Nothing Special   »   [go: up one dir, main page]

WO2018003177A1 - 操作装置及び該操作装置の制御方法 - Google Patents

操作装置及び該操作装置の制御方法 Download PDF

Info

Publication number
WO2018003177A1
WO2018003177A1 PCT/JP2017/008060 JP2017008060W WO2018003177A1 WO 2018003177 A1 WO2018003177 A1 WO 2018003177A1 JP 2017008060 W JP2017008060 W JP 2017008060W WO 2018003177 A1 WO2018003177 A1 WO 2018003177A1
Authority
WO
WIPO (PCT)
Prior art keywords
control unit
yoke
movable member
display
movable
Prior art date
Application number
PCT/JP2017/008060
Other languages
English (en)
French (fr)
Inventor
厚志 後藤
高橋 一成
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to JP2018524880A priority Critical patent/JP6661011B2/ja
Priority to CN201780039810.XA priority patent/CN109416555B/zh
Priority to EP17819547.5A priority patent/EP3477418B1/en
Priority to KR1020187037827A priority patent/KR102176520B1/ko
Publication of WO2018003177A1 publication Critical patent/WO2018003177A1/ja
Priority to US16/225,470 priority patent/US10768657B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G5/00Means for preventing, limiting or returning the movements of parts of a control mechanism, e.g. locking controlling member
    • G05G5/03Means for enhancing the operator's awareness of arrival of the controlling member at a command or datum position; Providing feel, e.g. means for creating a counterforce
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/12Devices with one or more rotary vanes turning in the fluid any throttling effect being immaterial, i.e. damping by viscous shear effect only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/53Means for adjusting damping characteristics by varying fluid viscosity, e.g. electromagnetically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/53Means for adjusting damping characteristics by varying fluid viscosity, e.g. electromagnetically
    • F16F9/535Magnetorheological [MR] fluid dampers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G25/00Other details or appurtenances of control mechanisms, e.g. supporting intermediate members elastically
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G5/00Means for preventing, limiting or returning the movements of parts of a control mechanism, e.g. locking controlling member
    • G05G5/06Means for preventing, limiting or returning the movements of parts of a control mechanism, e.g. locking controlling member for holding members in one or a limited number of definite positions only
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0362Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 1D translations or rotations of an operating part of the device, e.g. scroll wheels, sliders, knobs, rollers or belts
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B7/00Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00
    • G08B7/06Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00 using electric transmission, e.g. involving audible and visible signalling through the use of sound and light sources
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/80Constructional details
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G1/00Controlling members, e.g. knobs or handles; Assemblies or arrangements thereof; Indicating position of controlling members
    • G05G1/02Controlling members for hand actuation by linear movement, e.g. push buttons
    • G05G1/025Controlling members for hand actuation by linear movement, e.g. push buttons actuated by sliding movement
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G1/00Controlling members, e.g. knobs or handles; Assemblies or arrangements thereof; Indicating position of controlling members
    • G05G1/08Controlling members for hand actuation by rotary movement, e.g. hand wheels
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G2505/00Means for preventing, limiting or returning the movements of parts of a control mechanism, e.g. locking controlling member
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B3/00Audible signalling systems; Audible personal calling systems
    • G08B3/10Audible signalling systems; Audible personal calling systems using electric transmission; using electromagnetic transmission
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B6/00Tactile signalling systems, e.g. personal calling systems

