Nothing Special   »   [go: up one dir, main page]

WO2018163912A1 - 内燃機関の吸気構造 - Google Patents

内燃機関の吸気構造 Download PDF

Info

Publication number
WO2018163912A1
WO2018163912A1 PCT/JP2018/007227 JP2018007227W WO2018163912A1 WO 2018163912 A1 WO2018163912 A1 WO 2018163912A1 JP 2018007227 W JP2018007227 W JP 2018007227W WO 2018163912 A1 WO2018163912 A1 WO 2018163912A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
valve
intake
tumble
idle air
Prior art date
Application number
PCT/JP2018/007227
Other languages
English (en)
French (fr)
Inventor
中村 洋平
卓祥 庄村
正樹 長
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2019504495A priority Critical patent/JP6714764B2/ja
Priority to BR112019017635-7A priority patent/BR112019017635B1/pt
Priority to EP18763803.6A priority patent/EP3594471B1/en
Publication of WO2018163912A1 publication Critical patent/WO2018163912A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • F02B31/06Movable means, e.g. butterfly valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
    • F02D9/1035Details of the valve housing
    • F02D9/1055Details of the valve housing having a fluid by-pass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10078Connections of intake systems to the engine
    • F02M35/10085Connections of intake systems to the engine having a connecting piece, e.g. a flange, between the engine and the air intake being foreseen with a throttle valve, fuel injector, mixture ducts or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10255Arrangements of valves; Multi-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10262Flow guides, obstructions, deflectors or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/108Intake manifolds with primary and secondary intake passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/30Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for facilitating the starting-up or idling of engines or by means for enriching fuel charge, e.g. below operational temperatures or upon high power demand of engines
    • F02M69/32Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for facilitating the starting-up or idling of engines or by means for enriching fuel charge, e.g. below operational temperatures or upon high power demand of engines with an air by-pass around the air throttle valve or with an auxiliary air passage, e.g. with a variably controlled valve therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an intake structure of an internal combustion engine provided with an idle air passage, a throttle valve and a tumble valve.
  • Patent Document 1 shows an intake structure of an internal combustion engine that generates tumble flow by suppressing and controlling the intake amount to the main passage with a tumble valve as a sub-passage for generating H.
  • the lower side of the intake passage of the throttle body is formed as the main passage, and the upper side is formed as the auxiliary passage for generating tumble flow, and the idle air passage is arranged above the auxiliary passage, and the throttle valve is fully closed idle operation
  • idle air controlled by an IACV (idle air control valve) inserted in the idle air passage flows into the sub passage from the idle air passage and is supplied to the combustion chamber, for example, Patent Document 2 below.
  • IACV inner air control valve
  • the fuel injection valve is usually provided above the intake passage.
  • the upper side is a main passage with a large flow passage cross section so that the distance between the fuel injection valve and the partition plate can be taken
  • the lower side is a secondary passage for generating tumble flow. Is preferred.
  • the idle air passage is arranged on the lower side of the auxiliary passage.
  • Japanese Patent No. 5925878 (FIGS. 2 and 6 to 8) Japanese Patent Application Laid-Open No. 2002-221036 (FIGS. 2 to 4)
  • the present invention has been made in view of the above-mentioned prior art, and has a throttle valve and a tumble valve on the downstream side thereof.
  • the upper side of the intake passage on the downstream side of the tumble valve is a main flow path and the lower side is a tumble flow path. It is an object of the present invention to provide an intake structure of an internal combustion engine in which tumble flow can be easily enhanced even at idle operation or the like.
  • an internal combustion engine having a combustion chamber includes a cylinder block and a cylinder head, the cylinder head is provided with an intake port and an exhaust port, and an inlet pipe is connected to the intake port.
  • a throttle body having an intake passage continuing to the intake passage is connected to the intake flow upstream side of the inlet pipe, and a throttle valve and an intake passage of the intake passage are connected.
  • a tumble valve is provided on the downstream side in the flow direction, and the intake passage is a downstream side of the tumble valve, and the tumble flow for generating the tumble flow in the combustion chamber and the upper main passage by the partition plate portion
  • An idle air passage communicating the upstream side and the downstream side of the throttle valve is provided on the upper side of the intake passage, the idle air passage has a downstream side outlet, and the downstream side outlet is at the upper inner surface of the intake passage. It is provided between the throttle valve and the tumble valve, has a tumble valve plate and a notch thereof, and idle air flowing out through the idle air passage when the throttle valve is fully closed is controlled by the tumble valve plate.
  • the intake structure of an internal combustion engine is characterized in that the flow into the upper main passage is suppressed, and it is guided from the notch to the lower sub passage.
  • the downstream passage connected to the downstream outlet of the idle air passage may be formed to be parallel to the tumble valve plate of the tumble valve at the time of valve closing in a vertical horizontal direction with respect to the flow direction of the intake passage.
  • the downstream passage in the vicinity of the downstream outlet of the idle air passage is formed parallel to the tumble valve plate of the tumble valve at the time of valve closing in vertical horizontal direction with respect to the flow direction of the intake passage.
  • the intake passage downstream of the throttle valve may be formed with an inner surface tapered portion that increases in diameter toward the downstream side, and the downstream outlet of the idle air passage may be provided in the inner surface tapered portion.
  • the downstream side passage of the idle air passage is vertically horizontal to the flow direction of the intake passage by providing the downstream side outlet of the idle air passage at the inner surface tapered portion of the intake passage which expands toward the downstream side. It becomes easy to form in parallel with the tumble valve plate of the tumble valve at the time of valve closing in direction view.
  • the downstream outlet of the idle air passage may be provided at a position closer to a throttle valve shaft of the throttle valve than a tumble valve shaft of the tumble valve. According to the configuration, the downstream outlet of the idle air passage. By being provided at a position closer to the throttle valve shaft than the tumble valve shaft, the distance between the downstream outlet of the idle air passage and the notch of the lower plate portion of the tumble valve can be further increased, and the idle flowing out of the idle air passage The air can be easily introduced into the lower auxiliary passage from the notch of the lower plate portion of the tumble valve.
  • the intake structure of the internal combustion engine of the present invention during idle operation, idle air flowing into the intake passage from the idle air passage provided on the upper side of the intake passage of the throttle body flows into the intake passage by the tumble valve plate of the tumble valve. It is suppressed from flowing into the upper main passage, and it is guided and collected from the notch part of the tumble valve plate to the lower side passage which becomes the tumble flow passage, and the tumble flow can be easily generated and reinforced. Since the air passage is provided on the upper side of the intake passage, it is possible to make it difficult for the fuel gas to be accumulated in the idle air passage and to provide the idle air passage on the intake passage. Further, when the intake valve of the combustion chamber is closed, the fuel and the intake air are agitated in the intake port, and the mixture can be homogenized.
  • FIG. 1 is a right side view of a motorcycle equipped with a power unit provided with an intake structure for an internal combustion engine according to Embodiment 1 of the present invention. It is a rear right side of the two-wheeled motor vehicle of FIG. 1 which removed the vehicle body cover.
  • FIG. 3 is a side cross-sectional view of the power unit in the same orientation as shown in FIG. 2; It is a principal part enlarged view of FIG. It is a right view of the throttle body which takes out only the throttle body of FIG. It is a front view of the tumble valve by the b arrow of FIG. It is a right view which makes a partial cross section a vehicle-mounted power unit provided with the intake structure of the internal combustion engine which concerns on Embodiment 2 of this invention.
  • FIGS. 1 to 6 A first embodiment of an intake structure of an internal combustion engine of the present invention will be described based on FIGS. 1 to 6.
  • the directions such as front, rear, left, right, upper, lower, etc. follow the direction of the vehicle in a state where the power unit provided with the intake structure of the internal combustion engine according to the present embodiment is mounted on the vehicle.
  • the vehicle is a small vehicle, and more specifically, a motorcycle.
  • the intake passage 70 and the intake passage 80 of the throttle body 7 shown in FIGS. 3 and 4 the upper main passage 80A side divided by the partition plate portion 81 is the “upper” side, and the lower side auxiliary passage 80B is Describe as the "lower" side.
  • an arrow FR indicates the front of the vehicle
  • LH indicates the left of the vehicle
  • RH indicates the right of the vehicle
  • UP indicates the upper side of the vehicle.
  • FIG. 1 shows the right side surface of a motorcycle 1 equipped with a power unit 3 having an intake structure for an internal combustion engine according to a first embodiment of the present invention.
  • the motorcycle 1 of the present embodiment is a so-called scooter type motorcycle, in which a vehicle body front portion 1A and a vehicle body rear portion 1B are connected via a low floor portion 1C, and a vehicle body frame 2 forming a framework of the vehicle body is It generally comprises a down tube 21 and a main pipe 22 (see FIG. 2). That is, the down tube 21 extends downward from the head pipe 20 of the vehicle front portion 1A, and the down tube 21 bends horizontally at the lower end and extends rearward below the floor portion 1C, as shown in FIG.
  • a pair of left and right main pipes 22 are connected via a connecting frame 23 disposed in the vehicle width direction, and the main pipe 22 stands diagonally rearward from the connecting frame 23 to form an inclined portion 22a, and the middle pipe is inclined It bends so as to loosen and extends backward.
  • the storage box 11 and the fuel tank 12 are supported above the inclined portion 22 a of the main pipe 22, and the storage box 11 and the fuel tank 12 are closed by a passenger seat 13 attached above the storage box 11,
  • the lower part of the passenger seat 12 including the fuel tank 12 is covered with a vehicle body cover 10.
