WO2018032488A1 - 基于发光设备的地图构建方法、纠正方法及装置 - Google Patents
基于发光设备的地图构建方法、纠正方法及装置 Download PDFInfo
- Publication number
- WO2018032488A1 WO2018032488A1 PCT/CN2016/095960 CN2016095960W WO2018032488A1 WO 2018032488 A1 WO2018032488 A1 WO 2018032488A1 CN 2016095960 W CN2016095960 W CN 2016095960W WO 2018032488 A1 WO2018032488 A1 WO 2018032488A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- map
- pixel
- area
- pixel point
- point position
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/005—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C15/00—Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
- G01C15/002—Active optical surveying means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
- G06T7/55—Depth or shape recovery from multiple images
- G06T7/579—Depth or shape recovery from multiple images from motion
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/20—Instruments for performing navigational calculations
- G01C21/206—Instruments for performing navigational calculations specially adapted for indoor navigation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/246—Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/80—Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/56—Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10141—Special mode during image acquisition
- G06T2207/10152—Varying illumination
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30204—Marker
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30244—Camera pose
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30248—Vehicle exterior or interior
- G06T2207/30252—Vehicle exterior; Vicinity of vehicle
- G06T2207/30261—Obstacle
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N17/00—Diagnosis, testing or measuring for television systems or their details
- H04N17/002—Diagnosis, testing or measuring for television systems or their details for television cameras
Definitions
- the invention relates to the field of real-time positioning and map construction, in particular to a map construction method, a correction method and a device based on a light-emitting device.
- the positioning and map construction of mobile devices is a hot research topic in the field of robotics.
- mobile devices cannot be located using a global positioning system, and it is difficult or even impossible to obtain a map of the working environment of the mobile device in advance.
- the mobile device needs to construct a map in a completely unknown environment under the condition that its position is uncertain, and at the same time utilize the map for autonomous positioning and navigation. This is called Instant Location and Map Construction (SLAM).
- SLAM Instant Location and Map Construction
- SLAM Instant Location and Map Construction
- GPS positioning the basic principle of GPS positioning is based on the instantaneous position of the satellite moving at high speed as the known starting data, and the method of spatial distance resection is used to determine the position of the point to be measured.
- barcode positioning method To convert a barcode compiled according to certain rules into meaningful information, it is necessary to go through two processes of scanning and decoding.
- the color of an object is determined by the type of light it reflects.
- White objects can reflect visible light of various wavelengths, while black objects absorb visible light of various wavelengths. Therefore, when the light emitted by the barcode scanner light source is reflected on the barcode, the reflected light is reflected.
- the photoelectric converter is irradiated onto the photoelectric converter inside the barcode scanner, and the photoelectric converter converts into a corresponding electrical signal according to the reflected light signal of different strengths and weaknesses. According to the difference of the principle, the scanner can be divided into three types: light pen, CCD/CMOS, and laser.
- the signal is sent to the shaping circuit to convert the analog signal into a digital signal.
- the widths of the white bars and the black bars are different, and the duration of the corresponding electrical signals is also different.
- the decoder then discriminates the number of bars and spaces by measuring the number of pulsed digital electrical signals 0,1.
- the width of the strip and the space are discriminated by measuring the duration of the 0, 1 signal.
- the data obtained at this time is still cluttered.
- the bar symbol is replaced with the corresponding number and character information according to the corresponding coding rule (for example: EAN-8 code).
- data processing and management is performed by the computer system, and the detailed information of the item is identified.
- Bar code positioning method because the barcode is easily contaminated and there is a limit to the use of the unreadable.
- the mobile robot positioning and navigation technology in the indoor environment has the characteristics of high positioning accuracy and complex environment, and none of the above methods are applicable.
- An object of the embodiments of the present invention is to provide a map construction method, a correction method and a device based on a illuminating device, which can effectively construct a map with high precision.
- An embodiment of the present invention provides a method for constructing a map based on a illuminating device, which is suitable for real-time map construction of a region to be located, and a illuminating device is disposed above the region to be located;
- the position of the spot mark center directly emitted by the first illuminating device collected by the camera on the mobile electronic device and the CCD/CMOS center point is taken as The coordinate origin of the map coordinate system, and record the first flag information and corresponding coordinate values;
- the map is constructed based on the recorded flag information and the corresponding coordinate values and the coordinate values of each obstacle position.
- the number of the illuminating devices is two or more, and each illuminating device is correspondingly disposed at a specific position above the to-be-positioned area, and the flag information directly emitted by each of the illuminating devices Include unique encoding information for distinguishing its absolute position; the method further includes the steps of:
- the unique encoded information may be represented by any one or combination of the following:
- the number of light sources emitted by the illuminating device is the number of light sources emitted by the illuminating device.
- the illuminating device emits a specific shape composed of a light source
- the illuminating device emits a combination of different colors of light.
- the flag information directly transmitted by each of the illuminating devices further includes area coding information for distinguishing the inaccessible area/forbidden entry area, and directly emitting the illuminating device with the area coded information of the forbidden entry area.
- the specific area behind the boundary line is defined as a forbidden entry area
- the area coded information represents the accessible area by the same kind of information
- the prohibited entry area is represented by another type of information
- the removable electronic device acquires each of the flag information, firstly, based on the area coded information in the flag information, whether it is an enterable area or a forbidden entry area, and if it is forbidden to enter the area, according to a preset avoidance strategy And causing the removable electronic device to proceed forward avoiding the forbidden entry area.
- the region coding information in each of the flag information is also constructed based on The map is marked as accessible/no entry.
- the flag information directly transmitted by each of the illuminating devices further includes area coding information for defining a motion area
- the mobile electronic device When the mobile electronic device acquires the area coded information for defining the motion area, the mobile electronic device is controlled to move only within the limited motion area.
- A2 thereby obtaining a map coordinate system distance corresponding to each pixel point is (A2-A1)/L, wherein (A2-A1) represents the number of pixel points between A2 and A1, and L represents the two light-emitting devices
- (A2-A1) represents the number of pixel points between A2 and A1
- L represents the two light-emitting devices
- the distance between the map coordinate system record the map coordinate value of the movable device at the first position R1 and the two pixel coordinate values directly transmitted to the CCD/CMOS at the center of the mark corresponding to the two light-emitting devices, and record the first An angle ⁇ 1 between the pixel point position A1 and the second pixel point position A2;
- the angle ⁇ 1 and the angle ⁇ 2 are obtained by the following calculation formula:
- x1 and y1 are pixel difference values of a line segment formed between the first pixel point position A1 and the second pixel point position A2 on the X-axis of the CCD/CMOS, and a difference of the pixel points on the Y-axis;
- x2 and y2 are pixel difference values on the X-axis of the CCD/CMOS and pixel differences on the Y-axis, respectively, of the line segment formed between the third pixel point position A3 and the fourth pixel point position A4.
- the mobile electronic device is a robot.
- the method is suitable for real-time map construction of an area to be located in a room; or/and the light-emitting device is adapted to be placed on a wall, a ceiling or a door frame.
- An embodiment of the present invention further provides a map correction method based on a light emitting device, including:
- Calibration step when the movable device is moved to the first position R1 of the map, the center of the spot mark directly emitted by any two illuminating devices is directly transmitted to the first pixel position A1 and the second pixel position on the CCD/CMOS.
- A2 thereby obtaining a map coordinate system distance corresponding to each pixel point is (A2-A1)/L, wherein (A2-A1) represents the number of pixel points between A2 and A1, and L represents the two light-emitting devices
- (A2-A1) represents the number of pixel points between A2 and A1
- L represents the two light-emitting devices
- the distance between the map coordinate system record the map coordinate value of the movable device at the first position R1 and the two pixel coordinate values directly transmitted to the CCD/CMOS at the center of the mark corresponding to the two light-emitting devices, and record the first An angle ⁇ 1 between the pixel point position A1 and the second pixel point position A2;
- An embodiment of the present invention further provides a map correction method based on a light emitting device, including:
- the coordinate values on the constructed map are corrected based on the deviation distance L difference and the deviation angle ⁇ difference .
- the embodiment of the present invention further provides a map construction device, which is suitable for real-time map construction of a region to be located, wherein a light-emitting device is disposed above the to-be-positioned area, the map construction device is a mobile device, and the movable device includes :
- a camera for collecting a spot mark directly emitted by the illuminating device
- a coordinate system construction and recording unit configured to enable the first point of the light-emitting device collected by the camera to directly emit the spot mark center and the CCD/CMOS when the movable electronic device moves along a certain motion track for the first time
- the position where the center points coincide is used as the coordinate origin of the map coordinate system, and the first flag information and the corresponding coordinate values are recorded;
- An encoder configured to calculate a moving direction of the movable electronic device relative to the starting point in real time based on a gyroscope during a process in which the movable electronic device moves with the coordinate origin as a starting point and traverses the entire to-be-positioned area And moving distance;
- An obstacle detecting component for detecting an obstacle
- a first calculating unit configured to calculate coordinates of each of the obstacle positions based on a moving direction and a moving distance of the starting point obtained by the encoder each time the obstacle detecting unit detects an obstacle a value, and the calculated coordinate value is sent to the coordinate system construction and recording unit;
- the map construction unit constructs a map based on the coordinate system construction and the flag information recorded by the recording unit and the corresponding coordinate values and the coordinate values of each obstacle position.
- the embodiment of the invention further provides a map correcting device based on the illuminating device, comprising:
- a calibration unit configured to move the movable device to the first position R1 of the map, and record the center of the spot mark directly emitted by the two illuminating devices directly to the first pixel position A1 and the second pixel on the CCD/CMOS Point position A2, so that the map coordinate system distance corresponding to each pixel point is (A2-A1)/L, where (A2-A1) represents the number of pixel points between A2 and A1, and L represents the two a distance on a map coordinate system between the illuminating devices; recording a map coordinate value of the movable device at the first position R1 and two pixel coordinate values directly transmitted to the CCD/CMOS of the mark center corresponding to the two illuminating devices, and recording An angle ⁇ 1 between the first pixel point position A1 and the second pixel point position A2;
- the alpha difference corrects the coordinate values on the constructed map.
- the embodiment of the invention further provides a map correcting device based on the illuminating device, comprising:
- a deviation distance calculation unit for moving the movable device to a reference coordinate point obtained by initial calibration, recording a spot point center directly emitted by any two illuminating devices to a third pixel point position A3 on the CCD/CMOS and
- a correcting unit configured to correct coordinate values on the constructed map according to the deviation distance L difference and the deviation angle ⁇ difference .
- a map construction method, a correction method and a device based on a illuminating device are provided, wherein at least one illuminating device is set in an area to be located, and the camera is collected based on the first time the movable electronic device moves.
- the position of the spot mark center directly emitted by the first light-emitting device and the CCD/CMOS center point is used as the coordinate origin of the map coordinate system, and the first mark information and the corresponding coordinate value are recorded;
- the coordinate origin is used as a starting point to move the movable electronic device and traverse the entire to-be-positioned area.
- the mobile device calculates and records the moving direction and the moving distance with respect to the starting point.
- Mobile electronic devices each The coordinate value of the obstacle position when the obstacle is detected once; after the traversal is completed, the map is constructed based on the recorded flag information and the corresponding coordinate value and the coordinate value of each obstacle position. Therefore, the present invention only needs one or more illuminating devices (such as an LED light source, a laser light source or an infrared light source) to realize positioning and map construction of the to-be-positioned area, and the method is simple, high in accuracy, low in cost, simple in operation and Effective technical effects.
- the built-in map can be corrected by the recognition of the illuminating device by the camera, and the map error caused by factors such as drift of the gyroscope on the movable device or wheel slippage is prevented.
- FIG. 1 is a schematic flow chart of a method for constructing a map based on a light-emitting device according to Embodiment 1 of the present invention.
- FIG. 2 is a schematic flow chart of a method for constructing a map based on a light-emitting device according to Embodiment 2 of the present invention.
- FIG. 3 is a schematic flow chart of a method for constructing a map based on a light-emitting device according to Embodiment 3 of the present invention.
- FIG. 4 is a schematic flow chart of a method for constructing a map based on a light-emitting device according to Embodiment 4 of the present invention.
- FIG. 5 is a structural block diagram of a map construction apparatus based on a light-emitting device in Embodiment 5 of the present invention.
- FIG. 6 is a structural block diagram of a map construction apparatus based on a light-emitting device in Embodiment 6 of the present invention.
- FIG. 7 is a structural block diagram of a map construction apparatus based on a light-emitting device in Embodiment 7 of the present invention.
- FIG. 8 is a structural block diagram of a map construction apparatus based on a light-emitting device in Embodiment 8 of the present invention.
- FIG. 9 is a schematic flow chart of a map correction method based on a light-emitting device in Embodiment 9 of the present invention.
- FIG. 10 is a schematic flow chart of a map correction method based on a light-emitting device in Embodiment 10 of the present invention.
- Figure 11 is a block diagram showing the structure of a map correcting apparatus based on a light-emitting device in Embodiment 11 of the present invention.
- Figure 12 is a block diagram showing the structure of a map correcting apparatus based on a light-emitting device in Embodiment 12 of the present invention.
- Figure 13 shows the process of correcting the constructed map.
- Figure 14 shows the principle of correcting the deviation of the distance and angle using more than two illuminating devices simultaneously incident into the center of the spot of the CCD/CMOS.
- FIG. 1 is a schematic flowchart diagram of a method for constructing a map based on a light-emitting device according to Embodiment 1 of the present invention.
- the illuminating device-based map construction method is suitable for real-time map construction of a to-be-positioned area provided with at least one illuminating device by using a mobile electronic device, which may be, for example, a robot.
- the map is constructed based on the recorded flag information and the corresponding coordinate values and coordinate values of each obstacle position.
- step S11 after placing a light-emitting device (for example, an LED light source, a laser light source, or an infrared light source) in at least one specific position/arbitrary position of the area to be positioned and map-built, the entire area needs to be positioned and constructed. It is necessary to traverse the entire area through a mobile electronic device to obtain relevant information in the area.
- a light-emitting device for example, an LED light source, a laser light source, or an infrared light source
- the "corresponding coordinate value” mentioned herein refers to the coordinate value of the position of the first illuminating device, that is, the coordinate value of the current position of the movable electronic device.
- the position of the movable device is taken as the X-axis and the Y-axis.
- the coordinate origin of the constructed coordinate system is not limited to the coordinate origin of the coordinate system composed only of the X-axis and the Y-axis, and may be marked as another reference point, and may have a reference function to facilitate recording of information of other points.
- the at least one illuminating device is correspondingly disposed at a specific position of the to-be-positioned area, and the flag information directly transmitted by the illuminating device includes unique coding information for distinguishing its absolute position, and
- the unique coded information may be represented by any one or combination of the following: the number of light sources emitted by the light emitting device; the specific shape of the light source emitted by the light emitting device; the number of times the light emitting device turns on and off for a certain period of time; Turn off the time for a certain period of time; or the illuminating device emits a combination of different colors of light.
- the configuration of the flag information is in a plurality of manners, and specifically indicates that the environment of the area to be located that needs to be located needs the number of flags to determine which method is more convenient.
- the removable electronic device reads the flag information through the camera.
- steps S12-S13 when it is determined that the position at which the first flag is obtained is the coordinate origin, the coordinate origin is moved as the starting point of the motion to move the movable electronic device to traverse the entire to-be-positioned region. And starting to calculate a moving direction and a moving distance of the movable electronic device relative to the starting point in real time while the movable electronic device starts moving from the starting point (for example, an encoder installed on a driving axle of the robot)
- the moving path of the robot and the relative position and angle are recorded in real time based on the gyroscope, so that the position (including distance and direction) of the movable electronic device relative to the starting point can be obtained by calculation, wherein the gyroscope is used to record the angle in real time.
- acceleration During the traversal process, the coordinate values of the obstacle position when the movable electronic device detects the obstacle each time can be calculated by:
- Method 1 using a collision sensor to sense an obstacle, and when the collision sensor senses an obstacle, the current coordinate value of the movable electronic device is used as a coordinate value of the obstacle position;
- Method 2 Using a laser sensor/infrared sensor to detect an obstacle, when the laser sensor/infrared sensor detects an obstacle, calculate the position of the obstacle relative to the currently movable electronic device according to the laser/infrared distance calculation principle, thereby The coordinate value of the obstacle position is calculated.
- a collision strategy is further added, that is, when an obstacle is detected during the traversal of the movable electronic device, the movable electronic device is bypassed according to a preset collision policy. The obstacle continues to advance.
- the predetermined collision strategy includes: when the mobile electronic device senses a collision by (eg, an obstacle detecting component), the mobile electronic device performs intelligent analysis to Determine how to move further.
- the movable electronic device may select a backlash greater than 0 and less than 20 centimeters and a right or left rotation of 1-10 degrees according to a specific environmental pattern of the area to be located.
- the mobile electronic device can choose to retreat greater than 0 and less than 2 centimeters.
- the movable electronic device selects to rotate a larger angle, for example, a rotation angle of 2° or even 10°.
