Nothing Special   »   [go: up one dir, main page]

WO2018163549A1 - 運転制御動作支援装置、運転制御動作支援方法及び運転制御動作支援プログラム - Google Patents

運転制御動作支援装置、運転制御動作支援方法及び運転制御動作支援プログラム Download PDF

Info

Publication number
WO2018163549A1
WO2018163549A1 PCT/JP2017/044481 JP2017044481W WO2018163549A1 WO 2018163549 A1 WO2018163549 A1 WO 2018163549A1 JP 2017044481 W JP2017044481 W JP 2017044481W WO 2018163549 A1 WO2018163549 A1 WO 2018163549A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
driver
automatic
driving
unit
Prior art date
Application number
PCT/JP2017/044481
Other languages
English (en)
French (fr)
Inventor
相澤 知禎
智浩 籔内
円香 渡部
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2018163549A1 publication Critical patent/WO2018163549A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/165Automatically following the path of a preceding lead vehicle, e.g. "electronic tow-bar"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/005Handover processes
    • B60W60/0053Handover processes from vehicle to occupant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/005Handover processes
    • B60W60/0059Estimation of the risk associated with autonomous or manual driving, e.g. situation too complex, sensor failure or driver incapacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/229Attention level, e.g. attentive to driving, reading or sleeping

