上に形成されている。第1の窒化物半導体層20は、例えば、n型AlGaNからなるn側クラッド層である。
 発光層30は、第1の窒化物半導体層20の上に形成されている。発光層30は、窒化物半導体によって構成される。発光層30は、例えば、n-GaNからなるn側光ガイド層31と、InGaN量子井戸層からなる活性層32と、p-GaNからなるp側光ガイド層33との積層構造である。
 第2の窒化物半導体層40は、発光層30の上に形成されている。第2の窒化物半導体層40は、例えば、AlGaNからなる電子障壁層41と、p型AlGaN層からなるp側クラッド層42と、p型GaNからなるp側コンタクト層43との積層構造である。p側コンタクト層43は、リッジ部40aの最上層として形成されている。
 p側クラッド層42は、凸部を有している。このp側クラッド層42の凸部とp側コンタクト層43とによってリッジ部40aが構成されている。また、p側クラッド層42は、リッジ部40aの両側方に、平坦部40bとして平面部を有している。つまり、平坦部40bの最上面は、p側クラッド層42の表面であり、平坦部40bの最上面にはp側コンタクト層43が形成されていない。
 電極部材50は、第2の窒化物半導体層40の上に形成されている。電極部材50は、リッジ部40aよりも幅広である。つまり、電極部材50の幅(X軸方向の幅)は、リッジ部40aの幅(X軸方向の幅)よりも大きい。電極部材50は、誘電体層60および密着層70、リッジ部40aの上面と接触している。
 本実施の形態において、電極部材50は、電流供給のためのp側電極(オーミック電極)51と、p側電極51の上に形成されたパッド電極52とを有する。
 p側電極51は、リッジ部40aの上面と接触している。p側電極51は、リッジ部40aの上方においてp側コンタクト層43とオーミック接触するオーミック電極であり、リッジ部40aの上面であるp側コンタクト層43の上面と接触している。p側電極51は、例えば、Pd、Pt、Niなどの金属材料を用いて形成される。本実施の形態において、p側電極51は、Pd/Ptの2層構造である。
 パッド電極52は、リッジ部40aよりも幅広であって、誘電体層60および密着層70と接触している。つまり、パッド電極52は、リッジ部40a、誘電体層60および密着層70を覆うように形成されている。
 パッド電極52の材料は、Auからなる金属材料であるとよく、パッド電極52は、Auの単層、あるいはAu/Ti/Auのような多層でもよい。
 密着層70は、誘電体層60上の一部の領域、具体的には、リッジ部40aの両側において、リッジ部40aから離れた誘電体層60上の領域に形成されている。密着層70は、パッド電極52および誘電体層60には接触しているが、p側電極51には接触していない。具体的には、密着層70は、平坦部40b上におけるリッジ部40aから離れた位置において、誘電体層60と接触している。ここで、図1Bに示すように、リッジ部40aに対して左右の密着層70とp側電極51との距離を距離d1、d2とそれぞれ定義する。
 距離d1、d2が大きければ、誘電体層60から密着層70を介したp側電極51への水素拡散を抑制できるため、窒化物半導体レーザ素子1の電圧上昇を抑制できるが、パッド電極52と誘電体層60との密着性が低下する。
 一方、距離d1、d2が小さければ、パッド電極52と誘電体層60との密着性は向上するが、水素拡散により、窒化物半導体レーザ素子1の動作電圧の上昇が生じる。非特許文献1に記載のように、金属中の水素の拡散距離は、Fickの第2法則から計算できる。非特許文献1に記載の式(2)(具体的には、以下に示す式(1))は、拡散方程式と呼ばれており、この拡散方程式から水素の拡散距離を計算した結果、後述する図5Dに示す実験結果から、距離d1、d2が0.6μm以上あれば、窒化物半導体レーザ素子1が動作中の水素拡散を抑制できることがわかった。
Figure JPOXMLDOC01-appb-M000001
 なお、上記式(1)において、Dは拡散係数であり、C(x,t)は、試料内部の水素濃度分布であり、xは、試料内部でのアノード側となる面からの距離であり、tは時間である。
 また、本願発明者らが実施した実験の結果から、距離d1、d2が3.0μm以下であれば、パッド電極52と誘電体層60との密着性を確保できることがわかった。なお、本実施の形態では、窒化物半導体レーザ素子1の作製時の位置ばらつきも考慮して、距離d1=距離d2=1.0μmとしている。
 また、本実施の形態では、距離d1、d2を所望の値とするため、密着層70は、平坦部40bの上において、誘電体層60のリッジ部40aの側面に形成された部分から離れた位置に、誘電体層60の平坦部40b上に形成された部分を介して形成される。平坦部40b上のリッジ部40aの近傍においては、誘電体層60上には、密着層70が形成されていない部分が存在する。密着層70とリッジ部40aとの間では、パッド電極52と誘電体層60とが直接接触している。
 また、密着層70とp側電極51との距離に関しては、リッジ部40aの高さ方向(具体的には、Z軸方向)に離す形態も考えられるが、窒化物半導体レーザ素子1の場合、リッジ部40aは電気抵抗の高いp側クラッド層42で形成されているため、リッジ部40aを高くすると動作電圧が増加するという問題が生じる。そのため、密着層70とp側電極51とZ軸方向に話す距離には、制限がある。
 また、誘電体層60を薄くすることでも、密着層70とp側電極51とをZ軸方向に離すことができる。その場合、発光部(具体的には、発光層30)と、電極部(具体的には、p側電極51)との距離が短くなるため、電極部(例えば、p側電極51)による光吸収が生じ、窒化物半導体レーザ素子1から出射された光の利用効率(つまり、発光効率)が低下するという課題が生じる。よって、密着層70とp側電極51との距離を離す場合、リッジ部40aの幅方向(具体的には、X軸方向)に離すのが有効であり、それを実現するために、密着層70をリッジ部40aから離して形成している。
 なお、本実施の形態では、距離d1=距離d2としているが、距離d1と距離d2とは異なっていてもよい。また、距離d1、d2のどちらか一方が、0.6μm以上、3.0μm以下の範囲にあっても、水素拡散による窒化物半導体レーザ素子1の動作電圧が上昇すること抑制、および、パッド電極52と誘電体層60との密着性を確保する効果は得られるが、距離d1、d2が両方とも、0.6μm以上、3.0μm以下の範囲にあるのが、より好ましい。
 密着層70の材料は、特に限定されるものではないが、Ti、Niの少なくとも1つを有する層を含むとよい。例えば、密着層70は、TiあるいはTi/Ptの2層構造からなる金属材料である。本実施の形態において、p側電極51は、Tiからなる金属材料である。
 なお、図1Aに示すように、パッド電極52は、窒化物半導体レーザ素子1を個片化する際の歩留まりを向上させるために、第2の窒化物半導体層40の内側に形成されている。すなわち、窒化物半導体レーザ素子1を上面視した場合に、パッド電極52は、窒化物半導体レーザ素子1の端部周縁には形成されていない。つまり、窒化物半導体レーザ素子1は、端部周縁に電流が供給されない非電流注入領域を有する。また、パッド電極52が形成されている領域の断面形状は、どの部分でも図1Bに示される構造となる。