- the collision strategy of this embodiment may adopt other methods, and is not limited thereto.
- the coordinate value is not completed until the entire area to be located is traversed. It can be understood that after the traversal is completed by the mobile electronic device, all the feature information of the to-be-positioned area (including the position of the mark and the position information of each obstacle position) is recorded.
- the map is constructed based on the recorded flag information and the corresponding coordinate values and the coordinate values of each obstacle position.
- the more information that is recorded the richer and more detailed the map is.
- the coordinate value of the obstacle is recorded, and when the movable electronic device is placed in the indoor environment to traverse the entire room, the coordinates of all the obstacles can be continuously recorded.
- Obstructions that are surrounded by a circle at the same time can be considered as walls, thus separating the barrier-free areas, obstacle areas, and walls of the entire room, thus constructing a map of the entire room.
- the constructed map is a 2D map
- the movable electronic device for example, a robot
- the map construction method based on the illuminating device of the embodiment only needs one or more illuminating devices to directly emit corresponding flags to realize positioning and map construction of the to-be-positioned area, and the method is simple, has high precision, low cost, and operation. Simple and effective technical effects.
- FIG. 2 it is a schematic flowchart of a method for constructing a map based on a light-emitting device according to Embodiment 2 of the present invention.
- the method is suitable for real-time map construction of a to-be-positioned area provided with two or more illuminating devices by using a mobile electronic device.
- Each of the illuminating devices is correspondingly disposed at a specific position of the to-be-positioned area, and the flag information directly transmitted by each of the illuminating devices includes unique coding information for distinguishing its absolute position, and the unique coding information may pass Any one or combination of the following: the number of light sources emitted by the light emitting device; the specific shape of the light source emitted by the light emitting device; the number of times the light emitting device turns on and off for a certain period of time; and the time when the light emitting device turns on and off for a certain period of time Or the illuminating device emits a combination of different color lights.
- the removable electronic device can be, for example, a robot.
- the map is constructed based on the recorded flag information and the corresponding coordinate values and coordinate values of each obstacle position.
- steps S21 to S23 and S25 of the embodiment are substantially the same as the steps S11 to S13 and S14 shown in FIG. 1 and will not be further described herein.
- the flag information directly transmitted by each of the illuminating devices includes unique coded information for distinguishing its absolute position, and therefore, in the traversal process of the mobile electronic device, in addition to calculating and recording the removable electronic device, In addition to the coordinate value of the obstacle position when the obstacle is detected, the flag information of the movable information acquired by the movable electronic device in addition to the flag information directly transmitted by the first illuminating device is calculated and recorded. And the corresponding coordinate value, step S24.
- the current position of the movable electronic device is taken as the corresponding illuminating device.
- Position record the coordinate value of the position and obtain the corresponding flag information.
- the flag information acquired by the mobile electronic device referred to herein mainly includes unique coded information for distinguishing its absolute position.
- unique coded information for distinguishing its absolute position.
- the absolute position at which the illuminating device is located can be determined by the identification.
- the illuminating device-based map construction method of the embodiment is suitable for real-time map construction of an indoor to-be-positioned area.
- the mobile electronic device can realize the absolute position navigation based on the unique encoded information in each of the markers. And distinguish. For example, when the robot is required to traverse a room 2, the room 2 can be determined based on the unique coded information in the sign directly emitted by the illuminating device placed on the left wall, the right wall or the top wall of the door frame of the room 2 The absolute position and based on the relative coordinate values of the illuminating device position on the constructed map (direction and distance relative to the origin of the coordinates), thereby navigating the mobile electronic device to the room 2.
- the mobile device can also be made aware of where it is. For example, when cleaning a robot, it is necessary to clean a plurality of rooms in the room, so that by identifying the unique code information in the flags corresponding to each room, it is possible to determine which room it is in, thereby preventing multiple times from being performed on the same room. Clean to reduce duplication of work.
- the main purpose of distinguishing rooms is to clean the rooms in one room, which is more efficient. In this way, there are fewer repetitive routes for robot traversal.
- FIG. 3 it is a schematic flowchart of a method for constructing a map based on a light-emitting device according to Embodiment 3 of the present invention.
- the method is suitable for real-time map construction of a to-be-positioned area provided with two or more illuminating devices by using a mobile electronic device.
- each of the illuminating devices is correspondingly disposed at a specific position of the to-be-positioned area, and the flag information directly transmitted by each of the illuminating devices includes unique coding information for distinguishing its absolute position and is used for distinguishing the accessible area/ It is forbidden to enter the area code information of the area.
- the flag with the area code information forbidding the entry area defines the specific area after the boundary line of the corresponding illuminating device as the forbidden entry area.
- the unique coded information may be represented by any one or combination of the following: the number of light sources emitted by the light emitting device; the specific shape of the light source emitted by the light emitting device; the number of times the light emitting device turns on and off for a certain period of time; The time of turning off is turned on for a certain period of time; or the illuminating device emits a combination of different colors of light; and the area coded information represents the accessible area by the same shape and the prohibited entry area by another shape.
- the removable electronic device can be, for example, a robot.
- the area coded information in the first flag is obtained as an enterable area or a forbidden entry area. If the entry is prohibited, the mobile electronic device is avoided according to a preset avoidance policy. The prohibiting entry into the area and proceeding;
- the unique coded information and the area coded information are included, and the unique coded information may be represented by any one or combination of the following: the number of light sources emitted by the light emitting device; The specific shape; the number of times the light emitting device turns on and off the light source for a certain period of time; the time when the light emitting device turns on and off the light source for a certain period of time; or the light emitting device emits a light combination of different colors; and the area coded information can pass the same information
- the delegate can enter the area and use another type of information to represent the entry into the area.
- the flag information directly transmitted by each of the illuminating devices further includes area coding information for defining a motion area
- the mobile electronic device When the mobile electronic device acquires the area coded information for defining the motion area, the mobile electronic device is controlled to move only within the limited motion area.
- this embodiment also adds an effect that the problem of automatically identifying the forbidden entry area (also referred to as a virtual wall) is solved.
- the traditional method mainly uses the following methods:
- Another method is the method proposed by Neato to use a magnetic strip as a dividing line.
- the method requires the user to stick the magnetic strip on the boundary line of the forbidden entry area, and use Hall sensor sensing to distinguish.
- the shortcoming of this method is that the magnetic strip is attached to the ground to affect the appearance of the ground. On the other hand, if the user wishes to replace the prohibited entry area, the magnetic strip is not easy to disassemble and attach to the ground.
- the area coded information for distinguishing the accessible area/forbidden entry area is placed in a flag directly emitted by each of the light-emitting devices, wherein the mark with the area coded information forbidding the entry area will correspond to the light emission.
- the specific area behind the dividing line where the device is located is limited to the prohibited entry area.
- the mobile device can distinguish when it recognizes the area coded information in the flag.
- the movable electronic device can be prevented from proceeding by avoiding the forbidden entry area in combination with a preset avoidance strategy.
- it may also be specifically marked as an accessible area/inhibited entry area on the constructed map to facilitate navigation.
- a relationship comparison table indicating that the different area coded information represents the accessible area/forbidden entry area may be preset, so that when the area coded information in each of the acquired flag information is obtained, The look-up table can be identified as an accessible area or a prohibited entry area.
- the preset avoidance strategy of the embodiment is preferably: when the area is identified as the forbidden entry area, the movable electronic device is moved backward by Pcm and rotated to the left/right by Q°, and then proceeds. P is not less than the length of the boundary line, 45 ⁇ Q ⁇ 90. Based on the preset avoidance strategy, substantially ensuring that the removable electronic device can avoid the prohibition Continue to enter the area and move on.
- the boundary between the forbidden entry area and the accessible area can be distinguished by: when the area coded information in the removable device determination flag is the forbidden entry area, the mobile removable device searches for obstacles on the left and right sides of the label. (Wall) and barrier-free areas, the extension of the wall is the boundary between the prohibited entry area and the accessible area.
- the avoidance strategy of this embodiment may adopt other manners, and is not limited thereto.
- a light-emitting device When performing indoor positioning and map construction by using the method of the embodiment, it is preferable to provide a light-emitting device on the left wall, the right wall or the top wall of each room wall, ceiling or door frame of the room, and the light-emitting device projects Corresponding signs to the door frame or to the ceiling.
- the embodiment of the present invention places each of the flags by (for example, in the fixed slot of the door frame side) by the area coded information for distinguishing the accessible area/forbidden entry area. After the mobile device obtains and recognizes the area code information in the flag, it can be determined that the area can enter. Therefore, the cost of the embodiment is low, and the overall appearance is not affected, and it is easy to replace.
- FIG. 4 it is a schematic flowchart of a method for constructing a map based on a light-emitting device according to Embodiment 4 of the present invention.
- the present embodiment corrects the constructed map to prevent map errors caused by factors such as drift of the gyroscope on the movable device or wheel slippage, so that the map constructed based on the coordinate values is more accurate.
- the correction processing of the map is added, which specifically includes:
- Point position A2 so that the map coordinate system distance corresponding to each pixel point is (A2-A1)/L, where (A2-A1) represents the number of pixel points between A2 and A1, and L represents the two a distance on a map coordinate system between the illuminating devices; recording a map coordinate value of the movable device at the first position R1 and two pixel coordinate values directly transmitted to the CCD/CMOS of the mark center corresponding to the two illuminating devices, and recording An angle ⁇ 1 between the first pixel point position A1 and the second pixel point position A2;
- x1 and y1 are pixel difference values of a line segment formed between the first pixel point position A1 and the second pixel point position A2 on the X-axis of the CCD/CMOS, and a difference of the pixel points on the Y-axis;
- x2 and y2 are pixel difference values on the X-axis of the CCD/CMOS and pixel differences on the Y-axis, respectively, of the line segment formed between the third pixel point position A3 and the fourth pixel point position A4.
- two coordinate systems are set in the movable device, and one is a map construction coordinate system of the to-be-positioned region.
- One is the CCD/CMOS coordinate system of the camera in the mobile device.
- the CCD/CMOS coordinate system is formed by the spot mark directly emitted by the illuminating device to the position of the pixel on the CCD/CMOS, and the CCD/CMOS coordinate system also includes the X-axis and the Y-axis.
- the floor height of each house is different, so that the projection mark of the illuminating device deviates from one pixel point on the X-axis or the Y-axis of the camera CCD/CMOS, and the movable device corresponds to the map.
- the movement distance on the coordinate system ie the ground coordinate system
- calibration is required.
- the specific calibration process is that when the movable device (for example, the robot) reaches the first position R1 during the motion, the camera detects that the two spot markers directly emitted by the two illuminating devices are projected onto the CCD/CMOS, as shown in the figure.
- the distance on the map coordinate system between the two illuminating devices by the number of pixels, one pixel point can be obtained corresponding to the distance of the robot in the ground coordinate system.
- the map coordinate value of the movable device at the first position R1 and the two pixel coordinate values directly transmitted to the CCD/CMOS of the center of the mark corresponding to the two light-emitting devices are recorded, and the first pixel position A1 and the second pixel are recorded.
- the angle ⁇ 1 between the point positions A2 (for example, relative to the horizontal plane).
- the robot After the calibration is completed, when the robot needs to correct the constructed map for a period of time (for example, 20 minutes), the robot moves to the position where the reference coordinate point is located (ie, the first position R1). By this time, any one of the two pixel positions of the CCD/CMOS corresponds to the previous position difference to know how many pixels have been deviated. By how many pixels are multiplied by the distance of the calibration, it is possible to find out how far the robot has deviated from the ground coordinate system.
- a period of time for example, 20 minutes
- the center of the spot mark directly emitted by the two light-emitting devices is directly transmitted to the CCD/CMOS.
- the coordinate values on the constructed map are corrected based on the calculated deviation distance L difference and the deviation angle ⁇ difference , thereby obtaining the corrected map.
- the present embodiment corrects the deviation of the distance and the angle by simultaneously injecting two light-emitting devices into the center of the spot of the CCD/CMOS.
- the illuminating device is a red LED
- the projection inside the CCD has two distinct bright spots, and the bright spot may occupy tens or hundreds of pixels in the CCD.
- the tens or hundreds of pixels are used.
- the point in the middle of the point serves as the center of the spot.
- more than two illuminating devices can also be simultaneously injected into the center of the spot of the CCD/CMOS to correct the deviation of the distance and the angle.
- apex (a, b, c) correspondence of each side (x, y, z) is known in advance (the vertex is the center point of the bright point). If the center of the three luminous highlights forms a triangle, to correct the coordinates or angles, you need to know that as long as the lengths of the three sides are different, the corresponding relationship of the bright points can be judged at the next correction.
- any point a, b, c can be used as the point to correct the coordinates, and the three line segments x, y and z can be used as the line segment for correcting the angle.
- FIG. 5 is a structural block diagram of a map construction apparatus based on a light-emitting device according to Embodiment 1 of the present invention.
- the map construction device is a mobile device/installed on a mobile device, and is suitable for real-time map construction of a to-be-positioned area provided with at least one illumination device, which may be, for example, a robot.
- the map construction device includes:
- the camera 51 is configured to collect a spot mark directly emitted by the illuminating device
- the coordinate system construction and recording unit 52 is configured to: when the movable electronic device moves along a certain motion track for the first time, the center of the light spot mark directly emitted by the first light emitting device collected by the camera and the CCD/ CMOS center The position of the point coincides as the coordinate origin of the map coordinate system, and records the first flag information and the corresponding coordinate value;
- the encoder 53 is configured to calculate, in the real-time, the movement of the movable electronic device relative to the starting point based on the gyroscope during the moving and rotating the electronic device with the coordinate origin as a starting point and traversing the entire to-be-positioned area Direction and distance of movement;
- a first calculating unit 55 configured to calculate each of the obstacles based on a moving direction and a moving distance of the starting point obtained by the encoder 53 each time the obstacle detecting unit 54 detects an obstacle a coordinate value of the position, and transmitting the calculated coordinate value to the coordinate system construction and recording unit;
- the map construction unit 56 constructs a map based on the flag information recorded by the coordinate system construction and recording unit 52 and the corresponding coordinate values and coordinate values of each obstacle position.
- the obstacle detecting part 54 may include a collision sensor/laser sensor/infrared sensor:
- the current coordinate value of the movable electronic device is used as a coordinate value of the obstacle position
- the crash sensor component is for sensing a collision event of the mobile electronic device with an external environment.
- the impact sensor components include, but are not limited to, an eccentric hammer sensor, a ball bump sensor, a roller type expansion sensor, a mercury switch type collision sensor, a piezoresistive effect type collision sensor, a piezoelectric effect type collision sensor, and a micro switch. Wait. or
- Using a laser sensor/infrared sensor to detect an obstacle when the laser sensor/infrared sensor detects an obstacle, calculate the position of the obstacle relative to the currently movable electronic device according to the laser/infrared distance calculation principle, thereby calculating the position The coordinate value of the obstacle position.
- the movable device further includes: a collision policy unit, configured to: when an obstacle is detected during the traversal of the movable electronic device, according to a preset collision policy, The mobile electronic device continues to move around the obstacle.
- a collision policy unit configured to: when an obstacle is detected during the traversal of the movable electronic device, according to a preset collision policy, The mobile electronic device continues to move around the obstacle.
- the map constructing apparatus of the embodiment 6 is a mobile device/installed on a mobile device, and is suitable for a to-be-positioned area provided with two or more light-emitting devices. Perform real-time map construction.
- Each of the illuminating devices is correspondingly disposed at a specific position of the to-be-positioned area, and the flag information directly transmitted by each of the illuminating devices includes unique coding information for distinguishing its absolute position, and the unique coding information may pass Any one or combination of the following: the number of light sources emitted by the light emitting device; the specific shape of the light source emitted by the light emitting device; the number of times the light emitting device turns on and off for a certain period of time; and the time when the light emitting device turns on and off for a certain period of time Or the illuminating device emits a combination of different color lights.
- the removable electronic device can be, for example, a robot.
- the map construction device includes:
- the camera 61 is configured to collect a flag directly emitted by the illuminating device
- the coordinate system construction and recording unit 62 is configured to: when the movable electronic device moves along a certain motion track for the first time, the center of the light spot mark directly emitted by the first light emitting device collected by the camera and the CCD/ The position where the CMOS center points coincide is used as the coordinate origin of the map coordinate system, and the first flag information and the corresponding coordinate value are recorded;
- An encoder 63 configured to calculate, in the real-time, the movement of the movable electronic device relative to the starting point based on a gyroscope during a process in which the movable electronic device moves with the coordinate origin as a starting point and traverses the entire to-be-positioned area Direction and distance of movement;
- a first calculating unit 65 configured to calculate each of the obstacles based on a moving direction and a moving distance of the starting point obtained by the encoder 53 each time the obstacle detecting unit 64 detects an obstacle a coordinate value of the position, and transmitting the calculated coordinate value to the coordinate system construction and recording unit;
- a second calculating unit 66 configured to calculate, according to a moving direction and a moving distance of the movable electronic device relative to the starting point, another illuminating device collected by the camera of the mobile electronic device each time during the traversing process
- the coordinate value of the position of the other illuminating device when the spot signal center directly emitted is coincident with the CCD/CMOS center point, and the other flag information and the corresponding coordinate value are sent to the coordinate system construction and recording unit 62;
- the map construction unit 67 constructs a map based on the flag information recorded by the coordinate system construction and recording unit 62 and the corresponding coordinate values and coordinate values of each obstacle position.