Definitions

  • the present invention relates to a driving control operation support device, a driving control operation support method, and a driving control operation support program that support the operation of an automatic driving control device that selectively uses an automatic driving mode and a manual driving mode to drive a vehicle.
  • a driving control operation support device that selectively uses an automatic driving mode and a manual driving mode to drive a vehicle.
  • automatic driving control including an automatic driving mode for driving the vehicle along a predetermined route other than the driving operation by the driver, in addition to the manual driving mode by the driver.
  • the device has been put into practical use and has reached the stage of test running on actual roads.
  • Autonomous driving mode consists of a combination of map information and current position information for driving control of a car. For example, navigation system information using GPS (Global Positioning System), traffic information acquired by road-to-vehicle communication, By controlling the power unit, the steering device, the brake, etc. based on the information of the peripheral monitoring system that monitors the position and movement of a person or vehicle, it is possible to automatically drive the vehicle (Japanese Patent Laid-Open No. 2016- No. 137819).
  • GPS Global Positioning System
  • an object of the present invention is to provide a driving control operation support device, a driving control operation support method, and a driving control operation support program that effectively support a retreat operation by an automatic driving control device when an emergency vehicle approaches. .
  • a first aspect of the present invention is a driving control operation that supports the operation of an automatic driving control device that makes a vehicle run while selectively using an automatic driving mode and a manual driving mode.
  • a support device or a support method wherein an emergency vehicle recognition unit or a recognition process for recognizing an approach of an emergency vehicle, a preceding vehicle detection unit or a detection process for detecting the presence of a preceding vehicle, and a state of a driver of the vehicle are determined
  • the driver state determination unit or determination process and when the vehicle is traveling in the automatic driving mode and the emergency vehicle recognition unit or the recognition process recognizes the approach of the emergency vehicle, the driver It is determined whether or not the driver is in a state where manual driving is possible based on the determination result of the driver state by the state determination unit or the determination process, and it is determined that the driver is not in a state where manual driving is possible and
  • a control unit or a control process for outputting follow-up instruction information for causing the vehicle to follow the preceding vehicle when the presence of the preceding
  • the control unit determines that the driver is in a state where manual driving is possible based on the determination result of the driver state by the driver state determination unit.
  • the switching instruction information for switching the automatic operation mode to the manual operation mode is output to the automatic operation control device.
  • the emergency vehicle recognizing unit further has a function of recognizing the passage of the emergency vehicle, and the control unit performs the emergency vehicle recognizing unit after outputting the follow-up instruction information.
  • the control unit performs the emergency vehicle recognizing unit after outputting the follow-up instruction information.
  • the vehicle when an emergency vehicle approaches during traveling in the automatic driving mode, even if the driver is in a state where manual driving is not possible, The vehicle follows the preceding vehicle and travels. For this reason, according to the evacuation action of the preceding vehicle, it is possible to slow down or stop the own vehicle by approaching the shoulder side.
  • the second aspect of the present invention when it is determined that the driver is in a state capable of manual driving based on the determination result of whether or not the driver can drive by the driver state determination unit, An instruction to switch from the automatic operation mode to the manual operation mode is issued. For this reason, the evacuation action by the driver's operation can be promptly performed thereafter.
  • the return instruction information to the automatic travel mode is output. For this reason, the follow-up operation to the preceding vehicle is canceled and the vehicle automatically returns to the autonomous automatic traveling mode. Therefore, after the emergency vehicle passes, for example, the driver can restart the traveling operation in the automatic driving mode without performing the reset operation of the automatic driving mode.
  • FIG. 1 is a diagram showing an overall configuration of a vehicle including an operation control operation support device according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a functional configuration of the operation control operation support apparatus according to the embodiment of the present invention.
  • FIG. 3 is a flowchart for explaining the processing procedure and processing contents of the support control by the driving control operation support device shown in FIG.
  • FIG. 1 is a diagram showing an overall configuration of a vehicle including an operation control operation support device according to an embodiment of the present invention.
  • the automobile on which the driver is boarded is simply referred to as a vehicle, and the automobile traveling in front of the vehicle is referred to as a preceding vehicle.
  • the vehicle 1 includes, as basic equipment, a power unit 2 including a power source and a transmission, and a steering device 3 equipped with a steering wheel 3a.
  • the power source is used as a hybrid configuration in which either an engine that generates power by burning fuel and a motor that generates driving force by electric power such as a rechargeable battery, or a combination of both.
  • the vehicle 1 is provided with an automatic driving control device 4 for executing driving control in the automatic driving mode.
  • the automatic driving control device 4 is connected to a steering sensor 11, an accelerator pedal sensor 12, a brake pedal sensor 13, a GPS receiver 14, a gyro sensor 15, and a vehicle speed sensor 16, and obtains sensing data from each of them. .
  • the automatic operation control device 4 has an operation mode selection switch 7 for selecting either the manual operation mode or the automatic operation mode. If the engine is stopped or the main power to the motor is turned off due to a break or refueling during traveling in the automatic operation mode, the driver must be in the automatic operation mode when restarting. Let me check. This confirmation may be confirmed by a touch operation by operating the operation mode selection switch 7 or displaying a confirmation icon on a display display or the like, for example.
  • the manual operation mode is a mode in which the vehicle 1 is driven mainly by a driver's manual operation.
  • driving operation support control that supports the driving operation of the driver while mainly driving the driving operation of the vehicle 1 based on only the driving mode of the vehicle 1 based on the driving operation of the driver.
  • the operation mode to be performed is also included.
  • This driving operation support control assists the steering torque so that the driver's steering becomes an appropriate steering amount based on the curvature of the curve when the vehicle 1 is traveling on the curve, for example.
  • the driving operation support control includes control for assisting a driver's accelerator operation (for example, operation of an accelerator pedal) or brake operation (for example, operation of a brake pedal), manual steering (manual operation of steering), and manual speed adjustment (speed). Adjustment manual operation) is also included.
  • a driver's accelerator operation for example, operation of an accelerator pedal
  • brake operation for example, operation of a brake pedal
  • manual steering manual operation of steering
  • speed manual speed adjustment
  • Adjustment manual operation is also included.
  • manual steering the vehicle 1 is steered mainly by the driver's operation of the steering wheel 3a.
  • the manual speed adjustment the speed of the vehicle 1 is adjusted mainly by the driver's accelerator operation or brake operation.
  • the driving operation support control does not include control for forcibly intervening in the driving operation of the driver to automatically drive the vehicle 1. That is, in the manual driving mode, the driving operation of the driver is reflected in the driving of the vehicle 1 within a preset allowable range, but the driving of the vehicle 1 is compulsory under certain conditions (for example, lane departure of the vehicle 1). Interventive control is not included.
  • the automatic operation mode is a mode that realizes an operation state in which the vehicle 1 is automatically driven along the road on which the vehicle 1 is traveling, for example.
  • the automatic driving mode includes a driving state in which the vehicle 1 is automatically driven toward a preset destination without driving by the driver. In the automatic driving mode, it is not always necessary to automatically control all of the vehicle 1, and the driving state in which the driving operation of the driver is reflected in the driving of the vehicle 1 within the preset allowable range is also included in the automatic driving mode. . That is, the automatic driving mode includes control for forcibly intervening in the traveling of the vehicle 1 under certain conditions, while reflecting the driving operation of the driver in the traveling of the vehicle 1 within a preset allowable range.
  • the automatic driving control device 4 includes the steering sensor 11, the accelerator pedal sensor 12, the brake pedal sensor 13, the GPS receiver 14, the gyro sensor 15, the vehicle speed sensor 16, and the navigation data (not shown). Automatic driving of the vehicle 1 based on route information generated by the system, traffic information acquired by road-to-vehicle communication, and information obtained by a peripheral monitoring system that monitors the position and movement of surrounding people and vehicles 1 Control.