 誘電体層60は、光を閉じ込めるために、リッジ部40aの側面に形成されたSiOからなる絶縁膜である。具体的には、誘電体層60は、リッジ部40aの側面から平坦部40bにわたって連続的に形成されている。本実施の形態において、誘電体層60は、リッジ部40aの周辺において、p側コンタクト層43の側面とp側クラッド層42の凸部の側面とp側クラッド層42の上面とにわたって連続して形成されている。
 誘電体層60の形状は、特に限定されるものではないが、誘電体層60は、リッジ部40aの側面および平坦部40bと接しているとよい。これにより、リッジ部40aの直下で発光した光を安定的に閉じ込めることができる。
 また、高い光出力で動作させること(高出力動作)を目的とした窒化物半導体レーザ素子では、光出射端面には誘電体多層膜などの端面コート膜が形成される。この端面コート膜は、端面のみに形成することが難しく、窒化物半導体レーザ素子1の上面にも回りこむ。この場合、窒化物半導体レーザ素子1の長手方向(Y軸方向)の端部では、パッド電極52が形成されていないため、端面コート膜が上面にまで回りこんでしまうと、窒化物半導体レーザ素子1の長手方向の端部で誘電体層60と端面コート膜とが接してしまう場合がある。この際、誘電体層60が形成されていない、又は、誘電体層60の膜厚が光閉じ込めに対して薄い場合には、端面コート膜の影響を受けるため、光損失の原因となる。そこで、発光層30で発生した光を十分に閉じ込めるためには、誘電体層60の膜厚は、100nm以上にするとよい。一方、誘電体層60の膜厚が厚すぎると、パッド電極52の形成が困難となるために、誘電体層60の膜厚は、リッジ部40aの高さ以下にするとよい。
 また、リッジ部40aの側面および平坦部40bには、リッジ部40aを形成する際のエッチング工程でエッチングダメージが残存してリーク電流が発生する場合があるが、リッジ部40aおよび平坦部40bを誘電体層60で被覆することで、不要なリーク電流の発生を低減できる。
 なお、基板10の下面には、基板10とオーミック接触するオーミック電極としてn側電極80が形成されている。
 [窒化物半導体レーザ素子の製造方法]
 次に、実施の形態に係る窒化物半導体レーザ素子1の製造方法について、図2A~図2Iを用いて説明する。図2A~図2Iは、実施の形態に係る窒化物半導体レーザ素子1の製造方法における各工程の断面図である。なお、図2A~図2Iに示す断面は、図1AのIB-IB線に対応した位置における断面である。
 まず、図2Aに示すように、主面が(0001)面であるn型六方晶GaN基板である基板10上に、有機金属気相成長法(Metalorganic Chemical Vapor Deposition;MOCVD法)を用いて、第1の窒化物半導体層20、発光層30および第2の窒化物半導体層40をこの順で順次成膜する。
 具体的には、基板10の上に、第1の窒化物半導体層20としてn型AlGaNからなるn側クラッド層を3μm成長させる。続いて、n-GaNからなるn側光ガイド層31を0.1μm成長させる。続いて、InGaNからなるバリア層とInGaN量子井戸層との3周期からなる活性層32を成長させる。続いて、p-GaNからなるp側光ガイド層33を0.1μm成長させる。続いて、AlGaNからなる電子障壁層41を10nm成長させる。続いて、p-AlGaN層(1.5nm)とGaN層(1.5nm)とを160周期繰り返して形成した0.48μmの歪超格子からなるp側クラッド層42を成長させる。続いて、p-GaNからなるp側コンタクト層43を0.05μm成長させる。ここで、各層において、Ga、Al、Inを含む有機金属原料には、例えば、トリメチルガリウム(TMG)、トリメチルアンモニウム(TMA)、トリメチルインジウム(TMI)を用いる。また、窒素原料には、アンモニア(NH)を用いる。
 次に、図2Bに示すように、第2の窒化物半導体層40上に、保護膜91を成膜する。具体的には、p側コンタクト層43の上に、シラン(SiH)を用いたプラズマCVD(Chemical Vapor Deposition)法によって、保護膜91として、シリコン酸化膜(SiO)を300nm成膜する。
 なお、保護膜91の成膜方法は、プラズマCVD法に限るものではなく、例えば、熱CVD法、スパッタ法、真空蒸着法、又は、パルスレーザ成膜法など、公知の成膜方法を用いることができる。また、保護膜91の成膜材料は、上記のものに限るものではなく、例えば、誘電体や金属など、後述する第2の窒化物半導体層40(p側クラッド層42、p側コンタクト層43)のエッチングに対して、選択性のある材料であればよい。
 次に、図2Cに示すように、フォトリソグラフィー法およびエッチング法を用いて、保護膜91がストライプ状に残るように、保護膜91を選択的に除去する。エッチング法としては、例えば、CFなどのフッ素系ガスを用いた反応性イオンエッチング(RIE)によるドライエッチング、又は、1:10程度に希釈した弗化水素酸(HF)などのウェットエッチングを用いることができる。
 次に、図2Dに示すように、ストライプ状に形成された保護膜91をマスクとして、p側コンタクト層43およびp側クラッド層42をエッチングすることで、第2の窒化物半導体層40にリッジ部40aおよび平坦部40bを形成する。p側コンタクト層43およびp側クラッド層42のエッチングとしては、Clなどの塩素系ガスを用いたRIE法によるドライエッチングを用いるとよい。
 次に、図2Eに示すように、ストライプ状の保護膜91をフッ酸などのウェットエッチングによって除去した後、p側コンタクト層43およびp側クラッド層42を覆うように、誘電体層60を成膜する。つまり、リッジ部40aおよび平坦部40bの上に誘電体層60を形成する。誘電体層60としては、例えば、シラン(SiH)を用いたプラズマCVD法によって、シリコン酸化膜(SiO)を300nm成膜する。
 なお、誘電体層60の成膜方法は、プラズマCVD法に限るものではなく、熱CVD法、スパッタ法、真空蒸着法、又は、パルスレーザ成膜法などの成膜方法を用いてもよい。
 次に、図2Fに示すように、フォトリソグラフィー法と、フッ酸を用いたウェットエッチングとにより、リッジ部40a上の誘電体層60のみを除去して、p側コンタクト層43の上面を露出させる。その後、真空蒸着法およびリフトオフ法を用いて、リッジ部40a上のみにPd/Ptからなるp側電極51を形成する。具体的には、誘電体層60から露出させたp側コンタクト層43の上にp側電極51を形成する。
 なお、p側電極51の成膜方法は、真空蒸着法に限るものではなく、スパッタ法又はパルスレーザ成膜法などであってもよい。また、p側電極51の電極材料は、Ni/Au系、Pt系など、第2の窒化物半導体層40(p側コンタクト層43)とオーミック接合する材料であればよい。
 次に、図2Gに示すように、フォトリソグラフィー法、真空蒸着法およびリフトオフ法を用いて、誘電体層60上にTiからなる密着層70を形成する。