- FIG. 7 is a structural block diagram of a map construction apparatus based on a light-emitting device according to Embodiment 7 of the present invention.
- the device is a mobile device/installed on a mobile device and is suitable for real-time map construction of a to-be-positioned area with two or more illumination devices.
- each of the illuminating devices is correspondingly disposed at a specific position of the to-be-positioned area, and the flag information directly transmitted by each of the illuminating devices includes unique coding information for distinguishing its absolute position and is used for distinguishing the accessible area/ It is forbidden to enter the area code information of the area.
- the flag with the area code information forbidding the entry area defines the specific area after the boundary line of the corresponding illuminating device as the forbidden entry area.
- the unique coded information may be represented by any one or combination of the following: the number of light sources emitted by the light emitting device; the specific shape of the light source emitted by the light emitting device; the number of times the light emitting device turns on and off for a certain period of time; The time of turning off is turned on for a certain period of time; or the illuminating device emits a combination of different colors of light; and the area coded information represents the accessible area by the same shape and the prohibited entry area by another shape.
- the removable electronic device can be, for example, a robot.
- the map construction device includes:
- the camera 71 is configured to collect a flag directly emitted by the illuminating device
- the coordinate system construction and recording unit 72 is configured to enable the first point of the light-emitting device collected by the camera to directly emit the spot mark center and the CCD/ when the movable electronic device moves along a certain motion track for the first time.
- the position where the CMOS center points coincide is used as the coordinate origin of the map coordinate system, and the first flag information and the corresponding coordinate value are recorded;
- the encoder 73 is configured to calculate, in the real-time, the movement of the movable electronic device relative to the starting point based on the gyroscope during the movement of the movable electronic device with the coordinate origin as a starting point and traversing the entire to-be-positioned area Direction and distance of movement;
- a first calculating unit 75 configured to calculate each of the obstacles based on a moving direction and a moving distance of the starting point obtained by the encoder 53 each time the obstacle detecting unit 74 detects an obstacle a coordinate value of the position, and transmitting the calculated coordinate value to the coordinate system construction and recording unit;
- a second calculating unit 76 configured to calculate, according to a moving direction and a moving distance of the movable electronic device relative to the starting point, another illuminating device collected by the camera of the mobile electronic device each time during the traversing process Coordinate value of the position of the other illuminating device when the spot signal center directly emitted is coincident with the CCD/CMOS center point, and the other flag information and the corresponding coordinate value are sent to the coordinate system constructing and recording unit 72;
- the area identifying unit 77 is configured to, when the removable electronic device acquires each of the flag information, first identify whether the area coded information in the flag information is an enterable area or a forbidden entry area. It can be understood that the relationship comparison table indicating that the different area coded information represents the accessible area/inhibited entry area may be preset in the area identifying unit 77, so that when the area coded information in each of the acquired flags is obtained, the comparison is performed. The table can be identified as an accessible area or a prohibited entry.
- Avoiding the policy unit 78 if the area identification unit 77 identifies that the area coded information is a forbidden entry area, the mobile electronic device is prevented from proceeding by avoiding the forbidden entry area according to a preset avoidance policy;
- the map construction unit 79 is based on the flag information and the corresponding coordinate values recorded by the coordinate system construction and recording unit 72. And constructing a map for the coordinate values of each obstacle position, and marking the accessible map/inhibit entry area on the constructed map based on the area coded information of each of the markers.
- the unique coded information and the area coded information are included, and the unique coded information may be represented by any one or combination of the following: the number of light sources emitted by the light emitting device; The specific shape; the number of times the light emitting device turns on and off the light source for a certain period of time; the time when the light emitting device turns on and off the light source for a certain period of time; or the light emitting device emits a light combination of different colors; and the area coded information can pass the same information
- the delegate can enter the area and use another type of information to represent the entry into the area.
- the flag information directly transmitted by each of the illuminating devices further includes area coding information for defining a motion area; and when the mobile electronic device acquires a space for defining a motion area, When the region encodes information, the mobile electronic device is controlled to move only within the defined motion region.
- the map construction apparatus of the present embodiment effectively solves the problem of the automatic identification prohibition entry area (also referred to as a virtual wall) in the prior art.
- the automatic identification prohibition entry area also referred to as a virtual wall
- FIG. 8 is a structural block diagram of a map construction apparatus based on a light-emitting device according to Embodiment 8 of the present invention.
- the device is based on any one of the map construction devices of the embodiments 5-7, and further includes:
- the calibration unit 81 is configured to record, when moving the movable device to the first position R1 of the map, the spot point center directly emitted by any two illuminating devices to directly transmit to the first pixel point position A1 and the second on the CCD/CMOS
- the pixel position A2 is obtained, so that the map coordinate system distance corresponding to each pixel point is (A2-A1)/L, wherein (A2-A1) represents the number of pixel points between A2 and A1, and L represents the two The distance on the map coordinate system between the illuminating devices; recording the map coordinate value of the movable device at the first position R1 and the two pixel coordinate values directly transmitted to the CCD/CMOS by the center of the mark corresponding to the two illuminating devices, and Recording an angle ⁇ 1 between the first pixel point position A1 and the second pixel point position A2;
- x1 and y1 are pixel difference values of a line segment formed between the first pixel point position A1 and the second pixel point position A2 on the X-axis of the CCD/CMOS, and a difference of the pixel points on the Y-axis;
- x2 and y2 are pixel difference values on the X-axis of the CCD/CMOS and pixel differences on the Y-axis, respectively, of the line segment formed between the third pixel point position A3 and the fourth pixel point position A4.
- the embodiment of the invention further discloses an intelligent mobile device, comprising a mobile device and a map construction device according to any of the embodiments shown in FIGS. 5-8.
- the smart mobile device is preferably a robot.
- FIG. 9 is a schematic flowchart diagram of a map correction method based on a light-emitting device according to Embodiment 9 of the present invention.
- the map correction method includes the steps:
- Point position A2 so that the map coordinate system distance corresponding to each pixel point is (A2-A1)/L, where (A2-A1) represents A2 and The number of pixels between A1, L is the distance on the map coordinate system between the two illuminating devices; the map coordinate value of the movable device at the first position R1 and the center of the mark corresponding to the two illuminating devices are directly recorded Transmitting two pixel coordinate values on the CCD/CMOS, and recording an angle ⁇ 1 between the first pixel point position A1 and the second pixel point position A2;