Definitions

  • the present invention relates to an operation device capable of giving an operation feeling to an operator when the operator operates, and a control method for the operation device.
  • FIG. 16 is a view for explaining the manual input device 800 of the conventional example 1, and is a longitudinal sectional view showing the main part of the basic configuration.
  • a manual input device 800 shown in FIG. 16 includes a knob 880 (operation member) that is manually operated and rotated by a driver (operator), a planetary gear mechanism having a carrier shaft 851 provided integrally with the knob 880, and a planetary gear.
  • a cylindrical ring gear case 860 fixing member that always fixes the ring gear 862 of the gear mechanism, a motor 810 having an output shaft 811 engaged with the sun gear 832 of the planetary gear mechanism, and rotation of the output shaft 811 of the motor 810
  • Encoder 830 detection means for detecting the rotation of the motor 810 according to the detection result of the encoder 830.
  • the manual input device 800 rotates the motor 810 at a predetermined timing and transmits this rotational force to the knob 880 via the planetary gear mechanism so as to give a predetermined operation feeling to the operator.
  • this manual input device 800 can give a good operation feeling, but since the motor 810 is used, it is difficult to respond to the demand for further miniaturization. Therefore, a method for applying an external force (force sense) such as a resistance force or a thrust according to the operation amount or operation direction of the operation member without using the motor 810 has been sought.
  • an external force force sense
  • Patent Document 2 (Conventional Example 2) proposes a manual brake 911 using a magnetic field responsive material (magnetorheological fluid) whose fluidity is influenced by magnetic field generating means.
  • FIG. 17 is a view for explaining a manual brake 911 of Conventional Example 2 and is a longitudinal sectional view.
  • a manual brake 911 shown in FIG. 17 passes through the housing 913 having a first housing chamber 915 and a second housing chamber 917, a closing plate 919 that closes the open end side of the housing 913, and the second housing chamber 917.
  • a shaft 923 extending to the first housing chamber 915, a rotor 921 provided integrally with the end of the shaft 923 and arranged in parallel in the first housing chamber, and provided in the first housing chamber 915.
  • a magnetic field generator 929 immediately adjacent to the outer periphery of the rotor 921, a magnetic field responsive material 941 provided in the first housing chamber 915 and filled to surround the rotor 921, and a second housing chamber 917.
  • control means 925 for controlling and monitoring the brake operation.
  • the magnetic field generator 929 includes a coil 931 and a pole piece 933 arranged so as to surround three sides of the coil 931.
  • the manual brake 911 configured as described above, when the coil 931 is energized, a magnetic flux J37 indicated by a broken line in FIG. 17 is generated, and with the generation of the magnetic flux J37, soft magnetic or magnetization in the magnetic field response material 941 is generated. Possible particles come to be arranged along the magnetic flux J37. For this reason, the resistance given to the rotor 921 by the magnetic field response material 941 increases with respect to the direction of cutting this arrangement, that is, the rotational direction of the rotating rotor 921. Therefore, the manual brake 911 has a braking action that stops the rotation operation of the shaft 923 using the magnetic field response material 941 and the rotor 921.
  • the case where the action of the magnetic field response material 941 (magnetoviscous fluid) described above is used for an operating device is conceivable.
  • an operating body (operating member) operated by an operator is engaged with a shaft 923 (rotating shaft).
  • the control unit 925 controls the current flowing through the coil 931 to apply a load to the operating body (operation member).
  • an external force force sense
  • a resistance force or a thrust according to the operation amount or operation direction of the operation member can be applied without using a motor.
  • an external force such as a resistance force or a thrust according to the operation amount or operation direction of the operation member is applied without using a motor. be able to. Then, it is conceivable to apply the method of applying this external force (force sense) to the input device as in Conventional Example 1.
  • the present invention solves the above-described problems, and an operating device that can give a good operational feeling to the operator using a magnetorheological fluid when operated by the operator, and a control method for the operating device.
  • the purpose is to provide.
  • the operating device includes an operating unit having an operating body that is operated by an operator's operation, a position detecting unit that detects the position of the operation at which the operating body is positioned, and the operation A display unit that displays an operation position of the body, wherein the operation unit freely supports the operation member operated by the operator and having the operation body, and the operation of the operation body And a movable load applying mechanism that applies a load to the operating body.
  • the operating body has a movable shaft that enables the operation, and the movable load applying mechanism is movable.
  • a movable member that engages with a shaft and operates as described above, a magnetism generating mechanism that faces the movable member across a gap, and a magnetic viscosity that exists in at least a part of the gap and changes in viscosity according to the strength of the magnetic field Control the fluid and the magnetism generation mechanism
  • An operation control unit wherein the magnetism generating mechanism is a coil that generates a magnetic field when energized by the operation control unit, and a first that is provided to surround the coil and is disposed on one side of the movable member.
  • a display unit that displays the operation position, and a display control unit that controls display on the display unit, and includes the operation control unit and the display control unit. It has the control part to control.
  • a magnetic field is generated by energization of the coil, the magnetic path is formed from the first yoke, and the magnetic particles in the magnetorheological fluid are aligned along the magnetic flux. . Therefore, a load is applied to the movable member that moves in a direction crossing the magnetic flux formed between the first yoke and the movable member and between the movable member and the first yoke by the magnetic viscous fluid, and the movable member and the movable shaft are Thus, a load is applied to the operating body.
  • the operating device of the present invention includes a sound generating member that generates an electronic sound and a sound control unit that controls the sound generating member, and the sound control unit is controlled by the control unit. Yes.
  • an arbitrary electronic sound can be generated according to the actual operated position of the operating tool and the load on the operating tool. Thereby, a better operational feeling (operation feeling) can be given to the operator.
  • the operating device of the present invention is characterized in that the movable member is made of a soft magnetic material.
  • the magnetic path is surely formed from the first yoke to the movable member and from the movable member to the first yoke, and the magnetic particles in the magnetorheological fluid are aligned in the facing direction facing each other. For this reason, a stronger load is applied to the movable member that operates in a direction crossing the opposing surface direction in which the magnetic particles are aligned. As a result, a stronger load is applied to the operating body via the movable member and the movable shaft, and a good operational feeling can be given to the operator.
  • the magnetism generating mechanism has a second yoke disposed on the other side of the movable member so as to face the movable member, and the movable member and the second yoke The gap is filled with the magnetorheological fluid.
  • magnetic particles can be aligned in a direction perpendicular to the direction in which the movable member operates, and a stronger load can be applied. Furthermore, a further load can be applied to the movable member that moves in the direction crossing the magnetic flux. As a result, even with an equivalent magnetic field, a greater operational feel can be given to the operator.
  • control method of the operating device includes an operating unit having an operating body that is operated by an operator's operation, position detecting means for detecting the position of the operation on which the operating body is positioned, and operation of the operating body.
  • a control method of an operating device comprising a display unit for displaying a position, and a control unit for controlling the operating unit and the display unit, wherein the operating unit is operated by an operator and has the operating body
  • the movable load applying mechanism is present in at least a part of the gap, a movable member that engages with the movable shaft and operates, a magnetism generating mechanism that faces the movable member across the gap, and Depending on the strength of the magnetic field A magnetorheological fluid that changes, and the magnetism generating mechanism generates a magnetic field by energization, and a first yoke provided to surround the coil and disposed on one side of the movable member;
  • An operation control unit that controls energization of the coil, and the display unit includes a display unit that displays the operation position, and a display control unit that controls display on the display unit, A load curve having a plurality of peak values and bottom values of the load is formed according to the strength of the current value to the coil by the operation control unit, and the control unit is configured to have a first peak among the peak value and the bottom value. When moving from the first bottom value to the next second peak value from the first value, the display control unit is controlled to display the movement state
  • the operation position is set to a desired position of the display unit. It is characterized by being displayed.
  • control method of the operating device of the present invention includes a sound generating member that generates an electronic sound, and a sound control unit that controls the sound generating member, wherein the control unit is configured to change the bottom value from the peak value, When shifting from the bottom value to the next peak value, the sound control unit is controlled to generate the electronic sound.
  • control method of the operating device of the present invention is characterized in that the control unit generates the electronic sound when the operating body is within a predetermined range with the bottom value interposed therebetween.
  • an arbitrary electronic sound can be heard in a range where the load received by the operator from the operating body is small.
  • the operational feeling (operation feel) operated by the operator can be further felt.
  • a magnetic field is generated by energizing the coil, a magnetic path is formed from the first yoke, and magnetic particles in the magnetorheological fluid are aligned along the magnetic flux. Therefore, a load is applied to the movable member that moves in a direction crossing the magnetic flux formed between the first yoke and the movable member and between the movable member and the first yoke by the magnetic viscous fluid, and the movable member and the movable shaft are Thus, a load is applied to the operating body.
  • control method of the operating device of the present invention even when the operator operates the operating body, even if the operated position of the operating body of the operating unit and the operation position desired by the operator are misaligned.
  • the operation position desired by the operator can be matched with the display position displayed on the display unit of the display unit. Thereby, it is possible to give a good operational feeling (operation feeling) to the operator.
  • FIG.3 (a) is a top view of the operation unit seen from the Z1 side shown in FIG.2, FIG.3 (b) It is a front view of the operation unit seen from the Y2 side shown in FIG.
  • FIGS. 8A and 8B are diagrams illustrating a movable load applying mechanism of the operating device according to the first embodiment of the present invention, in which FIG. 8A is an upper perspective view of the movable load applying mechanism, and FIG. It is the front view seen from the Y2 side shown to 8 (a).
  • FIG. 9A is a diagram illustrating a movable load applying mechanism of the operating device according to the first embodiment of the present invention, and FIG. 9A is a lower perspective view in which the second yoke shown in FIG. 8 is omitted, and FIG. FIG.
  • FIG. 9B is a lower perspective view in which the movable member shown in FIG.
  • FIG. 10A is a schematic diagram for explaining the magnetorheological fluid of the operating device according to the first embodiment of the present invention
  • FIG. 10A is a diagram of the magnetorheological fluid in a state where no magnetic field is applied
  • FIG. b) is a diagram of a magnetorheological fluid in a state where a magnetic field is applied.
  • FIG. 1 is a block diagram showing the configuration of the operating device 100 according to the first embodiment of the present invention.
  • the operating device 100 includes an operating unit U1 having an operating body 11 that is operated by an operator's operation, and a position detecting unit M2 that detects the position of the operating body 11.
  • a display unit U4 that displays an operation position PP (see FIG. 14 described later) visually recognized by the operator, and a sound generating member that generates an electronic sound (not shown in other drawings, but is a block diagram of FIG. 1) (Indicated in FIG. 1 by H6), operation unit U1, position detection means M2, display unit U4, and sound generation
  • Each of the means (H6) is configured to include a control unit (not shown in other figures, but shown as C8 in FIG. 1) that is electrically connected.
  • the operating device 100 arrange
  • FIG. 2 is an upper perspective view of the operation unit U1.
  • FIG. 3A is a top view of the operation unit U1 viewed from the Z1 side shown in FIG. 2
  • FIG. 3B is a front view of the operation unit U1 viewed from the Y2 side shown in FIG. 4 is a cross-sectional view taken along the line IV-IV shown in FIG.
  • FIG. 5 is an upper perspective view in which the operation portion 51 of the operation member 1 shown in FIG. 2 is omitted.
  • FIG. 6 is an exploded perspective view of the operation unit U1 shown in FIG.
  • the operation unit U1 of the operation device 100 has an appearance as shown in FIGS. 2, 3, and 5, and as shown in FIG. 6, an operation member having an operation body 11 that moves in the operation direction by the operation of the operator. 1, a support body 3 that freely supports the operation of the operation body 11, and a movable load applying mechanism F ⁇ b> 5 that applies a load to the operation body 11.
  • the rotation direction (rotation direction) about the movable shaft 11j (refer to FIG. 4 to be described later) of the operation body 11 of the operation unit U1 is the rotation center. It is a rotary device that can be operated.
  • a side wall spacer S17 that constitutes a part of the side wall of the main body is movable.
  • a slit spacer S57 (see FIG. 13) disposed in the load applying mechanism F5.
  • the operation unit 51 of the operation member 1 shown in FIGS. 2 and 3 is engaged with one end of the operation body 11, and the operation unit 51 is gripped and operated by the operator.
  • the operating body 11 rotates in both directions.
  • the operation member 1 includes an operation unit 51 that is held by an operator, and an operation body 11 that is engaged with the operation unit 51 and operates in accordance with a rotation operation of the operation unit 51.
  • the operation unit 51 of the operation member 1 is a member such as an operation knob or an operation knob that is gripped and operated by an operator.
  • polybutylene terephthalate resin PBT, poly butylene terephtalate
  • the synthetic resin is formed in a cylindrical shape and a box shape.
  • the operation part 51 is engaged with the one end side of the operation body 11, as shown in FIG.
  • the shape is arbitrarily determined depending on the product to be applied in consideration of a shape that is easy to operate.
  • the operation body 11 of the operation member 1 uses a synthetic resin such as polybutylene terephthalate resin (PBT), and as shown in FIG. 6, the columnar column part 11 c passes through the center of the column part 11 c and the center of rotation is the center.
  • the movable shaft 11j and the ring portion 11r which is provided on the other end side of the operating body 11 and has a size slightly larger than the column portion 11c, are integrally molded by injection molding.