 なお、密着層70の成膜方法は、真空蒸着法に限るものではなく、スパッタ法又はパルスレーザ成膜法などであってもよい。また、密着層70の材料は、Ti以外にもNi系など、誘電体層60との密着性を向上させる材料であればよい。
 次に、図2Hに示すように、p側電極51、誘電体層60および密着層70を覆うようにパッド電極52を形成する。具体的には、フォトリソグラフィー法などによって、形成したい部分以外にレジストをパターニングし、基板10の上方の全面に真空蒸着法などによってAuからなるパッド電極52を形成し、リフトオフ法を用いて不要な部分の電極を除去することで、p側電極51、誘電体層60および密着層70の上に所定形状のパッド電極52を形成する。これにより、p側電極51およびパッド電極52からなる電極部材50が形成される。
 次に、図2Iに示すように、基板10の下面にn側電極80を形成する。具体的には、基板10の裏面に真空蒸着法などによってTi/Pt/Auからなるn側電極80を形成し、フォトリソグラフィー法およびエッチング法を用いてパターニングすることで、所定形状のn側電極80を形成する。これにより、本実施の形態に係る窒化物半導体レーザ素子1を製造することができる。
 [窒化物半導体レーザ素子の実装形態1]
 次に、図3Aおよび図3Bを用いて、実施の形態に係る窒化物半導体レーザ素子1の実装形態1(窒化物半導体レーザ装置)を説明する。図3Aは、実施の形態に係る窒化物半導体レーザ素子1の実装形態1を説明するための図である。図3Bは、図3AのIIIB―IIIB線における窒化物半導体レーザ素子1の実装形態1の断面図である。
 図3Aおよび図3Bに示すように、窒化物半導体レーザ装置200は、窒化物半導体レーザ素子1と、サブマウント100とを備える。具体的には、窒化物半導体レーザ素子1は、サブマウント100に保持(実装)されている。
 サブマウント100は、窒化物半導体レーザ素子1が実装される実装基板である。サブマウント100は、基台101と、第1電極102aと、第2電極102bと、第1半田層103aと、第2半田層103bとを有する。
 基台101は、窒化物半導体レーザ素子1を支持する基板である。基台101の材料は、特に限定されるものではないが、アルミナイトライド(AlN)やシリコンカーバイト(SiC)などのセラミック、CVDで成膜されたダイヤモンド(C)、CuやAlなどの金属単体、又は、CuWなどの合金など、窒化物半導体レーザ素子1と比べて熱伝導率が同等かそれ以上の材料で構成されているとよい。
 第1電極102aは、基台101の一方の面に形成される。また、第2電極102bは、基台101の他方の面に形成される。第1電極102aおよび第2電極102bは、例えば、Ti(0.1μm)、Pt(0.2μm)およびAu(0.2μm)の金属材料からなる積層膜である。
 第1半田層103aは、第1電極102a上に形成される。第2半田層103bは、第2電極102b上に形成される。第1半田層103aおよび第2半田層103bは、例えば、Au(70%)およびSn(30%)からなるSn-Au(金スズ)合金からなる共晶半田である。
 上述したように、窒化物半導体レーザ素子1は、サブマウント100に実装される。実装形態1では、窒化物半導体レーザ素子1は、第1の窒化物半導体層20側がサブマウント100に接合される。具体的には、窒化物半導体レーザ素子1のn側がサブマウント100に接続される実装形態、つまりジャンクションアップ実装であるので、窒化物半導体レーザ素子1のn側電極80がサブマウント100の第1半田層103aに接続される。
 また、ワイヤボンディングによって、窒化物半導体レーザ素子1のパッド電極52およびサブマウント100の第1電極102aの各々には、金属材料によって形成されたワイヤ110が接続される。これにより、ワイヤ110によって窒化物半導体レーザ素子1に電流を供給することができる。
 なお、図示しないが、サブマウント100は、放熱性の向上および取り扱いの簡便化の目的で、例えば、CANパッケージなどの金属パッケージに実装されてもよい。
 [窒化物半導体レーザ素子の実装形態2]
 次に、図4Aおよび図4Bを用いて、実施の形態に係る窒化物半導体レーザ素子1の実装形態2(窒化物半導体レーザ装置)を説明する。
 上述したように、実装形態1では、窒化物半導体レーザ素子1をジャンクションアップ実装する場合について説明したが、窒化物半導体レーザ素子1のp側の電極がサブマウント100に接続される実装形態、すなわちジャンクションダウン実装を適用してもよい。実装形態2では、窒化物半導体レーザ素子1をジャンクションダウン実装する場合について説明する。
 図4Aは、実施の形態に係る窒化物半導体レーザ素子1の実装形態2(窒化物半導体レーザ装置200a)を説明するための平面図である。図4Bは、図4AのIVB―IVB線における窒化物半導体レーザ素子1の実装形態2の断面図である。
 図4Aおよび図4Bに示すように、窒化物半導体レーザ装置200aは、実装形態1と同様に、窒化物半導体レーザ素子1と、サブマウント100とを備える。具体的には、窒化物半導体レーザ素子1は、サブマウント100に実装されている。また、窒化物半導体レーザ装置200aは、窒化物半導体レーザ素子1とサブマウント100とを接合する第1半田層(半田層)103aを備える。
 また、実装形態2においては、実装形態1とは異なり、窒化物半導体レーザ素子1は、パッド電極52側がサブマウント100に接合される。また、第1半田層103aは、パッド電極52とサブマウント100との間に位置する。具体的には、窒化物半導体レーザ素子1の電極部材50がサブマウント100の第1半田層103aに接続される。このように、窒化物半導体レーザ素子1をジャンクションダウン実装することで、発熱源に近いp側電極51がサブマウント100に接続されるので、窒化物半導体レーザ素子1の放熱性を向上させることができる。また、実装形態2においては、Auで構成されるパッド電極52とSn-Au(金スズ)からなる第1半田層103aが接続されるため、第1半田層103a中のSn(スズ)がパッド電極52中へと拡散し第1半田層103aおよびパッド電極52にわたってSn-Au(金スズ)共晶構造が形成される。この構成でも、水素の拡散は抑制されるため、レーザ発振時の動作電圧の上昇は抑制される。つまり、パッド電極52は、少なくとも第1半田層103aと接触するAuからなる層を含むとよい。また、第1半田層103aは、Snを含むとよい。
 なお、本実施の形態では、半田層の材料として金スズ合金を示したが、Sn-Ag系半田やSn-Cu系半田など、公知の半導体接合に用いられている材料を用いてもよい。
 [窒化物半導体レーザ素子の作用効果]
 次に、本実施の形態に係る窒化物半導体レーザ素子1の作用効果について、本開示の技術を得るに至った経緯も含めて、図5A、図5Bおよび図5Cを用いて説明する。