  • a handle 14 is provided on the upper side so as to be pivotally supported by the head pipe 20, a front fork 15 extends downward, and a front wheel 16 is pivotally supported at its lower end.
  • the power unit 3 has an air-cooled internal combustion engine (hereinafter simply referred to as "internal combustion engine”) 30 having a single-cylinder four-stroke cycle at its front portion, and has a crank shaft at the front of the power unit case 50 constituting the crankcase portion 50a.
  • internal combustion engine air-cooled internal combustion engine
  • the cylinder axis C is inclined substantially forward to a substantially horizontal state, and the end of the hanger arm 52 projecting forward from the lower end of the power unit case 50
  • the parts are vertically and rotatably connected via a link member 25 attached to the bracket 24 of the main pipe 22.
  • the cylinder block 31, the cylinder head 32 and the cylinder head cover 33 constituting the internal combustion engine 30 are sequentially stacked in a forward direction substantially horizontally substantially forward to the front of the power unit case 50 constituting the crankcase portion 50 a.
  • a power transmission case 55 provided with a belt type continuously variable transmission etc. extends integrally from the crankcase 50a to the left rear, and a rear axle 56 which is an output shaft of the power unit 3 is provided at the rear.
  • the rear wheel 17 is attached. That is, the power unit 3 is a so-called swing unit, and a rear cushion (not shown) is interposed between the power transmission case 55 at the rear of the power unit 3 and the rear of the main pipe 22.
  • the inlet pipe 6 extends from the upper part of the largely forward-tilted cylinder head 32 of the internal combustion engine 30 and curves backward, and the throttle body 7 connected to the inlet pipe 6 Is disposed above the cylinder block 31 and an air cleaner 86 connected to the throttle body 7 via a connecting tube 85 is disposed above the power transmission case 55.
  • an exhaust pipe 38 extending downward from the lower portion of the cylinder head 32 is bent backward, biased to the right and extends rearward, and is connected to the right muffler 39 of the rear wheel 16.
  • FIG. 3 is a side cross-sectional view of the power unit 3 with the power unit 3 of FIG. 2 taken out and shown in substantially the same orientation as shown in FIG.
  • the internal combustion engine 30 in the power unit 3 has a cross section of the left half face of the cylinder block 31, the cylinder head 32, and the cylinder head cover 33, and the power unit case 50 has a left case half 50L that is a mating surface with a right case half not shown. It is shown with 50b directed to the front of the figure.
  • the power unit case 50 is configured by combining left and right split left case half 50L and a not-shown right case half, and the right case half forms the right half of the crankcase portion 50a, and the left case is a left case.
  • the front half of the half 50L forms the left half of the crankcase portion 50a and extends rearward, and a long belt (not shown) is provided on the front and rear between the crankshaft 51 and the rear axle 56 of the rear wheel 17
  • a power transmission case portion 55 is formed which accommodates a transmission including a continuously variable transmission, a reduction gear mechanism 57 and the like.
  • the reduction gear mechanism 57 is housed inside the right open surface 55R at the rear of the power transmission case 55, and is covered by a reduction gear case (not shown).
  • the output shaft of the reduction gear mechanism 57 is the rear axle 56 of the rear wheel 17.
  • the rotational power of the crankshaft 51 of the crankcase 50 a of the internal combustion engine 30 is transmitted to the rear wheel 17 via the belt type continuously variable transmission in the power transmission case 55 and the reduction gear mechanism 57. .
  • a piston 34 reciprocating in the cylinder bore 31 a of the cylinder block 31 is connected to a crank pin 51 a of a crankshaft 51 of the crank case 50 a by a connecting rod 35.
  • a combustion chamber 36 is formed between the top surface 34a of the piston 34 slidably fitted in the cylinder bore 31a of the cylinder block 31 and the combustion chamber ceiling surface 32a of the cylinder head 32 opposed to the top surface 34a.
  • the internal combustion engine 30 adopts a SOHC type two-valve system
  • the cylinder head 32 is provided with a valve operating mechanism 9.
  • a cylinder head cover 33 is overlaid on the cylinder head 32 so as to cover the valve operating mechanism 9.
  • an endless cam chain (not shown) is provided on one side of the crankcase 50a, the cylinder block 31, and the cylinder head 32 in the direction of the crankshaft 51.
  • the cam shaft 91 is bridged between the cam shaft 91 and the crank shaft 51 through the cam chain chamber, and the cam shaft 91 rotates in synchronization with the crank shaft 51 at a half rotation speed.
  • An ignition plug (not shown) is inserted into the combustion chamber 36 from the opposite side of the cylinder head 32 to the cam chain chamber (the other side in the direction of the crankshaft 51).
  • FIG. 3 and FIG. 4 which is an enlarged view of the main part of FIG. 3, the intake valve port 40 opened in the combustion chamber ceiling surface 32a in the cylinder head 32 in which the cylinder axis C is substantially horizontally inclined and largely inclined forward.
  • the intake port 42 and the exhaust port 43 extend from the exhaust valve port 41 while curving in directions away from each other.
  • the upstream end of the intake port 42 opens upward of the cylinder head 32 and is connected to the inlet pipe 6 to form a continuous intake passage 80, and the throttle body 7 is connected to the upstream side of the inlet pipe 6 Ru.
  • the downstream end of the exhaust port 43 opens downward of the cylinder head 32 and is connected to the exhaust pipe 38 (see FIG. 2).
  • a cylindrical intake valve guide 44 is integrally fitted to the curved outer wall portion 42 a of the intake port 42 in the cylinder head 32, and the intake valve 46 slidably supported by the intake valve guide 44 is a combustion chamber of the intake port 42.
  • the intake valve port 40 facing 36 is opened and closed.
  • an exhaust valve port facing the combustion chamber 36 of the exhaust port 43 is an exhaust valve 47 slidably supported by the exhaust valve guide 45 integrally fitted to the curved outer wall portion 43 a of the exhaust port 43 in the cylinder head 32. 41 open and close.
  • the intake valve 46 and the exhaust valve 47 are biased upward by the valve spring 48 so that the umbrella portions 46a and 47a both close the intake valve port 40 and the exhaust valve port 41 facing the combustion chamber 36, As shown in FIG. 3, the stem ends 46b and 47b of the intake valve 46 and the exhaust valve 47 are pushed down by the intake rocker arm 94 and the exhaust rocker arm 95 swinging in contact with the intake cam 92 and the exhaust cam 93 of the camshaft 91.
  • the intake valve 46 and the exhaust valve 47 are opened at a predetermined timing, and the intake port 42 and the combustion chamber 36, and the exhaust port 43 and the combustion chamber 36 communicate with each other, and intake and exhaust at a predetermined timing are performed.
  • a tumble flow T of a fuel-air mixture in the combustion chamber 36 that is, an intake structure for giving longitudinal rotation is configured.
  • An inlet pipe 6 is connected to an upstream end of an intake port 42 of the internal combustion engine 30 via an inlet 61 to form a continuous intake passage 80, and a throttle body 7 is disposed on the upstream side of the inlet pipe 6.
  • the throttle body 7 has an intake passage 70 continuing to an intake passage 80 communicating with the combustion chamber 36 of the internal combustion engine 30, and its upstream side is connected to an air cleaner device 86 (see FIG. 2) via a connecting tube 85. ing.
  • the throttle body 7 is rotatably supported in the throttle body 7 by a throttle valve shaft 71a that is oriented substantially horizontally and perpendicular to the flow direction F of the intake path 70, and variably controls the passage area of the intake path 70.
  • a throttle valve 71 capable of opening and closing the passage 70 is provided.
  • the tumble valve shaft 72a is oriented substantially horizontally perpendicular to the flow direction F of the intake passage 70 and parallel to the throttle valve shaft 71a.
  • a tumble valve 72 rotatably supported.
  • the throttle valve 71 provided on the upstream side of the intake passage 70 of the throttle body 7 is a butterfly type, and is a disc-like throttle valve bolted and fixed so as to rotate together with the throttle valve shaft 71a and the throttle valve shaft 71a. And a plate 71b.
  • the throttle valve 71 is rotatable counterclockwise in FIGS. 3 and 4 in the valve opening direction, and a fully closed position where the throttle valve plate 71b contacts the inner surface 70a of the intake passage 70 by a return spring (not shown). The valve is urged clockwise in the valve closing direction so as to be located at.
  • the tumble valve 72 provided in the intake passage 70 downstream of the throttle valve 71 in the flow direction F of the intake passage 70 is a butterfly type, and the tumble valve shaft 72a and the tumble valve It has a half-plate-like upper plate portion 72ba and a tumble valve plate 72b consisting of a lower plate portion 72bb extending downward, and is bolted and fixed so as to rotate together with the valve shaft 72a, and the lower plate portion 72bb
  • the notch part 72c is formed in.
  • the tumble valve 72 is rotatable in the valve opening direction counterclockwise in FIGS. 3 and 4, and the upper plate portion 72 ba of the tumble valve plate 72 b is an inner surface 70 a of the intake passage 70 by a return spring (not shown).
  • the valve is urged clockwise in the valve closing direction so as to be located at the tumble valve closing position in contact with the valve.
  • the notch 72c of the lower plate 72bb of the tumble valve plate 72b forms a tumble valve closing opening 70b (see FIG. 4) in the intake passage 70.
  • the diameter of the intake passage 70 at the position where the tumble valve 72 is provided is enlarged through the inner surface slope portion 70c with respect to the diameter of the intake passage 70 at the position where the throttle valve 71 is provided. And ease of casting at the time of casting the throttle body 7.
  • the intake passage 80 is divided into upper and lower portions by the partition plate portion 81 continuously from the inlet pipe 6 to the intake port 42, and the lower sub passage 80B and the lower sub passage 80B are tumbled. It is divided into upper main passage 80A except for.
  • an inlet pipe side partition plate portion 81A, an insulator side partition plate portion 81B, and an intake port side partition plate portion 81C are continuously positioned.
  • the upper main passage 80A and the lower auxiliary passage 80B each have an approximately horizontal cross section by vertically dividing the intake passage 80 on the downstream side of the tumble valve 72 by a partition plate portion 81 extending longitudinally through the inlet pipe 6 and the intake port 42. It is defined in a semicircular shape.
  • the inlet opening 80Ba of the lower auxiliary passage 80B of the intake passage 80 of the inlet pipe 6 connected to the downstream side of the intake passage 70 of the throttle body 7 is the tumble valve in a state where the tumble valve 72 is in the closed position.
  • the opening 72A is located downstream of the notch 72c of the air intake passage 70, that is, the downstream side of the tumble valve closing opening 70b of the intake passage 70, and the inlet opening 80Aa of the upper main passage 80A is a tumble valve plate 72b of the intake passage 70. It is located on the downstream side of the upper plate portion 72ba and is opened.
