WO2018066905A1 - Method and device for performing v2x communication - Google Patents
Method and device for performing v2x communication Download PDFInfo
- Publication number
- WO2018066905A1 WO2018066905A1 PCT/KR2017/010887 KR2017010887W WO2018066905A1 WO 2018066905 A1 WO2018066905 A1 WO 2018066905A1 KR 2017010887 W KR2017010887 W KR 2017010887W WO 2018066905 A1 WO2018066905 A1 WO 2018066905A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bearer
- base station
- service
- terminal
- mme
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/40—Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0268—Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/14—Direct-mode setup
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
- H04W76/23—Manipulation of direct-mode connections
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/12—Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W80/00—Wireless network protocols or protocol adaptations to wireless operation
- H04W80/08—Upper layer protocols
- H04W80/10—Upper layer protocols adapted for application session management, e.g. SIP [Session Initiation Protocol]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/005—Moving wireless networks
Definitions
- the present invention relates to a wireless communication system, and more particularly, to a method for holding resource allocation for a vehicle to everything (V2X) bearer and a device supporting the same.
- V2X vehicle to everything
- D2D Device-to-Device
- D2D is drawing attention as a communication technology for a public safety network.
- Commercial communication networks are rapidly changing to LTE, but current public safety networks are mainly based on 2G technology in terms of cost and conflict with existing communication standards. This gap in technology and the need for improved services have led to efforts to improve public safety networks.
- Public safety networks have higher service requirements (reliability and security) than commercial communication networks, and require direct signal transmission and reception, or D2D operation, between devices, especially when cellular coverage is not available or available. .
- the D2D operation may have various advantages in that it transmits and receives signals between adjacent devices.
- the D2D user equipment has a high data rate and low delay and can perform data communication.
- the D2D operation may distribute traffic congested at the base station, and may also serve to extend the coverage of the base station if the D2D terminal serves as a relay.
- V2X vehicle to everything
- D2D vehicle to everything
- a 5G communication system or a pre-5G communication system is called a system after a 4G network (beyond 4G network) or after a long term evolution (LTE) system (post LTE).
- the base station when the base station has set the configuration for the V2X transmission to 'PC5 only', the terminal receiving the 'PC5 only' setting can be seen that the V2X message can not be transmitted through the Uu interface. Also, the base station may not transmit the V2X message using the V2X bearer. In this situation, since no traffic is carried over the V2X bearer, it is not a problem that the V2X bearer is not released. Since the V2X bearer can always be used while the terminal is located in the network supporting the V2X service, while the terminal is located in the network supporting the V2X service, the V2X bearer does not need to be released. This is because releasing the V2X bearer may cause signaling overhead. Therefore, the base station set to 'PC5 only' needs to withhold resource allocation for the V2X bearer. In addition, the terminal located in the base station set to 'PC5 only' needs to maintain the context of the V2X bearer without deactivation.
- a method for a base station to perform a vehicle to everything (V2X) communication in a wireless communication system includes receiving a V2X bearer indication indicating a V2X bearer, wherein the V2X bearer is a bearer used for a V2X service; Determining that the base station supports only the PC5 based V2X service among the PC5 based V2X service or the Uu based V2X service; Withholding resource allocation for the V2X bearer; And transmitting information indicating that resource allocation for the V2X bearer is suspended to a mobility management entity (MME).
- MME mobility management entity
- resource allocation for the V2X bearer may be suspended.
- the method may further include transmitting information indicating that resource allocation to the V2X bearer is suspended to the terminal.
- the base station is a target base station, the information transmitted to the terminal may be transmitted to the terminal via a source base station.
- the information may include an identifier (ID) of the V2X bearer.
- the method includes determining that the base station supports the Uu based V2X service; And allocating resources to the V2X bearer.
- the method includes establishing a DRB for the V2X service based on resources allocated for the V2X bearer; And transmitting information indicating that the DRB for the V2X bearer is established to the MME.
- a method of performing a vehicle to everything (V2X) communication in a wireless communication system includes receiving information from a base station indicating that resource allocation for a V2X bearer is suspended, wherein the V2X bearer is a bearer used for a V2X service; Performing marking on the V2X bearer instructing to suspend deactivation of the V2X bearer; And maintaining a context of the marked V2X bearer.
- V2X vehicle to everything
- resource allocation for the V2X bearer may be suspended by the base station.
- the device may be a mobility management entity (MME). If the device is an MME, the method includes receiving information from the base station indicating that a DRB for the V2X bearer has been established; And if the information indicating that the DRB has been established is removed, removing the marking from the V2X bearer.
- MME mobility management entity
- the device may be a terminal. If the device is a terminal, the method includes receiving an RRC connection reconfiguration message from the base station; And if the RRC connection reconfiguration message is received, removing the marking on the V2X bearer.
- the AS layer of the terminal may inform the NAS of the terminal that the DRB for the V2X bearer is established.
- a base station for performing vehicle to everything (V2X) communication in a wireless communication system.
- the base station includes a memory; Transceiver; And a processor connecting the memory and the transceiver, wherein the processor controls the transceiver to receive a V2X bearer indicator indicating a V2X bearer, wherein the V2X bearer is used for a V2X service.
- V2X vehicle to everything
- the base station supports only the PC5 based V2X service among the PC5 based V2X service or the Uu based V2X service, withhold resource allocation to the V2X bearer, and the transceiver to the V2X bearer It may be configured to control transmitting information to the mobility management entity (MME) indicating that resource allocation for the resource is suspended.
- MME mobility management entity
- the context of the V2X bearer may be maintained without being released.
- FIG. 1 shows a structure of an LTE system.
- FIG. 2 shows an air interface protocol of an LTE system for a control plane.
- FIG 3 shows an air interface protocol of an LTE system for a user plane.
- 5 shows a reference structure for ProSe.
- FIG. 6 shows a V2X communication environment.
- FIG. 9 is a diagram for describing signaling impact that may occur in a core network when a base station allows a V2X bearer to be released.
- FIG. 11 illustrates a service request procedure for switching between a PC5 based V2X service and a Uu based V2X service according to an embodiment of the present invention.
- FIG. 12 illustrates a service request procedure for switching between a PC5 based V2X service and a Uu based V2X service according to an embodiment of the present invention.
- FIG. 13 illustrates a handover procedure for switching between a PC5 based V2X service and a Uu based V2X service according to an embodiment of the present invention.
- FIG. 14 illustrates a handover procedure for switching between a PC5 based V2X service and a Uu based V2X service according to an embodiment of the present invention.
- FIG. 16 illustrates a procedure of switching between a PC5 based V2X service and a Uu based V2X service according to an embodiment of the present invention.
- FIG. 17 illustrates a method of performing a V2X communication by a base station according to an embodiment of the present invention.
- FIG. 18 illustrates a method of performing V2X communication by an MME or a terminal according to an embodiment of the present invention.
- 19 is a block diagram of a wireless communication system in which an embodiment of the present invention is implemented.
- CDMA code division multiple access
- FDMA frequency division multiple access
- TDMA time division multiple access
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier frequency division multiple access
- CDMA may be implemented with a radio technology such as universal terrestrial radio access (UTRA) or CDMA2000.
- TDMA may be implemented with wireless technologies such as global system for mobile communications (GSM) / general packet radio service (GPRS) / enhanced data rates for GSM evolution (EDGE).
- GSM global system for mobile communications
- GPRS general packet radio service
- EDGE enhanced data rates for GSM evolution
- OFDMA may be implemented by wireless technologies such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA), and the like.
- IEEE 802.16m is an evolution of IEEE 802.16e and provides backward compatibility with systems based on IEEE 802.16e.
- UTRA is part of a universal mobile telecommunications system (UMTS).
- 3rd generation partnership project (3GPP) long term evolution (LTE) is part of evolved UMTS (E-UMTS) using evolved-UMTS terrestrial radio access (E-UTRA), which employs OFDMA in downlink and SC in uplink -FDMA is adopted.
- LTE-A (advanced) is the evolution of 3GPP LTE.
- 5G communication system is the evolution of LTE-A.
- FIG. 1 shows a structure of an LTE system.
- Communication networks are widely deployed to provide various communication services such as IMS and Voice over internet protocol (VoIP) over packet data.
- VoIP Voice over internet protocol
- an LTE system structure includes one or more UEs 10, an evolved-UMTS terrestrial radio access network (E-UTRAN), and an evolved packet core (EPC).
- the terminal 10 is a communication device moved by a user.
- the terminal 10 may be fixed or mobile and may be called by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), and a wireless device.
- MS mobile station
- UT user terminal
- SS subscriber station
- wireless device a wireless device.
- the E-UTRAN may include one or more evolved node-eB (eNB) 20, and a plurality of terminals may exist in one cell.
- the eNB 20 provides an end point of a control plane and a user plane to the terminal.
- the eNB 20 generally refers to a fixed station communicating with the terminal 10, and may be referred to in other terms such as a base station (BS), a base transceiver system (BTS), an access point, and the like.
- BS base station
- BTS base transceiver system
- One eNB 20 may be arranged per cell. There may be one or more cells within the coverage of the eNB 20.
- One cell may be configured to have one of bandwidths such as 1.25, 2.5, 5, 10, and 20 MHz to provide downlink (DL) or uplink (UL) transmission service to various terminals. In this case, different cells may be configured to provide different bandwidths.
- DL means communication from the eNB 20 to the terminal 10
- UL means communication from the terminal 10 to the eNB 20.
- the transmitter may be part of the eNB 20 and the receiver may be part of the terminal 10.
- the transmitter may be part of the terminal 10 and the receiver may be part of the eNB 20.
- the EPC may include a mobility management entity (MME) that serves as a control plane, and a system architecture evolution (SAE) gateway (S-GW) that serves as a user plane.
- MME mobility management entity
- SAE system architecture evolution gateway
- S-GW gateway
- the MME / S-GW 30 may be located at the end of the network and is connected to an external network.
- the MME has information about the access information of the terminal or the capability of the terminal, and this information may be mainly used for mobility management of the terminal.
- S-GW is a gateway having an E-UTRAN as an endpoint.
- the MME / S-GW 30 provides the terminal 10 with the endpoint of the session and the mobility management function.
- the EPC may further include a packet data network (PDN) -gateway (GW).
- PDN-GW is a gateway with PDN as an endpoint.
- the MME includes non-access stratum (NAS) signaling to the eNB 20, NAS signaling security, access stratum (AS) security control, inter CN (node network) signaling for mobility between 3GPP access networks, idle mode terminal reachability ( Control and execution of paging retransmission), tracking area list management (for terminals in idle mode and active mode), P-GW and S-GW selection, MME selection for handover with MME change, 2G or 3G 3GPP access Bearer management, including roaming, authentication, and dedicated bearer settings, SGSN (serving GPRS support node) for handover to the network, public warning system (ETWS) and commercial mobile alarm system (PWS) It provides various functions such as CMAS) and message transmission support.
- NAS non-access stratum
- AS access stratum
- inter CN node network
- MME selection for handover with MME change
- 2G or 3G 3GPP access Bearer management including roaming, authentication, and dedicated bearer settings
- SGSN serving GPRS support no
- S-GW hosts can be based on per-user packet filtering (eg, through deep packet inspection), legal blocking, terminal IP (Internet protocol) address assignment, transport level packing marking in DL, UL / DL service level charging, gating and It provides various functions of class enforcement, DL class enforcement based on APN-AMBR.
- MME / S-GW 30 is simply represented as a "gateway", which may include both MME and S-GW.
- An interface for user traffic transmission or control traffic transmission may be used.
- the terminal 10 and the eNB 20 may be connected by the Uu interface.
- the eNBs 20 may be interconnected by an X2 interface. Neighboring eNBs 20 may have a mesh network structure by the X2 interface.
- the eNBs 20 may be connected with the EPC by the S1 interface.
- the eNBs 20 may be connected to the EPC by the S1-MME interface and may be connected to the S-GW by the S1-U interface.
- the S1 interface supports a many-to-many-relation between eNB 20 and MME / S-GW 30.
- the eNB 20 may select for the gateway 30, routing to the gateway 30 during radio resource control (RRC) activation, scheduling and transmission of paging messages, scheduling channel information (BCH), and the like.
- RRC radio resource control
- BCH scheduling channel information
- the gateway 30 may perform paging initiation, LTE idle state management, user plane encryption, SAE bearer control, and encryption and integrity protection functions of NAS signaling in the EPC.
- FIG. 2 shows an air interface protocol of an LTE system for a control plane.
- 3 shows an air interface protocol of an LTE system for a user plane.
- the layer of the air interface protocol between the UE and the E-UTRAN is based on the lower three layers of the open system interconnection (OSI) model, which is well known in communication systems, and includes L1 (first layer), L2 (second layer), and L3 (third layer). Hierarchical).
- the air interface protocol between the UE and the E-UTRAN may be horizontally divided into a physical layer, a data link layer, and a network layer, and vertically a protocol stack for transmitting control signals.
- Layers of the radio interface protocol may exist in pairs in the UE and the E-UTRAN, which may be responsible for data transmission of the Uu interface.
- the physical layer belongs to L1.
- the physical layer provides an information transmission service to a higher layer through a physical channel.
- the physical layer is connected to a higher layer of a media access control (MAC) layer through a transport channel.
- Physical channels are mapped to transport channels.
- Data may be transmitted between the MAC layer and the physical layer through a transport channel.
- Data between different physical layers, that is, between the physical layer of the transmitter and the physical layer of the receiver may be transmitted using radio resources through a physical channel.
- the physical layer may be modulated using an orthogonal frequency division multiplexing (OFDM) scheme, and utilizes time and frequency as radio resources.
- OFDM orthogonal frequency division multiplexing
- the physical layer uses several physical control channels.
- a physical downlink control channel (PDCCH) reports resource allocation of a paging channel (PCH) and a downlink shared channel (DL-SCH), and hybrid automatic repeat request (HARQ) information related to the DL-SCH to the UE.
- the PDCCH may carry an uplink grant to report to the UE regarding resource allocation of uplink transmission.
- the physical control format indicator channel (PCFICH) informs the UE of the number of OFDM symbols used for the PDCCH and is transmitted every subframe.
- a physical hybrid ARQ indicator channel (PHICH) carries a HARQ ACK (non-acknowledgement) / NACK (non-acknowledgement) signal for UL-SCH transmission.
- a physical uplink control channel (PUCCH) carries UL control information such as HARQ ACK / NACK, a scheduling request, and a CQI for downlink transmission.
- the physical uplink shared channel (PUSCH) carries an uplink shared channel (UL-SCH).
- the physical channel includes a plurality of subframes in the time domain and a plurality of subcarriers in the frequency domain.
- One subframe consists of a plurality of symbols in the time domain.
- One subframe consists of a plurality of resource blocks (RBs).
- One resource block is composed of a plurality of symbols and a plurality of subcarriers.
- each subframe may use specific subcarriers of specific symbols of the corresponding subframe for the PDCCH.
- the first symbol of the subframe may be used for the PDCCH.
- the PDCCH may carry dynamically allocated resources, such as a physical resource block (PRB) and modulation and coding schemes (MCS).
- a transmission time interval (TTI) which is a unit time at which data is transmitted, may be equal to the length of one subframe.
- One subframe may have a length of 1 ms.
- a DL transport channel for transmitting data from a network to a UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a DL-SCH for transmitting user traffic or control signals. And the like.
- BCH broadcast channel
- PCH paging channel
- DL-SCH supports dynamic link adaptation and dynamic / semi-static resource allocation by varying HARQ, modulation, coding and transmit power.
- the DL-SCH may enable the use of broadcast and beamforming throughout the cell.
- System information carries one or more system information blocks. All system information blocks can be transmitted in the same period. Traffic or control signals of a multimedia broadcast / multicast service (MBMS) are transmitted through a multicast channel (MCH).
- MCH multicast channel
- the UL transport channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message, a UL-SCH for transmitting user traffic or a control signal, and the like.
- the UL-SCH can support dynamic link adaptation due to HARQ and transmit power and potential changes in modulation and coding.
- the UL-SCH may enable the use of beamforming.
- RACH is generally used for initial connection to a cell.
- the MAC layer belonging to L2 provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
- RLC radio link control
- the MAC layer provides a mapping function from a plurality of logical channels to a plurality of transport channels.
- the MAC layer also provides a logical channel multiplexing function by mapping from multiple logical channels to a single transport channel.
- the MAC sublayer provides data transfer services on logical channels.
- the logical channel may be divided into a control channel for information transmission in the control plane and a traffic channel for information transmission in the user plane according to the type of information to be transmitted. That is, a set of logical channel types is defined for other data transfer services provided by the MAC layer.
- the logical channel is located above the transport channel and mapped to the transport channel.
- the control channel is used only for conveying information in the control plane.
- the control channel provided by the MAC layer includes a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and a dedicated control channel (DCCH).
- BCCH is a downlink channel for broadcasting system control information.
- PCCH is a downlink channel used for transmitting paging information and paging a terminal whose cell-level location is not known to the network.
- CCCH is used by the terminal when there is no RRC connection with the network.
- MCCH is a one-to-many downlink channel used to transmit MBMS control information from the network to the terminal.
- DCCH is a one-to-one bidirectional channel used by the terminal for transmitting dedicated control information between the terminal and the network in an RRC connection state.
- the traffic channel is used only for conveying information in the user plane.
- the traffic channel provided by the MAC layer includes a dedicated traffic channel (DTCH) and a multicast traffic channel (MTCH).
- DTCH is used for transmission of user information of one UE in a one-to-one channel and may exist in both uplink and downlink.
- MTCH is a one-to-many downlink channel for transmitting traffic data from the network to the terminal.
- the uplink connection between the logical channel and the transport channel includes a DCCH that can be mapped to the UL-SCH, a DTCH that can be mapped to the UL-SCH, and a CCCH that can be mapped to the UL-SCH.
- the downlink connection between the logical channel and the transport channel is a BCCH that can be mapped to a BCH or DL-SCH, a PCCH that can be mapped to a PCH, a DCCH that can be mapped to a DL-SCH, a DTCH that can be mapped to a DL-SCH, MCCH that can be mapped to MCH and MTCH that can be mapped to MCH.
- the RLC layer belongs to L2.
- the function of the RLC layer includes adjusting the size of the data by segmentation / concatenation of the data received from the upper layer in the radio section such that the lower layer is suitable for transmitting data.
- the RLC layer is divided into three modes: transparent mode (TM), unacknowledged mode (UM) and acknowledged mode (AM). Provides three modes of operation.
- TM transparent mode
- UM unacknowledged mode
- AM acknowledged mode
- AM RLC provides retransmission through automatic repeat request (ARQ) for reliable data transmission.
- ARQ automatic repeat request
- the function of the RLC layer may be implemented as a functional block inside the MAC layer, in which case the RLC layer may not exist.
- the packet data convergence protocol (PDCP) layer belongs to L2.
- the PDCP layer introduces an IP packet, such as IPv4 or IPv6, over a relatively low bandwidth air interface to provide header compression that reduces unnecessary control information so that the transmitted data is transmitted efficiently. Header compression improves transmission efficiency in the wireless section by transmitting only the information necessary for the header of the data.
- the PDCP layer provides security. Security functions include encryption to prevent third party inspection and integrity protection to prevent third party data manipulation.
- the radio resource control (RRC) layer belongs to L3.
- the RRC layer at the bottom of L3 is defined only in the control plane.
- the RRC layer serves to control radio resources between the terminal and the network.
- the UE and the network exchange RRC messages through the RRC layer.
- the RRC layer is responsible for the control of logical channels, transport channels and physical channels in connection with the configuration, re-configuration and release of RBs.
- RB is a logical path provided by L1 and L2 for data transmission between the terminal and the network. That is, RB means a service provided by L2 for data transmission between the UE and the E-UTRAN. Setting up an RB means defining the characteristics of the radio protocol layer and channel to provide a particular service, and determining each specific parameter and method of operation.
- RBs may be classified into two types: signaling RBs (SRBs) and data RBs (DRBs).
- SRBs signaling RBs
- DRBs data RBs
- the non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
- the RLC and MAC layers may perform functions such as scheduling, ARQ and HARQ.
- the RRC layer (ended at the eNB at the network side) may perform functions such as broadcast, paging, RRC connection management, RB control, mobility function, and UE measurement report / control.
- the NAS control protocol (terminated at the gateway's MME at the network side) may perform functions such as SAE bearer management, authentication, LTE_IDLE mobility handling, paging initiation at LTE_IDLE, and security control for signaling between the terminal and the gateway.
- the RLC and MAC layer may perform the same function as the function in the control plane.
- the PDCP layer may perform user plane functions such as header compression, integrity protection and encryption.
- the RRC state indicates whether the RRC layer of the UE is logically connected with the RRC layer of the E-UTRAN.
- the RRC state may be divided into two types, such as an RRC connected state (RRC_CONNECTED) and an RRC idle state (RRC_IDLE).
- RRC_CONNECTED RRC connected state
- RRC_IDLE RRC idle state
- the E-UTRAN cannot grasp the terminal of the RRC_IDLE, and manages the terminal in units of a tracking area in which a core network (CN) is larger than a cell. That is, the terminal of the RRC_IDLE is only identified as a unit of a larger area, and in order to receive a normal mobile communication service such as voice or data communication, the terminal must transition to RRC_CONNECTED.
- CN core network
- the terminal may receive a broadcast of system information and paging information.
- the terminal may be assigned an identification (ID) that uniquely designates the terminal in the tracking area, and perform public land mobile network (PLMN) selection and cell reselection.
- ID an identification
- PLMN public land mobile network
- the UE may have an E-UTRAN RRC connection and an RRC context in the E-UTRAN to transmit data to the eNB and / or receive data from the eNB.
- the terminal may report channel quality information and feedback information to the eNB.
- the E-UTRAN may know the cell to which the UE belongs. Therefore, the network may transmit data to the terminal and / or receive data from the terminal, and the network may inter-RAT with a GSM EDGE radio access network (GERAN) through mobility of the terminal (handover and network assisted cell change (NACC)). radio access technology (cell change indication), and the network may perform cell measurement for a neighboring cell.
- GSM EDGE radio access network GERAN
- NACC network assisted cell change
- the UE designates a paging DRX cycle.
- the UE monitors a paging signal at a specific paging occasion for each UE specific paging DRX cycle.
- Paging opportunity is the time interval during which the paging signal is transmitted.
- the terminal has its own paging opportunity.
- the paging message is sent across all cells belonging to the same tracking area. If the terminal moves from one tracking area to another tracking area, the terminal sends a tracking area update (TAU) message to the network to update the location.
- TAU tracking area update
- the terminal When the user first turns on the power of the terminal, the terminal first searches for an appropriate cell and then stays in RRC_IDLE in that cell. When it is necessary to establish an RRC connection, the terminal staying in the RRC_IDLE may make an RRC connection with the RRC of the E-UTRAN through the RRC connection procedure and may transition to the RRC_CONNECTED. The UE staying in RRC_IDLE needs to establish an RRC connection with the E-UTRAN when uplink data transmission is necessary due to a user's call attempt or when a paging message is received from the E-UTRAN and a response message is required. Can be.
- EMM-REGISTERED EPS Mobility Management-REGISTERED
- EMM-DEREGISTERED EMM-DEREGISTERED
- the initial terminal is in the EMM-DEREGISTERED state, and the terminal performs a process of registering with the corresponding network through an initial attach procedure to access the network. If the attach procedure is successfully performed, the UE and the MME are in the EMM-REGISTERED state.
- an EPS Connection Management (ECM) -IDLE state In order to manage a signaling connection between the UE and the EPC, two states are defined, an EPS Connection Management (ECM) -IDLE state and an ECM-CONNECTED state, and these two states are applied to the UE and the MME.
- ECM EPS Connection Management
- ECM-IDLE state When the UE in the ECM-IDLE state establishes an RRC connection with the E-UTRAN, the UE is in the ECM-CONNECTED state.
- the MME in the ECM-IDLE state becomes the ECM-CONNECTED state when it establishes an S1 connection with the E-UTRAN.
- the E-UTRAN does not have the context information of the terminal.
- the UE in the ECM-IDLE state performs a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
- a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
- the terminal when the terminal is in the ECM-CONNECTED state, the mobility of the terminal is managed by the command of the network.
- the terminal In the ECM-IDLE state, if the position of the terminal is different from the position known by the network, the terminal informs the network of the corresponding position of the terminal through a tracking area update procedure.
- EPC Evolved Packet Core
- MME mobility management entity
- S-GW serving gateway
- P-GW packet data network gateway
- 5G core network or NextGen core network
- functions, reference points, protocols, etc. are defined for each network function (NF). That is, 5G core network does not define functions, reference points, protocols, etc. for each entity.
- the 5G system structure includes one or more UEs 10, a Next Generation-Radio Access Network (NG-RAN), and a Next Generation Core (NGC).
- NG-RAN Next Generation-Radio Access Network
- NNC Next Generation Core
- the NG-RAN may include one or more gNBs 40, and a plurality of terminals may exist in one cell.
- the gNB 40 provides the terminal with the control plane and the end point of the user plane.
- the gNB 40 generally refers to a fixed station communicating with the terminal 10 and may be referred to as other terms such as a base station (BS), a base transceiver system (BTS), an access point, and the like.
- BS base station
- BTS base transceiver system
- One gNB 40 may be arranged per cell. There may be one or more cells within coverage of the gNB 40.
- the NGC may include an Access and Mobility Function (AMF) and a Session Management Function (SMF) that are responsible for the functions of the control plane.
- AMF Access and Mobility Function
- SMF Session Management Function
- the AMF may be responsible for the mobility management function
- the SMF may be responsible for the session management function.
- the NGC may include a user plane function (UPF) that is responsible for the function of the user plane.
- UPF user plane function
- Terminal 10 and gNB 40 may be connected by an NG3 interface.
- the gNBs 40 may be interconnected by Xn interface.
- Neighboring gNBs 40 may have a mesh network structure with an Xn interface.
- the gNBs 40 may be connected to the NGC by the NG interface.
- the gNBs 40 may be connected to the AMF by the NG-C interface and may be connected to the UPF by the NG-U interface.
- the NG interface supports a many-to-many-relation between gNB 40 and MME / UPF 50.
- the gNB host may determine functions for radio resource management, IP header compression and encryption of user data stream, and routing to AMF from information provided by the terminal. Selection of an AMF at UE attachment when no routing to an AMF can be determined from the information provided by the UE, Routing of User Plane data to one or more UPFs towards UPF (s)), Scheduling and transmission of paging messages (originated from the AMF), transmission and scheduling of system broadcast information (derived from AMF or O & M) Scheduling and transmission of system broadcast information (originated from the AMF or O & M), or setting up and measuring measurement reports for scheduling and mobility (Me It can perform functions such as asurement and measurement reporting configuration for mobility and scheduling.
- Access and Mobility Function (AMF) hosts can be used for NAS signaling termination, NAS signaling security, AS Security control, and inter CN node signaling for mobility between 3GPP access networks.
- node signaling for mobility between 3GPP access networks IDLE mode UE reachability (including control and execution of paging retransmission), UE in ACTIVE mode and IDLE mode Tracking Area list management (for UE in idle and active mode), AMF selection for handovers with AMF change, Access Authentication, Or perform key functions such as access authorization including check of roaming rights.
- a user plane function (UPF) host is an anchor point for Intra- / Inter-RAT mobility (when applicable), an external PDU session point for the interconnection to the data network (if applicable).
- (External PDU session point of interconnect to Data Network) Packet routing & forwarding, Packet inspection and User plane part of Policy rule enforcement, Traffic usage reporting ( Traffic usage reporting, Uplink classifier to support routing traffic flows to a data network, Branching point to support multi- homed PDU session, QoS handling for the user plane, e.g.
- packet filtering gating, QoS handling for user plane, eg packet filtering, gating, UL / DL rate enforcement, uplink traffic verification (SDF to QoS flow mapping), transport level packet marking in downlink and uplink It can perform main functions such as packet marking in the uplink and downlink, or downlink packet buffering and downlink data notification triggering.
- QoS handling for user plane eg packet filtering, gating, UL / DL rate enforcement, uplink traffic verification (SDF to QoS flow mapping), transport level packet marking in downlink and uplink
- SDF to QoS flow mapping uplink traffic verification
- transport level packet marking in downlink and uplink It can perform main functions such as packet marking in the uplink and downlink, or downlink packet buffering and downlink data notification triggering.
- the Session Management Function (SMF) host is responsible for session management, UE IP address allocation and management, selection and control of UP functions, and traffic to the appropriate destinations.
- Configure traffic steering at UPF to route traffic to proper destination, control part of policy enforcement and QoS, or downlink data notification Can perform key functions such as
- ProSe proximity based services
- ProSe is an equivalent concept to D2D operation, and ProSe may be mixed with D2D operation.
- ProSe is described.
- ProSe has ProSe communication and ProSe direct discovery.
- ProSe direct communication refers to communication performed between two or more neighboring terminals.
- the terminals may perform communication using a user plane protocol.
- ProSe-enabled UE refers to a terminal that supports a procedure related to the requirements of ProSe.
- ProSe capable terminals include both public safety UEs and non-public safety UEs.
- the public safety terminal is a terminal that supports both a public safety-specific function and a ProSe process.
- a non-public safety terminal is a terminal that supports a ProSe process but does not support a function specific to public safety.
- ProSe direct discovery is a process for ProSe capable terminals to discover other ProSe capable terminals that are adjacent to each other, using only the capabilities of the two ProSe capable terminals.