 図5Aは、比較例の窒化物半導体レーザ素子を模擬的に示すレーザ構造1000Xの断面図である。図5Bは、実施の形態に係る窒化物半導体レーザ素子1を模擬的に示すレーザ構造1Xの断面図である。図5Cは、比較例のレーザ構造1000Xおよび実施の形態に係る窒化物半導体レーザ素子1のレーザ構造1Xの動作電圧の経時的変化を示す図である。
 半導体デバイスで広く使用されている誘電体材料としては、以下の表1に示されるものがある。中でも、SiOは、屈折率が最も低く、光に対して透明である。このため、SiOは、半導体レーザ素子の絶縁膜として有用である。
Figure JPOXMLDOC01-appb-T000002
 しかしながら、窒化物半導体レーザ素子を開発する中で、窒化物半導体レーザ素子の絶縁膜として用いたSiOが原因となって、連続通電時に動作電圧が上昇するという課題があることが判明した。
 その原因を究明するために、図5Aおよび図5Bに示すように、窒化物半導体レーザ素子を模擬的に示すレーザ構造1000Xおよび1Xを実際に作製して通電実験を行った。
 図5Aに示すように、比較例の窒化物半導体レーザ素子を模擬的に示すレーザ構造(比較例のレーザ構造)1000Xは、GaN基板からなる基板10と、n側AlGaNクラッド層からなる第1の窒化物半導体層20と、n側GaN光ガイド層、InGaN活性層およびp側GaN光ガイド層からなる発光層30と、AlGaN電子障壁層、p側AlGaNクラッド層およびp側GaNコンタクト層からなる第2の窒化物半導体層40とを有する。さらに、第2の窒化物半導体層40は、リッジ部40aと、リッジ部40aの根元から横方向に広がる平坦部40bと有する。リッジ部40aおよび平坦部40b上にはSiOからなる誘電体層60が積層されている。また、誘電体層60は開口部を有しており、この開口部には、Pd/Ptからなるp側電極51が形成されている。さらに、p側電極51と誘電体層60とを覆うようにTiからなる密着層70が形成されている。さらに、密着層70上には、Auからなるパッド電極52が形成されている。なお、基板10の下面には、n側電極80が形成されている。
 また、図5Bに示すように、実施の形態に係る窒化物半導体レーザ素子1を模擬的に示すレーザ構造(実施の形態のレーザ構造)1Xは、比較例のレーザ構造1000Xと同様に、GaN基板からなる基板10と、n側AlGaNクラッド層からなる第1の窒化物半導体層20と、n側GaN光ガイド層、InGaN活性層およびp側GaN光ガイド層からなる発光層30と、AlGaN電子障壁層、p側AlGaNクラッド層およびp側GaNコンタクト層からなる第2の窒化物半導体層40と、n側電極80とを有する。さらに、第2の窒化物半導体層40は、リッジ部40aと、リッジ部40aの根元から横方向に広がる平坦部40bと有する。リッジ部40aおよび平坦部40b上には、SiOからなる誘電体層60が積層されている。また、誘電体層60は開口部を有しており、この開口部には、Pd/Ptからなるp側電極51が形成されている。そして、実施の形態のレーザ構造1Xでは、比較例のレーザ構造1000Xと異なり、誘電体層60上のみにTiからなる密着層70が形成されており、密着層70とp側電極51とは接触していない。さらに、p側電極51、誘電体層60および密着層70を覆うようにAuからなるパッド電極52が形成されている。
 このように作製した比較例のレーザ構造1000X(図5A参照)と実施の形態のレーザ構造1X(図5B参照)に対して連続通電を行ったところ、動作電圧に関して、図5Cに示す結果が得られた。
 図5Cに示すように、比較例のレーザ構造1000Xでは、通電時間の経過とともに動作電圧が徐々に上昇し、通電時間が200時間を超えると、動作電圧が急激に上昇することが分かった。一方、実施の形態のレーザ構造1Xでは、長時間経過しても動作電圧がほぼ上昇しておらず、比較例のレーザ構造1000Xと比べて、動作電圧の上昇が大幅に抑制されることが分かった。
 この実験結果について本願発明者らが鋭意検討した結果、SiOは水素が多く含まれる材料であることから、比較例のレーザ構造1000Xでは、動作中に誘電体層60に含まれる水素が密着層70を介してp側電極51に拡散し、これが原因となって動作電圧の上昇を引き起こしていたことが分かった。また、密着層70として使われるTiやNiなどの材料や、p側電極51として使われるPdやPtなどの材料は、水素との反応性が高いため、これらの電極同士が接することで、SiOを含む誘電体層60から水素が密着層70を介してp側電極51まで拡散したと考えられる。
 一方、実施の形態のレーザ構造1Xでは、SiOを含む誘電体層60と接する密着層70は、p側電極51と接触していない。誘電体層60と密着層70とはパッド電極52が接しているが、パッド電極52の材料は、水素との反応性が極めて低いAuで構成されている。この構成により、誘電体層60中の水素がp側電極51まで拡散されなかったために、動作電圧が上昇しなかったと考えられる。
 図5Dに、拡散方程式を用いて計算した水素濃度の経時的変化の計算結果を示す。なお、図5Dに示す実験結果は、図5Aに示す比較例のレーザ構造1000Xおよび図5Bに示す実施の形態のレーザ構造1Xをそれぞれ用い、SiO中の水素が、密着層70とパッド電極52とを介してp側電極51まで拡散するというモデルで計算した。また、原点の水素濃度を1E+21cm-3で固定し、4万時間後の水素濃度を、原点からの距離に対して計算した。つまり、図5Dに示すグラフにおいて、横軸は原点からの水素の拡散距離(単位:μm)を示し、縦軸は水素濃度(単位:cm-3)を示す。計算に用いたパラメータは、図5Cの実験結果から抽出し、比較例のレーザ構造1000Xでは、拡散係数を1E-11m/sec、実施の形態のレーザ構造1Xでは、1E-18m/secとして計算した。
 図5Dに示す実験結果から、拡散係数が小さいほど、拡散距離が短くなることがわかる。
 従来、水素濃度が1E+17cm-3以上になると、窒化物半導体レーザ素子1の動作電圧は増加が見られることが知られている。実施の形態のレーザ構造1Xの場合、水素濃度が1E+17cm-3となる距離が0.6μmであることから、密着層70をp側電極51から0.6μm以上離しておけば、窒化物半導体レーザ素子1の動作電圧の増加を抑制できる。
 また、誘電体層60を構成するSiOに水素が含まれる要因について検討した結果、SiOを成膜する際の原料(シラン(SiH))の水素がSiO膜に残留したり、フォトリソグラフィー又はエッチングなどの製造時の水洗浄によってSiO膜に水素が残留したりすることで、誘電体層60に水素が含まれることが分かった。
 本開示の技術は、このような知見に基づいてなされたものであり、誘電体層60に含まれる水素が電極部材50に拡散しないようにすることで、誘電体層60としてSiOを用いた場合であっても、動作電圧の上昇を抑制するものである。
 具体的には、図1Aおよび図1Bに示すように、実施の形態に係る窒化物半導体レーザ素子1では、Tiからなる密着層70はp側電極51とは接触していない。
 これにより、誘電体層60から密着層70を介したp側電極51への水素の伝達経路が遮断されるので、誘電体層60中に含まれる水素がp側電極51に拡散することを抑制することができる。この結果、水素に起因して動作電圧が上昇することを抑制することができる。