  • a fuel injection valve 87 disposed so as to inject and supply fuel toward the intake valve port 40 is attached to the inlet pipe 6 so as to penetrate the upper main passage 80A from above and outside.
  • the downstream end 81 b of the partition plate portion 81 that is, the downstream end 81 b located in the intake port 42 of the cylinder head 32 faces the cylinder block 31 in the cylinder head 32.
  • the end 80Bb of the lower auxiliary passage 80B is formed to be directed to the combustion chamber ceiling surface 32a of the cylinder head 32. Therefore, the intake air flowing through the lower auxiliary passage 80B can flow into the cylinder bore 31a after passing over the umbrella portion 46a of the intake valve 46 as indicated by the small arrow in FIG.
  • the tumble flow T can be easily generated in the chamber 36. That is, the lower side sub passage 80B is a tumble flow passage for generating the tumble flow T.
  • the tumble valve 72 is an upper main passage of a pair of upper and lower main passages 80A and a lower auxiliary passage 80B which divides the intake air flow by the intake passage 80 downstream of the upper plate portion 72ba of the tumble valve plate 72b. It controls the inflow of the intake air flow to 80A to substantially open and close the upper main passage 80A, and the tumble valve plate 72b is formed with a notch portion 72c in its lower plate portion 72bb. That is, in the tumble valve closed position, the upper plate portion 72ba of the tumble valve plate 72b is positioned so as to cover the inlet opening 80Aa of the upper main passage 80A to suppress the inflow of the intake flow, and the intake flow is lowered by the tumble valve plate 72b.
  • the upper main passage 80A is substantially closed because it is guided from the notch portion 72c of the plate portion 72bb to the lower side auxiliary passage 80B. While the intake flow into the upper main passage 80A increases as the tumble valve 72 rotates in the open direction, when the tumble valve 72 is in the fully open position, as shown by the two-dot chain line in FIGS.
  • the throttle valve plate 71b and the tumble valve plate 72b are positioned parallel to the flow direction F of the intake passage 70, and the intake flow flowing through the intake passage 70 is not disturbed by the throttle valve 71 and the tumble valve 72, and the intake amount is sufficient. Can flow to the upper main passage 80A and also to the lower side passage 80B to the combustion chamber 36.
  • the throttle valve 71 is turned by operation of an accelerator grip 75 (see FIG. 1) by a driver via a throttle wire (not shown), and an on-off valve is made.
  • the accelerator grip 75 When the accelerator grip 75 is not operated, the valve is closed by the return spring, but the idle air passage 100 for supplying the intake amount necessary for the idle operation and the minimal load operation of the internal combustion engine 30 It is provided in the throttle body 7 on the upper side so as to communicate the upstream side and the downstream side of the throttle valve 71, and the downstream side outlet 102 of the idle air passage 100 opens to the inner upper surface 70aa of the intake passage 70.
  • An IACV (idle air control valve) 101 is interposed in the idle air passage 100, and the amount of idle air supplied is controlled according to the operating state of the internal combustion engine 30.
  • the downstream outlet 102 which passes through the idle air passage 100 and opens to the inner upper surface 70aa of the intake passage 70.
  • the idle air flows out to the intake passage 70 and the idle air flowing out to the intake passage 70 is prevented from flowing into the upper main passage 80A of the intake passage 80 by the tumble valve plate 72b of the tumble valve 72, and the notch portion 72c of the tumble valve plate 72b At the time of closing the tumble valve by the valve, it is collected to pass through and is led to the lower side sub passage 80B and is flowed toward the combustion chamber 36. Since the idle air passage 100 is provided on the upper side of the intake passage 70, it is difficult for the fuel gas to be accumulated in the idle air passage 100, and the idle air passage 100 can be provided on the intake passage 70.
  • the flow velocity of the intake air flowing into the combustion chamber 36 can be increased during idle operation or low load operation, and the tumble flow T (longitudinal vortex flow) of the intake generated in the combustion chamber 36 can be strengthened.
  • the intake flow is controlled by the tumble valve 72 to flow only in the lower side auxiliary passage 80B, and is directed to the combustion chamber 36.
  • the intake air tumble flow T generated in the combustion chamber 36 can be further strengthened.
  • the throttle valve 71 and the tumble valve 72 are interlocked by an interlocking mechanism (not shown), and the tumble valve 72 is set to open in a predetermined relationship according to the opening degree of the throttle valve 71, and the throttle valve 71 is
  • the throttle valve plate 71b and the tumble valve plate 72b are positioned parallel to the flow direction F of the intake passage 70 as shown by the two-dot chain line in FIG.
  • the intake air flowing through 70 can be directed to the combustion chamber 36 with a sufficient intake amount flowing to both the upper main passage 80A and the lower auxiliary passage 80B without being interrupted by the throttle valve 71 and the tumble valve 72. .
  • the downstream passage 103 in the vicinity of the downstream outlet 102 of the idle air passage 100 is viewed in a horizontal direction perpendicular to the flow direction of the intake passage 70 or a side cross sectional view of the intake passage 70.
  • the intake passage 70 on the downstream side of the throttle valve 71 is formed with an inner surface tapered portion 70c that expands in diameter toward the downstream side, and the downstream outlet 102 of the idle air passage 100 is an inner surface tapered portion 70c.
  • the downstream side passage 103 of the idle air passage 100 is formed parallel to the tumble valve plate 72b of the tumble valve 72 at the time of valve closing in a vertical horizontal direction with respect to the flow direction F of the intake passage 70. It has become.
  • the downstream outlet 102 of the idle air passage 100 is provided in the inner surface tapered portion 70c, so that the downstream outlet 102 of the idle air passage 100 is directed to the tumble valve closing opening 70b. The flowing intake flow can be facilitated to flow to the lower side sub passage 80B.
  • downstream outlet 102 of the idle air passage 100 is provided at a position closer to the throttle valve shaft 71a of the throttle valve 71 than the tumble valve shaft 72a of the tumble valve 72 as shown in FIG.
  • the distance between the downstream outlet 102 of the air passage 100 and the notch 72c of the lower plate 72bb of the tumble valve 72 can be further increased, and idle air flowing out of the idle air passage 100 can be used for the lower plate 72bb of the tumble valve plate 72b. It can be made easy to flow into the lower side sub-passage 80B from the notch 72c.
  • the intake structure of the internal combustion engine according to the present invention is applied to the power unit 3 forming the swing unit has been described as the first embodiment, but the intake structure of the internal combustion engine according to the present invention has such a cylinder shaft
  • the application of the power unit 3 is not limited to the power unit 3 in which C is nearly horizontal and forward-tilted, but may be applied to other types of power units.
  • the intake structure of the internal combustion engine according to the present invention is the same in an internal combustion engine having a cylinder axis C as shown in FIG. 7, that is, a vehicle power unit 3 'having a so-called vertical internal combustion engine 30'. Applied with effects. This will be described below as a second embodiment.
  • the power unit 3 'of the second embodiment shown in FIG. 7 is fixedly mounted on the vehicle body frame of the motorcycle in the attitude shown in FIG. 7, but the cylinder block 31, the cylinder head 32, An internal combustion engine 30 'is configured in which the cylinder head covers 33 are tightened slightly forward and upward so as to be sequentially stacked, and the crankshaft 51 is oriented in the vehicle width direction.
  • the rear of the power unit case 50 ' is provided with a gear transmission 58' having a main shaft 58a 'and a counter shaft 58b' parallel to the crankshaft 51, and the counter shaft 58b 'is an output shaft.
  • An exhaust port 43 opens at the front of the cylinder head 32 and is connected to an exhaust pipe 38 (not shown), and an intake port 42 opens at the rear, and is directed rearward, that is, toward the upstream side of the intake flow.
  • the throttle body 7 and the connecting tube 85 are sequentially connected and further connected to an air cleaner device (not shown).
  • the inlet pipe 6 and the intake port 42 are provided with the partition plate portion 81, and the throttle body 7 is provided with the same throttle valve 71 and tumble valve 72.
  • An idle air passage 100 communicating the upstream side and the downstream side of the throttle valve 71 is provided.
  • the downstream outlet 102 of the idle air passage 100 is, as shown in FIG. It is provided between the tumble valves 72. Therefore, also in the second embodiment, as shown in FIG. 7, the intake structure of the internal combustion engine of the present invention similar to that of the first embodiment is provided, and the same function and effect can be obtained.
  • first and second embodiments of the present invention have been described above.
  • the present invention is not limited to the above-described embodiments, and various design changes can be made without departing from the scope of the present invention.
  • vehicles, internal combustion engines etc. may be implemented in various ways within the scope of the invention.
  • the intake structure for generating the tumble flow in the combustion chamber the present invention may be applied to an intake structure for generating the swirl flow in the combustion chamber.
  • the left and right arrangements of the illustrated embodiment are described for convenience of explanation, the present invention is also included in the scope of the invention even if the left and right arrangements are different.
  • Cylinder head, 32a combustion chamber ceiling surface, 34: piston, 34a: top surface, 35: connecting rod, 36: combustion chamber, 40: intake valve port, 41: exhaust valve port, 42: intake port, 42a: curved outer wall Parts, 43: Exhaust port, 46: Intake valve, 46a: Umbrella part, 47: Exhaust valve, 48: Valve spring, 50, 50 ': Power unit case, 50L: Left case half body, 50a: Crankcase part, 51: ... Crankshaft 51a Crank pin 55 Power transmission case portion 58 'Gear transmission 58a' Main shaft 58b 'Countershaft 70 Intake path 70a Inner surface 70aa Upper surface 70b Tumble valve closing opening, 70c ...
  • throttle valve 71a throttle valve shaft 71b: throttle valve plate 72: tumble valve 72a: tumble valve shaft 72b: tumble valve plate 72ba: upper plate portion 72bb: lower plate portion 72c ... Notched part, 80: Intake passage, 80A: Upper main passage, 80Aa: Entrance opening, 80B: Lower auxiliary passage, 80Ba: Entrance opening, 80Bb: Termination, 81: Partition plate part, 81b: Downstream end, 100 ... idle air passage, 101 ... idle air control valve, 102 ... downstream outlet, 103 ... downstream passage, C ... cylinder axis, F ... (in intake path 70) flow direction, T ... tumble flow