- EPC-level ProSe discovery refers to a process in which an EPC determines whether two ProSe capable terminals are in proximity and informs the two ProSe capable terminals of their proximity.
- ProSe direct communication may be referred to as D2D communication
- ProSe direct discovery may be referred to as D2D discovery.
- ProSe capable terminal may use the following two modes for resource allocation for ProSe direct communication.
- Mode 1 A mode in which resources for ProSe direct communication are scheduled from a base station.
- the UE In order to transmit data in mode 1, the UE must be in an RRC_CONNECTED state.
- the terminal requests the base station for transmission resources, and the base station schedules resources for scheduling allocation and data transmission.
- the terminal may transmit a scheduling request to the base station and may transmit a ProSe BSR (Buffer Status Report). Based on the ProSe BSR, the base station determines that the terminal has data for ProSe direct communication and needs resources for this transmission.
- ProSe BSR Buffer Status Report
- Mode 2 A mode in which a terminal directly selects a resource.
- the terminal selects a resource for direct ProSe direct communication from a resource pool.
- the resource pool may be set or predetermined by the network.
- the terminal when the terminal has a serving cell, that is, the terminal is in the RRC_CONNECTED state with the base station or located in a specific cell in the RRC_IDLE state, the terminal is considered to be within the coverage of the base station. If the terminal is out of coverage, only mode 2 may be applied. If the terminal is in coverage, mode 1 or mode 2 may be used depending on the configuration of the base station. If there is no other exceptional condition, the terminal may change the mode from mode 1 to mode 2 or from mode 2 to mode 1 only when the base station is configured.
- 5 shows a reference structure for ProSe.
- the reference structure for ProSe includes a plurality of terminals including an E-UTRAN, an EPC, and a ProSe application program, a ProSe application server, and a ProSe function.
- EPC represents the E-UTRAN core network structure.
- the EPC may include an MME, S-GW, P-GW, policy and charging rules function (PCRF), home subscriber server (HSS), and the like.
- ProSe application server is a user of ProSe ability to create application functions.
- the ProSe application server may communicate with an application program in the terminal.
- An application program in the terminal may use a ProSe capability for creating an application function.
- the ProSe function may include at least one of the following, but is not necessarily limited thereto.
- PC1 This is a reference point between a ProSe application in a terminal and a ProSe application in a ProSe application server. This is used to define signaling requirements at the application level.
- PC2 Reference point between ProSe application server and ProSe function. This is used to define the interaction between the ProSe application server and ProSe functionality. An application data update of the ProSe database of the ProSe function may be an example of the interaction.
- PC3 Reference point between the terminal and the ProSe function. Used to define the interaction between the UE and the ProSe function.
- the setting for ProSe discovery and communication may be an example of the interaction.
- PC4 Reference point between the EPC and ProSe functions. It is used to define the interaction between the EPC and ProSe functions. The interaction may exemplify when establishing a path for 1: 1 communication between terminals, or when authenticating a ProSe service for real time session management or mobility management.
- PC5 Reference point for using the control / user plane for discovery and communication, relay, and 1: 1 communication between terminals.
- PC6 Reference point for using features such as ProSe discovery among users belonging to different PLMNs.
- SGi can be used for application data and application level control information exchange.
- V2X vehicle to everything
- FIG. 6 shows a V2X communication environment.
- V2X is a technology that adds mobility to D2D technology, allowing vehicles to continue to communicate with road infrastructure and other vehicles as they drive, exchanging and sharing useful information such as traffic conditions.
- the connectivity function is being applied mainly to some models, and vehicle-to-infrastructure (V2V), vehicle-to-infrastructure (V2I) communication, Research continues to support vehicle-to-pedestrian (V2P) and vehicle-to-network (V2N) communications.
- the vehicle continuously broadcasts information about its position, speed, direction, and the like.
- the surrounding vehicle that receives the broadcasted information recognizes the movement of the vehicles around itself and utilizes it for accident prevention.
- a specific type of terminal may be installed in each vehicle.
- the terminal installed in the vehicle is a device that receives the actual communication service in the communication network.
- a terminal installed in a vehicle may access a base station in an E-UTRAN and receive a communication service.
- a scenario in which only a PC5-based V2X service, which is an interface between terminals, is supported may be considered for V2X.
- FIG. 7B a scenario of supporting only Uu-based V2X service, which is an interface between a base station and a terminal, may be considered for V2X.
- FIG. 7C a scenario supporting both PC5 and Uu based V2X services may be considered for V2X.
- the base station may switch the V2X bearer from Uu to PC5. That is, the base station may switch the Uu based V2X service to the PC5 based V2X service.
- the base station when the load of the Uu interface is high or the Uu interface is overloaded, if the base station can know which bearer is used for V2X service, the base station triggers the release of the associated bearer if necessary, and the terminal more PC5 resources It may be possible to provide. For example, the base station can know which bearer is used for V2X service by receiving an indicator indicating a V2X bearer. However, in the case of release of a bearer triggered by a base station, the following problem may occur.
- a bearer for a V2X service means a bearer used for a V2X service or a bearer to be used for a V2X service, and may be referred to as a V2X bearer for convenience of description.
- the dedicated bearer deactivation procedure initiated by the MME is described in detail in Section 5.4.4.2 MME Initiated Dedicated Bearer Deactivation in 3GPP TS 23.401 V13.6.1 (2016-03).
- the radio bearer for the UE in the ECM_CONNECTED state is local for reasons such as abnormal resource limitation or radio where the base station is not allowed to maintain all GBR bearers assigned thereto. Condition) can be released.
- the non-GBR bearer is not released by the base station unless an error situation occurs.
- QCI characteristics for GBR bearers and non-GBR bearers can be shown in Table 1.
- the base station does not release the non-GBR bearer.
- the bearer used for the V2X service is mainly a non-GBR bearer carrying a CAM message. Therefore, according to the dedicated bearer deactivation procedure initiated by the MME, even if the base station knows which bearer is used for the V2X service, if the load of the Uu interface is high or the Uu interface is overloaded, the base station may perform It may not trigger the release. This is because, in the dedicated bearer deactivation procedure initiated by the MME, the base station can trigger the release of the non-GBR bearer only in an error situation.
- V2X bearer is allowed to be released by the base station using a dedicated bearer deactivation procedure initiated by the MME, there may be a signaling impact in the core network if it creates or releases a V2X bearer.
- FIG. 9 is a diagram for describing signaling impact that may occur in a core network when a base station allows a V2X bearer to be released.
- the base station may have one of 'Uu only', 'PC5 only', and 'both Uu and PC5' for V2X transmission.
- 'Uu only' is a setting where the base station supports only Uu-based V2X service
- 'PC5 only' is a setting where the base station supports only PC5-based V2X service
- 'both Uu and PC5' is a base station based on Uu It means not only V2X service but also PC5-based V2X service.
- the setting for V2X transmission of the first base station may be changed from 'both Uu and PC5' to 'PC5 only'. Accordingly, the first base station may release the V2X bearer of the terminal using a dedicated bearer deactivation procedure initiated by the MME. However, if there are a plurality of terminals transmitting V2X messages through the Uu interface within the coverage of the first base station, signaling between networks for releasing the V2X bearer may increase rapidly according to the number of terminals.
- signaling impact in the core network may occur even when the base station newly creates a V2X bearer.
- the terminal may move to the second base station, and the setting for V2X transmission of the second base station may be 'both Uu and PC5'. Accordingly, the terminal may request the network to create a V2X bearer carrying a V2X message through the Uu interface. To this end, the terminal may initiate a UE requested bearer resource modification procedure initiated by the terminal.
- the bearer resource modification procedure initiated by the terminal is described in detail in 3GPP TS 23.401 V13.6.1 (2016-03) section 5.4.5 UE requested bearer resource modification.
- the base station's releasing or setting up a particular V2X bearer may impose signaling burden between networks.
- the base station may broadcast that the setting for the V2X transmission is set to 'PC5 only'. Since the UE that receives the 'PC5 only' setting knows that the V2X message cannot be transmitted through the Uu interface, the base station may not transmit the V2X message using the V2X bearer. In this situation, since no traffic is carried over the V2X bearer, it is not a problem that the V2X bearer is not released.
- a bearer ie, a V2X bearer created for the transmission of a V2X service (eg, a CAM message) can always be used while the terminal is located in a network supporting the V2X service, so that the terminal supports the V2X service. While located at, the V2X bearer does not need to be released. This is because releasing the V2X bearer may cause signaling overhead.
- a method of maintaining a V2X bearer and an apparatus supporting the same according to an embodiment of the present invention will be described.
- FIG. 11 illustrates a service request procedure for switching between a PC5 based V2X service and a Uu based V2X service according to an embodiment of the present invention.
- the terminal may trigger a service request procedure to transmit uplink data on Uu.
- the terminal may be a V2X capable UE.
- the terminal may transmit a NAS message service request encapsulated in an RRC connection setup complete message to the base station.
- the base station may transmit a NAS message service request including an initial UE message message to the MME / AMF.
- the MME / AMF may send an Initial Context Setup Request message to the base station.
- the initial context setup request message may include a bearer indication for V2X.
- the bearer indicator for the V2X may indicate whether the requested bearer is a V2X bearer.
- a bearer indicator for V2X may be referred to as a V2X bearer indicator.
- the base station may determine whether any one of the settings 'Uu only', 'PC5 only' and 'both Uu and PC5' for the V2X transmission.
- the base station When the base station is set to 'PC5 only' and receives an initial context setup request message containing a V2X bearer indicator for the requested bearer, the base station stores the V2X bearer indicator for each V2X bearer and will not allocate resources to the V2X bearer. Can be. That is, the base station may withhold resource allocation for the V2X bearer.
- the base station may respond with an Initial Context Setup Response message.
- the initial context setup response message may include an E-RAB failed to setup list, and the E-RAB failed to setup list may include a new cause value.
- the E-RAB Failed to Setup List may be a list of IDs of the E-RAB that have not been successfully established.
- the new cause value may indicate that the base station has not allocated a resource for the V2X bearer.
- the new cause value may indicate that the base station has suspended resource allocation for the V2X bearer.
- step S1107 if the new cause value is included in the E-RAB Failed to Setup List, the MME / AMF may not deactivate the bearer context included in the received E-RAB Failed to Setup List. That is, the MME / AMF receiving the E-RAB Failed to Setup List including the new cause value may maintain the bearer context included in the E-RAB Failed to Setup List.
- the base station may transmit an RRC connection reconfiguration message to the terminal.
- the RRC connection reconfiguration message may include an indicator indicating that the base station has not allocated resources to the V2X bearer.
- the RRC connection reestablishment message may include an indicator indicating that the base station has suspended resource allocation for the V2X bearer.
- the indicator may include bearer related information.
- the bearer related information may be a bearer identifier (ID).
- step S1109 if the indicator is included in the RRC connection reestablishment message, the terminal may not reactivate and deactivate the indicated bearer context.
- FIG. 12 illustrates a service request procedure for switching between a PC5 based V2X service and a Uu based V2X service according to an embodiment of the present invention.
- the terminal may trigger a service request procedure to transmit uplink data on Uu.
- the terminal may be a V2X capable UE.
- the terminal may transmit a NAS message service request encapsulated in an RRC connection setup complete message to the base station.
- the base station may transmit a NAS message service request including an initial UE message message to the MME / AMF.
- step S1204 when the MME / AMF receives the message, the MME / AMF may send an Initial Context Setup Request message to the base station.
- the initial context setup request message may include a V2X bearer indicator.
- the V2X bearer indicator may indicate whether the requested bearer is a V2X bearer.
- the base station may determine whether any one of the settings 'Uu only', 'PC5 only' and 'both Uu and PC5' for V2X transmission.
- the base station When the base station is set to 'PC5 only' and receives an initial context setup request message containing a V2X bearer indicator for the requested bearer, the base station stores the V2X bearer indicator for each V2X bearer and will not allocate resources to the V2X bearer. Can be. That is, the base station may withhold resource allocation for the V2X bearer.
- the base station may respond with an Initial Context Setup Response message.
- the initial context setup response message may include an E-RAB failed to setup list, and the E-RAB failed to setup list may include a new cause value.
- the E-RAB Failed to Setup List may be a list of IDs of the E-RAB that have not been successfully established.
- the new cause value may indicate that the base station has not allocated a resource for the V2X bearer.
- the new cause value may indicate that the base station has suspended resource allocation for the V2X bearer.
- step S1207 if the new cause value is included in the E-RAB Failed to Setup List, the MME / AMF may perform marking on the bearer included in the E-RAB Failed to Setup List. For example, the MME / AMF may mark 'pending' on bearers included in the E-RAB Failed to Setup List. The MME / AMF may not deactivate the bearer context included in the received E-RAB Failed to Setup List. Therefore, the MME / AMF receiving the E-RAB Failed to Setup List including the new cause value may maintain the bearer context included in the E-RAB Failed to Setup List.
- the base station may transmit an RRC connection reconfiguration message to the terminal.
- the RRC connection reconfiguration message may include an indicator indicating that the base station has not allocated resources to the V2X bearer.
- the RRC connection reestablishment message may include an indicator indicating that the base station has suspended resource allocation for the V2X bearer.
- the indicator may include bearer related information.
- the bearer related information may be a bearer identifier (ID).
- step S1209 if the indicator is included in the RRC connection reconfiguration message, the terminal may perform marking on the bearer included in the failed list. For example, the terminal may mark 'pending' on the bearer included in the E-RAB Failed to Setup List. And, the terminal may not deactivate the EPS bearer context for the marked bearer. Accordingly, the terminal receiving the RRC connection reconfiguration message including the indicator may maintain the context of the V2X bearer. Additionally, the terminal may not transmit data on the marked bearer.
- FIG. 13 illustrates a handover procedure for switching between a PC5 based V2X service and a Uu based V2X service according to an embodiment of the present invention.
- the terminal may transmit a measurement reports message to the source base station.
- the source base station may determine the handover based on the received measurement report.
- the source base station may transmit a handover request message to the target base station.
- the handover request message may include a V2X bearer indicator.
- the V2X bearer indicator may indicate whether the requested bearer is a V2X bearer.
- the target base station may determine whether one of 'Uu only', 'PC5 only', and 'both Uu and PC5' has a setting for V2X transmission.
- the target base station When the target base station is set to 'PC5 only' and receives a handover request message containing a V2X bearer indicator for the requested bearer, the target base station stores the V2X bearer indicator for each V2X bearer and does not allocate resources to the V2X bearer. You may not. That is, the target base station may withhold resource allocation for the V2X bearer.
- the target base station that has received the handover request message may transmit a handover request acknowledgment message to the source base station in response thereto.
- the handover request approval message may include an E-RABs Admitted List or an E-RABs Not Admitted List, and the E-RABs Admitted List or E-RABs Not Admitted List may include new cause values, respectively.
- the handover request approval message may include an indicator.
- the new cause value or indicator may indicate that the target base station has not allocated resources for the V2X bearer.
- the new cause value or indicator may indicate that the target base station has suspended resource allocation for the V2X bearer.
- the source base station may transmit an RRC Connection Reconfiguration message to the terminal.
- the RRC connection reconfiguration message may include an indicator indicating that the base station has not allocated resources to the V2X bearer.
- the RRC connection reestablishment message may include an indicator indicating that the base station has suspended resource allocation for the V2X bearer.
- the indicator may include bearer related information.
- the bearer related information may be a bearer identifier (ID).
- step S1307 when the terminal receives a message from the source base station, the terminal may perform a detach.
- step S1308 the terminal may not reactivate and deactivate the indicated bearer context.
- the terminal may transmit an RRC Connection Reconfiguration Complete message to the target base station.
- the target base station may transmit a path switch request message to the MME / AMF.
- the path switch request message may include an E-RAB To Be Switched in Downlink List, and the E-RAB To Be Switched in Downlink List may include a new cause value.
- the path switch request message may include an indicator.
- the new cause value or indicator may indicate that the target base station has not allocated resources for the V2X bearer.
- the new cause value or indicator may indicate that the target base station has suspended resource allocation for the V2X bearer.
- step S1311 when the MME / AMF receives a message from the target base station, the MME / AMF may not deactivate the bearer context included in the list. For example, an MME / AMF that has received an E-RAB To Be Switched in Downlink List containing a new cause value may maintain a bearer context included in the E-RAB To Be Switched in Downlink List.
- step S1312 the MME / AMF may respond to the target base station with a Path Switch Request Acknowledge message.
- the target base station may transmit a UE context release message to the source base station.
- FIG. 14 illustrates a handover procedure for switching between a PC5 based V2X service and a Uu based V2X service according to an embodiment of the present invention.
- the terminal may transmit a measurement reports message to the source base station.
- the source base station may determine the handover based on the received measurement report.
- the source base station may transmit a handover request message to the target base station.
- the handover request message may include a V2X bearer indicator.
- the V2X bearer indicator may indicate whether the requested bearer is a V2X bearer.
- the target base station may determine whether one of 'Uu only', 'PC5 only', and 'both Uu and PC5' has a setting for V2X transmission.
- the target base station When the target base station is set to 'PC5 only' and receives a handover request message containing a V2X bearer indicator for the requested bearer, the target base station stores the V2X bearer indicator for each V2X bearer and does not allocate resources to the V2X bearer. You may not. That is, the target base station may withhold resource allocation for the V2X bearer.
- the target base station that has received the handover request message may transmit a handover request acknowledgment message to the source base station in response thereto.
- the handover request approval message may include an E-RABs Admitted List or an E-RABs Not Admitted List, and the E-RABs Admitted List or E-RABs Not Admitted List may include new cause values, respectively.
- the handover request approval message may include an indicator.
- the new cause value or indicator may indicate that the target base station has not allocated resources for the V2X bearer.
- the new cause value or indicator may indicate that the target base station has suspended resource allocation for the V2X bearer.
- the source base station may transmit an RRC connection reconfiguration message to the terminal.
- the RRC connection reconfiguration message may include an indicator indicating that the base station has not allocated resources to the V2X bearer.
- the RRC connection reestablishment message may include an indicator indicating that the base station has suspended resource allocation for the V2X bearer.
- the indicator may include bearer related information.
- the bearer related information may be a bearer identifier (ID).
- step S1407 when the terminal receives a message from the source base station, the terminal may perform a detach.
- the terminal may perform marking on the bearer included in the failed list and indicated by the new cause value. For example, the terminal may mark 'pending' on the bearer included in the failed list and indicated by the new cause value. And, the terminal may not deactivate the EPS bearer context for the marked bearer. Accordingly, the terminal receiving the RRC connection reconfiguration message including the indicator may maintain the context of the V2X bearer. Additionally, the terminal may not transmit data on the marked bearer.
- the terminal may transmit an RRC connection reconfiguration complete message to the target base station.
- the target base station may transmit a path switch request message to the MME / AMF.
- the path switch request message may include an E-RAB To Be Switched in Downlink List, and the E-RAB To Be Switched in Downlink List may include a new cause value.
- the path switch request message may include an indicator.
- the new cause value or indicator may indicate that the target base station has not allocated resources for the V2X bearer.
- the new cause value or indicator may indicate that the target base station has suspended resource allocation for the V2X bearer.
- step S1411 if the new cause value is included in the E-RAB To Be Switched in Downlink List, the MME / AMF performs marking on the bearer indicated by the new cause value included in the E-RAB To Be Switched in Downlink List. can do.
- the MME / AMF may perform marking on the bearer indicated by the indicator. For example, the MME / AMF may mark 'pending' on bearers included in the E-RAB To Be Switched in Downlink List.
- the MME / AMF may not deactivate the bearer context included in the list. Accordingly, the MME / AMF may maintain a bearer context included in the E-RAB To Be Switched in Downlink List.
- step S1412 the MME / AMF may respond to the target base station with a Path Switch Request Acknowledge message.
- the target base station may transmit a UE context release message to the source base station.
- the P-GW may transmit downlink traffic for V2X to the base station via the S-GW.
- the base station may determine whether to establish a DRB for the V2X bearer. For example, if the base station receives data for V2X from the S-GW via S1-U, the base station may decide to establish a DRB for the V2X bearer. For example, the base station receiving the data for the V2X may perform resource allocation for the held V2X bearer to establish a DRB for the V2X bearer.
- the base station may transmit an RRC connection reconfiguration (RRC Connection Reconfiguration) to the terminal.
- RRC connection reconfiguration RRC Connection Reconfiguration
- step S1504 when the RRC connection reconfiguration message is received from the base station, and the requested DRB is successfully established, the AS layer of the terminal may inform the NAS layer of the terminal that the corresponding DRB was successfully established. Thereafter, the terminal may remove the marking for all bearers. For example, if the requested DRB is successfully established, the terminal may remove the 'pending' marking performed on the bearer in step S1209 of FIG. 12 or step S1408 of FIG. 14.
- the terminal may transmit an RRC connection reconfiguration complete message to the base station.
- the base station may transmit information to the MME / AMF indicating that the DRB for the V2X bearer is established.
- the information indicating that the DRB for the V2X bearer is established may be a DRB Activation Indication message, an existing message, a new IE included in a new message, or a new IE included in an existing message.
- the MME / AMF may recognize that resources are allocated to the indicated V2X bearer.
- the MME may then remove the marking for all bearers. For example, the MME / AMF which has received the information indicating that the DRB for the V2X bearer is established may remove the 'pending' marking performed on the bearer in step S1207 of FIG. 12 or step S1411 of FIG. 14.
- the base station may transmit data for the V2X to the terminal through the DRB set for the V2X bearer.
- FIG. 16 illustrates a procedure of switching between a PC5 based V2X service and a Uu based V2X service according to an embodiment of the present invention.
- the base station may receive a V2X bearer indicator.
- the V2X bearer indicator may indicate whether the requested bearer is a V2X bearer.
- the V2X bearer indicator may be included in an initial context setup request message and received from an MME / AMF.
- the V2X bearer indicator may be included in a handover request message and received from a source base station.
- the base station may determine whether the base station supports only PC5 based V2X service.
- the base station may selectively support either or both of the PC5 based V2X service or the Uu based V2X service.
- the base station may store the V2X bearer indicator for the V2X bearer and may not allocate resources to the V2X bearer. That is, the base station may withhold resource allocation for the V2X bearer.
- the base station may transmit information indicating that the resource allocation for the V2X bearer by the base station is suspended to the terminal.
- the information may be at least one of an indicator or a cause value.
- the information may be included in the RRC connection reconfiguration message and transmitted to the terminal.
- step S1604 the terminal may perform marking on the V2X bearer and maintain the context of the marked V2X bearer.
- the base station currently provides only PC5 based V2X service
- the context of the V2X bearer may be maintained and the V2X bearer may not be released.
- the terminal may stop data transmission through the V2X bearer.
- the base station may transmit information indicating that resource allocation for the V2X bearer by the base station is suspended to the MME / AMF.
- the information may be at least one of an indicator or a cause value.
- the information may be included in an initial context setup response message and transmitted to the MME / AMF.
- the information may be included in the path switch request message and transmitted to the MME / AMF.
- the MME / AMF may perform marking on the V2X bearer and maintain the context of the marked V2X bearer.
- the base station currently provides only PC5 based V2X service, the context of the V2X bearer may be maintained and the V2X bearer may not be released.
- the order of steps S1603 / S1604 and S1605 / S1606 can be changed from each other. That is, the base station may transmit information indicating that resource allocation for the V2X bearer by the base station is suspended to the MME / AMF and then to the terminal.
- the base station may determine whether the base station supports Uu-based V2X service. If the base station is determined to support Uu-based V2X service, the base station may perform resource allocation for the reserved V2X bearer.
- the base station may transmit an RRC connection reset message to the terminal.
- step S1609 the terminal successfully establishing the RRC connection may remove the marking for the V2X bearer.
- the terminal may transmit an RRC connection reset complete message to the base station.
- the base station may transmit information indicating that the V2X bearer is activated to the MME / AMF.
- the MME / AMF may remove the marking for the V2X bearer.
- the base station when the base station sets the configuration for the V2X service to 'PC5 only', the base station may not allocate resources to the bearer to be used for V2X. That is, resource allocation for the V2X bearer can be suspended.
- the base station may inform the terminal and the MME / AMF that the base station has not allocated resources to the V2X bearer.
- the MME / AMF may not deactivate the bearer context based on the information received from the base station.
- the terminal may not attempt to release the indicated radio bearer based on the information received from the base station.
- the V2X bearer may not be released and may be maintained.
- the base station may activate resource allocation for the V2X bearer, and the terminal may quickly use the maintained V2X bearer. Can receive V2X data.
- the procedure proposed in this specification may be applied when the terminal moves to a base station set to 'PC5 only'.
- the procedure proposed in this specification may be applied to a case where the base station set to 'Uu only' or 'both Uu and PC5' changes the configuration to 'PC5 only'.
- the proposed procedure can also be applied to signaling between RAN and CN in 5G architecture similar to handover procedure or service request procedure in LTE.
- FIG. 17 illustrates a method of performing a V2X communication by a base station according to an embodiment of the present invention.
- the base station may receive a V2X bearer indicator indicating a V2X bearer.
- the V2X bearer may be a bearer used for V2X service.
- the base station may determine that the base station supports only the PC5 based V2X service among the PC5 based V2X service or the Uu based V2X service.
- the base station may withhold resource allocation for the V2X bearer. If the base station is determined to support only the PC5 based V2X service, resource allocation for the V2X bearer may be suspended.
- the base station may transmit information indicating that the resource allocation for the V2X bearer is suspended to the mobility management entity (MME).
- MME mobility management entity
- the base station may transmit information indicating that the resource allocation for the V2X bearer is suspended to the terminal.
- the base station is a target base station, the information transmitted to the terminal may be transmitted to the terminal via a source base station.
- the information may include an identifier (ID) of the V2X bearer.
- the base station may determine that the base station supports the Uu based V2X service, and may allocate resources for the V2X bearer. Thereafter, the base station may establish a DRB for the V2X service based on the resources allocated for the V2X bearer, and transmit information indicating that the DRB for the V2X bearer is established to the MME.
- FIG. 18 illustrates a method of performing V2X communication by an MME or a terminal according to an embodiment of the present invention.
- the device may receive information from the base station indicating that resource allocation for the V2X bearer is suspended.
- the V2X bearer may be a bearer used for V2X service.
- the device may be an MME or a terminal.
- the device may perform marking on the V2X bearer instructing to suspend deactivation of the V2X bearer. If the base station supports only the PC5-based V2X service among the PC5-based V2X service or the Uu-based V2X service, resource allocation for the V2X bearer may be suspended by the base station.
- step S1830 the device may maintain the context of the marked V2X bearer.
- the device may receive information from the base station indicating that a DRB for the V2X bearer has been established. Upon receiving information indicating that the DRB has been established, the device may remove the marking on the V2X bearer.
- the device may additionally receive an RRC connection reconfiguration message from the base station.
- the device may remove the marking on the V2X bearer.
- the AS layer of the terminal may inform the NAS of the terminal that the DRB for the V2X bearer is established.
- 19 is a block diagram of a wireless communication system in which an embodiment of the present invention is implemented.
- the terminal 1900 includes a processor 1901, a memory 1902, and a transceiver 1903.
- the memory 1902 is connected to the processor 1901 and stores various information for driving the processor 1901.
- the transceiver 1903 is connected to the processor 1901 and transmits and / or receives a radio signal.
- the processor 1901 implements the proposed functions, processes, and / or methods. In the above-described embodiment, the operation of the terminal may be implemented by the processor 1901.
- Base station 1910 includes a processor 1911, a memory 1912, and a transceiver 1913.
- the memory 1912 is connected to the processor 1911 and stores various information for driving the processor 1911.
- the transceiver 1913 is coupled to the processor 1911 to transmit and / or receive wireless signals.
- Processor 1911 implements the proposed functions, processes, and / or methods. In the above-described embodiment, the operation of the base station may be implemented by the processor 1911.
- the MME / AMF 1920 includes a processor 1921, a memory 1922, and a transceiver 1923.
- the memory 1922 is connected to the processor 1921 to store various information for driving the processor 1921.
- the transceiver 1923 is connected to the processor 1921 to transmit and / or receive a radio signal.
- the processor 1921 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the MME / AMF may be implemented by the processor 1921.
- the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
- the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
- the transceiver may include baseband circuitry for processing wireless signals.
- the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
- the module may be stored in memory and executed by a processor.
- the memory may be internal or external to the processor and may be coupled to the processor by various well known means.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Provided are a method by which a base station performs vehicle to everything (V2X) communication in a wireless communication system, and an apparatus for supporting the same. The method can comprise the steps of: receiving a V2X bearer indication indicating a V2X bearer, wherein the V2X bearer is a bearer used for a V2X service; determining that the base station supports only a PC5-based V2X service between the PC5-based V2X service or a Uu-based V2X service; postponing a resource allocation for the V2X bearer; and transmitting, to a mobility management entity (MME), information indicating that the resource allocation for the V2X bearer is postponed.
Description
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게는 V2X(vehicle to everything) 베어러에 대한 자원 할당을 보류하는 방법 및 이를 지원하는 장치에 관한 것이다.The present invention relates to a wireless communication system, and more particularly, to a method for holding resource allocation for a vehicle to everything (V2X) bearer and a device supporting the same.