- x1 and y1 are pixel difference values of a line segment formed between the first pixel point position A1 and the second pixel point position A2 on the X-axis of the CCD/CMOS, and a difference of the pixel points on the Y-axis;
- x2 and y2 are pixel difference values on the X-axis of the CCD/CMOS and pixel differences on the Y-axis, respectively, of the line segment formed between the third pixel point position A3 and the fourth pixel point position A4.
- the mobile electronic device is a robot.
- the map of the present embodiment can be constructed by the illuminating device-based map construction method according to any one of Embodiments 1 to 4.
- FIG. 10 is a schematic flowchart diagram of a map correcting method based on a lighting device in Embodiment 10 of the present invention.
- the map correction method includes the steps:
- x1 and y1 are pixel difference values of a line segment formed between the first pixel point position A1 and the second pixel point position A2 on the X-axis of the CCD/CMOS, and a difference of the pixel points on the Y-axis;
- x2 and y2 are pixel difference values on the X-axis of the CCD/CMOS and pixel differences on the Y-axis, respectively, of the line segment formed between the third pixel point position A3 and the fourth pixel point position A4.
- the mobile electronic device is a robot.
- the map of the present embodiment can be constructed by the illuminating device-based map construction method according to any one of Embodiments 1 to 4.
- FIG. 11 is a block diagram showing the structure of a map correcting apparatus based on a light-emitting device in Embodiment 11 of the present invention.
- the map correction device includes:
- the calibration unit 111 is configured to record the center of the spot marker directly emitted by any two illuminating devices when the movable device is moved to the first position R1 of the map, and directly transmit the first pixel position A1 and the second position on the CCD/CMOS.
- the pixel position A2 is obtained, so that the map coordinate system distance corresponding to each pixel point is (A2-A1)/L, wherein (A2-A1) represents the number of pixel points between A2 and A1, and L represents the two The distance on the map coordinate system between the illuminating devices; recording the map coordinate value of the movable device at the first position R1 and the two pixel coordinate values directly transmitted to the CCD/CMOS by the center of the mark corresponding to the two illuminating devices, and Recording an angle ⁇ 1 between the first pixel point position A1 and the second pixel point position A2;
- the angle ⁇ difference corrects the coordinate values on the constructed map.
- x1 and y1 are pixel difference values of a line segment formed between the first pixel point position A1 and the second pixel point position A2 on the X-axis of the CCD/CMOS, and a difference of the pixel points on the Y-axis;
- x2 and y2 are pixel difference values on the X-axis of the CCD/CMOS and pixel differences on the Y-axis, respectively, of the line segment formed between the third pixel point position A3 and the fourth pixel point position A4.
- the mobile electronic device is a robot.
- map of the present embodiment can be constructed by the map construction device according to any one of Embodiments 5 to 8.
- FIG. 12 is a block diagram showing the structure of a map correcting apparatus based on a lighting apparatus in Embodiment 12 of the present invention.
- the map correction device includes:
- the deviation distance calculation unit 121 is configured to move the movable device to the reference coordinate point obtained by the initial calibration, and record the center of the spot mark directly emitted by any two illuminating devices to the third pixel point position A3 on the CCD/CMOS.
- Correction unit 123 based on the difference between L and the offset distance difference between the deviation angle ⁇ of the coordinate values on the map to correct construct.
- x1 and y1 are pixel difference values of a line segment formed between the first pixel point position A1 and the second pixel point position A2 on the X-axis of the CCD/CMOS, and a difference of the pixel points on the Y-axis;
- x2 and y2 are pixel difference values on the X-axis of the CCD/CMOS and pixel differences on the Y-axis, respectively, of the line segment formed between the third pixel point position A3 and the fourth pixel point position A4.
- the mobile electronic device is a robot.
- map of the present embodiment can be constructed by the map construction device according to any one of Embodiments 5 to 8.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Automation & Control Theory (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Circuit Arrangement For Electric Light Sources In General (AREA)
Abstract
一种基于发光设备的地图构建方法,适用于对设有至少一个发光设备的待定位区域进行实时地图构建,包括步骤:以可移动电子设备初次沿一定的运动轨迹移动时,可移动电子设备上的摄像头所采集到的第一个所述发光设备直接发射出来的光点标志中心与CCD/CMOS中心点重合的位置作为地图坐标系的坐标原点,并记录所述第一个标志信息及相应的坐标值;以所述坐标原点作为起始点移动所述可移动电子设备并遍历整个待定位区域,在遍历过程中,基于所述可移动电子设备相对所述起始点的移动方向和移动距离,计算并记录所述可移动电子设备每一次检测到障碍物时的障碍物位置的坐标值;完成遍历后,基于记录的标志信息及相应的坐标值以及每一个障碍物位置的坐标值构建地图。
Description
本发明涉及即时定位与地图构建领域,尤其涉及一种基于发光设备的地图构建方法、纠正方法及装置。
移动装置的定位和地图构建是机器人领域的热点研究问题。对于已知环境中的移动装置自主定位和已知机器人位置的地图创建已经有了实用的解决方法。然而,在很多环境中移动装置不能利用全局定位系统进行定位,而且事先获取移动装置工作环境的地图很困难,甚至是不可能的。这时移动装置需要在自身位置不确定的条件下,在完全未知环境中构建地图,同时利用地图进行自主定位和导航。这就是所谓的即时定位与地图构建(SLAM)。
在即时定位与地图构建(SLAM)中,移动装置利用自身携带的传感器识别未知环境中的特征标志,然后根据移动装置与特征标志之间的相对位置和编码器的读数估计移动装置和特征标志的全局坐标。
目前,现在的自动行走机器人或设备的定位技术中常见的有:
1)、GPS定位;GPS定位的基本原理是根据高速运动的卫星瞬间位置作为已知的起算数据,采用空间距离后方交会的方法,确定待测点的位置。
2)、条形码定位方式。要将按照一定规则编译出来的条形码转换成有意义的信息,需要经历扫描和译码两个过程。物体的颜色是由其反射光的类型决定的,白色物体能反射各种波长的可见光,黑色物体则吸收各种波长的可见光,所以当条形码扫描器光源发出的光在条形码上反射后,反射光照射到条码扫描器内部的光电转换器上,光电转换器根据强弱不同的反射光信号,转换成相应的电信号。根据原理的差异,扫描器可以分为光笔、CCD/CMOS、激光三种。电信号输出到条码扫描器的放大电路增强信号之后,再送到整形电路将模拟信号转换成数字信号。白条、黑条的宽度不同,相应的电信号持续时间长短也不同。然后译码器通过测量脉冲数字电信号0,1的数目来判别条和空的数目。通过测量0,1信号持续的时间来判别条和空的宽度。此时所得到的数据仍然是杂乱无章的,要知道条形码所包含的信息,则需根据对应的编码规则(例如:EAN-8码),将条形符号换成相应的数字、字符信息。最后,由计算机系统进行数据处理与管理,物品的详细信息便被识别了。
以上各定位技术在自动行走机器人或自动行走设备实现过程中相对复杂,各有不同缺点:
1.GPS定位由于信号问题在室内不实用。
2.条码定位方式,因条码容易受污染而照成无法读取使用场合有限制。
室内环境中的移动机器人定位导航技术具有定位精度要求高、环境复杂的特点,以上这些方法都不适用。
发明内容
本发明实施例的目的是提供一种基于发光设备的地图构建方法、纠正方法及装置,能有效构建精度高的地图。
本发明实施例提供了一种基于发光设备的地图构建方法,适用于对待定位区域进行实时地图构建,所述待定位区域上方设有发光设备;包括步骤:
以可移动电子设备初次沿一定的运动轨迹移动时,可移动电子设备上的摄像头所采集到的第一个所述发光设备直接发射出来的光点标志中心与CCD/CMOS中心点重合的位置作为地图坐标系的坐标原点,并记录所述第一个标志信息及相应的坐标值;
以所述坐标原点作为起始点移动所述可移动电子设备并遍历整个待定位区域,在遍历过
程中,基于所述可移动电子设备相对所述起始点的移动方向和移动距离,计算并记录所述可移动电子设备每一次检测到障碍物时的障碍物位置的坐标值;
完成遍历后,基于记录的标志信息及相应的坐标值以及每一个障碍物位置的坐标值构建地图。
作为上述方案的改进,所述发光设备的数量为两个及以上,且每一个发光设备对应设置在所述待定位区域的上方的特定位置上,每一所述发光设备直接发射出来的标志信息包括用于区别其绝对位置的唯一编码信息;所述方法还包括步骤:
在遍历过程中,基于所述可移动电子设备相对所述起始点的移动方向和移动距离,计算所述可移动电子设备的摄像头每一次所采集到的其他发光设备直接发射出来的光点标志中心与CCD/CMOS中心点重合时的其他发光设备位置的坐标值,并记录其他标志信息及对应的坐标值。
作为上述方案的改进,所述唯一编码信息可通过以下任一或组合方式来表示:
发光设备发出光源的数量;
发光设备发出光源组成的特定形状;
发光设备发出光源在一定时间内开启关闭的次数;
发光设备发出光源在一定时间内开启关闭的时间;或
发光设备发出不同颜色光线组合。
作为上述方案的改进,每一个所述发光设备直接发射出来的标志信息还包括用于区别可进入区域/禁止进入区域的区域编码信息,直接发射出带有禁止进入区域的区域编码信息的发光设备所在的分界线后的特定区域限定为禁止进入区域,所述区域编码信息通过同一种信息代表可进入区域,并通过另一种信息代表禁止进入区域,所述方法还包括步骤:
当所述可移动电子设备获取到每一个标志信息时,首先基于所述标志信息中的区域编码信息识别为可进入区域还是禁止进入区域,若为禁止进入区域,则根据预设的避开策略,使所述可移动电子设备避开所述禁止进入区域而继续前进。
作为上述方案的改进,在完成遍历后,基于记录的标志信息及相应的坐标值以及每一个障碍物位置的坐标值构建地图时,还基于每一所述标志信息中的区域编码信息在构建的地图上标示为可进入区域/禁止进入区域。
作为上述方案的改进,每一个所述发光设备直接发射出来的标志信息中还包括用于限定运动区域的区域编码信息;
当所述可移动电子设备获取到用于限定运动区域的区域编码信息时,控制所述可移动电子设备只在所述限定运动区域内移动。
作为上述方案的改进,还包括:
标定过程:将可移动设备移动到地图的第一位置R1时记录任两个发光设备直接发射出来的光点标志中心直接发射到CCD/CMOS上的第一像素点位置A1和第二像素点位置A2,从而得到每一像素点对应的地图坐标系距离为(A2-A1)/L,其中,(A2-A1)表示A2和A1之间的像素点数量,L表示为所述两个发光设备之间的地图坐标系上的距离;记录可移动设备在第一位置R1时地图坐标值以及两个发光设备对应的标志中心直接发射到CCD/CMOS上的两个像素坐标值,并记录第一像素点位置A1和第二像素点位置A2之间的夹角α1;
纠正过程:在构建地图后的任何时刻需要对地图进行纠正时,将可移动设备移动到所述第一位置R1,记录所述两个发光设备直接发射出来的光点标志中心直接发射到CCD/CMOS
上的第三像素点位置A3和第四像素点位置A4,从而得到可移动设备在地图坐标系的偏离距离L差=(A3-A1)*(A2-A1)/L;并记录第三像素点位置A3和第四像素点位置A4之间的夹角α2,从而得到可移动设备在地图坐标系的偏离角度α差=α2-α1;并根据所述偏离距离L差以及偏离角度α差对构建的地图上的坐标值进行纠正。
作为上述方案的改进,所述角度α1和角度α2通过以下计算公式得到:
α1=arctan(y1/x1);
α2=arctan(y2/x2);
其中x1、y1分别为第一像素点位置A1和第二像素点位置A2之间构成的线段在CCD/CMOS的X轴上的像素差值、Y轴上像素点的差值;
其中x2、y2分别为第三像素点位置A3和第四像素点位置A4之间构成的线段在CCD/CMOS的X轴上的像素差值、Y轴上的像素差值。
作为上述方案的改进,所述可移动电子设备为机器人。
作为上述方案的改进,所述方法适用于对室内的待定位区域进行实时地图构建;或/和所述发光设备适于被设置在墙壁、天花板或者门框上。
本发明实施例还提供了一种基于发光设备的地图纠正方法,包括:
标定步骤:将可移动设备移动到地图的第一位置R1时记录任两个发光设备直接发射出来的光点标志中心直接发射到CCD/CMOS上的第一像素点位置A1和第二像素点位置A2,从而得到每一像素点对应的地图坐标系距离为(A2-A1)/L,其中,(A2-A1)表示A2和A1之间的像素点数量,L表示为所述两个发光设备之间的地图坐标系上的距离;记录可移动设备在第一位置R1时地图坐标值以及两个发光设备对应的标志中心直接发射到CCD/CMOS上的两个像素坐标值,并记录第一像素点位置A1和第二像素点位置A2之间的夹角α1;
纠正步骤:在构建地图后的任何时刻需要对地图进行纠正时,将可移动设备移动到所述第一位置R1,记录所述两个发光设备直接发射出来的光点标志中心直接发射到CCD/CMOS上的第三像素点位置A3和第四像素点位置A4,从而得到可移动设备在地图坐标系的偏离距离L差=(A3-A1)*(A2-A1)/L;并记录第三像素点位置A3和第四像素点位置A4之间的夹角α2,从而得到可移动设备在地图坐标系的偏离角度α差=α2-α1;并根据所述偏离距离L差以及偏离角度α差对构建的地图上的坐标值进行纠正。
本发明实施例还提供了一种基于发光设备的地图纠正方法,包括:
将可移动设备移动到通过初始标定得到的参考坐标点上,记录任两个发光设备直接发射出来的光点标志中心到CCD/CMOS上的第三像素点位置A3和第四像素点位置A4,基于初始标定得到的每一像素点对应的地图坐标系距离L’以及第三像素点位置A3与初始标定的所对应的第一像素点位置A1的像素差,得到可移动设备在地图坐标系的偏离距离L差=(A3-A1)*L’:
记录第三像素点位置A3和第四像素点位置A4之间的夹角α2,基于初始标定记录的第一像素点位置A1和第二像素点位置A2之间的夹角α1,得到可移动设备在地图坐标系的偏离角度α差=α2-α1;