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

吸気ポート42にインレットパイプ6が接続されて吸気通路80が構成され、吸気通路80の上流側に、吸気路70とスロットル弁71とタンブル弁72を備えたスロットルボディ7が接続され、吸気通路80が仕切板部81で上側主通路80Aとタンブル流路となる下側副通路80Bとに仕切られた内燃機関の吸気構造において、吸気路70の上側にスロットル弁71の上流側と下流側を連通するアイドルエア通路100が設けられ、その下流側出口102が吸気路70の内面上部70aaにおいてスロットル弁とタンブル弁の間に設けられ、スロットル弁の全閉時にアイドルエア通路100を流れ出たアイドルエアは、タンブル弁のタンブル弁板72bにより上側主通路への流入が抑制され、タンブル弁板の切欠き部72cから下側副通路80Bに導かれる。よって、アイドル運転時等においてもタンブル流を強化し易い。

Description

内燃機関の吸気構造
 本発明は、アイドルエア通路と、スロットル弁とタンブル弁を備えた内燃機関の吸気構造に関する。
 スロットル弁とその下流側のTCV(タンブルコントロール弁)とを有し、タンブルコントロール弁(以下、単に「タンブル弁」という。)の下流側の吸気通路の、下側を主通路、上側をタンブル流を発生させるための副通路として、タンブル弁により主通路への吸気量を抑制制御することでタンブル流を発生させる内燃機関の吸気構造が、例えば、下記特許文献1に示されている。
 また、スロットルボディの吸気通路の下側を主通路、上側をタンブル流を発生させるための副通路に形成し、副通路の上側にアイドルエア通路を配置して、スロットル弁が全閉のアイドル運転時や低負荷運転時は、アイドルエア通路に介装されたIACV(アイドルエアコントロール弁)により制御されたアイドルエアがアイドルエア通路から副通路に流入し、燃焼室へ供給される構造が、例えば、下記特許文献2に示されている。同特許文献2においては、副通路を流れる吸気は、高い流速で吸気ポートに沿って燃焼室の一方に偏った方向へ流入し、タンブル流を生成することが示されている。
 しかしながら、スロットル弁とタンブル弁を有する内燃機関の吸気構造において、タンブル弁の下流側の吸気通路を仕切板部で上下に仕切る場合、通常、燃料噴射弁は吸気通路の上側に設けられるので、噴射燃料と仕切板部との干渉を避けるため、燃料噴射弁と仕切板部の距離を取れるように上側を流路断面の大きい主通路とし、下側をタンブル流を発生させるための副通路とした方が好ましい。
 そのように、吸気通路の下側に副通路を設けて、副通路側にアイドルエアコントロール弁を介装したアイドル通路を配置した場合は、アイドルエア通路が副通路の下側に配置されることになり、下側に配置されたアイドルエア通路に空気より比重の大きい燃料のガス溜まりが発生し易くなる。
日本国特許第5925878号公報(図2、図6~図8) 日本国特開2002-221036号公報(図2~図4)
 本発明は、上記従来技術に鑑みなされたものであり、スロットル弁とその下流側のタンブル弁とを有し、タンブル弁の下流側の吸気通路の上側を主流路とし、下側をタンブル流路となる副通路とする内燃機関の吸気構造において、アイドル運転時等においてもタンブル流を強化しやすい内燃機関の吸気構造を提供することを課題とする。
 上記の課題を解決するために、本発明は、燃焼室を有する内燃機関が、シリンダブロックとシリンダヘッドを備え、前記シリンダヘッドに吸気ポートと排気ポートが設けられ、前記吸気ポートにインレットパイプが接続されて連続した吸気通路が構成され、前記インレットパイプの吸気流上流側に前記吸気通路に連続する吸気路を備えたスロットルボディが接続し、同スロットルボディに、スロットル弁と、前記吸気路の吸気流流れ方向において下流側のタンブル弁とが設けられ、前記吸気通路が、前記タンブル弁より下流側で、仕切板部により上側主通路と、前記燃焼室でのタンブル流を発生させるためのタンブル流路となる下側副通路とに仕切られた内燃機関の吸気構造において、
 前記吸気路の上側に前記スロットル弁の上流側と下流側を連通するアイドルエア通路が設けられ、同アイドルエア通路は下流側出口を有し、同下流側出口は、前記吸気路の内面上部において前記スロットル弁と前記タンブル弁の間に設けられ、タンブル弁板とその切欠き部を有し、前記スロットル弁の全閉時に前記アイドルエア通路を通って流れ出たアイドルエアは、前記タンブル弁板により前記上側主通路への流入が抑制され、前記切欠き部から前記下側副通路に導かれるように構成されたことを特徴とする内燃機関の吸気構造である。
 上記構成によれば、アイドル運転時においては、スロットルボディの吸気路の上側に設けられたアイドルエア通路から吸気路に流れ込むアイドルエアが、タンブル弁のタンブル弁板により吸気通路の上側主通路に流入することが抑制され、タンブル弁板の切欠き部からタンブル流路となる下側副通路に導かれて集められ、タンブル流が発生し易くタンブル流を強化することができるとともに、アイドルエア通路が吸気路の上側に設けられたので、アイドルエア通路に燃料のガス溜まりが発生し難くし、アイドルエア通路を吸気路上に設けることができる。また、燃焼室の吸気弁の閉弁時には、吸気ポート内で燃料と吸気が攪拌され、混合気を均質化することができる。
 前記アイドルエア通路の前記下流側出口に連なる下流側通路が、前記吸気路の流れ方向に対する垂直水平方向視で閉弁時の前記タンブル弁のタンブル弁板と平行になるように形成されるとよい。
 その構成によれば、アイドルエア通路の下流側出口近傍の下流側通路が、吸気路の流れ方向に対する垂直水平方向視での閉弁時のタンブル弁のタンブル弁板と傾斜角度と平行に形成されたことで、アイドルエア通路から流れ出たアイドルエアが、タンブル弁板によって上側主通路に流入することがより抑制され、且つタンブル弁板の下板部側に導かれて、下板部に形成された切欠き部から下側副通路に流入し易くすることができる。
 前記スロットル弁の下流側の前記吸気路に、下流側に向かうにつれて拡径する内面テーパ部が形成され、前記アイドルエア通路の前記下流側出口は、前記内面テーパ部に設けられてもよい。
 その構成によれば、下流側に向かうにつれて拡径する吸気路の内面テーパ部にアイドルエア通路の下流側出口を設けることで、アイドルエア通路の下流側通路が、吸気路の流れ方向に対する垂直水平方向視での閉弁時のタンブル弁のタンブル弁板と平行に形成しやすくなる。
 前記アイドルエア通路の前記下流側出口が、前記タンブル弁のタンブル弁軸より前記スロットル弁のスロットル弁軸に近い位置に設けられてもよい。
 その構成によれば、アイドルエア通路の下流側出口が。タンブル弁軸よりスロットル弁軸に近い位置に設けられたことで、アイドルエア通路の下流側出口とタンブル弁の下板部の切欠き部との距離をより大きくでき、アイドルエア通路から流れ出たアイドルエアをタンブル弁の下板部の切欠き部から下側副通路に流入し易くすることができる。
 本発明の内燃機関の吸気構造によれば、アイドル運転時においては、スロットルボディの吸気路の上側に設けられたアイドルエア通路から吸気路に流れ込むアイドルエアが、タンブル弁のタンブル弁板により吸気通路の上側主通路に流入することが抑制され、タンブル弁板の切欠き部からタンブル流路となる下側副通路に導かれて集められ、タンブル流が発生し易く強化することができるとともに、アイドルエア通路が吸気路の上側に設けられたので、アイドルエア通路に燃料のガス溜まりが発生し難くし、アイドルエア通路を吸気路上に設けることができる。また、燃焼室の吸気弁の閉弁時には、吸気ポート内で燃料と吸気が攪拌され、混合気を均質化することができる。
本発明の実施形態1に係る内燃機関の吸気構造を備えたパワーユニットを搭載した自動二輪車の右側面図である。 車体カバーを外した図1の自動二輪車の後部右側面である。 図2に示すと同じ配向によるパワーユニットの側面断面図である。 図3の要部拡大図である。 図4のスロットルボディのみを取り出し示すスロットルボディの右側面図である。 図5のb矢視によるタンブル弁の前面図である。 本発明の実施形態2に係る内燃機関の吸気構造を備えた車載用のパワーユニットの、一部断面とする右側面図である。