최근 장치들 간 직접통신을 하는 D2D (Device-to-Device)기술에 대한 관심이 높아지고 있다. 특히, D2D는 공중 안전 네트워크(public safety network)을 위한 통신 기술로 주목 받고 있다. 상업적 통신 네트워크는 빠르게 LTE로 변화하고 있으나 기존 통신 규격과의 충돌 문제와 비용 측면에서 현재의 공중 안전 네트워크는 주로 2G 기술에 기반하고 있다. 이러한 기술 간극과 개선된 서비스에 대한 요구는 공중 안전 네트워크를 개선하고자 하는 노력으로 이어지고 있다.Recently, interest in D2D (Device-to-Device) technology for direct communication between devices is increasing. In particular, D2D is drawing attention as a communication technology for a public safety network. Commercial communication networks are rapidly changing to LTE, but current public safety networks are mainly based on 2G technology in terms of cost and conflict with existing communication standards. This gap in technology and the need for improved services have led to efforts to improve public safety networks.
공중 안전 네트워크는 상업적 통신 네트워크에 비해 높은 서비스 요구 조건(신뢰도 및 보안성)을 가지며 특히 셀룰러 통신의 커버리지가 미치지 않거나 이용 가능하지 않은 경우에도, 장치들 간의 직접 신호 송수신 즉, D2D 동작도 요구하고 있다.Public safety networks have higher service requirements (reliability and security) than commercial communication networks, and require direct signal transmission and reception, or D2D operation, between devices, especially when cellular coverage is not available or available. .
D2D 동작은 근접한 기기들 간의 신호 송수신이라는 점에서 다양한 장점을 가질 수 있다. 예를 들어, D2D 단말은 높은 전송률 및 낮은 지연을 가지며 데이터 통신을 할 수 있다. 또한, D2D 동작은 기지국에 몰리는 트래픽을 분산시킬 수 있으며, D2D 단말이 중계기 역할을 한다면 기지국의 커버리지를 확장시키는 역할도 할 수 있다. D2D operation may have various advantages in that it transmits and receives signals between adjacent devices. For example, the D2D user equipment has a high data rate and low delay and can perform data communication. In addition, the D2D operation may distribute traffic congested at the base station, and may also serve to extend the coverage of the base station if the D2D terminal serves as a relay.
V2X(vehicle to everything)는 D2D 기술에 이동성을 추가해 차량이 주행하면서 도로 인프라나 다른 차량과 지속적으로 상호 통신하며 교통 상황 등 유용한 정보를 교환, 공유하는 기술이다.V2X (vehicle to everything) is a technology that adds mobility to D2D technology, allowing vehicles to continue to communicate with road infrastructure and other vehicles as they drive, exchanging and sharing useful information such as traffic conditions.
4G(4th-Generation) 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G(5th-Generation) 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (beyond 4G network) 통신 시스템 또는 LTE(long term evolution) 시스템 이후(post LTE) 이후의 시스템이라 불리고 있다.Efforts have been made to develop an improved 5th-generation (5G) communication system or a pre-5G communication system to meet the increasing demand for wireless data traffic since the commercialization of a 4th-generation (4G) communication system. For this reason, a 5G communication system or a pre-5G communication system is called a system after a 4G network (beyond 4G network) or after a long term evolution (LTE) system (post LTE).
한편, 기지국이 V2X 전송에 대한 설정을 'PC5 only'로 설정한 경우, 'PC5 only' 설정을 수신한 단말은 V2X 메시지가 Uu 인터페이스를 통해 전송될 수 없음을 알 수 있다. 또한, 기지국은 V2X 베어러를 사용하여 V2X 메시지를 전송하지 않을 수 있다. 이러한 상황에서, V2X 베어러를 통해 트래픽이 전달되지 않기 때문에, V2X 베어러가 해제되지 않는 것은 문제가 되지 않는다. V2X 베어러는 단말이 V2X 서비스를 지원하는 네트워크에 위치하는 동안 항상 사용될 수 있기 때문에, 단말이 V2X 서비스를 지원하는 네트워크에 위치하는 동안에, V2X 베어러는 해제될 필요가 없다. V2X 베어러를 해제하는 것은 시그널링 오버헤드를 유발하는 원인이 될 수 있기 때문이다. 따라서, 'PC5 only'로 설정된 기지국은 V2X 베어러에 대한 자원 할당을 보류할 필요가 있다. 또한, 'PC5 only'로 설정된 기지국에 위치하는 단말은 V2X 베어러의 컨텍스트를 비활성화하지 않고 유지할 필요가 있다.On the other hand, when the base station has set the configuration for the V2X transmission to 'PC5 only', the terminal receiving the 'PC5 only' setting can be seen that the V2X message can not be transmitted through the Uu interface. Also, the base station may not transmit the V2X message using the V2X bearer. In this situation, since no traffic is carried over the V2X bearer, it is not a problem that the V2X bearer is not released. Since the V2X bearer can always be used while the terminal is located in the network supporting the V2X service, while the terminal is located in the network supporting the V2X service, the V2X bearer does not need to be released. This is because releasing the V2X bearer may cause signaling overhead. Therefore, the base station set to 'PC5 only' needs to withhold resource allocation for the V2X bearer. In addition, the terminal located in the base station set to 'PC5 only' needs to maintain the context of the V2X bearer without deactivation.
일 실시 예에 있어서, 무선 통신 시스템에서 기지국이 V2X(vehicle to everything) 통신을 수행하는 방법이 제공된다. 상기 방법은, V2X 베어러(bearer)를 지시하는 V2X 베어러 지시자(indication)를 수신하되, 상기 V2X 베어러는 V2X 서비스에 대하여 사용되는 베어러인 단계; 상기 기지국이 PC5 기반의 V2X 서비스 또는 Uu 기반의 V2X 서비스 중 상기 PC5 기반의 V2X 서비스만을 지원하는 것으로 결정하는 단계; 상기 V2X 베어러에 대한 자원 할당을 보류하는 단계; 및 상기 V2X 베어러에 대한 자원 할당이 보류됨을 지시하는 정보를 MME(mobility management entity)에게 전송하는 단계;를 포함할 수 있다.In one embodiment, a method for a base station to perform a vehicle to everything (V2X) communication in a wireless communication system is provided. The method includes receiving a V2X bearer indication indicating a V2X bearer, wherein the V2X bearer is a bearer used for a V2X service; Determining that the base station supports only the PC5 based V2X service among the PC5 based V2X service or the Uu based V2X service; Withholding resource allocation for the V2X bearer; And transmitting information indicating that resource allocation for the V2X bearer is suspended to a mobility management entity (MME).
상기 기지국이 오직 상기 PC5 기반의 V2X 서비스만을 지원하는 것으로 결정되면, 상기 V2X 베어러에 대한 자원 할당이 보류될 수 있다.If the base station is determined to support only the PC5 based V2X service, resource allocation for the V2X bearer may be suspended.
상기 방법은, 상기 V2X 베어러에 대한 자원 할당이 보류됨을 지시하는 정보를 단말에게 전송하는 단계;를 더 포함할 수 있다. 상기 기지국은 타겟 기지국이고, 상기 단말에게 전송되는 정보는 소스 기지국을 거쳐 상기 단말에게 전송될 수 있다. 상기 정보는 상기 V2X 베어러의 식별자(ID)를 포함할 수 있다.The method may further include transmitting information indicating that resource allocation to the V2X bearer is suspended to the terminal. The base station is a target base station, the information transmitted to the terminal may be transmitted to the terminal via a source base station. The information may include an identifier (ID) of the V2X bearer.
상기 방법은, 상기 기지국이 상기 Uu 기반의 V2X 서비스를 지원하는 것으로 결정하는 단계; 및 상기 V2X 베어러에 대하여 자원을 할당하는 단계;를 더 포함할 수 있다. 상기 방법은, 상기 V2X 베어러에 대하여 할당된 자원을 기반으로 상기 V2X 서비스에 대한 DRB를 확립하는 단계; 및 상기 V2X 베어러에 대한 DRB가 확립되었음을 지시하는 정보를 상기 MME에게 전송하는 단계;를 더 포함할 수 있다.The method includes determining that the base station supports the Uu based V2X service; And allocating resources to the V2X bearer. The method includes establishing a DRB for the V2X service based on resources allocated for the V2X bearer; And transmitting information indicating that the DRB for the V2X bearer is established to the MME.
다른 실시 예에 있어서, 무선 통신 시스템에서 장치가 V2X(vehicle to everything) 통신을 수행하는 방법이 제공된다. 상기 방법은, V2X 베어러(bearer)에 대한 자원 할당이 보류됨을 지시하는 정보를 기지국으로부터 수신하되, 상기 V2X 베어러는 V2X 서비스에 대하여 사용되는 베어러인 단계; 상기 V2X 베어러의 비활성화를 보류하도록 지시하는 마킹(marking)을 상기 V2X 베어러에 수행하는 단계; 및 상기 마킹된 V2X 베어러의 컨텍스트를 유지하는 단계;를 포함할 수 있다.In another embodiment, a method of performing a vehicle to everything (V2X) communication in a wireless communication system is provided. The method includes receiving information from a base station indicating that resource allocation for a V2X bearer is suspended, wherein the V2X bearer is a bearer used for a V2X service; Performing marking on the V2X bearer instructing to suspend deactivation of the V2X bearer; And maintaining a context of the marked V2X bearer.
상기 기지국이 PC5 기반의 V2X 서비스 또는 Uu 기반의 V2X 서비스 중 상기 PC5 기반의 V2X 서비스만을 지원하면, 상기 V2X 베어러에 대한 자원 할당은 상기 기지국에 의해 보류될 수 있다.If the base station supports only the PC5-based V2X service among the PC5-based V2X service or the Uu-based V2X service, resource allocation for the V2X bearer may be suspended by the base station.
상기 장치는 MME(mobility management entity)일 수 있다. 상기 장치가 MME이면, 상기 방법은 상기 V2X 베어러에 대한 DRB가 확립되었음을 지시하는 정보를 상기 기지국으로부터 수신하는 단계; 및 상기 DRB가 확립되었음을 지시하는 정보가 수신되면, 상기 V2X 베어러에 상기 마킹을 제거하는 단계;를 더 포함할 수 있다.The device may be a mobility management entity (MME). If the device is an MME, the method includes receiving information from the base station indicating that a DRB for the V2X bearer has been established; And if the information indicating that the DRB has been established is removed, removing the marking from the V2X bearer.
상기 장치는 단말일 수 있다. 상기 장치가 단말이면, 상기 방법은 RRC 연결 재설정 메시지(RRC connection reconfiguration message)를 상기 기지국으로부터 수신하는 단계; 및 상기 RRC 연결 재설정 메시지가 수신되면, 상기 V2X 베어러에 상기 마킹을 제거하는 단계;를 더 포함할 수 있다. 상기 단말의 AS 계층은 상기 V2X 베어러에 대한 DRB가 확립되었음을 상기 단말의 NAS에게 알릴 수 있다.The device may be a terminal. If the device is a terminal, the method includes receiving an RRC connection reconfiguration message from the base station; And if the RRC connection reconfiguration message is received, removing the marking on the V2X bearer. The AS layer of the terminal may inform the NAS of the terminal that the DRB for the V2X bearer is established.
다른 실시 예에 있어서, 무선 통신 시스템에서 V2X(vehicle to everything) 통신을 수행하는 기지국이 제공된다. 상기 기지국은 메모리; 송수신기; 및 상기 메모리와 상기 송수신기를 연결하는 프로세서를 포함하되, 상기 프로세서는 상기 송수신기가 V2X 베어러(bearer)를 지시하는 V2X 베어러 지시자(indication)를 수신하도록 제어하되, 상기 V2X 베어러는 V2X 서비스에 대하여 사용되는 베어러이고, 상기 기지국이 PC5 기반의 V2X 서비스 또는 Uu 기반의 V2X 서비스 중 상기 PC5 기반의 V2X 서비스만을 지원하는 것으로 결정하고, 상기 V2X 베어러에 대한 자원 할당을 보류하고, 및 상기 송수신기가 상기 V2X 베어러에 대한 자원 할당이 보류됨을 지시하는 정보를 MME(mobility management entity)에게 전송하는 것을 제어하도록 구성될 수 있다.In another embodiment, a base station for performing vehicle to everything (V2X) communication in a wireless communication system is provided. The base station includes a memory; Transceiver; And a processor connecting the memory and the transceiver, wherein the processor controls the transceiver to receive a V2X bearer indicator indicating a V2X bearer, wherein the V2X bearer is used for a V2X service. Determine that the base station supports only the PC5 based V2X service among the PC5 based V2X service or the Uu based V2X service, withhold resource allocation to the V2X bearer, and the transceiver to the V2X bearer It may be configured to control transmitting information to the mobility management entity (MME) indicating that resource allocation for the resource is suspended.
V2X 베어러의 컨텍스트가 해제되지 않고 유지될 수 있다.The context of the V2X bearer may be maintained without being released.
도 1은 LTE 시스템의 구조를 나타낸다.1 shows a structure of an LTE system.
도 2는 제어 평면에 대한 LTE 시스템의 무선 인터페이스 프로토콜을 나타낸다. 2 shows an air interface protocol of an LTE system for a control plane.
도 3은 사용자 평면에 대한 LTE 시스템의 무선 인터페이스 프로토콜을 나타낸다.3 shows an air interface protocol of an LTE system for a user plane.
도 4는 5G 시스템의 구조를 나타낸다.4 shows the structure of a 5G system.
도 5는 ProSe를 위한 기준 구조를 나타낸다. 5 shows a reference structure for ProSe.
도 6은 V2X 통신 환경을 나타내는 도면이다.6 shows a V2X communication environment.
도 7은 V2X를 위해 고려되는 시나리오를 나타낸다.7 illustrates a scenario considered for V2X.
도 8은 MME에 의해 개시되는 전용 베어러 비활성화 절차를 나타낸다.8 shows a dedicated bearer deactivation procedure initiated by the MME.
도 9는 기지국이 V2X 베어러를 해제하도록 허용하는 경우, 코어 네트워크에서 발생할 수 있는 시그널링 임팩트를 설명하기 위한 도면이다.FIG. 9 is a diagram for describing signaling impact that may occur in a core network when a base station allows a V2X bearer to be released. FIG.
도 10은 단말에 의해 개시되는 베어러 자원 수정 절차를 나타낸다.10 shows a bearer resource modification procedure initiated by the terminal.
도 11은 본 발명의 일 실시 예에 따라, PC5 기반의 V2X 서비스와 Uu 기반의 V2X 서비스 사이의 스위칭을 위한 서비스 요청 절차를 나타낸다.11 illustrates a service request procedure for switching between a PC5 based V2X service and a Uu based V2X service according to an embodiment of the present invention.
도 12는 본 발명의 일 실시 예에 따라, PC5 기반의 V2X 서비스와 Uu 기반의 V2X 서비스 사이의 스위칭을 위한 서비스 요청 절차를 나타낸다.12 illustrates a service request procedure for switching between a PC5 based V2X service and a Uu based V2X service according to an embodiment of the present invention.
도 13은 본 발명의 일 실시 예에 따라, PC5 기반의 V2X 서비스와 Uu 기반의 V2X 서비스 사이의 스위칭을 위한 핸드오버 절차를 나타낸다.FIG. 13 illustrates a handover procedure for switching between a PC5 based V2X service and a Uu based V2X service according to an embodiment of the present invention.
도 14는 본 발명의 일 실시 예에 따라, PC5 기반의 V2X 서비스와 Uu 기반의 V2X 서비스 사이의 스위칭을 위한 핸드오버 절차를 나타낸다.14 illustrates a handover procedure for switching between a PC5 based V2X service and a Uu based V2X service according to an embodiment of the present invention.
도 15는 본 발명의 일 실시 예에 따라, Uu 기반의 V2X 서비스가 개시되는 절차를 나타낸다.15 illustrates a procedure of starting a Uu-based V2X service according to an embodiment of the present invention.
도 16은 본 발명의 일 실시 예에 따라, PC5 기반의 V2X 서비스와 Uu 기반의 V2X 서비스가 스위칭되는 절차를 나타낸다.FIG. 16 illustrates a procedure of switching between a PC5 based V2X service and a Uu based V2X service according to an embodiment of the present invention.
도 17은 본 발명의 일 실시 예에 따라, 기지국이 V2X 통신을 수행하는 방법을 나타낸다.17 illustrates a method of performing a V2X communication by a base station according to an embodiment of the present invention.
도 18은 본 발명의 일 실시 예에 따라, MME 또는 단말이 V2X 통신을 수행하는 방법을 나타낸다.18 illustrates a method of performing V2X communication by an MME or a terminal according to an embodiment of the present invention.
도 19는 본 발명의 실시 예가 구현되는 무선 통신 시스템의 블록도이다.19 is a block diagram of a wireless communication system in which an embodiment of the present invention is implemented.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE(institute of electrical and electronics engineers) 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. IEEE 802.16m은 IEEE 802.16e의 진화로, IEEE 802.16e에 기반한 시스템과의 하위 호환성(backward compatibility)를 제공한다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA(evolved-UMTS terrestrial radio access)를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다. 5G 통신 시스템은 LTE-A의 진화이다.The following techniques include code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), orthogonal frequency division multiple access (OFDMA), single carrier frequency division multiple access (SC-FDMA), and the like. It can be used in various wireless communication systems. CDMA may be implemented with a radio technology such as universal terrestrial radio access (UTRA) or CDMA2000. TDMA may be implemented with wireless technologies such as global system for mobile communications (GSM) / general packet radio service (GPRS) / enhanced data rates for GSM evolution (EDGE). OFDMA may be implemented by wireless technologies such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA), and the like. IEEE 802.16m is an evolution of IEEE 802.16e and provides backward compatibility with systems based on IEEE 802.16e. UTRA is part of a universal mobile telecommunications system (UMTS). 3rd generation partnership project (3GPP) long term evolution (LTE) is part of evolved UMTS (E-UMTS) using evolved-UMTS terrestrial radio access (E-UTRA), which employs OFDMA in downlink and SC in uplink -FDMA is adopted. LTE-A (advanced) is the evolution of 3GPP LTE. 5G communication system is the evolution of LTE-A.
설명을 명확하게 하기 위해, LTE-A를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.For clarity, the following description focuses on LTE-A, but the technical spirit of the present invention is not limited thereto.
도 1은 LTE 시스템의 구조를 나타낸다. 통신 네트워크는 IMS 및 패킷 데이터를 통한 인터넷 전화(Voice over internet protocol: VoIP)와 같은 다양한 통신 서비스들을 제공하기 위하여 넓게 설치된다.1 shows a structure of an LTE system. Communication networks are widely deployed to provide various communication services such as IMS and Voice over internet protocol (VoIP) over packet data.
도 1을 참조하면, LTE 시스템 구조는 하나 이상의 단말(UE; 10), E-UTRAN(evolved-UMTS terrestrial radio access network) 및 EPC(evolved packet core)를 포함한다. 단말(10)은 사용자에 의해 움직이는 통신 장치이다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), UT(user terminal), SS(subscriber station), 무선기기(wireless device) 등 다른 용어로 불릴 수 있다.Referring to FIG. 1, an LTE system structure includes one or more UEs 10, an evolved-UMTS terrestrial radio access network (E-UTRAN), and an evolved packet core (EPC). The terminal 10 is a communication device moved by a user. The terminal 10 may be fixed or mobile and may be called by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), and a wireless device.
E-UTRAN은 하나 이상의 eNB(evolved node-B; 20)를 포함할 수 있고, 하나의 셀에 복수의 단말이 존재할 수 있다. eNB(20)는 제어 평면(control plane)과 사용자 평면(user plane)의 끝 지점을 단말에게 제공한다. eNB(20)는 일반적으로 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, BS(base station), BTS(base transceiver system), 액세스 포인트(access point) 등 다른 용어로 불릴 수 있다. 하나의 eNB(20)는 셀마다 배치될 수 있다. eNB(20)의 커버리지 내에 하나 이상의 셀이 존재할 수 있다. 하나의 셀은 1.25, 2.5, 5, 10 및 20 MHz 등의 대역폭 중 하나를 가지도록 설정되어 여러 단말에게 하향링크(DL; downlink) 또는 상향링크(UL; uplink) 전송 서비스를 제공할 수 있다. 이때 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.The E-UTRAN may include one or more evolved node-eB (eNB) 20, and a plurality of terminals may exist in one cell. The eNB 20 provides an end point of a control plane and a user plane to the terminal. The eNB 20 generally refers to a fixed station communicating with the terminal 10, and may be referred to in other terms such as a base station (BS), a base transceiver system (BTS), an access point, and the like. . One eNB 20 may be arranged per cell. There may be one or more cells within the coverage of the eNB 20. One cell may be configured to have one of bandwidths such as 1.25, 2.5, 5, 10, and 20 MHz to provide downlink (DL) or uplink (UL) transmission service to various terminals. In this case, different cells may be configured to provide different bandwidths.
이하에서, DL은 eNB(20)에서 단말(10)로의 통신을 의미하며, UL은 단말(10)에서 eNB(20)으로의 통신을 의미한다. DL에서 송신기는 eNB(20)의 일부이고, 수신기는 단말(10)의 일부일 수 있다. UL에서 송신기는 단말(10)의 일부이고, 수신기는 eNB(20)의 일부일 수 있다.Hereinafter, DL means communication from the eNB 20 to the terminal 10, and UL means communication from the terminal 10 to the eNB 20. In the DL, the transmitter may be part of the eNB 20 and the receiver may be part of the terminal 10. In the UL, the transmitter may be part of the terminal 10 and the receiver may be part of the eNB 20.
EPC는 제어 평면의 기능을 담당하는 MME(mobility management entity), 사용자 평면의 기능을 담당하는 S-GW(system architecture evolution (SAE) gateway)를 포함할 수 있다. MME/S-GW(30)은 네트워크의 끝에 위치할 수 있으며, 외부 네트워크와 연결된다. MME는 단말의 접속 정보나 단말의 능력에 관한 정보를 가지며, 이러한 정보는 주로 단말의 이동성 관리에 사용될 수 있다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이다. MME/S-GW(30)은 세션의 종단점과 이동성 관리 기능을 단말(10)에 제공한다. EPC는 PDN(packet data network)-GW(gateway)를 더 포함할 수 있다. PDN-GW는 PDN을 종단점으로 갖는 게이트웨이이다.The EPC may include a mobility management entity (MME) that serves as a control plane, and a system architecture evolution (SAE) gateway (S-GW) that serves as a user plane. The MME / S-GW 30 may be located at the end of the network and is connected to an external network. The MME has information about the access information of the terminal or the capability of the terminal, and this information may be mainly used for mobility management of the terminal. S-GW is a gateway having an E-UTRAN as an endpoint. The MME / S-GW 30 provides the terminal 10 with the endpoint of the session and the mobility management function. The EPC may further include a packet data network (PDN) -gateway (GW). PDN-GW is a gateway with PDN as an endpoint.
MME는 eNB(20)로의 NAS(non-access stratum) 시그널링, NAS 시그널링 보안, AS(access stratum) 보안 제어, 3GPP 액세스 네트워크 간의 이동성을 위한 inter CN(core network) 노드 시그널링, 아이들 모드 단말 도달 가능성(페이징 재전송의 제어 및 실행 포함), 트래킹 영역 리스트 관리(아이들 모드 및 활성화 모드인 단말을 위해), P-GW 및 S-GW 선택, MME 변경과 함께 핸드오버를 위한 MME 선택, 2G 또는 3G 3GPP 액세스 네트워크로의 핸드오버를 위한 SGSN(serving GPRS support node) 선택, 로밍, 인증, 전용 베이러 설정을 포함한 베어러 관리 기능, PWS(public warning system: 지진/쓰나미 경보 시스템(ETWS) 및 상용 모바일 경보 시스템(CMAS) 포함) 메시지 전송 지원 등의 다양한 기능을 제공한다. S-GW 호스트는 사용자 별 기반 패킷 필터링(예를 들면, 심층 패킷 검사를 통해), 합법적 차단, 단말 IP(internet protocol) 주소 할당, DL에서 전송 레벨 패킹 마킹, UL/DL 서비스 레벨 과금, 게이팅 및 등급 강제, APN-AMBR에 기반한 DL 등급 강제의 갖가지 기능을 제공한다. 명확성을 위해 MME/S-GW(30)은 "게이트웨이"로 단순히 표현하며, 이는 MME 및 S-GW를 모두 포함할 수 있다.The MME includes non-access stratum (NAS) signaling to the eNB 20, NAS signaling security, access stratum (AS) security control, inter CN (node network) signaling for mobility between 3GPP access networks, idle mode terminal reachability ( Control and execution of paging retransmission), tracking area list management (for terminals in idle mode and active mode), P-GW and S-GW selection, MME selection for handover with MME change, 2G or 3G 3GPP access Bearer management, including roaming, authentication, and dedicated bearer settings, SGSN (serving GPRS support node) for handover to the network, public warning system (ETWS) and commercial mobile alarm system (PWS) It provides various functions such as CMAS) and message transmission support. S-GW hosts can be based on per-user packet filtering (eg, through deep packet inspection), legal blocking, terminal IP (Internet protocol) address assignment, transport level packing marking in DL, UL / DL service level charging, gating and It provides various functions of class enforcement, DL class enforcement based on APN-AMBR. For clarity, the MME / S-GW 30 is simply represented as a "gateway", which may include both MME and S-GW.
사용자 트래픽 전송 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다. 단말(10) 및 eNB(20)은 Uu 인터페이스에 의해 연결될 수 있다. eNB(20)들은 X2 인터페이스에 의해 상호간 연결될 수 있다. 이웃한 eNB(20)들은 X2 인터페이스에 의한 망형 네트워크 구조를 가질 수 있다. eNB(20)들은 S1 인터페이스에 의해 EPC와 연결될 수 있다. eNB(20)들은 S1-MME 인터페이스에 의해 EPC와 연결될 수 있으며, S1-U 인터페이스에 의해 S-GW와 연결될 수 있다. S1 인터페이스는 eNB(20)와 MME/S-GW(30) 간에 다수-대-다수 관계(many-to-many-relation)를 지원한다.An interface for user traffic transmission or control traffic transmission may be used. The terminal 10 and the eNB 20 may be connected by the Uu interface. The eNBs 20 may be interconnected by an X2 interface. Neighboring eNBs 20 may have a mesh network structure by the X2 interface. The eNBs 20 may be connected with the EPC by the S1 interface. The eNBs 20 may be connected to the EPC by the S1-MME interface and may be connected to the S-GW by the S1-U interface. The S1 interface supports a many-to-many-relation between eNB 20 and MME / S-GW 30.
eNB(20)은 게이트웨이(30)에 대한 선택, RRC(radio resource control) 활성(activation) 동안 게이트웨이(30)로의 라우팅(routing), 페이징 메시지의 스케줄링 및 전송, BCH(broadcast channel) 정보의 스케줄링 및 전송, UL 및 DL에서 단말(10)들로의 자원의 동적 할당, eNB 측정의 설정(configuration) 및 제공(provisioning), 무선 베어러 제어, RAC(radio admission control) 및 LTE 활성 상태에서 연결 이동성 제어 기능을 수행할 수 있다. 상기 언급처럼 게이트웨이(30)는 EPC에서 페이징 개시, LTE 아이들 상태 관리, 사용자 평면의 암호화, SAE 베어러 제어 및 NAS 시그널링의 암호화와 무결성 보호 기능을 수행할 수 있다.The eNB 20 may select for the gateway 30, routing to the gateway 30 during radio resource control (RRC) activation, scheduling and transmission of paging messages, scheduling channel information (BCH), and the like. Perform connection mobility control in transmission, dynamic allocation of resources from the UL and DL to the terminals 10, configuration and provisioning of eNB measurements, radio bearer control, radio admission control (RAC) and LTE activation can do. As mentioned above, the gateway 30 may perform paging initiation, LTE idle state management, user plane encryption, SAE bearer control, and encryption and integrity protection functions of NAS signaling in the EPC.
도 2는 제어 평면에 대한 LTE 시스템의 무선 인터페이스 프로토콜을 나타낸다. 도 3은 사용자 평면에 대한 LTE 시스템의 무선 인터페이스 프로토콜을 나타낸다.2 shows an air interface protocol of an LTE system for a control plane. 3 shows an air interface protocol of an LTE system for a user plane.
단말과 E-UTRAN 간의 무선 인터페이스 프로토콜의 계층은 통신 시스템에서 널리 알려진 OSI(open system interconnection) 모델의 하위 3개 계층을 바탕으로 L1(제1 계층), L2(제2 계층) 및 L3(제3 계층)으로 구분된다. 단말과 E-UTRAN 간의 무선 인터페이스 프로토콜은 수평적으로 물리 계층, 데이터 링크 계층(data link layer) 및 네트워크 계층(network layer)으로 구분될 수 있고, 수직적으로는 제어 신호 전송을 위한 프로토콜 스택(protocol stack)인 제어 평면(control plane)과 데이터 정보 전송을 위한 프로토콜 스택인 사용자 평면(user plane)으로 구분될 수 있다. 무선 인터페이스 프로토콜의 계층은 단말과 E-UTRAN에서 쌍(pair)으로 존재할 수 있고, 이는 Uu 인터페이스의 데이터 전송을 담당할 수 있다.The layer of the air interface protocol between the UE and the E-UTRAN is based on the lower three layers of the open system interconnection (OSI) model, which is well known in communication systems, and includes L1 (first layer), L2 (second layer), and L3 (third layer). Hierarchical). The air interface protocol between the UE and the E-UTRAN may be horizontally divided into a physical layer, a data link layer, and a network layer, and vertically a protocol stack for transmitting control signals. ) Can be divided into a control plane and a user plane which is a protocol stack for transmitting data information. Layers of the radio interface protocol may exist in pairs in the UE and the E-UTRAN, which may be responsible for data transmission of the Uu interface.