 なお、本実施の形態では、誘電体層60から電極部材50への水素拡散の抑制効果を最大化するために、密着層70とp側電極51とが完全に非接触となるようにしているが、製造ばらつきなどによって密着層70とp側電極51とが一部接触していたとしても、その接触面積が十分に小さければ、動作電圧への影響は僅かであり、動作電圧の上昇を抑制することができる。
 [まとめ]
 以上、本実施の形態に係る窒化物半導体レーザ素子1は、第1の窒化物半導体層20と、第1の窒化物半導体層20の上に形成された窒化物半導体からなる発光層30と、発光層30の上に形成され、リッジ部40aを有する第2の窒化物半導体層40と、リッジ部40aの上に形成されたp側電極(オーミック電極)51と、p側電極51の上に形成され、リッジ部40aよりも幅広であるパッド電極52とを備える。第2の窒化物半導体層40は、リッジ部40aの側方に平坦部40bを有する。リッジ部40aの側面および平坦部40bの上には、SiOからなる誘電体層60が形成されている。平坦部40bの上の誘電体層60の上には、密着層70が形成されている。密着層70は、リッジ部40aの側面の上の誘電体層60から離れ、且つ、パッド電極52と接触し、p側電極51とは非接触である。
 この構成により、密着層70とp側電極51との間に形成されたパッド電極52によって密着層70とp側電極51とが非接触となっている。これにより、誘電体層60中に含まれる水素がp側電極51に拡散することを抑制することができる。したがって、水素に起因して動作電圧が上昇してしまうことを抑制できる。
 また、この構成により、窒化物半導体レーザ素子1の駆動電流は、オーミック電極であるp側電極51を通してリッジ部40aに流れる。また、パッド電極52が平坦部40bにまで幅広く形成されるので、ワイヤボンディングなどによる電気的接続が容易となる。
 また、本実施の形態に係る窒化物半導体レーザ素子1において、密着層70とp側電極51との距離d1、d2は、0.6μm以上、3.0μm以下であるとよい。
 この構成により、パッド電極52と誘電体層60との密着性を確保でき、且つ、窒化物半導体レーザ素子1における水素に起因して動作電圧が上昇してしまうことを、より抑制できる。
 また、本実施の形態に係る窒化物半導体レーザ素子1において、第2の窒化物半導体層40は、リッジ部40aの最上層として形成されたp側コンタクト層43を有してもよい。また、p側電極51(オーミック電極)は、リッジ部40aの上面であるp側コンタクト層43の上面と接触している。
 この構成により、p側電極51(オーミック電極)とリッジ部40aとは、良好なオーミック接触の状態になるため、リッジ部40aには良好に電流が供給される。
 また、本実施の形態に係る窒化物半導体レーザ素子1において、リッジ部40aの幅は、10μm以上50μm以下であるとよい。
 この構成により、高い光出力で動作させることができる窒化物半導体レーザ素子1を実現することができる。
 また、本実施の形態に係る窒化物半導体レーザ素子1において、密着層70は、Ti、Niの少なくとも1つを有する層を含むものが適している。
 この構成により、窒化物半導体レーザ素子1の駆動時に発生する熱を例えば窒化物半導体レーザ素子1が実装されるサブマウント100に逃がすことができるので、窒化物半導体レーザ素子1を高い光出力で動作させることができる。
 また、本実施の形態に係る窒化物半導体レーザ素子1において、パッド電極52は、Auからなる層を含むものが適している。
 このように、高い熱伝導性を有する材料を選択することにより、窒化物半導体レーザ素子1の駆動時に発生する熱を、例えば窒化物半導体レーザ素子1が実装されるサブマウント100に効率よく逃がすことができるので、窒化物半導体レーザ素子1を高い光出力で動作させることができる。
 また、本開示に係る窒化物半導体レーザ装置200は、窒化物半導体レーザ素子1と、窒化物半導体レーザ素子1を保持するサブマウント100とを備える。
 この構成により、窒化物半導体レーザ素子1の駆動時に発生する熱を、窒化物半導体レーザ素子1が実装されるサブマウント100に逃がすことができるので、窒化物半導体レーザ素子1を高い光出力で動作させることができる。
 また、本開示に係る窒化物半導体レーザ装置200において、窒化物半導体レーザ素子1は、第1の窒化物半導体層20側がサブマウント100に接合され、パッド電極52にワイヤ110が接続されてもよい。
 この構成により、窒化物半導体レーザ装置200は、例えば外部電源とワイヤボンディングにより簡単に電気接続が可能となる。
 また、本開示に係る窒化物半導体レーザ装置200aにおいて、窒化物半導体レーザ素子1は、パッド電極52側がサブマウント100に接合されてもよい。この場合に、パッド電極52とサブマウント100との間には、半田層103aが介在してもよい。
 この構成により、窒化物半導体レーザ素子1の発光層30の近くにサブマウント100が位置するため、発光層30からの熱がサブマウント100から効率よく放熱される。そのために、窒化物半導体レーザ装置200aの放熱特性は、向上される。
 また、本開示に係る窒化物半導体レーザ装置200において、パッド電極52は、少なくとも半田層103aと接触するAuからなる層を含んでもよい。この場合に、半田層103aは、Snを含んでもよい。
 この構成により、窒化物半導体レーザ装置200とサブマウント100との接合が、An-Sn共晶構造となる。そのため、窒化物半導体レーザ素子1とサブマウント100とは剥がれにくくなる。
 (変形例)
 以上、本開示に係る窒化物半導体レーザ素子および窒化物半導体レーザ装置について、実施の形態に基づいて説明したが、本開示は、上記実施の形態に限定されるものではない。
 例えば、上記実施の形態に対して当業者が思い付く各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で各実施の形態における構成要素および機能を任意に組み合わせることで実現される形態も本開示に含まれる。
 本開示に係る窒化物半導体レーザ素子および窒化物半導体レーザ装置は、画像表示装置、照明又は産業機器などの光源として利用することができ、特に、比較的に高い光出力を必要とする機器の光源として有用である。
 1 窒化物半導体レーザ素子
 10 基板
 20 第1の窒化物半導体層
 30 発光層
 31 n側光ガイド層
 32 活性層
 33 p側光ガイド層
 40 第2の窒化物半導体層
 40a リッジ部
 40b 平坦部
 41 電子障壁層
 42 p側クラッド層
 43 p側コンタクト層
 50 電極部材
 51 p側電極(オーミック電極)
 52 パッド電極
 60 誘電体層
 70 密着層
 80 n側電極
 91 保護膜
 100 サブマウント
 101 基台
 102a 第1電極
 102b 第2電極
 103a 第1半田層(半田層)
 103b 第2半田層
 110 ワイヤ
 200、200a 窒化物半導体レーザ装置
 d1、d2 距離