  • O-ring R7 is penetrated by the pillar part 11c, and is arrange
  • the O-ring R7 attached here also has a function of closing an accommodation space in which a movable member 55 described later is accommodated. This prevents the magnetorheological fluid 75 filled in the accommodation space from leaking out of the accommodation space.
  • the support body 3 includes a bearing portion 3 j on which the end of the movable shaft 11 j of the operation body 11 is abutted, and a shaft through which the column portion 11 c of the operation body 11 is inserted to guide the column portion 11 c. It is mainly composed of a support portion 3s and a lid portion 3u for pressing and stabilizing the shaft support portion 3s. And this support body 3 is supporting the operation body 11 (operation member 1) so that the operation body 11 can move (rotate) freely.
  • the bearing portion 3j of the support body 3 has a concave shape on the side facing the movable shaft 11j of the operating body 11.
  • the bearing portion 3j is configured such that the end of the movable shaft 11j comes into contact with the concave portion of the bearing portion 3j so that the operation body 11 can be easily operated. Is allowed.
  • the shaft support portion 3s of the support body 3 has a ring shape with a through hole in the center portion (see FIG. 6), and as shown in FIG.
  • the mechanism FM5 is accommodated in a recess 15u (see FIG. 8A described later) provided at the upper center of the upper yoke 15A) of the first yoke 15 of the mechanism FM5.
  • the pillar part 11c of the operation body 11 is penetrated by the through-hole of the shaft support part 3s, and the shaft support part 3s supports the pillar part 11c (operation body 11) rotatably.
  • the lid 3u of the support 3 is flat and has a circular shape with a through hole in the center (see FIG. 6). As shown in FIG. 5, the movable load applying mechanism F5 (upper yoke) 15A). And the pillar part 11c of the operation body 11 is penetrated by the through-hole of the cover part 3u similarly to the shaft support part 3s.
  • the bearing portion 3j, the shaft support portion 3s, and the lid portion 3u are manufactured by injection molding using a synthetic resin such as polybutylene terephthalate resin (PBT) in the same manner as the operation body 11.
  • PBT polybutylene terephthalate resin
  • FIG. 7 is an enlarged cross-sectional view of a portion P shown in FIG.
  • FIG. 8A is an upper perspective view of the movable load applying mechanism F5
  • FIG. 8B is a front view seen from the Y2 side shown in FIG. 8A
  • 9A is a lower perspective view in which the second yoke 25 shown in FIG. 8 is omitted
  • FIG. 9B is a lower perspective view in which the movable member 55 shown in FIG. 9A is further omitted. .
  • the movable load applying mechanism F5 opposes one side across the movable member 55 and the gap 5g as shown in FIG.
  • a magnetic generation mechanism FM5 and a magnetorheological fluid 75 existing in the gap 5g are provided.
  • the magnetism generation mechanism FM5 of the movable load applying mechanism F5 has a cylindrical shape as shown in FIG. 8A, and as shown in FIG.
  • FIG. 1 it is indicated by FS).
  • the movable load applying mechanism F5 receives a rotation operation by the operator and applies a load from the movable load applying mechanism F5 to the operating body 11, thereby operating the operation unit 51 (operation knob) of the operation member 1 to the operator. And an operation knob) are configured to apply a load (rotational load).
  • the coil 35 of the magnetism generation mechanism FM5 is formed by winding a metal wire in an annular shape, and is disposed on one side (Z1 side shown in FIG. 4) of the movable member 55 as shown in FIG. .
  • a magnetic field is generated around the coil 35.
  • the coil 35 has a shape in which a metal wire is wound and bundled, but in FIG. 6, the surface is shown to be simplified and flat.
  • the first yoke 15 of the magnetic generation mechanism FM5 is provided so as to surround the coil 35, and one side (Z1 side shown in FIG. 4) of the coil 35 and the inner side wall (annular) of the coil 35 are provided.
  • An upper yoke 15A that covers the central side wall of the shape
  • a lateral yoke 15B that covers a part of the outer side wall of the coil 35 and the other side of the coil 35 (Z2 side shown in FIG. 4), and the other side of the coil 35.
  • a lower yoke 15C that covers a part of the lower yoke 15C.
  • the first yoke 15 is disposed on one side of the movable member 55, and a part of the lateral yoke 15 ⁇ / b> B and the lower yoke 15 ⁇ / b> C are spaced from the movable member 55 by the gap 5 g (first gap 5 ga, (See FIG. 7).
  • the magnetic flux generated from the coil 35 is confined by the first yoke 15, and the magnetic field efficiently acts on the movable member 55 side.
  • the first yoke 15 has a slit 15s (yoke slit) formed by the lateral yoke 15B and the lower yoke 15C on the side facing the movable member 55.
  • the side of the first yoke 15 that faces the movable member 55 is divided.
  • the portion of the lateral yoke 15B facing the movable member 55 is defined as a first facing portion TB5 of the first yoke 15
  • the portion of the lower yoke 15C facing the movable member 55 is defined as a second facing portion TC5. It is said.
  • the width of the slit 15s is narrower than the gap 5g (first gap 5ga) between the first yoke 15 and the movable member 55.
  • a magnetic field is generated by energizing the coil 35, and a magnetic path extends from the first facing portion TB 5 to the second facing portion TC 5 of the first yoke 15 to the movable member 55 side, for example.
  • a ring-shaped slit spacer S57 (see FIG. 6) is accommodated in the slit 15s portion of the first yoke 15 as shown in FIG. 9B.
  • the slit spacer S57 is formed using a synthetic resin such as polybutylene terephthalate resin (PBT), and the first opposing portion TB5 of the first yoke 15 (lateral yoke 15B) and the first yoke 15 (lower yoke 15C).
  • PBT polybutylene terephthalate resin
  • the second facing portion TC5 is also divided in the magnetic circuit.
  • the first yoke 15 is composed of three parts, ie, the upper yoke 15A, the lateral yoke 15B, and the lower yoke 15C.
  • the present invention is not limited to this. It may be composed of four or more parts.
  • the slit 15s is preferably used in the first yoke 15, a structure without the slit 15s may be used.
  • the second yoke 25 of the magnetic generation mechanism FM5 is formed in a disk shape as shown in FIG. 6, and the other side of the movable member 55 as shown in FIG. 4, FIG. 7 and FIG. 8 (b). And is opposed to the movable member 55 across the gap 5g (second gap 5gb, see FIG. 7).
  • the magnetic flux generated from the coil 35 surely penetrates from the first opposing portion TB5 of the first yoke 15 to the second yoke 25 and from the second yoke 25 to the second opposing portion TC5 of the first yoke 15. .
  • it is sure to be in a direction perpendicular to the direction in which the movable member 55 operates (direction crossing the XY plane shown in FIG. 8A) (Z direction perpendicular to the XY plane shown in FIG. 8B).
  • a magnetic path is formed.
  • a side wall spacer S17 constituting a part of the side wall of the main body is provided between the outer peripheral side of the first yoke 15 (lateral yoke 15B) and the outer peripheral side of the second yoke 25.
  • the side wall spacer S17 is also formed using a synthetic resin such as polybutylene terephthalate resin (PBT), and divides the first yoke 15 (lateral yoke 15B) and the second yoke 25 in a magnetic circuit.
  • PBT polybutylene terephthalate resin
  • the first yoke 15, the second yoke 25, and the side wall spacer S17 are orthogonal to the direction (Z direction shown in FIG. 4) along the movable shaft 11j of the operating body 11 (X direction).
  • a narrow accommodation space is formed in the ⁇ Y plane direction).
  • the movable member 55 of the movable load applying mechanism F5 is disposed in this narrow accommodation space.
  • the operation control unit (FS) of the magnetic generation mechanism FM5 uses an integrated circuit (IC, integrated circuit), and controls the energization amount to the coil 35, the energization timing, and the like. Specifically, for example, when a rotation operation is performed by an operation of the operator, the operation control unit (FS) receives the detection signal from the position detection unit M2 that detects the position of the operation body 11, and the operation control unit (FS) A certain amount of current is caused to flow, or the amount of current is changed according to the position of the operating body 11.
  • IC integrated circuit
  • the operation control unit (FS) is mounted on a circuit board (not shown) and is electrically connected to the coil 35.
  • the operation control unit (FS) and the circuit board are preferably disposed in the vicinity of the magnetic generation mechanism FM5, but are not limited thereto.
  • the operation control unit (FS) may be connected to the coil 35 by a flexible printed circuit board (FPC) or the like and mounted on a mother board (mother board) of a product to be applied.
  • FPC flexible printed circuit board
  • the movable member 55 of the movable load applying mechanism F5 will be described.
  • the movable member 55 includes a base portion 55d having a through hole centered on the rotation center of the movable shaft 11j, and a disk-shaped disk portion 55e formed integrally with the base portion 55d and centered on the rotation center. And is composed of.
  • the movable member 55 is made of a soft magnetic material such as iron. Accordingly, a magnetic path is reliably formed from the first yoke 15 to the movable member 55 and from the movable member 55 to the first yoke 15. That is, the magnetic path is reliably formed in the direction perpendicular to the direction in which the movable member 55 operates.
  • the base 55d of the movable member 55 is engaged with the movable shaft 11j of the operating body 11 on the lower side of the ring portion 11r of the operating body 11 as shown in FIG. Accordingly, the disk portion 55e of the movable member 55 rotates and moves in both directions as the operating body 11 rotates in both directions.
  • the disc portion 55e of the movable member 55 is accommodated in the narrow accommodation space described above, as shown in FIG. Thereby, the magnetic flux generated from the coil 35 is moved from the first facing portion TB5 of the first yoke 15 to the movable member 55, from the movable member 55 to the second yoke 25, from the second yoke 25 to the movable member 55, and to the movable member 55. To the second opposing portion TC5 of the first yoke 15 with certainty. For this reason, the magnetic path is reliably formed in the direction perpendicular to the direction in which the movable member 55 operates.
  • the disk portion 55e is formed with an arc-shaped movable portion slit 55s obtained by dividing a virtual ring shape centered on the rotation center of the movable shaft 11j into four.
  • the movable part slit 55 s is provided at a position facing the slit 15 s provided in the first yoke 15.
  • the magnetic flux generated from the coil 35 is not confined by the movable member 55, and is transferred to the second yoke 25 via the first yoke 15 and the movable member 55 and from the second yoke 25 via the movable member 55.
  • it can be surely penetrated to one yoke 15.
  • the first yoke 15 is not guided from the first yoke 15 to the second yoke 25, and only the upper magnetorheological fluid 75 and the movable member 55 are short-circuited to the first yoke 15 (from the side yoke 15B to the second yoke 25).
  • the magnetic flux guided to the lower yoke 15C without being interposed can be reduced.
  • the width of the movable portion slit 55s is smaller than the width of the slit 15s of the first yoke 15, the spread of the magnetic flux from the first yoke 15 can be captured by the movable member 55, The second yoke 25 can be guided. It is more preferable that the center position of the width of the movable portion slit 55s and the center position of the width of the slit 15s are matched.
  • FIG. 10 is a schematic diagram for explaining the magnetorheological fluid 75.
  • FIG. 10A is a diagram of the magnetorheological fluid 75 in a state in which no magnetic field is applied, and FIG. It is a figure of the magnetorheological fluid 75 in the state of being applied.
  • FIG. 10B the flow of a magnetic field (magnetic flux) is indicated by a two-dot chain line for easy understanding.
  • the magnetorheological fluid 75 is a substance in which fine magnetic particles JR having magnetism such as iron or ferrite are dispersed in a solute SV such as an organic solvent. It is called MR fluid (Magneto Rheological Fluid).
  • the magnetorheological fluid 75 has a characteristic that the viscosity changes according to the strength of the magnetic field, and is distinguished from a similar magnetorheological fluid (Magnetic Fluid).
  • the major difference between the two forms is the particle size of the powder, the MR fluid is about 1 ⁇ m to 1 mm, the magnetic fluid is about 10 nm to 1 ⁇ m, and the MR fluid has a particle size compared to the magnetic fluid. It is about 100 to 1000 times larger.
  • FIG. 11 shows the result of verifying that “the resistance force (rotational load) increases according to the strength of the magnetic field”.
  • FIG. 11 is a graph showing an example of the relationship between the current flowing through the coil 35 of the magnetic generation mechanism FM5 and the torque applied to the operating body 11.
  • the horizontal axis is current (A), and the vertical axis is torque (Nm). This torque corresponds to a resistance force (rotational load) applied to the operating body 11.
  • the magnetorheological fluid 75 having the above-described characteristics is suitably used. As shown in FIG. 4, the magnetorheological fluid 75 is disposed in the gap 5g (see the first gap 5ga, FIG. 7) between the first yoke 15 and the movable member 55, and particularly as shown in FIG. Further, the gap 5g (first gap 5ga) between the first opposing portion TB5 and the second opposing portion TC5 of the first yoke 15 and the movable member 55 is filled.
  • the area of the second facing surface 15t is the same.
  • the magnetic viscous fluid 75 is also filled in the gap 5g (second gap 5gb) between the movable member 55 and the second yoke 25.
  • the magnetorheological fluid 75 filled here also enters the first yoke 15 (first opposing portion TB5) from the first yoke 15 via the movable member 55 to the second yoke 25, and from the second yoke 25 via the movable member 55 to the first yoke.
  • the magnetic flux formed over 15 (second facing portion TC5) acts.
  • the magnetic particles JR can be aligned in a direction perpendicular to the direction in which the movable member 55 operates, and a stronger rotational load can be applied.
  • a further rotational load can be applied, and an even greater operational feel can be given to the operator even with an equivalent magnetic field.
  • the operation unit U1 according to the first embodiment of the present invention configured as described above is a conventional method for applying an external force (force sense) such as a resistance force or a thrust according to the operation amount or operation direction of the operation member 1. Since the motor 810 is not used as in Example 1, the size can be reduced and the power consumption can be reduced. Moreover, no sound is generated when an external force (force sense) is applied.
  • an external force force sense
  • FIG. 12 is a diagram for explaining the position detection means M2, and is an upper perspective view in which the operation portion 51 of the operation member 1 shown in FIG. 2 is omitted.
  • FIG. 13 is an exploded perspective view of the position detecting means M2.
  • the position detection means M2 of the operating device 100 is arranged on the other side of the permanent magnet 12, the movable magnet 32 disposed on one side of the permanent magnet 12, and the permanent magnet 12 that generates magnetism.
  • the fixed yoke 42 is provided, and two magnetic sensors 62 are provided between the movable yoke 32 and the fixed yoke 42 (see FIG. 12) to detect magnetism.
  • the position detection means M2 is arrange
  • the position detection unit M2 identifies the position of the operation body 11 by detecting the rotation operation of the operation body 11, for example, detecting the rotation angle of the operation body 11.
  • the permanent magnet 12 of the position detection means M2 uses a general samarium cobalt magnet or the like, and is formed in a circular ring shape having a through hole 12h in the center as shown in FIG. As shown in FIG. 4, the operating body 11 is rotatably inserted into the through hole 12h.
  • the movable yoke 32 of the position detecting means M2 uses a soft magnetic material such as iron, and as shown in FIG. 13, a disk-shaped disk part 32b and a circular shape provided at the center of the disk part 32b. And a pedestal portion 32d having a shape.