물리 계층(PHY; physical layer)은 L1에 속한다. 물리 계층은 물리 채널을 통해 상위 계층에 정보 전송 서비스를 제공한다. 물리 계층은 상위 계층인 MAC(media access control) 계층과 전송 채널(transport channel)을 통해 연결된다. 물리 채널은 전송 채널에 맵핑 된다. 전송 채널을 통해 MAC 계층과 물리 계층 사이로 데이터가 전송될 수 있다. 서로 다른 물리 계층 사이, 즉 송신기의 물리 계층과 수신기의 물리 계층 간에 데이터는 물리 채널을 통해 무선 자원을 이용하여 전송될 수 있다. 물리 계층은 OFDM(orthogonal frequency division multiplexing) 방식을 이용하여 변조될 수 있고, 시간과 주파수를 무선 자원으로 활용한다.The physical layer (PHY) belongs to L1. The physical layer provides an information transmission service to a higher layer through a physical channel. The physical layer is connected to a higher layer of a media access control (MAC) layer through a transport channel. Physical channels are mapped to transport channels. Data may be transmitted between the MAC layer and the physical layer through a transport channel. Data between different physical layers, that is, between the physical layer of the transmitter and the physical layer of the receiver may be transmitted using radio resources through a physical channel. The physical layer may be modulated using an orthogonal frequency division multiplexing (OFDM) scheme, and utilizes time and frequency as radio resources.
물리 계층은 몇몇의 물리 제어 채널(physical control channel)을 사용한다. PDCCH(physical downlink control channel)은 PCH(paging channel) 및 DL-SCH(downlink shared channel)의 자원 할당, DL-SCH와 관련되는 HARQ(hybrid automatic repeat request) 정보에 대하여 단말에 보고한다. PDCCH는 상향링크 전송의 자원 할당에 관하여 단말에 보고하기 위해 상향링크 그랜트를 나를 수 있다. PCFICH(physical control format indicator channel)은 PDCCH를 위해 사용되는 OFDM 심벌의 개수를 단말에 알려주며, 모든 서브프레임마다 전송된다. PHICH(physical hybrid ARQ indicator channel)은 UL-SCH 전송에 대한 HARQ ACK(acknowledgement)/NACK(non-acknowledgement) 신호를 나른다. PUCCH(physical uplink control channel)은 하향링크 전송을 위한 HARQ ACK/NACK, 스케줄링 요청 및 CQI와 같은 UL 제어 정보를 나른다. PUSCH(physical uplink shared channel)은 UL-SCH(uplink shared channel)를 나른다. The physical layer uses several physical control channels. A physical downlink control channel (PDCCH) reports resource allocation of a paging channel (PCH) and a downlink shared channel (DL-SCH), and hybrid automatic repeat request (HARQ) information related to the DL-SCH to the UE. The PDCCH may carry an uplink grant to report to the UE regarding resource allocation of uplink transmission. The physical control format indicator channel (PCFICH) informs the UE of the number of OFDM symbols used for the PDCCH and is transmitted every subframe. A physical hybrid ARQ indicator channel (PHICH) carries a HARQ ACK (non-acknowledgement) / NACK (non-acknowledgement) signal for UL-SCH transmission. A physical uplink control channel (PUCCH) carries UL control information such as HARQ ACK / NACK, a scheduling request, and a CQI for downlink transmission. The physical uplink shared channel (PUSCH) carries an uplink shared channel (UL-SCH).
물리 채널은 시간 영역에서 복수의 서브프레임(subframe)들과 주파수 영역에서 복수의 부반송파(subcarrier)들로 구성된다. 하나의 서브프레임은 시간 영역에서 복수의 심벌들로 구성된다. 하나의 서브프레임은 복수의 자원 블록(RB; resource block)들로 구성된다. 하나의 자원 블록은 복수의 심벌들과 복수의 부반송파들로 구성된다. 또한, 각 서브프레임은 PDCCH를 위하여 해당 서브프레임의 특정 심벌들의 특정 부반송파들을 이용할 수 있다. 예를 들어, 서브프레임의 첫 번째 심벌이 PDCCH를 위하여 사용될 수 있다. PDCCH는 PRB(physical resource block) 및 MCS(modulation and coding schemes)와 같이 동적으로 할당된 자원을 나를 수 있다. 데이터가 전송되는 단위 시간인 TTI(transmission time interval)는 1개의 서브프레임의 길이와 동일할 수 있다. 서브프레임 하나의 길이는 1ms일 수 있다.The physical channel includes a plurality of subframes in the time domain and a plurality of subcarriers in the frequency domain. One subframe consists of a plurality of symbols in the time domain. One subframe consists of a plurality of resource blocks (RBs). One resource block is composed of a plurality of symbols and a plurality of subcarriers. In addition, each subframe may use specific subcarriers of specific symbols of the corresponding subframe for the PDCCH. For example, the first symbol of the subframe may be used for the PDCCH. The PDCCH may carry dynamically allocated resources, such as a physical resource block (PRB) and modulation and coding schemes (MCS). A transmission time interval (TTI), which is a unit time at which data is transmitted, may be equal to the length of one subframe. One subframe may have a length of 1 ms.
전송채널은 채널이 공유되는지 아닌지에 따라 공통 전송 채널 및 전용 전송 채널로 분류된다. 네트워크에서 단말로 데이터를 전송하는 DL 전송 채널(DL transport channel)은 시스템 정보를 전송하는 BCH(broadcast channel), 페이징 메시지를 전송하는 PCH(paging channel), 사용자 트래픽 또는 제어 신호를 전송하는 DL-SCH 등을 포함한다. DL-SCH는 HARQ, 변조, 코딩 및 전송 전력의 변화에 의한 동적 링크 적응 및 동적/반정적 자원 할당을 지원한다. 또한, DL-SCH는 셀 전체에 브로드캐스트 및 빔포밍의 사용을 가능하게 할 수 있다. 시스템 정보는 하나 이상의 시스템 정보 블록들을 나른다. 모든 시스템 정보 블록들은 같은 주기로 전송될 수 있다. MBMS(multimedia broadcast/multicast service)의 트래픽 또는 제어 신호는 MCH(multicast channel)를 통해 전송된다.The transport channel is classified into a common transport channel and a dedicated transport channel depending on whether the channel is shared or not. A DL transport channel for transmitting data from a network to a UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a DL-SCH for transmitting user traffic or control signals. And the like. The DL-SCH supports dynamic link adaptation and dynamic / semi-static resource allocation by varying HARQ, modulation, coding and transmit power. In addition, the DL-SCH may enable the use of broadcast and beamforming throughout the cell. System information carries one or more system information blocks. All system information blocks can be transmitted in the same period. Traffic or control signals of a multimedia broadcast / multicast service (MBMS) are transmitted through a multicast channel (MCH).
단말에서 네트워크로 데이터를 전송하는 UL 전송 채널은 초기 제어 메시지(initial control message)를 전송하는 RACH(random access channel), 사용자 트래픽 또는 제어 신호를 전송하는 UL-SCH 등을 포함한다. UL-SCH는 HARQ 및 전송 전력 및 잠재적인 변조 및 코딩의 변화에 의한 동적 링크 적응을 지원할 수 있다. 또한, UL-SCH는 빔포밍의 사용을 가능하게 할 수 있다. RACH는 일반적으로 셀로의 초기 접속에 사용된다.The UL transport channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message, a UL-SCH for transmitting user traffic or a control signal, and the like. The UL-SCH can support dynamic link adaptation due to HARQ and transmit power and potential changes in modulation and coding. In addition, the UL-SCH may enable the use of beamforming. RACH is generally used for initial connection to a cell.
L2에 속하는 MAC 계층은 논리 채널(logical channel)을 통해 상위 계층인 RLC(radio link control) 계층에게 서비스를 제공한다. MAC 계층은 복수의 논리 채널에서 복수의 전송 채널로의 맵핑 기능을 제공한다. 또한, MAC 계층은 복수의 논리 채널에서 단수의 전송 채널로의 맵핑에 의한 논리 채널 다중화 기능을 제공한다. MAC 부 계층은 논리 채널상의 데이터 전송 서비스를 제공한다.The MAC layer belonging to L2 provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel. The MAC layer provides a mapping function from a plurality of logical channels to a plurality of transport channels. The MAC layer also provides a logical channel multiplexing function by mapping from multiple logical channels to a single transport channel. The MAC sublayer provides data transfer services on logical channels.
논리 채널은 전송되는 정보의 종류에 따라, 제어 평면의 정보 전달을 위한 제어 채널과 사용자 평면의 정보 전달을 위한 트래픽 채널로 나눌 수 있다. 즉, 논리 채널 타입의 집합은 MAC 계층에 의해 제공되는 다른 데이터 전송 서비스를 위해 정의된다. 논리채널은 전송 채널의 상위에 위치하고 전송채널에 맵핑 된다.The logical channel may be divided into a control channel for information transmission in the control plane and a traffic channel for information transmission in the user plane according to the type of information to be transmitted. That is, a set of logical channel types is defined for other data transfer services provided by the MAC layer. The logical channel is located above the transport channel and mapped to the transport channel.
제어 채널은 제어 평면의 정보 전달만을 위해 사용된다. MAC 계층에 의하여 제공되는 제어 채널은 BCCH(broadcast control channel), PCCH(paging control channel), CCCH(common control channel), MCCH(multicast control channel) 및 DCCH(dedicated control channel)을 포함한다. BCCH는 시스템 제어 정보를 방송하기 위한 하향링크 채널이다. PCCH는 페이징 정보의 전송 및 셀 단위의 위치가 네트워크에 알려지지 않은 단말을 페이징 하기 위해 사용되는 하향링크 채널이다. CCCH는 네트워크와 RRC 연결을 갖지 않을 때 단말에 의해 사용된다. MCCH는 네트워크로부터 단말에게 MBMS 제어 정보를 전송하는데 사용되는 일대다 하향링크 채널이다. DCCH는 RRC 연결 상태에서 단말과 네트워크간에 전용 제어 정보 전송을 위해 단말에 의해 사용되는 일대일 양방향 채널이다.The control channel is used only for conveying information in the control plane. The control channel provided by the MAC layer includes a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and a dedicated control channel (DCCH). BCCH is a downlink channel for broadcasting system control information. PCCH is a downlink channel used for transmitting paging information and paging a terminal whose cell-level location is not known to the network. CCCH is used by the terminal when there is no RRC connection with the network. MCCH is a one-to-many downlink channel used to transmit MBMS control information from the network to the terminal. DCCH is a one-to-one bidirectional channel used by the terminal for transmitting dedicated control information between the terminal and the network in an RRC connection state.
트래픽 채널은 사용자 평면의 정보 전달만을 위해 사용된다. MAC 계층에 의하여 제공되는 트래픽 채널은 DTCH(dedicated traffic channel) 및 MTCH(multicast traffic channel)을 포함한다. DTCH는 일대일 채널로 하나의 단말의 사용자 정보의 전송을 위해 사용되며, 상향링크 및 하향링크 모두에 존재할 수 있다. MTCH는 네트워크로부터 단말에게 트래픽 데이터를 전송하기 위한 일대다 하향링크 채널이다.The traffic channel is used only for conveying information in the user plane. The traffic channel provided by the MAC layer includes a dedicated traffic channel (DTCH) and a multicast traffic channel (MTCH). DTCH is used for transmission of user information of one UE in a one-to-one channel and may exist in both uplink and downlink. MTCH is a one-to-many downlink channel for transmitting traffic data from the network to the terminal.
논리 채널과 전송 채널간의 상향링크 연결은 UL-SCH에 맵핑 될 수 있는 DCCH, UL-SCH에 맵핑 될 수 있는 DTCH 및 UL-SCH에 맵핑 될 수 있는 CCCH를 포함한다. 논리 채널과 전송 채널간의 하향링크 연결은 BCH 또는 DL-SCH에 맵핑 될 수 있는 BCCH, PCH에 맵핑 될 수 있는 PCCH, DL-SCH에 맵핑 될 수 있는 DCCH, DL-SCH에 맵핑 될 수 있는 DTCH, MCH에 맵핑 될 수 있는 MCCH 및 MCH에 맵핑 될 수 있는 MTCH를 포함한다.The uplink connection between the logical channel and the transport channel includes a DCCH that can be mapped to the UL-SCH, a DTCH that can be mapped to the UL-SCH, and a CCCH that can be mapped to the UL-SCH. The downlink connection between the logical channel and the transport channel is a BCCH that can be mapped to a BCH or DL-SCH, a PCCH that can be mapped to a PCH, a DCCH that can be mapped to a DL-SCH, a DTCH that can be mapped to a DL-SCH, MCCH that can be mapped to MCH and MTCH that can be mapped to MCH.
RLC 계층은 L2에 속한다. RLC 계층의 기능은 하위 계층이 데이터를 전송하기에 적합하도록 무선 섹션에서 상위 계층으로부터 수신된 데이터의 분할/연접에 의한 데이터의 크기 조정을 포함한다. 무선 베어러(RB; radio bearer)가 요구하는 다양한 QoS를 보장하기 위해, RLC 계층은 투명 모드(TM; transparent mode), 비 확인 모드(UM; unacknowledged mode) 및 확인 모드(AM; acknowledged mode)의 세 가지의 동작 모드를 제공한다. AM RLC는 신뢰성 있는 데이터 전송을 위해 ARQ(automatic repeat request)를 통해 재전송 기능을 제공한다. 한편, RLC 계층의 기능은 MAC 계층 내부의 기능 블록으로 구현될 수 있으며, 이때 RLC 계층은 존재하지 않을 수도 있다.The RLC layer belongs to L2. The function of the RLC layer includes adjusting the size of the data by segmentation / concatenation of the data received from the upper layer in the radio section such that the lower layer is suitable for transmitting data. In order to guarantee the various QoS required by the radio bearer (RB), the RLC layer is divided into three modes: transparent mode (TM), unacknowledged mode (UM) and acknowledged mode (AM). Provides three modes of operation. AM RLC provides retransmission through automatic repeat request (ARQ) for reliable data transmission. Meanwhile, the function of the RLC layer may be implemented as a functional block inside the MAC layer, in which case the RLC layer may not exist.
PDCP(packet data convergence protocol) 계층은 L2에 속한다. PDCP 계층은 상대적으로 대역폭이 작은 무선 인터페이스 상에서 IPv4 또는 IPv6와 같은 IP 패킷을 도입하여 전송되는 데이터가 효율적으로 전송되도록 불필요한 제어 정보를 줄이는 헤더 압축 기능을 제공한다. 헤더 압축은 데이터의 헤더에 필요한 정보만을 전송함으로써 무선 섹션에서 전송 효율을 높인다. 게다가, PDCP 계층은 보안 기능을 제공한다. 보안기능은 제3자의 검사를 방지하는 암호화 및 제3자의 데이터 조작을 방지하는 무결성 보호를 포함한다.The packet data convergence protocol (PDCP) layer belongs to L2. The PDCP layer introduces an IP packet, such as IPv4 or IPv6, over a relatively low bandwidth air interface to provide header compression that reduces unnecessary control information so that the transmitted data is transmitted efficiently. Header compression improves transmission efficiency in the wireless section by transmitting only the information necessary for the header of the data. In addition, the PDCP layer provides security. Security functions include encryption to prevent third party inspection and integrity protection to prevent third party data manipulation.
RRC(radio resource control) 계층은 L3에 속한다. L3의 가장 하단 부분에 위치하는 RRC 계층은 오직 제어 평면에서만 정의된다. RRC 계층은 단말과 네트워크 간의 무선 자원을 제어하는 역할을 수행한다. 이를 위해 단말과 네트워크는 RRC 계층을 통해 RRC 메시지를 교환한다. RRC 계층은 RB들의 구성(configuration), 재구성(re-configuration) 및 해제(release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. RB는 단말과 네트워크 간의 데이터 전달을 위해 L1 및 L2에 의해 제공되는 논리적 경로이다. 즉, RB는 단말과 E-UTRAN 간의 데이터 전송을 위해 L2에 의해 제공되는 서비스를 의미한다. RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 결정함을 의미한다. RB는 SRB(signaling RB)와 DRB(data RB) 두 가지로 구분될 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.The radio resource control (RRC) layer belongs to L3. The RRC layer at the bottom of L3 is defined only in the control plane. The RRC layer serves to control radio resources between the terminal and the network. To this end, the UE and the network exchange RRC messages through the RRC layer. The RRC layer is responsible for the control of logical channels, transport channels and physical channels in connection with the configuration, re-configuration and release of RBs. RB is a logical path provided by L1 and L2 for data transmission between the terminal and the network. That is, RB means a service provided by L2 for data transmission between the UE and the E-UTRAN. Setting up an RB means defining the characteristics of the radio protocol layer and channel to provide a particular service, and determining each specific parameter and method of operation. RBs may be classified into two types: signaling RBs (SRBs) and data RBs (DRBs). The SRB is used as a path for transmitting RRC messages in the control plane, and the DRB is used as a path for transmitting user data in the user plane.
RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.The non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
도 2를 참조하면, RLC 및 MAC 계층(네트워크 측에서 eNB에서 종료)은 스케줄링, ARQ 및 HARQ와 같은 기능을 수행할 수 있다. RRC 계층(네트워크 측에서 eNB에서 종료)은 방송, 페이징, RRC 연결 관리, RB 제어, 이동성 기능 및 단말 측정 보고/제어와 같은 기능을 수행할 수 있다. NAS 제어 프로토콜(네트워크 측에서 게이트웨이의 MME에서 종료)은 SAE 베어러 관리, 인증, LTE_IDLE 이동성 핸들링, LTE_IDLE에서 페이징 개시 및 단말과 게이트웨이 간의 시그널링을 위한 보안 제어와 같은 기능을 수행할 수 있다.Referring to FIG. 2, the RLC and MAC layers (end at the eNB at the network side) may perform functions such as scheduling, ARQ and HARQ. The RRC layer (ended at the eNB at the network side) may perform functions such as broadcast, paging, RRC connection management, RB control, mobility function, and UE measurement report / control. The NAS control protocol (terminated at the gateway's MME at the network side) may perform functions such as SAE bearer management, authentication, LTE_IDLE mobility handling, paging initiation at LTE_IDLE, and security control for signaling between the terminal and the gateway.
도 3을 참조하면, RLC 및 MAC 계층(네트워크 측에서 eNB에서 종료)은 제어 평면에서의 기능과 동일한 기능을 수행할 수 있다. PDCP 계층(네트워크 측에서 eNB에서 종료)은 헤더 압축, 무결성 보호 및 암호화와 같은 사용자 평면 기능을 수행할 수 있다.Referring to FIG. 3, the RLC and MAC layer (end at the eNB at the network side) may perform the same function as the function in the control plane. The PDCP layer (terminating at the eNB at the network side) may perform user plane functions such as header compression, integrity protection and encryption.
이하, 단말의 RRC 상태(RRC state) 및 RRC 연결 방법에 대하여 설명한다.Hereinafter, the RRC state and the RRC connection method of the UE will be described.
RRC 상태는 단말의 RRC 계층이 E-UTRAN의 RRC 계층과 논리적으로 연결되어 있는지 여부를 지시한다. RRC 상태는 RRC 연결 상태(RRC_CONNECTED) 및 RRC 아이들 상태(RRC_IDLE)와 같이 두 가지로 나누어질 수 있다. 단말의 RRC 계층과 E-UTRAN의 RRC 계층 간의 RRC 연결이 설정되어 있을 때, 단말은 RRC 연결 상태에 있게 되며, 그렇지 않은 경우 단말은 RRC 아이들 상태에 있게 된다. RRC_CONNECTED의 단말은 E-UTRAN과 RRC 연결이 설정되어 있으므로, E-UTRAN은 RRC_CONNECTED의 단말의 존재를 파악할 수 있고, 단말을 효과적으로 제어할 수 있다. 한편, E-UTRAN은 RRC_IDLE의 단말을 파악할 수 없으며, 핵심 망(CN; core network)이 셀보다 더 큰 영역인 트래킹 영역(tracking area) 단위로 단말을 관리한다. 즉, RRC_IDLE의 단말은 더 큰 영역의 단위로 존재만 파악되며, 음성 또는 데이터 통신과 같은 통상의 이동 통신 서비스를 받기 위해서 단말은 RRC_CONNECTED로 천이해야 한다.The RRC state indicates whether the RRC layer of the UE is logically connected with the RRC layer of the E-UTRAN. The RRC state may be divided into two types, such as an RRC connected state (RRC_CONNECTED) and an RRC idle state (RRC_IDLE). When the RRC connection between the RRC layer of the terminal and the RRC layer of the E-UTRAN is established, the terminal is in the RRC connection state, otherwise the terminal is in the RRC idle state. Since the terminal of the RRC_CONNECTED has an RRC connection with the E-UTRAN, the E-UTRAN can grasp the existence of the terminal of the RRC_CONNECTED and can effectively control the terminal. Meanwhile, the E-UTRAN cannot grasp the terminal of the RRC_IDLE, and manages the terminal in units of a tracking area in which a core network (CN) is larger than a cell. That is, the terminal of the RRC_IDLE is only identified as a unit of a larger area, and in order to receive a normal mobile communication service such as voice or data communication, the terminal must transition to RRC_CONNECTED.
RRC_IDLE 상태에서, 단말이 NAS에 의해 설정된 DRX(discontinuous reception)를 지정하는 동안에, 단말은 시스템 정보 및 페이징 정보의 방송을 수신할 수 있다. 그리고, 단말은 트래킹 영역에서 단말을 고유하게 지정하는 ID(identification)를 할당 받고, PLMN(public land mobile network) 선택 및 셀 재선택을 수행할 수 있다. 또한 RRC_IDLE 상태에서, 어떠한 RRC context도 eNB에 저장되지 않는다.In the RRC_IDLE state, while the terminal designates a discontinuous reception (DRX) set by the NAS, the terminal may receive a broadcast of system information and paging information. In addition, the terminal may be assigned an identification (ID) that uniquely designates the terminal in the tracking area, and perform public land mobile network (PLMN) selection and cell reselection. In addition, in the RRC_IDLE state, no RRC context is stored in the eNB.
RRC_CONNECTED 상태에서, 단말은 E-UTRAN에서 E-UTRAN RRC 연결 및 RRC context를 가져, eNB로 데이터를 전송 및/또는 eNB로부터 데이터를 수신하는 것이 가능하다. 또한, 단말은 eNB로 채널 품질 정보 및 피드백 정보를 보고할 수 있다. RRC_CONNECTED 상태에서, E-UTRAN은 단말이 속한 셀을 알 수 있다. 그러므로 네트워크는 단말에게 데이터를 전송 및/또는 단말로부터 데이터를 수신할 수 있고, 네트워크는 단말의 이동성(핸드오버 및 NACC(network assisted cell change)를 통한 GERAN(GSM EDGE radio access network)으로 inter-RAT(radio access technology) 셀 변경 지시)을 제어할 수 있으며, 네트워크는 이웃 셀을 위해 셀 측정을 수행할 수 있다.In the RRC_CONNECTED state, the UE may have an E-UTRAN RRC connection and an RRC context in the E-UTRAN to transmit data to the eNB and / or receive data from the eNB. In addition, the terminal may report channel quality information and feedback information to the eNB. In the RRC_CONNECTED state, the E-UTRAN may know the cell to which the UE belongs. Therefore, the network may transmit data to the terminal and / or receive data from the terminal, and the network may inter-RAT with a GSM EDGE radio access network (GERAN) through mobility of the terminal (handover and network assisted cell change (NACC)). radio access technology (cell change indication), and the network may perform cell measurement for a neighboring cell.
RRC_IDLE 상태에서 단말은 페이징 DRX 주기를 지정한다. 구체적으로 단말은 단말 특정 페이징 DRX 주기 마다의 특정 페이징 기회(paging occasion)에 페이징 신호를 모니터링 한다. 페이징 기회는 페이징 신호가 전송되는 동안의 시간 간격이다. 단말은 자신만의 페이징 기회를 가지고 있다.In the RRC_IDLE state, the UE designates a paging DRX cycle. In more detail, the UE monitors a paging signal at a specific paging occasion for each UE specific paging DRX cycle. Paging opportunity is the time interval during which the paging signal is transmitted. The terminal has its own paging opportunity.
페이징 메시지는 동일한 트래킹 영역에 속하는 모든 셀에 걸쳐 전송된다. 만약 단말이 하나의 트래킹 영역에서 다른 하나의 트래킹 영역으로 이동하면, 단말은 위치를 업데이트하기 위해 TAU(tracking area update) 메시지를 네트워크에 전송한다.The paging message is sent across all cells belonging to the same tracking area. If the terminal moves from one tracking area to another tracking area, the terminal sends a tracking area update (TAU) message to the network to update the location.
사용자가 단말의 전원을 최초로 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC_IDLE에 머무른다. RRC 연결을 맺을 필요가 있을 때, RRC_IDLE에 머무르던 단말은 RRC 연결 절차를 통해 E-UTRAN의 RRC와 RRC 연결을 맺고 RRC_CONNECTED로 천이할 수 있다. RRC_IDLE에 머무르던 단말은 사용자의 통화 시도 등의 이유로 상향링크 데이터 전송이 필요할 때, 또는 E-UTRAN으로부터 페이징 메시지를 수신하고 이에 대한 응답 메시지 전송이 필요할 때 등에 E-UTRAN과 RRC 연결을 맺을 필요가 있을 수 있다.When the user first turns on the power of the terminal, the terminal first searches for an appropriate cell and then stays in RRC_IDLE in that cell. When it is necessary to establish an RRC connection, the terminal staying in the RRC_IDLE may make an RRC connection with the RRC of the E-UTRAN through the RRC connection procedure and may transition to the RRC_CONNECTED. The UE staying in RRC_IDLE needs to establish an RRC connection with the E-UTRAN when uplink data transmission is necessary due to a user's call attempt or when a paging message is received from the E-UTRAN and a response message is required. Can be.
NAS 계층에서 단말의 이동성을 관리하기 위하여 EMM-REGISTERED(EPS Mobility Management-REGISTERED) 및 EMM-DEREGISTERED 두 가지 상태가 정의되어 있으며, 이 두 상태는 단말과 MME에게 적용된다. 초기 단말은 EMM-DEREGISTERED 상태이며, 이 단말이 네트워크에 접속하기 위해서 초기 연결(Initial Attach) 절차를 통해서 해당 네트워크에 등록하는 과정을 수행한다. 상기 연결(Attach) 절차가 성공적으로 수행되면 단말 및 MME는 EMM-REGISTERED 상태가 된다.In order to manage mobility of the UE in the NAS layer, two states of EMM-REGISTERED (EPS Mobility Management-REGISTERED) and EMM-DEREGISTERED are defined, and these two states are applied to the UE and the MME. The initial terminal is in the EMM-DEREGISTERED state, and the terminal performs a process of registering with the corresponding network through an initial attach procedure to access the network. If the attach procedure is successfully performed, the UE and the MME are in the EMM-REGISTERED state.
단말과 EPC간 시그널링 연결(signaling connection)을 관리하기 위하여 ECM(EPS Connection Management)-IDLE 상태 및 ECM-CONNECTED 상태 두 가지 상태가 정의되어 있으며, 이 두 상태는 단말 및 MME에게 적용된다. ECM-IDLE 상태의 단말이 E-UTRAN과 RRC 연결을 맺으면 해당 단말은 ECM-CONNECTED 상태가 된다. ECM-IDLE 상태에 있는 MME는 E-UTRAN과 S1 연결(S1 connection)을 맺으면 ECM-CONNECTED 상태가 된다. 단말이 ECM-IDLE 상태에 있을 때에는 E-UTRAN은 단말의 context 정보를 가지고 있지 않다. 따라서 ECM-IDLE 상태의 단말은 네트워크의 명령을 받을 필요 없이 셀 선택(cell selection) 또는 셀 재선택(reselection)과 같은 단말 기반의 이동성 관련 절차를 수행한다. 반면 단말이 ECM-CONNECTED 상태에 있을 때에는 단말의 이동성은 네트워크의 명령에 의해서 관리된다. ECM-IDLE 상태에서 단말의 위치가 네트워크가 알고 있는 위치와 달라질 경우 단말은 트래킹 영역 갱신(Tracking Area Update) 절차를 통해 네트워크에 단말의 해당 위치를 알린다.In order to manage a signaling connection between the UE and the EPC, two states are defined, an EPS Connection Management (ECM) -IDLE state and an ECM-CONNECTED state, and these two states are applied to the UE and the MME. When the UE in the ECM-IDLE state establishes an RRC connection with the E-UTRAN, the UE is in the ECM-CONNECTED state. The MME in the ECM-IDLE state becomes the ECM-CONNECTED state when it establishes an S1 connection with the E-UTRAN. When the terminal is in the ECM-IDLE state, the E-UTRAN does not have the context information of the terminal. Accordingly, the UE in the ECM-IDLE state performs a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network. On the other hand, when the terminal is in the ECM-CONNECTED state, the mobility of the terminal is managed by the command of the network. In the ECM-IDLE state, if the position of the terminal is different from the position known by the network, the terminal informs the network of the corresponding position of the terminal through a tracking area update procedure.