Claims (10)

  1.  第1の窒化物半導体層と、
     前記第1の窒化物半導体層の上に形成された窒化物半導体からなる発光層と、
     前記発光層の上に形成され、リッジ部を有する第2の窒化物半導体層と、
     前記リッジ部の上に形成されたオーミック電極と、
     前記オーミック電極の上に形成され、前記リッジ部よりも幅広であるパッド電極とを備え、
     前記第2の窒化物半導体層は、前記リッジ部の側方に平坦部を有し、
     前記リッジ部の側面及び前記平坦部の上には、SiOからなる誘電体層が形成され、
     前記平坦部上の前記誘電体層の上には、密着層が形成され、
     前記密着層は、前記リッジ部の側面上の前記誘電体層から離れ、且つ、前記パッド電極と接触し、前記オーミック電極とは非接触である
     窒化物半導体レーザ素子。
  2.  前記密着層と前記オーミック電極との距離は、0.6μm以上、3.0μm以下である
     請求項1記載の窒化物半導体レーザ素子。
  3.  前記パッド電極は、前記誘電体層と接触している
     請求項1または2記載の窒化物半導体レーザ素子。
  4.  前記リッジ部の幅は、10μm以上50μm以下である
     請求項1~3のいずれか1項に記載の窒化物半導体レーザ素子。
  5.  前記密着層は、Ti、Niの少なくとも1つを有する層を含む
     請求項1~4のいずれか1項に記載の窒化物半導体レーザ素子。
  6.  前記パッド電極は、Auからなる層を含む
     請求項1~5のいずれか1項に記載の窒化物半導体レーザ素子。
  7.  請求項1~6のいずれか1項に記載の窒化物半導体レーザ素子と、
     前記窒化物半導体レーザ素子を保持するサブマウントとを備える
     窒化物半導体レーザ装置。
  8.  前記窒化物半導体レーザ素子は、前記第1の窒化物半導体層側が前記サブマウントに接合され、
     前記パッド電極にワイヤが接続されている
     請求項7記載の窒化物半導体レーザ装置。
  9.  前記窒化物半導体レーザ素子は、前記パッド電極側が前記サブマウントに接合され、
     前記パッド電極と前記サブマウントとの間には、半田層が介在している
     請求項7記載の窒化物半導体レーザ装置。
  10.  前記パッド電極は、少なくとも前記半田層と接触するAuからなる層を含み、
     前記半田層は、Snを含む
     請求項9記載の窒化物半導体レーザ装置。
PCT/JP2018/010129 2017-03-28 2018-03-15 窒化物半導体レーザ素子および窒化物半導体レーザ装置 WO2018180524A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019509239A JPWO2018180524A1 (ja) 2017-03-28 2018-03-15 窒化物半導体レーザ素子および窒化物半導体レーザ装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-064018 2017-03-28
JP2017064018 2017-03-28