  • a through hole 32h is formed in the center of the movable yoke 32 so as to penetrate the board portion 32b and the pedestal portion 32d, and the operation body 11 is inserted into the through hole 32h as shown in FIG. It is mated. Moreover, as shown in FIG. 4, the base part 32d and the operation part 51 are fitted. The movable yoke 32 is rotated and the operating body 11 is rotated as the operation unit 51 is operated (rotated) by the operation of the operator.
  • the side of the board portion 32b facing the permanent magnet 12 is formed in a concavo-convex shape so that the distance to the permanent magnet 12 changes as shown in FIGS.
  • the magnetic field between the permanent magnet 12 and the movable yoke 32 changes. That is, the magnetic field is strengthened at the convex portion, and the magnetic field is weakened at the concave portion.
  • the fixed yoke 42 of the position detecting means M2 uses a soft magnetic material such as iron, and as shown in FIG. 13, has a disk-like appearance, a through hole 42h formed in the center, and a permanent magnet.
  • the indentation part 42r in which the magnet 12 is placed and accommodated and the notch part 42k in which the magnetic sensor 62 is placed and accommodated are configured.
  • the magnetic flux generated from the permanent magnet 12 forms a magnetic path from the movable yoke 32 to the fixed yoke 42.
  • the magnetic sensor 62 of the position detecting means M2 includes a magnetic detection element (not shown, but indicated by 62K in FIG. 1) for detecting a change in the magnetic field, and an angle based on a signal from the magnetic detection element.
  • Sensor control unit (not shown in other figures, but indicated by SS in FIG. 1), and has four extraction terminals as shown in FIGS.
  • the magnetic detection element and the sensor control unit (SS) are packaged with a synthetic resin.
  • the two magnetic sensors 62 are disposed between the movable yoke 32 and the fixed yoke 42, and detect changes in the magnetic field between the movable yoke 32 and the fixed yoke 42. .
  • the magnetic detection element uses a Hall element that detects magnetism using the Hall effect.
  • the sensor control unit (SS) uses an integrated circuit (IC).
  • corrugated shape of the board part 32b is provided are comprised corresponding appropriately so that the magnetic field which the two magnetic sensors 62 each detect differs.
  • FIG. 14 is a schematic diagram illustrating the display unit U4 and is a part of a top view of the display unit U4.
  • the display unit U4 of the operation device 100 uses a display device such as a liquid crystal display (LCD) that is generally widely used. As shown in FIG. 14, the operation unit 11 (operation unit 51) is operated. A display unit 14 (liquid crystal panel) that displays the position PP, and a display control unit (in other drawings, the operation unit 11 (operation unit 51) and a desired position (operation position PP) are displayed on the display unit 14. Although not shown, it is indicated by PS in FIG. 1). The display control unit (PS) is incorporated in a liquid crystal panel driving module.
  • LCD liquid crystal display
  • the display control unit displays the image of the operation unit 51 in which the point position QP is clearly shown, and the operation position PP (The image of the viewing position desired by the operator is displayed on the display unit 14 of the liquid crystal panel.
  • the operation position PP can be variably displayed in conjunction with the state of the operation body 11 of the operation unit U1.
  • the sound generation means (H6) includes a sound generating member (16) that generates a general electronic sound using a piezoelectric element, and a sound control unit that controls the sound generating member (16) (not shown in other drawings). However, it is indicated by HS in the block diagram of FIG.
  • the sound control unit (HS) of the sound generation means (H6) drives the sound generation member (16) in conjunction with the state of the operation body 11 of the operation unit U1. That is, an arbitrary electronic sound can be generated according to the actual operated position of the operating tool 11 and the load on the operating tool 11.
  • the control unit (C8) is configured using an integrated circuit (IC), and as shown in FIG. 1, the operation control unit (FS) of the operation unit U1 and the sensor control unit (SS) of the position detection means M2. And the display control unit (PS) of the display unit U4 and the sound control unit (HS) of the sound generation means (H6) are electrically connected to each other. And a control part (C8) is based on the information from the operation unit U1 and the position detection means M2, and is an operation control part (FS), a sensor control part (SS), a display control part (PS), and an audio
  • the movable load applying mechanism F5 is disposed on one side of the movable member 55, and the movable member 55 operates by engaging the operating body 11 (movable shaft 11j).
  • the configuration includes the coil 35 and the first yoke 15 of the magnetism generation mechanism FM5, and the magnetorheological fluid 75 existing in at least a part of the gap 5g (first gap 5ga) between the movable member 55.
  • a magnetic field is generated by energizing the coil 35, a magnetic path is formed from the first yoke 15, and the magnetic particles JR in the magnetorheological fluid 75 are aligned along the magnetic flux.
  • a load is applied to the movable member 55 that operates in a direction crossing the magnetic flux formed between the first yoke 15 and the movable member 55 and between the movable member 55 and the first yoke 15, by the magnetic viscous fluid 75, A load is applied to the operating body 11 through the movable member 55 and the movable shaft 11j.
  • a control unit (C8) that controls the operation control unit (FS) of the operation unit U1 that controls energization of the coil 35 and the display control unit (PS) of the display unit U4 that controls display on the display unit 14 is provided.
  • the sound control unit (HS) is controlled by the control unit (C8).
  • An arbitrary electronic sound can be generated according to the actual operated position of the operating tool 11 and the load on the operating tool 11. Thereby, a better operational feeling (operation feeling) can be given to the operator.
  • the movable member 55 is made of a soft magnetic material, a magnetic path is surely provided from the first yoke 15 (first opposed portion TB5) to the movable member 55 and from the movable member 55 to the first yoke 15 (second opposed portion TC5).
  • the magnetic particles JR in the magnetorheological fluid 75 are aligned with the first yoke 15 and the movable member 55 facing each other (the Z direction shown in FIG. 4).
  • a stronger load rotational load
  • a stronger load is applied to the movable member 55 operating in a direction crossing the opposing surface direction in which the magnetic particles JR are aligned.
  • a stronger load is applied to the operating body 11 via the movable member 55 and the movable shaft 11j, and a better operational feeling can be given to the operator.
  • the magnetic generation mechanism FM5 since the magnetic generation mechanism FM5 includes the second yoke 25 disposed to face the other side of the movable member 55, the second yoke 25 is connected to the second yoke 25 from the first yoke 15 (first opposing portion TB5). A magnetic path is reliably formed from 25 to the first yoke 15 (second opposing portion TC5). For this reason, the magnetic particles JR can be aligned in a direction perpendicular to the direction in which the movable member 55 operates, and a stronger load (rotational load) can be applied.
  • the magnetic viscous fluid 75 is filled in the gap 5g (second gap 5gb) between the movable member 55 and the second yoke 25, a further load is applied to the movable member 55 operating in the direction crossing the magnetic flux. Can be granted. As a result, a stronger load (rotational load) can be applied to the operating body 11 via the movable member 55 and the movable shaft 11j, and a greater operational feeling can be given to the operator even with an equivalent magnetic field. Can be given.
  • FIG. 15 is a schematic diagram illustrating a control method in the operating device 100, and is a graph illustrating an example of a load curve of a load applied to the operating tool 11.
  • the horizontal axis indicates the position of the operation body 11 (operation unit 51), and the vertical axis indicates the load applied to the operation body 11.
  • the operating device 100 controls the current value to the coil 35 by the operation control unit (FS) of the movable load applying mechanism F5 (magnetism generating mechanism FM5), for example, as shown in FIG.
  • a load such as a load curve is applied to the operating body 11 (operation unit 51).
  • the control unit (C8) of the operation device 100 is based on the position information (position information signal) of the operation body 11 from the position detection unit M2. Then, a command signal is sent to the operation control unit (FS) of the magnetic generation mechanism FM5.
  • the operation control unit (FS) that has received the command signal causes a certain amount of current to flow through the coil 35 in a timely manner, and also changes the amount of current (current value) to flow.
  • a load curve having a plurality of peak values Pv and bottom values Bv is formed as shown in FIG. 15 depending on the magnitude of the current value to the coil 35.
  • control unit (C8) is rotated by an operator's operation, and the peak value Pv (first peak value) to the bottom value Bv (first bottom value), and the first bottom value to the next peak value.
  • Pv second peak value
  • a command signal is transmitted to the display control unit (PS) of the display unit U4.
  • the display control unit (PS) rotates the operation unit 51 and moves the point position QP (see FIG. 14) of the operation unit 51 to coincide with the operation position PP (movement state). ) Is displayed on the display unit 14 of the display unit U4.
  • the control unit (C8) when the control unit (C8) has the operating body 11 in a predetermined range (for example, a range between the broken lines shown in FIG. 15) sandwiching the bottom value Bv of the load curve,
  • the operation position PP is displayed at a desired position on the display unit 14. Therefore, even if the actual position where the operator 11 is operated and the operation position PP desired by the operator are misaligned in a range where the load received by the operator from the operator 11 is small, the operation desired by the operator A display in which the position PP matches the display position of the display unit 14 can be visually recognized.
  • a favorable operation feeling (operation feeling) can be given with respect to an operator.
  • control unit (C8) is rotated by an operator's operation, and the peak value Pv (first peak value) to the bottom value Bv (first bottom value), and the first bottom value to the next peak value.
  • Pv second peak value
  • a command signal is transmitted to the voice control unit (HS) of the voice generation means (H6).
  • the voice control unit (HS) that has received the command signal generates an electronic sound by the sound generating member (16). For this reason, when the operator operates the operation body 11, the operation position PP desired by the operator is displayed on the display unit 14, and at the same time, an arbitrary electronic sound can be generated. As a result, it is possible to feel the operational feeling (operation feel) operated by the operator.
  • the control unit (C8) generates an electronic sound when the operation body 11 is in a predetermined range with the bottom value Bv interposed therebetween. Any electronic sound can be heard in a range where the load received is small. For this reason, since the electronic sound is heard in a state close to the end of the operation, the operation feeling (operation feeling) operated by the operator can be further realized.
  • the control unit (C8) has the first bottom value and the first bottom value from the first peak value of the load curve formed by the operation control unit (FS).
  • the display control unit (PS) is controlled to display the movement state of the operation position PP (display position) on the display unit 14. Therefore, when the operator operates the operation body 11, even if the position where the operation body 11 of the operation unit U1 is operated and the operation position PP desired by the operator are misaligned, the operator desires It is possible to match the operation position PP to be displayed with the display position displayed on the display unit 14 of the display unit U4. Thereby, it is possible to give a good operational feeling (operation feeling) to the operator.
  • the operating position PP is displayed at a desired position on the display unit 14, so that the load received by the operator from the operating tool 11 is small.
  • a display in which the operation position PP desired by the operator matches the display position of the display unit 14 is visually recognized. be able to. Thereby, it is possible to give a better operational feeling (operation feeling) to the operator.
  • the voice control unit (HS ) Is controlled to generate an electronic sound by the sound generating member (16). For this reason, when the operator operates the operation body 11, the display position is displayed at the operation position PP desired by the operator, and at the same time, an arbitrary electronic sound can be generated. As a result, it is possible to feel the operational feeling (operation feel) operated by the operator.
  • control unit (C8) since the control unit (C8) generates an electronic sound when the operation body 11 is in a predetermined range with the bottom value Bv interposed therebetween, any electronic sound can be generated in a range where the load received by the operator from the operation body 11 is small. Can hear. As a result, the operational feeling (operation feel) operated by the operator can be further felt.
  • the operation unit U1 and the display unit U4 are arranged at positions separated from each other.
  • the present invention is not limited to this.
  • the display unit U4 is arranged in the vicinity of the operation unit U1.
  • the operator may be able to visually recognize both.
  • the magnetorheological fluid 75 is filled so as to fill the accommodation space in which the movable member 55 is accommodated (the accommodation space formed by the first yoke 15, the second yoke 25, and the side wall spacer S17).
  • the present invention is not limited to this, and it is sufficient that the magnetorheological fluid 75 exists in at least a part of the gap 5g.
  • the sound generating means (H6) is preferably configured to use the sound generating member (16) that generates an electronic sound, but is not limited thereto. Then, a mechanical mechanism that generates sound may be used.
  • the position detection unit M2 is configured by the permanent magnet 12, the movable yoke 32, and the two magnetic sensors 62, but is not limited thereto.
  • a so-called rotary variable resistor configured by a substrate on which a resistor pattern is formed and a slider that is in sliding contact with the resistor pattern may be used.
  • the movable member 55 was suitably formed from the soft magnetic body, it is not restricted to this, A nonmagnetic body, such as a synthetic resin, may be sufficient.
  • the first opposing portion TB5 and the second opposing portion TC5 are configured by the lateral yoke 15B and the lower yoke 15C of the first yoke 15, but only the lower yoke 15C faces the movable member 55.
  • a configuration in which the first facing portion TB5 and the second facing portion TC5 are not provided may be employed.
  • the movable member 55 has a disk shape, but is not limited thereto, and may be, for example, a rectangular shape or a polygonal shape.
  • the movable member 55 made of a soft magnetic material is provided with the movable portion slit 55s.
  • the movable member slit 55s may not be provided. In that case, it is preferable that the movable member 55 is made of a non-magnetic material.
  • the rotary operation device is of a type in which the movable member 55 rotates.
  • the present invention is not limited to this rotation operation.
  • it may be a slide type operating device in which the movable member slides in a direction crossing the extending direction of the support ⁇ Modification 9 ⁇ .
  • it may be a pressing type operating device that performs a push operation in the extending direction of the support ⁇ Modification 10 ⁇ .
  • the movable member and the first yoke (and the second yoke) are opposed to each other in a direction (preferably an orthogonal direction) intersecting the push operation direction, and the movable member and the first yoke A load can be appropriately applied if the magnetic viscous fluid is filled in the gap with (and the second yoke).
  • the present invention is not limited to the above embodiment, and can be appropriately changed without departing from the gist of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Mechanical Control Devices (AREA)
  • Switch Cases, Indication, And Locking (AREA)