이하, 5G 네트워크 구조에 대하여 설명한다.Hereinafter, the 5G network structure will be described.
도 4는 5G 시스템의 구조를 나타낸다.4 shows the structure of a 5G system.
기존 EPS(Evolved Packet System)의 코어 네트워크 구조인 EPC(Evolved Packet Core)의 경우, MME(Mobility Management Entity), S-GW(Serving Gateway), P-GW(Packet Data Network Gateway) 등 엔티티(entity) 별로 기능, 참조점(reference point), 프로토콜 등이 정의되어 있다.In the case of an Evolved Packet Core (EPC), which is a core network structure of an existing Evolved Packet System (EPS), an entity such as a mobility management entity (MME), a serving gateway (S-GW), and a packet data network gateway (P-GW) Each function, reference point, protocol, etc. are defined.
반면, 5G 코어 네트워크(또는, NextGen 코어 네트워크)의 경우, 네트워크 기능(NF; Network Function) 별로 기능, 참조점, 프로토콜 등이 정의되어 있다. 즉, 5G 코어 네트워크는 엔티티 별로 기능, 참조점, 프로토콜 등이 정의되지 않는다.On the other hand, in the case of a 5G core network (or NextGen core network), functions, reference points, protocols, etc. are defined for each network function (NF). That is, 5G core network does not define functions, reference points, protocols, etc. for each entity.
도 4를 참조하면, 5G 시스템 구조는 하나 이상의 단말(UE; 10), NG-RAN(Next Generation-Radio Access Network) 및 NGC(Next Generation Core)를 포함한다. Referring to FIG. 4, the 5G system structure includes one or more UEs 10, a Next Generation-Radio Access Network (NG-RAN), and a Next Generation Core (NGC).
NG-RAN은 하나 이상의 gNB(40)를 포함할 수 있고, 하나의 셀에 복수의 단말이 존재할 수 있다. gNB(40)는 제어 평면(control plane)과 사용자 평면(user plane)의 끝 지점을 단말에게 제공한다. gNB(40)는 일반적으로 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, BS(base station), BTS(base transceiver system), 액세스 포인트(access point) 등 다른 용어로 불릴 수 있다. 하나의 gNB(40)는 셀마다 배치될 수 있다. gNB(40)의 커버리지 내에 하나 이상의 셀이 존재할 수 있다. The NG-RAN may include one or more gNBs 40, and a plurality of terminals may exist in one cell. The gNB 40 provides the terminal with the control plane and the end point of the user plane. The gNB 40 generally refers to a fixed station communicating with the terminal 10 and may be referred to as other terms such as a base station (BS), a base transceiver system (BTS), an access point, and the like. . One gNB 40 may be arranged per cell. There may be one or more cells within coverage of the gNB 40.
NGC는 제어 평면의 기능을 담당하는 AMF(Access and Mobility Function) 및 SMF(Session Management Function)를 포함할 수 있다. AMF는 이동성 관리 기능을 담당할 수 있고, SMF는 세션 관리 기능을 담당할 수 있다. NGC는 사용자 평면의 기능을 담당하는 UPF(User Plane Function)를 포함할 수 있다.The NGC may include an Access and Mobility Function (AMF) and a Session Management Function (SMF) that are responsible for the functions of the control plane. The AMF may be responsible for the mobility management function, and the SMF may be responsible for the session management function. The NGC may include a user plane function (UPF) that is responsible for the function of the user plane.
사용자 트래픽 전송 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다. 단말(10) 및 gNB(40)은 NG3 인터페이스에 의해 연결될 수 있다. gNB(40)들은 Xn 인터페이스에 의해 상호간 연결될 수 있다. 이웃한 gNB(40)들은 Xn 인터페이스에 의한 망형 네트워크 구조를 가질 수 있다. gNB(40)들은 NG 인터페이스에 의해 NGC와 연결될 수 있다. gNB(40)들은 NG-C 인터페이스에 의해 AMF와 연결될 수 있으며, NG-U 인터페이스에 의해 UPF와 연결될 수 있다. NG 인터페이스는 gNB(40)와 MME/UPF(50) 간에 다수-대-다수 관계(many-to-many-relation)를 지원한다.An interface for user traffic transmission or control traffic transmission may be used. Terminal 10 and gNB 40 may be connected by an NG3 interface. The gNBs 40 may be interconnected by Xn interface. Neighboring gNBs 40 may have a mesh network structure with an Xn interface. The gNBs 40 may be connected to the NGC by the NG interface. The gNBs 40 may be connected to the AMF by the NG-C interface and may be connected to the UPF by the NG-U interface. The NG interface supports a many-to-many-relation between gNB 40 and MME / UPF 50.
gNB 호스트는 무선 자원 관리에 대한 기능 (Functions for Radio Resource Management), IP 헤더 압축 및 사용자 데이터 스트림의 암호화 (IP header compression and encryption of user data stream), AMF로의 라우팅이 단말에 의해 제공된 정보로부터 결정될 수 없을 때 단말 부착에서 AMF의 선택 (Selection of an AMF at UE attachment when no routing to an AMF can be determined from the information provided by the UE), 하나 이상의 UPF를 향한 사용자 평면 데이터의 라우팅 (Routing of User Plane data towards UPF(s)), (AMF로부터 유래된) 페이징 메시지의 전송 및 스케줄링 (Scheduling and transmission of paging messages (originated from the AMF)), (AMF 또는 O&M으로부터 유래된) 시스템 방송 정보의 전송 및 스케줄링 (Scheduling and transmission of system broadcast information (originated from the AMF or O&M)), 또는 스케줄링 및 이동성에 대한 측정 보고 설정 및 측정 (Measurement and measurement reporting configuration for mobility and scheduling)과 같은 기능을 수행할 수 있다.The gNB host may determine functions for radio resource management, IP header compression and encryption of user data stream, and routing to AMF from information provided by the terminal. Selection of an AMF at UE attachment when no routing to an AMF can be determined from the information provided by the UE, Routing of User Plane data to one or more UPFs towards UPF (s)), Scheduling and transmission of paging messages (originated from the AMF), transmission and scheduling of system broadcast information (derived from AMF or O & M) Scheduling and transmission of system broadcast information (originated from the AMF or O & M), or setting up and measuring measurement reports for scheduling and mobility (Me It can perform functions such as asurement and measurement reporting configuration for mobility and scheduling.
AMF(Access and Mobility Function) 호스트는 NAS 시그널링 종료 (NAS signalling termination), NAS 시그널링 보안 (NAS signalling security), AS 보안 제어 (AS Security control), 3GPP 액세스 네트워크 간의 이동성을 위한 인터 CN 노드 시그널링 (Inter CN node signalling for mobility between 3GPP access networks), (페이징 재전송의 실행 및 제어를 포함하는) IDLE 모드 단말 도달 가능성 (Idle mode UE Reachability (including control and execution of paging retransmission)), ACTIVE 모드 및 IDLE 모드에 있는 단말에 대한 트래킹 영역 리스트 관리 (Tracking Area list management (for UE in idle and active mode)), AMF 변경을 수반하는 핸드오버에 대한 AMF 선택 (AMF selection for handovers with AMF change), 액세스 인증 (Access Authentication), 또는 로밍 권한의 확인을 포함하는 액세스 승인 (Access Authorization including check of roaming rights)과 같은 주요 기능을 수행할 수 있다.Access and Mobility Function (AMF) hosts can be used for NAS signaling termination, NAS signaling security, AS Security control, and inter CN node signaling for mobility between 3GPP access networks. node signaling for mobility between 3GPP access networks), IDLE mode UE reachability (including control and execution of paging retransmission), UE in ACTIVE mode and IDLE mode Tracking Area list management (for UE in idle and active mode), AMF selection for handovers with AMF change, Access Authentication, Or perform key functions such as access authorization including check of roaming rights. The.
UPF(User Plane Function) 호스트는 (적용 가능한 경우) 인트라/인터-RAT 이동성을 위한 앵커 포인트 (Anchor point for Intra-/Inter-RAT mobility (when applicable)), 데이터 네트워크로 상호 연결의 외부 PDU 세션 포인트 (External PDU session point of interconnect to Data Network), 패킷 라우팅 및 포워딩 (Packet routing & forwarding), 패킷 검사 및 정책 규칙 적용의 사용자 평면 파트 (Packet inspection and User plane part of Policy rule enforcement), 트래픽 사용 보고 (Traffic usage reporting), 데이터 네트워크로 트래픽 흐름을 라우팅하는 것을 지원하는 업 링크 분류자 (Uplink classifier to support routing traffic flows to a data network), 멀티 홈 PDU 세션을 지원하는 브랜칭 포인트(Branching point to support multi-homed PDU session), 사용자 평면에 대한 QoS 핸들링, 예를 들어, 패킷 필터링, 게이팅, UL/DL 요금 집행 (QoS handling for user plane, e.g. packet filtering, gating, UL/DL rate enforcement), 상향링크 트래픽 확인 (SDF에서 QoS 흐름 매핑으로) (Uplink Traffic verification (SDF to QoS flow mapping)), 하향링크 및 상향링크에서의 전송 레벨 패킷 마킹 (Transport level packet marking in the uplink and downlink), 또는 하향링크 패킷 버퍼링 및 하향링크 데이터 통지 트리거링 (Downlink packet buffering and downlink data notification triggering)과 같은 주요 기능을 수행할 수 있다.A user plane function (UPF) host is an anchor point for Intra- / Inter-RAT mobility (when applicable), an external PDU session point for the interconnection to the data network (if applicable). (External PDU session point of interconnect to Data Network), Packet routing & forwarding, Packet inspection and User plane part of Policy rule enforcement, Traffic usage reporting ( Traffic usage reporting, Uplink classifier to support routing traffic flows to a data network, Branching point to support multi- homed PDU session, QoS handling for the user plane, e.g. packet filtering, gating, QoS handling for user plane, eg packet filtering, gating, UL / DL rate enforcement, uplink traffic verification (SDF to QoS flow mapping), transport level packet marking in downlink and uplink It can perform main functions such as packet marking in the uplink and downlink, or downlink packet buffering and downlink data notification triggering.
SMF(Session Management Function) 호스트는 세션 관리 (Session Management), UE IP 주소 할당 및 관리 (UE IP address allocation and management), UP 기능의 선택 및 제어 (Selection and control of UP function), 트래픽을 적절한 대상으로 라우트하기 위해 UPF에서 트래픽 조정을 구성 (Configures traffic steering at UPF to route traffic to proper destination), QoS 및 정책 집행의 일부를 제어 (Control part of policy enforcement and QoS), 또는 하향링크 데이터 통지 (Downlink Data Notification)와 같은 주요 기능을 수행할 수 있다.The Session Management Function (SMF) host is responsible for session management, UE IP address allocation and management, selection and control of UP functions, and traffic to the appropriate destinations. Configure traffic steering at UPF to route traffic to proper destination, control part of policy enforcement and QoS, or downlink data notification Can perform key functions such as
이하, Below,
D2DD2D
동작에 대해 설명한다. The operation will be described.
3GPP LTE-A에서는 D2D 동작과 관련한 서비스를 근접성 기반 서비스(Proximity based Services: ProSe)라 칭한다. 이하 ProSe는 D2D 동작과 동등한 개념이며 ProSe는 D2D 동작과 혼용될 수 있다. 이하, ProSe에 대해 기술한다. ProSe에는 ProSe 직접 통신(communication)과 ProSe 직접 발견(direct discovery)이 있다.In 3GPP LTE-A, a service related to D2D operation is called proximity based services (ProSe). Hereinafter, ProSe is an equivalent concept to D2D operation, and ProSe may be mixed with D2D operation. Hereinafter, ProSe is described. ProSe has ProSe communication and ProSe direct discovery.
ProSe 직접 통신은 근접한 2 이상의 단말들 간에서 수행되는 통신을 말한다. 상기 단말들은 사용자 평면의 프로토콜을 이용하여 통신을 수행할 수 있다. ProSe 가능 단말(ProSe-enabled UE)은 ProSe의 요구 조건과 관련된 절차를 지원하는 단말을 의미한다. 특별한 다른 언급이 없으면 ProSe 가능 단말은 공용 안전 단말(public safety UE)과 비-공용 안전 단말(non-public safety UE)을 모두 포함한다. 공용 안전 단말은 공용 안전에 특화된 기능과 ProSe 과정을 모두 지원하는 단말이고, 비-공용 안전 단말은 ProSe 과정은 지원하나 공용 안전에 특화된 기능은 지원하지 않는 단말이다. ProSe direct communication refers to communication performed between two or more neighboring terminals. The terminals may perform communication using a user plane protocol. ProSe-enabled UE refers to a terminal that supports a procedure related to the requirements of ProSe. Unless otherwise noted, ProSe capable terminals include both public safety UEs and non-public safety UEs. The public safety terminal is a terminal that supports both a public safety-specific function and a ProSe process. A non-public safety terminal is a terminal that supports a ProSe process but does not support a function specific to public safety.
ProSe 직접 발견(ProSe direct discovery)은 ProSe 가능 단말이 인접한 다른 ProSe 가능 단말을 발견하기 위한 과정이며, 이 때 상기 2개의 ProSe 가능 단말들의 능력만을 사용한다. EPC 차원의 ProSe 발견(EPC-level ProSe discovery)은 EPC가 2개의 ProSe 가능 단말들의 근접 여부를 판단하고, 상기 2개의 ProSe 가능 단말들에게 그들의 근접을 알려주는 과정을 의미한다. 이하, 편의상 ProSe 직접 통신은 D2D 통신, ProSe 직접 발견은 D2D 발견이라 칭할 수 있다.ProSe direct discovery is a process for ProSe capable terminals to discover other ProSe capable terminals that are adjacent to each other, using only the capabilities of the two ProSe capable terminals. EPC-level ProSe discovery refers to a process in which an EPC determines whether two ProSe capable terminals are in proximity and informs the two ProSe capable terminals of their proximity. For convenience, ProSe direct communication may be referred to as D2D communication, and ProSe direct discovery may be referred to as D2D discovery.
이하, Below,
ProSeProSe
직접 통신을 위한 무선 자원 할당에 대하여 설명한다. Radio resource allocation for direct communication will now be described.
ProSe 가능 단말은 ProSe 직접 통신을 위한 자원 할당에 대해 다음 2가지 모드를 이용할 수 있다. ProSe capable terminal may use the following two modes for resource allocation for ProSe direct communication.
1) 모드 1: ProSe 직접 통신을 위한 자원을 기지국으로부터 스케줄링 받는 모드이다. 모드 1에 의하여 단말이 데이터를 전송하기 위해서는 RRC_CONNECTED 상태이여야 한다. 단말은 전송 자원을 기지국에게 요청하고, 기지국은 스케줄링 할당 및 데이터 전송을 위한 자원을 스케줄링한다. 단말은 기지국에게 스케줄링 요청을 전송하고, ProSe BSR(Buffer Status Report)를 전송할 수 있다. 기지국은 ProSe BSR에 기반하여, 상기 단말이 ProSe 직접 통신을 할 데이터를 가지고 있으며 이 전송을 위한 자원이 필요하다고 판단한다. 1) Mode 1: A mode in which resources for ProSe direct communication are scheduled from a base station. In order to transmit data in mode 1, the UE must be in an RRC_CONNECTED state. The terminal requests the base station for transmission resources, and the base station schedules resources for scheduling allocation and data transmission. The terminal may transmit a scheduling request to the base station and may transmit a ProSe BSR (Buffer Status Report). Based on the ProSe BSR, the base station determines that the terminal has data for ProSe direct communication and needs resources for this transmission.
2) 모드 2: 단말이 직접 자원을 선택하는 모드이다. 단말은 자원 풀(resource pool)에서 직접 ProSe 직접 통신을 위한 자원을 선택한다. 자원 풀은 네트워크에 의하여 설정되거나 미리 정해질 수 있다.2) Mode 2: A mode in which a terminal directly selects a resource. The terminal selects a resource for direct ProSe direct communication from a resource pool. The resource pool may be set or predetermined by the network.
한편, 단말이 서빙 셀을 가지고 있는 경우 즉, 단말이 기지국과 RRC_CONNECTED 상태에 있거나 RRC_IDLE 상태로 특정 셀에 위치한 경우에는 상기 단말은 기지국의 커버리지 내에 있다고 간주된다. 단말이 커버리지 밖에 있다면 상기 모드 2만 적용될 수 있다. 만약, 단말이 커버리지 내에 있다면, 기지국의 설정에 따라 모드 1 또는 모드 2를 사용할 수 있다. 다른 예외적인 조건이 없다면 기지국이 설정한 때에만, 단말은 모드 1에서 모드 2로 또는 모드 2에서 모드 1로 모드를 변경할 수 있다.On the other hand, when the terminal has a serving cell, that is, the terminal is in the RRC_CONNECTED state with the base station or located in a specific cell in the RRC_IDLE state, the terminal is considered to be within the coverage of the base station. If the terminal is out of coverage, only mode 2 may be applied. If the terminal is in coverage, mode 1 or mode 2 may be used depending on the configuration of the base station. If there is no other exceptional condition, the terminal may change the mode from mode 1 to mode 2 or from mode 2 to mode 1 only when the base station is configured.
도 5는 ProSe를 위한 기준 구조를 나타낸다. 5 shows a reference structure for ProSe.
도 5를 참조하면, ProSe를 위한 기준 구조는 E-UTRAN, EPC, ProSe 응용 프로그램을 포함하는 복수의 단말들, ProSe 응용 서버(ProSe APP server), 및 ProSe 기능(ProSe function)을 포함한다. EPC는 E-UTRAN 코어 네트워크 구조를 대표한다. EPC는 MME, S-GW, P-GW, 정책 및 과금 규칙(policy and charging rules function: PCRF), 가정 가입자 서버(home subscriber server: HSS)등을 포함할 수 있다. ProSe 응용 서버는 응용 기능을 만들기 위한 ProSe 능력의 사용자이다. ProSe 응용 서버는 단말 내의 응용 프로그램과 통신할 수 있다. 단말 내의 응용 프로그램은 응용 기능을 만들기 위한 ProSe 능력을 사용할 수 있다.Referring to FIG. 5, the reference structure for ProSe includes a plurality of terminals including an E-UTRAN, an EPC, and a ProSe application program, a ProSe application server, and a ProSe function. EPC represents the E-UTRAN core network structure. The EPC may include an MME, S-GW, P-GW, policy and charging rules function (PCRF), home subscriber server (HSS), and the like. ProSe application server is a user of ProSe ability to create application functions. The ProSe application server may communicate with an application program in the terminal. An application program in the terminal may use a ProSe capability for creating an application function.
ProSe 기능은 다음 중 적어도 하나를 포함할 수 있으나 반드시 이에 제한되는 것은 아니다. The ProSe function may include at least one of the following, but is not necessarily limited thereto.
- 제3자 응용 프로그램을 향한 기준점을 통한 인터워킹(Interworking via a reference point towards the 3rd party applications)Interworking via a reference point towards the 3rd party applications
- 발견 및 직접 통신을 위한 인증 및 단말에 대한 설정(Authorization and configuration of the UE for discovery and direct communication) Authentication and configuration of the UE for discovery and direct communication
- EPC 차원의 ProSe 발견의 기능(Enable the functionality of the EPC level ProSe discovery)Enable the functionality of the EPC level ProSe discovery
- ProSe 관련된 새로운 가입자 데이터 및 데이터 저장 조정, ProSe ID의 조정(ProSe related new subscriber data and handling of data storage, and also handling of ProSe identities)ProSe related new subscriber data and handling of data storage, and also handling of ProSe identities
- 보안 관련 기능(Security related functionality)Security related functionality
- 정책 관련 기능을 위하여 EPC를 향한 제어 제공(Provide control towards the EPC for policy related functionality)Provide control towards the EPC for policy related functionality
- 과금을 위한 기능 제공(Provide functionality for charging (via or outside of EPC, e.g., offline charging))Provide functionality for charging (via or outside of EPC, e.g., offline charging)
이하, Below,
ProSe를ProSe
위한 기준 구조에서 기준점과 기준 인터페이스를 설명한다. Reference points and reference interfaces are described in the reference structure.
- PC1: 단말 내의 ProSe 응용 프로그램과 ProSe 응용 서버 내의 ProSe 응용 프로그램 간의 기준 점이다. 이는 응용 차원에서 시그널링 요구 조건을 정의하기 위하여 사용된다. PC1: This is a reference point between a ProSe application in a terminal and a ProSe application in a ProSe application server. This is used to define signaling requirements at the application level.
- PC2: ProSe 응용 서버와 ProSe 기능 간의 기준점이다. 이는 ProSe 응용 서버와 ProSe 기능 간의 상호 작용을 정의하기 위하여 사용된다. ProSe 기능의 ProSe 데이터베이스의 응용 데이터 업데이트가 상기 상호 작용의 일 예가 될 수 있다. PC2: Reference point between ProSe application server and ProSe function. This is used to define the interaction between the ProSe application server and ProSe functionality. An application data update of the ProSe database of the ProSe function may be an example of the interaction.
- PC3: 단말과 ProSe 기능 간의 기준점이다. 단말과 ProSe 기능 간의 상호 작용을 정의하기 위하여 사용된다. ProSe 발견 및 통신을 위한 설정이 상기 상호 작용의 일 예가 될 수 있다. PC3: Reference point between the terminal and the ProSe function. Used to define the interaction between the UE and the ProSe function. The setting for ProSe discovery and communication may be an example of the interaction.
- PC4: EPC와 ProSe 기능 간의 기준점이다. EPC와 ProSe 기능 간의 상호 작용을 정의하기 위하여 사용된다. 상기 상호 작용은 단말들 간에 1:1 통신을 위한 경로를 설정하는 때, 또는 실시간 세션 관리나 이동성 관리를 위한 ProSe 서비스 인증하는 때를 예시할 수 있다. PC4: Reference point between the EPC and ProSe functions. It is used to define the interaction between the EPC and ProSe functions. The interaction may exemplify when establishing a path for 1: 1 communication between terminals, or when authenticating a ProSe service for real time session management or mobility management.
- PC5: 단말들 간에 발견 및 통신, 중계, 1:1 통신을 위해서 제어/사용자 평면을 사용하기 위한 기준점이다. PC5: Reference point for using the control / user plane for discovery and communication, relay, and 1: 1 communication between terminals.
- PC6: 서로 다른 PLMN에 속한 사용자들 간에 ProSe 발견과 같은 기능을 사용하기 위한 기준점이다. PC6: Reference point for using features such as ProSe discovery among users belonging to different PLMNs.
- SGi: 응용 데이터 및 응용 차원 제어 정보 교환을 위해 사용될 수 있다.SGi: can be used for application data and application level control information exchange.
이하, Below,
V2XV2X
(vehicle to everything) 통신에 대하여 설명한다.(vehicle to everything) Discuss communication.
도 6은 V2X 통신 환경을 나타내는 도면이다.6 shows a V2X communication environment.
V2X는 D2D 기술에 이동성을 추가해 차량이 주행하면서 도로 인프라나 다른 차량과 지속적으로 상호 통신하며 교통 상황 등 유용한 정보를 교환, 공유하는 기술이다. 일부 차종을 중심으로 통신기능(Connectivity function)이 적용되고 있으며, 통신 기능의 진화를 통해 차량간(V2V: Vehicle-to-Vehicle) 통신, 차량-인프라간(V2I: Vehicle-to-Infrastructure) 통신, 차량-보행자간 (V2P: Vehicle-to-Pedestrian) 통신, 차량-네트워크간 (V2N: Vehicle-to-Network) 통신을 지원하는 연구가 지속되고 있다.V2X is a technology that adds mobility to D2D technology, allowing vehicles to continue to communicate with road infrastructure and other vehicles as they drive, exchanging and sharing useful information such as traffic conditions. The connectivity function is being applied mainly to some models, and vehicle-to-infrastructure (V2V), vehicle-to-infrastructure (V2I) communication, Research continues to support vehicle-to-pedestrian (V2P) and vehicle-to-network (V2N) communications.
V2X 통신에 의하면, 차량은 지속적으로 자신의 위치, 속도, 방향 등에 관한 정보를 브로드캐스팅한다. 브로드캐스팅된 정보를 수신한 주변의 차량은 자신 주변의 차량들의 움직임을 인지하여 사고 방지에 활용한다. 즉, 개인이 스마트폰 또는 스마트 시계 등의 형태를 갖는 단말을 소지하는 것과 유사하게, 각 차량에도 특정 형태의 단말이 설치될 수 있다. 이때, 차량에 설치되는 단말은 통신망에서 실제 통신 서비스를 제공받는 장치이다. 예를 들어, 차량에 설치되는 단말은 E-UTRAN에서 기지국에 접속하여 통신 서비스를 제공받을 수 있다.According to the V2X communication, the vehicle continuously broadcasts information about its position, speed, direction, and the like. The surrounding vehicle that receives the broadcasted information recognizes the movement of the vehicles around itself and utilizes it for accident prevention. In other words, similarly to an individual having a terminal having a form of a smart phone or a smart watch, a specific type of terminal may be installed in each vehicle. At this time, the terminal installed in the vehicle is a device that receives the actual communication service in the communication network. For example, a terminal installed in a vehicle may access a base station in an E-UTRAN and receive a communication service.
도 7은 V2X를 위해 고려되는 시나리오를 나타낸다.7 illustrates a scenario considered for V2X.
도 7(a)를 참조하면, 오직 단말 사이의 인터페이스인 PC5 기반의 V2X 서비스만을 지원하는 시나리오가 V2X를 위해 고려될 수 있다. 도 7(b)를 참조하면, 오직 기지국과 단말 사이의 인터페이스인 Uu 기반의 V2X 서비스만을 지원하는 시나리오가 V2X를 위해 고려될 수 있다. 도 7(c)를 참조하면, PC5 및 Uu 기반의 V2X 서비스 모두를 지원하는 시나리오가 V2X를 위해 고려될 수 있다. 기지국은 V2X 베어러를 Uu에서 PC5로 스위칭할 수 있다. 즉, 기지국은 Uu 기반의 V2X 서비스를 PC5 기반의 V2X 서비스로 스위칭할 수 있다. Referring to FIG. 7 (a), a scenario in which only a PC5-based V2X service, which is an interface between terminals, is supported may be considered for V2X. Referring to FIG. 7B, a scenario of supporting only Uu-based V2X service, which is an interface between a base station and a terminal, may be considered for V2X. Referring to FIG. 7C, a scenario supporting both PC5 and Uu based V2X services may be considered for V2X. The base station may switch the V2X bearer from Uu to PC5. That is, the base station may switch the Uu based V2X service to the PC5 based V2X service.
한편, Uu 인터페이스의 부하가 높거나 Uu 인터페이스에 과부하가 걸리는 경우, 기지국이 어떤 베어러가 V2X 서비스를 위해 사용되는지 알 수 있으면, 기지국은 필요한 경우 관련 베어러의 해제를 트리거하고, 단말에게 더 많은 PC5 자원을 제공하는 것이 가능할 수 있다. 예를 들어, 기지국은 V2X 베어러를 지시하는 지시자를 수신함으로써 어떤 베어러가 V2X 서비스를 위해 사용되는지 알 수 있다. 하지만, 기지국에 의해 트리거되는 베어러의 해제의 경우, 다음과 같은 문제가 발생할 수 있다.On the other hand, when the load of the Uu interface is high or the Uu interface is overloaded, if the base station can know which bearer is used for V2X service, the base station triggers the release of the associated bearer if necessary, and the terminal more PC5 resources It may be possible to provide. For example, the base station can know which bearer is used for V2X service by receiving an indicator indicating a V2X bearer. However, in the case of release of a bearer triggered by a base station, the following problem may occur.
기지국이 V2X 서비스에 대한 베어러를 해제하는 것을 원하는 경우, MME에 의해 개시되는 전용 베어러 비활성화 절차(MME Initiated Dedicated Bearer Deactivation procedure)가 사용될 수 있다. 본 명세서에서, V2X 서비스에 대한 베어러는 V2X 서비스를 위해 사용되는 베어러 또는 V2X 서비스를 위해 사용될 베어러를 의미하며, 설명의 편의를 위해 V2X 베어러로 칭할 수 있다. MME에 의해 개시되는 전용 베어러 비활성화 절차는 3GPP TS 23.401 V13.6.1 (2016-03) 5.4.4.2절 MME Initiated Dedicated Bearer Deactivation에 구체적으로 설명되어 있다.If the base station wants to release the bearer for the V2X service, the MME Initiated Dedicated Bearer Deactivation procedure initiated by the MME may be used. In this specification, a bearer for a V2X service means a bearer used for a V2X service or a bearer to be used for a V2X service, and may be referred to as a V2X bearer for convenience of description. The dedicated bearer deactivation procedure initiated by the MME is described in detail in Section 5.4.4.2 MME Initiated Dedicated Bearer Deactivation in 3GPP TS 23.401 V13.6.1 (2016-03).
도 8은 MME에 의해 개시되는 전용 베어러 비활성화 절차를 나타낸다.8 shows a dedicated bearer deactivation procedure initiated by the MME.