 図1から図6に基づき、本発明の内燃機関の吸気構造の実施形態1につき説明する。
 なお、本明細書の説明および請求の範囲における前後左右上下等の向きは、本実施形態に係る内燃機関の吸気構造を備えたパワーユニットを、車両に搭載した状態での車両の向きに従うものとする。本実施形態において車両は小型車両であり、具体的には自動二輪車である。
 なお、図3、図4に示すスロットルボディ7の吸気路70、および吸気通路80に関しては、仕切板部81で仕切られた上側主通路80A側を「上」側、下側副通路80B側を「下」側として記載する。
 また、図中矢印FRは車両前方を、LHは車両左方を、RHは車両右方を、UPは車両上方を、それぞれ示す。
 図1に、本発明の実施形態1に係る内燃機関の吸気構造を備えたパワーユニット3を搭載した自動二輪車1の右側面を示す。
 本実施形態の自動二輪車1は、いわゆるスクータ型自動二輪車であり、車体前部1Aと車体後部1Bとが、低いフロア部1Cを介して連結されており、車体の骨格をなす車体フレーム2は、概ねダウンチューブ21とメインパイプ22(図2参照)とからなる。
 すなわち、車体前部1Aのヘッドパイプ20からダウンチューブ21が下方へ延出し、ダウンチューブ21は下端で水平に屈曲してフロア部1Cの下方を後方へ延び、図2に示されるようにその後端において車幅方向に配設された連結フレーム23を介して、左右一対のメインパイプ22が連結され、メインパイプ22は連結フレーム23から傾斜部22aをなして斜め後方に立ち上がって、途中、傾斜をゆるめるように屈曲して後方に延びている。
 メインパイプ22の傾斜部22aの上方には収納ボックス11と燃料タンク12が支持されるとともに、収納ボックス11と燃料タンク12はその上方に取付けられた乗員シート13で塞がれ、収納ボックス11、燃料タンク12を含め、乗員シート12の下方は、車体カバー10で覆われている。
 一方、車体前部1Aにおいては、ヘッドパイプ20に軸支されて上方にハンドル14が設けられ、下方にフロントフォーク15が延びてその下端に前輪16が軸支されている。
 図2に、車体カバー10を外した自動二輪車1の後部右側面を示すように、メインパイプ22の傾斜部22aの下端付近にブラケット24が突設され、ブラケット24にリンク部材25を介してパワーユニット3が揺動可能に連結支持されている。
 パワーユニット3は、その前部が単気筒4ストロークサイクルの空冷式内燃機関(以下、単に「内燃機関」という。)30であり、クランクケース部50aを構成するパワーユニットケース50の前部に、クランク軸51を車幅方向に配して回転自在に軸支し、シリンダ軸Cを略水平に近い状態にまで大きく前傾した姿勢にあって、パワーユニットケース50の下端から前方に突出したハンガアーム52の端部が、メインパイプ22のブラケット24に取付けられたリンク部材25を介して上下揺動自在に連結される。
 パワーユニット3には、クランクケース部50aを構成するパワーユニットケース50の前部に略水平に大きく前傾して内燃機関30を構成するシリンダブロック31、シリンダヘッド32、シリンダヘッドカバー33が順次積み上げられるように締結されるほか、クランクケース部50aから左側後方にかけてベルト式無段変速機等を備えた動力伝動ケース部55が一体に延在し、その後部にパワーユニット3の出力軸である後車軸56が設けられ、後輪17が取り付けられている。
 すなわち、パワーユニット3はいわゆるスイングユニットであり、パワーユニット3の後部の動力伝動ケース部55と、メインパイプ22の後部との間には図示しないリヤクッションが介装されている。
 図2に示されるように、パワーユニット3の上部では、内燃機関30の大きく前傾したシリンダヘッド32の上部からインレットパイプ6が延出して後方に湾曲し、インレットパイプ6に接続されたスロットルボディ7がシリンダブロック31の上方に位置し、スロットルボディ7にコネクティングチューブ85を介して接続するエアクリーナ装置86が動力伝動ケース部55の上方に配設されている。
 一方、シリンダヘッド32の下部から下方に延出した排気管38は、後方へ屈曲し右側に偏って後方に延びて後輪16の右側のマフラ39に接続される。
 図3は、図2のパワーユニット3を取出して、図2に示すと略同じ配向により示す、パワーユニット3の側面断面図である。
 パワーユニット3における内燃機関30は、シリンダブロック31、シリンダヘッド32、シリンダヘッドカバー33の左半面の断面が示され、パワーユニットケース50は、左ケース半体50Lが、図示しない右ケース半体との合わせ面50bを図示手前に向けて示される。
 パワーユニットケース50は、左右割りの左ケース半体50Lと図示されない右ケース半体とを合体して構成されるもので、右ケース半体は、クランクケース部50aの右半体をなし、左ケース半体50Lは、前部がクランクケース部50aの左半体をなすとともに、後方に延設されて、クランク軸51と後輪17の後車軸56との間の前後に図示しない長尺のベルト式無段変速機と減速ギヤ機構57等を含む伝動装置を収容する動力伝達ケース部55を形成する。
 減速ギヤ機構57は、動力伝達ケース部55の後部の右側開放面55Rの内部に収納され、図示しない減速機ケースにより覆われる。減速ギヤ機構57の出力軸は、後輪17の後車軸56である。
 而して、内燃機関30のクランクケース部50aのクランク軸51の回転動力は、動力伝達ケース部55内のベルト式無段変速機と減速ギヤ機構57を介して、後輪17に伝達される。
 シリンダブロック31のシリンダボア31a内を往復動するピストン34は、クランクケース部50aのクランク軸51のクランクピン51aと、コネクティングロッド35により連結されている。
 シリンダブロック31のシリンダボア31a内に摺動自在に嵌合されるピストン34の頂面34aと、頂面34aが対向するシリンダヘッド32の燃焼室天井面32aとの間には燃焼室36が構成される。
 本実施形態において内燃機関30は、SOHC型式の2バルブシステムを採用しており、シリンダヘッド32に動弁機構9が設けられている。
 動弁機構9を覆うように、シリンダヘッド32にはシリンダヘッドカバー33が重ねられて被せられる。
 シリンダヘッドカバー33内の動弁機構9に動力伝達を行うため、図示しない無端状のカムチェーンが、クランクケース部50a、シリンダブロック31、シリンダヘッド32のクランク軸51方向の一方側に設けられた図示しないカムチェーン室を通って、カム軸91とクランク軸51との間に架設され、カム軸91はクランク軸51に同期して1/2の回転速度で回転する。
 なお、シリンダヘッド32において前記カムチェーン室と反対側(クランク軸51方向の他方側)から燃焼室36内に向かって図示しない点火プラグが嵌挿されている。
 図3、および図3の要部拡大図である図4に示されるように、シリンダ軸Cを略水平に近く大きく前傾したシリンダヘッド32において、燃焼室天井面32aに開口した吸気弁口40と排気弁口41からは、各々吸気ポート42と排気ポート43が互いに上下に離れる方向に湾曲しながら延出して形成される。
 吸気ポート42の上流端は、シリンダヘッド32の上方に向けて開口し、インレットパイプ6と接続して、連続した吸気通路80が構成され、インレットパイプ6の上流側に、スロットルボディ7が接続される。
 排気ポート43の下流端は、シリンダヘッド32の下方に向けて開口し、排気管38(図2参照)に連結される。
 シリンダヘッド32における吸気ポート42の湾曲外壁部42aに一体に円筒状の吸気弁ガイド44が嵌着され、吸気弁ガイド44に摺動可能に支持された吸気弁46が、吸気ポート42の燃焼室36に臨む吸気弁口40を開閉する。