根据所述偏离距离L差以及偏离角度α差对构建的地图上的坐标值进行纠正。
本发明实施例还提供了一种地图构建装置,适用于对待定位区域进行实时地图构建,所述待定位区域上方设有发光设备,所述地图构建装置为可移动设备,所述可移动设备包括:
摄像头,用于采集发光设备直接发射出来的光点标志;
坐标系构建及记录单元,用于在可移动电子设备初次沿一定的运动轨迹移动时,使所述摄像头所采集到的第一个所述发光设备直接发射出来的光点标志中心与CCD/CMOS中心点重合的位置作为地图坐标系的坐标原点,并记录所述第一个标志信息及相应的坐标值;
编码器,用于在所述可移动电子设备以所述坐标原点作为起始点移动并遍历整个待定位区域的过程中,基于陀螺仪实时计算所述可移动电子设备相对所述起始点的移动方向和移动距离;
障碍物检测部件,用于检测障碍物;
第一计算单元,用于每当所述障碍物检测部件检测到障碍物时,基于所述编码器得到的相对所述起始点的移动方向和移动距离,计算每一所述障碍物位置的坐标值,并将计算到的坐标值发送给所述坐标系构建及记录单元;
地图构建单元,基于所述坐标系构建及记录单元记录的标志信息及相应的坐标值以及每一个障碍物位置的坐标值构建地图。
本发明实施例还提供了一种基于发光设备的地图纠正装置,包括:
标定单元,用于将可移动设备移动到地图的第一位置R1时记录任两个发光设备直接发射出来的光点标志中心直接发射到CCD/CMOS上的第一像素点位置A1和第二像素点位置A2,从而得到每一像素点对应的地图坐标系距离为(A2-A1)/L,其中,(A2-A1)表示A2和A1之间的像素点数量,L表示为所述两个发光设备之间的地图坐标系上的距离;记录可移动设备在第一位置R1时地图坐标值以及两个发光设备对应的标志中心直接发射到CCD/CMOS上的两个像素坐标值,并记录第一像素点位置A1和第二像素点位置A2之间的夹角α1;
纠正单元,用于在构建地图后的任何时刻需要对地图进行纠正时,将可移动设备移动到所述第一位置R1,记录所述两个发光设备直接发射出来的光点标志中心直接发射到CCD/CMOS上的第三像素点位置A3和第四像素点位置A4,从而得到可移动设备在地图坐标系的偏离距离L差=(A3-A1)*(A2-A1)/L;并记录第三像素点位置A3和第四像素点位置A4之间的夹角α2,从而得到可移动设备在地图坐标系的偏离角度α差=α2-α1;并根据所述偏离距离L差以及偏离角度α差对构建的地图上的坐标值进行纠正。
本发明实施例还提供了一种基于发光设备的地图纠正装置,包括:
偏离距离计算单元,用于将可移动设备移动到通过初始标定得到的参考坐标点上,记录任两个发光设备直接发射出来的光点标志中心到CCD/CMOS上的第三像素点位置A3和第四像素点位置A4,基于初始标定得到的每一像素点对应的地图坐标系距离L’以及第三像素点位置A3与初始标定的所对应的第一像素点位置A1的像素差,得到可移动设备在地图坐标系的偏离距离L差=(A3-A1)*L’;
偏离角度计算单元,用于记录第三像素点位置A3和第四像素点位置A4之间的夹角α2,基于初始标定记录的第一像素点位置A1和第二像素点位置A2之间的夹角α1,得到可移动设备在地图坐标系的偏离角度α差=α2-α1;
纠正单元,用于根据所述偏离距离L差以及偏离角度α差对构建的地图上的坐标值进行纠正。
与现有技术相比,本发明公开的一种基于发光设备的地图构建方法、纠正方法及装置,通过在待定位区域中设置至少一个发光设备,并基于可移动电子设备初次移动时摄像头所采集到的第一个所述发光设备直接发射出来的光点标志中心与CCD/CMOS中心点重合的位置作为地图坐标系的坐标原点,并记录所述第一个标志信息及相应的坐标值;然后所述坐标原点作为起始点移动所述可移动电子设备并遍历整个待定位区域,在遍历过程中,基于所述可移动电子设备相对所述起始点的移动方向和移动距离,计算并记录所述可移动电子设备每一
次检测到障碍物时的障碍物位置的坐标值;完成遍历后,基于记录的标志信息及相应的坐标值以及每一个障碍物位置的坐标值构建地图。因此,本发明只需要一个或以上的发光设备(例如LED光源、激光光源或红外光源)即可实现待定位区域的定位及地图构建,而且方法简单,精确度高,具有成本低、操作简单且有效的技术效果。另外,在构建地图后,能够利用摄像头对发光设备的识别对构建的地图进行纠正,防止因为可移动设备上的陀螺仪发生漂移或者轮子打滑等因素造成的地图误差。
图1是本发明实施例1中一种基于发光设备的地图构建方法的流程示意图。
图2是本发明实施例2中一种基于发光设备的地图构建方法的流程示意图。
图3是本发明实施例3中一种基于发光设备的地图构建方法的流程示意图。
图4是本发明实施例4中一种基于发光设备的地图构建方法的流程示意图。
图5是本发明实施例5中一种基于发光设备的地图构建装置的结构框图。
图6是本发明实施例6中一种基于发光设备的地图构建装置的结构框图。
图7是本发明实施例7中一种基于发光设备的地图构建装置的结构框图。
图8是本发明实施例8中一种基于发光设备的地图构建装置的结构框图。
图9是本发明实施例9中一种基于发光设备的地图纠正方法的流程示意图。
图10是本发明实施例10中一种基于发光设备的地图纠正方法的流程示意图。
图11是本发明实施例11中一种基于发光设备的地图纠正装置的结构框图。
图12是本发明实施例12中一种基于发光设备的地图纠正装置的结构框图。
图13显示了对构建的地图进行纠正的过程。
图14显示了采用多于两个发光设备同时射入到CCD/CMOS的光点中心来进行距离和角度的偏差的纠正的原理。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参见图1,是本发明实施例1提供的一种基于发光设备的地图构建方法的流程示意图。该基于发光设备的地图构建方法适用于利用可移动电子设备对设有至少一个发光设备的待定位区域进行实时地图构建,该可移动电子设备可为例如:机器人。
本实施例的基于发光设备的地图构建方法包括步骤:
S11、以可移动电子设备初次沿一定的运动轨迹移动时,可移动电子设备上的摄像头所采集到的第一个所述发光设备直接发射出来的光点标志中心与CCD/CMOS中心点重合的位置作为地图坐标系的坐标原点,并记录所述第一个标志信息及相应的坐标值;
S12、以所述坐标原点作为起始点移动所述可移动电子设备并遍历整个待定位区域;
S13、在遍历过程中,基于所述可移动电子设备相对所述起始点的移动方向和移动距离,计算并记录所述可移动电子设备每一次检测到障碍物时的障碍物位置的坐标值;
S14、完成遍历后,基于记录的标志信息及相应的坐标值以及每一个障碍物位置的坐标值构建地图。
在步骤S11中,在待定位及地图构建的区域的至少一个特定位置/任意位置放置一个发光设备(例如LED光源、激光光源或红外光源)后,需要对该整个区域进行定位和构建地图,则需要通过可移动电子设备遍历整个区域才能获得区域中的相关信息。在第一次遍历开始时,
可移动电子设备上的摄像头所采集到的第一个所述发光设备直接发射出来的光点标志中心与CCD/CMOS中心点重合的位置作为地图坐标系的坐标原点时,将发光设备的位置(也即,可移动电子设备将此时的位置)作为由X轴和Y轴构成的坐标系中的坐标原点,并记录所述第一个所述标志信息及对应的坐标值。可以理解的,这里提及的“对应的坐标值”是指第一发光设备的位置的坐标值,也就是可移动电子设备当前的位置的坐标值。
可以理解的,为了方便计算和构图,将获取到的第一个所述发光设备直接发射出来的光点标志中心与CCD/CMOS中心点重合时,可移动设备的位置作为由X轴和Y轴构成的坐标系的坐标原点。但是,所述位置并不局限于只能作为由X轴和Y轴构成的坐标系的坐标原点,也可以是标记为其他参照点,具备参考作用即可,以方便记录其他点的信息。
其中,在本实施例中,所述至少一个发光设备对应设置在所述待定位区域的特定位置上,所述发光设备直接发射出来的标志信息包括用于区别其绝对位置的唯一编码信息,而所述唯一编码信息可通过以下任一或组合方式来表示:发光设备发出光源的数量;发光设备发出光源组成的特定形状;发光设备发出光源在一定时间内开启关闭的次数;发光设备发出光源在一定时间内开启关闭的时间;或发光设备发出不同颜色光线组合。
可以理解的,标志信息的构成是有多种方式的,具体示需要定位的待定位区域的环境需要标志数量来决定采用哪个方式更方便。在本实施例中,可移动电子设备通过摄像头来读取标志信息。
在步骤S12~S13中,当确定以获得第一个标志的位置为坐标原点时,将所述坐标原点作为运动的起始点移动所述可移动电子设备以遍历整个待定位区域。并且在所述可移动电子设备从所述起始点开始移动的同时,启动实时计算所述可移动电子设备相对所述起始点的移动方向和移动距离(例如,机器人的驱动轮轴上安装的编码器基于陀螺仪来实时记录机器人所移动路径以及相对位置和角度,从而能够通过计算获得可移动电子设备相对所述起始点的位置(包括距离和方向),其中,所述陀螺仪用于实时记录角度以及加速度)。在遍历过程中,可通过以下方式来计算所述可移动电子设备每一次检测到障碍物时的障碍物位置的坐标值:
方式一:利用碰撞传感器来感应障碍物,当碰撞传感器感测碰到障碍物时,将所述可移动电子设备当前的坐标值作为所述障碍物位置的坐标值;
方式二:利用激光传感器/红外传感器来探测障碍物,当激光传感器/红外传感器来探测到障碍物时,根据激光/红外距离计算原理计算出障碍物相对当前所述可移动电子设备的位置,从而计算出所述障碍物位置的坐标值。
另外,本实施例还增设了碰撞策略,即,在所述可移动电子设备的遍历过程中检测到障碍物检测到障碍物时,根据预设的碰撞策略,使所述可移动电子设备绕开所述障碍物而继续前进。
在本发明的一个优选实施例中,所述预定的碰撞策略包括:当可移动电子设备通过(例如,障碍物检测部件)感测到发生碰撞时,所述可移动电子设备将进行智能分析以确定进一步的移动方式。例如,所述可移动电子设备可以根据待定位区域的具体环境格局选择后退大于0且小于20厘米并且向右或左旋转1-10°。当所述可移动电子设备处于狭小空间中时,所述可移动电子设备可以选择后退大于0且小于2厘米。更进一步地,在连续3次旋转1°后的再次碰撞点均在一个平面时,所述可移动电子设备则选择旋转更大的角度,例如旋转角度2°甚至10°。
可以理解的,除了这里公开的碰撞策略外,本实施例的碰撞策略还可以采用其他方式,并不局限于此。
因此,通过预设的碰撞策略,继续移动所述可移动电子设备以获取其他标志和障碍物的
坐标值,直至遍历完整个待定位区域时,才完成一次遍历。可以理解的,所述可移动电子设备完成一次遍历后,记录该待定位区域的全部特征信息(包括标志的位置及每一个障碍物位置的位置信息)。
在所述步骤S14中,待所述可移动电子设备完成一次遍历后,基于记录的标志信息及相应的坐标值以及每一个障碍物位置的坐标值来构建地图。记录的信息越多,所构建的地图越丰富和详细。例如,由于可移动电子设备检测到障碍物时,会将障碍物的坐标值记录下来,当可移动电子设备置于室内环境遍历完整个房间后,便可以将所有障碍物的坐标连续记录下来,外围的同时围成一个圈的障碍物则可以认为是墙壁,这样,就将整个房间的无障碍区域,有障碍区域,墙壁区分开,这就构建了整个房间的地图。
可以理解的,所构建的地图为2D地图,所述可移动电子设备(例如,机器人)可以按照构建完成后的地图进行导航。
可见,本实施例的基于发光设备的地图构建方法只需要一个或以上的发光设备直接发射出相应的标志即可实现待定位区域的定位及地图构建,方法简单,具有精度高、成本低、操作简单且有效的技术效果。
参考图2,是本发明实施例2提供的一种基于发光设备的地图构建方法的流程示意图。该方法适用于利用可移动电子设备对设有两个或以上发光设备的待定位区域进行实时地图构建。其中,每一个发光设备对应设置在所述待定位区域的特定位置上,每一所述发光设备直接发射出来的标志信息包括用于区别其绝对位置的唯一编码信息,所述唯一编码信息可通过以下任一或组合方式来表示:发光设备发出光源的数量;发光设备发出光源组成的特定形状;发光设备发出光源在一定时间内开启关闭的次数;发光设备发出光源在一定时间内开启关闭的时间;或发光设备发出不同颜色光线组合。该可移动电子设备可为,例如:机器人。
本实施例的基于发光设备的地图构建方法包括步骤:
S21、以可移动电子设备初次沿一定的运动轨迹移动时,可移动电子设备上的摄像头所采集到的第一个所述发光设备直接发射出来的光点标志中心与CCD/CMOS中心点重合的位置作为地图坐标系的坐标原点,并记录所述第一个标志信息及相应的坐标值;
S22、以所述坐标原点作为起始点移动所述可移动电子设备并遍历整个待定位区域;
S23、在遍历过程中,基于所述可移动电子设备相对所述起始点的移动方向和移动距离,计算并记录所述可移动电子设备每一次检测到障碍物时的障碍物位置的坐标值;
S24、在遍历过程中,基于所述可移动电子设备相对所述起始点的移动方向和移动距离,计算所述可移动电子设备的摄像头每一次所采集到的其他发光设备直接发射出来的光点标志中心与CCD/CMOS中心点重合时的其他发光设备位置的坐标值,并记录其他标志信息及对应的坐标值;
S25、完成遍历后,基于记录的标志信息及相应的坐标值以及每一个障碍物位置的坐标值构建地图。
可以理解的,本实施例的步骤S21~S23及S25与图1所示的步骤S11~S13及S14基本一致,在此不再赘述。
与实施例1不同的是,由于本实施例的方法适用于对设有两个或以上发光设备的待定位区域进行地位,且每一个发光设备对应设置在所述待定位区域的特定位置上,每一所述发光设备直接发射出来的标志信息包括用于区别其绝对位置的唯一编码信息,因此,在所述可移动电子设备的遍历过程中,除了要计算并记录所述可移动电子设备每一次检测到障碍物时的障碍物位置的坐标值外,还要计算并记录所述可移动电子设备每一次获取到的除所述第一个发光设备直接发射出来的标志信息外的其他标志信息以及相应的坐标值,即步骤S24。
同样,以可移动电子设备上的摄像头所采集到的其他所述发光设备直接发射出来的光点标志中心与CCD/CMOS中心点重合时,可移动电子设备当前的位置作为对应发光设备所处的位置,记录该位置的坐标值以及获取对应的标志信息。
可以理解的,该处所指的可移动电子设备获取到的标志信息中主要包含用于区别其绝对位置的唯一编码信息。例如,当将至少两个发光设备分别放置在待定位区域的不同特定位置(例如,房间1,房间2......)上时,需要通过所述发光设备直接发射出来的标志中的唯一编码信息来确定并区分该发光设备所处的特定位置(绝对位置),例如,该发光设备位于房间1还是房间2等。因此,通过获取每一个发光设备直接发射出来的标志中的唯一编码信息时,经过识别能够确定该发光设备所处的绝对位置。
关于标志的唯一编码信息的表示方式,可参考上述实施例1中的相关描述。
可以理解的,本实施例的基于发光设备的地图构建方法适用于对室内的待定位区域进行实时地图构建。在对室内环境进行定位时,优选在该室内的每一个房间的墙壁、天花板或者门框的左侧墙壁、右侧墙壁或顶壁上设置一个所述发光设备。
这样,基于记录的每一个标志信息及相应的坐标值以及每一个障碍物位置的坐标值完成地图构建后,所述可移动电子设备可以基于每一个标志中的唯一编码信息来实现绝对位置的导航和分辨。例如,需要机器人遍历一趟房间2的时候,可以基于放置在该房间2的门框的左侧墙壁、右侧墙壁或顶壁上的发光设备直接发射出来的标志中的唯一编码信息来确定房间2的绝对位置,并基于该发光设备位置在构建的地图上的相对坐标值(相对坐标原点的方向和距离),从而导航可移动电子设备到达该房间2。
另外,基于每一个标志中的唯一编码信息,还能使可移动设备(机器人)知道其“身在何处”。例如,对于清洁机器人,需要对室内的多个房间进行清洁时,这样,通过识别每一个房间对应的标志中的唯一编码信息,就能确定自身处于哪个房间,从而防止多次对同一个房间进行清洁,以减少重复工作。区分房间的主要目的是一间一间的房间清扫,这样效率会比较高。这样,对于机器人遍历来说会少走很多重复路线。
参考图3,是本发明实施例3提供的一种基于发光设备的地图构建方法的流程示意图。该方法适用于利用可移动电子设备对设有两个或以上发光设备的待定位区域进行实时地图构建。其中,每一个发光设备对应设置在所述待定位区域的特定位置上,每一所述发光设备直接发射出来的标志信息包括用于区别其绝对位置的唯一编码信息以及用于区别可进入区域/禁止进入区域的区域编码信息。其中,带有禁止进入区域的区域编码信息的标志将对应的发光设备所在的分界线后的特定区域限定为禁止进入区域。所述唯一编码信息可通过以下任一或组合方式来表示:发光设备发出光源的数量;发光设备发出光源组成的特定形状;发光设备发出光源在一定时间内开启关闭的次数;发光设备发出光源在一定时间内开启关闭的时间;或发光设备发出不同颜色光线组合;而所述区域编码信息可通过同一种形状代表可进入区域,并通过另一种形状代表禁止进入区域。该可移动电子设备可为,例如:机器人。
本实施例的基于发光设备的地图构建方法包括步骤:
S31、以可移动电子设备初次沿一定的运动轨迹移动时,可移动电子设备上的摄像头所采集到的第一个所述发光设备直接发射出来的光点标志中心与CCD/CMOS中心点重合的位置作为地图坐标系的坐标原点,并记录所述第一个标志信息及相应的坐标值;
S32、基于获取的第一个所述标志中的区域编码信息识别为可进入区域还是禁止进入区域,若为禁止进入区域,则根据预设的避开策略,使所述可移动电子设备避开所述禁止进入区域而继续前进;
S33、以所述坐标原点作为起始点移动所述可移动电子设备并遍历整个待定位区域;
S34、在遍历过程中,基于所述可移动电子设备相对所述起始点的移动方向和移动距离,计算并记录所述可移动电子设备每一次检测到障碍物时的障碍物位置的坐标值;
S35、在遍历过程中,基于所述可移动电子设备相对所述起始点的移动方向和移动距离,计算所述可移动电子设备的摄像头每一次所采集到的其他发光设备直接发射出来的光点标志中心与CCD/CMOS中心点重合时的其他发光设备位置的坐标值,并记录其他标志信息及对应的坐标值;
S36、当所述可移动电子设备获取到每一个标志信息时,首先基于所述标志信息中的区域编码信息识别为可进入区域还是禁止进入区域,若为禁止进入区域,则根据预设的避开策略,使所述可移动电子设备避开所述禁止进入区域而继续前进;
S37、完成遍历后,基于记录的标志信息及相应的坐标值以及每一个障碍物位置的坐标值构建地图,并基于每一所述标志中的区域编码信息在构建的地图上标示为可进入区域/禁止进入区域。
在每一个所述标志中,均包括所述唯一编码信息和所述区域编码信息,所述唯一编码信息可通过以下任一或组合方式来表示:发光设备发出光源的数量;发光设备发出光源组成的特定形状;发光设备发出光源在一定时间内开启关闭的次数;发光设备发出光源在一定时间内开启关闭的时间;或发光设备发出不同颜色光线组合;而所述区域编码信息可通过同一种信息代表可进入区域,并通过另一种信息代表禁止进入区域。
另外,作为本实施例的优选方案,每一个所述发光设备直接发射出来的标志信息中还包括用于限定运动区域的区域编码信息;
当所述可移动电子设备获取到用于限定运动区域的区域编码信息时,控制所述可移动电子设备只在所述限定运动区域内移动。
可见,本实施例在实施例2的基础上,还增加了一个效果,即解决了自动识别禁止进入区域问题(也称为虚拟墙)。在机器人识别禁止进入区域的解决问题上,传统方法主要是利用以下方式:
一种是irobot公司提出的采用红外线发射装置置于期望禁止进入区域分界线上,机器人检测到红外线以后就不会越过该界线。这种方法的不足是红外线发射装置需要安装电池,给用户带来不便,另外一方面,该装置放置在分界线附近,如果家里有宠物等碰到改装置,该装置会移动,失去作用。
另外一种方法是Neato公司提出的采用磁条做分界线的方法,该方法需要用户将磁条贴于禁止进入区域的分界线上,采用霍尔传感器感应来区分。该方法的不足之处在于磁条贴于地面影响地面美观,另外一方面,用户如果希望更换禁止进入区域,磁条贴于地面不方便拆装。
而本实施例通过将用于区别可进入区域/禁止进入区域的区域编码信息置于每一个发光设备直接发射出来的标志中,其中,带有禁止进入区域的区域编码信息的标志将对应的发光设备所在的分界线后的特定区域限定为禁止进入区域。这样,当可移动设备识别到标志中的区域编码信息后即可区分。在识别为禁止进入区域后,结合预设的避开策略,即可使所述可移动电子设备避开所述禁止进入区域而继续前进。另外,在遍历完成后,基于每一所述标志的区域编码信息,还可以在构建的地图上具体标示为可进入区域/禁止进入区域,以利于导航。
可以理解的,可以在可移动设备中预先设置标志不同的区域编码信息代表可进入区域/禁止进入区域的关系对照表,这样,当获取的每一个所述标志信息中的区域编码信息时,通过该对照表即可识别为可进入区域还是禁止进入区域。
其中,本实施例的预设的避开策略优选为:在识别出该区域为禁止进入区域时,使所述可移动电子设备后退P厘米并且向左/右旋转Q°后继续前进,其中,P不少于所述分界线的长度,45≤Q≤90。基于该预设的避开策略,基本上可以保证所述可移动电子设备能够避开所述禁