도 8을 참조하면, 단계 S800에서, ECM_CONNECTED 상태의 단말에 대한 무선 베어러는 로컬 이유(예를 들어, 비정상적인 자원 제한(abnormal resource limitation) 또는 기지국이 할당된 모든 GBR 베어러를 유지하는 것이 허용되지 않는 무선 컨디션)로 인하여 해제될 수 있다. 단, 오류 상황이 발생하지 않는 한, non-GBR 베어러는 기지국에 의해 해제되지 않는다. GBR 베어러와 non-GBR 베어러에 대한 QCI 특성(characteristics)은 표 1과 같이 나타낼 수 있다.Referring to FIG. 8, in step S800, the radio bearer for the UE in the ECM_CONNECTED state is local for reasons such as abnormal resource limitation or radio where the base station is not allowed to maintain all GBR bearers assigned thereto. Condition) can be released. However, the non-GBR bearer is not released by the base station unless an error situation occurs. QCI characteristics for GBR bearers and non-GBR bearers can be shown in Table 1.
QCIQCI | Resource TypeResource Type | Priority LevelPriority level | Packet Delay BudgetPacket Delay Budget | Packet Error Loss RatePacket Error Loss Rate | Example ServicesExample Services |
7575 | GBRGBR | 1.81.8 | 50 ms50 ms | 10-210-2 | V2X messagesV2X messages |
7979 | Non-GBRNon-GBR | 5.85.8 | 50 ms50 ms | 10-210-2 | V2X messagesV2X messages |
즉, 기지국의 오류 상황을 제외하고, 기지국은 non-GBR 베어러를 해제하지 않는다. 한편, V2X 서비스를 위해 사용되는 베어러는 주로 CAM 메시지를 전달하는 non-GBR 베어러이다. 따라서, MME에 의해 개시되는 전용 베어러 비활성화 절차에 의하면, 기지국이 어떤 베어러가 V2X 서비스를 위해 사용되는지 알고 있음에도 불구하고, Uu 인터페이스의 부하가 높거나 Uu 인터페이스에 과부하가 걸리는 경우, 기지국은 V2X 베어러의 해제를 트리거하지 못할 수 있다. MME에 의해 개시되는 전용 베어러 비활성화 절차에서, 기지국은 오류 상황에서만 non-GBR 베어러의 해제를 트리거할 수 있기 때문이다.That is, except for an error condition of the base station, the base station does not release the non-GBR bearer. Meanwhile, the bearer used for the V2X service is mainly a non-GBR bearer carrying a CAM message. Therefore, according to the dedicated bearer deactivation procedure initiated by the MME, even if the base station knows which bearer is used for the V2X service, if the load of the Uu interface is high or the Uu interface is overloaded, the base station may perform It may not trigger the release. This is because, in the dedicated bearer deactivation procedure initiated by the MME, the base station can trigger the release of the non-GBR bearer only in an error situation.
만약 V2X 베어러가 MME에 의해 개시되는 전용 베어러 비활성화 절차를 사용하여 기지국에 의해 해제되는 것이 허용된다고 하더라도, 코어 네트워크에서 시그널링 임팩트(signaling impact)가 V2X 베어러를 생성하거나 해제하는 경우 존재할 수 있다. If a V2X bearer is allowed to be released by the base station using a dedicated bearer deactivation procedure initiated by the MME, there may be a signaling impact in the core network if it creates or releases a V2X bearer.
도 9는 기지국이 V2X 베어러를 해제하도록 허용하는 경우, 코어 네트워크에서 발생할 수 있는 시그널링 임팩트를 설명하기 위한 도면이다.FIG. 9 is a diagram for describing signaling impact that may occur in a core network when a base station allows a V2X bearer to be released. FIG.
단말은 V2X 메시지를 Uu 인터페이스를 통해 전송할 수 있다고 가정한다. 기지국은 V2X 전송을 위해 'Uu only', 'PC5 only' 및 'both Uu and PC5' 중 어느 하나의 설정을 가질 수 있다. 'Uu only'는 기지국이 오직 Uu 기반의 V2X 서비스만을 지원하는 설정이고, 'PC5 only'는 기지국이 오직 PC5 기반의 V2X 서비스만을 지원하는 설정이며, 'both Uu and PC5'는 기지국이 Uu 기반의 V2X 서비스뿐만 아니라 PC5 기반의 V2X 서비스도 지원하는 설정을 의미한다.It is assumed that the terminal can transmit a V2X message through the Uu interface. The base station may have one of 'Uu only', 'PC5 only', and 'both Uu and PC5' for V2X transmission. 'Uu only' is a setting where the base station supports only Uu-based V2X service, 'PC5 only' is a setting where the base station supports only PC5-based V2X service, and 'both Uu and PC5' is a base station based on Uu It means not only V2X service but also PC5-based V2X service.
도 9를 참조하면, 제 1 기지국의 V2X 전송에 대한 설정은 'both Uu and PC5'에서 'PC5 only'로 변경될 수 있다. 이에 따라, 제 1 기지국은 MME에 의해 개시되는 전용 베어러 비활성화 절차를 이용하여 단말의 V2X 베어러를 해제할 수 있다. 하지만, 제 1 기지국의 커버리지 내에 Uu 인터페이스를 통해 V2X 메시지를 전송하는 다수의 단말들이 존재하면, V2X 베어러를 해제하기 위한 네트워크 간의 시그널링이 단말의 수에 따라 급격히 증가할 수 있다. Referring to FIG. 9, the setting for V2X transmission of the first base station may be changed from 'both Uu and PC5' to 'PC5 only'. Accordingly, the first base station may release the V2X bearer of the terminal using a dedicated bearer deactivation procedure initiated by the MME. However, if there are a plurality of terminals transmitting V2X messages through the Uu interface within the coverage of the first base station, signaling between networks for releasing the V2X bearer may increase rapidly according to the number of terminals.
나아가, 코어 네트워크에서 시그널링 임팩트는 기지국이 V2X 베어러를 새롭게 생성하는 경우에도 발생할 수 있다.Furthermore, signaling impact in the core network may occur even when the base station newly creates a V2X bearer.
도 9를 참조하면, 단말은 제 2 기지국으로 이동할 수 있고, 상기 제 2 기지국의 V2X 전송에 대한 설정은 'both Uu and PC5'일 수 있다. 이에 따라, 단말은 Uu 인터페이스를 통해 V2X 메시지를 전달하는 V2X 베어러를 생성하도록 네트워크에게 요청할 수 있다. 이를 위해, 단말은 단말에 의해 개시되는 베어러 자원 수정 절차(UE requested bearer resource modification procedure)를 개시할 수 있다. 단말에 의해 개시되는 베어러 자원 수정 절차는 3GPP TS 23.401 V13.6.1 (2016-03) 5.4.5절 UE requested bearer resource modification에 구체적으로 설명되어 있다.Referring to FIG. 9, the terminal may move to the second base station, and the setting for V2X transmission of the second base station may be 'both Uu and PC5'. Accordingly, the terminal may request the network to create a V2X bearer carrying a V2X message through the Uu interface. To this end, the terminal may initiate a UE requested bearer resource modification procedure initiated by the terminal. The bearer resource modification procedure initiated by the terminal is described in detail in 3GPP TS 23.401 V13.6.1 (2016-03) section 5.4.5 UE requested bearer resource modification.
도 10은 단말에 의해 개시되는 베어러 자원 수정 절차를 나타낸다.10 shows a bearer resource modification procedure initiated by the terminal.
도 10을 참조하면, 단말이 V2X 베어러를 생성하기 위해, 네트워크 엔티티들 사이에 많은 시그널링이 요구될 수 있다. 만약 제 1 기지국에서 제 2 기지국으로 이동하는 단말의 개수가 증가하면, 이로 인해 더 많은 시그널링이 코어 네트워크에서 요구될 수 있다. Referring to FIG. 10, in order for a terminal to create a V2X bearer, much signaling may be required between network entities. If the number of terminals moving from the first base station to the second base station increases, this may require more signaling in the core network.
따라서, 기지국의 V2X 전송에 대한 설정에 따라, 기지국이 특정 V2X 베어러를 해제하거나 셋업하는 것은 네트워크 간에 시그널링 버든(burden)을 부과(impose)할 수 있다. Thus, depending on the configuration of the base station's V2X transmission, the base station's releasing or setting up a particular V2X bearer may impose signaling burden between networks.
한편, Uu 인터페이스의 부하가 높거나 Uu 인터페이스에 과부하가 걸리는 경우, 기지국은 V2X 전송에 대한 설정이 'PC5 only'로 설정됨을 방송할 수 있다. 'PC5 only' 설정을 수신한 단말은 V2X 메시지가 Uu 인터페이스를 통해 전송될 수 없다고 알기 때문에, 기지국은 V2X 베어러를 사용하여 V2X 메시지를 전송하지 않을 수 있다. 이러한 상황에서, V2X 베어러를 통해 트래픽이 전달되지 않기 때문에, V2X 베어러가 해제되지 않는 것은 문제가 되지 않는다. V2X 서비스(예를 들어, CAM 메시지)의 전송을 위해 생성된 베어러(즉, V2X 베어러)는 단말이 V2X 서비스를 지원하는 네트워크에 위치하는 동안 항상 사용될 수 있기 때문에, 단말이 V2X 서비스를 지원하는 네트워크에 위치하는 동안에, V2X 베어러는 해제될 필요가 없다. V2X 베어러를 해제하는 것은 시그널링 오버헤드를 유발하는 원인이 될 수 있기 때문이다. 이하, 본 발명의 일 실시 예에 따라, V2X 베어러를 유지하는 방법 및 이를 지원하는 장치에 대하여 설명한다.Meanwhile, when the load of the Uu interface is high or the Uu interface is overloaded, the base station may broadcast that the setting for the V2X transmission is set to 'PC5 only'. Since the UE that receives the 'PC5 only' setting knows that the V2X message cannot be transmitted through the Uu interface, the base station may not transmit the V2X message using the V2X bearer. In this situation, since no traffic is carried over the V2X bearer, it is not a problem that the V2X bearer is not released. A bearer (ie, a V2X bearer) created for the transmission of a V2X service (eg, a CAM message) can always be used while the terminal is located in a network supporting the V2X service, so that the terminal supports the V2X service. While located at, the V2X bearer does not need to be released. This is because releasing the V2X bearer may cause signaling overhead. Hereinafter, a method of maintaining a V2X bearer and an apparatus supporting the same according to an embodiment of the present invention will be described.
도 11은 본 발명의 일 실시 예에 따라, PC5 기반의 V2X 서비스와 Uu 기반의 V2X 서비스 사이의 스위칭을 위한 서비스 요청 절차를 나타낸다.11 illustrates a service request procedure for switching between a PC5 based V2X service and a Uu based V2X service according to an embodiment of the present invention.
도 11을 참조하면, 단계 S1101에서, 단말은 Uu 상으로 상향링크 데이터를 전송하기 위해 서비스 요청 절차(Service Request procedure)를 트리거할 수 있다. 상기 단말은 V2X 가능 단말(V2X capable UE)일 수 있다.Referring to FIG. 11, in step S1101, the terminal may trigger a service request procedure to transmit uplink data on Uu. The terminal may be a V2X capable UE.
단계 S1102에서, 단말은 RRC 연결 셋업 완료(RRC connection setup complete) 메시지에 캡슐화 된 NAS 메시지 서비스 요청(NAS message Service Request)을 기지국에게 전송할 수 있다.In step S1102, the terminal may transmit a NAS message service request encapsulated in an RRC connection setup complete message to the base station.
단계 S1103에서, 기지국은 초기 UE 메시지(Initial UE Message) 메시지를 포함하는 NAS 메시지 서비스 요청(NAS message Service Request)을 MME/AMF에게 전송할 수 있다.In step S1103, the base station may transmit a NAS message service request including an initial UE message message to the MME / AMF.
단계 S1104에서, MME/AMF가 메시지를 수신하면, MME/AMF는 초기 컨텍스트 셋업 요청(Initial Context Setup Request) 메시지를 기지국에게 전송할 수 있다. 상기 초기 컨텍스트 셋업 요청 메시지는 V2X에 대한 베어러 지시자(bearer indication for V2X)를 포함할 수 있다. 상기 V2X에 대한 베어러 지시자는 요청된 베어러가 V2X 베어러인지 여부를 지시할 수 있다. 본 명세서에서, V2X에 대한 베어러 지시자는 V2X 베어러 지시자라고 칭할 수도 있다.In step S1104, when the MME / AMF receives the message, the MME / AMF may send an Initial Context Setup Request message to the base station. The initial context setup request message may include a bearer indication for V2X. The bearer indicator for the V2X may indicate whether the requested bearer is a V2X bearer. In this specification, a bearer indicator for V2X may be referred to as a V2X bearer indicator.
단계 S1105에서, 기지국은 V2X 전송을 위해 'Uu only', 'PC5 only' 및 'both Uu and PC5' 중 어느 하나의 설정을 가지고 있는지 판단할 수 있다. 기지국이 'PC5 only'로 설정하고 요청된 베어러에 대한 V2X 베어러 지시자를 포함하는 초기 컨텍스트 셋업 요청 메시지를 수신하면, 기지국은 각 V2X 베어러에 대한 V2X 베어러 지시자를 저장하고 V2X 베어러에 자원을 할당하지 않을 수 있다. 즉, 기지국은 V2X 베어러에 대한 자원 할당을 보류할 수 있다.In step S1105, the base station may determine whether any one of the settings 'Uu only', 'PC5 only' and 'both Uu and PC5' for the V2X transmission. When the base station is set to 'PC5 only' and receives an initial context setup request message containing a V2X bearer indicator for the requested bearer, the base station stores the V2X bearer indicator for each V2X bearer and will not allocate resources to the V2X bearer. Can be. That is, the base station may withhold resource allocation for the V2X bearer.
단계 S1106에서, 기지국은 초기 컨텍스트 셋업 응답(Initial Context Setup Response) 메시지로 응답할 수 있다. 상기 초기 컨텍스트 셋업 응답 메시지는 E-RAB Failed to Setup List를 포함할 수 있고, 상기 E-RAB Failed to Setup List는 새로운 원인 값을 포함할 수 있다. 상기 E-RAB Failed to Setup List는 성공적으로 확립되지 않은 E-RAB의 ID의 리스트일 수 있다. 상기 새로운 원인 값은 기지국이 V2X 베어러에 대하여 자원을 할당하지 않았음을 지시할 수 있다. 상기 새로운 원인 값은 기지국이 V2X 베어러에 대한 자원 할당을 보류하였음을 지시할 수 있다.In step S1106, the base station may respond with an Initial Context Setup Response message. The initial context setup response message may include an E-RAB failed to setup list, and the E-RAB failed to setup list may include a new cause value. The E-RAB Failed to Setup List may be a list of IDs of the E-RAB that have not been successfully established. The new cause value may indicate that the base station has not allocated a resource for the V2X bearer. The new cause value may indicate that the base station has suspended resource allocation for the V2X bearer.
단계 S1107에서, 상기 새로운 원인 값이 E-RAB Failed to Setup List에 포함되면, MME/AMF는 수신된 E-RAB Failed to Setup List에 포함된 베어러 컨텍스트를 비활성화(deactivate)하지 않을 수 있다. 즉, 새로운 원인 값을 포함하는 E-RAB Failed to Setup List를 수신한 MME/AMF는 E-RAB Failed to Setup List에 포함된 베어러 컨텍스트를 유지할 수 있다.In step S1107, if the new cause value is included in the E-RAB Failed to Setup List, the MME / AMF may not deactivate the bearer context included in the received E-RAB Failed to Setup List. That is, the MME / AMF receiving the E-RAB Failed to Setup List including the new cause value may maintain the bearer context included in the E-RAB Failed to Setup List.
단계 S1108에서, 기지국은 RRC 연결 재설정(RRC Connection Reconfiguration) 메시지를 단말에게 전송할 수 있다. 상기 RRC 연결 재설정 메시지는 기지국이 V2X 베어러에 대하여 자원을 할당하지 않았음을 지시하는 지시자를 포함할 수 있다. 상기 RRC 연결 재설정 메시지는 기지국이 V2X 베어러에 대한 자원 할당을 보류하였음을 지시하는 지시자를 포함할 수 있다. 부가적으로, 상기 지시자는 베어러 관련 정보를 포함할 수 있다. 예를 들어, 상기 베어러 관련 정보는 베어러 식별자(ID)일 수 있다.In step S1108, the base station may transmit an RRC connection reconfiguration message to the terminal. The RRC connection reconfiguration message may include an indicator indicating that the base station has not allocated resources to the V2X bearer. The RRC connection reestablishment message may include an indicator indicating that the base station has suspended resource allocation for the V2X bearer. In addition, the indicator may include bearer related information. For example, the bearer related information may be a bearer identifier (ID).
단계 S1109에서, 상기 지시자가 RRC 연결 재설정 메시지에 포함되면, 단말은 지시된 베어러 컨텍스트를 재 활성화 및 비활성화하지 않을 수 있다.In step S1109, if the indicator is included in the RRC connection reestablishment message, the terminal may not reactivate and deactivate the indicated bearer context.
도 12는 본 발명의 일 실시 예에 따라, PC5 기반의 V2X 서비스와 Uu 기반의 V2X 서비스 사이의 스위칭을 위한 서비스 요청 절차를 나타낸다.12 illustrates a service request procedure for switching between a PC5 based V2X service and a Uu based V2X service according to an embodiment of the present invention.
도 12를 참조하면, 단계 S1201에서, 단말은 Uu 상으로 상향링크 데이터를 전송하기 위해 서비스 요청 절차(Service Request procedure)를 트리거할 수 있다. 상기 단말은 V2X 가능 단말(V2X capable UE)일 수 있다.Referring to FIG. 12, in step S1201, the terminal may trigger a service request procedure to transmit uplink data on Uu. The terminal may be a V2X capable UE.
단계 S1202에서, 단말은 RRC 연결 셋업 완료(RRC connection setup complete) 메시지에 캡슐화 된 NAS 메시지 서비스 요청(NAS message Service Request)을 기지국에게 전송할 수 있다.In step S1202, the terminal may transmit a NAS message service request encapsulated in an RRC connection setup complete message to the base station.
단계 S1203에서, 기지국은 초기 UE 메시지(Initial UE Message) 메시지를 포함하는 NAS 메시지 서비스 요청(NAS message Service Request)을 MME/AMF에게 전송할 수 있다.In step S1203, the base station may transmit a NAS message service request including an initial UE message message to the MME / AMF.
단계 S1204에서, MME/AMF가 메시지를 수신하면, MME/AMF는 초기 컨텍스트 셋업 요청(Initial Context Setup Request) 메시지를 기지국에게 전송할 수 있다. 상기 초기 컨텍스트 셋업 요청 메시지는 V2X 베어러 지시자를 포함할 수 있다. 상기 V2X 베어러 지시자는 요청된 베어러가 V2X 베어러인지 여부를 지시할 수 있다.In step S1204, when the MME / AMF receives the message, the MME / AMF may send an Initial Context Setup Request message to the base station. The initial context setup request message may include a V2X bearer indicator. The V2X bearer indicator may indicate whether the requested bearer is a V2X bearer.
단계 S1205에서, 기지국은 V2X 전송을 위해 'Uu only', 'PC5 only' 및 'both Uu and PC5' 중 어느 하나의 설정을 가지고 있는지 판단할 수 있다. 기지국이 'PC5 only'로 설정하고 요청된 베어러에 대한 V2X 베어러 지시자를 포함하는 초기 컨텍스트 셋업 요청 메시지를 수신하면, 기지국은 각 V2X 베어러에 대한 V2X 베어러 지시자를 저장하고 V2X 베어러에 자원을 할당하지 않을 수 있다. 즉, 기지국은 V2X 베어러에 대한 자원 할당을 보류할 수 있다.In step S1205, the base station may determine whether any one of the settings 'Uu only', 'PC5 only' and 'both Uu and PC5' for V2X transmission. When the base station is set to 'PC5 only' and receives an initial context setup request message containing a V2X bearer indicator for the requested bearer, the base station stores the V2X bearer indicator for each V2X bearer and will not allocate resources to the V2X bearer. Can be. That is, the base station may withhold resource allocation for the V2X bearer.
단계 S1206에서, 기지국은 초기 컨텍스트 셋업 응답(Initial Context Setup Response) 메시지로 응답할 수 있다. 상기 초기 컨텍스트 셋업 응답 메시지는 E-RAB Failed to Setup List를 포함할 수 있고, 상기 E-RAB Failed to Setup List는 새로운 원인 값을 포함할 수 있다. 상기 E-RAB Failed to Setup List는 성공적으로 확립되지 않은 E-RAB의 ID의 리스트일 수 있다. 상기 새로운 원인 값은 기지국이 V2X 베어러에 대하여 자원을 할당하지 않았음을 지시할 수 있다. 상기 새로운 원인 값은 기지국이 V2X 베어러에 대한 자원 할당을 보류하였음을 지시할 수 있다.In step S1206, the base station may respond with an Initial Context Setup Response message. The initial context setup response message may include an E-RAB failed to setup list, and the E-RAB failed to setup list may include a new cause value. The E-RAB Failed to Setup List may be a list of IDs of the E-RAB that have not been successfully established. The new cause value may indicate that the base station has not allocated a resource for the V2X bearer. The new cause value may indicate that the base station has suspended resource allocation for the V2X bearer.
단계 S1207에서, 상기 새로운 원인 값이 E-RAB Failed to Setup List에 포함되면, MME/AMF는 E-RAB Failed to Setup List에 포함된 베어러에 마킹을 수행할 수 있다. 예를 들어, MME/AMF는 E-RAB Failed to Setup List에 포함된 베어러에 'pending'이라고 마킹할 수 있다. 그리고, MME/AMF는 수신된 E-RAB Failed to Setup List에 포함된 베어러 컨텍스트를 비활성화(deactivate)하지 않을 수 있다. 따라서, 새로운 원인 값을 포함하는 E-RAB Failed to Setup List를 수신한 MME/AMF는 E-RAB Failed to Setup List에 포함된 베어러 컨텍스트를 유지할 수 있다.In step S1207, if the new cause value is included in the E-RAB Failed to Setup List, the MME / AMF may perform marking on the bearer included in the E-RAB Failed to Setup List. For example, the MME / AMF may mark 'pending' on bearers included in the E-RAB Failed to Setup List. The MME / AMF may not deactivate the bearer context included in the received E-RAB Failed to Setup List. Therefore, the MME / AMF receiving the E-RAB Failed to Setup List including the new cause value may maintain the bearer context included in the E-RAB Failed to Setup List.
단계 S1208에서, 기지국은 RRC 연결 재설정(RRC Connection Reconfiguration) 메시지를 단말에게 전송할 수 있다. 상기 RRC 연결 재설정 메시지는 기지국이 V2X 베어러에 대하여 자원을 할당하지 않았음을 지시하는 지시자를 포함할 수 있다. 상기 RRC 연결 재설정 메시지는 기지국이 V2X 베어러에 대한 자원 할당을 보류하였음을 지시하는 지시자를 포함할 수 있다. 부가적으로, 상기 지시자는 베어러 관련 정보를 포함할 수 있다. 예를 들어, 상기 베어러 관련 정보는 베어러 식별자(ID)일 수 있다.In step S1208, the base station may transmit an RRC connection reconfiguration message to the terminal. The RRC connection reconfiguration message may include an indicator indicating that the base station has not allocated resources to the V2X bearer. The RRC connection reestablishment message may include an indicator indicating that the base station has suspended resource allocation for the V2X bearer. In addition, the indicator may include bearer related information. For example, the bearer related information may be a bearer identifier (ID).
단계 S1209에서, 상기 지시자가 RRC 연결 재설정 메시지에 포함되면, 단말은 상기 실패된 리스트에 포함된 베어러에 마킹을 수행할 수 있다. 예를 들어, 단말은 E-RAB Failed to Setup List에 포함된 베어러에 'pending'이라고 마킹할 수 있다. 그리고, 단말은 마킹된 베어러에 대한 EPS 베어러 컨텍스트를 비활성화하지 않을 수 있다. 따라서, 지시자를 포함하는 RRC 연결 재설정 메시지를 수신한 단말은 V2X 베어러의 컨텍스트를 유지할 수 있다. 부가적으로, 단말은 마킹된 베어러를 통해 데이터를 전송하지 않을 수 있다.In step S1209, if the indicator is included in the RRC connection reconfiguration message, the terminal may perform marking on the bearer included in the failed list. For example, the terminal may mark 'pending' on the bearer included in the E-RAB Failed to Setup List. And, the terminal may not deactivate the EPS bearer context for the marked bearer. Accordingly, the terminal receiving the RRC connection reconfiguration message including the indicator may maintain the context of the V2X bearer. Additionally, the terminal may not transmit data on the marked bearer.
도 13은 본 발명의 일 실시 예에 따라, PC5 기반의 V2X 서비스와 Uu 기반의 V2X 서비스 사이의 스위칭을 위한 핸드오버 절차를 나타낸다.FIG. 13 illustrates a handover procedure for switching between a PC5 based V2X service and a Uu based V2X service according to an embodiment of the present invention.
도 13을 참조하면, 단계 S1301에서, 단말은 측정 보고(Measurement Reports) 메시지를 소스 기지국에게 전송할 수 있다.Referring to FIG. 13, in step S1301, the terminal may transmit a measurement reports message to the source base station.
단계 S1302에서, 소스 기지국은 수신된 측정 보고를 기반으로 핸드오버를 결정할 수 있다.In step S1302, the source base station may determine the handover based on the received measurement report.
단계 S1303에서, 소스 기지국은 핸드오버 요청(Handover Request) 메시지를 타겟 기지국에게 전송할 수 있다. 상기 핸드오버 요청 메시지는 V2X 베어러 지시자를 포함할 수 있다. 상기 V2X 베어러 지시자는 요청된 베어러가 V2X 베어러인지 여부를 지시할 수 있다.In operation S1303, the source base station may transmit a handover request message to the target base station. The handover request message may include a V2X bearer indicator. The V2X bearer indicator may indicate whether the requested bearer is a V2X bearer.
단계 S1304에서, 타겟 기지국은 V2X 전송을 위해 'Uu only', 'PC5 only' 및 'both Uu and PC5' 중 어느 하나의 설정을 가지고 있는지 판단할 수 있다. 타겟 기지국이 'PC5 only'로 설정하고 요청된 베어러에 대한 V2X 베어러 지시자를 포함하는 핸드오버 요청 메시지를 수신하면, 타겟 기지국은 각 V2X 베어러에 대한 V2X 베어러 지시자를 저장하고 V2X 베어러에 자원을 할당하지 않을 수 있다. 즉, 타겟 기지국은 V2X 베어러에 대한 자원 할당을 보류할 수 있다.In operation S1304, the target base station may determine whether one of 'Uu only', 'PC5 only', and 'both Uu and PC5' has a setting for V2X transmission. When the target base station is set to 'PC5 only' and receives a handover request message containing a V2X bearer indicator for the requested bearer, the target base station stores the V2X bearer indicator for each V2X bearer and does not allocate resources to the V2X bearer. You may not. That is, the target base station may withhold resource allocation for the V2X bearer.
단계 S1305에서, 핸드오버 요청 메시지를 수신한 타겟 기지국은 이에 대한 응답으로 핸드오버 요청 승인(Handover Request Acknowledge) 메시지를 소스 기지국에게 전송할 수 있다. 상기 핸드오버 요청 승인 메시지는 E-RABs Admitted List 또는 E-RABs Not Admitted List를 포함할 수 있고, 상기 E-RABs Admitted List 또는 E-RABs Not Admitted List는 새로운 원인 값을 각각 포함할 수 있다. 상기 핸드오버 요청 승인 메시지는 지시자를 포함할 수 있다. 상기 새로운 원인 값 또는 지시자는 타겟 기지국이 V2X 베어러에 대하여 자원을 할당하지 않았음을 지시할 수 있다. 상기 새로운 원인 값 또는 지시자는 타겟 기지국이 V2X 베어러에 대한 자원 할당을 보류하였음을 지시할 수 있다.In operation S1305, the target base station that has received the handover request message may transmit a handover request acknowledgment message to the source base station in response thereto. The handover request approval message may include an E-RABs Admitted List or an E-RABs Not Admitted List, and the E-RABs Admitted List or E-RABs Not Admitted List may include new cause values, respectively. The handover request approval message may include an indicator. The new cause value or indicator may indicate that the target base station has not allocated resources for the V2X bearer. The new cause value or indicator may indicate that the target base station has suspended resource allocation for the V2X bearer.
단계 S1306에서, 소스 기지국이 타겟 기지국으로부터 메시지를 수신하면, 소스 기지국은 RRC 연결 재설정(RRC Connection Reconfiguration) 메시지를 단말에게 전송할 수 있다. 상기 RRC 연결 재설정 메시지는 기지국이 V2X 베어러에 대하여 자원을 할당하지 않았음을 지시하는 지시자를 포함할 수 있다. 상기 RRC 연결 재설정 메시지는 기지국이 V2X 베어러에 대한 자원 할당을 보류하였음을 지시하는 지시자를 포함할 수 있다. 부가적으로, 상기 지시자는 베어러 관련 정보를 포함할 수 있다. 예를 들어, 상기 베어러 관련 정보는 베어러 식별자(ID)일 수 있다.In step S1306, when the source base station receives a message from the target base station, the source base station may transmit an RRC Connection Reconfiguration message to the terminal. The RRC connection reconfiguration message may include an indicator indicating that the base station has not allocated resources to the V2X bearer. The RRC connection reestablishment message may include an indicator indicating that the base station has suspended resource allocation for the V2X bearer. In addition, the indicator may include bearer related information. For example, the bearer related information may be a bearer identifier (ID).