Publications (1)

Publication Number Publication Date
WO2018180524A1 true WO2018180524A1 (ja) 2018-10-04

Family

ID=63677264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010129 WO2018180524A1 (ja) 2017-03-28 2018-03-15 窒化物半導体レーザ素子および窒化物半導体レーザ装置

Country Status (2)

Country Link
JP (1) JPWO2018180524A1 (ja)
WO (1) WO2018180524A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190245322A1 (en) * 2016-07-14 2019-08-08 Panasonic Corporation Nitride semiconductor laser and nitride semiconductor laser device
WO2020110783A1 (ja) * 2018-11-30 2020-06-04 パナソニックセミコンダクターソリューションズ株式会社 半導体レーザ装置
WO2021124733A1 (ja) * 2019-12-17 2021-06-24 パナソニック株式会社 半導体レーザ素子
WO2022049996A1 (ja) * 2020-09-07 2022-03-10 ソニーグループ株式会社 半導体レーザおよび半導体レーザ装置
US12142895B2 (en) 2018-11-30 2024-11-12 Nuvoton Technology Corporation Japan Semiconductor laser device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005109291A (ja) * 2003-10-01 2005-04-21 Nichia Chem Ind Ltd 半導体レーザ素子
JP2007311591A (ja) * 2006-05-19 2007-11-29 Matsushita Electric Ind Co Ltd 窒化物半導体レーザ装置及びその製造方法
JP2009004645A (ja) * 2007-06-22 2009-01-08 Sharp Corp 窒化物系半導体レーザ装置およびその製造方法
JP2009129943A (ja) * 2007-11-20 2009-06-11 Mitsubishi Electric Corp 窒化物半導体装置とその製造方法
JP2011049364A (ja) * 2009-08-27 2011-03-10 Sanyo Electric Co Ltd 半導体レーザ素子およびその製造方法
JP2011165869A (ja) * 2010-02-09 2011-08-25 Mitsubishi Electric Corp 半導体発光素子及びその製造方法
JP2011199006A (ja) * 2010-03-19 2011-10-06 Sharp Corp 窒化物半導体レーザ素子
WO2012101686A1 (ja) * 2011-01-26 2012-08-02 パナソニック株式会社 半導体発光素子及び発光装置
JP2013062315A (ja) * 2011-09-12 2013-04-04 Sumitomo Electric Ind Ltd Iii族窒化物半導体レーザ、レーザ装置、及びiii族窒化物半導体レーザを製造する方法
WO2015154975A2 (de) * 2014-04-11 2015-10-15 Osram Opto Semiconductors Gmbh Halbleiter-streifenlaser und halbleiterbauteil