 また、シリンダヘッド32における排気ポート43の湾曲外壁部43aに一体に嵌着された排気弁ガイド45に摺動可能に支持された排気弁47が、排気ポート43の燃焼室36に臨む排気弁口41を開閉する。
 吸気弁46および排気弁47はその傘部46a、47aが、いずれも燃焼室36に臨む吸気弁口40、排気弁口41を閉じるように、弁ばね48により上方に付勢されているが、図3に示すように、カム軸91の吸気カム92、排気カム93に当接揺動する吸気ロッカアーム94、排気ロッカアーム95によって、吸気弁46、排気弁47のステムエンド46b、47bが押し下げられて、所定のタイミングで吸気弁46、排気弁47が開弁し、吸気ポート42と燃焼室36、また、排気ポート43と燃焼室36が連通し、所定のタイミングの吸気、排気がなされる。
 以上のような内燃機関30において、燃焼室36でのより好ましい燃焼を得るために燃焼室36において燃料・空気混合気のタンブル流T、すなわち縦回転を与えるための吸気構造が構成されている
 すなわち、内燃機関30の吸気ポート42の上流端には、インシュレ-タ61を介してインレットパイプ6が接続して、連続した吸気通路80が構成され、インレットパイプ6の上流側に、スロットルボディ7が接続される。
 スロットルボディ7は、内燃機関30の燃焼室36に連なる吸気通路80に連続する吸気路70を有し、その上流側は、コネクティングチューブ85を介して、エアクリーナ装置86(図2参照)に接続している。
 スロットルボディ7は、吸気路70の流れ方向Fと垂直で略水平に配向するスロットル弁軸71aによってスロットルボディ7内に回転自在に軸支されて、吸気路70の通路面積を可変制御し、吸気路70を開閉し得るスロットル弁71を備えている。
 また、吸気路70の流れ方向Fにおいてスロットル弁71の下流側には、吸気路70の流れ方向Fと垂直で略水平に配向しスロットル弁軸71aと平行なタンブル弁軸72aによってスロットルボディ7内に回転自在に軸支されたタンブル弁72を備えている。
 スロットルボディ7の吸気路70の上流側に設けられたスロットル弁71はバタフライ式のもので、スロットル弁軸71aと、スロットル弁軸71aに共に回転するようボルト締め固定された円板状のスロットル弁板71bとを有する。
 スロットル弁71は、図3、図4図示において反時計回りに開弁方向に回転可能となっているとともに、図示しない復帰ばねにより、スロットル弁板71bが吸気路70の内面70aに接する全閉位置に位置するように閉弁方向に時計回りに付勢されている。
 また、図5に示されるように、吸気路70の流れ方向Fにおいてスロットル弁71より下流側の吸気路70に設けられたタンブル弁72は、バタフライ式のもので、タンブル弁軸72aと、タンブル弁軸72aに共に回転するようボルト締め固定され上方に半円状をなす上板部72baと下方に延出する下板部72bbからなるタンブル弁板72bとを有しており、下板部72bbには切欠き部72cが形成されている。
 タンブル弁72は、図3、図4図示において反時計回りに開弁方向に回転可能となっているとともに、図示しない復帰ばねにより、タンブル弁板72bの上板部72baが吸気路70の内面70aに接するタンブル弁閉止位置に位置するように時計回りに閉弁方向に付勢されている。
 タンブル弁閉止位置において、タンブル弁板72bの下板部72bbの切欠き部72cは、吸気路70にタンブル弁閉止時開通部70b(図4参照)を形成する。
 なお、スロットル弁71が設けられる位置の吸気路70の径に対して、タンブル弁72が設けられる位置の吸気路70の径は、内面スロープ部70cを介して拡大されており、吸気流の円滑化と、スロットルボディ7の鋳造時の鋳抜きの容易化が図られている。
 本実施形態において、吸気通路80は、インレットパイプ6から吸気ポート42へと続けて仕切板部81によって、上下に仕切られ、タンブル流路となる下側副通路80Bと、下側副通路80Bを除く上側主通路80Aとに仕切られている。
 仕切板部81は、インレットパイプ側仕切板部81Aと、インシュレータ側仕切板部81Bと、吸気ポート側仕切板部81Cが連続して位置して構成される。
 上側主通路80A、下側副通路80Bは、インレットパイプ6と吸気ポート42を縦通する仕切板部81により、タンブル弁72下流側の吸気通路80を上下に区画することで各々、横断面略半円状に画成される。
 したがって、スロットルボディ7の吸気路70の下流側に接続するインレットパイプ6の吸気通路80の下側副通路80Bの入口開口80Baは、タンブル弁72が実線の閉止位置に在る状態で、タンブル弁72の切欠き部72cの下流側、すなわち吸気路70のタンブル弁閉止時開通部70bの下流側に位置して開口し、上側主通路80Aの入口開口80Aaは、吸気路70のタンブル弁板72bの上板部72baの下流側に位置して開口する。
 なお、インレットパイプ6には、上側主通路80Aに上方外部から貫通して、吸気弁口40に向けて燃料を噴射供給するように配置された燃料噴射弁87が取り付けられる。
 また、図4に示されるように、仕切板部81の下流側端部81b、すなわちシリンダヘッド32の吸気ポート42内に位置する下流側端部81bは、シリンダヘッド32においてシリンダブロック31側に向けて屈曲して一体に形成され、且つ下側副通路80Bの終端80Bbは、シリンダヘッド32の燃焼室天井面32aを指向するように形成されている。
 そのため、下側副通路80Bを流れる吸入空気を、図4中小矢印が示すように、吸気弁46の傘部46aの上方を通過させたうえで、シリンダボア31a内に流入させことができるため、燃焼室36内においてタンブル流Tが発生しやすくすることができる。すなわち、下側副通路80Bは、タンブル流Tを発生させるためのタンブル流路となる。
 タンブル弁72は、タンブル弁板72bの上板部72baによって、それよりも下流側の吸気通路80で吸気流を分割する上下一対の上側主通路80A、下側副通路80Bのうちの上側主通路80Aへの吸気流の流入を制御し、上側主通路80Aを実質的に開閉するものであり、タンブル弁板72bはその下板部72bbに切欠き部72cが形成されている。
 すなわち、タンブル弁閉止位置では、タンブル弁板72bの上板部72baが上側主通路80Aの入口開口80Aaを覆うように位置して吸気流の流入を抑制し、吸気流はタンブル弁板72bによって下板部72bbの切欠き部72cから下側副通路80B側に導かれるから、上側主通路80Aは実質的に閉じられる。
 タンブル弁72が開方向に回転するにつれ上側主通路80Aへの吸気流の流入は増加するが、タンブル弁72が全開位置にあるときは、図4、図5中2点鎖線で示すように、スロットル弁板71bとタンブル弁板72bが吸気路70の流れ方向Fに平行に位置し、吸気路70を流れる吸気流は、スロットル弁71とタンブル弁72に邪魔されることなく、十分な吸気量が上側主通路80Aにも下側副通路80Bにも流れて、燃焼室36に向かうことができる。
 スロットル弁71は、図示しないスロットルワイヤを介して、運転者のアクセルグリップ75(図1参照)の操作によって回動され、開閉弁がなされる。
 アクセルグリップ75が操作されていない時は、復帰ばねによって閉弁されるが、内燃機関30のアイドル運転や極小負荷運転に必要な吸気量を供給するためのアイドルエア通路100が、吸気路70の上側に、スロットル弁71の上流側と、下流側とを連通するように、スロットルボディ7内に設けられており、アイドルエア通路100の下流側出口102は吸気路70の内面上部70aaに開口するように、スロットル弁71とタンブル弁72の間の内面テーパ部70cに設けられている。
 アイドルエア通路100にはIACV(アイドルエアコントロール弁)101が介装されており、内燃機関30の運転状態に即してアイドルエアの供給量が制御される。