단계 S1307에서, 단말이 소스 기지국으로부터 메시지를 수신하면, 단말은 디태치를 수행할 수 있다.In step S1307, when the terminal receives a message from the source base station, the terminal may perform a detach.
단계 S1308에서, 단말은 지시된 베어러 컨텍스트를 재 활성화 및 비활성화하지 않을 수 있다.In step S1308, the terminal may not reactivate and deactivate the indicated bearer context.
단계 S1309에서, 단말은 RRC 연결 재설정 완료(RRC Connection Reconfiguration Complete) 메시지를 타겟 기지국에게 전송할 수 있다.In step S1309, the terminal may transmit an RRC Connection Reconfiguration Complete message to the target base station.
단계 S1310에서, 타겟 기지국은 경로 스위치 요청(Path Switch Request) 메시지를 MME/AMF에게 전송할 수 있다. 상기 경로 스위치 요청 메시지는 E-RAB To Be Switched in Downlink List을 포함할 수 있고, 상기 E-RAB To Be Switched in Downlink List는 새로운 원인 값을 포함할 수 있다. 상기 경로 스위치 요청 메시지는 지시자를 포함할 수 있다. 상기 새로운 원인 값 또는 지시자는 타겟 기지국이 V2X 베어러에 대하여 자원을 할당하지 않았음을 지시할 수 있다. 상기 새로운 원인 값 또는 지시자는 타겟 기지국이 V2X 베어러에 대한 자원 할당을 보류하였음을 지시할 수 있다.In step S1310, the target base station may transmit a path switch request message to the MME / AMF. The path switch request message may include an E-RAB To Be Switched in Downlink List, and the E-RAB To Be Switched in Downlink List may include a new cause value. The path switch request message may include an indicator. The new cause value or indicator may indicate that the target base station has not allocated resources for the V2X bearer. The new cause value or indicator may indicate that the target base station has suspended resource allocation for the V2X bearer.
단계 S1311에서, MME/AMF가 타겟 기지국으로부터 메시지를 수신하면, MME/AMF는 리스트에 포함된 베어러 컨텍스트를 비활성화하지 않을 수 있다. 예를 들어, 새로운 원인 값을 포함하는 E-RAB To Be Switched in Downlink List를 수신한 MME/AMF는 E-RAB To Be Switched in Downlink List에 포함된 베어러 컨텍스트를 유지할 수 있다.In step S1311, when the MME / AMF receives a message from the target base station, the MME / AMF may not deactivate the bearer context included in the list. For example, an MME / AMF that has received an E-RAB To Be Switched in Downlink List containing a new cause value may maintain a bearer context included in the E-RAB To Be Switched in Downlink List.
단계 S1312에서, MME/AMF는 경로 스위치 요청 승인(Path Switch Request Acknowledge) 메시지로 타겟 기지국에게 응답할 수 있다.In step S1312, the MME / AMF may respond to the target base station with a Path Switch Request Acknowledge message.
단계 S1313에서, 타겟 기지국은 UE 컨텍스트 해제(UE Context Release) 메시지를 소스 기지국에게 전송할 수 있다.In operation S1313, the target base station may transmit a UE context release message to the source base station.
도 14는 본 발명의 일 실시 예에 따라, PC5 기반의 V2X 서비스와 Uu 기반의 V2X 서비스 사이의 스위칭을 위한 핸드오버 절차를 나타낸다.14 illustrates a handover procedure for switching between a PC5 based V2X service and a Uu based V2X service according to an embodiment of the present invention.
도 14를 참조하면, 단계 S1401에서, 단말은 측정 보고(Measurement Reports) 메시지를 소스 기지국에게 전송할 수 있다.Referring to FIG. 14, in step S1401, the terminal may transmit a measurement reports message to the source base station.
단계 S1402에서, 소스 기지국은 수신된 측정 보고를 기반으로 핸드오버를 결정할 수 있다.In step S1402, the source base station may determine the handover based on the received measurement report.
단계 S1403에서, 소스 기지국은 핸드오버 요청(Handover Request) 메시지를 타겟 기지국에게 전송할 수 있다. 상기 핸드오버 요청 메시지는 V2X 베어러 지시자를 포함할 수 있다. 상기 V2X 베어러 지시자는 요청된 베어러가 V2X 베어러인지 여부를 지시할 수 있다.In operation S1403, the source base station may transmit a handover request message to the target base station. The handover request message may include a V2X bearer indicator. The V2X bearer indicator may indicate whether the requested bearer is a V2X bearer.
단계 S1404에서, 타겟 기지국은 V2X 전송을 위해 'Uu only', 'PC5 only' 및 'both Uu and PC5' 중 어느 하나의 설정을 가지고 있는지 판단할 수 있다. 타겟 기지국이 'PC5 only'로 설정하고 요청된 베어러에 대한 V2X 베어러 지시자를 포함하는 핸드오버 요청 메시지를 수신하면, 타겟 기지국은 각 V2X 베어러에 대한 V2X 베어러 지시자를 저장하고 V2X 베어러에 자원을 할당하지 않을 수 있다. 즉, 타겟 기지국은 V2X 베어러에 대한 자원 할당을 보류할 수 있다.In operation S1404, the target base station may determine whether one of 'Uu only', 'PC5 only', and 'both Uu and PC5' has a setting for V2X transmission. When the target base station is set to 'PC5 only' and receives a handover request message containing a V2X bearer indicator for the requested bearer, the target base station stores the V2X bearer indicator for each V2X bearer and does not allocate resources to the V2X bearer. You may not. That is, the target base station may withhold resource allocation for the V2X bearer.
단계 S1405에서, 핸드오버 요청 메시지를 수신한 타겟 기지국은 이에 대한 응답으로 핸드오버 요청 승인(Handover Request Acknowledge) 메시지를 소스 기지국에게 전송할 수 있다. 상기 핸드오버 요청 승인 메시지는 E-RABs Admitted List 또는 E-RABs Not Admitted List를 포함할 수 있고, 상기 E-RABs Admitted List 또는 E-RABs Not Admitted List는 새로운 원인 값을 각각 포함할 수 있다. 상기 핸드오버 요청 승인 메시지는 지시자를 포함할 수 있다. 상기 새로운 원인 값 또는 지시자는 타겟 기지국이 V2X 베어러에 대하여 자원을 할당하지 않았음을 지시할 수 있다. 상기 새로운 원인 값 또는 지시자는 타겟 기지국이 V2X 베어러에 대한 자원 할당을 보류하였음을 지시할 수 있다.In operation S1405, the target base station that has received the handover request message may transmit a handover request acknowledgment message to the source base station in response thereto. The handover request approval message may include an E-RABs Admitted List or an E-RABs Not Admitted List, and the E-RABs Admitted List or E-RABs Not Admitted List may include new cause values, respectively. The handover request approval message may include an indicator. The new cause value or indicator may indicate that the target base station has not allocated resources for the V2X bearer. The new cause value or indicator may indicate that the target base station has suspended resource allocation for the V2X bearer.
단계 S1406에서, 소스 기지국이 타겟 기지국으로부터 메시지를 수신하면, 소스 기지국은 RRC 연결 재설정(RRC Connection Reconfiguration) 메시지를 단말에게 전송할 수 있다. 상기 RRC 연결 재설정 메시지는 기지국이 V2X 베어러에 대하여 자원을 할당하지 않았음을 지시하는 지시자를 포함할 수 있다. 상기 RRC 연결 재설정 메시지는 기지국이 V2X 베어러에 대한 자원 할당을 보류하였음을 지시하는 지시자를 포함할 수 있다. 부가적으로, 상기 지시자는 베어러 관련 정보를 포함할 수 있다. 예를 들어, 상기 베어러 관련 정보는 베어러 식별자(ID)일 수 있다.In step S1406, when the source base station receives a message from the target base station, the source base station may transmit an RRC connection reconfiguration message to the terminal. The RRC connection reconfiguration message may include an indicator indicating that the base station has not allocated resources to the V2X bearer. The RRC connection reestablishment message may include an indicator indicating that the base station has suspended resource allocation for the V2X bearer. In addition, the indicator may include bearer related information. For example, the bearer related information may be a bearer identifier (ID).
단계 S1407에서, 단말이 소스 기지국으로부터 메시지를 수신하면, 단말은 디태치를 수행할 수 있다.In step S1407, when the terminal receives a message from the source base station, the terminal may perform a detach.
단계 S1408에서, 단말은 실패된 리스트에 포함되고 새로운 원인 값에 의해 지시되는 베어러에 마킹을 수행할 수 있다. 예를 들어, 단말은 실패된 리스트에 포함되고 새로운 원인 값에 의해 지시되는 베어러에 'pending'이라고 마킹할 수 있다. 그리고, 단말은 마킹된 베어러에 대한 EPS 베어러 컨텍스트를 비활성화하지 않을 수 있다. 따라서, 지시자를 포함하는 RRC 연결 재설정 메시지를 수신한 단말은 V2X 베어러의 컨텍스트를 유지할 수 있다. 부가적으로, 단말은 마킹된 베어러를 통해 데이터를 전송하지 않을 수 있다.In step S1408, the terminal may perform marking on the bearer included in the failed list and indicated by the new cause value. For example, the terminal may mark 'pending' on the bearer included in the failed list and indicated by the new cause value. And, the terminal may not deactivate the EPS bearer context for the marked bearer. Accordingly, the terminal receiving the RRC connection reconfiguration message including the indicator may maintain the context of the V2X bearer. Additionally, the terminal may not transmit data on the marked bearer.
단계 S1409에서, 단말은 RRC 연결 재설정 완료(RRC Connection Reconfiguration Complete) 메시지를 타겟 기지국에게 전송할 수 있다.In step S1409, the terminal may transmit an RRC connection reconfiguration complete message to the target base station.
단계 S1410에서, 타겟 기지국은 경로 스위치 요청(Path Switch Request) 메시지를 MME/AMF에게 전송할 수 있다. 상기 경로 스위치 요청 메시지는 E-RAB To Be Switched in Downlink List을 포함할 수 있고, 상기 E-RAB To Be Switched in Downlink List는 새로운 원인 값을 포함할 수 있다. 상기 경로 스위치 요청 메시지는 지시자를 포함할 수 있다. 상기 새로운 원인 값 또는 지시자는 타겟 기지국이 V2X 베어러에 대하여 자원을 할당하지 않았음을 지시할 수 있다. 상기 새로운 원인 값 또는 지시자는 타겟 기지국이 V2X 베어러에 대한 자원 할당을 보류하였음을 지시할 수 있다.In step S1410, the target base station may transmit a path switch request message to the MME / AMF. The path switch request message may include an E-RAB To Be Switched in Downlink List, and the E-RAB To Be Switched in Downlink List may include a new cause value. The path switch request message may include an indicator. The new cause value or indicator may indicate that the target base station has not allocated resources for the V2X bearer. The new cause value or indicator may indicate that the target base station has suspended resource allocation for the V2X bearer.
단계 S1411에서, 상기 새로운 원인 값이 E-RAB To Be Switched in Downlink List에 포함되면, MME/AMF는 E-RAB To Be Switched in Downlink List에 포함된 새로운 원인 값에 의해 지시되는 베어러에 마킹을 수행할 수 있다. 또는, 지시자가 경로 스위치 요청 메시지에 포함되면, MME/AMF는 상기 지시자에 의해 지시되는 베어러에 마킹을 수행할 수 있다. 예를 들어, MME/AMF는 E-RAB To Be Switched in Downlink List에 포함된 베어러에 'pending'이라고 마킹할 수 있다. 그리고, MME/AMF는 리스트에 포함된 베어러 컨텍스트를 비활성화하지 않을 수 있다. 따라서, MME/AMF는 E-RAB To Be Switched in Downlink List에 포함된 베어러 컨텍스트를 유지할 수 있다.In step S1411, if the new cause value is included in the E-RAB To Be Switched in Downlink List, the MME / AMF performs marking on the bearer indicated by the new cause value included in the E-RAB To Be Switched in Downlink List. can do. Alternatively, when the indicator is included in the path switch request message, the MME / AMF may perform marking on the bearer indicated by the indicator. For example, the MME / AMF may mark 'pending' on bearers included in the E-RAB To Be Switched in Downlink List. The MME / AMF may not deactivate the bearer context included in the list. Accordingly, the MME / AMF may maintain a bearer context included in the E-RAB To Be Switched in Downlink List.
단계 S1412에서, MME/AMF는 경로 스위치 요청 승인(Path Switch Request Acknowledge) 메시지로 타겟 기지국에게 응답할 수 있다.In step S1412, the MME / AMF may respond to the target base station with a Path Switch Request Acknowledge message.
단계 S1413에서, 타겟 기지국은 UE 컨텍스트 해제(UE Context Release) 메시지를 소스 기지국에게 전송할 수 있다.In operation S1413, the target base station may transmit a UE context release message to the source base station.
도 15는 본 발명의 일 실시 예에 따라, Uu 기반의 V2X 서비스가 개시되는 절차를 나타낸다.15 illustrates a procedure of starting a Uu-based V2X service according to an embodiment of the present invention.
도 15를 참조하면, 단계 S1501에서, P-GW는 V2X에 대한 하향링크 트래픽을 S-GW를 거쳐 기지국에게 전송할 수 있다.Referring to FIG. 15, in step S1501, the P-GW may transmit downlink traffic for V2X to the base station via the S-GW.
단계 S1502에서, 기지국은 V2X 베어러에 대한 DRB를 확립할지 여부를 결정할 수 있다. 예를 들어, 기지국이 S1-U를 통해 S-GW로부터 V2X에 대한 데이터를 수신하면, 기지국은 V2X 베어러에 대한 DRB를 확립하도록 결정할 수 있다. 예를 들어, V2X에 대한 데이터를 수신한 기지국은 V2X 베어러에 대한 DRB를 확립하기 위해 보류된 V2X 베어러에 대한 자원 할당을 수행할 수 있다.In step S1502, the base station may determine whether to establish a DRB for the V2X bearer. For example, if the base station receives data for V2X from the S-GW via S1-U, the base station may decide to establish a DRB for the V2X bearer. For example, the base station receiving the data for the V2X may perform resource allocation for the held V2X bearer to establish a DRB for the V2X bearer.
단계 S1503에서, V2X 베어러에 대한 DRB를 셋업하기 위해, 기지국은 RRC 연결 재설정(RRC Connection Reconfiguration)를 단말에게 전송할 수 있다.In step S1503, to set up the DRB for the V2X bearer, the base station may transmit an RRC connection reconfiguration (RRC Connection Reconfiguration) to the terminal.
단계 S1504에서, 기지국으로부터 RRC 연결 재설정 메시지가 수신되고, 요청된 DRB가 성공적으로 확립되면, 단말의 AS 계층은 해당 DRB가 성공적으로 확립되었음을 단말의 NAS 계층에게 알릴 수 있다. 이후, 단말은 모든 베어러에 대한 마킹을 제거할 수 있다. 예를 들어, 요청된 DRB가 성공적으로 확립되면, 단말은 도 12의 단계 S1209 또는 도 14의 단계 S1408에서 베어러에 대하여 수행된 'pending' 마킹을 제거할 수 있다. In step S1504, when the RRC connection reconfiguration message is received from the base station, and the requested DRB is successfully established, the AS layer of the terminal may inform the NAS layer of the terminal that the corresponding DRB was successfully established. Thereafter, the terminal may remove the marking for all bearers. For example, if the requested DRB is successfully established, the terminal may remove the 'pending' marking performed on the bearer in step S1209 of FIG. 12 or step S1408 of FIG. 14.
단계 S1505에서, 단말은 RRC 연결 재설정 완료(RRC Connection Reconfiguration Complete) 메시지를 기지국에게 전송할 수 있다.In operation S1505, the terminal may transmit an RRC connection reconfiguration complete message to the base station.
단계 S1506에서, 기지국은 V2X 베어러에 대한 DRB가 확립됨을 지시하는 정보를 MME/AMF에게 전송할 수 있다. 상기 V2X 베어러에 대한 DRB가 확립됨을 지시하는 정보는 DRB 활성화 지시(DRB Activation Indication) 메시지, 기존 메시지, 새로운 메시지에 포함된 새로운 IE 또는 기존 메시지에 포함된 새로운 IE일 수 있다. 상기 정보를 수신한 MME/AMF는 지시된 V2X 베어러에 대하여 자원이 할당되었음을 인지할 수 있다. 이후, MME는 모든 베어러에 대한 마킹을 제거할 수 있다. 예를 들어, V2X 베어러에 대한 DRB가 확립됨을 지시하는 정보를 수신한 MME/AMF는 도 12의 단계 S1207 또는 도 14의 단계 S1411에서 베어러에 대하여 수행된 'pending' 마킹을 제거할 수 있다. In step S1506, the base station may transmit information to the MME / AMF indicating that the DRB for the V2X bearer is established. The information indicating that the DRB for the V2X bearer is established may be a DRB Activation Indication message, an existing message, a new IE included in a new message, or a new IE included in an existing message. Upon receiving the information, the MME / AMF may recognize that resources are allocated to the indicated V2X bearer. The MME may then remove the marking for all bearers. For example, the MME / AMF which has received the information indicating that the DRB for the V2X bearer is established may remove the 'pending' marking performed on the bearer in step S1207 of FIG. 12 or step S1411 of FIG. 14.
단계 S1507에서, 기지국은 V2X 베어러에 대하여 설정된 DRB를 통해 V2X에 대한 데이터를 단말에게 전송할 수 있다.In step S1507, the base station may transmit data for the V2X to the terminal through the DRB set for the V2X bearer.
도 16은 본 발명의 일 실시 예에 따라, PC5 기반의 V2X 서비스와 Uu 기반의 V2X 서비스가 스위칭되는 절차를 나타낸다.FIG. 16 illustrates a procedure of switching between a PC5 based V2X service and a Uu based V2X service according to an embodiment of the present invention.
도 16을 참조하면, 단계 S1600에서, 기지국은 V2X 베어러 지시자를 수신할 수 있다. 상기 V2X 베어러 지시자는 요청된 베어러가 V2X 베어러인지 여부를 지시할 수 있다. 상기 V2X 베어러 지시자는 초기 컨텍스트 셋업 요청 메시지에 포함되어 MME/AMF로부터 수신될 수 있다. 상기 기지국이 타겟 기지국인 경우, 상기 V2X 베어러 지시자는 핸드오버 요청 메시지에 포함되어 소스 기지국으로부터 수신될 수 있다.Referring to FIG. 16, in step S1600, the base station may receive a V2X bearer indicator. The V2X bearer indicator may indicate whether the requested bearer is a V2X bearer. The V2X bearer indicator may be included in an initial context setup request message and received from an MME / AMF. When the base station is a target base station, the V2X bearer indicator may be included in a handover request message and received from a source base station.
단계 S1601에서, 기지국은 상기 기지국이 오직 PC5 기반의 V2X 서비스만을 지원하는지 여부를 결정할 수 있다. 기지국은 PC5 기반의 V2X 서비스 또는 Uu 기반의 V2X 서비스 중 어느 하나 또는 모두를 선택적으로 지원할 수 있다. In step S1601, the base station may determine whether the base station supports only PC5 based V2X service. The base station may selectively support either or both of the PC5 based V2X service or the Uu based V2X service.
단계 S1602에서, 기지국이 PC5 기반의 V2X 서비스만을 지원하는 것으로 결정되면, 기지국은 V2X 베어러에 대한 V2X 베어러 지시자를 저장하고 V2X 베어러에 자원을 할당하지 않을 수 있다. 즉, 기지국은 V2X 베어러에 대한 자원 할당을 보류할 수 있다.If it is determined in step S1602 that the base station supports only PC5 based V2X service, the base station may store the V2X bearer indicator for the V2X bearer and may not allocate resources to the V2X bearer. That is, the base station may withhold resource allocation for the V2X bearer.
단계 S1603에서, 기지국은 기지국에 의한 V2X 베어러에 대한 자원 할당이 보류되었음을 지시하는 정보를 단말에게 전송할 수 있다. 상기 정보는 지시자 또는 원인 값 중 적어도 어느 하나일 수 있다. 상기 정보는 RRC 연결 재설정 메시지에 포함되어 단말에게 전송될 수 있다. In step S1603, the base station may transmit information indicating that the resource allocation for the V2X bearer by the base station is suspended to the terminal. The information may be at least one of an indicator or a cause value. The information may be included in the RRC connection reconfiguration message and transmitted to the terminal.
단계 S1604에서, 단말은 V2X 베어러에 마킹을 수행하고, 마킹된 V2X 베어러의 컨텍스트를 유지할 수 있다. 따라서, 현재 기지국이 PC5 기반의 V2X 서비스만을 제공함에도 불구하고, V2X 베어러의 컨텍스트는 유지될 수 있고, V2X 베어러는 해제되지 않을 수 있다. 나아가, 단말은 V2X 베어러를 통해 데이터 전송을 중단할 수 있다.In step S1604, the terminal may perform marking on the V2X bearer and maintain the context of the marked V2X bearer. Thus, even though the base station currently provides only PC5 based V2X service, the context of the V2X bearer may be maintained and the V2X bearer may not be released. Further, the terminal may stop data transmission through the V2X bearer.
단계 S1605에서, 기지국은 기지국에 의한 V2X 베어러에 대한 자원 할당이 보류되었음을 지시하는 정보를 MME/AMF에게 전송할 수 있다. 상기 정보는 지시자 또는 원인 값 중 적어도 어느 하나일 수 있다. 상기 정보는 초기 컨텍스트 셋업 응답 메시지에 포함되어 MME/AMF에게 전송될 수 있다. 상기 정보는 경로 스위치 요청 메시지에 포함되어 MME/AMF에게 전송될 수 있다.In step S1605, the base station may transmit information indicating that resource allocation for the V2X bearer by the base station is suspended to the MME / AMF. The information may be at least one of an indicator or a cause value. The information may be included in an initial context setup response message and transmitted to the MME / AMF. The information may be included in the path switch request message and transmitted to the MME / AMF.
단계 S1606에서, MME/AMF는 V2X 베어러에 마킹을 수행하고, 마킹된 V2X 베어러의 컨텍스트를 유지할 수 있다. 따라서, 현재 기지국이 PC5 기반의 V2X 서비스만을 제공함에도 불구하고, V2X 베어러의 컨텍스트는 유지될 수 있고, V2X 베어러는 해제되지 않을 수 있다.In step S1606, the MME / AMF may perform marking on the V2X bearer and maintain the context of the marked V2X bearer. Thus, even though the base station currently provides only PC5 based V2X service, the context of the V2X bearer may be maintained and the V2X bearer may not be released.
단계 S1603/S1604 및 단계 S1605/S1606의 순서는 서로 변경될 수 있다. 즉, 기지국은 기지국에 의한 V2X 베어러에 대한 자원 할당이 보류되었음을 지시하는 정보를 MME/AMF에게 전송한 후 단말에게 전송할 수 있다.The order of steps S1603 / S1604 and S1605 / S1606 can be changed from each other. That is, the base station may transmit information indicating that resource allocation for the V2X bearer by the base station is suspended to the MME / AMF and then to the terminal.
단계 S1607에서, 기지국은 상기 기지국이 Uu 기반의 V2X 서비스를 지원하는지 여부를 결정할 수 있다. 기지국이 Uu 기반의 V2X 서비스를 지원하는 것으로 결정되면, 기지국은 보류된 V2X 베어러에 대한 자원 할당을 수행할 수 있다.In step S1607, the base station may determine whether the base station supports Uu-based V2X service. If the base station is determined to support Uu-based V2X service, the base station may perform resource allocation for the reserved V2X bearer.
단계 S1608에서, 기지국은 RRC 연결 재설정 메시지를 단말에게 전송할 수 있다. In step S1608, the base station may transmit an RRC connection reset message to the terminal.
단계 S1609에서, RRC 연결을 성공적으로 확립한 단말은 V2X 베어러에 대한 마킹을 제거할 수 있다. In step S1609, the terminal successfully establishing the RRC connection may remove the marking for the V2X bearer.
단계 S1610에서, 단말은 RRC 연결 재설정 완료 메시지를 기지국에게 전송할 수 있다. In step S1610, the terminal may transmit an RRC connection reset complete message to the base station.
단계 S1611에서, 기지국은 V2X 베어러가 활성화되었음을 지시하는 정보를 MME/AMF에게 전송할 수 있다. In step S1611, the base station may transmit information indicating that the V2X bearer is activated to the MME / AMF.
단계 S1612에서, MME/AMF는 V2X 베어러에 대한 마킹을 제거할 수 있다. In step S1612, the MME / AMF may remove the marking for the V2X bearer.
본 발명의 일 실시 예에 따르면, 기지국이 V2X 서비스에 대한 설정을 'PC5 only'로 설정한 경우, 기지국은 V2X를 위해 사용될 베어러에 대하여 자원을 할당하지 않을 수 있다. 즉, V2X 베어러에 대한 자원 할당을 보류할 수 있다. 그리고, 기지국은 V2X 베어러에 대하여 자원을 할당하지 않았음을 단말 및 MME/AMF에게 알릴 수 있다. MME/AMF는 기지국으로부터 수신된 정보를 기반으로 베어러 컨텍스트를 비활성화하지 않을 수 있다. 단말은 기지국으로부터 수신된 정보를 기반으로 지시된 무선 베어러를 해제하는 것을 시도하지 않을 수 있다. 따라서, 기지국에서의 V2X에 대한 설정이 'PC5 only'임에도 불구하고, V2X 베어러는 해제되지 않고, 유지될 수 있다.According to an embodiment of the present invention, when the base station sets the configuration for the V2X service to 'PC5 only', the base station may not allocate resources to the bearer to be used for V2X. That is, resource allocation for the V2X bearer can be suspended. The base station may inform the terminal and the MME / AMF that the base station has not allocated resources to the V2X bearer. The MME / AMF may not deactivate the bearer context based on the information received from the base station. The terminal may not attempt to release the indicated radio bearer based on the information received from the base station. Thus, even though the setting for V2X at the base station is 'PC5 only', the V2X bearer may not be released and may be maintained.
나아가, 기지국이 V2X 서비스에 대한 설정을 'Uu only' 또는 'both Uu and PC5'로 변경한 경우, 기지국은 V2X 베어러에 대한 자원 할당을 활성화할 수 있고, 단말은 유지된 V2X 베어러를 이용하여 신속하게 V2X 데이터를 수신할 수 있다.Furthermore, when the base station changes the setting for the V2X service to 'Uu only' or 'both Uu and PC5', the base station may activate resource allocation for the V2X bearer, and the terminal may quickly use the maintained V2X bearer. Can receive V2X data.
본 명세서에서 제안된 절차는 단말이 'PC5 only'로 설정된 기지국으로 이동하는 경우에 적용될 수 있다. 본 명세서에서 제안된 절차는 'Uu only' 또는 'both Uu and PC5'로 설정되어 있던 기지국이 'PC5 only'로 설정을 변경하는 경우에 적용될 수 있다. 나아가, 상기 제안된 절차는 LTE에서의 핸드오버 절차 또는 서비스 요청 절차와 유사한 5G 아키텍처(architecture)에서의 RAN 및 CN 간의 시그널링에도 또한 적용될 수 있다.The procedure proposed in this specification may be applied when the terminal moves to a base station set to 'PC5 only'. The procedure proposed in this specification may be applied to a case where the base station set to 'Uu only' or 'both Uu and PC5' changes the configuration to 'PC5 only'. Furthermore, the proposed procedure can also be applied to signaling between RAN and CN in 5G architecture similar to handover procedure or service request procedure in LTE.
도 17은 본 발명의 일 실시 예에 따라, 기지국이 V2X 통신을 수행하는 방법을 나타낸다.17 illustrates a method of performing a V2X communication by a base station according to an embodiment of the present invention.
도 17을 참조하면, 단계 S1710에서, 기지국은 V2X 베어러(bearer)를 지시하는 V2X 베어러 지시자를 수신할 수 있다. 상기 V2X 베어러는 V2X 서비스에 대하여 사용되는 베어러일 수 있다.Referring to FIG. 17, in step S1710, the base station may receive a V2X bearer indicator indicating a V2X bearer. The V2X bearer may be a bearer used for V2X service.
단계 S1720에서, 기지국은 상기 기지국이 PC5 기반의 V2X 서비스 또는 Uu 기반의 V2X 서비스 중 상기 PC5 기반의 V2X 서비스만을 지원하는 것으로 결정할 수 있다. In operation S1720, the base station may determine that the base station supports only the PC5 based V2X service among the PC5 based V2X service or the Uu based V2X service.
단계 S1730에서, 기지국은 상기 V2X 베어러에 대한 자원 할당을 보류할 수 있다. 상기 기지국이 오직 상기 PC5 기반의 V2X 서비스만을 지원하는 것으로 결정되면, 상기 V2X 베어러에 대한 자원 할당이 보류될 수 있다.In step S1730, the base station may withhold resource allocation for the V2X bearer. If the base station is determined to support only the PC5 based V2X service, resource allocation for the V2X bearer may be suspended.
단계 S1740에서, 기지국은 상기 V2X 베어러에 대한 자원 할당이 보류됨을 지시하는 정보를 MME(mobility management entity)에게 전송할 수 있다.In step S1740, the base station may transmit information indicating that the resource allocation for the V2X bearer is suspended to the mobility management entity (MME).