Abstract

操作者が操作した際に、操作者に対して磁気粘性流体を用いて良好な操作感触を与えることができる操作装置及び操作装置の制御方法を提供することを目的とする。 操作装置100は、操作者により動作する操作体11を有した操作ユニットU1と、操作体11の位置を検出する位置検出手段M2と、操作体11の操作位置を表示する表示ユニットU4と、を備え、操作ユニットU4が操作部材1と支持体3と可動負荷付与機構F5とを備え、可動負荷付与機構F5が可動部材と磁気発生機構FM5と磁気粘性流体と操作制御部FSとを有し、表示ユニットU4が操作位置を表示する表示部14と表示を制御する表示制御部PSとを備え、操作制御部FSと表示制御部PSとを制御する制御部C8を有していることを特徴とし、操作装置100の制御方法は、制御部C8が表示制御部PSを制御して操作体11の操作位置の移動状態を表示部14に表示させている。

Description

操作装置及び該操作装置の制御方法
 本発明は、操作者が操作した際に、操作者に対して操作感触を与えることができる操作装置及び該操作装置の制御方法に関する。
 近年、操作者が操作部材を操作した際に、この操作部材の操作量や操作方向に応じた抵抗力や推力等の外力(力覚)を付与することにより、操作フィーリングを良好にして所望の操作が確実に行えるようにしたフォースフィードバック機能付きの入力装置が種々提案されている。特に、エアコンやオーディオあるいはナビゲーション等の車載用制御機器の操作においては、視認しながら操作するのではなく、ブラインド操作する場合が多く、操作部材(操作ノブ)に対して力覚を付与することは、安全性の面からも有効であった。
 このような入力装置を用いた自動車用の手動入力装置800が特許文献1(従来例1)に提案されている。図16は、従来例1の手動入力装置800を説明する図であって、その基本構成の要部を示す縦断面図である。
 図16に示す手動入力装置800は、運転者(操作者)により手動操作され回転するノブ880(操作部材)と、ノブ880と一体的に設けられたキャリア軸851を有する遊星歯車機構と、遊星歯車機構のリングギア862を常に固定する円筒状のリングギアケース860(固定部材)と、遊星歯車機構のサンギア832と係合した出力軸811を有するモータ810と、モータ810の出力軸811の回転を検出するエンコーダ830(検出手段)と、エンコーダ830の検出結果に応じてモータ810の回転を制御する制御手段と、を備えて構成されている。そして、手動入力装置800は、所定のタイミングでモータ810を回転させ、この回転力を遊星歯車機構を介してノブ880に伝達し、所定の操作感触を操作者に与えるようにしている。
 しかしながら、この手動入力装置800は、良好な操作感触を与えることができるが、モータ810を用いているので、更なる小型化の要望に対して対応が難しいものであった。そこで、モータ810を用いないで、操作部材の操作量や操作方向に応じた抵抗力や推力等の外力(力覚)を付与する方法が模索されてきた。
 特許文献2(従来例2)では、自身の流動性が磁場発生手段により影響を受ける磁界応答材料(磁気粘性流体)を用いた手動ブレーキ911が提案されている。図17は、従来例2の手動ブレーキ911を説明する図であって、長手方向断面図である。
 図17に示す手動ブレーキ911は、第1のハウジング室915及び第2のハウジング室917を有するハウジング913と、ハウジング913の開放端側を塞ぐ閉じ板919と、第2のハウジング室917を貫通して第1のハウジング室915に延設しているシャフト923と、シャフト923の端部に一体に設けられ第1のハウジング室内に並設されたロータ921と、第1のハウジング室915内に設けられロータ921の外周辺部のすぐそばにある磁界発生器929と、第1のハウジング室915に設けられロータ921を取り囲むように充填された磁界応答材料941と、第2のハウジング室917に設けられブレーキ動作を制御及び監視する制御手段925と、を備えて構成されている。また、磁界発生器929は、コイル931と、コイル931の三方を囲むようにして配設された極片933と、を備えている。
 このように構成された手動ブレーキ911では、コイル931に通電を行うと、図17に破線で示す磁束J37が発生し、この磁束J37の発生に伴って、磁界応答材料941中の軟磁性または磁化可能な粒子が磁束J37に沿って配列するようになる。このため、この配列を切断する方向、つまり回転動作するロータ921の回転方向に対して、磁界応答材料941によりロータ921に与える抵抗が増大するようになる。従って、手動ブレーキ911は、この磁界応答材料941とロータ921とを用いて、シャフト923の回転動作を止めるブレーキ作用を有することとなる。
 そして、上述した磁界応答材料941(磁気粘性流体)の作用を操作装置に利用する場合が考えられ、例えば、シャフト923(回転軸)に操作者が操作する操作体(操作部材)を係合し、制御手段925でコイル931に流す電流を制御するようにして、操作体(操作部材)に負荷を与える。これにより、モータを用いないで、操作部材の操作量や操作方向に応じた抵抗力や推力等の外力(力覚)を付与することができる。
特開2003-50639号公報 特表2005-507061号公報
 上述した磁界応答材料941(磁気粘性流体)の作用を利用することにより、モータを用いないで、操作部材の操作量や操作方向に応じた抵抗力や推力等の外力(力覚)を付与することができる。そして、この外力(力覚)を付与する方法を従来例1のような入力装置に応用することが考えられる。
 しかしながら、従来例2の構成では、操作部材の操作量や操作方向に応じた抵抗力や推力等の外力(力覚)を付与するのみで、入力のタイミングと操作感触とがズレる場合があった。特に、操作部材の操作位置を表示する表示部を有した操作装置においては、操作部材の実際に位置する操作の位置が表示部に表示される表示位置となり、操作者が所望する操作の位置と表示位置が一致せずに、操作者に対して違和感を与えてしまうという課題があった。
 本発明は、上述した課題を解決するもので、操作者が操作した際に、操作者に対して磁気粘性流体を用いて良好な操作感触を与えることができる操作装置及び該操作装置の制御方法を提供することを目的とする。
 この課題を解決するために、本発明の操作装置は、操作者の操作により動作する操作体を有した操作ユニットと、前記操作体の位置する操作の位置を検出する位置検出手段と、前記操作体の操作位置を表示する表示ユニットと、を備えた操作装置であって、前記操作ユニットが、前記操作者が操作し前記操作体を有した操作部材と、前記操作体の動作を自在に支持する支持体と、前記操作体に対して負荷を付与する可動負荷付与機構と、を備え、前記操作体には前記動作を可能にする可動軸を有し、前記可動負荷付与機構が、該可動軸と係合して前記動作する可動部材と、該可動部材と隙間を挟んで対向する磁気発生機構と、該隙間の少なくとも一部に存在し磁界の強さに応じて粘性が変化する磁気粘性流体と、前記磁気発生機構を制御する操作制御部と、を有し、前記磁気発生機構が、該操作制御部による通電で磁界を発生させるコイルと、該コイルを囲むように設けられ前記可動部材の一方側に配設された第1ヨークと、を有し、前記表示ユニットが、前記操作位置を表示する表示部と、該表示部への表示を制御する表示制御部と、を備え、前記操作制御部と前記表示制御部とを制御する制御部を有していることを特徴としている。
 これによれば、本発明の操作装置は、コイルへの通電により磁界が発生し、第1ヨークから磁路が広がって形成されて、磁気粘性流体における磁性粒子が磁束に沿って揃うこととなる。このため、第1ヨークと可動部材及び可動部材と第1ヨークにかけて形成された磁束を横切る方向に動作する可動部材に対して、磁気粘性流体により負荷がかかるようになり、可動部材及び可動軸を介して操作体に負荷がかかるようになる。また、操作者が操作体の操作を行った際に、操作ユニットの操作体の操作された位置と操作者が所望する位置(操作位置)とがズレていたとしても、操作者が所望する操作位置と表示ユニットの表示部に表示された表示位置とを一致させることができる。これらのことにより、操作者に対して良好な操作感(操作感触)を与えることができる。
 また、本発明の操作装置は、電子音を発生する音発生部材と、該音発生部材を制御する音声制御部と、を備え、該音声制御部が前記制御部に制御されることを特徴としている。
 これによれば、操作体の実際の操作された位置と操作体への負荷とに応じて、任意の電子音を発生させることができる。このことにより、より良好な操作感(操作感触)を操作者に対して与えることができる。
 また、本発明の操作装置は、前記可動部材が軟磁性体からなることを特徴としている。
 これによれば、第1ヨークから可動部材に、可動部材から第1ヨークにかけて磁路が確実に形成されて、磁気粘性流体における磁性粒子が互いに対向する対向面方向に揃うこととなる。このため、磁性粒子が揃った対向面方向を横切る方向に動作する可動部材に対して、より強い負荷がかかるようになる。このことにより、可動部材及び可動軸を介して操作体により強い負荷がかかるようになり、良好な操作感触を操作者に対して与えることができる。
 また、本発明の操作装置は、前記磁気発生機構は、前記可動部材の他方側に前記可動部材と対向して配設された第2ヨークを有し、前記可動部材と前記第2ヨークとの前記隙間に前記磁気粘性流体が充填されていることを特徴としている。
 これによれば、可動部材の動作する方向と垂直な方向に磁性粒子を揃えることができ、より強い負荷をかけることができる。更に、磁束を横切る方向に動作する可動部材に対して、更なる負荷を付与することができる。このことにより、同等の磁界であっても、更に大きな操作感触を操作者に対して与えることができる。
 また、本発明の操作装置の制御方法は、操作者の操作により動作する操作体を有した操作ユニットと、前記操作体の位置する操作の位置を検出する位置検出手段と、前記操作体の操作位置を表示する表示ユニットと、前記操作ユニット及び前記表示ユニットを制御する制御部と、を備えた操作装置の制御方法であって、前記操作ユニットが、操作者が操作し前記操作体を有した操作部材と、前記操作体の可動を自在に支持する支持体と、前記操作体に対して負荷を付与する可動負荷付与機構と、を備え、前記操作体には前記動作を可能にする可動軸を有し、前記可動負荷付与機構が、該可動軸と係合して前記動作する可動部材と、該可動部材と隙間を挟んで対向する磁気発生機構と、該隙間の少なくとも一部に存在し磁界の強さに応じて粘性が変化する磁気粘性流体と、を有し、前記磁気発生機構が、通電により磁界を発生させるコイルと、該コイルを囲むように設けられ前記可動部材の一方側に配設された第1ヨークと、前記コイルへの通電を制御する操作制御部と、を有し、前記表示ユニットが、前記操作位置を表示する表示部と、該表示部への表示を制御する表示制御部と、を備え、前記操作制御部による前記コイルへの電流値の強弱により、前記負荷のピーク値とボトム値を複数有する負荷カーブを形成し、前記制御部が、前記ピーク値及び前記ボトム値の内、第1ピーク値から第1ボトム値、該第1ボトム値から次の第2ピーク値に移行する際に、前記表示制御部を制御して、前記操作位置の移動状態を前記表示部に表示させることを特徴としている。
 これによれば、操作者が操作体の操作を行った際に、操作ユニットの操作体の操作された位置と操作者が所望する操作位置とがズレていたとしても、操作者が所望する操作位置と表示ユニットの表示部に表示された表示位置とを一致させることができる。このことにより、操作者に対して良好な操作感(操作感触)を与えることができる。
 また、本発明の操作装置の制御方法は、前記制御部が、前記負荷カーブの前記ボトム値を挟んだ所定の範囲に前記操作体があるとき、前記操作位置を前記表示部の所望の位置に表示させることを特徴としている。
 これによれば、操作者が操作体から受ける負荷が小さい範囲において、操作体の操作された位置と操作者が所望する操作位置とがズレていたとしても、操作者が所望する操作位置と表示位置とが一致した表示を視認することができる。このことにより、操作者に対してより良好な操作感(操作感触)を与えることができる。
 また、本発明の操作装置の制御方法は、電子音を発生する音発生部材と、該音発生部材を制御する音声制御部と、を備え、前記制御部が、前記ピーク値から前記ボトム値、該ボトム値から次の前記ピーク値に移行する際に、前記音声制御部を制御して、前記電子音を発生させることを特徴としている。
 これによれば、操作者が操作体の操作を行った際に、操作者が所望する操作位置が表示部に表示されると同時に、任意の電子音を発生させることができる。このことにより、操作者が操作した操作感(操作感触)を実感することができる。
 また、本発明の操作装置の制御方法は、前記制御部が、前記ボトム値を挟んだ所定の範囲に前記操作体があるときに、前記電子音を発生させることを特徴としている。
 これによれば、操作者が操作体から受ける負荷が小さい範囲において、任意の電子音を聞くことができる。このことにより、操作者が操作した操作感(操作感触)をより実感することができる。
 本発明の操作装置は、コイルへの通電により磁界が発生し、第1ヨークから磁路が広がって形成されて、磁気粘性流体における磁性粒子が磁束に沿って揃うこととなる。このため、第1ヨークと可動部材及び可動部材と第1ヨークにかけて形成された磁束を横切る方向に動作する可動部材に対して、磁気粘性流体により負荷がかかるようになり、可動部材及び可動軸を介して操作体に負荷がかかるようになる。また、操作者が操作体の操作を行った際に、操作ユニットの操作体の操作された位置と操作者が所望する位置(操作位置)とがズレていたとしても、操作者が所望する操作位置と表示ユニットの表示部に表示された表示位置とを一致させることができる。これらのことにより、操作者に対して良好な操作感(操作感触)を与えることができる。
 また、本発明の操作装置の制御方法は、操作者が操作体の操作を行った際に、操作ユニットの操作体の操作された位置と操作者が所望する操作位置とがズレていたとしても、操作者が所望する操作位置と表示ユニットの表示部に表示された表示位置とを一致させることができる。このことにより、操作者に対して良好な操作感(操作感触)を与えることができる。
本発明の第1実施形態に係わる操作装置を説明する図であって、操作装置の構成を示すブロック図である。 本発明の第1実施形態に係わる操作装置を説明する図であって、操作ユニットの上方斜視図である。 本発明の第1実施形態に係わる操作装置を説明する図であって、図3(a)は、図2に示すZ1側から見た操作ユニットの上面図であり、図3(b)は、図2に示すY2側から見た操作ユニットの正面図である。 本発明の第1実施形態に係わる操作装置を説明する図であって、図3(a)に示すIV-IV線における断面図である。 本発明の第1実施形態に係わる操作装置の操作ユニットを説明する図であって、図2に示す操作部材の操作部を省略した上方斜視図である。 本発明の第1実施形態に係わる操作装置の操作ユニットを説明する図であって、図5に示す操作ユニットの分解斜視図である。 本発明の第1実施形態に係わる操作装置の可動負荷付与機構を説明する図であって、図4に示すP部分の拡大断面図である。 本発明の第1実施形態に係わる操作装置の可動負荷付与機構を説明する図であって、図8(a)は、可動負荷付与機構の上方斜視図であり、図8(b)は、図8(a)に示すY2側から見た正面図である。 本発明の第1実施形態に係わる操作装置の可動負荷付与機構を説明する図であって、図9(a)は、図8に示す第2ヨークを省略した下方斜視図であり、図9(b)は、図9(a)に示す可動部材を更に省略した下方斜視図である。 本発明の第1実施形態に係わる操作装置の磁気粘性流体について説明する模式図であって、図10(a)は、磁界が印加されていない状態の磁気粘性流体の図であり、図10(b)は、磁界が印加されている状態の磁気粘性流体の図である。 本発明の第1実施形態に係わる操作装置の可動負荷付与機構を説明する図であって、磁気発生機構に流す電流と操作体にかかるトルクとの関係の一例を表したグラフである。 本発明の第1実施形態に係わる操作装置の位置検出手段を説明する図であって、図2に示す操作部材の操作部を省略した上方斜視図である。 本発明の第1実施形態に係わる操作装置の位置検出手段を説明する図であって、位置検出手段の分解斜視図である。 本発明の第1実施形態に係わる操作装置の表示ユニットを説明する模式図であって、表示ユニットの上面図の一部である。 第1実施形態の操作装置における制御方法について説明する模式図であって、操作体に付与される負荷の負荷カーブの一例を示したグラフである。 従来例1の手動入力装置を説明する図であって、その基本構成の要部を示す縦断面図である。 従来例2の手動ブレーキを説明する図であって、長手方向断面図である。
 以下、本発明の実施の形態について図面を参照して説明する。
 [第1実施形態]
 図1は、本発明の第1実施形態に係わる操作装置100の構成を示すブロック図である。
 本発明の第1実施形態の操作装置100は、図1に示すように、操作者の操作により動作する操作体11を有した操作ユニットU1と、操作体11の位置を検出する位置検出手段M2と、操作者が視認する操作位置PP(後述する図14を参照)を表示する表示ユニットU4と、電子音を発生する音発生部材(他の図では図示していないが、図1のブロック図では16で示している)を有した音声発生手段(他の図では図示していないが、図1ではH6で示している)と、操作ユニットU1と位置検出手段M2と表示ユニットU4と音声発生手段(H6)のそれぞれと電気的に接続されている制御部(他の図では図示していないが、図1ではC8で示している)と、を備えて構成されている。そして、本発明の第1実施形態では、操作装置100は、操作者が操作する操作ユニットU1の近傍に位置検出手段M2を配設し、位置検出手段M2と表示ユニットU4とを接続して、操作ユニットU1とは離れた位置にある表示ユニットU4に、操作体11が操作された位置を表示するようにしている。
 次に、操作装置100のそれぞれの構成要件について詳細に説明する。
 先ず、操作装置100の操作ユニットU1について説明する。図2は、操作ユニットU1の上方斜視図である。図3(a)は、図2に示すZ1側から見た操作ユニットU1の上面図であり、図3(b)は、図2に示すY2側から見た操作ユニットU1の正面図である。図4は、図3(a)に示すIV-IV線における断面図である。図5は、図2に示す操作部材1の操作部51を省略した上方斜視図である。図6は、図5に示す操作ユニットU1の分解斜視図である。
 操作装置100の操作ユニットU1は、図2、図3及び図5に示すような外観を呈し、図6に示すように、操作者の操作により操作方向へ動作する操作体11を有した操作部材1と、操作体11の動作を自在に支持する支持体3と、操作体11に対して負荷を付与する可動負荷付与機構F5と、を備えて主に構成されている。なお、本発明の第1実施形態の操作装置100では、操作ユニットU1の操作体11の可動軸11j(後述するが、図4を参照)を回転中心とした回動方向(回転方向)への操作が可能な回転型の装置となっている。