  • This automatic control includes, for example, automatic steering (automatic steering operation) and automatic speed adjustment (automatic driving of speed).
  • Automatic steering is an operating state in which the steering device 3 is automatically controlled.
  • Automatic steering includes LKA (Lane Keeping Assist).
  • LKA Li Keeping Assist
  • the LKA automatically controls the steering device 3 so that the vehicle 1 does not deviate from the vehicle lane even when the driver does not perform the steering operation.
  • the driver's steering operation may be reflected in the steering of the vehicle 1 in a range where the vehicle 1 does not deviate from the vehicle lane (allowable range).
  • automatic steering is not limited to LKA.
  • Automatic speed adjustment is an operating state in which the speed of the vehicle 1 is automatically controlled.
  • Automatic speed adjustment includes ACC (Adaptive Cruise Control).
  • ACC is, for example, when there is no preceding vehicle ahead of the vehicle 1 and performs constant speed control that causes the vehicle 1 to travel at a constant speed at a preset speed, and there is a preceding vehicle ahead of the vehicle 1.
  • the control is performed in a follow-up mode in which the vehicle speed of the vehicle 1 is adjusted in accordance with the inter-vehicle distance from the preceding vehicle.
  • the automatic drive control device 4 causes the vehicle 1 to travel in the follow mode.
  • the automatic operation control device 4 gives priority to the driver's manual operation from the viewpoint of safety and convenience even when the ACC is being executed. For example, when the driver performs a brake operation (for example, operation of a brake pedal), the ACC is once released and the vehicle 1 is decelerated, or there is an accelerator operation (for example, operation of the accelerator pedal) by the driver. For example, the vehicle 1 can be accelerated to a preset maximum permissible speed (for example, the maximum speed legally determined on the running road). Note that the automatic speed adjustment is not limited to ACC, and includes CC (Cruise Control).
  • the monitoring system includes a driver camera 6 for imaging the driver's face and body state, and a driver state determination unit 21 that determines whether the driver can drive from the driver's face image and body image.
  • An operation mode switching instruction unit 22 for instructing switching of the operation mode between the manual operation mode and the automatic operation mode from the determination result by the driver state determination unit 21 is provided.
  • the driver camera 6 is installed at a location where the driver's face can be imaged.
  • the driver camera 6 is disposed on the dashboard, the center of the steering, the side of the speed meter, the front pillar, etc., and images the upper body including the driver's face.
  • the monitoring system is provided with a wake-up device 26 that wakes up the driver using a voice, a warning sound, vibration of the driver's seat, or the like in order to wake up the driver as necessary.
  • the vehicle 1 of the present embodiment further includes an operation control operation support device 5, an emergency vehicle recognition unit 8, and a preceding vehicle detection unit 9.
  • the emergency vehicle recognition unit 8 has a function of recognizing an emergency vehicle approaching from behind, and includes a rear camera 33, a distance measuring sensor 34, a microphone 35, a retraction instruction reception unit 36, and an approach determination unit 37. Have.
  • the rear camera 33 captures an emergency vehicle that is approaching from behind and has a warning light lit, and outputs the captured image information to the approach determination unit 37. In addition, the rear camera 33 may divert the parking camera used at the time of parking.
  • the rear camera 33 may have a structure including an imaging optical system with one optical path if the image is simply viewed, but may be an imaging optical system having a parallax with two optical paths when used as a distance measuring sensor. Good.
  • the ranging sensor 34 repeatedly measures the distance to the emergency vehicle in time series using the rear camera 33 having parallax and the millimeter wave radar.
  • the distance measurement result of the distance measurement sensor 34 is input to the approach determination unit 37.
  • the approach determination unit 37 calculates the speed at which the emergency vehicle approaches from the measured distance change, and adjusts the timing of retreat.
  • the rear camera 33 can be used for ranging from a short distance to a middle distance.
  • the millimeter wave radar is suitable for detecting a target portion at a long distance.
  • an infrared laser sensor may be used in place of the millimeter wave radar as long as it is an infrared laser sensor capable of detecting a mid-range distance.
  • the rear camera 33 with parallax may not be able to measure distance due to sudden changes in illuminance at tunnel entrances, fog, or heavy rain, because the emergency vehicle cannot be correctly identified from the captured image due to camera performance. The For this reason, in order to obtain certainty, it is preferable to arrange a dedicated distance measuring sensor such as a millimeter wave radar separately from the rear camera 33.
  • the microphone 35 is a sound collection unit that collects siren sounds generated by emergency vehicles in an emergency.
  • the siren sound signal output from the microphone 35 is input to the approach determination unit 37.
  • the approach determination unit 37 detects that the emergency vehicle is approaching from behind by the change in the volume of the siren sound and the change in the wavelength of the sound (Doppler effect). Accordingly, even when a large vehicle such as a bus or a freight car exists behind and the emergency vehicle cannot be recognized by the distance measuring sensor 34 and the rear camera 33, the approach of the emergency vehicle from the rear can be recognized. In addition, the approach of the emergency vehicle from the front can also be detected by making the microphone 35 non-directional.
  • the approach determination unit 37 When the approach determination unit 37 detects that an emergency vehicle is approaching from behind, the approach determination unit 37 outputs an approach signal of the emergency vehicle to the control unit 23.
  • the evacuation instruction receiving unit 36 receives the evacuation instruction signal and inputs the received signal to the approach determination unit 37 when the emergency vehicle broadcasts the evacuation instruction signal by radio.
  • the approach determination unit 37 also has a function of recognizing the approach of an emergency vehicle by receiving the save request information.
  • an emergency vehicle approaching from the front can be recognized by using a captured image of a front camera included in the preceding vehicle detection unit 9. It is.
  • the preceding vehicle detection unit 9 detects the presence or absence of a preceding vehicle and the inter-vehicle distance and speed when there is a preceding vehicle, and includes a front camera 31 and a distance sensor 32.
  • the front camera 31 performs distance measurement at a short distance in the same manner as the rear camera 33 described above.
  • the distance measuring sensor 32 is equivalent to the distance measuring sensor 34, and a millimeter wave radar or an infrared laser sensor is used.
  • FIG. 2 is a block diagram illustrating a function of supporting the driving control operation of the driving control operation support device 5.
  • the driving control operation support device 5 has a function of supporting the driving control operation by the automatic driving control device 4. That is, the operation control operation support device 5 includes a control unit 20, an information storage unit 25, and an interface unit 27.
  • the interface unit 27 transmits and receives signals to and from the automatic driving control device 4, the driver camera 6, the driving mode selection switch 7, the emergency vehicle recognition unit 8, the preceding vehicle detection unit 9, and the awakening device 26.
  • the information storage unit 25 is a non-volatile memory that can be written and read as needed, such as SSD (Solid State Drive) or HDD (Hard Disk Drive), and a random time memory such as RAM (Random Access Memory), as storage media.
  • a facial feature pattern information storage unit 44 as a storage area used for carrying out the present embodiment.
  • the face feature pattern information storage unit 44 stores face feature reference pattern information used by the driver state determination unit 21 to determine a face feature pattern.
  • the control unit 20 includes a CPU (Central Processing Unit) and a program memory constituting a computer, and as a control function necessary for carrying out the present embodiment, a driver state determination unit 21 and an operation mode switching instruction unit 22 are provided. And a control unit 23. All of these control functions are realized by causing the CPU to execute a program stored in the program memory.
  • CPU Central Processing Unit
  • program memory constituting a computer
  • the driver state determination unit 21 includes a face image processing unit 41, a face feature pattern extraction unit 42, and a face feature pattern determination unit 43.
  • the face image processing unit 41 captures image information including the driver's face captured by the driver camera 6 at a predetermined cycle via the interface unit 27. Then, the image information including the captured face is digitally processed to generate face image data.
  • the face feature pattern extraction unit 42 obtains features such as eyelids, pupils, and mouth shapes from the face image data when awakening, napping, and sleepiness (for example, when yawning). Extract.