부가적으로, 기지국은 상기 V2X 베어러에 대한 자원 할당이 보류됨을 지시하는 정보를 단말에게 전송할 수 있다. 상기 기지국은 타겟 기지국이고, 상기 단말에게 전송되는 정보는 소스 기지국을 거쳐 상기 단말에게 전송될 수 있다. 상기 정보는 상기 V2X 베어러의 식별자(ID)를 포함할 수 있다.In addition, the base station may transmit information indicating that the resource allocation for the V2X bearer is suspended to the terminal. The base station is a target base station, the information transmitted to the terminal may be transmitted to the terminal via a source base station. The information may include an identifier (ID) of the V2X bearer.
부가적으로, 기지국은 상기 기지국이 상기 Uu 기반의 V2X 서비스를 지원하는 것으로 결정할 수 있고, 상기 V2X 베어러에 대하여 자원을 할당할 수 있다. 이후, 기지국은 상기 V2X 베어러에 대하여 할당된 자원을 기반으로 상기 V2X 서비스에 대한 DRB를 확립할 수 있고, 상기 V2X 베어러에 대한 DRB가 확립되었음을 지시하는 정보를 상기 MME에게 전송할 수 있다.Additionally, the base station may determine that the base station supports the Uu based V2X service, and may allocate resources for the V2X bearer. Thereafter, the base station may establish a DRB for the V2X service based on the resources allocated for the V2X bearer, and transmit information indicating that the DRB for the V2X bearer is established to the MME.
도 18은 본 발명의 일 실시 예에 따라, MME 또는 단말이 V2X 통신을 수행하는 방법을 나타낸다.18 illustrates a method of performing V2X communication by an MME or a terminal according to an embodiment of the present invention.
도 18을 참조하면, 단계 S1810에서, 장치는 V2X 베어러(bearer)에 대한 자원 할당이 보류됨을 지시하는 정보를 기지국으로부터 수신할 수 있다. 상기 V2X 베어러는 V2X 서비스에 대하여 사용되는 베어러일 수 있다. 상기 장치는 MME 또는 단말일 수 있다.Referring to FIG. 18, in step S1810, the device may receive information from the base station indicating that resource allocation for the V2X bearer is suspended. The V2X bearer may be a bearer used for V2X service. The device may be an MME or a terminal.
단계 S1820에서, 장치는 상기 V2X 베어러의 비활성화를 보류하도록 지시하는 마킹(marking)을 상기 V2X 베어러에 수행할 수 있다. 상기 기지국이 PC5 기반의 V2X 서비스 또는 Uu 기반의 V2X 서비스 중 상기 PC5 기반의 V2X 서비스만을 지원하면, 상기 V2X 베어러에 대한 자원 할당은 상기 기지국에 의해 보류될 수 있다.In step S1820, the device may perform marking on the V2X bearer instructing to suspend deactivation of the V2X bearer. If the base station supports only the PC5-based V2X service among the PC5-based V2X service or the Uu-based V2X service, resource allocation for the V2X bearer may be suspended by the base station.
단계 S1830에서, 장치는 상기 마킹된 V2X 베어러의 컨텍스트를 유지할 수 있다.In step S1830, the device may maintain the context of the marked V2X bearer.
상기 장치가 MME이면, 부가적으로, 장치는 상기 V2X 베어러에 대한 DRB가 확립되었음을 지시하는 정보를 상기 기지국으로부터 수신할 수 있다. 상기 DRB가 확립되었음을 지시하는 정보가 수신되면, 장치는 상기 V2X 베어러에 상기 마킹을 제거할 수 있다.If the device is an MME, in addition, the device may receive information from the base station indicating that a DRB for the V2X bearer has been established. Upon receiving information indicating that the DRB has been established, the device may remove the marking on the V2X bearer.
상기 장치가 단말이면, 부가적으로, 장치는 RRC 연결 재설정 메시지(RRC connection reconfiguration message)를 상기 기지국으로부터 수신할 수 있다. 상기 RRC 연결 재설정 메시지가 수신되면, 장치는 상기 V2X 베어러에 상기 마킹을 제거할 수 있다. 상기 단말의 AS 계층은 상기 V2X 베어러에 대한 DRB가 확립되었음을 상기 단말의 NAS에게 알릴 수 있다.If the device is a terminal, the device may additionally receive an RRC connection reconfiguration message from the base station. When the RRC connection reset message is received, the device may remove the marking on the V2X bearer. The AS layer of the terminal may inform the NAS of the terminal that the DRB for the V2X bearer is established.
도 19는 본 발명의 실시 예가 구현되는 무선 통신 시스템의 블록도이다.19 is a block diagram of a wireless communication system in which an embodiment of the present invention is implemented.
단말(1900)은 프로세서(processor, 1901), 메모리(memory, 1902) 및 송수신기(transceiver, 1903)를 포함한다. 메모리(1902)는 프로세서(1901)와 연결되어, 프로세서(1901)를 구동하기 위한 다양한 정보를 저장한다. 송수신기(1903)는 프로세서(1901)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(1901)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시 예에서 단말의 동작은 프로세서(1901)에 의해 구현될 수 있다.The terminal 1900 includes a processor 1901, a memory 1902, and a transceiver 1903. The memory 1902 is connected to the processor 1901 and stores various information for driving the processor 1901. The transceiver 1903 is connected to the processor 1901 and transmits and / or receives a radio signal. The processor 1901 implements the proposed functions, processes, and / or methods. In the above-described embodiment, the operation of the terminal may be implemented by the processor 1901.
기지국(1910)은 프로세서(1911), 메모리(1912) 및 송수신기(1913)를 포함한다. 메모리(1912)는 프로세서(1911)와 연결되어, 프로세서(1911)를 구동하기 위한 다양한 정보를 저장한다. 송수신기(1913)는 프로세서(1911)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(1911)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시 예에서 기지국의 동작은 프로세서(1911)에 의해 구현될 수 있다. Base station 1910 includes a processor 1911, a memory 1912, and a transceiver 1913. The memory 1912 is connected to the processor 1911 and stores various information for driving the processor 1911. The transceiver 1913 is coupled to the processor 1911 to transmit and / or receive wireless signals. Processor 1911 implements the proposed functions, processes, and / or methods. In the above-described embodiment, the operation of the base station may be implemented by the processor 1911.
MME/AMF(1920)는 프로세서(1921), 메모리(1922) 및 송수신기(1923)를 포함한다. 메모리(1922)는 프로세서(1921)와 연결되어, 프로세서(1921)를 구동하기 위한 다양한 정보를 저장한다. 송수신기(1923)는 프로세서(1921)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(1921)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시 예에서 MME/AMF의 동작은 프로세서(1921)에 의해 구현될 수 있다.The MME / AMF 1920 includes a processor 1921, a memory 1922, and a transceiver 1923. The memory 1922 is connected to the processor 1921 to store various information for driving the processor 1921. The transceiver 1923 is connected to the processor 1921 to transmit and / or receive a radio signal. The processor 1921 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the MME / AMF may be implemented by the processor 1921.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래시 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. 송수신기는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시 예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.The processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices. The memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device. The transceiver may include baseband circuitry for processing wireless signals. When the embodiment is implemented in software, the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function. The module may be stored in memory and executed by a processor. The memory may be internal or external to the processor and may be coupled to the processor by various well known means.
상술한 일례들에 기초하여 본 명세서에 따른 다양한 기법들이 도면과 도면 부호를 통해 설명되었다. 설명의 편의를 위해, 각 기법들은 특정한 순서에 따라 다수의 단계나 블록들을 설명하였으나, 이러한 단계나 블록의 구체적 순서는 청구항에 기재된 발명을 제한하는 것이 아니며, 각 단계나 블록은 다른 순서로 구현되거나, 또 다른 단계나 블록들과 동시에 수행되는 것이 가능하다. 또한, 통상의 기술자라면 간 단계나 블록이 한정적으로 기술된 것이나 아니며, 발명의 보호 범위에 영향을 주지 않는 범위 내에서 적어도 하나의 다른 단계들이 추가되거나 삭제되는 것이 가능하다는 것을 알 수 있을 것이다.Based on the examples described above, various techniques in accordance with the present disclosure have been described with reference to the drawings and reference numerals. For convenience of description, each technique described a number of steps or blocks in a specific order, but the specific order of these steps or blocks does not limit the invention described in the claims, and each step or block may be implemented in a different order, or In other words, it is possible to be performed simultaneously with other steps or blocks. In addition, it will be apparent to those skilled in the art that the steps or blocks have not been described in detail, and that at least one other step may be added or deleted without departing from the scope of the invention.
상술한 실시 예는 다양한 일례를 포함한다. 통상의 기술자라면 발명의 모든 가능한 일례의 조합이 설명될 수 없다는 점을 알 것이고, 또한 본 명세서의 기술로부터 다양한 조합이 파생될 수 있다는 점을 알 것이다. 따라서 발명의 보호범위는, 이하 청구항에 기재된 범위를 벗어나지 않는 범위 내에서, 상세한 설명에 기재된 다양한 일례를 조합하여 판단해야 할 것이다.The above-described embodiments include various examples. Those skilled in the art will appreciate that not all possible combinations of examples of the inventions can be described, and that various combinations can be derived from the description herein. Therefore, the protection scope of the invention should be judged by combining various examples described in the detailed description within the scope of the claims described below.
Claims (15)
- 무선 통신 시스템에서 기지국이 V2X(vehicle to everything) 통신을 수행하는 방법에 있어서,In the method for the base station to perform a V2X (vehicle to everything) communication in a wireless communication system,V2X 베어러(bearer)를 지시하는 V2X 베어러 지시자(indication)를 수신하되, 상기 V2X 베어러는 V2X 서비스에 대하여 사용되는 베어러인 단계;Receiving a V2X bearer indicator indicating a V2X bearer, wherein the V2X bearer is a bearer used for a V2X service;상기 기지국이 PC5 기반의 V2X 서비스 또는 Uu 기반의 V2X 서비스 중 상기 PC5 기반의 V2X 서비스만을 지원하는 것으로 결정하는 단계;Determining that the base station supports only the PC5 based V2X service among the PC5 based V2X service or the Uu based V2X service;상기 V2X 베어러에 대한 자원 할당을 보류하는 단계; 및Withholding resource allocation for the V2X bearer; And상기 V2X 베어러에 대한 자원 할당이 보류됨을 지시하는 정보를 MME(mobility management entity)에게 전송하는 단계;를 포함하는 것을 특징으로 하는 방법.Transmitting information indicating that resource allocation for the V2X bearer is suspended to a mobility management entity (MME).
- 제 1 항에 있어서,The method of claim 1,상기 기지국이 오직 상기 PC5 기반의 V2X 서비스만을 지원하는 것으로 결정되면, 상기 V2X 베어러에 대한 자원 할당이 보류되는 것을 특징으로 하는 방법.If the base station is determined to support only the PC5 based V2X service, resource allocation for the V2X bearer is suspended.
- 제 1 항에 있어서,The method of claim 1,상기 V2X 베어러에 대한 자원 할당이 보류됨을 지시하는 정보를 단말에게 전송하는 단계;를 더 포함하는 것을 특징으로 하는 방법.And transmitting information indicating that resource allocation to the V2X bearer is suspended to the terminal.
- 제 3 항에 있어서,The method of claim 3, wherein상기 기지국은 타겟 기지국이고, 상기 단말에게 전송되는 정보는 소스 기지국을 거쳐 상기 단말에게 전송되는 것을 특징으로 하는 방법.The base station is a target base station, characterized in that the information transmitted to the terminal is transmitted to the terminal via a source base station.
- 제 4 항에 있어서,The method of claim 4, wherein상기 정보는 상기 V2X 베어러의 식별자(ID)를 포함하는 것을 특징으로 하는 방법.And the information includes an identifier (ID) of the V2X bearer.
- 제 1 항에 있어서, The method of claim 1,상기 기지국이 상기 Uu 기반의 V2X 서비스를 지원하는 것으로 결정하는 단계; 및 Determining by the base station to support the Uu based V2X service; And상기 V2X 베어러에 대하여 자원을 할당하는 단계;를 더 포함하는 것을 특징으로 하는 방법.Allocating resources for the V2X bearer.
- 제 6 항에 있어서, The method of claim 6,상기 V2X 베어러에 대하여 할당된 자원을 기반으로 상기 V2X 서비스에 대한 DRB를 확립하는 단계; 및 Establishing a DRB for the V2X service based on resources allocated for the V2X bearer; And상기 V2X 베어러에 대한 DRB가 확립되었음을 지시하는 정보를 상기 MME에게 전송하는 단계;를 더 포함하는 것을 특징으로 하는 방법.Transmitting information indicating that a DRB for the V2X bearer has been established to the MME.
- 무선 통신 시스템에서 장치가 V2X(vehicle to everything) 통신을 수행하는 방법에 있어서,In the method for the device to perform a V2X (vehicle to everything) communication in a wireless communication system,V2X 베어러(bearer)에 대한 자원 할당이 보류됨을 지시하는 정보를 기지국으로부터 수신하되, 상기 V2X 베어러는 V2X 서비스에 대하여 사용되는 베어러인 단계;Receiving from the base station information indicating that resource allocation for a V2X bearer is suspended, wherein the V2X bearer is a bearer used for a V2X service;상기 V2X 베어러의 비활성화를 보류하도록 지시하는 마킹(marking)을 상기 V2X 베어러에 수행하는 단계; 및Performing marking on the V2X bearer instructing to suspend deactivation of the V2X bearer; And상기 마킹된 V2X 베어러의 컨텍스트를 유지하는 단계;를 포함하는 것을 특징으로 하는 방법.Maintaining the context of the marked V2X bearer.
- 제 8 항에 있어서, The method of claim 8,상기 기지국이 PC5 기반의 V2X 서비스 또는 Uu 기반의 V2X 서비스 중 상기 PC5 기반의 V2X 서비스만을 지원하면, 상기 V2X 베어러에 대한 자원 할당은 상기 기지국에 의해 보류되는 것을 특징으로 하는 방법.And if the base station supports only the PC5 based V2X service among the PC5 based V2X service or the Uu based V2X service, resource allocation for the V2X bearer is reserved by the base station.
- 제 8 항에 있어서, The method of claim 8,상기 장치는 MME(mobility management entity)인 것을 특징으로 하는 방법.And the device is a mobility management entity (MME).
- 제 10 항에 있어서, The method of claim 10,상기 V2X 베어러에 대한 DRB가 확립되었음을 지시하는 정보를 상기 기지국으로부터 수신하는 단계; 및 Receiving information from the base station indicating that a DRB for the V2X bearer has been established; And상기 DRB가 확립되었음을 지시하는 정보가 수신되면, 상기 V2X 베어러에 상기 마킹을 제거하는 단계;를 더 포함하는 것을 특징으로 하는 방법.If the information indicating that the DRB has been established is received, removing the marking from the V2X bearer.
- 제 8 항에 있어서, The method of claim 8,상기 장치는 단말인 것을 특징으로 하는 방법.And the device is a terminal.
- 제 12 항에 있어서, The method of claim 12,RRC 연결 재설정 메시지(RRC connection reconfiguration message)를 상기 기지국으로부터 수신하는 단계; 및 Receiving an RRC connection reconfiguration message from the base station; And상기 RRC 연결 재설정 메시지가 수신되면, 상기 V2X 베어러에 상기 마킹을 제거하는 단계;를 더 포함하는 것을 특징으로 하는 방법.If the RRC connection reset message is received, removing the marking on the V2X bearer.
- 제 13 항에 있어서, The method of claim 13,상기 단말의 AS 계층은 상기 V2X 베어러에 대한 DRB가 확립되었음을 상기 단말의 NAS에게 알리는 것을 특징으로 하는 방법.The AS layer of the terminal informs the NAS of the terminal that the DRB for the V2X bearer is established.
- 무선 통신 시스템에서 V2X(vehicle to everything) 통신을 수행하는 기지국에 있어서,In the base station performing V2X (vehicle to everything) communication in a wireless communication system,메모리; 송수신기; 및 상기 메모리와 상기 송수신기를 연결하는 프로세서를 포함하되, 상기 프로세서는Memory; Transceiver; And a processor connecting the memory and the transceiver, wherein the processor상기 송수신기가 V2X 베어러(bearer)를 지시하는 V2X 베어러 지시자(indication)를 수신하도록 제어하되, 상기 V2X 베어러는 V2X 서비스에 대하여 사용되는 베어러이고,Control the transceiver to receive a V2X bearer indicator indicating a V2X bearer, wherein the V2X bearer is a bearer used for a V2X service,상기 기지국이 PC5 기반의 V2X 서비스 또는 Uu 기반의 V2X 서비스 중 상기 PC5 기반의 V2X 서비스만을 지원하는 것으로 결정하고,It is determined that the base station supports only the PC5-based V2X service among the PC5-based V2X service or the Uu-based V2X service,상기 V2X 베어러에 대한 자원 할당을 보류하고, 및Suspend resource allocation for the V2X bearer, and상기 송수신기가 상기 V2X 베어러에 대한 자원 할당이 보류됨을 지시하는 정보를 MME(mobility management entity)에게 전송하는 것을 제어하도록 구성되는 것을 특징으로 하는 기지국.And the transceiver is configured to control transmitting information to a mobility management entity (MME) indicating that resource allocation for the V2X bearer is suspended.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/339,930 US11057753B2 (en) | 2016-10-07 | 2017-09-28 | Method and device for performing V2X communication |
EP17858699.6A EP3512294B1 (en) | 2016-10-07 | 2017-09-28 | Method and device for performing v2x communication |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662405807P | 2016-10-07 | 2016-10-07 | |
US62/405,807 | 2016-10-07 | ||
US201662418013P | 2016-11-04 | 2016-11-04 | |
US62/418,013 | 2016-11-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018066905A1 true WO2018066905A1 (en) | 2018-04-12 |
Family
ID=61831131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/010887 WO2018066905A1 (en) | 2016-10-07 | 2017-09-28 | Method and device for performing v2x communication |
Country Status (3)
Country | Link |
---|---|
US (1) | US11057753B2 (en) |
EP (1) | EP3512294B1 (en) |
WO (1) | WO2018066905A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170150490A1 (en) * | 2015-11-19 | 2017-05-25 | Asustek Computer Inc. | Method and apparatus for switching communication interface in a wireless communication system |
WO2020004899A1 (en) * | 2018-06-25 | 2020-01-02 | 삼성전자 주식회사 | Method and device for providing vehicle communication service |
WO2020085831A1 (en) * | 2018-10-26 | 2020-04-30 | 주식회사 케이티 | Method and apparatus for performing vehicle communication |
WO2020192250A1 (en) * | 2019-03-28 | 2020-10-01 | 展讯通信(上海)有限公司 | Method and apparatus for establishing radio bearer |
CN111757476A (en) * | 2019-03-28 | 2020-10-09 | 华为技术有限公司 | Communication method and device |
CN111866796A (en) * | 2019-04-30 | 2020-10-30 | 华为技术有限公司 | Method and apparatus for acquiring radio bearer configuration |
CN112385269A (en) * | 2018-07-19 | 2021-02-19 | Oppo广东移动通信有限公司 | Path selection method, terminal equipment and network equipment |
EP3955631A4 (en) * | 2019-05-15 | 2022-06-01 | Huawei Technologies Co., Ltd. | Communication method, apparatus, and system |
RU2777434C1 (en) * | 2018-10-05 | 2022-08-03 | Самсунг Электроникс Ко., Лтд. | Equipment and method for synchronising using a wireless communication network in a wireless communication system |
US11917706B2 (en) | 2018-10-26 | 2024-02-27 | Kt Corporation | Method and apparatus for performing vehicle communication |
US11963210B2 (en) | 2018-10-05 | 2024-04-16 | Samsung Electronics Co., Ltd. | Apparatus and method for synchronization using wireless communication network in wireless communication system |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11228949B2 (en) * | 2017-01-06 | 2022-01-18 | Samsung Electronics Co., Ltd. | Intra-RAT handover for next generation system |
US11184936B2 (en) * | 2017-05-05 | 2021-11-23 | Lg Electronics Inc. | Method and apparatus for managing a bearer configuration of a relay user equipment |
US11234285B2 (en) * | 2018-11-13 | 2022-01-25 | Qualcomm Incorporated | EV2X mobility support for mode 3.5/RSU scheduled mode |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101175612B1 (en) * | 2010-12-03 | 2012-08-21 | 재단법인대구경북과학기술원 | Adaptive Beam-based Communication System and Scheduling Method Thereof |
WO2016144147A1 (en) * | 2015-03-12 | 2016-09-15 | 엘지전자 주식회사 | Communication method of user equipment installed in vehicle in v2x communication system, and user equipment |
US20160295624A1 (en) * | 2015-04-02 | 2016-10-06 | Samsung Electronics Co., Ltd | Methods and apparatus for resource pool design for vehicular communications |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101706383B1 (en) * | 2010-05-03 | 2017-02-14 | 삼성전자주식회사 | Short message service message delivery method and system in a mobile telecommunication system |
US20130279394A1 (en) * | 2010-11-08 | 2013-10-24 | Sharp Kabushiki Kaisha | Mobile communication system, mobile station device, base station device, sgsn, ggsn, mme, mbms gw and mobile communication method |
EP2501057A1 (en) * | 2011-03-17 | 2012-09-19 | Panasonic Corporation | Dynamic PUSCH deactivation/activation for component carriers of a relay node |
EP2509345A1 (en) * | 2011-04-05 | 2012-10-10 | Panasonic Corporation | Improved small data transmissions for machine-type-communication (MTC) devices |
EP3512293A3 (en) * | 2012-04-27 | 2019-10-02 | Interdigital Patent Holdings, Inc. | Apparatus and method for resource allocation for device-to-device (d2d) communication |
WO2014177345A1 (en) * | 2013-04-30 | 2014-11-06 | Nokia Solutions And Networks Oy | Identifying downlink user packets |
WO2014181233A1 (en) * | 2013-05-05 | 2014-11-13 | Mariana Goldhamer | Collaborative radio resource allocation in cellular deployments |
WO2015096160A1 (en) * | 2013-12-27 | 2015-07-02 | 华为技术有限公司 | Method and device for keeping service continuity |
EP3164496A1 (en) | 2014-07-02 | 2017-05-10 | Altria Client Services LLC | Tobacco having altered leaf properties and methods of making and using |
US10433284B2 (en) * | 2014-07-15 | 2019-10-01 | Qualcomm Incorporated | Bearer management for prose direct discovery |
GB2530523A (en) * | 2014-09-24 | 2016-03-30 | Vodafone Ip Licensing Ltd | Managing communication resources |
EP3482512B1 (en) * | 2016-07-08 | 2019-10-30 | Telefonaktiebolaget LM Ericsson (publ) | Methods and apparatus for multicast or broadcast transmission |
-
2017
- 2017-09-28 US US16/339,930 patent/US11057753B2/en active Active
- 2017-09-28 EP EP17858699.6A patent/EP3512294B1/en active Active
- 2017-09-28 WO PCT/KR2017/010887 patent/WO2018066905A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101175612B1 (en) * | 2010-12-03 | 2012-08-21 | 재단법인대구경북과학기술원 | Adaptive Beam-based Communication System and Scheduling Method Thereof |
WO2016144147A1 (en) * | 2015-03-12 | 2016-09-15 | 엘지전자 주식회사 | Communication method of user equipment installed in vehicle in v2x communication system, and user equipment |
US20160295624A1 (en) * | 2015-04-02 | 2016-10-06 | Samsung Electronics Co., Ltd | Methods and apparatus for resource pool design for vehicular communications |
Non-Patent Citations (2)
Title |
---|
CATT: "Discussion of PC5 and Uu Path Configuration", R2-166184, 3GPP TSG RAN WG: MEETING #95BIS, 1 October 2016 (2016-10-01), Kaohsiung, Taiwan, XP051162062, Retrieved from the Internet <URL:htlp://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_95bis/Docs> * |
SAMSUNG: "Coexistence ofUu and PC5 Operation", R2-166464, 3GPP TSG RAN WG2 MEETING #95BIS, 30 September 2016 (2016-09-30), Kaohsiung, Taiwan, XP051161704, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran,''WG2_RL2/TSGR2_95bis/Docs> * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170150490A1 (en) * | 2015-11-19 | 2017-05-25 | Asustek Computer Inc. | Method and apparatus for switching communication interface in a wireless communication system |
WO2020004899A1 (en) * | 2018-06-25 | 2020-01-02 | 삼성전자 주식회사 | Method and device for providing vehicle communication service |
US11700660B2 (en) | 2018-06-25 | 2023-07-11 | Samsung Electronics Co., Ltd. | Method and device for providing vehicle communication service |
CN112385269A (en) * | 2018-07-19 | 2021-02-19 | Oppo广东移动通信有限公司 | Path selection method, terminal equipment and network equipment |
EP3826363A4 (en) * | 2018-07-19 | 2021-09-15 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Path selecting method, terminal device, and network device |
RU2777434C1 (en) * | 2018-10-05 | 2022-08-03 | Самсунг Электроникс Ко., Лтд. | Equipment and method for synchronising using a wireless communication network in a wireless communication system |
US11963210B2 (en) | 2018-10-05 | 2024-04-16 | Samsung Electronics Co., Ltd. | Apparatus and method for synchronization using wireless communication network in wireless communication system |
WO2020085831A1 (en) * | 2018-10-26 | 2020-04-30 | 주식회사 케이티 | Method and apparatus for performing vehicle communication |
US11917706B2 (en) | 2018-10-26 | 2024-02-27 | Kt Corporation | Method and apparatus for performing vehicle communication |
WO2020192250A1 (en) * | 2019-03-28 | 2020-10-01 | 展讯通信(上海)有限公司 | Method and apparatus for establishing radio bearer |
CN111757476B (en) * | 2019-03-28 | 2021-08-20 | 华为技术有限公司 | Communication method and device |
CN111757476A (en) * | 2019-03-28 | 2020-10-09 | 华为技术有限公司 | Communication method and device |
US12120725B2 (en) | 2019-03-28 | 2024-10-15 | Huawei Technologies Co., Ltd. | Communications method and apparatus |
CN111866796A (en) * | 2019-04-30 | 2020-10-30 | 华为技术有限公司 | Method and apparatus for acquiring radio bearer configuration |
EP3955631A4 (en) * | 2019-05-15 | 2022-06-01 | Huawei Technologies Co., Ltd. | Communication method, apparatus, and system |
Also Published As
Publication number | Publication date |
---|---|
EP3512294A1 (en) | 2019-07-17 |
EP3512294A4 (en) | 2019-08-14 |
EP3512294B1 (en) | 2021-06-16 |
US11057753B2 (en) | 2021-07-06 |
US20200053525A1 (en) | 2020-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018066905A1 (en) | Method and device for performing v2x communication | |
WO2018164469A1 (en) | Method and device for transmitting data in cu-du split scenario | |
WO2018174627A1 (en) | Method and device for indicating type of bearer used for next message in wireless communication system | |
WO2019027205A1 (en) | Method and apparatus for resuming rrc connection in cu-du division scenario | |
WO2018208114A1 (en) | Method and apparatus for allocating sidelink resource using relay ue in wireless communication system | |
WO2018128452A1 (en) | Method for transmitting lossless data packet based on quality of service (qos) framework in wireless communication system and a device therefor | |
WO2018143593A1 (en) | Method for performing reflective quality of service (qos) in wireless communication system and a device therefor | |
WO2016159559A1 (en) | Method and apparatus for changing, by terminal, priority in mcptt | |
WO2018128462A1 (en) | Method and device for transmitting rule for qos flow to drb mapping | |
WO2018182231A1 (en) | Method for performing mcg recovery in dual connectivity in wireless communication system and a device therefor | |
WO2017171529A1 (en) | Method for v2x transmission resource selection performed by means of terminal in wireless communication system and terminal using same | |
WO2017164641A2 (en) | Method and user equipment for transmitting data unit, and method and user equipment for receiving data unit | |
WO2018182254A1 (en) | Method and device for transmitting scg failure information message in wireless communication system | |
WO2019027296A1 (en) | Method for performing a ran based paging and device supporting the same | |
WO2015142082A1 (en) | Method and apparatus for configuring buffer status report for public safety transmission or vehicle-related transmission in wireless communication system | |
WO2017155361A1 (en) | Resource allocation method and device for v2x communication | |
WO2018062848A1 (en) | Method for performing rrc connection reestablishment process and apparatus supporting same | |
WO2019031808A1 (en) | Method for transmitting and receiving signals in a wireless communication system and a device therefor | |
WO2015142081A1 (en) | Method and apparatus for canceling triggered buffer status report for device-to-device transmission in wireless communication system | |
WO2017135740A1 (en) | Method and apparatus for performing v2x communication | |
WO2018088837A1 (en) | Method for terminal performing cell reselection procedure, and device supporting same | |
WO2017126948A1 (en) | Method for transmitting/receiving v2x message in local network in wireless communication system and apparatus for same | |
WO2017086618A1 (en) | Device-to-device direct communication method in wireless communication system and device therefor | |
WO2018230989A1 (en) | Method and apparatus for handling failure of system information request | |
WO2018164528A1 (en) | Method for transferring user equipment capability and apparatus for supporting same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17858699 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017858699 Country of ref document: EP Effective date: 20190412 |