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370474A (ja) * 1986-09-12 1988-03-30 Toshiba Corp 半導体レ−ザ素子の製造方法
JP4622225B2 (ja) * 2003-10-06 2011-02-02 ソニー株式会社 半導体レーザ素子及びその製造方法
JP2007184644A (ja) * 2007-04-02 2007-07-19 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005109291A (ja) * 2003-10-01 2005-04-21 Nichia Chem Ind Ltd 半導体レーザ素子
JP2007311591A (ja) * 2006-05-19 2007-11-29 Matsushita Electric Ind Co Ltd 窒化物半導体レーザ装置及びその製造方法
JP2009004645A (ja) * 2007-06-22 2009-01-08 Sharp Corp 窒化物系半導体レーザ装置およびその製造方法
JP2009129943A (ja) * 2007-11-20 2009-06-11 Mitsubishi Electric Corp 窒化物半導体装置とその製造方法
JP2011049364A (ja) * 2009-08-27 2011-03-10 Sanyo Electric Co Ltd 半導体レーザ素子およびその製造方法
JP2011165869A (ja) * 2010-02-09 2011-08-25 Mitsubishi Electric Corp 半導体発光素子及びその製造方法
JP2011199006A (ja) * 2010-03-19 2011-10-06 Sharp Corp 窒化物半導体レーザ素子
WO2012101686A1 (ja) * 2011-01-26 2012-08-02 パナソニック株式会社 半導体発光素子及び発光装置
JP2013062315A (ja) * 2011-09-12 2013-04-04 Sumitomo Electric Ind Ltd Iii族窒化物半導体レーザ、レーザ装置、及びiii族窒化物半導体レーザを製造する方法
WO2015154975A2 (de) * 2014-04-11 2015-10-15 Osram Opto Semiconductors Gmbh Halbleiter-streifenlaser und halbleiterbauteil

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190245322A1 (en) * 2016-07-14 2019-08-08 Panasonic Corporation Nitride semiconductor laser and nitride semiconductor laser device
US10892597B2 (en) * 2016-07-14 2021-01-12 Panasonic Corporation Nitride semiconductor laser and nitride semiconductor laser device
WO2020110783A1 (ja) * 2018-11-30 2020-06-04 パナソニックセミコンダクターソリューションズ株式会社 半導体レーザ装置
JPWO2020110783A1 (ja) * 2018-11-30 2021-10-28 ヌヴォトンテクノロジージャパン株式会社 半導体レーザ装置
JP7332623B2 (ja) 2018-11-30 2023-08-23 ヌヴォトンテクノロジージャパン株式会社 半導体レーザ装置
US12142895B2 (en) 2018-11-30 2024-11-12 Nuvoton Technology Corporation Japan Semiconductor laser device
WO2021124733A1 (ja) * 2019-12-17 2021-06-24 パナソニック株式会社 半導体レーザ素子
WO2022049996A1 (ja) * 2020-09-07 2022-03-10 ソニーグループ株式会社 半導体レーザおよび半導体レーザ装置

Also Published As

Publication number Publication date
JPWO2018180524A1 (ja) 2020-02-06

Similar Documents

Publication Publication Date Title
JP5304662B2 (ja) 発光素子
JP5988568B2 (ja) 半導体発光素子およびその製造方法
WO2018180524A1 (ja) 窒化物半導体レーザ素子および窒化物半導体レーザ装置
US9515455B2 (en) Method of manufacturing light emitting element
JP5829453B2 (ja) 半導体発光素子
US9214595B2 (en) Semiconductor light emitting device
US20130153951A1 (en) Semiconductor light-emitting device
JPWO2020026730A1 (ja) 半導体発光装置及び外部共振型レーザ装置
JP2021019033A (ja) 半導体レーザ素子
WO2020196735A1 (ja) 赤外led素子
JP2012511249A (ja) 半導体発光素子
JP7232239B2 (ja) 半導体発光装置
JP5298927B2 (ja) 発光素子
JP6934868B2 (ja) 窒化物半導体レーザ及び窒化物半導体レーザ装置
JP6153351B2 (ja) 半導体発光装置
JP2020167223A (ja) 赤外led素子
JP2012138452A (ja) 窒化物半導体発光素子の製造方法および窒化物半導体発光素子
JP2018137327A (ja) 窒化物半導体レーザ
JP2009188273A (ja) ジャンクションダウン型の光半導体素子及び光半導体装置
JP2012175052A (ja) 半導体発光装置の製造方法
WO2020195282A1 (ja) 半導体レーザ素子
WO2023223676A1 (ja) 半導体レーザ素子
US20230223740A1 (en) Semiconductor laser element
JP2021005591A (ja) 半導体発光素子及び半導体発光装置
JP7541591B2 (ja) 半導体発光素子及び半導体発光素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774956

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509239

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18774956

Country of ref document: EP

Kind code of ref document: A1