止进入区域而继续前进。
另外,可通过以下方式来区分禁止进入区域和可进入区域之间的分界线:当可移动设备判断标志中的区域编码信息为禁止进入区域时,移动可移动设备在标签的左右两边寻找障碍物(墙壁)和无障碍区域,墙壁的延伸线就是禁止进入区域与可进入区域的分界线。
可以理解的,除了这里公开的避开策略外,本实施例的避开策略还可以采用其他方式,并不局限于此。
在利用本实施例的方法进行室内定位及地图构建时,优选在该室内的每一个房间墙壁、天花板或门框的左侧墙壁、右侧墙壁或顶壁上设置一个发光设备,由发光设备投影出相应的标志到门框上或天花板上。
可见,相比现有技术中的虚拟墙技术,本发明实施例通过将用于区别可进入区域/禁止进入区域的区域编码信息置于(例如,房间门框边的固定槽内的)每一个标志中,使得可移动设备获取并识别标志中的区域编码信息后,即可确定该区域能够进入。因此,本实施例的成本低,而且不影响整体美观,还容易更换。
参考图4,是本发明实施例4提供的一种基于发光设备的地图构建方法的流程示意图。通过机器人的驱动轮轴上安装的编码器来实时记录机器人相对所述起始点的移动方向和移动距离时,由于打滑、两驱动轮和地面接触点之间距离的不确定等原因,使得编码器的测算过程存在累积误差,另外,由于陀螺仪漂移也会对构建的地图造成偏差。因此,本实施例在前述实施例的基础上,对构建的地图进行纠正,防止因为可移动设备上的陀螺仪发生漂移或者轮子打滑等因素造成的地图误差,使得基于坐标值构建的地图更为精确。
具体的,本实施例在前述实施例1~实施例3的基础上构建得到地图后,增加对地图的纠正处理,具体包括:
S41、标定过程:将可移动设备移动到地图的第一位置R1时记录任两个发光设备直接发射出来的光点标志中心直接发射到CCD/CMOS上的第一像素点位置A1和第二像素点位置A2,从而得到每一像素点对应的地图坐标系距离为(A2-A1)/L,其中,(A2-A1)表示A2和A1之间的像素点数量,L表示为所述两个发光设备之间的地图坐标系上的距离;记录可移动设备在第一位置R1时地图坐标值以及两个发光设备对应的标志中心直接发射到CCD/CMOS上的两个像素坐标值,并记录第一像素点位置A1和第二像素点位置A2之间的夹角α1;
S42、纠正过程:在构建地图后的任何时刻需要对地图进行纠正时,将可移动设备移动到所述第一位置R1,记录所述两个发光设备直接发射出来的光点标志中心直接发射到CCD/CMOS上的第三像素点位置A3和第四像素点位置A4,从而得到可移动设备在地图坐标系的偏离距离L差=(A3-A1)*(A2-A1)/L;并记录第三像素点位置A3和第四像素点位置A4之间的夹角α2,从而得到可移动设备在地图坐标系的偏离角度α差=α2-α1;并根据所述偏离距离L差以及偏离角度α差对构建的地图上的坐标值进行纠正。
其中,所述角度α1和角度α2通过以下计算公式得到:
α1=arctan(y1/x1);
α2=arctan(y2/x2);
其中x1、y1分别为第一像素点位置A1和第二像素点位置A2之间构成的线段在CCD/CMOS的X轴上的像素差值、Y轴上像素点的差值;
其中x2、y2分别为第三像素点位置A3和第四像素点位置A4之间构成的线段在CCD/CMOS的X轴上的像素差值、Y轴上的像素差值。
在本实施例中,可移动设备中设置两个坐标系,一个是待定位区域的地图构建坐标系,
一个是可移动设备中的摄像头的CCD/CMOS坐标系。其中,CCD/CMOS坐标系是指发光设备直接发射出来的光点标志到CCD/CMOS上所在像素点位置而形成的,CCD/CMOS坐标系也包括X轴和Y轴。
利用本实施例对构建的地图进行纠正前,首先需要进行标定。例如,对于室内定位和地图构建来说,每家每户房子的层高不一样,这样发光设备投影标志在摄像头CCD/CMOS上X轴或者Y轴每偏离一个像素点,可移动设备对应在地图坐标系(即地面坐标系)上运动距离也会不一样,所以需要标定。
具体标定过程为,当可移动设备(例如,机器人)在运动过程中到达第一位置R1时摄像头检测到两个发光设备直接发射出来的两个光点标志中心投影到CCD/CMOS上,如图13所示的第一像素位置A1和第一像素位置A2。从而可以计算出第一像素位置A1和第一像素位置A2之间的像素差值。通过所述两个发光设备之间的地图坐标系上的距离除以像素点数就可以求出一个像素点对应了机器人在地面坐标系距离。同时,记录可移动设备在第一位置R1时地图坐标值以及两个发光设备对应的标志中心直接发射到CCD/CMOS上的两个像素坐标值,并记录第一像素点位置A1和第二像素点位置A2之间的夹角α1(例如,相对水平面)。
在标定完成后,当机器人运行一段时间(例如20分钟)需要纠正已构建的地图时,机器人运动到参考坐标点所在的位置(即第一位置R1)。通过这一次在CCD/CMOS的两个像素位置中的任一个对应与上一次位置差可以知道偏离了多少个像素。通过多少个像素乘以标定时的距离便可以求出机器人在地面坐标系偏离了多少距离。
例如,以第一像素点位置A1作为参考点,将可移动设备移动到所述第一位置R1时,记录所述两个发光设备直接发射出来的光点标志中心直接发射到CCD/CMOS上的位置,如图13上的第三像素点位置A3和第四像素点位置A4,从而得到可移动设备在地图坐标系的偏离距离L差=(A3-A1)*(A2-A1)/L。并记录第三像素点位置A3和第四像素点位置A4之间的夹角α2,从而得到可移动设备在地图坐标系的偏离角度α差=α2-α1。
这时,根据计算出来的所述偏离距离L差以及偏离角度α差对构建的地图上的坐标值进行纠正,从而得到纠正后的地图。
可以理解的,本实施例通过两个发光设备同时射入到CCD/CMOS的光点中心来进行距离和角度的偏差的纠正。例如,当发光设备为红色LED时,在CCD里面的投影有两个很明显的亮点,亮点在CCD里面可能占几十或者几百个像素点,本实施例以这几十或者几百个像素点的中间的点作为光点中心。
另外,本实施例也可采用多于两个发光设备同时射入到CCD/CMOS的光点中心来进行距离和角度的偏差的纠正。参考图14,假设预先知道各个边(x、y、z)的顶点(a、b、c)对应关系(顶点是亮点的中心点)。如果是三个发光亮点中心组成一个三角形,要纠正坐标或者角度,需要知道只要三条边的长度不一样,在下一次纠正的时候,就可以判断出亮点的对应关系。其中,a、b、c任意一个点都可以作为纠正坐标的点,x、y、z三条线段都可以作为纠正角度的线段。
参见图5,是本发明实施例1提供的一种基于发光设备的地图构建装置的结构框图。该地图构建装置为可移动设备/安装在可移动设备上,适用于对设有至少一个发光设备的待定位区域进行实时地图构建,该可移动电子设备可为例如:机器人。
所述地图构建装置包括:
摄像头51,用于采集发光设备直接发射出来的光点标志;
坐标系构建及记录单元52,用于在可移动电子设备初次沿一定的运动轨迹移动时,使所述摄像头所采集到的第一个所述发光设备直接发射出来的光点标志中心与CCD/CMOS中心
点重合的位置作为地图坐标系的坐标原点,并记录所述第一个标志信息及相应的坐标值;
编码器53,用于在所述可移动电子设备以所述坐标原点作为起始点移动并遍历整个待定位区域的过程中,基于陀螺仪实时计算所述可移动电子设备相对所述起始点的移动方向和移动距离;
障碍物检测部件54,用于检测障碍物;
第一计算单元55,用于每当所述障碍物检测部件54检测到障碍物时,基于所述编码器53得到的相对所述起始点的移动方向和移动距离,计算每一所述障碍物位置的坐标值,并将计算到的坐标值发送给所述坐标系构建及记录单元;
地图构建单元56,基于所述坐标系构建及记录单元52记录的标志信息及相应的坐标值以及每一个障碍物位置的坐标值构建地图。
关于本实施例的地图构建装置的工作原理和过程,可以参考实施例1,在此不再赘述。
其中,所述障碍物检测部件54可包括碰撞传感器/激光传感器/红外传感器:
利用碰撞传感器来感应障碍物,当碰撞传感器感测碰到障碍物时,将所述可移动电子设备当前的坐标值作为所述障碍物位置的坐标值;
所述碰撞传感器部件用于感测所述可移动电子设备与外部环境的碰撞事件。所述碰撞传感器部件包括但不限于偏心锤式传感器、滚球式碰撞传感器、滚轴式膨胀传感器、水银开关式碰撞传感器、有压阻效应式碰撞传感器、压电效应式碰撞传感器和微动开关等。或
利用激光传感器/红外传感器来探测障碍物,当激光传感器/红外传感器来探测到障碍物时,根据激光/红外距离计算原理计算出障碍物相对当前所述可移动电子设备的位置,从而计算出所述障碍物位置的坐标值。
在本实施例中,优选的,所述可移动设备还包括:碰撞策略单元,用于在所述可移动电子设备的遍历过程中检测到障碍物时,根据预设的碰撞策略,使所述可移动电子设备绕开所述障碍物而继续前进。
有关该碰撞策略单元的工作原理和方式可参考实施例1的相关描述。
在本发明的另一优选实施例中,参考图6,该实施例6的地图构建装置为可移动设备/安装在可移动设备上,适用于对设有两个或以上发光设备的待定位区域进行实时地图构建。其中,每一个发光设备对应设置在所述待定位区域的特定位置上,每一所述发光设备直接发射出来的标志信息包括用于区别其绝对位置的唯一编码信息,所述唯一编码信息可通过以下任一或组合方式来表示:发光设备发出光源的数量;发光设备发出光源组成的特定形状;发光设备发出光源在一定时间内开启关闭的次数;发光设备发出光源在一定时间内开启关闭的时间;或发光设备发出不同颜色光线组合。该可移动电子设备可为,例如:机器人。
所述地图构建装置包括:
摄像头61,用于采集发光设备直接发射出来的标志;
坐标系构建及记录单元62,用于在可移动电子设备初次沿一定的运动轨迹移动时,使所述摄像头所采集到的第一个所述发光设备直接发射出来的光点标志中心与CCD/CMOS中心点重合的位置作为地图坐标系的坐标原点,并记录所述第一个标志信息及相应的坐标值;
编码器63,用于在所述可移动电子设备以所述坐标原点作为起始点移动并遍历整个待定位区域的过程中,基于陀螺仪实时计算所述可移动电子设备相对所述起始点的移动方向和移动距离;
障碍物检测部件64,用于检测障碍物;
第一计算单元65,用于每当所述障碍物检测部件64检测到障碍物时,基于所述编码器53得到的相对所述起始点的移动方向和移动距离,计算每一所述障碍物位置的坐标值,并将计算到的坐标值发送给所述坐标系构建及记录单元;
第二计算单元66,用于在遍历过程中,基于所述可移动电子设备相对所述起始点的移动方向和移动距离,计算所述可移动电子设备的摄像头每一次所采集到的其他发光设备直接发射出来的光点标志中心与CCD/CMOS中心点重合时的其他发光设备位置的坐标值,并将其他标志信息及对应的坐标值发送给所述坐标系构建及记录单元62;
地图构建单元67,基于所述坐标系构建及记录单元62记录的标志信息及相应的坐标值以及每一个障碍物位置的坐标值构建地图。
本实施例的地图构建装置的工作原理和过程可参考上述实施例2的相关描述,在此不再赘述。
参考图7,是本发明实施例7提供的一种基于发光设备的地图构建装置的结构框图。该装置为可移动设备/安装在可移动设备上,适用于对设有两个或以上发光设备的待定位区域进行实时地图构建。其中,每一个发光设备对应设置在所述待定位区域的特定位置上,每一所述发光设备直接发射出来的标志信息包括用于区别其绝对位置的唯一编码信息以及用于区别可进入区域/禁止进入区域的区域编码信息。其中,带有禁止进入区域的区域编码信息的标志将对应的发光设备所在的分界线后的特定区域限定为禁止进入区域。所述唯一编码信息可通过以下任一或组合方式来表示:发光设备发出光源的数量;发光设备发出光源组成的特定形状;发光设备发出光源在一定时间内开启关闭的次数;发光设备发出光源在一定时间内开启关闭的时间;或发光设备发出不同颜色光线组合;而所述区域编码信息可通过同一种形状代表可进入区域,并通过另一种形状代表禁止进入区域。该可移动电子设备可为,例如:机器人。
所述地图构建装置包括:
摄像头71,用于采集发光设备直接发射出来的标志;
坐标系构建及记录单元72,用于在可移动电子设备初次沿一定的运动轨迹移动时,使所述摄像头所采集到的第一个所述发光设备直接发射出来的光点标志中心与CCD/CMOS中心点重合的位置作为地图坐标系的坐标原点,并记录所述第一个标志信息及相应的坐标值;
编码器73,用于在所述可移动电子设备以所述坐标原点作为起始点移动并遍历整个待定位区域的过程中,基于陀螺仪实时计算所述可移动电子设备相对所述起始点的移动方向和移动距离;
障碍物检测部件74,用于检测障碍物;
第一计算单元75,用于每当所述障碍物检测部件74检测到障碍物时,基于所述编码器53得到的相对所述起始点的移动方向和移动距离,计算每一所述障碍物位置的坐标值,并将计算到的坐标值发送给所述坐标系构建及记录单元;
第二计算单元76,用于在遍历过程中,基于所述可移动电子设备相对所述起始点的移动方向和移动距离,计算所述可移动电子设备的摄像头每一次所采集到的其他发光设备直接发射出来的光点标志中心与CCD/CMOS中心点重合时的其他发光设备位置的坐标值,并将其他标志信息及对应的坐标值发送给所述坐标系构建及记录单元72;
区域识别单元77,用于当所述可移动电子设备获取到每一个标志信息时,首先基于所述标志信息中的区域编码信息识别为可进入区域还是禁止进入区域。可以理解的,可以在区域识别单元77中预先设置标志不同的区域编码信息代表可进入区域/禁止进入区域的关系对照表,这样,当获取的每一个标志中的区域编码信息时,通过该对照表即可识别为可进入区域还是禁止进入区域。
避开策略单元78,若所述区域识别单元77识别区域编码信息为禁止进入区域,则根据预设的避开策略,使所述可移动电子设备避开所述禁止进入区域而继续前进;
地图构建单元79,基于所述坐标系构建及记录单元72记录的标志信息及相应的坐标值
以及每一个障碍物位置的坐标值构建地图,并基于每一所述标志的区域编码信息在构建的地图上标示为可进入区域/禁止进入区域。
在每一个所述标志中,均包括所述唯一编码信息和所述区域编码信息,所述唯一编码信息可通过以下任一或组合方式来表示:发光设备发出光源的数量;发光设备发出光源组成的特定形状;发光设备发出光源在一定时间内开启关闭的次数;发光设备发出光源在一定时间内开启关闭的时间;或发光设备发出不同颜色光线组合;而所述区域编码信息可通过同一种信息代表可进入区域,并通过另一种信息代表禁止进入区域。
另外,作为本实施例的优选方案,每一个所述发光设备直接发射出来的标志信息中还包括用于限定运动区域的区域编码信息;当所述可移动电子设备获取到用于限定运动区域的区域编码信息时,控制所述可移动电子设备只在所述限定运动区域内移动。
本实施例的地图构建装置有效解决了现有技术中的自动识别禁止进入区域问题(也称为虚拟墙)问题,其具体实现过程和原理请参考上述实施例3的相关描述。
参考图8,是本发明实施例8提供的一种基于发光设备的地图构建装置的结构框图。该装置在实施例5~7中任一个地图构建装置的基础上,还包括:
标定单元81,用于将可移动设备移动到地图的第一位置R1时记录任两个发光设备直接发射出来的光点标志中心直接发射到CCD/CMOS上的第一像素点位置A1和第二像素点位置A2,从而得到每一像素点对应的地图坐标系距离为(A2-A1)/L,其中,(A2-A1)表示A2和A1之间的像素点数量,L表示为所述两个发光设备之间的地图坐标系上的距离;记录可移动设备在第一位置R1时地图坐标值以及两个发光设备对应的标志中心直接发射到CCD/CMOS上的两个像素坐标值,并记录第一像素点位置A1和第二像素点位置A2之间的夹角α1;
纠正单元82,用于在构建地图后的任何时刻需要对地图进行纠正时,将可移动设备移动到所述第一位置R1,记录所述两个发光设备直接发射出来的光点标志中心直接发射到CCD/CMOS上的第三像素点位置A3和第四像素点位置A4,从而得到可移动设备在地图坐标系的偏离距离L差=(A3-A1)*(A2-A1)/L;并记录第三像素点位置A3和第四像素点位置A4之间的夹角α2,从而得到可移动设备在地图坐标系的偏离角度α差=α2-α1;并根据所述偏离距离L差以及偏离角度α差对构建的地图上的坐标值进行纠正。
其中,所述角度α1和角度α2通过以下计算公式得到:
α1=arctan(y1/x1);
α2=arctan(y2/x2);
其中x1、y1分别为第一像素点位置A1和第二像素点位置A2之间构成的线段在CCD/CMOS的X轴上的像素差值、Y轴上像素点的差值;
其中x2、y2分别为第三像素点位置A3和第四像素点位置A4之间构成的线段在CCD/CMOS的X轴上的像素差值、Y轴上的像素差值。
本实施例的地图构建装置的工作原理和过程可参考上述实施例4的相关描述,在此不再赘述。
本发明实施例还公开了一种智能移动设备,包括移动装置以及如图5~图8所示的任意实施例的地图构建装置。该智能移动设备优选为机器人。
参考图9,图9是本发明实施例9中一种基于发光设备的地图纠正方法的流程示意图。该地图纠正方法包括步骤:
S91、标定步骤:将可移动设备移动到地图的第一位置R1时记录任两个发光设备直接发射出来的光点标志中心直接发射到CCD/CMOS上的第一像素点位置A1和第二像素点位置A2,从而得到每一像素点对应的地图坐标系距离为(A2-A1)/L,其中,(A2-A1)表示A2和
A1之间的像素点数量,L表示为所述两个发光设备之间的地图坐标系上的距离;记录可移动设备在第一位置R1时地图坐标值以及两个发光设备对应的标志中心直接发射到CCD/CMOS上的两个像素坐标值,并记录第一像素点位置A1和第二像素点位置A2之间的夹角α1;
S92、纠正步骤:在构建地图后的任何时刻需要对地图进行纠正时,将可移动设备移动到所述第一位置R1,记录所述两个发光设备直接发射出来的光点标志中心直接发射到CCD/CMOS上的第三像素点位置A3和第四像素点位置A4,从而得到可移动设备在地图坐标系的偏离距离L差=(A3-A1)*(A2-A1)/L;并记录第三像素点位置A3和第四像素点位置A4之间的夹角α2,从而得到可移动设备在地图坐标系的偏离角度α差=α2-α1;并根据所述偏离距离L差以及偏离角度α差对构建的地图上的坐标值进行纠正。
其中,所述角度α1和角度α2通过以下计算公式得到:
α1=arctan(y1/x1);
α2=arctan(y2/x2);
其中x1、y1分别为第一像素点位置A1和第二像素点位置A2之间构成的线段在CCD/CMOS的X轴上的像素差值、Y轴上像素点的差值;
其中x2、y2分别为第三像素点位置A3和第四像素点位置A4之间构成的线段在CCD/CMOS的X轴上的像素差值、Y轴上的像素差值。
优选的,在本实施例中,所述可移动电子设备为机器人。
可以理解的,本实施的所述地图可通过实施例1~实施例4中任一项所述的基于发光设备的地图构建方法构建得到。
本实施例的地图纠正方法的工作原理和过程可参考上述实施例4的相关描述,在此不再赘述。
参考图10,图10是本发明实施例10中一种基于发光设备的地图纠正方法的流程示意图。该地图纠正方法包括步骤:
S101、将可移动设备移动到通过初始标定得到的参考坐标点上,记录任两个发光设备直接发射出来的光点标志中心到CCD/CMOS上的第三像素点位置A3和第四像素点位置A4,基于初始标定得到的每一像素点对应的地图坐标系距离L’以及第三像素点位置A3与初始标定的所对应的第一像素点位置A1的像素差,得到可移动设备在地图坐标系的偏离距离L差=(A3-A1)*L’;
S102、记录第三像素点位置A3和第四像素点位置A4之间的夹角α2,基于初始标定记录的第一像素点位置A1和第二像素点位置A2之间的夹角α1,得到可移动设备在地图坐标系的偏离角度α差=α2-α1;
S103、根据所述偏离距离L差以及偏离角度α差对构建的地图上的坐标值进行纠正。
其中,所述初始标定过程如下:
(1)将可移动设备移动到地图的第一位置R1时记录任两个发光设备直接发射出来的光点标志中心直接发射到CCD/CMOS上的第一像素点位置A1和第二像素点位置A2;
(2)计算每一像素点对应的地图坐标系距离L’=(A2-A1)/L,其中,(A2-A1)表示A2和A1之间的像素点数量,L表示为所述两个发光设备之间的地图坐标系上的距离;
(3)记录可移动设备在第一位置R1时地图坐标值以及两个发光设备对应的标志中心直接发射到CCD/CMOS上的两个像素坐标值,并记录第一像素点位置A1和第二像素点位置A2之间的夹角α1。
其中,所述角度α1和角度α2通过以下计算公式得到:
α1=arctan(y1/x1);
α2=arctan(y2/x2);
其中x1、y1分别为第一像素点位置A1和第二像素点位置A2之间构成的线段在CCD/CMOS的X轴上的像素差值、Y轴上像素点的差值;
其中x2、y2分别为第三像素点位置A3和第四像素点位置A4之间构成的线段在CCD/CMOS的X轴上的像素差值、Y轴上的像素差值。
优选的,在本实施例中,所述可移动电子设备为机器人。
可以理解的,本实施的所述地图可通过实施例1~实施例4中任一项所述的基于发光设备的地图构建方法构建得到。