  • the face feature pattern determination unit 43 compares the extracted features with the driver's face feature reference pattern stored in advance in the face feature pattern information storage unit of the information storage unit 25 to determine the driver's state. judge. As the state of the driver to be determined, for example, an arousal state, a nap state, a drowsiness state, and an aside look state are set. In addition, the face feature pattern determination unit 43 is incapable of driving on the assumption that an image in which a face is not imprinted is in a state where the person has fallen out of consciousness or has left the driver's seat. It may be determined that
  • the operation mode switching instruction unit 22 instructs the automatic operation control device 4 to switch between the manual operation mode and the automatic operation mode.
  • switching from the manual operation mode to the automatic operation mode is performed by the driver operating the operation mode selection switch 7.
  • Switching from the automatic operation mode to the manual operation mode is performed according to the determination result of the driver state determination unit 21 when the operation is performed by the driver or when the automatic operation mode cannot be maintained.
  • the apparatus 4 is instructed to switch the operation mode.
  • the switching operation by the driver is preferable, and the awakening device 26 gives a warning sound or voice or vibrations to the driver's seat to wake up the driver and switch the driving operation by the driver himself. Prompt.
  • the control unit 23 When the emergency vehicle recognizing unit 8 recognizes the approach of the emergency vehicle, the control unit 23 operates the driver based on the information indicating the driver state determined by the driver state determining unit 21. Determine whether it is possible or impossible. The control unit 23 determines the presence or absence of a preceding vehicle based on the detection result by the preceding vehicle detection unit 9. Then, the control unit 23 determines whether to follow the preceding vehicle based on the determination result of whether the driver is capable of driving or not, the determination result of the presence / absence of the preceding vehicle, Information for instructing switching to the operation mode is selectively generated, and the generated instruction information is output to the automatic operation control device 4. The control unit 23 generates information instructing the return to the automatic operation mode when the emergency vehicle recognition unit 8 recognizes the passage of the emergency vehicle after outputting the follow-up instruction information, and the automatic operation control device 4 is also provided.
  • step S1 the driving control operation support device 5 first performs emergency vehicle operation based on the recognition result of the emergency vehicle recognition unit 8 in step S2 under the control of the control unit 23. The presence or absence of approach is determined. In this state, if it is determined that the emergency vehicle is approaching, the control unit 23 next performs manual operation based on the driver state determination result by the driver state determination unit 21 in step S3. Determine if it is in a possible state. When it is determined that the driver is in a state where manual driving is possible, in step S4, switching instruction information for switching to the manual driving mode is generated, and the switching instruction information is transmitted from the interface unit 27 to the automatic driving control device 4. Output.
  • the automatic operation control device 4 can switch the operation mode from the automatic operation mode to the manual operation mode, and thereafter the driver can perform a evacuation operation such as bringing the vehicle to the roadside belt or the like and stopping the vehicle manually.
  • the control part 23 determines the presence or absence of a preceding vehicle based on the detection result by the preceding vehicle detection part 9 in step S5. The determination of the presence or absence of the preceding vehicle is performed in consideration of the inter-vehicle distance and the relative speed with the preceding vehicle.
  • control unit 23 When it is determined that the preceding vehicle exists, the control unit 23 generates instruction information for causing the host vehicle to follow the preceding vehicle in step S6, and outputs the following instruction information from the interface unit 27 to the automatic driving control device 4. To do. Information indicating the inter-vehicle distance to the preceding vehicle to be followed and the relative speed is inserted into the follow-up instruction information.
  • the automatic driving control device 4 performs control so that the traveling state of the vehicle follows the preceding vehicle according to the following instruction information. Therefore, if the preceding vehicle performs a retreat operation such as stopping the vehicle by approaching the roadside belt according to the approach of the emergency vehicle, the host vehicle follows the preceding vehicle and stops at the roadside belt.
  • the control unit 23 monitors the passage of the emergency vehicle in step S7 after the output of the follow-up instruction information. The passing of the emergency vehicle is performed based on the recognition result of the emergency vehicle by the emergency vehicle recognition unit 8. If it is determined in step S7 that the emergency vehicle has passed the side of the host vehicle, the control unit 23 monitors the start of the preceding vehicle based on the detection result by the preceding vehicle detection unit 9 in step S8. When the start of the preceding vehicle is confirmed, information for instructing the return to the automatic operation mode is generated in step S9, and the return instruction information is output from the interface unit 27 to the automatic operation control device 4.
  • the dynamic operation control device 4 returns to the automatic operation mode before changing the operation mode to the follow-up mode, and resumes the automatic operation control operation in the automatic operation mode. Therefore, the vehicle automatically returns to the traveling operation in the automatic driving mode even if the driver performs the start operation of the vehicle in the manual driving mode or does not reset the automatic driving mode.
  • the control unit 23 determines that it is difficult to follow the preceding vehicle, and outputs an operation instruction to the awakening device 26 in step S10.
  • the awakening operation for example, generation of sound or voice message, light emission, vibration of a vibrator provided in a seat, or the like is used.
  • the awakening operation to the driver by the awakening device 26 in step S10 is from when the emergency vehicle in step S2 described above is detected until it is determined whether the driver in step S3 can cope with the manual mode. It may be operated in between.
  • the automatic driving control measure 4 is switched to the manual driving mode, and after that, the vehicle can be withdrawn by a manual driving operation by the driver. If the driver does not wake up even after performing the above-mentioned wake-up operation for a certain time, a driving stop instruction signal is output from the driving control operation support device 5 to the automatic driving control device 4. As a result, the vehicle stops at the roadside or the like under the control of the automatic driving control device 4.
  • the preceding vehicle exists.
  • the own vehicle travels following the preceding vehicle. For this reason, according to the evacuation action of the preceding vehicle, it is possible to slow down or stop the own vehicle by approaching the shoulder side.
  • an instruction to switch from the automatic operation mode to the manual operation mode is issued. For this reason, the evacuation action by the driver's operation can be promptly performed thereafter.
  • the return instruction information to the automatic travel mode is output. For this reason, the follow-up operation to the preceding vehicle is canceled and the vehicle automatically returns to the autonomous automatic traveling mode. Therefore, after the emergency vehicle passes, for example, the driver can restart the traveling operation in the automatic driving mode without performing the reset operation of the automatic driving mode.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.
  • a driving operation support device that supports the operation of an automatic driving control device that selectively uses an automatic driving mode and a manual driving mode to drive a vehicle, and includes a hardware processor and a memory, The hardware processor is Recognize the approaching emergency vehicle, Detect the presence of the preceding vehicle, Determining the state of the driver of the vehicle; When the approach of the emergency vehicle is recognized by the emergency vehicle recognition unit while the vehicle is traveling in the automatic driving mode, based on the determination result of the driver state by the driver state determination unit It is determined whether or not the driver is in a state where manual driving is possible, it is determined that the driver is not in a state where manual driving is possible, and the vehicle is detected when the preceding vehicle detecting unit detects the presence of the preceding vehicle.
  • a driving control operation support device configured to output tracking instruction information for causing the vehicle to follow the preceding vehicle to the automatic driving control device.
  • An emergency vehicle recognition process for recognizing the approach of an emergency vehicle using at least one hardware processor;
  • a preceding vehicle detection process for detecting the presence of a preceding vehicle using at least one hardware processor;
  • a driver state determination process for determining a state of the driver of the vehicle using at least one hardware processor;
  • the driver state determination process Based on the determination result of the driver state, it is determined whether or not the driver is in a state where manual driving is possible.
  • a control process for outputting follow-up instruction information for causing the vehicle to follow the preceding vehicle when the presence is detected;
  • a driving control operation support method comprising:

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

自動運転モードでは、緊急自動車に対する退避には十分な検討や対策はなされていない。運転動作支援装置は、自動運転モードによる走行時に緊急車両が検出された際に、運転者状態判定部による運転者状態が手動運転モードに対応不可の判定に対し、制御部は車両の前方に先行車両が存在していた場合に、車両を先行車両の退避行動に追従して退避させ緊急車両を通過させる。

Description

運転制御動作支援装置、運転制御動作支援方法及び運転制御動作支援プログラム
 本発明は、自動運転モードと手動運転モードとを選択的に使用して車両を走行動作させる自動運転制御装置の動作を支援する運転制御動作支援装置、運転制御動作支援方法及び運転制御動作支援プログラムに関する。
 近年、乗用車等の車両走行の運転モードとして、運転者による手動運転モード以外に、運転者の運転操作によらず予め設定された経路に沿って車両を走行させる自動運転モードを備えた自動運転制御装置の実用化が進められ、実際の道路上における試験走行の段階に至っている。
 自動運転モードは、地図情報と現在位置情報とに自動車の走行制御の組み合わせから成り立ち、例えば、GPS(Global Positioning System)を利用したナビゲーションシステムの情報や、路車間通信により取得される交通情報、周辺の人や車両の位置と動きを監視する周辺モニタリングシステムの情報をもとに、パワーユニットや操舵装置、ブレーキ等を制御することで、車両の自動運転を可能にするものである(特開2016-137819号公報を参照)。
 通常、車両は、道路上を走行中に緊急車両が接近した場合に、原則的に道路の左端に退避して徐行又は停車して通過させる義務がある。 
 運転者による手動運転モードであれば、運転者の判断に基づく操作により、道路の路肩又は路側帯に車両を寄せて、緊急車両を通過させることは容易である。しかしながら、前述した自動運転モードにおける、緊急車両の接近に対する退避動作については、十分な検討がなされていないのが現状である。
 そこで、本発明は、緊急車両の接近時の自動運転制御装置による退避動作を効果的に支援する運転制御動作支援装置、運転制御動作支援方法及び運転制御動作支援プログラムを提供することを目的とする。
 上記目的を達成するために、本発明に係る第1の態様は、自動運転モードと手動運転モードとを選択的に使用して車両を走行動作させる自動運転制御装置の動作を支援する運転制御動作支援装置又は支援方法であって、緊急車両の接近を認識する緊急車両認識部又は認識過程と、先行車両の存在を検出する先行車両検出部又は検出過程と、前記車両の運転者の状態を判定する運転者状態判定部又は判定過程と、前記車両が前記自動運転モードにより走行している状態で、前記緊急車両認識部又は認識過程により前記緊急車両の接近が認識された場合に、前記運転者状態判定部又は判定過程による運転者状態の判定結果をもとに前記運転者が手動運転可能な状態にあるか否かを判定し、手動運転可能な状態にないと判定され、かつ前記先行車両検出部又は検出過程により前記先行車両の存在が検出された場合に、前記車両を前記先行車両に追従させるための追従指示情報を前記自動運転制御装置へ出力する制御部又は制御過程とを備えるようにしたものである。
 この発明に係る第2の態様は、前記制御部が、前記運転者状態判定部による運転者状態の判定結果をもとに前記運転者が手動運転可能な状態にあると判定された場合には、前記自動運転モードを前記手動運転モードに切り替えるための切替指示情報を前記自動運転制御装置へ出力するようにしたものである。
 この発明に係る第3の態様は、前記緊急車両認識部が、前記緊急車両の通過を認識する機能をさらに有し、前記制御部が、前記追従指示情報の出力後に、前記緊急車両認識部により前記緊急車両の通過が認識された場合に、前記先行車両への追従動作を解除して自律的な自動走行モードに復帰させるための復帰指示情報を前記自動運転制御装置へ出力するようにしたものである。
 この発明の第1の態様によれば、自動運転モードによる走行中に緊急車両が接近した際に、運転者が手動運転不可能な状態であっても、先行車両が存在する場合には、自身の車両は先行車両に追従して走行する。このため、先行車両の退避行動に従い、自身の車両を路肩側に寄って徐行又は停車させることができる。
 この発明の第2の態様によれば、運転者状態判定部によって運転者自身で運転可能か否かの判定結果を基づき、運転者が手動運転可能な状態にあると判定された場合には、自動運転モードから手動運転モードに切り替える指示が行われる。このため、以後速やかに運転者の操作による退避行動が可能となる。
 この発明の第3の態様によれば、追従指示情報の出力後に、緊急車両の通過が認識されると、自動走行モードへの復帰指示情報が出力される。このため、先行車両への追従動作は解除され、自律的な自動走行モードに自動的に復帰する。従って、緊急車両の通過後に、例えば運転者が自動走行モードの再設定操作を行わなくても、自動運転モードによる走行動作を再開することが可能となる。
図1は、この発明の一実施形態に係る運転制御動作支援装置を備えた車両の全体構成を示す図である。 図2は、この発明の一実施形態に係る運転制御動作支援装置の機能構成を示すブロック図である。 図3は、図2に示した運転制御動作支援装置による支援制御の処理手順と処理内容を説明するためのフローチャートである。
 以下、図面を参照して本発明の実施形態について詳細に説明する。 
 図1は、この発明の一実施形態に係る運転制御動作支援装置を備えた車両の全体構成を示す図である。以下の説明において、運転者が乗車している自動車を単に車両と称し、この車両の前方を走行する自動車を先行車両と称する。
 車両1は、基本設備として、動力源および変速装置を含むパワーユニット2と、ステアリングホイール3aが装備された操舵装置3とを備えている。動力源は、燃料を燃焼して動力を発生するエンジン及び、充電池等の電力により駆動力を発生するモータのいずれか一方、又はそれら両方を組み合わせたハイブリッド構成として用いている。
 さらに、車両1は、自動運転モードによる運転制御を実行するための自動運転制御装置4を備えている。自動運転制御装置4には、ステアリングセンサ11と、アクセルペダルセンサ12と、ブレーキペダルセンサ13と、GPS受信機14と、ジャイロセンサ15と、車速センサ16が接続され、それぞれからセンシングデータを取得する。
 自動運転制御装置4は、手動運転モードと自動運転モードのいずれかの運転モードを選択するための運転モード選択スイッチ7を有している。尚、自動運転モードによる走行途中で休憩や給油等でエンジンを停止又はモータへの主電源をオフさせた場合には、再始動時に、運転者に対して自動運転モードに設定されていることを確認させる。この確認は、例えば、運転モード選択スイッチ7を操作させるか、表示ディスプレイ等に確認アイコンを表示させて、タッチ操作により確認させてもよい。
 まず、手動運転モードは、運転者の手動による運転操作を主体として車両1を走行させるモードである。手動運転モードには、例えば、運転者の運転操作のみに基づいて車両1を走行させる動作モードを主体として、運転者の運転操作を主体としながら運転者の運転操作を支援する運転操作支援制御を行う動作モードも含まれものとする。
 この運転操作支援制御は、例えば、車両1のカーブ走行時にカーブの曲率に基づいて運転者の操舵が適切な操舵量となるように操舵トルクをアシストする。また運転操作支援制御には、運転者のアクセル操作(例えばアクセルペダルの操作)又はブレーキ操作(例えばブレーキペダルの操作)を支援する制御と、手動操舵(操舵の手動運転)および手動速度調整(速度調整の手動運転)も含まれる。手動操舵は、運転者のステアリングホイール3aの操作を主体として車両1の操舵を行う。手動速度調整は、運転者のアクセル操作又はブレーキ操作を主体として車両1の速度調整を行う。
 なお、運転操作支援制御には、運転者の運転操作に強制的に介入して、車両1を自動走行させる制御は含まれない。すなわち、手動運転モードには、予め設定された許容範囲において運転者の運転操作を車両1の走行に反映させるが、一定条件(例えば車両1の車線逸脱等)の下で車両1の走行に強制的に介入する制御は含まれない。
 これに対して、自動運転モードは、例えば、車両1の走行する道路に沿って自動で車両1を走行させる運転状態を実現するモードである。自動運転モードには、運転者が運転操作をすることなく、予め設定された目的地に向かって自動的に車両1を走行させる運転状態が含まれる。自動運転モードは、必ずしも車両1の全ての制御を自動で行う必要はなく、予め設定された許容範囲において、運転者の運転操作を車両1の走行に反映する運転状態も自動運転モードに含まれる。すなわち、自動運転モードには、予め設定された許容範囲において運転者の運転操作を車両1の走行に反映させるが、一定条件の下で車両1の走行に強制的に介入する制御が含まれる。
 自動運転制御装置4は、前述したステアリングセンサ11と、アクセルペダルセンサ12と、ブレーキペダルセンサ13と、GPS受信機14と、ジャイロセンサ15と、車速センサ16とからのセンシングデータと、図示しないナビゲーションシステムで生成される経路情報や、路車間通信により取得される交通情報、周辺の人や車両1の位置と動きを監視する周辺モニタリングシステムにより得られる情報をもとに、車両1の走行を自動制御する。