 また、第1実施形態の操作ユニットU1では、上述の構成要素に加え、図4及び図6に示すように、本体の側壁の一部を構成する側壁スペーサS17と(図4を参照)、可動負荷付与機構F5の中に配設されるスリットスペーサS57と(図13を参照)、を有している。そして、この回転型の操作ユニットU1は、図2及び図3に示す操作部材1の操作部51が操作体11の一端側に係合され、操作者により操作部51が把持されて操作され、操作体11が両方向に回転動作するようになっている。
 先ず、操作ユニットU1の操作部材1について説明する。操作部材1は、操作者が把持する操作部51と、操作部51が係合され操作部51の回転操作に伴って動作する操作体11と、を有している。
 操作部材1の操作部51は、操作者により把持されて操作される操作ノブや操作つまみ等の部材であり、本発明の第1実施形態では、ポリブチレンテレフタレート樹脂(PBT、poly butylene terephtalate)等の合成樹脂を用い、図2及び図3に示すように、円筒形状で箱状に形成されている。そして、操作部51は、図4に示すように、操作体11の一端側に係合されている。なお、その形状は、操作し易いような形状等を考慮され、適用される製品によって任意に決められる。
 操作部材1の操作体11は、ポリブチレンテレフタレート樹脂(PBT)等の合成樹脂を用い、図6に示すように、円柱形状の柱部11cと、柱部11cの中心を貫き回転中心を中心とした可動軸11jと、操作体11の他端側に設けられ柱部11cより一回り大きいサイズのリング部11rと、を有して、一体に射出成形されて作製されている。そして、図4に示すように、OリングR7が、柱部11cに挿通されて、柱部11cとリング部11rとの繋ぎ目部分に配設されている。ここに装着されているOリングR7は、後述する可動部材55が収容される収容空間を閉じる機能も有している。これにより、この収容空間に充填された磁気粘性流体75が収容空間から漏れ出すのを防止している。
 次に、操作ユニットU1の支持体3について説明する。支持体3は、図4に示すように、操作体11の可動軸11jの端部が当設される軸受け部3jと、操作体11の柱部11cが挿通されて柱部11cを案内する軸支持部3sと、軸支持部3sを押さえて安定させるための蓋部3uと、から主に構成されている。そして、この支持体3は、操作体11の可動(回転)が自在になるように操作体11(操作部材1)を支持している。
 また、支持体3の軸受け部3jは、図4に示すように、操作体11の可動軸11jと対向する側が凹形状となっている。そして、軸受け部3jは、操作ユニットU1が組み立てられた際には、この軸受け部3jの凹形状部分に可動軸11jの端部が当接されて、操作体11の動作が容易に行われることを許容している。
 また、支持体3の軸支持部3sは、中央部に貫通穴を有したリング形状をしており(図6を参照)、図4に示すように、可動負荷付与機構F5(後述する磁気発生機構FM5の第1ヨーク15の上ヨーク15A)の中央の上部に設けられた凹み部15u(後述する図8(a)を参照)に収容されている。そして、操作体11の柱部11cが軸支持部3sの貫通穴に挿通されて、軸支持部3sが柱部11c(操作体11)を回転可能に支持している。
 また、支持体3の蓋部3uは、平板状で中央部に貫通穴を有した円形形状をしており(図6を参照)、図5に示すように、可動負荷付与機構F5(上ヨーク15A)に載置されている。そして、軸支持部3sと同様に、操作体11の柱部11cが蓋部3uの貫通穴に挿通されている。なお、軸受け部3j、軸支持部3s及び蓋部3uは、操作体11と同様にして、ポリブチレンテレフタレート樹脂(PBT)等の合成樹脂を用い、射出成形されて作製されている。
 次に、操作ユニットU1の可動負荷付与機構F5について説明する。図7は、図4に示すP部分の拡大断面図である。図8(a)は、可動負荷付与機構F5の上方斜視図であり、図8(b)は、図8(a)に示すY2側から見た正面図である。図9(a)は、図8に示す第2ヨーク25を省略した下方斜視図であり、図9(b)は、図9(a)に示す可動部材55を更に省略した下方斜視図である。
 可動負荷付与機構F5は、図4に示すように、可動軸11jと係合して動作する可動部材55と、図7に示すように、可動部材55と隙間5gを挟んで一方側に対向する磁気発生機構FM5と、この隙間5gに存在する磁気粘性流体75と、を備えて構成されている。更に、可動負荷付与機構F5の磁気発生機構FM5は、図8(a)に示すような円柱形状を呈し、図4に示すように、通電により磁界を発生させるコイル35と、コイル35を囲むように設けられた第1ヨーク15と、可動部材55と隙間5gを挟んで他方側に対向する第2ヨーク25と、コイル35への通電を制御する操作制御部(他の図では図示していないが、図1ではFSで示している)と、を有して構成されている。そして、可動負荷付与機構F5は、操作者による回転操作を受けて、操作体11に可動負荷付与機構F5からの負荷を与えることにより、操作者に対して操作部材1の操作部51(操作ノブや操作つまみ等)へ負荷(回転負荷)を付与するように構成されている。
 先ず、可動負荷付与機構F5の磁気発生機構FM5について説明する。磁気発生機構FM5のコイル35は、金属線材が環状に巻回されて形成されており、図4に示すように、可動部材55の一方側(図4に示すZ1側)に配設されている。そして、このコイル35に通電することにより、コイル35の周囲に磁界が発生するようになる。なお、コイル35は、金属線材が巻回されて束ねられた形状となっているが、図6では、簡略化して、表面を平坦にして示している。
 次に、磁気発生機構FM5の第1ヨーク15は、図4に示すように、コイル35を囲むようにして設けられ、コイル35の一方側(図4に示すZ1側)とコイル35の内側側壁(環状形状の中心側の側壁)とを覆う上ヨーク15Aと、コイル35の外側側壁とコイル35の他方側(図4に示すZ2側)の一部とを覆う横ヨーク15Bと、コイル35の他方側の一部を覆う下ヨーク15Cと、を有して構成されている。そして、第1ヨーク15は、図4に示すように、可動部材55の一方側に配設されて、横ヨーク15Bの一部及び下ヨーク15Cが可動部材55と隙間5g(第1隙間5ga、図7を参照)を挟んで対向している。この第1ヨーク15により、コイル35から発生する磁束が閉じ込められ、効率的に可動部材55側に磁界が作用することとなる。
 また、第1ヨーク15は、図7及び図9(b)に示すように、可動部材55と対向する側において、横ヨーク15Bと下ヨーク15Cとで形成されたスリット15s(ヨークスリット)を有しており、第1ヨーク15の可動部材55と対向する側が分割された形状となっている。ここで、可動部材55と対向している横ヨーク15Bの部分を、第1ヨーク15の第1対向部TB5とし、可動部材55と対向している下ヨーク15Cの部分を、第2対向部TC5としている。
 また、図4及び図7に示すように、このスリット15s幅は、第1ヨーク15と可動部材55との隙間5g(第1隙間5ga)より狭くなっている。これにより、コイル35への通電により磁界が発生し、例えば第1ヨーク15の第1対向部TB5から第2対向部TC5にかけて磁路が可動部材55側に広がって形成されるようになる。
 また、本発明の第1実施形態では、第1ヨーク15のスリット15sの部分には、図9(b)に示すように、リング形状のスリットスペーサS57(図6を参照)が収納されている。このスリットスペーサS57は、ポリブチレンテレフタレート樹脂(PBT)等の合成樹脂を用いて形成されており、第1ヨーク15(横ヨーク15B)の第1対向部TB5と第1ヨーク15(下ヨーク15C)の第2対向部TC5とを磁気回路においても分割している。なお、本発明の第1実施形態では、第1ヨーク15が、上ヨーク15A、横ヨーク15B及び下ヨーク15Cの3つの部品で構成されているが、これに限るものではなく、2つの部品或いは4つ以上の部品で構成されていても良い。また、第1ヨーク15にスリット15sを好適に用いた構成であるが、スリット15sを有さない構成であっても良い。
 次に、磁気発生機構FM5の第2ヨーク25は、図6に示すような円盤形状で形成されており、図4、図7及び図8(b)に示すように、可動部材55の他方側に配設され、可動部材55と隙間5g(第2隙間5gb、図7を参照)を挟んで対向している。これにより、コイル35から発生した磁束が、第1ヨーク15の第1対向部TB5から第2ヨーク25に、第2ヨーク25から第1ヨーク15の第2対向部TC5にかけて確実に貫くこととなる。このため、可動部材55の動作する方向(図8(a)に示すX-Y平面を横切る方向)と垂直な方向(図8(b)に示すX-Y平面に垂直なZ方向)に確実に磁路が形成される。
 また、第1ヨーク15(横ヨーク15B)の外周側と第2ヨーク25の外周側との間には、本体の側壁の一部を構成する側壁スペーサS17が設けられている。この側壁スペーサS17も、ポリブチレンテレフタレート樹脂(PBT)等の合成樹脂を用いて形成されており、第1ヨーク15(横ヨーク15B)と第2ヨーク25とを磁気回路において分割している。
 また、図4に示すように、第1ヨーク15と第2ヨーク25と側壁スペーサS17とで、操作体11の可動軸11jに沿った方向(図4に示すZ方向)と直交する方向(X-Y平面の方向)に狭い収容空間を形成している。この狭い収容空間に、可動負荷付与機構F5の可動部材55が配設されている。
 次に、磁気発生機構FM5の操作制御部(FS)は、集積回路(IC、integrated circuit)を用いており、コイル35への通電量、通電のタイミング等を制御している。具体的には、例えば、操作者の操作により回転操作がされた際に、操作体11の位置を検出する位置検出手段M2からの検出信号を受けて、操作制御部(FS)は、コイル35にある一定量の電流を流したり、操作体11の位置に応じて電流量を変化させたりしている。
 また、操作制御部(FS)は、図示していない回路基板に搭載されて、コイル35と電気的に接続されている。なお、操作制御部(FS)及び回路基板は、磁気発生機構FM5の近傍に好適に配設されているが、これに限るものではない。例えば、操作制御部(FS)は、フレキシブルプリント基板(FPC、Flexible printed circuits)等でコイル35と接続され、適用される製品の母基板(マザーボード)に搭載されていても良い。
 次に、可動負荷付与機構F5の可動部材55について説明する。可動部材55は、図6に示すように、可動軸11jの回転中心を中心とした貫通穴を有した基部55dと、基部55dと一体に形成され回転中心を中心とした円盤形状の円盤部55eと、から構成されている。
 また、可動部材55は、鉄等の軟磁性体から形成されている。これにより、第1ヨーク15から可動部材55に、可動部材55から第1ヨーク15にかけて磁路が確実に形成される。つまり、可動部材55の動作する方向と垂直な方向に確実に磁路が形成される。
 可動部材55の基部55dは、図4に示すように、操作体11のリング部11rの下部側で操作体11の可動軸11jと係合している。これにより、操作体11の両方向への回転動作に伴って、可動部材55の円盤部55eが両方向へ回転移動することとなる。
 可動部材55の円盤部55eは、操作装置100が組み立てられた際には、図4に示すように、上述した狭い収容空間に収容される。これにより、コイル35から発生した磁束が、第1ヨーク15の第1対向部TB5から可動部材55に、可動部材55から第2ヨーク25に、第2ヨーク25から可動部材55に、可動部材55から第1ヨーク15の第2対向部TC5にかけて、確実に貫くこととなる。このため、可動部材55の動作する方向と垂直な方向により確実に磁路が形成される。
 また、円盤部55eには、図6及び図9(a)に示すように、可動軸11jの回転中心を中心とした仮想のリング形状を4つに分割した円弧形状の可動部スリット55sが形成されている。この可動部スリット55sは、図4及び図7に示すように、第1ヨーク15に設けられたスリット15sと対向した位置に設けられている。これにより、コイル35から発生した磁束が、可動部材55により閉じ込められることがなく、第1ヨーク15及び可動部材55を介して第2ヨーク25へ、第2ヨーク25から可動部材55を介して第1ヨーク15へと、確実に貫くことができるようになる。このことにより、第1ヨーク15から第2ヨーク25まで誘導されず上側の磁気粘性流体75や可動部材55だけを通るようにショートカットして第1ヨーク15へ(横ヨーク15Bから第2ヨーク25を介さず下ヨーク15Cへ)導かれる磁束を少なくすることができる。
 しかも、図7に示すように、可動部スリット55sの幅が第1ヨーク15のスリット15sの幅よりも小さいので、第1ヨーク15からの磁束の広がりを可動部材55で捕捉することができ、第2ヨーク25まで導くことができる。なお、可動部スリット55sの幅の中心位置とスリット15sの幅の中心位置とが一致するようにすると、より好適である。
 最後に、可動負荷付与機構F5の磁気粘性流体75について説明する。図10は、磁気粘性流体75について説明する模式図であって、図10(a)は、磁界が印加されていない状態の磁気粘性流体75の図であり、図10(b)は、磁界が印加されている状態の磁気粘性流体75の図である。なお、図10(b)には、説明を分かり易くするために磁界(磁束)の流れを2点鎖線で示している。
 磁気粘性流体75は、図10(a)に示すように、有機溶剤等の溶質SV中に、鉄やフェライト等の磁性を有した微細な磁性粒子JRが分散した物質であって、一般的にMR流体(Magneto Rheological Fluid)と呼称されている。この磁気粘性流体75は、磁界の強さに応じて粘性が変化する特性を有しており、同じような磁性流体(Magnetic Fluid)とは区別されている。両者の形態の大きな違いは粉体の粒子径であり、MR流体の方が1μm~1mm程度で、磁性流体の方が10nm~1μm程度で、MR流体の方が磁性流体と比べて粒子径が100~1000倍程度、大きくなっている。
 ここで、この磁気粘性流体75における“磁界の強さに応じて粘性が変化する”ことについて簡単に説明する。
 先ず、磁気粘性流体75に磁界がかかっていない場合、図10(a)に示すように、磁性粒子JRが不規則に溶質SV中に分散している。この際に、例えば可動部材55が動作する(図10(a)に示すZ方向に対して垂直な面(X-Y平面)での回転)と、比較的低い抵抗力を受けながら可動部材55が容易に動作する。
 次に、磁気発生機構FM5のコイル35に電流が流されて磁界が発生すると、図10(b)に示すように、磁気粘性流体75に対して作用する磁界に沿って(図10(b)ではZ方向に沿って)、磁性粒子JRが直鎖状に規則的に揃うようになる。なお、この規則性の度合いは、磁界の強さに応じて変化している。つまり、磁気粘性流体75に対して作用する磁界が強くなればなる程、規則性の度合いが強くなる。そして、この直鎖状に揃った磁性粒子JRの規則性を崩す方向に対して、より強いせん断力が働き、結果として、この方向に対しての粘性が強くなってくる。特に、作用した磁界に対して直交する方向(図10(b)ではX-Y平面方向)に最も高いせん断力が働いている。
 そして、このような通電状態(図10(b)に示す状態)で、可動部材55が動作すると、可動部材55に対して抵抗力が生じ、可動部材55に係合した操作体11に、この抵抗力(回転負荷)が伝達するようになる。これにより、可動負荷付与機構F5は、操作者に対して回転操作の回転負荷(回転に対する負荷)を付与することができる。その際に、操作制御部(FS)によりコイル35への通電量や通電のタイミング等を制御しているので、操作者に対して任意のタイミングで任意の負荷を自由に与えることができる。
 この“磁界の強さに応じて抵抗力(回転負荷)が強くなる”ことを検証した結果を図11に示す。図11は、磁気発生機構FM5のコイル35に流す電流と操作体11にかかるトルクとの関係の一例を表したグラフである。横軸は電流(A)で縦軸がトルク(Nm)である。このトルクは、操作体11にかかる抵抗力(回転負荷)に相当する。
 図11に示すように、磁気発生機構FM5のコイル35に流す電流を大きくすると、それに伴って発生する磁界が強くなり、この磁界の強さに伴ってトルク、つまり操作体11にかかる抵抗力(回転負荷)が増大するようになる。このようにして、磁気粘性流体75における“磁界の強さに応じて、粘性が変化して、抵抗力が強くなる”ことを利用して、操作体11(操作部材1)に可変の負荷をかけることができる。
 本発明の第1実施形態では、上述した特性を有した磁気粘性流体75を好適に用いている。そして、磁気粘性流体75は、図4に示すように、第1ヨーク15と可動部材55との隙間5g(第1隙間5ga、図7を参照)に配設され、特に、図4に示すように、第1ヨーク15の第1対向部TB5及び第2対向部TC5と可動部材55との隙間5g(第1隙間5ga)に充填されている。これにより、第1ヨーク15(第1対向部TB5)と可動部材55及び可動部材55と第1ヨーク15(第2対向部TC5)にかけて形成された磁束を横切る方向に動作する可動部材55に対して、磁気粘性流体75により負荷(回転負荷)がかかるようになる。このことにより、可動部材55及び可動軸11jを介して操作体11に負荷(回転負荷)がかかるようになる。従って、良好な操作感触が得られる操作装置100を提供することができる。
 しかも、本発明の第1実施形態では、図9(b)に示す第1対向部TB5における磁気粘性流体75に臨む第1対向面15rの面積と第2対向部TC5における磁気粘性流体75に臨む第2対向面15tの面積とが同じである。これにより、磁束の入口と出口とで磁束密度が同等になり、コイル35から発生した磁束を磁気粘性流体75の粘性の制御に効率的に作用させることができる。このことにより、可動部材55に対して均等に負荷(回転負荷)を付与することができ、より良好な操作感触を操作者に対して与えることができる。
 更に、本発明の第1実施形態では、可動部材55と第2ヨーク25との隙間5g(第2隙間5gb)にも磁気粘性流体75が充填されている。ここに充填された磁気粘性流体75にも、第1ヨーク15(第1対向部TB5)から可動部材55を介して第2ヨーク25に、第2ヨーク25から可動部材55を介して第1ヨーク15(第2対向部TC5)にかけて形成された磁束が作用することとなる。このため、可動部材55の動作する方向と垂直な方向に磁性粒子JRを揃えることができ、より強い回転負荷をかけることができる。このことにより、更なる回転負荷を付与することができ、同等の磁界であっても、更に大きな操作感触を操作者に対して与えることができる。
 以上のように構成された本発明の第1実施形態の操作ユニットU1は、操作部材1の操作量や操作方向に応じた抵抗力や推力等の外力(力覚)を付与する方法として、従来例1のようにモータ810を用いていないので、小型化が図れるとともに、消費電力を低減することができる。しかも、外力(力覚)が付与される際の音も生じることがない。
 次に、操作装置100の位置検出手段M2について説明する。図12は、位置検出手段M2を説明する図であって、図2に示す操作部材1の操作部51を省略した上方斜視図である。図13は、位置検出手段M2の分解斜視図である。