 したがって、スロットル弁71が閉止位置にあり、その下流においてタンブル弁72が所定の閉止位置に在るときには、アイドルエア通路100を通過して、吸気路70の内面上部70aaに開口する下流側出口102からアイドルエアが流出し、吸気路70へ流れ出るアイドルエアは、タンブル弁72のタンブル弁板72bで吸気通路80の上側主通路80Aに流入することが抑制され、タンブル弁板72bの切欠き部72cによるタンブル弁閉止時開通部70bに集められて通過し、下側副通路80Bに導かれ燃焼室36に向かって流される。
 なお、アイドルエア通路100は吸気路70の上側に設けられたので、アイドルエア通路100に燃料のガス溜まりが発生し難くなり、アイドルエア通路100を吸気路70上に設けることができる。
 これにより、アイドル運転時や低負荷運転時に燃焼室36内に流入する吸気流速を高めることができて、燃焼室36で発生する吸気のタンブル流T(縦渦流)を強めることができる。
 また、タンブル弁72の下流側の吸気通路80を上下に区画することで、吸気流はタンブル弁72で下側副通路80Bのみを流通するよう制御されて燃焼室36に向かうこととなり、これにより、燃焼室36で発生する吸気のタンブル流Tを更に強めることができる。
 なお、燃焼室36の吸気弁46の閉弁時は、そのように下側副通路80Bを通った吸気は、吸気弁46の傘部46a上方で、上側主通路80A側へゆっくり上昇する動きを示すので、吸気と燃料との混合気が吸気ポート42内で攪拌され、混合気が均質化される。
 スロットル弁71とタンブル弁72は、図示しない連動機構によって連動し、スロットル弁71の開度に応じて所定の関係でタンブル弁72が開くように設定されており、高負荷時でスロットル弁71が全開し、タンブル弁72が全開位置にあるときは、図4中2点鎖線で示すように、スロットル弁板71bとタンブル弁板72bが吸気路70の流れ方向Fに平行に位置し、吸気路70を流れる吸気流は、スロットル弁71とタンブル弁72に邪魔されることなく、十分な吸気量が上側主通路80Aにも下側副通路80Bにも流れて、燃焼室36に向かうことができる。
 また、図5に示されるように、アイドルエア通路100の下流側出口102近傍の下流側通路103は、前記吸気路70の流れ方向に対する垂直水平方向視で、あるいは、吸気路70の側面断面視で、閉弁時の前記タンブル弁72のタンブル弁板72bと平行になるように形成されており、そのため、アイドルエア通路100から流れ出たアイドルエアが、タンブル弁板72bによって上側主通路80Aに流入することがより抑制され、且つタンブル弁72の下板部72bb側に導かれて、下板部72bbに形成された切欠き部72cから下側副通路80Bに流入し易くなる。
 特に、本実施形態では、スロットル弁71の下流側の吸気路70に、下流側に向かうにつれて拡径する内面テーパ部70cが形成され、アイドルエア通路100の下流側出口102が、内面テーパ部70cに設けられているので、アイドルエア通路100の下流側通路103を、吸気路70の流れ方向Fに対する垂直水平方向視での閉弁時のタンブル弁72のタンブル弁板72bと平行に形成しやすくなっている。また、アイドルエア通路100の下流側出口102が、内面テーパ部70cに設けられることにより、アイドルエア通路100の下流側出口102がタンブル弁閉止時開通部70bを指向するため、アイドルエア通路100を流れる吸気流が下側副通路80Bに流れやすくすることができる。
 またさらに、アイドルエア通路100の下流側出口102は、図5図示のように、タンブル弁72のタンブル弁軸72aよりスロットル弁71のスロットル弁軸71aに近い位置に設けられており、そのため、アイドルエア通路100の下流側出口102とタンブル弁72の下板部72bbの切欠き部72cとの距離をより大きくでき、アイドルエア通路100から流れ出たアイドルエアをタンブル弁板72bの下板部72bbの切欠き部72cから下側副通路80Bに流入し易くすることができる。
 以上、本発明に係る内燃機関の吸気構造を、スイングユニットをなすパワーユニット3に適用された場合を、実施形態1として説明したが、本発明に係る内燃機関の吸気構造は、そのようなシリンダ軸Cが略水平に近く前傾したパワーユニット3に適用を限定されるものではなく、他の様式のパワーユニットにも適用されるものである。
 例えば、図7に示されるようなシリンダ軸Cの立ち上がった内燃機関、所謂縦型の内燃機関30′を備えた車載用のパワーユニット3′においても本発明に係る内燃機関の吸気構造は全く同様な効果を奏して適用される。
 それを、実施形態2として以下説明する。
 図7に示される実施形態2のパワーユニット3′は、図7に示される姿勢で自動二輪車の車体フレームに固定搭載されるが、パワーユニットケース50′の前部に、シリンダブロック31、シリンダヘッド32、シリンダヘッドカバー33が、順次積み重ねるように上方に向けてやや前傾して締結され、車幅方向にクランク軸51を配向した内燃機関30′が構成されている。
 パワーユニットケース50′の後部には、クランク軸51と平行なメイン軸58a′、カウンタ軸58b′を有するギヤ変速装置58′が備えられ、カウンタ軸58b′が出力軸となっている。
 シリンダヘッド32の前方に排気ポート43が開口し、図示しない排気管38に接続し、後方には吸気ポート42が開口し、後方に向けて、すなわち吸気の流れの上流側に向けてインレットパイプ6、スロットルボディ7、コネクティングチューブ85が順次接続し、さらに図示しないエアクリーナ装置に接続している。
 インレットパイプ6、吸気ポート42には、実施形態1と同様に仕切板部81が設けられ、スロットルボディ7には同様のスロットル弁71とタンブル弁72が設けられて、同様に吸気路70の上側にスロットル弁71の上流側と下流側を連通するアイドルエア通路100が設けられ、アイドルエア通路100の下流側出口102は、図5図示のとおり、吸気路70の内面上部70aaにおいてスロットル弁71とタンブル弁72の間に設けられている。
 したがって、実施形態2においても、図7図示のように実施形態1と同様の本発明の内燃機関の吸気構造が備えられ、同様の作用効果を奏することができる。
 以上、本発明の実施形態1、2を説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の設計変更が可能であり、本発明の要旨の範囲で、車両、内燃機関等が、多様な態様で実施されるものを含むことは勿論である。
 例えば、本実施形態1、2では、燃焼室にタンブル流を発生させる吸気構造であるが、燃焼室にスワール流を発生させる吸気構造に適用してもよい。
 なお、説明の便宜上、図示の実施形態の左右配置のものについて説明したが、左右配置の異なるものであっても、発明の要旨の範囲であれば本発明に含まれる。
 1…自動二輪車、2…車体フレーム、3、3′…パワーユニット、6…インレットパイプ、7…スロットルボディ、14…ハンドル、30、30′…内燃機関、31…シリンダブロック、31a…シリンダボア、32…シリンダヘッド、32a…燃焼室天井面、34…ピストン、34a…頂面、35…コネクティングロッド、36…燃焼室、40…吸気弁口、41…排気弁口、42…吸気ポート、42a…湾曲外壁部、43…排気ポート、46…吸気弁、46a…傘部、47…排気弁、48…弁ばね、50、50′…パワーユニットケース、50L…左ケース半体、50a…クランクケース部、51…クランク軸、51a…クランクピン、55…動力伝動ケース部、58′…ギヤ変速装置、58a′…メイン軸、58b′…カウンタ軸、70…吸気路、70a…内面、70aa…内面上部、70b…タンブル弁閉止時開通部、70c…内面テーパ部、71…スロットル弁、71a…スロットル弁軸、71b…スロットル弁板、72…タンブル弁、72a…タンブル弁軸、72b…タンブル弁板、72ba…上板部、72bb…下板部、72c…切欠き部、80…吸気通路、80A…上側主通路、80Aa…入口開口、80B…下側副通路、80Ba…入口開口、80Bb…終端、81…仕切板部、81b…下流側端部、100…アイドルエア通路、101…アイドルエアコントロール弁、102…下流側出口、103…下流側通路、C…シリンダ軸、F…(吸気路70の)流れ方向、T…タンブル流