 この自動制御には、例えば、自動操舵(操舵の自動運転)と自動速度調整(速度の自動運転)がある。自動操舵は、操舵装置3を自動で制御する運転状態である。自動操舵にはLKA(Lane Keeping Assist)が含まれる。LKAは、例えば、運転者がステアリング操作をしない場合であっても、車両1が車両通行帯から逸脱しないように自動で操舵装置3を制御する。尚、LKAの実行中であっても、車両1が車両通行帯を逸脱しない範囲(許容範囲)において運転者のステアリング操作を車両1の操舵に反映してもよい。なお、自動操舵はLKAに限らない。
 自動速度調整は、車両1の速度を自動で制御する運転状態である。自動速度調整にはACC(Adaptive Cruise Control)が含まれる。ACCとは、例えば、車両1の前方に先行車が存在しない場合は、予め設定された設定速度で車両1を定速走行させる定速制御を行い、車両1の前方に先行車が存在する場合には先行車との車間距離に応じて車両1の車速を調整する追従モードにより制御を行うものである。後述する運転制御動作支援装置5から追従指示情報を受信した場合、自動運転制御装置4は上記追従モードにより車両1を走行させる。
 自動運転制御装置4は、ACCを実行中であっても、安全面及び利便性の点から運転者の手動操作が優先される。例えば、運転者によるブレーキ操作(例えばブレーキペダルの操作)された場合には、ACCは、一旦、解除されて車両1が減速され、又は、運転者によるアクセル操作(例えばアクセルペダルの操作)があれば、予め設定された最大許容速度(例えば走行中の道路において法的に定められた最高速度)まで、車両1を加速させることができる。なお、自動速度調整は、ACCに限定されず、CC(Cruise Control:定速制御)等も含まれる。
 手動運転モードから自動運転モードへの切り替えは、原則的には運転者が行う。また、自動運転モードから手動運転モードに切り替える場合に、運転者が運転モード選択スイッチ7を操作して、自ら切り替える場合には問題とはならない。しかし、自動運転モードにより走行ができない、例えば、未整備等で自動運転モードに対応できない道路に進入する事態があれば、自動運転モードから手動運転モードに切り替える必要がある。この時、運転者がうたた寝等により手動運転モードに切り替えても運転操作に直ちに移れないことも想定される。このため、手動運転モードへ切り替わる際に、運転者が直ちに手動運転モードに対応できるか否かを監視する監視システムを備えている。この監視システムは、自動運転のシステム自体が対応できない場合には、自動運転制御装置4に車両1が自動的に走行を止めて停車するように指示する。
 上記監視システムは、運転者の顔や身体状態を撮像するための運転者カメラ6と、運転者の顔画像や身体画像から運転者が運転できるか否かを判定する運転者状態判定部21と、運転者状態判定部21による判定結果から、手動運転モードと自動運転モードとの間の運転モードの切り替えの指示を行う運転モード切替指示部22とを備えている。運転者カメラ6は、運転者の顔を撮像できる箇所に設置され、例えば、ダッシュボード上、ステアリング中央、速度メータ脇、フロントピラー等に配置して、運転者の顔を含む上半身を撮像する。また、監視システムは、運転者を必要に応じて覚醒させるために、音声、警告音又は運転席の振動などを用いて覚醒させる覚醒装置26が設けられている。
 ところで、本実施形態の車両1は、運転制御動作支援装置5と、緊急車両認識部8と、先行車両検出部9とをさらに備えている。 
 緊急車両認識部8は、後方から接近する緊急車両を認識する機能を有するもので、後方カメラ33と、測距センサ34と、マイクロフォン35と、退避指示受信部36と、接近判断部37とを有している。
 後方カメラ33は、後方から接近する、警告灯を点灯している緊急車両を撮像し、撮像された画像情報を接近判断部37へ出力する。なお、後方カメラ33は、駐車時に利用される駐車用カメラを流用してもよい。なお、後方カメラ33は、単に画像を見るのであれば、1つの光路による撮像光学系を備える構造でもよいが、測距センサとして利用するのであれば、2つの光路による視差を有する撮像光学系でもよい。
 測距センサ34は、視差を有する後方カメラ33およびミリ波レーダを用いて緊急車両までの距離を時系列的に繰り返し測定する。測距センサ34の測距結果は、接近判断部37に入力される。接近判断部37は、測距された距離の変化から緊急車両が近づく速度を算出して、退避するタイミングを調整する。
 後方カメラ33は、近距離から中距離までの測距に用いることができる。ミリ波レーダは、遠距離にある対象部の検知に適している。また、中遠距離を検知できる赤外線レーザセンサであれば、ミリ波レーダに代わって、赤外線レーザセンサを用いてもよい。なお、視差を持つ後方カメラ33は、トンネル出入り口等の照度の急な変化や霧や大雨の際には、カメラの性能により撮像画像から緊急車両が正しく識別できず、測距できない事態も想定される。このため、確実性を求めるならば、後方カメラ33とは別に、ミリ波レーダ等の専用の測距センサを並設することが好ましい。
 マイクロフォン35は、緊急車両が緊急時に発するサイレン音を集音する集音部である。マイクロフォン35から出力されたサイレン音の信号は接近判断部37に入力される。接近判断部37は、上記サイレン音の音量変化と音の波長変化(ドップラー効果)により、緊急車両が後方から接近していることを検知する。これにより、後方にバスや貨物車等の大型車が存在し、測距センサ34及び後方カメラ33により緊急車両を認識できない場合でも、後方からの緊急車両の接近を認識することができる。なお、マイクロフォン35を無指向性とすることにより、前方からの緊急車両の接近も検知することができる。
 接近判断部37は、後方から緊急車両が近づいてきていることを検知すると、緊急車両の接近信号を制御部23へ出力する。 
 退避指示受信部36は、緊急車両が退避指示信号を無線放送している場合に、当該待避指示信号を受信してその受信信号を接近判断部37に入力する。接近判断部37は、上記待避要請情報を受信することで、緊急車両の接近を認識する機能も有する。
 なお、以上の説明では、後方から緊急車両が接近する例について説明したが、先行車両検出部9が有する前方カメラの撮像画像を利用することで、前方から接近する緊急車両を認識することも可能である。
 先行車両検出部9は、先行車両の有無と、先行車両が存在する場合にその車間距離と速度を検出するもので、前方カメラ31と、距離センサ32とを有している。前方カメラ31は、前述した後方カメラ33と同様に、近距離における距離測定を行う。測距センサ32は、測距センサ34と同等で、ミリ波レーダや赤外線レーザセンサが用いられる。
 図2は、運転制御動作支援装置5の運転制御動作を支援する機能を示すブロック図である。運転制御動作支援装置5は、上記自動運転制御装置4による運転制御動作を支援する機能を有する。 
 すなわち、運転制御動作支援装置5は、制御ユニット20と、情報記憶部25と、インターフェース部27とを備えている。インターフェース部27は、自動運転制御装置4、運転者カメラ6、運転モード選択スイッチ7、緊急車両認識部8、先行車両検出部9および覚醒装置26との間で、それぞれ信号の送受信を行う。
 情報記憶部25は、記憶媒体として、例えばSSD(Solid State Drive)やHDD(Hard Disk Drive)等の随時書き込みおよび読み出しが可能な不揮発性メモリと、RAM(Random Access Memory)等の随時書き込みおよび読み出しが可能な揮発性メモリとを使用したもので、本実施形態を実施するために使用する記憶領域として、顔特徴パターン情報記憶部44を有している。顔特徴パターン情報記憶部44は、運転者状態判定部21が顔特徴パターンを判定するために用いる顔特徴基準パターン情報を記憶する。
 制御ユニット20は、コンピュータを構成するCPU(Central Processing Unit)およびプログラムメモリを有し、本実施形態を実施するために必要な制御機能として、運転者状態判定部21と、運転モード切替指示部22と、制御部23とを備えている。これらの制御機能はいずれも上記プログラムメモリに格納されたプログラムを上記CPUに実行させることにより実現される。
 運転者状態判定部21は、顔画像処理部41と、顔特徴パターン抽出部42と、顔特徴パターン判定部43とを備える。顔画像処理部41は、運転者カメラ6が所定の周期で撮像した運転者の顔を含む画像情報を、インターフェース部27を介して取り込む。そして、取り込んだ上記顔を含む画像情報をデジタル処理して顔画像データを生成する。
 顔特徴パターン抽出部42は、顔画像データから覚醒時、うたた寝時および眠気がある時(例えばあくびをしている時)のそれぞれの特徴、例えば眼のまぶた、瞳孔、口の形状等の特徴を抽出する。