 操作装置100の位置検出手段M2は、図13に示すように、磁気を発生する永久磁石12と、永久磁石12の一方側に配設された可動ヨーク32と、永久磁石12の他方側に配設された固定ヨーク42と、可動ヨーク32と固定ヨーク42との間に配設され(図12を参照)磁気を検出する2つの磁気センサ62と、を備えて構成されている。そして、位置検出手段M2は、図12に示すように、操作ユニットU1の操作体11の近傍に配設され、操作体11の位置を検出している。つまり、本発明の第1実施形態では、位置検出手段M2は、操作体11の回転動作を検出、例えば操作体11の回転角度を検出して、操作体11の位置を特定している。
 先ず、位置検出手段M2の永久磁石12は、一般的なサマリウムコバルト磁石等を用いており、図13に示すように、中央に貫通孔12hを有した円形のリング形状で形成されている。この貫通孔12hには、図4に示すように、操作体11が回転可能に挿通されている。
 次に、位置検出手段M2の可動ヨーク32は、鉄等の軟磁性体材料を用いており、図13に示すように、円盤形状の盤部32bと、盤部32bの中央に設けられた円形形状の台座部32dと、から構成されている。
 また、可動ヨーク32の中央には、盤部32b及び台座部32dを貫通する貫通孔32hが形成されており、この貫通孔32hには、図4に示すように、操作体11が挿通されて嵌合されている。また、図4に示すように、台座部32dと操作部51とが嵌合されている。そして、操作者の操作により、操作部51が動作(回転動作)するのに伴って、可動ヨーク32が回転動作するとともに、操作体11が回転動作するように構成されている。
 また、盤部32bの永久磁石12と対向する側は、図12及び図13に示すように、永久磁石12に対する距離が変化するように、凹凸形状に形成されている。これにより、可動ヨーク32が回転操作した際には、永久磁石12と可動ヨーク32との間の磁界が変化することとなる。つまり、凸部では磁界が強まり、凹部では磁界が弱まるようになっている。
 次に、位置検出手段M2の固定ヨーク42は、鉄等の軟磁性体材料を用いており、図13に示すように、円盤形状の外観を呈し、中央に形成された貫通孔42hと、永久磁石12が載置され収容されるへこみ部42rと、磁気センサ62が載置され収容される切欠部42kと、を有して構成されている。そして、永久磁石12から発生した磁束が可動ヨーク32から固定ヨーク42へと磁路を形成することとなる。
 最後に、位置検出手段M2の磁気センサ62は、磁界の変化を検知する磁気検出素子(図示していないが、図1では62Kで示している)と、磁気検出素子からの信号に基づいて角度を算出するセンサ制御部(他の図では図示していないが、図1ではSSで示している)と、を備えて構成され、図12及び図13に示すように、4つの取り出し端子を有して、磁気検出素子及びセンサ制御部(SS)を合成樹脂によりパッケージングされている。そして、2つの磁気センサ62は、図12示すように、可動ヨーク32と固定ヨーク42との間に配設されて、可動ヨーク32と固定ヨーク42との間の磁界の変化を検出している。
 また、磁気検出素子は、ホール効果を用いて磁気を検出するホール素子を用いている。また、センサ制御部(SS)は、集積回路(IC)を用いている。なお、2つの磁気センサ62がそれぞれ検出する磁界が異なるように、2つの磁気センサ62の配設位置と盤部32bの凹凸形状が設けられる位置とは、適切に対応して構成されている。
 次に、操作装置100の表示ユニットU4について説明する。図14は、表示ユニットU4を説明する模式図であって、表示ユニットU4の上面図の一部である。
 操作装置100の表示ユニットU4は、一般に広く用いられている液晶ディスプレイ(LCD、liquid crystal display)等の表示デバイスを用いており、図14に示すように、操作体11(操作部51)の操作位置PPを表示する表示部14(液晶パネル)と、この表示部14へ操作体11(操作部51)及び所望の位置(操作位置PP)を表示するための表示制御部(他の図では図示していないが、図1ではPSで示している)と、を備えて構成されている。なお、この表示制御部(PS)は、液晶パネルの駆動用モジュールに組み込まれている。
 そして、本発明の第1実施形態では、表示制御部(PS)は、図14に示すように、ポイント位置QPが明示された操作部51の画像と、操作体11の位置する操作位置PP(操作者が所望する視認の位置)の画像と、を、液晶パネルの表示部14に表示するようにしている。これにより、操作位置PPは、操作ユニットU1の操作体11の状態に連動して可変して表示できるようになっている。つまり、操作者が操作体11の操作を行った際に、操作ユニットU1の操作体11の操作された位置と操作者が所望する操作の位置(操作位置PP)とがズレていたとしても、操作者が所望する操作の位置(操作位置PP)と表示ユニットU4の表示部14に表示された表示位置(視認される位置で)とを一致させることができる。
 次に、操作装置100の音声発生手段(H6)について説明する。音声発生手段(H6)は、圧電素子を用いた一般的な電子音を発生する音発生部材(16)と、音発生部材(16)を制御する音声制御部(他の図では図示していないが、図1のブロック図ではHSで示している)と、を備えて構成されている。そして、音声発生手段(H6)の音声制御部(HS)は、操作ユニットU1の操作体11の状態に連動して、音発生部材(16)を駆動している。つまり、操作体11の実際の操作された位置と操作体11への負荷とに応じて、任意の電子音を発生させることができる。
 最後に、操作装置100の制御部(C8)について説明する。制御部(C8)は、集積回路(IC)を用いて構成されており、図1に示すように、操作ユニットU1の操作制御部(FS)と、位置検出手段M2のセンサ制御部(SS)と、表示ユニットU4の表示制御部(PS)と、音声発生手段(H6)の音声制御部(HS)と、それぞれ電気的に接続されている。そして、制御部(C8)は、操作ユニットU1及び位置検出手段M2からの情報に基づいて、操作制御部(FS)、センサ制御部(SS)、表示制御部(PS)及び音声制御部(HS)を制御している。
 ここで、本発明の第1実施形態の操作装置100における、効果について、以下に纏めて説明する。
 本発明の第1実施形態の操作装置100は、可動負荷付与機構F5が操作体11(可動軸11j)と係合して動作する可動部材55と、可動部材55の一方側に配設された磁気発生機構FM5のコイル35及び第1ヨーク15と、可動部材55との隙間5g(第1隙間5ga)の少なくとも一部に存在する磁気粘性流体75と、を備えた構成とした。これにより、コイル35への通電により磁界が発生し、第1ヨーク15から磁路が広がって形成されて、磁気粘性流体75における磁性粒子JRが磁束に沿って揃うこととなる。このため、第1ヨーク15と可動部材55及び可動部材55と第1ヨーク15にかけて形成された磁束を横切る方向に動作する可動部材55に対して、磁気粘性流体75により負荷がかかるようになり、可動部材55及び可動軸11jを介して操作体11に負荷がかかるようになる。また、コイル35への通電を制御する操作ユニットU1の操作制御部(FS)と表示部14への表示を制御する表示ユニットU4の表示制御部(PS)とを制御する制御部(C8)を有しているので、操作者が操作体11の操作を行った際に、操作ユニットU1の操作体11の操作された位置と操作者が所望する位置(操作位置PP)とがズレていたとしても、操作者が所望する操作位置PPと表示ユニットU4の表示部14に表示された表示位置(視認される位置)とを一致させることができる。これらのことにより、操作者に対して良好な操作感(操作感触)を与えることができる
 また、電子音を発生する音発生部材(16)と音発生部材(16)を制御する音声制御部(HS)とを備え、音声制御部(HS)が制御部(C8)に制御されるので、操作体11の実際の操作された位置と操作体11への負荷とに応じて、任意の電子音を発生させることができる。このことにより、より良好な操作感(操作感触)を操作者に対して与えることができる。
 また、可動部材55が軟磁性体からなるので、第1ヨーク15(第1対向部TB5)から可動部材55に、可動部材55から第1ヨーク15(第2対向部TC5)にかけて磁路が確実に形成されて、磁気粘性流体75における磁性粒子JRが第1ヨーク15と可動部材55と互いに対向する対向面方向(図4に示すZ方向)に揃うこととなる。このため、磁性粒子JRが揃った対向面方向を横切る方向に動作する可動部材55に対して、より強い負荷(回転負荷)がかかるようになる。このことにより、可動部材55及び可動軸11jを介して操作体11により強い負荷がかかるようになり、より良好な操作感触を操作者に対して与えることができる。
 また、磁気発生機構FM5が可動部材55の他方側に対向して配設された第2ヨーク25を有するので、第1ヨーク15(第1対向部TB5)から第2ヨーク25に、第2ヨーク25から第1ヨーク15(第2対向部TC5)にかけて磁路が確実に形成される。このため、可動部材55の動作する方向と垂直な方向に磁性粒子JRを揃えることができ、より強い負荷(回転負荷)をかけることができる。更に、可動部材55と第2ヨーク25との隙間5g(第2隙間5gb)に磁気粘性流体75が充填されているので、磁束を横切る方向に動作する可動部材55に対して、更なる負荷を付与することができる。これらのことにより、可動部材55及び可動軸11jを介してより強い負荷(回転負荷)を操作体11にかけることができるとともに、同等の磁界であっても、更に大きな操作感触を操作者に対して与えることができる。
 次に、発明の第1実施形態の操作装置100における制御方法について、図14及び図15を用いて簡単に説明する。図15は、操作装置100における制御方法について説明する模式図であって、操作体11に付与される負荷の負荷カーブの一例を示したグラフである。横軸は、操作体11(操作部51)の位置を示し、縦軸は、操作体11に付与される負荷荷重を示している。
 本発明の第1実施形態の操作装置100は、可動負荷付与機構F5(磁気発生機構FM5)の操作制御部(FS)によって、コイル35への電流値を制御して、例えば、図15に示すような負荷カーブのような負荷を操作体11(操作部51)に付与している。具体的には、操作者の操作により回転操作がされた際に、操作装置100の制御部(C8)は、位置検出手段M2からの操作体11の位置情報(位置の情報信号)に基づいて、磁気発生機構FM5の操作制御部(FS)に命令信号を送付する。そして、命令信号を受けた操作制御部(FS)は、ある一定量の電流をコイル35にタイミングを図って流すようにし、流す電流量(電流値)も変化させている。このように、コイル35への電流値の強弱により、図15に示すように、ピーク値Pvとボトム値Bvを複数有する負荷カーブを形成している。
 また、制御部(C8)は、操作者の操作により回転操作がされて、あるピーク値Pv(第1ピーク値)からボトム値Bv(第1ボトム値)、第1ボトム値から次のピーク値Pv(第2ピーク値)に移行する際に、表示ユニットU4の表示制御部(PS)に命令信号を送信する。そして、命令信号を受けた表示制御部(PS)は、操作部51を回転させるとともに、操作部51のポイント位置QP(図14を参照)が移動して操作位置PPと一致する状態(移動状態)を、表示ユニットU4の表示部14に表示させるようにしている。このため、操作者が操作体11の操作を行った際に、操作ユニットU1の操作体11が操作された実際の位置と操作者が所望する操作位置PPとがズレていたとしても、操作者が所望する操作位置PPと表示ユニットU4の表示部14に表示された表示位置とを一致させることができる。
 特に、本発明の第1実施形態では、制御部(C8)は、負荷カーブのボトム値Bvを挟んだ所定の範囲(例えば図15に示す破線の間の範囲)に操作体11があるとき、操作位置PPを表示部14の所望の位置に表示させるようにしている。このため、操作者が操作体11から受ける負荷が小さい範囲において、操作体11の操作された実際の位置と操作者が所望する操作位置PPとがズレていたとしても、操作者が所望する操作位置PPと表示部14の表示位置とが一致した表示を視認することができる。これれらのことにより、操作者に対して良好な操作感(操作感触)を与えることができる。
 また、制御部(C8)は、操作者の操作により回転操作がされて、あるピーク値Pv(第1ピーク値)からボトム値Bv(第1ボトム値)、第1ボトム値から次のピーク値Pv(第2ピーク値)に移行する際に、音声発生手段(H6)の音声制御部(HS)に命令信号を送信する。そして、命令信号を受けた音声制御部(HS)は、音発生部材(16)による電子音を発生させるようにしている。このため、操作者が操作体11の操作を行った際に、操作者が所望する操作位置PPが表示部14に表示されると同時に、任意の電子音を発生させることができる。このことにより、操作者が操作した操作感(操作感触)を実感することができる。
 特に、本発明の第1実施形態では、制御部(C8)が、ボトム値Bvを挟んだ所定の範囲に操作体11があるときに、電子音を発生させるので、操作者が操作体11から受ける負荷が小さい範囲において、任意の電子音を聞くことができる。このため、操作の終了時に近い状態のときに電子音を聞くので、操作者が操作した操作感(操作感触)をより実感することができる。
 最後に、本発明の第1実施形態の操作装置100の制御方法における、効果について、以下に纏めて説明する。
 本発明の第1実施形態の操作装置100の制御方法は、制御部(C8)が、操作制御部(FS)により形成された負荷カーブの第1ピーク値から第1ボトム値、第1ボトム値から次の第2ピーク値に移行する際に、表示制御部(PS)を制御して、操作位置PP(表示位置)の移動状態を表示部14に表示させるように構成した。このため、操作者が操作体11の操作を行った際に、操作ユニットU1の操作体11が操作された位置と操作者が所望する操作位置PPとがズレていたとしても、操作者が所望する操作位置PPと表示ユニットU4の表示部14に表示された表示位置とを一致させることができる。このことにより、操作者に対して良好な操作感(操作感触)を与えることができる。
 また、負荷カーブのボトム値Bvを挟んだ所定の範囲に操作体11があるとき、操作位置PPを表示部14の所望の位置に表示させるので、操作者が操作体11から受ける負荷が小さい範囲において、操作体11の操作された位置と操作者が所望する操作位置PPとがズレていたとしても、操作者が所望する操作位置PPと表示部14の表示位置とが一致した表示を視認することができる。このことにより、操作者に対してより良好な操作感(操作感触)を与えることができる。
 また、制御部(C8)が、操作制御部(FS)により形成された負荷カーブのピーク値Pvからボトム値Bv、ボトム値Bvから次のピーク値Pvに移行する際に、音声制御部(HS)を制御して、音発生部材(16)による電子音を発生するように構成した。このため、操作者が操作体11の操作を行った際に、操作者が所望する操作位置PPに表示位置が表示されると同時に、任意の電子音を発生させることができる。このことにより、操作者が操作した操作感(操作感触)を実感することができる。
 また、制御部(C8)がボトム値Bvを挟んだ所定の範囲に操作体11があるときに電子音を発生させるので、操作者が操作体11から受ける負荷が小さい範囲において、任意の電子音を聞くことができる。このことにより、操作者が操作した操作感(操作感触)をより実感することができる。
 なお、本発明は上記実施形態に限定されるものではなく、例えば次のように変形して実施することができ、これらの実施形態も本発明の技術的範囲に属する。
 <変形例1>
 上記第1実施形態では、操作ユニットU1と表示ユニットU4とを離れた位置に配設して構成にしたが、これに限るものではなく、例えば操作ユニットU1の近傍に表示ユニットU4を配設して、操作者が両方を視認できるようにしても良い。
 <変形例2>
 上記第1実施形態では、可動部材55が収容される収容空間(第1ヨーク15と第2ヨーク25と側壁スペーサS17とで形成した収容空間)を満たすように磁気粘性流体75が充填されていたが、これに限るものではなく、磁気粘性流体75が隙間5gの少なくとも一部に存在していれば良い。
 <変形例3>
 上記第1実施形態では、音声発生手段(H6)として、好適に電子音を発生する音発生部材(16)を用いた構成としたがこれに限るものではなく、例えば、被打物を打振して音を発生するような機械的な機構を用いても良い。
 <変形例4>
 上記第1実施形態では、位置検出手段M2として、永久磁石12と可動ヨーク32と2つの磁気センサ62とで構成したが、これに限りものではない。例えば、抵抗体パターンが形成された基板と抵抗体パターンを摺接する摺動子とから構成された、所謂、回転型可変抵抗器を用いても良い。
 <変形例5>
 上記第1実施形態では、可動部材55が好適に軟磁性体から形成されていたが、これに限るものではなく、合成樹脂等の非磁性体であっても良い。
 <変形例6>
 上記第1実施形態では、第1ヨーク15の横ヨーク15Bと下ヨーク15Cとで、第1対向部TB5及び第2対向部TC5を構成したが、下ヨーク15Cのみが可動部材55と対向するようにして、第1対向部TB5及び第2対向部TC5を設けない構成でも良い。
 <変形例7>
 上記第1実施形態では、可動部材55が円盤形状を有して構成されていたが、これに限るものではなく、例えば矩形状や多角形形状であっても良い。
 <変形例8>
 上記第1実施形態では、軟磁性体からなる可動部材55に可動部スリット55sを設けた構成であったが、可動部スリット55sを設けない構成でも良い。その際には、可動部材55を非磁性体とするのが好適である。
 <変形例9><変形例10>
 上記第1実施形態では、可動部材55が回転動作するタイプの回転型の操作装置であったが、この回転動作に限るものではない。例えば、可動部材が支持体の延在方向に対して交差する方向にスライド動作するスライド型の操作装置であっても良い{変形例9}。また、例えば、支持体の延在方向にプッシュ動作する押圧型の操作装置であっても良い{変形例10}。この押圧型の操作装置の場合、可動部材と第1ヨーク(及び第2ヨーク)とがプッシュ動作方向に対して交差する方向(好ましくは直交方向)で対向するようにし、可動部材と第1ヨーク(及び第2ヨーク)との隙間に磁気粘性流体を充填するように構成すると適切に負荷を与えることができる。
 本発明は上記実施の形態に限定されず、本発明の要旨を逸脱しない限りにおいて適宜変更することが可能である。
  U1  操作ユニット
  1   操作部材
  11  操作体
  11j 可動軸
  FS  操作制御部
  M2  位置検出手段
  3   支持体
  U4  表示ユニット
  14  表示部
  PS  表示制御部
  F5  可動負荷付与機構
  FM5 磁気発生機構
  15  第1ヨーク
  25  第2ヨーク
  35  コイル
  55  可動部材
  5g  隙間
  75  磁気粘性流体
  H6  音声発生手段
  16  音発生部材
  HS  音声制御部
  C8  制御部
  Bv  ボトム値
  Pv  ピーク値
  PP  操作位置
  100 操作装置