本实施例的地图纠正方法的工作原理和过程可参考上述实施例4的相关描述,在此不再赘述。
参考图11,图11是本发明实施例11中一种基于发光设备的地图纠正装置的结构框图。该地图纠正装置包括:
标定单元111,用于将可移动设备移动到地图的第一位置R1时记录任两个发光设备直接发射出来的光点标志中心直接发射到CCD/CMOS上的第一像素点位置A1和第二像素点位置A2,从而得到每一像素点对应的地图坐标系距离为(A2-A1)/L,其中,(A2-A1)表示A2和A1之间的像素点数量,L表示为所述两个发光设备之间的地图坐标系上的距离;记录可移动设备在第一位置R1时地图坐标值以及两个发光设备对应的标志中心直接发射到CCD/CMOS上的两个像素坐标值,并记录第一像素点位置A1和第二像素点位置A2之间的夹角α1;
纠正单元112,用于在构建地图后的任何时刻需要对地图进行纠正时,将可移动设备移动到所述第一位置R1,记录所述两个发光设备直接发射出来的光点标志中心直接发射到CCD/CMOS上的第三像素点位置A3和第四像素点位置A4,从而得到可移动设备在地图坐标系的偏离距离L差=(A3-A1)*(A2-A1)/L;并记录第三像素点位置A3和第四像素点位置A4之间的夹角α2,从而得到可移动设备在地图坐标系的偏离角度α差=α2-α1;并根据所述偏离距离L差以及偏离角度α差对构建的地图上的坐标值进行纠正。
其中,所述角度α1和角度α2通过以下计算公式得到:
α1=arctan(y1/x1);
α2=arctan(y2/x2);
其中x1、y1分别为第一像素点位置A1和第二像素点位置A2之间构成的线段在CCD/CMOS的X轴上的像素差值、Y轴上像素点的差值;
其中x2、y2分别为第三像素点位置A3和第四像素点位置A4之间构成的线段在CCD/CMOS的X轴上的像素差值、Y轴上的像素差值。
优选的,在本实施例中,所述可移动电子设备为机器人。
可以理解的,本实施的所述地图可通过实施例5~实施例8中任一项所述的地图构建装置构建得到。
参考图12,图12是本发明实施例12中一种基于发光设备的地图纠正装置的结构框图。该地图纠正装置包括:
偏离距离计算单元121,用于将可移动设备移动到通过初始标定得到的参考坐标点上,记录任两个发光设备直接发射出来的光点标志中心到CCD/CMOS上的第三像素点位置A3和
第四像素点位置A4,基于初始标定得到的每一像素点对应的地图坐标系距离L’以及第三像素点位置A3与初始标定的所对应的第一像素点位置A1的像素差,得到可移动设备在地图坐标系的偏离距离L差=(A3-A1)*L’;
偏离角度计算单元122,用于记录第三像素点位置A3和第四像素点位置A4之间的夹角α2,基于初始标定记录的第一像素点位置A1和第二像素点位置A2之间的夹角α1,得到可移动设备在地图坐标系的偏离角度α差=α2-α1;
纠正单元123,根据所述偏离距离L差以及偏离角度α差对构建的地图上的坐标值进行纠正。
其中,所述初始标定过程如下:
(1)将可移动设备移动到地图的第一位置R1时记录任两个发光设备直接发射出来的光点标志中心直接发射到CCD/CMOS上的第一像素点位置A1和第二像素点位置A2;
(2)计算每一像素点对应的地图坐标系距离L’=(A2-A1)/L,其中,(A2-A1)表示A2和A1之间的像素点数量,L表示为所述两个发光设备之间的地图坐标系上的距离;
(3)记录可移动设备在第一位置R1时地图坐标值以及两个发光设备对应的标志中心直接发射到CCD/CMOS上的两个像素坐标值,并记录第一像素点位置A1和第二像素点位置A2之间的夹角α1。
其中,所述角度α1和角度α2通过以下计算公式得到:
α1=arctan(y1/x1);
α2=arctan(y2/x2);
其中x1、y1分别为第一像素点位置A1和第二像素点位置A2之间构成的线段在CCD/CMOS的X轴上的像素差值、Y轴上像素点的差值;
其中x2、y2分别为第三像素点位置A3和第四像素点位置A4之间构成的线段在CCD/CMOS的X轴上的像素差值、Y轴上的像素差值。
优选的,在本实施例中,所述可移动电子设备为机器人。
可以理解的,本实施的所述地图可通过实施例5~实施例8中任一项所述的地图构建装置构建得到。
本实施例的地图纠正方法的工作原理和过程可参考上述实施例4的相关描述,在此不再赘述。
最后,还需要说明的是,上述一系列处理不仅包括以这里所述的顺序按时间序列执行的处理,而且包括并行或分别地、而不是按时间顺序执行的处理。通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到本发明可借助软件加必需的硬件平台的方式来实现,当然也可以全部通过软件来实施。基于这样的理解,本发明的技术方案对背景技术做出贡献的全部或者部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例或者实施例的某些部分所述的方法。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。
Claims (40)
- 一种基于发光设备的地图构建方法,其特征在于,适用于对待定位区域进行实时地图构建,所述待定位区域上方设有发光设备;包括步骤:以可移动电子设备初次沿一定的运动轨迹移动时,可移动电子设备上的摄像头所采集到的第一个所述发光设备直接发射出来的光点标志中心与CCD/CMOS中心点重合的位置作为地图坐标系的坐标原点,并记录所述第一个标志信息及相应的坐标值;以所述坐标原点作为起始点移动所述可移动电子设备并遍历整个待定位区域,在遍历过程中,基于所述可移动电子设备相对所述起始点的移动方向和移动距离,计算并记录所述可移动电子设备每一次检测到障碍物时的障碍物位置的坐标值;完成遍历后,基于记录的标志信息及相应的坐标值以及每一个障碍物位置的坐标值构建地图。
- 如权利要求1所述的基于发光设备的地图构建方法,其特征在于,所述发光设备的数量为两个及以上,且每一个发光设备对应设置在所述待定位区域的上方的特定位置上,每一所述发光设备直接发射出来的标志信息包括用于区别其绝对位置的唯一编码信息;所述方法还包括步骤:在遍历过程中,基于所述可移动电子设备相对所述起始点的移动方向和移动距离,计算所述可移动电子设备的摄像头每一次所采集到的其他发光设备直接发射出来的光点标志中心与CCD/CMOS中心点重合时的其他发光设备位置的坐标值,并记录其他标志信息及对应的坐标值。
- 如权利要求2所述的基于发光设备的地图构建方法,其特征在于,所述唯一编码信息可通过以下任一或组合方式来表示:发光设备发出光源的数量;发光设备发出光源组成的特定形状;发光设备发出光源在一定时间内开启关闭的次数;发光设备发出光源在一定时间内开启关闭的时间;或发光设备发出不同颜色光线组合。
- 如权利要求2所述的基于发光设备的地图构建方法,其特征在于,每一个所述发光设备直接发射出来的标志信息还包括用于区别可进入区域/禁止进入区域的区域编码信息,直接发射出带有禁止进入区域的区域编码信息的发光设备所在的分界线后的特定区域限定为禁止进入区域,所述区域编码信息通过同一种信息代表可进入区域,并通过另一种信息代表禁止进入区域,所述方法还包括步骤:当所述可移动电子设备获取到每一个标志信息时,首先基于所述标志信息中的区域编码信息识别为可进入区域还是禁止进入区域,若为禁止进入区域,则根据预设的避开策略,使所述可移动电子设备避开所述禁止进入区域而继续前进。
- 如权利要求4所述的基于发光设备的地图构建方法,其特征在于,在完成遍历后,基于记录的标志信息及相应的坐标值以及每一个障碍物位置的坐标值构建地图时,还基于每一所述标志信息中的区域编码信息在构建的地图上标示为可进入区域/禁止进入区域。
- 如权利要求5所述的基于发光设备的地图构建方法,其特征在于,每一个所述发光设备直接发射出来的标志信息中还包括用于限定运动区域的区域编码信息;当所述可移动电子设备获取到用于限定运动区域的区域编码信息时,控制所述可移动电 子设备只在所述限定运动区域内移动。
- 如权利要求2所述的基于发光设备的地图构建方法,其特征在于,还包括:标定过程:将可移动设备移动到地图的第一位置R1时记录任两个发光设备直接发射出来的光点标志中心直接发射到CCD/CMOS上的第一像素点位置A1和第二像素点位置A2,从而得到每一像素点对应的地图坐标系距离为(A2-A1)/L,其中,(A2-A1)表示A2和A1之间的像素点数量,L表示为所述两个发光设备之间的地图坐标系上的距离;记录可移动设备在第一位置R1时地图坐标值以及两个发光设备对应的标志中心直接发射到CCD/CMOS上的两个像素坐标值,并记录第一像素点位置A1和第二像素点位置A2之间的夹角α1;纠正过程:在构建地图后的任何时刻需要对地图进行纠正时,将可移动设备移动到所述第一位置R1,记录所述两个发光设备直接发射出来的光点标志中心直接发射到CCD/CMOS上的第三像素点位置A3和第四像素点位置A4,从而得到可移动设备在地图坐标系的偏离距离L差=(A3-A1)*(A2-A1)/L;并记录第三像素点位置A3和第四像素点位置A4之间的夹角α2,从而得到可移动设备在地图坐标系的偏离角度α差=α2-α1;并根据所述偏离距离L差以及偏离角度α差对构建的地图上的坐标值进行纠正。
- 如权利要求7所述的基于发光设备的地图构建方法,其特征在于,所述角度α1和角度α2通过以下计算公式得到:α1=arctan(y1/x1);α2=arctan(y2/x2);其中x1、y1分别为第一像素点位置A1和第二像素点位置A2之间构成的线段在CCD/CMOS的X轴上的像素差值、Y轴上像素点的差值;其中x2、y2分别为第三像素点位置A3和第四像素点位置A4之间构成的线段在CCD/CMOS的X轴上的像素差值、Y轴上的像素差值。
- 如权利要求1所述的基于发光设备的地图构建方法,其特征在于,所述可移动电子设备为机器人。
- 如权利要求1所述的基于发光设备的地图构建方法,其特征在于,所述方法适用于对室内的待定位区域进行实时地图构建;或/和所述发光设备适于被设置在墙壁、天花板或者门框上。
- 一种基于发光设备的地图纠正方法,其特征在于,包括:标定步骤:将可移动设备移动到地图的第一位置R1时记录任两个发光设备直接发射出来的光点标志中心直接发射到CCD/CMOS上的第一像素点位置A1和第二像素点位置A2,从而得到每一像素点对应的地图坐标系距离为(A2-A1)/L,其中,(A2-A1)表示A2和A1之间的像素点数量,L表示为所述两个发光设备之间的地图坐标系上的距离;记录可移动设备在第一位置R1时地图坐标值以及两个发光设备对应的标志中心直接发射到CCD/CMOS上的两个像素坐标值,并记录第一像素点位置A1和第二像素点位置A2之间的夹角α1;纠正步骤:在构建地图后的任何时刻需要对地图进行纠正时,将可移动设备移动到所述第一位置R1,记录所述两个发光设备直接发射出来的光点标志中心直接发射到CCD/CMOS上的第三像素点位置A3和第四像素点位置A4,从而得到可移动设备在地图坐标系的偏离距离L差=(A3-A1)*(A2-A1)/L;并记录第三像素点位置A3和第四像素点位置A4之间的夹角α2,从而得到可移动设备在地图坐标系的偏离角度α差=α2-α1;并根据所述偏离距离L差以及偏离角度α差对构建的地图上的坐标值进行纠正。
- 如权利要求11所述的地图纠正方法,其特征在于,所述角度α1和角度α2通过以下 计算公式得到:α1=arctan(y1/x1);α2=arctan(y2/x2);其中x1、y1分别为第一像素点位置A1和第二像素点位置A2之间构成的线段在CCD/CMOS的X轴上的像素差值、Y轴上像素点的差值;其中x2、y2分别为第三像素点位置A3和第四像素点位置A4之间构成的线段在CCD/CMOS的X轴上的像素差值、Y轴上的像素差值。
- 如权利要求11所述的地图纠正方法,其特征在于,所述可移动电子设备为机器人。
- 如权利要求11所述的地图纠正方法,其特征在于,所述发光设备为LED光源、激光光源或红外光源。
- 如权利要求11所述的地图纠正方法,其特征在于,所述地图可通过权利要求1~10任一项所述的基于发光设备的地图构建方法构建。
- 一种基于发光设备的地图纠正方法,其特征在于,包括:将可移动设备移动到通过初始标定得到的参考坐标点上,记录任两个发光设备直接发射出来的光点标志中心到CCD/CMOS上的第三像素点位置A3和第四像素点位置A4,基于初始标定得到的每一像素点对应的地图坐标系距离L’以及第三像素点位置A3与初始标定的所对应的第一像素点位置A1的像素差,得到可移动设备在地图坐标系的偏离距离L差=(A3-A1)*L’:记录第三像素点位置A3和第四像素点位置A4之间的夹角α2,基于初始标定记录的第一像素点位置A1和第二像素点位置A2之间的夹角α1,得到可移动设备在地图坐标系的偏离角度α差=α2-α1;根据所述偏离距离L差以及偏离角度α差对构建的地图上的坐标值进行纠正。
- 如权利要求15所述的地图纠正方法,其特征在于,所述初始标定过程如下:将可移动设备移动到地图的第一位置R1时记录任两个发光设备直接发射出来的光点标志中心直接发射到CCD/CMOS上的第一像素点位置A1和第二像素点位置A2,;计算每一像素点对应的地图坐标系距离L’=(A2-A1)/L,其中,(A2-A1)表示A2和A1之间的像素点数量,L表示为所述两个发光设备之间的地图坐标系上的距离;记录可移动设备在第一位置R1时地图坐标值以及两个发光设备对应的标志中心直接发射到CCD/CMOS上的两个像素坐标值,并记录第一像素点位置A1和第二像素点位置A2之间的夹角α1。
- 如权利要求16或17所述的地图纠正方法,其特征在于,所述角度α1和角度α2通过以下计算公式得到:α1=arctan(y1/x1);α2=arctan(y2/x2);其中x1、y1分别为第一像素点位置A1和第二像素点位置A2之间构成的线段在CCD/CMOS的X轴上的像素差值、Y轴上像素点的差值;其中x2、y2分别为第三像素点位置A3和第四像素点位置A4之间构成的线段在CCD/CMOS的X轴上的像素差值、Y轴上的像素差值。
- 如权利要求18所述的地图纠正方法,其特征在于,所述发光设备为LED光源、激光光源或红外光源。
- 如权利要求16或17所述的地图纠正方法,其特征在于,所述地图通过权利要求21~30任一项所述的基于发光设备的地图构建方法构建。
- 一种基于发光设备的地图构建装置,其特征在于,适用于对待定位区域进行实时地图构建,所述待定位区域上方设有发光设备,所述地图构建装置为可移动设备,所述可移动设备包括:摄像头,用于采集发光设备直接发射出来的光点标志;坐标系构建及记录单元,用于在可移动电子设备初次沿一定的运动轨迹移动时,使所述摄像头所采集到的第一个所述发光设备直接发射出来的光点标志中心与CCD/CMOS中心点重合的位置作为地图坐标系的坐标原点,并记录所述第一个标志信息及相应的坐标值;编码器,用于在所述可移动电子设备以所述坐标原点作为起始点移动并遍历整个待定位区域的过程中,基于陀螺仪实时计算所述可移动电子设备相对所述起始点的移动方向和移动距离;障碍物检测部件,用于检测障碍物;第一计算单元,用于每当所述障碍物检测部件检测到障碍物时,基于所述编码器得到的相对所述起始点的移动方向和移动距离,计算每一所述障碍物位置的坐标值,并将计算到的坐标值发送给所述坐标系构建及记录单元;地图构建单元,基于所述坐标系构建及记录单元记录的标志信息及相应的坐标值以及每一个障碍物位置的坐标值构建地图。
- 如权利要求21所述的地图构建装置,其特征在于,所述发光设备的数量为两个及以上,且每一个发光设备对应设置在所述待定位区域的上方的特定位置上,每一所述发光设备直接发射出来的标志信息包括用于区别其绝对位置的唯一编码信息,所述唯一编码信息可通过特定信息表示;所述装置还包括:第二计算单元,用于在遍历过程中,基于所述可移动电子设备相对所述起始点的移动方向和移动距离,计算所述可移动电子设备的摄像头每一次所采集到的其他发光设备直接发射出来的光点标志中心与CCD/CMOS中心点重合时的其他发光设备位置的坐标值,并将其他标志信息及对应的坐标值发送给所述坐标系构建及记录单元。
- 如权利要求22所述的地图构建装置,其特征在于,所述唯一编码信息可通过以下任一或组合方式来表示:发光设备发出光源的数量;发光设备发出光源组成的特定形状;发光设备发出光源在一定时间内开启关闭的次数;发光设备发出光源在一定时间内开启关闭的时间;或发光设备发出不同颜色光线组合。
- 如权利要求22所述的地图构建装置,其特征在于,每一个所述发光设备直接发射出来的标志信息还包括用于区别可进入区域/禁止进入区域的区域编码信息,直接发射出带有禁止进入区域的区域编码信息的发光设备所在的分界线后的特定区域限定为禁止进入区域,所述区域编码信息通过同一种信息代表可进入区域,并通过另一种信息代表禁止进入区域,所述装置还包括:区域识别单元,用于当所述可移动电子设备获取到每一个标志信息时,首先基于所述标志信息中的区域编码信息识别为可进入区域还是禁止进入区域,若为禁止进入区域,则根据预设的避开策略,使所述可移动电子设备避开所述禁止进入区域而继续前进。
- 如权利要求24所述的地图构建装置,其特征在于,所述地图构建单元在完成遍历后,基于记录的标志信息及相应的坐标值以及每一个障碍物位置的坐标值构建地图时,还基于每一所述标志信息中的区域编码信息在构建的地图上标示为可进入区域/禁止进入区域。
- 如权利要求25所述的地图构建装置,其特征在于,每一个所述发光设备直接发射出来的标志信息中还包括用于限定运动区域的区域编码信息;所述区域识别单元还用于识别所述用于限定运动区域的区域编码信息,当所述区域识别单元识别出该用于限定运动区域的区域编码信息时,控制所述可移动电子设备只在所述限定运动区域内移动。
- 如权利要求22所述的地图构建装置,其特征在于,所述装置还包括:标定单元,用于当将可移动设备移动到地图的第一位置R1时记录任两个发光设备直接发射出来的光点标志中心直接发射到CCD/CMOS上的第一像素点位置A1和第二像素点位置A2,从而得到每一像素点对应的地图坐标系距离为(A2-A1)/L,其中,(A2-A1)表示A2和A1之间的像素点数量,L表示为所述两个发光设备之间的地图坐标系上的距离;记录可移动设备在第一位置R1时地图坐标值以及两个发光设备对应的标志中心直接发射到CCD/CMOS上的两个像素坐标值,并记录第一像素点位置A1和第二像素点位置A2之间的夹角α1;纠正单元,用于在构建地图后的任何时刻需要对地图进行纠正时,将可移动设备移动到所述第一位置R1,记录所述两个发光设备直接发射出来的光点标志中心直接发射到CCD/CMOS上的第三像素点位置A3和第四像素点位置A4,从而得到可移动设备在地图坐标系的偏离距离L差=(A3-A1)*(A2-A1)/L;并记录第三像素点位置A3和第四像素点位置A4之间的夹角α2,从而得到可移动设备在地图坐标系的偏离角度α差=α2-α1;并根据所述偏离距离L差以及偏离角度α差对构建的地图上的坐标值进行纠正。
- 如权利要求27所述的地图构建装置,其特征在于,所述角度α1和角度α2通过以下计算公式得到:α1=arctan(y1/x1);α2=arctan(y2/x2);其中x1、y1分别为第一像素点位置A1和第二像素点位置A2之间构成的线段在CCD/CMOS的X轴上的像素差值、Y轴上像素点的差值;其中x2、y2分别为第三像素点位置A3和第四像素点位置A4之间构成的线段在CCD/CMOS的X轴上的像素差值、Y轴上的像素差值。
- 如权利要求21所述的地图构建装置,其特征在于,所述可移动电子设备为机器人。
- 如权利要求18所述的地图构建装置,其特征在于,所述装置适用于对室内的待定位区域进行实时地图构建;或/和所述发光设备适于被设置在房间门框的左侧墙壁、右侧墙壁或顶壁上。
- 一种基于发光设备的地图纠正装置,其特征在于,包括:标定单元,用于将可移动设备移动到地图的第一位置R1时记录任两个发光设备直接发射出来的光点标志中心直接发射到CCD/CMOS上的第一像素点位置A1和第二像素点位置A2,从而得到每一像素点对应的地图坐标系距离为(A2-A1)/L,其中,(A2-A1)表示A2和 A1之间的像素点数量,L表示为所述两个发光设备之间的地图坐标系上的距离;记录可移动设备在第一位置R1时地图坐标值以及两个发光设备对应的标志中心直接发射到CCD/CMOS上的两个像素坐标值,并记录第一像素点位置A1和第二像素点位置A2之间的夹角α1;纠正单元,用于在构建地图后的任何时刻需要对地图进行纠正时,将可移动设备移动到所述第一位置R1,记录所述两个发光设备直接发射出来的光点标志中心直接发射到CCD/CMOS上的第三像素点位置A3和第四像素点位置A4,从而得到可移动设备在地图坐标系的偏离距离L差=(A3-A1)*(A2-A1)/L;并记录第三像素点位置A3和第四像素点位置A4之间的夹角α2,从而得到可移动设备在地图坐标系的偏离角度α差=α2-α1;并根据所述偏离距离L差以及偏离角度α差对构建的地图上的坐标值进行纠正。