 顔特徴パターン判定部43は、上記抽出された各特徴を、情報記憶部25の顔特徴パターン情報記憶部に予め記憶されている運転者の顔特徴基準パターンと比較して、運転者の状態を判定する。判定される運転者の状態としては、例えば、覚醒状態、うたた寝状態、眠気がある状態、及び脇見状態とする。また、顔特徴パターン判定部43は、顔が写し込まれていない画像においては、気を失って倒れている状態、運転席を離席している状態と想定して、運転することができない状態であると判定してもよい。
 運転モード切替指示部22は、手動運転モードと自動運転モードとの切り替えを自動運転制御装置4へ指示する。運転モード切り替えに際しては、手動運転モードから自動運転モードへの切り替えは、運転者が運転モード選択スイッチ7を操作して行われる。自動運転モードから手動運転モードへの切り替えは、運転者の操作により行われる場合と、自動運転モードが維持できない事態となった場合には、運転者状態判定部21の判定結果に従い、自動運転制御装置4へ運転モードの切り替えが指示される。原則的には、運転者による切り替え操作が好ましく、覚醒装置26により、警告音や音声又は、運転席に振動等を与えて、運転者を覚醒させて、運転者自身で運転操作を切り替えるように促す。
 制御部23は、上記緊急車両認識部8により緊急車両の接近が認識された場合に、上記運転者状態判定部21により判定された運転者の状態を表す情報をもとに運転者が運転操作可能な状態か不可能な状態かを判定する。また制御部23は、上記先行車両検出部9による検出結果をもとに先行車両の有無を判定する。そして制御部23は、上記運転者が運転操作可能な状態か不可能な状態かの判定結果と、上記先行車両の有無の判定結果に基づいて、先行車両への追従を指示する情報と、手動運転モードへの切り替えを指示する情報を選択的に生成し、当該生成した指示情報を自動運転制御装置4へ出力する。また制御部23は、上記追従指示情報の出力後に、緊急車両認識部8により緊急車両の通過が認識された場合に、自動運転モードへの復帰を指示する情報を生成して、自動運転制御装置4へ出力する機能も有する。
 次に、図3に示すフローチャートを参照して、運転制御動作支援装置5による、緊急車両の接近時の対応動作について説明する。このフローチャートは、制御手順と制御内容を示している。 
 まず、ステップS1により自動運転モードにより走行している状態で、運転制御動作支援装置5は、制御部23の制御の下、先ずステップS2により緊急車両認識部8の認識結果をもとに緊急車両の接近の有無を判定する。この状態で、緊急車両が接近していると判定されると、制御部23は、次にステップS3により、運転者状態判定部21による運転者状態判定結果をもとに、運転者が手動運転可能な状態にあるか否かを判定する。そして、運転者が手動運転可能な状態にあると判定された場合には、ステップS4において手動運転モードへの切替指示情報を生成し、この切替指示情報をインターフェース部27から自動運転制御装置4へ出力する。
 この結果自動運転制御装置4は、運転モードを自動運転モードから手動運転モードに切替え、以後運転者は手動操作により車両を路側帯等に寄せて停止させる等の待避操作を行うことができる。 
 一方、上記ステップS3において、運転者による手動運転操作が不可能な状態にあると判定されたとする。この場合制御部23は、ステップS5において、先行車両検出部9による検出結果をもとに先行車両の有無を判定する。この先行車両の有無の判定は、先行車両との車間距離と相対速度を考慮して行われる。
 先行車両が存在すると判定されると、制御部23はステップS6において、自車両を先行車両に追従させるための指示情報を生成し、この追従指示情報をインターフェース部27から自動運転制御装置4へ出力する。上記追従指示情報には、追従対象の先行車両までの車間距離と相対速度を表す情報が挿入される。
 この結果自動運転制御装置4は、上記追従指示情報に従い、車両の走行状態を先行車両に追従させるように制御する。従って、先行車両が緊急車両の接近に応じて車両を路側帯等に寄せて停止させる等の待避操作を行えば、自車両も上記先行車両に追従して路側帯等に寄せて停止する。
 制御部23は、上記追従指示情報の出力後において、ステップS7により緊急車両の通過を監視する。この緊急車両の通過は、緊急車両認識部8による緊急車両の認識結果に基づいて行われる。上記ステップS7において、緊急車両が自車両の横を通過したことが判定されると、制御部23はステップS8により、先行車両検出部9による検出結果に基づいて先行車両の発進を監視する。そして、先行車両の発進が確認されると、ステップS9において自動運転モードへの復帰を指示する情報を生成し、この復帰指示情報をインターフェース部27から自動運転制御装置4へ出力する。
 この結果、動運転制御装置4は、運転モードを上記追従モードに変更する前の自動運転モードに復帰させ、当該自動運転モードによる自動運転制御動作を再開する。従って、運転者が手動運転モードによる車両の発進操作を行うか、または自動運転モードを再設定しなくても、車両は自動的に自動運転モードによる走行動作に復帰する。
 なお、上記ステップS5において先行車両が存在しないと判定されると、制御部23は先行車両への追従走行は困難であると判断し、ステップS10において覚醒装置26に対し動作指示を出力する。覚醒動作としては、例えば鳴音や音声メッセージの発生、発光、座席に設けた振動子の振動等が用いられる。尚、ステップS10の覚醒装置26による運転者への覚醒動作は、前述したステップS2の緊急車両を検知してから、ステップS3の運転者が手動モードに対応できる否かを判定しているまでの間に動作させてもよい。
 上記覚醒動作により運転者が覚醒したことが確認されると、自動運転制御措置4は手動運転モードに切り替わり、以後運転者による手動運転操作により車両を待避させることが可能となる。 
 なお、上記覚醒動作を一定時間行っても運転者が覚醒しなかった場合には、運転制御動作支援装置5から自動運転制御装置4に対し強制停止の指示信号が出力される。この結果、自動運転制御装置4の制御の下、車両は路側部等に停止する。
 以上詳述したように一実施形態によれば、自動運転モードによる走行中に緊急車両が接近した際に、運転者が手動運転不可能な状態であっても、先行車両が存在する場合には自身の車両は先行車両に追従して走行する。このため、先行車両の退避行動に従い、自身の車両を路肩側に寄って徐行又は停車させることができる。 
 また、運転者が自身で手動運転可能な状態にある場合には、自動運転モードから手動運転モードに切り替える指示が行われる。このため、以後速やかに運転者の操作による退避行動が可能となる。
 さらに、追従指示情報の出力後に、緊急車両の通過が認識されると、自動走行モードへの復帰指示情報が出力される。このため、先行車両への追従動作は解除され、自律的な自動走行モードに自動的に復帰する。従って、緊急車両の通過後に、例えば運転者が自動走行モードの再設定操作を行わなくても、自動運転モードによる走行動作を再開することが可能となる。
 本発明は、前述した実施形態をそのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、前記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合せてもよい。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載され得るが、以下には限られるものではない。 
 (付記1)
 自動運転モードと手動運転モードとを選択的に使用して車両を走行動作させる自動運転制御装置の動作を支援する運転動作支援装置であって、ハードウェアプロセッサと、メモリとを有し、
 前記ハードウェアプロセッサは、
 緊急車両の接近を認識し、
 先行車両の存在を検出し、
 前記車両の運転者の状態を判定し、
 前記車両が前記自動運転モードにより走行している状態で、前記緊急車両認識部により前記緊急車両の接近が認識された場合に、前記運転者状態判定部による運転者状態の判定結果をもとに前記運転者が手動運転可能な状態にあるか否かを判定し、手動運転可能な状態にないと判定され、かつ前記先行車両検出部により前記先行車両の存在が検出された場合に、前記車両を前記先行車両に追従させるための追従指示情報を前記自動運転制御装置へ出力するように構成される運転制御動作支援装置。
 (付記2)
 自動運転モードと手動運転モードとを選択的に使用して車両を走行動作させる自動運転制御装置の動作を支援する支援装置が実行する運転制御動作支援方法であって、
 少なくとも1つのハードウェアプロセッサを用いて、緊急車両の接近を認識する緊急車両認識過程と、
 少なくとも1つのハードウェアプロセッサを用いて、先行車両の存在を検出する先行車両検出過程と、
 少なくとも1つのハードウェアプロセッサを用いて、前記車両の運転者の状態を判定する運転者状態判定過程と、
 少なくとも1つのハードウェアプロセッサを用いて、前記車両が前記自動運転モードにより走行している状態で、前記緊急車両認識過程により前記緊急車両の接近が認識された場合に、前記運転者状態判定過程による運転者状態の判定結果をもとに前記運転者が手動運転可能な状態にあるか否かを判定し、手動運転可能な状態にないと判定され、かつ前記先行車両検出過程により前記先行車両の存在が検出された場合に、前記車両を前記先行車両に追従させるための追従指示情報を前記自動運転制御装置へ出力する制御過程と、
 を備える運転制御動作支援方法。