Claims (4)

  1.  燃焼室(36)を有する内燃機関(30,30′)が、シリンダブロック(31)とシリンダヘッド(32)を備え、前記シリンダヘッド(32)に吸気ポート(42)と排気ポート(43)が設けられ、
     前記吸気ポート(42)にインレットパイプ(6)が接続されて連続した吸気通路(80)が構成され、
     前記インレットパイプ(6)の吸気流上流側に前記吸気通路(80)に連続する吸気路(70)を備えたスロットルボディ(7)が接続し、同スロットルボディ(7)に、スロットル弁(71)と、前記吸気路(70)の吸気流流れ方向(F)において下流側のタンブル弁(72)とが設けられ、
     前記吸気通路(80)が、前記タンブル弁(72)より下流側で、仕切板部(81)により上側主通路(80A)と、前記燃焼室(36)でのタンブル流を発生させるためのタンブル流路となる下側副通路(80B)とに仕切られた内燃機関の吸気構造において、
     前記吸気路(70)の上側に前記スロットル弁(71)の上流側と下流側を連通するアイドルエア通路(100)が設けられ、同アイドルエア通路(100)は下流側出口(102)を有し、同下流側出口(102)は、前記吸気路(70)の内面上部(70aa)において前記スロットル弁(71)と前記タンブル弁(72)の間に設けられ、
     前記タンブル弁(72)は、タンブル弁板(72b)とその切欠き部(72c)を有し、前記スロットル弁(71)の全閉時に前記アイドルエア通路(100)を通って流れ出たアイドルエアは、前記タンブル弁板(72b)により前記上側主通路(80A)への流入が抑制され、前記切欠き部(72c)から前記下側副通路(80B)に導かれるように構成されたことを特徴とする内燃機関の吸気構造。
  2.  前記アイドルエア通路(100)の前記下流側出口(102)に連なる下流側通路(103)が、前記吸気路(70)の流れ方向(F)に対する垂直水平方向視で閉弁時の前記タンブル弁(72)のタンブル弁板(72b)と平行になるように形成されたことを特徴とする請求項1に記載の内燃機関の吸気構造。
  3.  前記スロットル弁(71)の下流側の前記吸気路(70)に、下流側に向かうにつれて拡径する内面テーパ部(70c)が形成され、前記アイドルエア通路(100)の前記下流側出口(102)は、前記内面テーパ部(70c)に設けられたことを特徴とする請求項2に記載の内燃機関の吸気構造。
  4.  前記アイドルエア通路(100)の前記下流側出口(102)が、前記タンブル弁(72)のタンブル弁軸(72a)より前記スロットル弁(71)のスロットル弁軸(71a)に近い位置に設けられたことを特徴とする請求項1ないし請求項3のいずれか一項に記載の内燃機関の吸気構造。
PCT/JP2018/007227 2017-03-10 2018-02-27 内燃機関の吸気構造 WO2018163912A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019504495A JP6714764B2 (ja) 2017-03-10 2018-02-27 内燃機関の吸気構造
BR112019017635-7A BR112019017635B1 (pt) 2017-03-10 2018-02-27 Estrutura de admissão para motores de combustão interna
EP18763803.6A EP3594471B1 (en) 2017-03-10 2018-02-27 Air intake structure for internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017045638 2017-03-10
JP2017-045638 2017-03-10

Publications (1)

Publication Number Publication Date
WO2018163912A1 true WO2018163912A1 (ja) 2018-09-13

Family

ID=63448492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007227 WO2018163912A1 (ja) 2017-03-10 2018-02-27 内燃機関の吸気構造

Country Status (4)

Country Link
EP (1) EP3594471B1 (ja)
JP (1) JP6714764B2 (ja)
BR (1) BR112019017635B1 (ja)
WO (1) WO2018163912A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210381423A1 (en) * 2020-06-03 2021-12-09 Subaru Corporation Engine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019009061A1 (ja) * 2017-07-05 2019-01-10 本田技研工業株式会社 内燃機関の吸気構造
CN109707856B (zh) * 2019-02-02 2021-07-16 联合汽车电子有限公司 阀体连接系统及废气再循环系统
JP7403707B2 (ja) * 2021-02-18 2023-12-22 本田技研工業株式会社 内燃機関の吸気構造
WO2023053308A1 (ja) * 2021-09-29 2023-04-06 本田技研工業株式会社 内燃機関の吸気装置
WO2023053346A1 (ja) * 2021-09-30 2023-04-06 本田技研工業株式会社 内燃機関の吸気装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54106719A (en) * 1978-02-10 1979-08-22 Yamaha Motor Co Ltd Suction apparatus for multi-cylinder engine
JPS5925878B2 (ja) 1980-02-04 1984-06-21 三洋電機株式会社 密閉型圧縮機の消音装置
JPS61160539A (ja) * 1985-01-07 1986-07-21 Nissan Motor Co Ltd 内燃機関の吸気路制御装置
JP2002070587A (ja) * 2000-08-30 2002-03-08 Mikuni Corp 全閉角ゼロ度バルブを有するスロットルボディ
JP2002221036A (ja) 2001-01-26 2002-08-09 Fuji Heavy Ind Ltd エンジンの吸気装置
JP2006329016A (ja) * 2005-05-24 2006-12-07 Toyota Motor Corp 内燃機関の吸気装置
JP2007068378A (ja) * 2005-09-02 2007-03-15 Denso Corp モータアクチュエータ
US20100162995A1 (en) * 2008-12-26 2010-07-01 Kwang Yang Motor Co., Ltd. Throttle valve body and throttle valve device having the same
WO2010081595A1 (de) * 2009-01-13 2010-07-22 Robert Bosch Gmbh Drosselklappeneinrichtung
JP2016061279A (ja) * 2014-09-22 2016-04-25 本田技研工業株式会社 内燃機関の吸気構造

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056261B2 (ja) * 1978-07-14 1985-12-09 ヤマハ発動機株式会社 燃料噴射式多気筒内燃機関
JP3217206B2 (ja) * 1994-05-09 2001-10-09 株式会社日立製作所 内燃機関の吸気管
JP2007071163A (ja) * 2005-09-08 2007-03-22 Toyota Motor Corp 内燃機関の吸気ポート構造
JP2015155684A (ja) * 2014-02-21 2015-08-27 トヨタ紡織株式会社 吸気ダクト

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54106719A (en) * 1978-02-10 1979-08-22 Yamaha Motor Co Ltd Suction apparatus for multi-cylinder engine
JPS5925878B2 (ja) 1980-02-04 1984-06-21 三洋電機株式会社 密閉型圧縮機の消音装置
JPS61160539A (ja) * 1985-01-07 1986-07-21 Nissan Motor Co Ltd 内燃機関の吸気路制御装置
JP2002070587A (ja) * 2000-08-30 2002-03-08 Mikuni Corp 全閉角ゼロ度バルブを有するスロットルボディ
JP2002221036A (ja) 2001-01-26 2002-08-09 Fuji Heavy Ind Ltd エンジンの吸気装置
JP2006329016A (ja) * 2005-05-24 2006-12-07 Toyota Motor Corp 内燃機関の吸気装置
JP2007068378A (ja) * 2005-09-02 2007-03-15 Denso Corp モータアクチュエータ
US20100162995A1 (en) * 2008-12-26 2010-07-01 Kwang Yang Motor Co., Ltd. Throttle valve body and throttle valve device having the same
WO2010081595A1 (de) * 2009-01-13 2010-07-22 Robert Bosch Gmbh Drosselklappeneinrichtung
JP2016061279A (ja) * 2014-09-22 2016-04-25 本田技研工業株式会社 内燃機関の吸気構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3594471A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210381423A1 (en) * 2020-06-03 2021-12-09 Subaru Corporation Engine
US11560828B2 (en) * 2020-06-03 2023-01-24 Subaru Corporation Engine

Also Published As

Publication number Publication date
JPWO2018163912A1 (ja) 2020-01-16
EP3594471B1 (en) 2023-05-10
JP6714764B2 (ja) 2020-06-24
BR112019017635B1 (pt) 2023-10-31
EP3594471A1 (en) 2020-01-15
BR112019017635A2 (pt) 2020-03-31
EP3594471A4 (en) 2020-03-18

Similar Documents

Publication Publication Date Title
WO2018163912A1 (ja) 内燃機関の吸気構造
WO2018163909A1 (ja) 内燃機関の吸気装置
JP2018053820A (ja) 単気筒内燃機関
WO2017154782A1 (ja) 内燃機関の吸気構造
JP3153075U (ja) 車両用エンジンユニットおよび鞍乗り型車両
EP1555431A1 (en) Two-wheeled motor vehicle
JP6262587B2 (ja) 内燃機関の吸気構造
US9988978B2 (en) Four-cycle multi-cylinder engine
JP6691564B2 (ja) 内燃機関の吸気通路
EP3650671B1 (en) Internal combustion engine intake structure
WO2021176720A1 (ja) 鞍乗型車両用内燃機関の吸気制御装置
JP2018150817A (ja) 内燃機関の吸気構造
WO2019009061A1 (ja) 内燃機関の吸気構造
WO2021192927A1 (ja) 鞍乗型車両用内燃機関の吸気装置
JP7241235B2 (ja) 鞍乗型車両用内燃機関の吸気装置
WO2021186513A1 (ja) 内燃機関の吸気構造
WO2023053308A1 (ja) 内燃機関の吸気装置
JP6564523B2 (ja) 内燃機関の吸気装置
JP6824218B2 (ja) 内燃機関の副燃焼室
WO2022209880A1 (ja) 内燃機関の吸気装置
JP6256985B2 (ja) 車両用内燃機関におけるクランク軸受オイル戻し構造
JP6851409B2 (ja) 鞍乗型車両用内燃機関
JP6798910B2 (ja) 内燃機関の吸気装置
JP6186299B2 (ja) 鞍乗り型車両の吸気構造
JP2015113822A (ja) エンジンの吸気装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763803

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504495

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019017635

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018763803

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018763803

Country of ref document: EP

Effective date: 20191010

ENP Entry into the national phase

Ref document number: 112019017635

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190823