Claims (8)

  1.  操作者の操作により動作する操作体を有した操作ユニットと、
    前記操作体の位置する操作の位置を検出する位置検出手段と、
    前記操作体の操作位置を表示する表示ユニットと、を備えた操作装置であって、
     前記操作ユニットは、前記操作者が操作し前記操作体を有した操作部材と、
    前記操作体の動作を自在に支持する支持体と、
    前記操作体に対して負荷を付与する可動負荷付与機構と、を備え、
     前記操作体には前記動作を可能にする可動軸を有し、
     前記可動負荷付与機構は、該可動軸と係合して動作する可動部材と、
    該可動部材と隙間を挟んで対向する磁気発生機構と、
    該隙間の少なくとも一部に存在し磁界の強さに応じて粘性が変化する磁気粘性流体と、
    前記磁気発生機構を制御する操作制御部と、を有し、
     前記磁気発生機構は、該操作制御部による通電で磁界を発生させるコイルと、
    該コイルを囲むように設けられ前記可動部材の一方側に配設された第1ヨークと、を有し、
     前記表示ユニットは、前記操作位置を表示する表示部と、
    該表示部への表示を制御する表示制御部と、を備え、
     前記操作制御部と前記表示制御部とを制御する制御部を有していることを特徴とする操作装置。
  2.  電子音を発生する音発生部材と、該音発生部材を制御する音声制御部と、を備え、
     該音声制御部が前記制御部に制御されることを特徴とする請求項1に記載の操作装置。
  3.  前記可動部材が軟磁性体からなることを特徴とする請求項1または請求項2に記載の操作装置。
  4.  前記磁気発生機構は、前記可動部材の他方側に前記可動部材と対向して配設された第2ヨークを有し、
     前記可動部材と前記第2ヨークとの前記隙間に前記磁気粘性流体が充填されていることを特徴とする請求項1ないし請求項3のいずれかに記載の操作装置。
  5.  操作者の操作により動作する操作体を有した操作ユニットと、
    前記操作体の位置する操作の位置を検出する位置検出手段と、
    前記操作体の操作位置を表示する表示ユニットと、
    前記操作ユニット及び前記表示ユニットを制御する制御部と、を備えた操作装置の制御方法であって、
     前記操作ユニットは、前記操作者が操作し前記操作体を有した操作部材と、
    前記操作体の可動を自在に支持する支持体と、
    前記操作体に対して負荷を付与する可動負荷付与機構と、を備え、
     前記操作体には動作を可能にする可動軸を有し、
     前記可動負荷付与機構は、該可動軸と係合して動作する可動部材と、
    該可動部材と隙間を挟んで対向する磁気発生機構と、
    該隙間の少なくとも一部に存在し磁界の強さに応じて粘性が変化する磁気粘性流体と、を有し、
     前記磁気発生機構は、通電により磁界を発生させるコイルと、
    該コイルを囲むように設けられ前記可動部材の一方側に配設された第1ヨークと、
    前記コイルへの通電を制御する操作制御部と、を有し、
     前記表示ユニットは、前記操作位置を表示する表示部と、
    該表示部への表示を制御する表示制御部と、を備え、
     前記操作制御部による前記コイルへの電流値の強弱により、前記負荷のピーク値とボトム値を複数有する負荷カーブを形成し、
     前記制御部は、前記ピーク値及び前記ボトム値の内、第1ピーク値から第1ボトム値、該第1ボトム値から次の第2ピーク値に移行する際に、前記表示制御部を制御して、前記操作位置の移動状態を前記表示部に表示させることを特徴とする操作装置の制御方法。
  6.  前記制御部は、前記負荷カーブの前記ボトム値を挟んだ所定の範囲に前記操作体があるとき、前記操作位置を前記表示部の所望の位置に表示させることを特徴とする請求項5に記載の操作装置の制御方法。
  7.  電子音を発生する音発生部材と、該音発生部材を制御する音声制御部と、を備え、
     前記制御部は、前記ピーク値から前記ボトム値、該ボトム値から次の前記ピーク値に移行する際に、前記音声制御部を制御して、前記電子音を発生させることを特徴とする請求項5または請求項6に記載の操作装置の制御方法。
  8.  前記制御部は、前記ボトム値を挟んだ所定の範囲に前記操作体があるときに、前記電子音を発生させることを特徴とする請求項7に記載の操作装置の制御方法。
PCT/JP2017/008060 2016-06-27 2017-03-01 操作装置及び該操作装置の制御方法 WO2018003177A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018524880A JP6661011B2 (ja) 2016-06-27 2017-03-01 操作装置及び該操作装置の制御方法
CN201780039810.XA CN109416555B (zh) 2016-06-27 2017-03-01 操作装置以及该操作装置的控制方法
EP17819547.5A EP3477418B1 (en) 2016-06-27 2017-03-01 Operation device and method for controlling same
KR1020187037827A KR102176520B1 (ko) 2016-06-27 2017-03-01 조작 장치 및 당해 조작 장치의 제어 방법
US16/225,470 US10768657B2 (en) 2016-06-27 2018-12-19 Operation device and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016126476 2016-06-27
JP2016-126476 2016-06-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/225,470 Continuation US10768657B2 (en) 2016-06-27 2018-12-19 Operation device and control method thereof

Publications (1)

Publication Number Publication Date
WO2018003177A1 true WO2018003177A1 (ja) 2018-01-04

Family

ID=60786809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008060 WO2018003177A1 (ja) 2016-06-27 2017-03-01 操作装置及び該操作装置の制御方法

Country Status (6)

Country Link
US (1) US10768657B2 (ja)
EP (1) EP3477418B1 (ja)
JP (1) JP6661011B2 (ja)
KR (1) KR102176520B1 (ja)
CN (1) CN109416555B (ja)
WO (1) WO2018003177A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146371A1 (ja) * 2018-01-24 2019-08-01 アルプスアルパイン株式会社 入力装置
JP2019138447A (ja) * 2018-02-15 2019-08-22 アルプスアルパイン株式会社 クラッチ

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3010546B1 (fr) * 2013-09-09 2016-12-23 Dav Interface de commande a retour haptique
KR102084639B1 (ko) * 2015-06-22 2020-03-04 알프스 알파인 가부시키가이샤 입력 장치 및 입력 장치의 제어 방법
DE102017111031A1 (de) * 2017-05-20 2018-11-22 Inventus Engineering Gmbh Haptische Bedieneinrichtung
JP7219615B2 (ja) * 2018-12-28 2023-02-08 株式会社ジャパンディスプレイ 操作支援装置
US11246514B2 (en) 2019-02-01 2022-02-15 Hyundai Motor Company Non-invasive optical internal substance detector
DE102020201624A1 (de) * 2020-02-10 2021-08-12 BSH Hausgeräte GmbH Tragbares Bedienelement mit Ringmagnet und spezifischem Magnetfeldbeeinflusser, sowie Bedienvorrichtung
CN111927852B (zh) * 2020-06-01 2022-03-29 东风延锋汽车饰件系统有限公司 一种强震动反馈的微悬浮面板安装结构
DE102020117080A1 (de) * 2020-06-26 2021-12-30 Inventus Engineering Gmbh Haptische Bedieneinrichtung mit einer magnetorheologischen Bremseinrichtung und einem drehbaren Bedienteil
KR102633219B1 (ko) * 2020-12-03 2024-02-02 경인전자 주식회사 인풋 디바이스

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167017A (ja) * 1997-08-12 1999-03-09 Fuji Heavy Ind Ltd 車載用集中コントロール装置
JP2010134728A (ja) * 2008-12-05 2010-06-17 Alps Electric Co Ltd 操作感触付与型入力装置
JP2011519098A (ja) * 2008-04-29 2011-06-30 コミサリア ア レネルジ アトミ−ク エ オエネルジー アルテルナティヴ 操作感覚を向上させたフォースフィードバック・インタフェース

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5936613A (en) * 1993-11-05 1999-08-10 Intertactile Technologies Corporation Rotary circuit control devices with changeable graphics
DE19528457C2 (de) * 1995-08-03 2001-03-08 Mannesmann Vdo Ag Bedieneinrichtung
US6373465B2 (en) * 1998-11-10 2002-04-16 Lord Corporation Magnetically-controllable, semi-active haptic interface system and apparatus
EP1283534B1 (en) 2001-08-07 2004-05-19 Alps Electric Co., Ltd. Manual imput device capable of imparting manipulation feeling
JP3920599B2 (ja) 2001-08-07 2007-05-30 アルプス電気株式会社 手動入力装置
US6854573B2 (en) 2001-10-25 2005-02-15 Lord Corporation Brake with field responsive material
JP4175007B2 (ja) * 2002-03-22 2008-11-05 松下電器産業株式会社 回転操作型入力装置
US8174512B2 (en) * 2006-06-02 2012-05-08 Immersion Corporation Hybrid haptic device utilizing mechanical and programmable haptic effects
FR2930654B1 (fr) * 2008-04-29 2013-02-08 Commissariat Energie Atomique Interface haptique a effort de freinage augmente
US10007290B2 (en) * 2010-09-15 2018-06-26 Inventus Engineering Gmbh Haptic operating device with a rotating element and method
US10502271B2 (en) * 2010-09-15 2019-12-10 Inventus Engineering Gmbh Haptic operating device with a rotating element and method for operating electronic equipment with the haptic operating device
JP6201176B2 (ja) * 2013-03-21 2017-09-27 株式会社栗本鐵工所 回転制動装置
WO2016016589A1 (fr) * 2014-07-31 2016-02-04 Dav Procédé et interface de commande à retour haptique pour véhicule automobile
JP6088674B1 (ja) * 2016-01-12 2017-03-01 Kyb株式会社 磁気粘性流体緩衝器
WO2017141834A1 (ja) * 2016-02-18 2017-08-24 アルプス電気株式会社 操作装置
JP6634166B2 (ja) * 2016-12-21 2020-01-22 アルプスアルパイン株式会社 操作装置
US10330195B2 (en) * 2017-06-27 2019-06-25 Panasonic Corporation Input device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167017A (ja) * 1997-08-12 1999-03-09 Fuji Heavy Ind Ltd 車載用集中コントロール装置
JP2011519098A (ja) * 2008-04-29 2011-06-30 コミサリア ア レネルジ アトミ−ク エ オエネルジー アルテルナティヴ 操作感覚を向上させたフォースフィードバック・インタフェース
JP2010134728A (ja) * 2008-12-05 2010-06-17 Alps Electric Co Ltd 操作感触付与型入力装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3477418A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146371A1 (ja) * 2018-01-24 2019-08-01 アルプスアルパイン株式会社 入力装置
CN111587410A (zh) * 2018-01-24 2020-08-25 阿尔卑斯阿尔派株式会社 输入装置
JPWO2019146371A1 (ja) * 2018-01-24 2020-10-22 アルプスアルパイン株式会社 入力装置
JP2019138447A (ja) * 2018-02-15 2019-08-22 アルプスアルパイン株式会社 クラッチ

Also Published As

Publication number Publication date
EP3477418A4 (en) 2020-04-15
JPWO2018003177A1 (ja) 2019-05-23
CN109416555B (zh) 2020-10-30
US20190146546A1 (en) 2019-05-16
KR102176520B1 (ko) 2020-11-09
CN109416555A (zh) 2019-03-01
KR20190013950A (ko) 2019-02-11
EP3477418A1 (en) 2019-05-01
JP6661011B2 (ja) 2020-03-11
EP3477418B1 (en) 2021-06-16
US10768657B2 (en) 2020-09-08

Similar Documents

Publication Publication Date Title
WO2018003177A1 (ja) 操作装置及び該操作装置の制御方法
JP6605702B2 (ja) 操作装置
JP6545893B2 (ja) 操作装置
JP6634166B2 (ja) 操作装置
JP6593796B2 (ja) 操作装置
JP6544804B2 (ja) 入力装置
JP2011123739A (ja) 入力装置
JP2015008593A (ja) ロータリーアクチュエータ及びそれを用いた操作感触付与型入力装置
JP6684606B2 (ja) 操作装置
JP6679369B2 (ja) 操作装置
JP6041437B2 (ja) ロータリーアクチュエータ
JP6876845B2 (ja) 操作装置
KR20240016310A (ko) 상대 이동을 가능하게 하는 기계식 안내 부재를 포함하는 제어 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819547

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018524880

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187037827

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017819547

Country of ref document: EP

Effective date: 20190128