- 如权利要求31所述的地图纠正装置,其特征在于,所述角度α1和角度α2通过以下计算公式得到:α1=arctan(y1/x1);α2=arctan(y2/x2);其中x1、y1分别为第一像素点位置A1和第二像素点位置A2之间构成的线段在CCD/CMOS的X轴上的像素差值、Y轴上像素点的差值;其中x2、y2分别为第三像素点位置A3和第四像素点位置A4之间构成的线段在CCD/CMOS的X轴上的像素差值、Y轴上的像素差值。
- 如权利要求31所述的地图构建装置,其特征在于,所述发光设备为LED光源、激光光源或红外光源。
- 如权利要求31所述的地图纠正装置,其特征在于,所述可移动电子设备为机器人。
- 如权利要求31所述的地图纠正装置,其特征在于,所述地图可通过权利要求21~30任一项所述的地图构建装置构建。
- 一种基于发光设备的地图纠正装置,其特征在于,包括:偏离距离计算单元,用于将可移动设备移动到通过初始标定得到的参考坐标点上,记录任两个发光设备直接发射出来的光点标志中心到CCD/CMOS上的第三像素点位置A3和第四像素点位置A4,基于初始标定得到的每一像素点对应的地图坐标系距离L’以及第三像素点位置A3与初始标定的所对应的第一像素点位置A1的像素差,得到可移动设备在地图坐标系的偏离距离L差=(A3-A1)*L’;偏离角度计算单元,用于记录第三像素点位置A3和第四像素点位置A4之间的夹角α2,基于初始标定记录的第一像素点位置A1和第二像素点位置A2之间的夹角α1,得到可移动设备在地图坐标系的偏离角度α差=α2-α1;纠正单元,用于根据所述偏离距离L差以及偏离角度α差对构建的地图上的坐标值进行纠正。
- 如权利要求36所述的地图纠正装置,其特征在于,所述初始标定过程如下:将可移动设备移动到地图的第一位置R1时记录任两个发光设备直接发射出来的光点标志中心直接发射到CCD/CMOS上的第一像素点位置A1和第二像素点位置A2;计算每一像素点对应的地图坐标系距离L’=(A2-A1)/L,其中,(A2-A1)表示A2和A1之间的像素点数量,L表示为所述两个发光设备之间的地图坐标系上的距离;记录可移动设备在第一位置R1时地图坐标值以及两个发光设备对应的标志中心直接发射到CCD/CMOS上的两个像素坐标值,并记录第一像素点位置A1和第二像素点位置A2之 间的夹角α1。
- 如权利要求36或37所述的地图纠正装置,其特征在于,所述角度α1和角度α2通过以下计算公式得到:α1=arctan(y1/x1);α2=arctan(y2/x2);其中x1、y1分别为第一像素点位置A1和第二像素点位置A2之间构成的线段在CCD/CMOS的X轴上的像素差值、Y轴上像素点的差值;其中x2、y2分别为第三像素点位置A3和第四像素点位置A4之间构成的线段在CCD/CMOS的X轴上的像素差值、Y轴上的像素差值。
- 如权利要求36所述的地图纠正装置,其特征在于,所述发光设备为LED光源、激光光源或红外光源。
- 如权利要求36或37所述的地图纠正装置,其特征在于,所述地图可通过权利要求21~30任一项所述的地图构建装置构建。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/095960 WO2018032488A1 (zh) | 2016-08-19 | 2016-08-19 | 基于发光设备的地图构建方法、纠正方法及装置 |
CN201680030046.5A CN108139213B (zh) | 2016-08-19 | 2016-08-19 | 基于发光设备的地图构建方法、纠正方法及装置 |
CN201811149323.1A CN109373992B (zh) | 2016-08-19 | 2016-08-19 | 基于发光设备的地图纠正方法及装置 |
US16/262,162 US20190164306A1 (en) | 2016-08-19 | 2019-01-30 | Method and Apparatus For Map Constructing And Map Correcting Based On Light-Emitting Device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/095960 WO2018032488A1 (zh) | 2016-08-19 | 2016-08-19 | 基于发光设备的地图构建方法、纠正方法及装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/262,162 Continuation US20190164306A1 (en) | 2016-08-19 | 2019-01-30 | Method and Apparatus For Map Constructing And Map Correcting Based On Light-Emitting Device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018032488A1 true WO2018032488A1 (zh) | 2018-02-22 |
Family
ID=61197239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/095960 WO2018032488A1 (zh) | 2016-08-19 | 2016-08-19 | 基于发光设备的地图构建方法、纠正方法及装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20190164306A1 (zh) |
CN (2) | CN108139213B (zh) |
WO (1) | WO2018032488A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109613472A (zh) * | 2018-12-26 | 2019-04-12 | 芜湖哈特机器人产业技术研究院有限公司 | 一种用于室内无轨导航的红外顶标及其识别方法 |
CN112702693A (zh) * | 2020-12-23 | 2021-04-23 | 南京苏美达智能技术有限公司 | 一种自行走设备的地图构建方法及定位方法 |
CN114998535A (zh) * | 2022-05-26 | 2022-09-02 | 湖南格兰博智能科技有限责任公司 | 一种地图构建的角度偏转矫正方法、系统及电子设备 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11187538B2 (en) * | 2019-06-13 | 2021-11-30 | Dalian University Of Technology | Method for judging rotating characteristics of light sources based on summation calculation in visible light indoor positioning |
US11480431B1 (en) * | 2019-08-27 | 2022-10-25 | Alarm.Com Incorporated | Lighting adaptive navigation |
CN112484713A (zh) * | 2020-10-15 | 2021-03-12 | 珊口(深圳)智能科技有限公司 | 移动机器人的地图构建方法、导航方法及控制系统 |
CN112641383B (zh) * | 2020-12-17 | 2021-12-24 | 珠海一微半导体股份有限公司 | 基于斜坡结构的机器人脱卡控制方法、芯片及清洁机器人 |
CN113268063A (zh) * | 2021-06-03 | 2021-08-17 | 北京京东乾石科技有限公司 | 机器人的控制方法、装置和非易失性计算机可读存储介质 |
CN115700417A (zh) * | 2021-07-14 | 2023-02-07 | 尚科宁家(中国)科技有限公司 | 清洁机器人及建图误差消除方法 |
CN113834488B (zh) * | 2021-11-25 | 2022-03-25 | 之江实验室 | 基于结构光阵列远程识别的机器人空间姿态解算方法 |
CN114136306B (zh) * | 2021-12-01 | 2024-05-07 | 浙江大学湖州研究院 | 一种可拓展的基于uwb和摄像头的相对定位的设备和方法 |
CN114485682B (zh) * | 2021-12-30 | 2023-06-27 | 武汉光庭信息技术股份有限公司 | 一种基于slam技术的定位方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050182518A1 (en) * | 2004-02-13 | 2005-08-18 | Evolution Robotics, Inc. | Robust sensor fusion for mapping and localization in a simultaneous localization and mapping (SLAM) system |
CN103297486A (zh) * | 2012-03-05 | 2013-09-11 | 联想(北京)有限公司 | 即时定位与地图构建方法和设备 |
CN103323002A (zh) * | 2012-03-19 | 2013-09-25 | 联想(北京)有限公司 | 即时定位与地图构建方法和装置 |
CN103325296A (zh) * | 2012-03-19 | 2013-09-25 | 联想(北京)有限公司 | 用于即时定位与地图构建的信息处理方法和设备 |
CN104754515A (zh) * | 2015-03-30 | 2015-07-01 | 北京云迹科技有限公司 | 混合定位辅助地图修正方法及系统 |
CN105258702A (zh) * | 2015-10-06 | 2016-01-20 | 深圳力子机器人有限公司 | 一种基于slam导航移动机器人的全局定位方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102773862B (zh) * | 2012-07-31 | 2015-01-07 | 山东大学 | 用于室内移动机器人的快速精确定位系统及其工作方法 |
CN103427902A (zh) * | 2013-04-09 | 2013-12-04 | 北京半导体照明科技促进中心 | 利用可见光传输信息的方法、装置和系统以及光源 |
CN103439973B (zh) * | 2013-08-12 | 2016-06-29 | 桂林电子科技大学 | 自建地图家用清洁机器人及清洁方法 |
KR101575597B1 (ko) * | 2014-07-30 | 2015-12-08 | 엘지전자 주식회사 | 로봇 청소 시스템 및 로봇 청소기의 제어방법 |
CN104406539B (zh) * | 2014-11-21 | 2017-06-06 | 浙江工业大学 | 全天候主动式全景感知装置及3d全景建模方法 |
US9519289B2 (en) * | 2014-11-26 | 2016-12-13 | Irobot Corporation | Systems and methods for performing simultaneous localization and mapping using machine vision systems |
US9751210B2 (en) * | 2014-11-26 | 2017-09-05 | Irobot Corporation | Systems and methods for performing occlusion detection |
CN105806337B (zh) * | 2014-12-30 | 2019-07-19 | Tcl集团股份有限公司 | 一种应用于室内机器人的定位方法和室内机器人 |
CN105607635B (zh) * | 2016-01-05 | 2018-12-14 | 东莞市松迪智能机器人科技有限公司 | 自动导引车全景光学视觉导航控制系统及全向自动导引车 |
CN105785989B (zh) * | 2016-02-24 | 2018-12-07 | 中国科学院自动化研究所 | 利用行进中机器人标定分布式网络摄像机的系统和相关方法 |
EP3428885A4 (en) * | 2016-03-09 | 2019-08-14 | Guangzhou Airob Robot Technology Co., Ltd. | CARD CONSTRUCTION METHOD, AND CORRECTION METHOD AND APPARATUS |
CN107346133B (zh) * | 2017-07-04 | 2020-12-04 | 武汉视览科技有限公司 | 一种室内移动机器人的自主建图方法和装置 |
-
2016
- 2016-08-19 WO PCT/CN2016/095960 patent/WO2018032488A1/zh active Application Filing
- 2016-08-19 CN CN201680030046.5A patent/CN108139213B/zh active Active
- 2016-08-19 CN CN201811149323.1A patent/CN109373992B/zh active Active
-
2019
- 2019-01-30 US US16/262,162 patent/US20190164306A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050182518A1 (en) * | 2004-02-13 | 2005-08-18 | Evolution Robotics, Inc. | Robust sensor fusion for mapping and localization in a simultaneous localization and mapping (SLAM) system |
CN103297486A (zh) * | 2012-03-05 | 2013-09-11 | 联想(北京)有限公司 | 即时定位与地图构建方法和设备 |
CN103323002A (zh) * | 2012-03-19 | 2013-09-25 | 联想(北京)有限公司 | 即时定位与地图构建方法和装置 |
CN103325296A (zh) * | 2012-03-19 | 2013-09-25 | 联想(北京)有限公司 | 用于即时定位与地图构建的信息处理方法和设备 |
CN104754515A (zh) * | 2015-03-30 | 2015-07-01 | 北京云迹科技有限公司 | 混合定位辅助地图修正方法及系统 |
CN105258702A (zh) * | 2015-10-06 | 2016-01-20 | 深圳力子机器人有限公司 | 一种基于slam导航移动机器人的全局定位方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109613472A (zh) * | 2018-12-26 | 2019-04-12 | 芜湖哈特机器人产业技术研究院有限公司 | 一种用于室内无轨导航的红外顶标及其识别方法 |
CN109613472B (zh) * | 2018-12-26 | 2023-04-28 | 芜湖哈特机器人产业技术研究院有限公司 | 一种用于室内无轨导航的红外顶标及其识别方法 |
CN112702693A (zh) * | 2020-12-23 | 2021-04-23 | 南京苏美达智能技术有限公司 | 一种自行走设备的地图构建方法及定位方法 |
CN114998535A (zh) * | 2022-05-26 | 2022-09-02 | 湖南格兰博智能科技有限责任公司 | 一种地图构建的角度偏转矫正方法、系统及电子设备 |
Also Published As
Publication number | Publication date |
---|---|
CN108139213A (zh) | 2018-06-08 |
CN108139213B (zh) | 2018-12-21 |
CN109373992A (zh) | 2019-02-22 |
US20190164306A1 (en) | 2019-05-30 |
CN109373992B (zh) | 2022-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018032488A1 (zh) | 基于发光设备的地图构建方法、纠正方法及装置 | |
US10726568B2 (en) | Method and apparatus for map constructing and map correcting | |
WO2016115714A1 (zh) | 基于色块标签的定位与地图构建方法及其装置 | |
WO2016115713A1 (zh) | 基于rfid的定位与地图构建方法及其装置 | |
US8396597B2 (en) | Distributed robotic guidance | |
CN107976999B (zh) | 一种移动机器人及其避障和路径规划方法和系统 | |
CN108287544B (zh) | 一种智能机器人路线规划及沿原路径返回的方法及系统 | |
EP2287694B1 (en) | Distributed visual guidance for a mobile robotic device | |
KR100785784B1 (ko) | 인공표식과 오도메트리를 결합한 실시간 위치산출 시스템및 방법 | |
JP5079703B2 (ja) | リアルタイムに位置を算出するためのシステムおよび方法 | |
TWI806933B (zh) | 移動機器人之控制系統、移動機器人之控制方法 | |
WO2016154913A1 (zh) | 充电器、基于地图构建寻找充电器的方法、装置及系统 | |
JP2012084149A (ja) | モバイル機器のナビゲーション | |
CN113450591A (zh) | 停车场找车方法、停车位置确定方法、系统和相关设备 | |
CN110597265A (zh) | 一种扫地机器人回充方法和装置 | |
US8319955B2 (en) | Device and method for determining a position and orientation | |
CN208289901U (zh) | 一种增强视觉的定位装置及机器人 | |
KR100919944B1 (ko) | 이동로봇의 맵 생성 시스템 및 맵 생성방법 | |
JP2017102700A (ja) | 情報取得装置、情報取得システム、自律移動装置、自律移動装置システム及び移動体の位置情報取得方法 | |
KR101552773B1 (ko) | 인공 표식을 이용한 이동 로봇의 위치 추정 방법 | |
Kurz et al. | When geometry is not enough: using reflector markers in lidar SLAM | |
Yan et al. | CurveLight: An accurate and practical indoor positioning system | |
JP2006252349A (ja) | 移動ロボット | |
Yan et al. | CurveLight: An Accurate and Practical Light Positioning System | |
CN113029159A (zh) | 一种室内移动机器人视觉定位导航系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16913245 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16913245 Country of ref document: EP Kind code of ref document: A1 |