Claims (5)

  1.  自動運転モードと手動運転モードとを選択的に使用して車両を走行動作させる自動運転制御装置の動作を支援する運転制御動作支援装置であって、
     緊急車両の接近を認識する緊急車両認識部と、
     先行車両の存在を検出する先行車両検出部と、
     前記車両の運転者の状態を判定する運転者状態判定部と、
     前記車両が前記自動運転モードにより走行している状態で、前記緊急車両認識部により前記緊急車両の接近が認識された場合に、前記運転者状態判定部による運転者状態の判定結果をもとに前記運転者が手動運転可能な状態にあるか否かを判定し、手動運転可能な状態にないと判定され、かつ前記先行車両検出部により前記先行車両の存在が検出された場合に、前記車両を前記先行車両に追従させるための追従指示情報を前記自動運転制御装置へ出力する制御部と、
    を備える運転制御動作支援装置。
  2.  前記制御部は、前記運転者状態判定部による運転者状態の判定結果をもとに前記運転者が手動運転可能な状態にあると判定された場合には、前記自動運転モードを前記手動運転モードに切り替えるための切替指示情報を前記自動運転制御装置へ出力する請求項1に記載の運転制御動作支援装置。
  3.  前記緊急車両認識部は、前記緊急車両の通過を認識する機能をさらに有し、
     前記制御部は、前記追従指示情報の出力後に、前記緊急車両認識部により前記緊急車両の通過が認識された場合に、前記先行車両への追従動作を解除して自律的な自動走行モードに復帰させるための復帰指示情報を前記自動運転制御装置へ出力する請求項1記載の運転制御動作支援装置。 
  4.  自動運転モードと手動運転モードとを選択的に使用して車両を走行動作させる自動運転制御装置の動作を支援する支援装置が実行する運転制御動作支援方法であって、
     前記支援装置が、緊急車両の接近を認識する緊急車両認識過程と、
     前記支援装置が、先行車両の存在を検出する先行車両検出過程と、
     前記支援装置が、前記車両の運転者の状態を判定する運転者状態判定過程と、
     前記支援装置が、前記車両が前記自動運転モードにより走行している状態で、前記緊急車両認識過程により前記緊急車両の接近が認識された場合に、前記運転者状態判定過程による運転者状態の判定結果をもとに前記運転者が手動運転可能な状態にあるか否かを判定し、手動運転可能な状態にないと判定され、かつ前記先行車両検出過程により前記先行車両の存在が検出された場合に、前記車両を前記先行車両に追従させるための追従指示情報を前記自動運転制御装置へ出力する制御過程と、
     を備える運転制御動作支援方法。
  5.  請求項1乃至3のいずれかに記載の運転制御動作支援装置が備える各部としてコンピュータを機能させるプログラム。
PCT/JP2017/044481 2017-03-10 2017-12-12 運転制御動作支援装置、運転制御動作支援方法及び運転制御動作支援プログラム WO2018163549A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-046385 2017-03-10
JP2017046385A JP6652091B2 (ja) 2017-03-10 2017-03-10 運転制御動作支援装置、運転制御動作支援方法及び運転制御動作支援プログラム

Publications (1)

Publication Number Publication Date
WO2018163549A1 true WO2018163549A1 (ja) 2018-09-13

Family

ID=63448509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044481 WO2018163549A1 (ja) 2017-03-10 2017-12-12 運転制御動作支援装置、運転制御動作支援方法及び運転制御動作支援プログラム

Country Status (2)

Country Link
JP (1) JP6652091B2 (ja)
WO (1) WO2018163549A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019189221A (ja) * 2014-09-30 2019-10-31 エイディシーテクノロジー株式会社 自動運転制御装置
JP2020160555A (ja) * 2019-03-25 2020-10-01 本田技研工業株式会社 車両制御装置、車両制御方法、及びプログラム
CN111762182A (zh) * 2019-03-12 2020-10-13 丰田自动车株式会社 车辆驾驶系统
CN112677971A (zh) * 2019-10-18 2021-04-20 丰田自动车株式会社 变更操作支援装置
CN114919596A (zh) * 2021-02-03 2022-08-19 本田技研工业株式会社 驾驶辅助装置
US11524700B2 (en) 2019-07-05 2022-12-13 Honda Motor Co., Ltd. Vehicle control system, vehicle control method, and non-transitory computer-readable storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004206275A (ja) * 2002-12-24 2004-07-22 Denso Corp 自動運転制御システム
JP2014058229A (ja) * 2012-09-18 2014-04-03 Daimler Ag 運転支援装置
WO2016080452A1 (ja) * 2014-11-19 2016-05-26 エイディシーテクノロジー株式会社 自動運転制御装置
JP2016137819A (ja) * 2015-01-28 2016-08-04 日立オートモティブシステムズ株式会社 自動運転制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004206275A (ja) * 2002-12-24 2004-07-22 Denso Corp 自動運転制御システム
JP2014058229A (ja) * 2012-09-18 2014-04-03 Daimler Ag 運転支援装置
WO2016080452A1 (ja) * 2014-11-19 2016-05-26 エイディシーテクノロジー株式会社 自動運転制御装置
JP2016137819A (ja) * 2015-01-28 2016-08-04 日立オートモティブシステムズ株式会社 自動運転制御装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019189221A (ja) * 2014-09-30 2019-10-31 エイディシーテクノロジー株式会社 自動運転制御装置
CN111762182A (zh) * 2019-03-12 2020-10-13 丰田自动车株式会社 车辆驾驶系统
JP2020160555A (ja) * 2019-03-25 2020-10-01 本田技研工業株式会社 車両制御装置、車両制御方法、及びプログラム
US11851090B2 (en) 2019-03-25 2023-12-26 Honda Motor Co., Ltd. Vehicle control apparatus, vehicle control method, and storage medium
US11524700B2 (en) 2019-07-05 2022-12-13 Honda Motor Co., Ltd. Vehicle control system, vehicle control method, and non-transitory computer-readable storage medium
CN112677971A (zh) * 2019-10-18 2021-04-20 丰田自动车株式会社 变更操作支援装置
CN114919596A (zh) * 2021-02-03 2022-08-19 本田技研工业株式会社 驾驶辅助装置

Also Published As

Publication number Publication date
JP6652091B2 (ja) 2020-02-19
JP2018149872A (ja) 2018-09-27

Similar Documents

Publication Publication Date Title
WO2018163549A1 (ja) 運転制御動作支援装置、運転制御動作支援方法及び運転制御動作支援プログラム
JP6631567B2 (ja) 自動運転支援装置、方法及びプログラム
CN111361552B (zh) 自动驾驶系统
JP6508072B2 (ja) 報知制御装置及び報知制御方法
US11001271B2 (en) Drive assistance device
US11524688B2 (en) Apparatus and method for assisting turn of vehicle at intersection
WO2014148025A1 (ja) 走行制御装置
JP6326985B2 (ja) 自律運転制御装置、車両、コンピュータプログラム、及び自律運転制御方法
US10843693B2 (en) System and method for rear collision avoidance
CN110001649B (zh) 车辆控制系统、车辆控制方法及存储介质
US11370416B2 (en) Vehicle control system, vehicle control method, and storage medium
JP2014106854A (ja) 自動運転車両制御装置および方法
JP2016034782A (ja) 車両制御装置
JP6654907B2 (ja) 車両の走行制御装置
JP2017151703A (ja) 自動運転装置
KR101511858B1 (ko) 보행자 또는 이륜차를 인지하는 운전보조시스템 및 그 제어방법
KR102581766B1 (ko) 차량 제어 장치, 차량 제어 방법 및 차량 제어 시스템
JP6269360B2 (ja) 運転支援システム及び運転支援方法
JP2019156144A (ja) 車両制御装置、車両制御方法、およびプログラム
JP2018086874A (ja) 車両の追従発進制御装置
JP5195155B2 (ja) 運転支援装置
JP2015217762A (ja) 疲労度推定装置
JP2006227811A (ja) 運転支援装置
US10926778B2 (en) Autonomous vehicle control device
JP2008018835A (ja) 車両用走行制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899499

Country of ref document: EP

Kind code of ref document: A1